Target FP: Merge doublest.c and dfp.c into target-float.c
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44
45 /* Definition of a user function. */
46 struct internal_function
47 {
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58 };
59
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62 struct range
63 {
64 /* Lowest offset in the range. */
65 LONGEST offset;
66
67 /* Length of the range. */
68 LONGEST length;
69 };
70
71 typedef struct range range_s;
72
73 DEF_VEC_O(range_s);
74
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78 static int
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
81 {
82 ULONGEST h, l;
83
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
86 return (l < h);
87 }
88
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94 static int
95 range_lessthan (const range_s *r1, const range_s *r2)
96 {
97 return r1->offset < r2->offset;
98 }
99
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103 static int
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
105 {
106 range_s what;
107 LONGEST i;
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162 }
163
164 static struct cmd_list_element *functionlist;
165
166 /* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
169 struct value
170 {
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
200
201 /* If the value has been released. */
202 unsigned int released : 1;
203
204 /* Location of value (if lval). */
205 union
206 {
207 /* If lval == lval_memory, this is the address in the inferior */
208 CORE_ADDR address;
209
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
237 } computed;
238 } location;
239
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
242 below. */
243 LONGEST offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 LONGEST bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 LONGEST bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
316 struct value *next;
317
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
321
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
338 };
339
340 /* See value.h. */
341
342 struct gdbarch *
343 get_value_arch (const struct value *value)
344 {
345 return get_type_arch (value_type (value));
346 }
347
348 int
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
350 {
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354 }
355
356 int
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
359 {
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363 }
364
365 int
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367 {
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371 }
372
373 int
374 value_entirely_available (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384 }
385
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390 static int
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
393 {
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
396 if (value->lazy)
397 value_fetch_lazy (value);
398
399 if (VEC_length (range_s, *ranges) == 1)
400 {
401 struct range *t = VEC_index (range_s, *ranges, 0);
402
403 if (t->offset == 0
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
406 return 1;
407 }
408
409 return 0;
410 }
411
412 int
413 value_entirely_unavailable (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416 }
417
418 int
419 value_entirely_optimized_out (struct value *value)
420 {
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422 }
423
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427 static void
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
430 {
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
521 if (i > 0)
522 {
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546 }
547 else
548 {
549 /* #4 */
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
564 removed = 0;
565
566 i = next;
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
589 VEC_block_remove (range_s, *vectorp, next, removed);
590 }
591 }
592
593 void
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
603 {
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607 }
608
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614 static int
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
617 {
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626 }
627
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640 static int
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644 {
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727 }
728
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
732
733 struct ranges_and_idx
734 {
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741 };
742
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
748
749 static int
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
754 {
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
759
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
782
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802 }
803
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811 static int
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815 {
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return 0;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
863 return 0;
864
865 length -= h;
866 offset1 += h;
867 offset2 += h;
868 }
869
870 return 1;
871 }
872
873 int
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
877 {
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
881 }
882
883 /* Prototypes for local functions. */
884
885 static void show_values (char *, int);
886
887
888 /* The value-history records all the values printed
889 by print commands during this session. Each chunk
890 records 60 consecutive values. The first chunk on
891 the chain records the most recent values.
892 The total number of values is in value_history_count. */
893
894 #define VALUE_HISTORY_CHUNK 60
895
896 struct value_history_chunk
897 {
898 struct value_history_chunk *next;
899 struct value *values[VALUE_HISTORY_CHUNK];
900 };
901
902 /* Chain of chunks now in use. */
903
904 static struct value_history_chunk *value_history_chain;
905
906 static int value_history_count; /* Abs number of last entry stored. */
907
908 \f
909 /* List of all value objects currently allocated
910 (except for those released by calls to release_value)
911 This is so they can be freed after each command. */
912
913 static struct value *all_values;
914
915 /* Allocate a lazy value for type TYPE. Its actual content is
916 "lazily" allocated too: the content field of the return value is
917 NULL; it will be allocated when it is fetched from the target. */
918
919 struct value *
920 allocate_value_lazy (struct type *type)
921 {
922 struct value *val;
923
924 /* Call check_typedef on our type to make sure that, if TYPE
925 is a TYPE_CODE_TYPEDEF, its length is set to the length
926 of the target type instead of zero. However, we do not
927 replace the typedef type by the target type, because we want
928 to keep the typedef in order to be able to set the VAL's type
929 description correctly. */
930 check_typedef (type);
931
932 val = XCNEW (struct value);
933 val->contents = NULL;
934 val->next = all_values;
935 all_values = val;
936 val->type = type;
937 val->enclosing_type = type;
938 VALUE_LVAL (val) = not_lval;
939 val->location.address = 0;
940 val->offset = 0;
941 val->bitpos = 0;
942 val->bitsize = 0;
943 val->lazy = 1;
944 val->embedded_offset = 0;
945 val->pointed_to_offset = 0;
946 val->modifiable = 1;
947 val->initialized = 1; /* Default to initialized. */
948
949 /* Values start out on the all_values chain. */
950 val->reference_count = 1;
951
952 return val;
953 }
954
955 /* The maximum size, in bytes, that GDB will try to allocate for a value.
956 The initial value of 64k was not selected for any specific reason, it is
957 just a reasonable starting point. */
958
959 static int max_value_size = 65536; /* 64k bytes */
960
961 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
962 LONGEST, otherwise GDB will not be able to parse integer values from the
963 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
964 be unable to parse "set max-value-size 2".
965
966 As we want a consistent GDB experience across hosts with different sizes
967 of LONGEST, this arbitrary minimum value was selected, so long as this
968 is bigger than LONGEST on all GDB supported hosts we're fine. */
969
970 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
971 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
972
973 /* Implement the "set max-value-size" command. */
974
975 static void
976 set_max_value_size (char *args, int from_tty,
977 struct cmd_list_element *c)
978 {
979 gdb_assert (max_value_size == -1 || max_value_size >= 0);
980
981 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
982 {
983 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
984 error (_("max-value-size set too low, increasing to %d bytes"),
985 max_value_size);
986 }
987 }
988
989 /* Implement the "show max-value-size" command. */
990
991 static void
992 show_max_value_size (struct ui_file *file, int from_tty,
993 struct cmd_list_element *c, const char *value)
994 {
995 if (max_value_size == -1)
996 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
997 else
998 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
999 max_value_size);
1000 }
1001
1002 /* Called before we attempt to allocate or reallocate a buffer for the
1003 contents of a value. TYPE is the type of the value for which we are
1004 allocating the buffer. If the buffer is too large (based on the user
1005 controllable setting) then throw an error. If this function returns
1006 then we should attempt to allocate the buffer. */
1007
1008 static void
1009 check_type_length_before_alloc (const struct type *type)
1010 {
1011 unsigned int length = TYPE_LENGTH (type);
1012
1013 if (max_value_size > -1 && length > max_value_size)
1014 {
1015 if (TYPE_NAME (type) != NULL)
1016 error (_("value of type `%s' requires %u bytes, which is more "
1017 "than max-value-size"), TYPE_NAME (type), length);
1018 else
1019 error (_("value requires %u bytes, which is more than "
1020 "max-value-size"), length);
1021 }
1022 }
1023
1024 /* Allocate the contents of VAL if it has not been allocated yet. */
1025
1026 static void
1027 allocate_value_contents (struct value *val)
1028 {
1029 if (!val->contents)
1030 {
1031 check_type_length_before_alloc (val->enclosing_type);
1032 val->contents
1033 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1034 }
1035 }
1036
1037 /* Allocate a value and its contents for type TYPE. */
1038
1039 struct value *
1040 allocate_value (struct type *type)
1041 {
1042 struct value *val = allocate_value_lazy (type);
1043
1044 allocate_value_contents (val);
1045 val->lazy = 0;
1046 return val;
1047 }
1048
1049 /* Allocate a value that has the correct length
1050 for COUNT repetitions of type TYPE. */
1051
1052 struct value *
1053 allocate_repeat_value (struct type *type, int count)
1054 {
1055 int low_bound = current_language->string_lower_bound; /* ??? */
1056 /* FIXME-type-allocation: need a way to free this type when we are
1057 done with it. */
1058 struct type *array_type
1059 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1060
1061 return allocate_value (array_type);
1062 }
1063
1064 struct value *
1065 allocate_computed_value (struct type *type,
1066 const struct lval_funcs *funcs,
1067 void *closure)
1068 {
1069 struct value *v = allocate_value_lazy (type);
1070
1071 VALUE_LVAL (v) = lval_computed;
1072 v->location.computed.funcs = funcs;
1073 v->location.computed.closure = closure;
1074
1075 return v;
1076 }
1077
1078 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1079
1080 struct value *
1081 allocate_optimized_out_value (struct type *type)
1082 {
1083 struct value *retval = allocate_value_lazy (type);
1084
1085 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1086 set_value_lazy (retval, 0);
1087 return retval;
1088 }
1089
1090 /* Accessor methods. */
1091
1092 struct value *
1093 value_next (const struct value *value)
1094 {
1095 return value->next;
1096 }
1097
1098 struct type *
1099 value_type (const struct value *value)
1100 {
1101 return value->type;
1102 }
1103 void
1104 deprecated_set_value_type (struct value *value, struct type *type)
1105 {
1106 value->type = type;
1107 }
1108
1109 LONGEST
1110 value_offset (const struct value *value)
1111 {
1112 return value->offset;
1113 }
1114 void
1115 set_value_offset (struct value *value, LONGEST offset)
1116 {
1117 value->offset = offset;
1118 }
1119
1120 LONGEST
1121 value_bitpos (const struct value *value)
1122 {
1123 return value->bitpos;
1124 }
1125 void
1126 set_value_bitpos (struct value *value, LONGEST bit)
1127 {
1128 value->bitpos = bit;
1129 }
1130
1131 LONGEST
1132 value_bitsize (const struct value *value)
1133 {
1134 return value->bitsize;
1135 }
1136 void
1137 set_value_bitsize (struct value *value, LONGEST bit)
1138 {
1139 value->bitsize = bit;
1140 }
1141
1142 struct value *
1143 value_parent (const struct value *value)
1144 {
1145 return value->parent;
1146 }
1147
1148 /* See value.h. */
1149
1150 void
1151 set_value_parent (struct value *value, struct value *parent)
1152 {
1153 struct value *old = value->parent;
1154
1155 value->parent = parent;
1156 if (parent != NULL)
1157 value_incref (parent);
1158 value_free (old);
1159 }
1160
1161 gdb_byte *
1162 value_contents_raw (struct value *value)
1163 {
1164 struct gdbarch *arch = get_value_arch (value);
1165 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1166
1167 allocate_value_contents (value);
1168 return value->contents + value->embedded_offset * unit_size;
1169 }
1170
1171 gdb_byte *
1172 value_contents_all_raw (struct value *value)
1173 {
1174 allocate_value_contents (value);
1175 return value->contents;
1176 }
1177
1178 struct type *
1179 value_enclosing_type (const struct value *value)
1180 {
1181 return value->enclosing_type;
1182 }
1183
1184 /* Look at value.h for description. */
1185
1186 struct type *
1187 value_actual_type (struct value *value, int resolve_simple_types,
1188 int *real_type_found)
1189 {
1190 struct value_print_options opts;
1191 struct type *result;
1192
1193 get_user_print_options (&opts);
1194
1195 if (real_type_found)
1196 *real_type_found = 0;
1197 result = value_type (value);
1198 if (opts.objectprint)
1199 {
1200 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1201 fetch its rtti type. */
1202 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1203 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1204 == TYPE_CODE_STRUCT
1205 && !value_optimized_out (value))
1206 {
1207 struct type *real_type;
1208
1209 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1210 if (real_type)
1211 {
1212 if (real_type_found)
1213 *real_type_found = 1;
1214 result = real_type;
1215 }
1216 }
1217 else if (resolve_simple_types)
1218 {
1219 if (real_type_found)
1220 *real_type_found = 1;
1221 result = value_enclosing_type (value);
1222 }
1223 }
1224
1225 return result;
1226 }
1227
1228 void
1229 error_value_optimized_out (void)
1230 {
1231 error (_("value has been optimized out"));
1232 }
1233
1234 static void
1235 require_not_optimized_out (const struct value *value)
1236 {
1237 if (!VEC_empty (range_s, value->optimized_out))
1238 {
1239 if (value->lval == lval_register)
1240 error (_("register has not been saved in frame"));
1241 else
1242 error_value_optimized_out ();
1243 }
1244 }
1245
1246 static void
1247 require_available (const struct value *value)
1248 {
1249 if (!VEC_empty (range_s, value->unavailable))
1250 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1251 }
1252
1253 const gdb_byte *
1254 value_contents_for_printing (struct value *value)
1255 {
1256 if (value->lazy)
1257 value_fetch_lazy (value);
1258 return value->contents;
1259 }
1260
1261 const gdb_byte *
1262 value_contents_for_printing_const (const struct value *value)
1263 {
1264 gdb_assert (!value->lazy);
1265 return value->contents;
1266 }
1267
1268 const gdb_byte *
1269 value_contents_all (struct value *value)
1270 {
1271 const gdb_byte *result = value_contents_for_printing (value);
1272 require_not_optimized_out (value);
1273 require_available (value);
1274 return result;
1275 }
1276
1277 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1279
1280 static void
1281 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1282 VEC (range_s) *src_range, int src_bit_offset,
1283 int bit_length)
1284 {
1285 range_s *r;
1286 int i;
1287
1288 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1289 {
1290 ULONGEST h, l;
1291
1292 l = std::max (r->offset, (LONGEST) src_bit_offset);
1293 h = std::min (r->offset + r->length,
1294 (LONGEST) src_bit_offset + bit_length);
1295
1296 if (l < h)
1297 insert_into_bit_range_vector (dst_range,
1298 dst_bit_offset + (l - src_bit_offset),
1299 h - l);
1300 }
1301 }
1302
1303 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1304 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1305
1306 static void
1307 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1308 const struct value *src, int src_bit_offset,
1309 int bit_length)
1310 {
1311 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1312 src->unavailable, src_bit_offset,
1313 bit_length);
1314 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1315 src->optimized_out, src_bit_offset,
1316 bit_length);
1317 }
1318
1319 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1320 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1321 contents, starting at DST_OFFSET. If unavailable contents are
1322 being copied from SRC, the corresponding DST contents are marked
1323 unavailable accordingly. Neither DST nor SRC may be lazy
1324 values.
1325
1326 It is assumed the contents of DST in the [DST_OFFSET,
1327 DST_OFFSET+LENGTH) range are wholly available. */
1328
1329 void
1330 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1331 struct value *src, LONGEST src_offset, LONGEST length)
1332 {
1333 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1334 struct gdbarch *arch = get_value_arch (src);
1335 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1336
1337 /* A lazy DST would make that this copy operation useless, since as
1338 soon as DST's contents were un-lazied (by a later value_contents
1339 call, say), the contents would be overwritten. A lazy SRC would
1340 mean we'd be copying garbage. */
1341 gdb_assert (!dst->lazy && !src->lazy);
1342
1343 /* The overwritten DST range gets unavailability ORed in, not
1344 replaced. Make sure to remember to implement replacing if it
1345 turns out actually necessary. */
1346 gdb_assert (value_bytes_available (dst, dst_offset, length));
1347 gdb_assert (!value_bits_any_optimized_out (dst,
1348 TARGET_CHAR_BIT * dst_offset,
1349 TARGET_CHAR_BIT * length));
1350
1351 /* Copy the data. */
1352 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1353 value_contents_all_raw (src) + src_offset * unit_size,
1354 length * unit_size);
1355
1356 /* Copy the meta-data, adjusted. */
1357 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1358 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1359 bit_length = length * unit_size * HOST_CHAR_BIT;
1360
1361 value_ranges_copy_adjusted (dst, dst_bit_offset,
1362 src, src_bit_offset,
1363 bit_length);
1364 }
1365
1366 /* Copy LENGTH bytes of SRC value's (all) contents
1367 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1368 (all) contents, starting at DST_OFFSET. If unavailable contents
1369 are being copied from SRC, the corresponding DST contents are
1370 marked unavailable accordingly. DST must not be lazy. If SRC is
1371 lazy, it will be fetched now.
1372
1373 It is assumed the contents of DST in the [DST_OFFSET,
1374 DST_OFFSET+LENGTH) range are wholly available. */
1375
1376 void
1377 value_contents_copy (struct value *dst, LONGEST dst_offset,
1378 struct value *src, LONGEST src_offset, LONGEST length)
1379 {
1380 if (src->lazy)
1381 value_fetch_lazy (src);
1382
1383 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1384 }
1385
1386 int
1387 value_lazy (const struct value *value)
1388 {
1389 return value->lazy;
1390 }
1391
1392 void
1393 set_value_lazy (struct value *value, int val)
1394 {
1395 value->lazy = val;
1396 }
1397
1398 int
1399 value_stack (const struct value *value)
1400 {
1401 return value->stack;
1402 }
1403
1404 void
1405 set_value_stack (struct value *value, int val)
1406 {
1407 value->stack = val;
1408 }
1409
1410 const gdb_byte *
1411 value_contents (struct value *value)
1412 {
1413 const gdb_byte *result = value_contents_writeable (value);
1414 require_not_optimized_out (value);
1415 require_available (value);
1416 return result;
1417 }
1418
1419 gdb_byte *
1420 value_contents_writeable (struct value *value)
1421 {
1422 if (value->lazy)
1423 value_fetch_lazy (value);
1424 return value_contents_raw (value);
1425 }
1426
1427 int
1428 value_optimized_out (struct value *value)
1429 {
1430 /* We can only know if a value is optimized out once we have tried to
1431 fetch it. */
1432 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1433 {
1434 TRY
1435 {
1436 value_fetch_lazy (value);
1437 }
1438 CATCH (ex, RETURN_MASK_ERROR)
1439 {
1440 /* Fall back to checking value->optimized_out. */
1441 }
1442 END_CATCH
1443 }
1444
1445 return !VEC_empty (range_s, value->optimized_out);
1446 }
1447
1448 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1449 the following LENGTH bytes. */
1450
1451 void
1452 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1453 {
1454 mark_value_bits_optimized_out (value,
1455 offset * TARGET_CHAR_BIT,
1456 length * TARGET_CHAR_BIT);
1457 }
1458
1459 /* See value.h. */
1460
1461 void
1462 mark_value_bits_optimized_out (struct value *value,
1463 LONGEST offset, LONGEST length)
1464 {
1465 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1466 }
1467
1468 int
1469 value_bits_synthetic_pointer (const struct value *value,
1470 LONGEST offset, LONGEST length)
1471 {
1472 if (value->lval != lval_computed
1473 || !value->location.computed.funcs->check_synthetic_pointer)
1474 return 0;
1475 return value->location.computed.funcs->check_synthetic_pointer (value,
1476 offset,
1477 length);
1478 }
1479
1480 LONGEST
1481 value_embedded_offset (const struct value *value)
1482 {
1483 return value->embedded_offset;
1484 }
1485
1486 void
1487 set_value_embedded_offset (struct value *value, LONGEST val)
1488 {
1489 value->embedded_offset = val;
1490 }
1491
1492 LONGEST
1493 value_pointed_to_offset (const struct value *value)
1494 {
1495 return value->pointed_to_offset;
1496 }
1497
1498 void
1499 set_value_pointed_to_offset (struct value *value, LONGEST val)
1500 {
1501 value->pointed_to_offset = val;
1502 }
1503
1504 const struct lval_funcs *
1505 value_computed_funcs (const struct value *v)
1506 {
1507 gdb_assert (value_lval_const (v) == lval_computed);
1508
1509 return v->location.computed.funcs;
1510 }
1511
1512 void *
1513 value_computed_closure (const struct value *v)
1514 {
1515 gdb_assert (v->lval == lval_computed);
1516
1517 return v->location.computed.closure;
1518 }
1519
1520 enum lval_type *
1521 deprecated_value_lval_hack (struct value *value)
1522 {
1523 return &value->lval;
1524 }
1525
1526 enum lval_type
1527 value_lval_const (const struct value *value)
1528 {
1529 return value->lval;
1530 }
1531
1532 CORE_ADDR
1533 value_address (const struct value *value)
1534 {
1535 if (value->lval != lval_memory)
1536 return 0;
1537 if (value->parent != NULL)
1538 return value_address (value->parent) + value->offset;
1539 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1540 {
1541 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1542 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1543 }
1544
1545 return value->location.address + value->offset;
1546 }
1547
1548 CORE_ADDR
1549 value_raw_address (const struct value *value)
1550 {
1551 if (value->lval != lval_memory)
1552 return 0;
1553 return value->location.address;
1554 }
1555
1556 void
1557 set_value_address (struct value *value, CORE_ADDR addr)
1558 {
1559 gdb_assert (value->lval == lval_memory);
1560 value->location.address = addr;
1561 }
1562
1563 struct internalvar **
1564 deprecated_value_internalvar_hack (struct value *value)
1565 {
1566 return &value->location.internalvar;
1567 }
1568
1569 struct frame_id *
1570 deprecated_value_next_frame_id_hack (struct value *value)
1571 {
1572 gdb_assert (value->lval == lval_register);
1573 return &value->location.reg.next_frame_id;
1574 }
1575
1576 int *
1577 deprecated_value_regnum_hack (struct value *value)
1578 {
1579 gdb_assert (value->lval == lval_register);
1580 return &value->location.reg.regnum;
1581 }
1582
1583 int
1584 deprecated_value_modifiable (const struct value *value)
1585 {
1586 return value->modifiable;
1587 }
1588 \f
1589 /* Return a mark in the value chain. All values allocated after the
1590 mark is obtained (except for those released) are subject to being freed
1591 if a subsequent value_free_to_mark is passed the mark. */
1592 struct value *
1593 value_mark (void)
1594 {
1595 return all_values;
1596 }
1597
1598 /* Take a reference to VAL. VAL will not be deallocated until all
1599 references are released. */
1600
1601 void
1602 value_incref (struct value *val)
1603 {
1604 val->reference_count++;
1605 }
1606
1607 /* Release a reference to VAL, which was acquired with value_incref.
1608 This function is also called to deallocate values from the value
1609 chain. */
1610
1611 void
1612 value_free (struct value *val)
1613 {
1614 if (val)
1615 {
1616 gdb_assert (val->reference_count > 0);
1617 val->reference_count--;
1618 if (val->reference_count > 0)
1619 return;
1620
1621 /* If there's an associated parent value, drop our reference to
1622 it. */
1623 if (val->parent != NULL)
1624 value_free (val->parent);
1625
1626 if (VALUE_LVAL (val) == lval_computed)
1627 {
1628 const struct lval_funcs *funcs = val->location.computed.funcs;
1629
1630 if (funcs->free_closure)
1631 funcs->free_closure (val);
1632 }
1633 else if (VALUE_LVAL (val) == lval_xcallable)
1634 free_xmethod_worker (val->location.xm_worker);
1635
1636 xfree (val->contents);
1637 VEC_free (range_s, val->unavailable);
1638 }
1639 xfree (val);
1640 }
1641
1642 /* Free all values allocated since MARK was obtained by value_mark
1643 (except for those released). */
1644 void
1645 value_free_to_mark (const struct value *mark)
1646 {
1647 struct value *val;
1648 struct value *next;
1649
1650 for (val = all_values; val && val != mark; val = next)
1651 {
1652 next = val->next;
1653 val->released = 1;
1654 value_free (val);
1655 }
1656 all_values = val;
1657 }
1658
1659 /* Free all the values that have been allocated (except for those released).
1660 Call after each command, successful or not.
1661 In practice this is called before each command, which is sufficient. */
1662
1663 void
1664 free_all_values (void)
1665 {
1666 struct value *val;
1667 struct value *next;
1668
1669 for (val = all_values; val; val = next)
1670 {
1671 next = val->next;
1672 val->released = 1;
1673 value_free (val);
1674 }
1675
1676 all_values = 0;
1677 }
1678
1679 /* Frees all the elements in a chain of values. */
1680
1681 void
1682 free_value_chain (struct value *v)
1683 {
1684 struct value *next;
1685
1686 for (; v; v = next)
1687 {
1688 next = value_next (v);
1689 value_free (v);
1690 }
1691 }
1692
1693 /* Remove VAL from the chain all_values
1694 so it will not be freed automatically. */
1695
1696 void
1697 release_value (struct value *val)
1698 {
1699 struct value *v;
1700
1701 if (all_values == val)
1702 {
1703 all_values = val->next;
1704 val->next = NULL;
1705 val->released = 1;
1706 return;
1707 }
1708
1709 for (v = all_values; v; v = v->next)
1710 {
1711 if (v->next == val)
1712 {
1713 v->next = val->next;
1714 val->next = NULL;
1715 val->released = 1;
1716 break;
1717 }
1718 }
1719 }
1720
1721 /* If the value is not already released, release it.
1722 If the value is already released, increment its reference count.
1723 That is, this function ensures that the value is released from the
1724 value chain and that the caller owns a reference to it. */
1725
1726 void
1727 release_value_or_incref (struct value *val)
1728 {
1729 if (val->released)
1730 value_incref (val);
1731 else
1732 release_value (val);
1733 }
1734
1735 /* Release all values up to mark */
1736 struct value *
1737 value_release_to_mark (const struct value *mark)
1738 {
1739 struct value *val;
1740 struct value *next;
1741
1742 for (val = next = all_values; next; next = next->next)
1743 {
1744 if (next->next == mark)
1745 {
1746 all_values = next->next;
1747 next->next = NULL;
1748 return val;
1749 }
1750 next->released = 1;
1751 }
1752 all_values = 0;
1753 return val;
1754 }
1755
1756 /* Return a copy of the value ARG.
1757 It contains the same contents, for same memory address,
1758 but it's a different block of storage. */
1759
1760 struct value *
1761 value_copy (struct value *arg)
1762 {
1763 struct type *encl_type = value_enclosing_type (arg);
1764 struct value *val;
1765
1766 if (value_lazy (arg))
1767 val = allocate_value_lazy (encl_type);
1768 else
1769 val = allocate_value (encl_type);
1770 val->type = arg->type;
1771 VALUE_LVAL (val) = VALUE_LVAL (arg);
1772 val->location = arg->location;
1773 val->offset = arg->offset;
1774 val->bitpos = arg->bitpos;
1775 val->bitsize = arg->bitsize;
1776 val->lazy = arg->lazy;
1777 val->embedded_offset = value_embedded_offset (arg);
1778 val->pointed_to_offset = arg->pointed_to_offset;
1779 val->modifiable = arg->modifiable;
1780 if (!value_lazy (val))
1781 {
1782 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1783 TYPE_LENGTH (value_enclosing_type (arg)));
1784
1785 }
1786 val->unavailable = VEC_copy (range_s, arg->unavailable);
1787 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1788 set_value_parent (val, arg->parent);
1789 if (VALUE_LVAL (val) == lval_computed)
1790 {
1791 const struct lval_funcs *funcs = val->location.computed.funcs;
1792
1793 if (funcs->copy_closure)
1794 val->location.computed.closure = funcs->copy_closure (val);
1795 }
1796 return val;
1797 }
1798
1799 /* Return a "const" and/or "volatile" qualified version of the value V.
1800 If CNST is true, then the returned value will be qualified with
1801 "const".
1802 if VOLTL is true, then the returned value will be qualified with
1803 "volatile". */
1804
1805 struct value *
1806 make_cv_value (int cnst, int voltl, struct value *v)
1807 {
1808 struct type *val_type = value_type (v);
1809 struct type *enclosing_type = value_enclosing_type (v);
1810 struct value *cv_val = value_copy (v);
1811
1812 deprecated_set_value_type (cv_val,
1813 make_cv_type (cnst, voltl, val_type, NULL));
1814 set_value_enclosing_type (cv_val,
1815 make_cv_type (cnst, voltl, enclosing_type, NULL));
1816
1817 return cv_val;
1818 }
1819
1820 /* Return a version of ARG that is non-lvalue. */
1821
1822 struct value *
1823 value_non_lval (struct value *arg)
1824 {
1825 if (VALUE_LVAL (arg) != not_lval)
1826 {
1827 struct type *enc_type = value_enclosing_type (arg);
1828 struct value *val = allocate_value (enc_type);
1829
1830 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1831 TYPE_LENGTH (enc_type));
1832 val->type = arg->type;
1833 set_value_embedded_offset (val, value_embedded_offset (arg));
1834 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1835 return val;
1836 }
1837 return arg;
1838 }
1839
1840 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1841
1842 void
1843 value_force_lval (struct value *v, CORE_ADDR addr)
1844 {
1845 gdb_assert (VALUE_LVAL (v) == not_lval);
1846
1847 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1848 v->lval = lval_memory;
1849 v->location.address = addr;
1850 }
1851
1852 void
1853 set_value_component_location (struct value *component,
1854 const struct value *whole)
1855 {
1856 struct type *type;
1857
1858 gdb_assert (whole->lval != lval_xcallable);
1859
1860 if (whole->lval == lval_internalvar)
1861 VALUE_LVAL (component) = lval_internalvar_component;
1862 else
1863 VALUE_LVAL (component) = whole->lval;
1864
1865 component->location = whole->location;
1866 if (whole->lval == lval_computed)
1867 {
1868 const struct lval_funcs *funcs = whole->location.computed.funcs;
1869
1870 if (funcs->copy_closure)
1871 component->location.computed.closure = funcs->copy_closure (whole);
1872 }
1873
1874 /* If type has a dynamic resolved location property
1875 update it's value address. */
1876 type = value_type (whole);
1877 if (NULL != TYPE_DATA_LOCATION (type)
1878 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1879 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1880 }
1881
1882 /* Access to the value history. */
1883
1884 /* Record a new value in the value history.
1885 Returns the absolute history index of the entry. */
1886
1887 int
1888 record_latest_value (struct value *val)
1889 {
1890 int i;
1891
1892 /* We don't want this value to have anything to do with the inferior anymore.
1893 In particular, "set $1 = 50" should not affect the variable from which
1894 the value was taken, and fast watchpoints should be able to assume that
1895 a value on the value history never changes. */
1896 if (value_lazy (val))
1897 value_fetch_lazy (val);
1898 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1899 from. This is a bit dubious, because then *&$1 does not just return $1
1900 but the current contents of that location. c'est la vie... */
1901 val->modifiable = 0;
1902
1903 /* The value may have already been released, in which case we're adding a
1904 new reference for its entry in the history. That is why we call
1905 release_value_or_incref here instead of release_value. */
1906 release_value_or_incref (val);
1907
1908 /* Here we treat value_history_count as origin-zero
1909 and applying to the value being stored now. */
1910
1911 i = value_history_count % VALUE_HISTORY_CHUNK;
1912 if (i == 0)
1913 {
1914 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1915
1916 newobj->next = value_history_chain;
1917 value_history_chain = newobj;
1918 }
1919
1920 value_history_chain->values[i] = val;
1921
1922 /* Now we regard value_history_count as origin-one
1923 and applying to the value just stored. */
1924
1925 return ++value_history_count;
1926 }
1927
1928 /* Return a copy of the value in the history with sequence number NUM. */
1929
1930 struct value *
1931 access_value_history (int num)
1932 {
1933 struct value_history_chunk *chunk;
1934 int i;
1935 int absnum = num;
1936
1937 if (absnum <= 0)
1938 absnum += value_history_count;
1939
1940 if (absnum <= 0)
1941 {
1942 if (num == 0)
1943 error (_("The history is empty."));
1944 else if (num == 1)
1945 error (_("There is only one value in the history."));
1946 else
1947 error (_("History does not go back to $$%d."), -num);
1948 }
1949 if (absnum > value_history_count)
1950 error (_("History has not yet reached $%d."), absnum);
1951
1952 absnum--;
1953
1954 /* Now absnum is always absolute and origin zero. */
1955
1956 chunk = value_history_chain;
1957 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1958 - absnum / VALUE_HISTORY_CHUNK;
1959 i > 0; i--)
1960 chunk = chunk->next;
1961
1962 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1963 }
1964
1965 static void
1966 show_values (char *num_exp, int from_tty)
1967 {
1968 int i;
1969 struct value *val;
1970 static int num = 1;
1971
1972 if (num_exp)
1973 {
1974 /* "show values +" should print from the stored position.
1975 "show values <exp>" should print around value number <exp>. */
1976 if (num_exp[0] != '+' || num_exp[1] != '\0')
1977 num = parse_and_eval_long (num_exp) - 5;
1978 }
1979 else
1980 {
1981 /* "show values" means print the last 10 values. */
1982 num = value_history_count - 9;
1983 }
1984
1985 if (num <= 0)
1986 num = 1;
1987
1988 for (i = num; i < num + 10 && i <= value_history_count; i++)
1989 {
1990 struct value_print_options opts;
1991
1992 val = access_value_history (i);
1993 printf_filtered (("$%d = "), i);
1994 get_user_print_options (&opts);
1995 value_print (val, gdb_stdout, &opts);
1996 printf_filtered (("\n"));
1997 }
1998
1999 /* The next "show values +" should start after what we just printed. */
2000 num += 10;
2001
2002 /* Hitting just return after this command should do the same thing as
2003 "show values +". If num_exp is null, this is unnecessary, since
2004 "show values +" is not useful after "show values". */
2005 if (from_tty && num_exp)
2006 {
2007 num_exp[0] = '+';
2008 num_exp[1] = '\0';
2009 }
2010 }
2011 \f
2012 enum internalvar_kind
2013 {
2014 /* The internal variable is empty. */
2015 INTERNALVAR_VOID,
2016
2017 /* The value of the internal variable is provided directly as
2018 a GDB value object. */
2019 INTERNALVAR_VALUE,
2020
2021 /* A fresh value is computed via a call-back routine on every
2022 access to the internal variable. */
2023 INTERNALVAR_MAKE_VALUE,
2024
2025 /* The internal variable holds a GDB internal convenience function. */
2026 INTERNALVAR_FUNCTION,
2027
2028 /* The variable holds an integer value. */
2029 INTERNALVAR_INTEGER,
2030
2031 /* The variable holds a GDB-provided string. */
2032 INTERNALVAR_STRING,
2033 };
2034
2035 union internalvar_data
2036 {
2037 /* A value object used with INTERNALVAR_VALUE. */
2038 struct value *value;
2039
2040 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2041 struct
2042 {
2043 /* The functions to call. */
2044 const struct internalvar_funcs *functions;
2045
2046 /* The function's user-data. */
2047 void *data;
2048 } make_value;
2049
2050 /* The internal function used with INTERNALVAR_FUNCTION. */
2051 struct
2052 {
2053 struct internal_function *function;
2054 /* True if this is the canonical name for the function. */
2055 int canonical;
2056 } fn;
2057
2058 /* An integer value used with INTERNALVAR_INTEGER. */
2059 struct
2060 {
2061 /* If type is non-NULL, it will be used as the type to generate
2062 a value for this internal variable. If type is NULL, a default
2063 integer type for the architecture is used. */
2064 struct type *type;
2065 LONGEST val;
2066 } integer;
2067
2068 /* A string value used with INTERNALVAR_STRING. */
2069 char *string;
2070 };
2071
2072 /* Internal variables. These are variables within the debugger
2073 that hold values assigned by debugger commands.
2074 The user refers to them with a '$' prefix
2075 that does not appear in the variable names stored internally. */
2076
2077 struct internalvar
2078 {
2079 struct internalvar *next;
2080 char *name;
2081
2082 /* We support various different kinds of content of an internal variable.
2083 enum internalvar_kind specifies the kind, and union internalvar_data
2084 provides the data associated with this particular kind. */
2085
2086 enum internalvar_kind kind;
2087
2088 union internalvar_data u;
2089 };
2090
2091 static struct internalvar *internalvars;
2092
2093 /* If the variable does not already exist create it and give it the
2094 value given. If no value is given then the default is zero. */
2095 static void
2096 init_if_undefined_command (char* args, int from_tty)
2097 {
2098 struct internalvar* intvar;
2099
2100 /* Parse the expression - this is taken from set_command(). */
2101 expression_up expr = parse_expression (args);
2102
2103 /* Validate the expression.
2104 Was the expression an assignment?
2105 Or even an expression at all? */
2106 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2107 error (_("Init-if-undefined requires an assignment expression."));
2108
2109 /* Extract the variable from the parsed expression.
2110 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2111 if (expr->elts[1].opcode != OP_INTERNALVAR)
2112 error (_("The first parameter to init-if-undefined "
2113 "should be a GDB variable."));
2114 intvar = expr->elts[2].internalvar;
2115
2116 /* Only evaluate the expression if the lvalue is void.
2117 This may still fail if the expresssion is invalid. */
2118 if (intvar->kind == INTERNALVAR_VOID)
2119 evaluate_expression (expr.get ());
2120 }
2121
2122
2123 /* Look up an internal variable with name NAME. NAME should not
2124 normally include a dollar sign.
2125
2126 If the specified internal variable does not exist,
2127 the return value is NULL. */
2128
2129 struct internalvar *
2130 lookup_only_internalvar (const char *name)
2131 {
2132 struct internalvar *var;
2133
2134 for (var = internalvars; var; var = var->next)
2135 if (strcmp (var->name, name) == 0)
2136 return var;
2137
2138 return NULL;
2139 }
2140
2141 /* Complete NAME by comparing it to the names of internal
2142 variables. */
2143
2144 void
2145 complete_internalvar (completion_tracker &tracker, const char *name)
2146 {
2147 struct internalvar *var;
2148 int len;
2149
2150 len = strlen (name);
2151
2152 for (var = internalvars; var; var = var->next)
2153 if (strncmp (var->name, name, len) == 0)
2154 {
2155 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2156
2157 tracker.add_completion (std::move (copy));
2158 }
2159 }
2160
2161 /* Create an internal variable with name NAME and with a void value.
2162 NAME should not normally include a dollar sign. */
2163
2164 struct internalvar *
2165 create_internalvar (const char *name)
2166 {
2167 struct internalvar *var = XNEW (struct internalvar);
2168
2169 var->name = concat (name, (char *)NULL);
2170 var->kind = INTERNALVAR_VOID;
2171 var->next = internalvars;
2172 internalvars = var;
2173 return var;
2174 }
2175
2176 /* Create an internal variable with name NAME and register FUN as the
2177 function that value_of_internalvar uses to create a value whenever
2178 this variable is referenced. NAME should not normally include a
2179 dollar sign. DATA is passed uninterpreted to FUN when it is
2180 called. CLEANUP, if not NULL, is called when the internal variable
2181 is destroyed. It is passed DATA as its only argument. */
2182
2183 struct internalvar *
2184 create_internalvar_type_lazy (const char *name,
2185 const struct internalvar_funcs *funcs,
2186 void *data)
2187 {
2188 struct internalvar *var = create_internalvar (name);
2189
2190 var->kind = INTERNALVAR_MAKE_VALUE;
2191 var->u.make_value.functions = funcs;
2192 var->u.make_value.data = data;
2193 return var;
2194 }
2195
2196 /* See documentation in value.h. */
2197
2198 int
2199 compile_internalvar_to_ax (struct internalvar *var,
2200 struct agent_expr *expr,
2201 struct axs_value *value)
2202 {
2203 if (var->kind != INTERNALVAR_MAKE_VALUE
2204 || var->u.make_value.functions->compile_to_ax == NULL)
2205 return 0;
2206
2207 var->u.make_value.functions->compile_to_ax (var, expr, value,
2208 var->u.make_value.data);
2209 return 1;
2210 }
2211
2212 /* Look up an internal variable with name NAME. NAME should not
2213 normally include a dollar sign.
2214
2215 If the specified internal variable does not exist,
2216 one is created, with a void value. */
2217
2218 struct internalvar *
2219 lookup_internalvar (const char *name)
2220 {
2221 struct internalvar *var;
2222
2223 var = lookup_only_internalvar (name);
2224 if (var)
2225 return var;
2226
2227 return create_internalvar (name);
2228 }
2229
2230 /* Return current value of internal variable VAR. For variables that
2231 are not inherently typed, use a value type appropriate for GDBARCH. */
2232
2233 struct value *
2234 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2235 {
2236 struct value *val;
2237 struct trace_state_variable *tsv;
2238
2239 /* If there is a trace state variable of the same name, assume that
2240 is what we really want to see. */
2241 tsv = find_trace_state_variable (var->name);
2242 if (tsv)
2243 {
2244 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2245 &(tsv->value));
2246 if (tsv->value_known)
2247 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2248 tsv->value);
2249 else
2250 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2251 return val;
2252 }
2253
2254 switch (var->kind)
2255 {
2256 case INTERNALVAR_VOID:
2257 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2258 break;
2259
2260 case INTERNALVAR_FUNCTION:
2261 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2262 break;
2263
2264 case INTERNALVAR_INTEGER:
2265 if (!var->u.integer.type)
2266 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2267 var->u.integer.val);
2268 else
2269 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2270 break;
2271
2272 case INTERNALVAR_STRING:
2273 val = value_cstring (var->u.string, strlen (var->u.string),
2274 builtin_type (gdbarch)->builtin_char);
2275 break;
2276
2277 case INTERNALVAR_VALUE:
2278 val = value_copy (var->u.value);
2279 if (value_lazy (val))
2280 value_fetch_lazy (val);
2281 break;
2282
2283 case INTERNALVAR_MAKE_VALUE:
2284 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2285 var->u.make_value.data);
2286 break;
2287
2288 default:
2289 internal_error (__FILE__, __LINE__, _("bad kind"));
2290 }
2291
2292 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2293 on this value go back to affect the original internal variable.
2294
2295 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2296 no underlying modifyable state in the internal variable.
2297
2298 Likewise, if the variable's value is a computed lvalue, we want
2299 references to it to produce another computed lvalue, where
2300 references and assignments actually operate through the
2301 computed value's functions.
2302
2303 This means that internal variables with computed values
2304 behave a little differently from other internal variables:
2305 assignments to them don't just replace the previous value
2306 altogether. At the moment, this seems like the behavior we
2307 want. */
2308
2309 if (var->kind != INTERNALVAR_MAKE_VALUE
2310 && val->lval != lval_computed)
2311 {
2312 VALUE_LVAL (val) = lval_internalvar;
2313 VALUE_INTERNALVAR (val) = var;
2314 }
2315
2316 return val;
2317 }
2318
2319 int
2320 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2321 {
2322 if (var->kind == INTERNALVAR_INTEGER)
2323 {
2324 *result = var->u.integer.val;
2325 return 1;
2326 }
2327
2328 if (var->kind == INTERNALVAR_VALUE)
2329 {
2330 struct type *type = check_typedef (value_type (var->u.value));
2331
2332 if (TYPE_CODE (type) == TYPE_CODE_INT)
2333 {
2334 *result = value_as_long (var->u.value);
2335 return 1;
2336 }
2337 }
2338
2339 return 0;
2340 }
2341
2342 static int
2343 get_internalvar_function (struct internalvar *var,
2344 struct internal_function **result)
2345 {
2346 switch (var->kind)
2347 {
2348 case INTERNALVAR_FUNCTION:
2349 *result = var->u.fn.function;
2350 return 1;
2351
2352 default:
2353 return 0;
2354 }
2355 }
2356
2357 void
2358 set_internalvar_component (struct internalvar *var,
2359 LONGEST offset, LONGEST bitpos,
2360 LONGEST bitsize, struct value *newval)
2361 {
2362 gdb_byte *addr;
2363 struct gdbarch *arch;
2364 int unit_size;
2365
2366 switch (var->kind)
2367 {
2368 case INTERNALVAR_VALUE:
2369 addr = value_contents_writeable (var->u.value);
2370 arch = get_value_arch (var->u.value);
2371 unit_size = gdbarch_addressable_memory_unit_size (arch);
2372
2373 if (bitsize)
2374 modify_field (value_type (var->u.value), addr + offset,
2375 value_as_long (newval), bitpos, bitsize);
2376 else
2377 memcpy (addr + offset * unit_size, value_contents (newval),
2378 TYPE_LENGTH (value_type (newval)));
2379 break;
2380
2381 default:
2382 /* We can never get a component of any other kind. */
2383 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2384 }
2385 }
2386
2387 void
2388 set_internalvar (struct internalvar *var, struct value *val)
2389 {
2390 enum internalvar_kind new_kind;
2391 union internalvar_data new_data = { 0 };
2392
2393 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2394 error (_("Cannot overwrite convenience function %s"), var->name);
2395
2396 /* Prepare new contents. */
2397 switch (TYPE_CODE (check_typedef (value_type (val))))
2398 {
2399 case TYPE_CODE_VOID:
2400 new_kind = INTERNALVAR_VOID;
2401 break;
2402
2403 case TYPE_CODE_INTERNAL_FUNCTION:
2404 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2405 new_kind = INTERNALVAR_FUNCTION;
2406 get_internalvar_function (VALUE_INTERNALVAR (val),
2407 &new_data.fn.function);
2408 /* Copies created here are never canonical. */
2409 break;
2410
2411 default:
2412 new_kind = INTERNALVAR_VALUE;
2413 new_data.value = value_copy (val);
2414 new_data.value->modifiable = 1;
2415
2416 /* Force the value to be fetched from the target now, to avoid problems
2417 later when this internalvar is referenced and the target is gone or
2418 has changed. */
2419 if (value_lazy (new_data.value))
2420 value_fetch_lazy (new_data.value);
2421
2422 /* Release the value from the value chain to prevent it from being
2423 deleted by free_all_values. From here on this function should not
2424 call error () until new_data is installed into the var->u to avoid
2425 leaking memory. */
2426 release_value (new_data.value);
2427
2428 /* Internal variables which are created from values with a dynamic
2429 location don't need the location property of the origin anymore.
2430 The resolved dynamic location is used prior then any other address
2431 when accessing the value.
2432 If we keep it, we would still refer to the origin value.
2433 Remove the location property in case it exist. */
2434 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2435
2436 break;
2437 }
2438
2439 /* Clean up old contents. */
2440 clear_internalvar (var);
2441
2442 /* Switch over. */
2443 var->kind = new_kind;
2444 var->u = new_data;
2445 /* End code which must not call error(). */
2446 }
2447
2448 void
2449 set_internalvar_integer (struct internalvar *var, LONGEST l)
2450 {
2451 /* Clean up old contents. */
2452 clear_internalvar (var);
2453
2454 var->kind = INTERNALVAR_INTEGER;
2455 var->u.integer.type = NULL;
2456 var->u.integer.val = l;
2457 }
2458
2459 void
2460 set_internalvar_string (struct internalvar *var, const char *string)
2461 {
2462 /* Clean up old contents. */
2463 clear_internalvar (var);
2464
2465 var->kind = INTERNALVAR_STRING;
2466 var->u.string = xstrdup (string);
2467 }
2468
2469 static void
2470 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2471 {
2472 /* Clean up old contents. */
2473 clear_internalvar (var);
2474
2475 var->kind = INTERNALVAR_FUNCTION;
2476 var->u.fn.function = f;
2477 var->u.fn.canonical = 1;
2478 /* Variables installed here are always the canonical version. */
2479 }
2480
2481 void
2482 clear_internalvar (struct internalvar *var)
2483 {
2484 /* Clean up old contents. */
2485 switch (var->kind)
2486 {
2487 case INTERNALVAR_VALUE:
2488 value_free (var->u.value);
2489 break;
2490
2491 case INTERNALVAR_STRING:
2492 xfree (var->u.string);
2493 break;
2494
2495 case INTERNALVAR_MAKE_VALUE:
2496 if (var->u.make_value.functions->destroy != NULL)
2497 var->u.make_value.functions->destroy (var->u.make_value.data);
2498 break;
2499
2500 default:
2501 break;
2502 }
2503
2504 /* Reset to void kind. */
2505 var->kind = INTERNALVAR_VOID;
2506 }
2507
2508 char *
2509 internalvar_name (const struct internalvar *var)
2510 {
2511 return var->name;
2512 }
2513
2514 static struct internal_function *
2515 create_internal_function (const char *name,
2516 internal_function_fn handler, void *cookie)
2517 {
2518 struct internal_function *ifn = XNEW (struct internal_function);
2519
2520 ifn->name = xstrdup (name);
2521 ifn->handler = handler;
2522 ifn->cookie = cookie;
2523 return ifn;
2524 }
2525
2526 char *
2527 value_internal_function_name (struct value *val)
2528 {
2529 struct internal_function *ifn;
2530 int result;
2531
2532 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2533 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2534 gdb_assert (result);
2535
2536 return ifn->name;
2537 }
2538
2539 struct value *
2540 call_internal_function (struct gdbarch *gdbarch,
2541 const struct language_defn *language,
2542 struct value *func, int argc, struct value **argv)
2543 {
2544 struct internal_function *ifn;
2545 int result;
2546
2547 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2548 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2549 gdb_assert (result);
2550
2551 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2552 }
2553
2554 /* The 'function' command. This does nothing -- it is just a
2555 placeholder to let "help function NAME" work. This is also used as
2556 the implementation of the sub-command that is created when
2557 registering an internal function. */
2558 static void
2559 function_command (const char *command, int from_tty)
2560 {
2561 /* Do nothing. */
2562 }
2563
2564 /* Clean up if an internal function's command is destroyed. */
2565 static void
2566 function_destroyer (struct cmd_list_element *self, void *ignore)
2567 {
2568 xfree ((char *) self->name);
2569 xfree ((char *) self->doc);
2570 }
2571
2572 /* Add a new internal function. NAME is the name of the function; DOC
2573 is a documentation string describing the function. HANDLER is
2574 called when the function is invoked. COOKIE is an arbitrary
2575 pointer which is passed to HANDLER and is intended for "user
2576 data". */
2577 void
2578 add_internal_function (const char *name, const char *doc,
2579 internal_function_fn handler, void *cookie)
2580 {
2581 struct cmd_list_element *cmd;
2582 struct internal_function *ifn;
2583 struct internalvar *var = lookup_internalvar (name);
2584
2585 ifn = create_internal_function (name, handler, cookie);
2586 set_internalvar_function (var, ifn);
2587
2588 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2589 &functionlist);
2590 cmd->destroyer = function_destroyer;
2591 }
2592
2593 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2594 prevent cycles / duplicates. */
2595
2596 void
2597 preserve_one_value (struct value *value, struct objfile *objfile,
2598 htab_t copied_types)
2599 {
2600 if (TYPE_OBJFILE (value->type) == objfile)
2601 value->type = copy_type_recursive (objfile, value->type, copied_types);
2602
2603 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2604 value->enclosing_type = copy_type_recursive (objfile,
2605 value->enclosing_type,
2606 copied_types);
2607 }
2608
2609 /* Likewise for internal variable VAR. */
2610
2611 static void
2612 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2613 htab_t copied_types)
2614 {
2615 switch (var->kind)
2616 {
2617 case INTERNALVAR_INTEGER:
2618 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2619 var->u.integer.type
2620 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2621 break;
2622
2623 case INTERNALVAR_VALUE:
2624 preserve_one_value (var->u.value, objfile, copied_types);
2625 break;
2626 }
2627 }
2628
2629 /* Update the internal variables and value history when OBJFILE is
2630 discarded; we must copy the types out of the objfile. New global types
2631 will be created for every convenience variable which currently points to
2632 this objfile's types, and the convenience variables will be adjusted to
2633 use the new global types. */
2634
2635 void
2636 preserve_values (struct objfile *objfile)
2637 {
2638 htab_t copied_types;
2639 struct value_history_chunk *cur;
2640 struct internalvar *var;
2641 int i;
2642
2643 /* Create the hash table. We allocate on the objfile's obstack, since
2644 it is soon to be deleted. */
2645 copied_types = create_copied_types_hash (objfile);
2646
2647 for (cur = value_history_chain; cur; cur = cur->next)
2648 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2649 if (cur->values[i])
2650 preserve_one_value (cur->values[i], objfile, copied_types);
2651
2652 for (var = internalvars; var; var = var->next)
2653 preserve_one_internalvar (var, objfile, copied_types);
2654
2655 preserve_ext_lang_values (objfile, copied_types);
2656
2657 htab_delete (copied_types);
2658 }
2659
2660 static void
2661 show_convenience (const char *ignore, int from_tty)
2662 {
2663 struct gdbarch *gdbarch = get_current_arch ();
2664 struct internalvar *var;
2665 int varseen = 0;
2666 struct value_print_options opts;
2667
2668 get_user_print_options (&opts);
2669 for (var = internalvars; var; var = var->next)
2670 {
2671
2672 if (!varseen)
2673 {
2674 varseen = 1;
2675 }
2676 printf_filtered (("$%s = "), var->name);
2677
2678 TRY
2679 {
2680 struct value *val;
2681
2682 val = value_of_internalvar (gdbarch, var);
2683 value_print (val, gdb_stdout, &opts);
2684 }
2685 CATCH (ex, RETURN_MASK_ERROR)
2686 {
2687 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2688 }
2689 END_CATCH
2690
2691 printf_filtered (("\n"));
2692 }
2693 if (!varseen)
2694 {
2695 /* This text does not mention convenience functions on purpose.
2696 The user can't create them except via Python, and if Python support
2697 is installed this message will never be printed ($_streq will
2698 exist). */
2699 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2700 "Convenience variables have "
2701 "names starting with \"$\";\n"
2702 "use \"set\" as in \"set "
2703 "$foo = 5\" to define them.\n"));
2704 }
2705 }
2706 \f
2707 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2708
2709 struct value *
2710 value_of_xmethod (struct xmethod_worker *worker)
2711 {
2712 if (worker->value == NULL)
2713 {
2714 struct value *v;
2715
2716 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2717 v->lval = lval_xcallable;
2718 v->location.xm_worker = worker;
2719 v->modifiable = 0;
2720 worker->value = v;
2721 }
2722
2723 return worker->value;
2724 }
2725
2726 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2727
2728 struct type *
2729 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2730 {
2731 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2732 && method->lval == lval_xcallable && argc > 0);
2733
2734 return get_xmethod_result_type (method->location.xm_worker,
2735 argv[0], argv + 1, argc - 1);
2736 }
2737
2738 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2739
2740 struct value *
2741 call_xmethod (struct value *method, int argc, struct value **argv)
2742 {
2743 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2744 && method->lval == lval_xcallable && argc > 0);
2745
2746 return invoke_xmethod (method->location.xm_worker,
2747 argv[0], argv + 1, argc - 1);
2748 }
2749 \f
2750 /* Extract a value as a C number (either long or double).
2751 Knows how to convert fixed values to double, or
2752 floating values to long.
2753 Does not deallocate the value. */
2754
2755 LONGEST
2756 value_as_long (struct value *val)
2757 {
2758 /* This coerces arrays and functions, which is necessary (e.g.
2759 in disassemble_command). It also dereferences references, which
2760 I suspect is the most logical thing to do. */
2761 val = coerce_array (val);
2762 return unpack_long (value_type (val), value_contents (val));
2763 }
2764
2765 /* Extract a value as a C pointer. Does not deallocate the value.
2766 Note that val's type may not actually be a pointer; value_as_long
2767 handles all the cases. */
2768 CORE_ADDR
2769 value_as_address (struct value *val)
2770 {
2771 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2772
2773 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2774 whether we want this to be true eventually. */
2775 #if 0
2776 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2777 non-address (e.g. argument to "signal", "info break", etc.), or
2778 for pointers to char, in which the low bits *are* significant. */
2779 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2780 #else
2781
2782 /* There are several targets (IA-64, PowerPC, and others) which
2783 don't represent pointers to functions as simply the address of
2784 the function's entry point. For example, on the IA-64, a
2785 function pointer points to a two-word descriptor, generated by
2786 the linker, which contains the function's entry point, and the
2787 value the IA-64 "global pointer" register should have --- to
2788 support position-independent code. The linker generates
2789 descriptors only for those functions whose addresses are taken.
2790
2791 On such targets, it's difficult for GDB to convert an arbitrary
2792 function address into a function pointer; it has to either find
2793 an existing descriptor for that function, or call malloc and
2794 build its own. On some targets, it is impossible for GDB to
2795 build a descriptor at all: the descriptor must contain a jump
2796 instruction; data memory cannot be executed; and code memory
2797 cannot be modified.
2798
2799 Upon entry to this function, if VAL is a value of type `function'
2800 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2801 value_address (val) is the address of the function. This is what
2802 you'll get if you evaluate an expression like `main'. The call
2803 to COERCE_ARRAY below actually does all the usual unary
2804 conversions, which includes converting values of type `function'
2805 to `pointer to function'. This is the challenging conversion
2806 discussed above. Then, `unpack_long' will convert that pointer
2807 back into an address.
2808
2809 So, suppose the user types `disassemble foo' on an architecture
2810 with a strange function pointer representation, on which GDB
2811 cannot build its own descriptors, and suppose further that `foo'
2812 has no linker-built descriptor. The address->pointer conversion
2813 will signal an error and prevent the command from running, even
2814 though the next step would have been to convert the pointer
2815 directly back into the same address.
2816
2817 The following shortcut avoids this whole mess. If VAL is a
2818 function, just return its address directly. */
2819 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2820 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2821 return value_address (val);
2822
2823 val = coerce_array (val);
2824
2825 /* Some architectures (e.g. Harvard), map instruction and data
2826 addresses onto a single large unified address space. For
2827 instance: An architecture may consider a large integer in the
2828 range 0x10000000 .. 0x1000ffff to already represent a data
2829 addresses (hence not need a pointer to address conversion) while
2830 a small integer would still need to be converted integer to
2831 pointer to address. Just assume such architectures handle all
2832 integer conversions in a single function. */
2833
2834 /* JimB writes:
2835
2836 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2837 must admonish GDB hackers to make sure its behavior matches the
2838 compiler's, whenever possible.
2839
2840 In general, I think GDB should evaluate expressions the same way
2841 the compiler does. When the user copies an expression out of
2842 their source code and hands it to a `print' command, they should
2843 get the same value the compiler would have computed. Any
2844 deviation from this rule can cause major confusion and annoyance,
2845 and needs to be justified carefully. In other words, GDB doesn't
2846 really have the freedom to do these conversions in clever and
2847 useful ways.
2848
2849 AndrewC pointed out that users aren't complaining about how GDB
2850 casts integers to pointers; they are complaining that they can't
2851 take an address from a disassembly listing and give it to `x/i'.
2852 This is certainly important.
2853
2854 Adding an architecture method like integer_to_address() certainly
2855 makes it possible for GDB to "get it right" in all circumstances
2856 --- the target has complete control over how things get done, so
2857 people can Do The Right Thing for their target without breaking
2858 anyone else. The standard doesn't specify how integers get
2859 converted to pointers; usually, the ABI doesn't either, but
2860 ABI-specific code is a more reasonable place to handle it. */
2861
2862 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2863 && !TYPE_IS_REFERENCE (value_type (val))
2864 && gdbarch_integer_to_address_p (gdbarch))
2865 return gdbarch_integer_to_address (gdbarch, value_type (val),
2866 value_contents (val));
2867
2868 return unpack_long (value_type (val), value_contents (val));
2869 #endif
2870 }
2871 \f
2872 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2873 as a long, or as a double, assuming the raw data is described
2874 by type TYPE. Knows how to convert different sizes of values
2875 and can convert between fixed and floating point. We don't assume
2876 any alignment for the raw data. Return value is in host byte order.
2877
2878 If you want functions and arrays to be coerced to pointers, and
2879 references to be dereferenced, call value_as_long() instead.
2880
2881 C++: It is assumed that the front-end has taken care of
2882 all matters concerning pointers to members. A pointer
2883 to member which reaches here is considered to be equivalent
2884 to an INT (or some size). After all, it is only an offset. */
2885
2886 LONGEST
2887 unpack_long (struct type *type, const gdb_byte *valaddr)
2888 {
2889 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2890 enum type_code code = TYPE_CODE (type);
2891 int len = TYPE_LENGTH (type);
2892 int nosign = TYPE_UNSIGNED (type);
2893
2894 switch (code)
2895 {
2896 case TYPE_CODE_TYPEDEF:
2897 return unpack_long (check_typedef (type), valaddr);
2898 case TYPE_CODE_ENUM:
2899 case TYPE_CODE_FLAGS:
2900 case TYPE_CODE_BOOL:
2901 case TYPE_CODE_INT:
2902 case TYPE_CODE_CHAR:
2903 case TYPE_CODE_RANGE:
2904 case TYPE_CODE_MEMBERPTR:
2905 if (nosign)
2906 return extract_unsigned_integer (valaddr, len, byte_order);
2907 else
2908 return extract_signed_integer (valaddr, len, byte_order);
2909
2910 case TYPE_CODE_FLT:
2911 case TYPE_CODE_DECFLOAT:
2912 return target_float_to_longest (valaddr, type);
2913
2914 case TYPE_CODE_PTR:
2915 case TYPE_CODE_REF:
2916 case TYPE_CODE_RVALUE_REF:
2917 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2918 whether we want this to be true eventually. */
2919 return extract_typed_address (valaddr, type);
2920
2921 default:
2922 error (_("Value can't be converted to integer."));
2923 }
2924 return 0; /* Placate lint. */
2925 }
2926
2927 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2928 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2929 We don't assume any alignment for the raw data. Return value is in
2930 host byte order.
2931
2932 If you want functions and arrays to be coerced to pointers, and
2933 references to be dereferenced, call value_as_address() instead.
2934
2935 C++: It is assumed that the front-end has taken care of
2936 all matters concerning pointers to members. A pointer
2937 to member which reaches here is considered to be equivalent
2938 to an INT (or some size). After all, it is only an offset. */
2939
2940 CORE_ADDR
2941 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2942 {
2943 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2944 whether we want this to be true eventually. */
2945 return unpack_long (type, valaddr);
2946 }
2947
2948 bool
2949 is_floating_value (struct value *val)
2950 {
2951 struct type *type = check_typedef (value_type (val));
2952
2953 if (is_floating_type (type))
2954 {
2955 if (!target_float_is_valid (value_contents (val), type))
2956 error (_("Invalid floating value found in program."));
2957 return true;
2958 }
2959
2960 return false;
2961 }
2962
2963 \f
2964 /* Get the value of the FIELDNO'th field (which must be static) of
2965 TYPE. */
2966
2967 struct value *
2968 value_static_field (struct type *type, int fieldno)
2969 {
2970 struct value *retval;
2971
2972 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2973 {
2974 case FIELD_LOC_KIND_PHYSADDR:
2975 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2976 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2977 break;
2978 case FIELD_LOC_KIND_PHYSNAME:
2979 {
2980 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2981 /* TYPE_FIELD_NAME (type, fieldno); */
2982 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2983
2984 if (sym.symbol == NULL)
2985 {
2986 /* With some compilers, e.g. HP aCC, static data members are
2987 reported as non-debuggable symbols. */
2988 struct bound_minimal_symbol msym
2989 = lookup_minimal_symbol (phys_name, NULL, NULL);
2990
2991 if (!msym.minsym)
2992 return allocate_optimized_out_value (type);
2993 else
2994 {
2995 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2996 BMSYMBOL_VALUE_ADDRESS (msym));
2997 }
2998 }
2999 else
3000 retval = value_of_variable (sym.symbol, sym.block);
3001 break;
3002 }
3003 default:
3004 gdb_assert_not_reached ("unexpected field location kind");
3005 }
3006
3007 return retval;
3008 }
3009
3010 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3011 You have to be careful here, since the size of the data area for the value
3012 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3013 than the old enclosing type, you have to allocate more space for the
3014 data. */
3015
3016 void
3017 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3018 {
3019 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3020 {
3021 check_type_length_before_alloc (new_encl_type);
3022 val->contents
3023 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3024 }
3025
3026 val->enclosing_type = new_encl_type;
3027 }
3028
3029 /* Given a value ARG1 (offset by OFFSET bytes)
3030 of a struct or union type ARG_TYPE,
3031 extract and return the value of one of its (non-static) fields.
3032 FIELDNO says which field. */
3033
3034 struct value *
3035 value_primitive_field (struct value *arg1, LONGEST offset,
3036 int fieldno, struct type *arg_type)
3037 {
3038 struct value *v;
3039 struct type *type;
3040 struct gdbarch *arch = get_value_arch (arg1);
3041 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3042
3043 arg_type = check_typedef (arg_type);
3044 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3045
3046 /* Call check_typedef on our type to make sure that, if TYPE
3047 is a TYPE_CODE_TYPEDEF, its length is set to the length
3048 of the target type instead of zero. However, we do not
3049 replace the typedef type by the target type, because we want
3050 to keep the typedef in order to be able to print the type
3051 description correctly. */
3052 check_typedef (type);
3053
3054 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3055 {
3056 /* Handle packed fields.
3057
3058 Create a new value for the bitfield, with bitpos and bitsize
3059 set. If possible, arrange offset and bitpos so that we can
3060 do a single aligned read of the size of the containing type.
3061 Otherwise, adjust offset to the byte containing the first
3062 bit. Assume that the address, offset, and embedded offset
3063 are sufficiently aligned. */
3064
3065 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3066 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3067
3068 v = allocate_value_lazy (type);
3069 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3070 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3071 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3072 v->bitpos = bitpos % container_bitsize;
3073 else
3074 v->bitpos = bitpos % 8;
3075 v->offset = (value_embedded_offset (arg1)
3076 + offset
3077 + (bitpos - v->bitpos) / 8);
3078 set_value_parent (v, arg1);
3079 if (!value_lazy (arg1))
3080 value_fetch_lazy (v);
3081 }
3082 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3083 {
3084 /* This field is actually a base subobject, so preserve the
3085 entire object's contents for later references to virtual
3086 bases, etc. */
3087 LONGEST boffset;
3088
3089 /* Lazy register values with offsets are not supported. */
3090 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3091 value_fetch_lazy (arg1);
3092
3093 /* We special case virtual inheritance here because this
3094 requires access to the contents, which we would rather avoid
3095 for references to ordinary fields of unavailable values. */
3096 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3097 boffset = baseclass_offset (arg_type, fieldno,
3098 value_contents (arg1),
3099 value_embedded_offset (arg1),
3100 value_address (arg1),
3101 arg1);
3102 else
3103 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3104
3105 if (value_lazy (arg1))
3106 v = allocate_value_lazy (value_enclosing_type (arg1));
3107 else
3108 {
3109 v = allocate_value (value_enclosing_type (arg1));
3110 value_contents_copy_raw (v, 0, arg1, 0,
3111 TYPE_LENGTH (value_enclosing_type (arg1)));
3112 }
3113 v->type = type;
3114 v->offset = value_offset (arg1);
3115 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3116 }
3117 else if (NULL != TYPE_DATA_LOCATION (type))
3118 {
3119 /* Field is a dynamic data member. */
3120
3121 gdb_assert (0 == offset);
3122 /* We expect an already resolved data location. */
3123 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3124 /* For dynamic data types defer memory allocation
3125 until we actual access the value. */
3126 v = allocate_value_lazy (type);
3127 }
3128 else
3129 {
3130 /* Plain old data member */
3131 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3132 / (HOST_CHAR_BIT * unit_size));
3133
3134 /* Lazy register values with offsets are not supported. */
3135 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3136 value_fetch_lazy (arg1);
3137
3138 if (value_lazy (arg1))
3139 v = allocate_value_lazy (type);
3140 else
3141 {
3142 v = allocate_value (type);
3143 value_contents_copy_raw (v, value_embedded_offset (v),
3144 arg1, value_embedded_offset (arg1) + offset,
3145 type_length_units (type));
3146 }
3147 v->offset = (value_offset (arg1) + offset
3148 + value_embedded_offset (arg1));
3149 }
3150 set_value_component_location (v, arg1);
3151 return v;
3152 }
3153
3154 /* Given a value ARG1 of a struct or union type,
3155 extract and return the value of one of its (non-static) fields.
3156 FIELDNO says which field. */
3157
3158 struct value *
3159 value_field (struct value *arg1, int fieldno)
3160 {
3161 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3162 }
3163
3164 /* Return a non-virtual function as a value.
3165 F is the list of member functions which contains the desired method.
3166 J is an index into F which provides the desired method.
3167
3168 We only use the symbol for its address, so be happy with either a
3169 full symbol or a minimal symbol. */
3170
3171 struct value *
3172 value_fn_field (struct value **arg1p, struct fn_field *f,
3173 int j, struct type *type,
3174 LONGEST offset)
3175 {
3176 struct value *v;
3177 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3178 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3179 struct symbol *sym;
3180 struct bound_minimal_symbol msym;
3181
3182 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3183 if (sym != NULL)
3184 {
3185 memset (&msym, 0, sizeof (msym));
3186 }
3187 else
3188 {
3189 gdb_assert (sym == NULL);
3190 msym = lookup_bound_minimal_symbol (physname);
3191 if (msym.minsym == NULL)
3192 return NULL;
3193 }
3194
3195 v = allocate_value (ftype);
3196 VALUE_LVAL (v) = lval_memory;
3197 if (sym)
3198 {
3199 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3200 }
3201 else
3202 {
3203 /* The minimal symbol might point to a function descriptor;
3204 resolve it to the actual code address instead. */
3205 struct objfile *objfile = msym.objfile;
3206 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3207
3208 set_value_address (v,
3209 gdbarch_convert_from_func_ptr_addr
3210 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3211 }
3212
3213 if (arg1p)
3214 {
3215 if (type != value_type (*arg1p))
3216 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3217 value_addr (*arg1p)));
3218
3219 /* Move the `this' pointer according to the offset.
3220 VALUE_OFFSET (*arg1p) += offset; */
3221 }
3222
3223 return v;
3224 }
3225
3226 \f
3227
3228 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3229 VALADDR, and store the result in *RESULT.
3230 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3231
3232 Extracting bits depends on endianness of the machine. Compute the
3233 number of least significant bits to discard. For big endian machines,
3234 we compute the total number of bits in the anonymous object, subtract
3235 off the bit count from the MSB of the object to the MSB of the
3236 bitfield, then the size of the bitfield, which leaves the LSB discard
3237 count. For little endian machines, the discard count is simply the
3238 number of bits from the LSB of the anonymous object to the LSB of the
3239 bitfield.
3240
3241 If the field is signed, we also do sign extension. */
3242
3243 static LONGEST
3244 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3245 LONGEST bitpos, LONGEST bitsize)
3246 {
3247 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3248 ULONGEST val;
3249 ULONGEST valmask;
3250 int lsbcount;
3251 LONGEST bytes_read;
3252 LONGEST read_offset;
3253
3254 /* Read the minimum number of bytes required; there may not be
3255 enough bytes to read an entire ULONGEST. */
3256 field_type = check_typedef (field_type);
3257 if (bitsize)
3258 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3259 else
3260 bytes_read = TYPE_LENGTH (field_type);
3261
3262 read_offset = bitpos / 8;
3263
3264 val = extract_unsigned_integer (valaddr + read_offset,
3265 bytes_read, byte_order);
3266
3267 /* Extract bits. See comment above. */
3268
3269 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3270 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3271 else
3272 lsbcount = (bitpos % 8);
3273 val >>= lsbcount;
3274
3275 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3276 If the field is signed, and is negative, then sign extend. */
3277
3278 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3279 {
3280 valmask = (((ULONGEST) 1) << bitsize) - 1;
3281 val &= valmask;
3282 if (!TYPE_UNSIGNED (field_type))
3283 {
3284 if (val & (valmask ^ (valmask >> 1)))
3285 {
3286 val |= ~valmask;
3287 }
3288 }
3289 }
3290
3291 return val;
3292 }
3293
3294 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3295 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3296 ORIGINAL_VALUE, which must not be NULL. See
3297 unpack_value_bits_as_long for more details. */
3298
3299 int
3300 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3301 LONGEST embedded_offset, int fieldno,
3302 const struct value *val, LONGEST *result)
3303 {
3304 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3305 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3306 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3307 int bit_offset;
3308
3309 gdb_assert (val != NULL);
3310
3311 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3312 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3313 || !value_bits_available (val, bit_offset, bitsize))
3314 return 0;
3315
3316 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3317 bitpos, bitsize);
3318 return 1;
3319 }
3320
3321 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3322 object at VALADDR. See unpack_bits_as_long for more details. */
3323
3324 LONGEST
3325 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3326 {
3327 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3328 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3329 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3330
3331 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3332 }
3333
3334 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3335 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3336 the contents in DEST_VAL, zero or sign extending if the type of
3337 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3338 VAL. If the VAL's contents required to extract the bitfield from
3339 are unavailable/optimized out, DEST_VAL is correspondingly
3340 marked unavailable/optimized out. */
3341
3342 void
3343 unpack_value_bitfield (struct value *dest_val,
3344 LONGEST bitpos, LONGEST bitsize,
3345 const gdb_byte *valaddr, LONGEST embedded_offset,
3346 const struct value *val)
3347 {
3348 enum bfd_endian byte_order;
3349 int src_bit_offset;
3350 int dst_bit_offset;
3351 struct type *field_type = value_type (dest_val);
3352
3353 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3354
3355 /* First, unpack and sign extend the bitfield as if it was wholly
3356 valid. Optimized out/unavailable bits are read as zero, but
3357 that's OK, as they'll end up marked below. If the VAL is
3358 wholly-invalid we may have skipped allocating its contents,
3359 though. See allocate_optimized_out_value. */
3360 if (valaddr != NULL)
3361 {
3362 LONGEST num;
3363
3364 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3365 bitpos, bitsize);
3366 store_signed_integer (value_contents_raw (dest_val),
3367 TYPE_LENGTH (field_type), byte_order, num);
3368 }
3369
3370 /* Now copy the optimized out / unavailability ranges to the right
3371 bits. */
3372 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3373 if (byte_order == BFD_ENDIAN_BIG)
3374 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3375 else
3376 dst_bit_offset = 0;
3377 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3378 val, src_bit_offset, bitsize);
3379 }
3380
3381 /* Return a new value with type TYPE, which is FIELDNO field of the
3382 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3383 of VAL. If the VAL's contents required to extract the bitfield
3384 from are unavailable/optimized out, the new value is
3385 correspondingly marked unavailable/optimized out. */
3386
3387 struct value *
3388 value_field_bitfield (struct type *type, int fieldno,
3389 const gdb_byte *valaddr,
3390 LONGEST embedded_offset, const struct value *val)
3391 {
3392 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3393 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3394 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3395
3396 unpack_value_bitfield (res_val, bitpos, bitsize,
3397 valaddr, embedded_offset, val);
3398
3399 return res_val;
3400 }
3401
3402 /* Modify the value of a bitfield. ADDR points to a block of memory in
3403 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3404 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3405 indicate which bits (in target bit order) comprise the bitfield.
3406 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3407 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3408
3409 void
3410 modify_field (struct type *type, gdb_byte *addr,
3411 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3412 {
3413 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3414 ULONGEST oword;
3415 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3416 LONGEST bytesize;
3417
3418 /* Normalize BITPOS. */
3419 addr += bitpos / 8;
3420 bitpos %= 8;
3421
3422 /* If a negative fieldval fits in the field in question, chop
3423 off the sign extension bits. */
3424 if ((~fieldval & ~(mask >> 1)) == 0)
3425 fieldval &= mask;
3426
3427 /* Warn if value is too big to fit in the field in question. */
3428 if (0 != (fieldval & ~mask))
3429 {
3430 /* FIXME: would like to include fieldval in the message, but
3431 we don't have a sprintf_longest. */
3432 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3433
3434 /* Truncate it, otherwise adjoining fields may be corrupted. */
3435 fieldval &= mask;
3436 }
3437
3438 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3439 false valgrind reports. */
3440
3441 bytesize = (bitpos + bitsize + 7) / 8;
3442 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3443
3444 /* Shifting for bit field depends on endianness of the target machine. */
3445 if (gdbarch_bits_big_endian (get_type_arch (type)))
3446 bitpos = bytesize * 8 - bitpos - bitsize;
3447
3448 oword &= ~(mask << bitpos);
3449 oword |= fieldval << bitpos;
3450
3451 store_unsigned_integer (addr, bytesize, byte_order, oword);
3452 }
3453 \f
3454 /* Pack NUM into BUF using a target format of TYPE. */
3455
3456 void
3457 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3458 {
3459 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3460 LONGEST len;
3461
3462 type = check_typedef (type);
3463 len = TYPE_LENGTH (type);
3464
3465 switch (TYPE_CODE (type))
3466 {
3467 case TYPE_CODE_INT:
3468 case TYPE_CODE_CHAR:
3469 case TYPE_CODE_ENUM:
3470 case TYPE_CODE_FLAGS:
3471 case TYPE_CODE_BOOL:
3472 case TYPE_CODE_RANGE:
3473 case TYPE_CODE_MEMBERPTR:
3474 store_signed_integer (buf, len, byte_order, num);
3475 break;
3476
3477 case TYPE_CODE_REF:
3478 case TYPE_CODE_RVALUE_REF:
3479 case TYPE_CODE_PTR:
3480 store_typed_address (buf, type, (CORE_ADDR) num);
3481 break;
3482
3483 case TYPE_CODE_FLT:
3484 case TYPE_CODE_DECFLOAT:
3485 target_float_from_longest (buf, type, num);
3486 break;
3487
3488 default:
3489 error (_("Unexpected type (%d) encountered for integer constant."),
3490 TYPE_CODE (type));
3491 }
3492 }
3493
3494
3495 /* Pack NUM into BUF using a target format of TYPE. */
3496
3497 static void
3498 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3499 {
3500 LONGEST len;
3501 enum bfd_endian byte_order;
3502
3503 type = check_typedef (type);
3504 len = TYPE_LENGTH (type);
3505 byte_order = gdbarch_byte_order (get_type_arch (type));
3506
3507 switch (TYPE_CODE (type))
3508 {
3509 case TYPE_CODE_INT:
3510 case TYPE_CODE_CHAR:
3511 case TYPE_CODE_ENUM:
3512 case TYPE_CODE_FLAGS:
3513 case TYPE_CODE_BOOL:
3514 case TYPE_CODE_RANGE:
3515 case TYPE_CODE_MEMBERPTR:
3516 store_unsigned_integer (buf, len, byte_order, num);
3517 break;
3518
3519 case TYPE_CODE_REF:
3520 case TYPE_CODE_RVALUE_REF:
3521 case TYPE_CODE_PTR:
3522 store_typed_address (buf, type, (CORE_ADDR) num);
3523 break;
3524
3525 case TYPE_CODE_FLT:
3526 case TYPE_CODE_DECFLOAT:
3527 target_float_from_ulongest (buf, type, num);
3528 break;
3529
3530 default:
3531 error (_("Unexpected type (%d) encountered "
3532 "for unsigned integer constant."),
3533 TYPE_CODE (type));
3534 }
3535 }
3536
3537
3538 /* Convert C numbers into newly allocated values. */
3539
3540 struct value *
3541 value_from_longest (struct type *type, LONGEST num)
3542 {
3543 struct value *val = allocate_value (type);
3544
3545 pack_long (value_contents_raw (val), type, num);
3546 return val;
3547 }
3548
3549
3550 /* Convert C unsigned numbers into newly allocated values. */
3551
3552 struct value *
3553 value_from_ulongest (struct type *type, ULONGEST num)
3554 {
3555 struct value *val = allocate_value (type);
3556
3557 pack_unsigned_long (value_contents_raw (val), type, num);
3558
3559 return val;
3560 }
3561
3562
3563 /* Create a value representing a pointer of type TYPE to the address
3564 ADDR. */
3565
3566 struct value *
3567 value_from_pointer (struct type *type, CORE_ADDR addr)
3568 {
3569 struct value *val = allocate_value (type);
3570
3571 store_typed_address (value_contents_raw (val),
3572 check_typedef (type), addr);
3573 return val;
3574 }
3575
3576
3577 /* Create a value of type TYPE whose contents come from VALADDR, if it
3578 is non-null, and whose memory address (in the inferior) is
3579 ADDRESS. The type of the created value may differ from the passed
3580 type TYPE. Make sure to retrieve values new type after this call.
3581 Note that TYPE is not passed through resolve_dynamic_type; this is
3582 a special API intended for use only by Ada. */
3583
3584 struct value *
3585 value_from_contents_and_address_unresolved (struct type *type,
3586 const gdb_byte *valaddr,
3587 CORE_ADDR address)
3588 {
3589 struct value *v;
3590
3591 if (valaddr == NULL)
3592 v = allocate_value_lazy (type);
3593 else
3594 v = value_from_contents (type, valaddr);
3595 VALUE_LVAL (v) = lval_memory;
3596 set_value_address (v, address);
3597 return v;
3598 }
3599
3600 /* Create a value of type TYPE whose contents come from VALADDR, if it
3601 is non-null, and whose memory address (in the inferior) is
3602 ADDRESS. The type of the created value may differ from the passed
3603 type TYPE. Make sure to retrieve values new type after this call. */
3604
3605 struct value *
3606 value_from_contents_and_address (struct type *type,
3607 const gdb_byte *valaddr,
3608 CORE_ADDR address)
3609 {
3610 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3611 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3612 struct value *v;
3613
3614 if (valaddr == NULL)
3615 v = allocate_value_lazy (resolved_type);
3616 else
3617 v = value_from_contents (resolved_type, valaddr);
3618 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3619 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3620 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3621 VALUE_LVAL (v) = lval_memory;
3622 set_value_address (v, address);
3623 return v;
3624 }
3625
3626 /* Create a value of type TYPE holding the contents CONTENTS.
3627 The new value is `not_lval'. */
3628
3629 struct value *
3630 value_from_contents (struct type *type, const gdb_byte *contents)
3631 {
3632 struct value *result;
3633
3634 result = allocate_value (type);
3635 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3636 return result;
3637 }
3638
3639 /* Extract a value from the history file. Input will be of the form
3640 $digits or $$digits. See block comment above 'write_dollar_variable'
3641 for details. */
3642
3643 struct value *
3644 value_from_history_ref (const char *h, const char **endp)
3645 {
3646 int index, len;
3647
3648 if (h[0] == '$')
3649 len = 1;
3650 else
3651 return NULL;
3652
3653 if (h[1] == '$')
3654 len = 2;
3655
3656 /* Find length of numeral string. */
3657 for (; isdigit (h[len]); len++)
3658 ;
3659
3660 /* Make sure numeral string is not part of an identifier. */
3661 if (h[len] == '_' || isalpha (h[len]))
3662 return NULL;
3663
3664 /* Now collect the index value. */
3665 if (h[1] == '$')
3666 {
3667 if (len == 2)
3668 {
3669 /* For some bizarre reason, "$$" is equivalent to "$$1",
3670 rather than to "$$0" as it ought to be! */
3671 index = -1;
3672 *endp += len;
3673 }
3674 else
3675 {
3676 char *local_end;
3677
3678 index = -strtol (&h[2], &local_end, 10);
3679 *endp = local_end;
3680 }
3681 }
3682 else
3683 {
3684 if (len == 1)
3685 {
3686 /* "$" is equivalent to "$0". */
3687 index = 0;
3688 *endp += len;
3689 }
3690 else
3691 {
3692 char *local_end;
3693
3694 index = strtol (&h[1], &local_end, 10);
3695 *endp = local_end;
3696 }
3697 }
3698
3699 return access_value_history (index);
3700 }
3701
3702 /* Get the component value (offset by OFFSET bytes) of a struct or
3703 union WHOLE. Component's type is TYPE. */
3704
3705 struct value *
3706 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3707 {
3708 struct value *v;
3709
3710 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3711 v = allocate_value_lazy (type);
3712 else
3713 {
3714 v = allocate_value (type);
3715 value_contents_copy (v, value_embedded_offset (v),
3716 whole, value_embedded_offset (whole) + offset,
3717 type_length_units (type));
3718 }
3719 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3720 set_value_component_location (v, whole);
3721
3722 return v;
3723 }
3724
3725 struct value *
3726 coerce_ref_if_computed (const struct value *arg)
3727 {
3728 const struct lval_funcs *funcs;
3729
3730 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3731 return NULL;
3732
3733 if (value_lval_const (arg) != lval_computed)
3734 return NULL;
3735
3736 funcs = value_computed_funcs (arg);
3737 if (funcs->coerce_ref == NULL)
3738 return NULL;
3739
3740 return funcs->coerce_ref (arg);
3741 }
3742
3743 /* Look at value.h for description. */
3744
3745 struct value *
3746 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3747 const struct type *original_type,
3748 const struct value *original_value)
3749 {
3750 /* Re-adjust type. */
3751 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3752
3753 /* Add embedding info. */
3754 set_value_enclosing_type (value, enc_type);
3755 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3756
3757 /* We may be pointing to an object of some derived type. */
3758 return value_full_object (value, NULL, 0, 0, 0);
3759 }
3760
3761 struct value *
3762 coerce_ref (struct value *arg)
3763 {
3764 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3765 struct value *retval;
3766 struct type *enc_type;
3767
3768 retval = coerce_ref_if_computed (arg);
3769 if (retval)
3770 return retval;
3771
3772 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3773 return arg;
3774
3775 enc_type = check_typedef (value_enclosing_type (arg));
3776 enc_type = TYPE_TARGET_TYPE (enc_type);
3777
3778 retval = value_at_lazy (enc_type,
3779 unpack_pointer (value_type (arg),
3780 value_contents (arg)));
3781 enc_type = value_type (retval);
3782 return readjust_indirect_value_type (retval, enc_type,
3783 value_type_arg_tmp, arg);
3784 }
3785
3786 struct value *
3787 coerce_array (struct value *arg)
3788 {
3789 struct type *type;
3790
3791 arg = coerce_ref (arg);
3792 type = check_typedef (value_type (arg));
3793
3794 switch (TYPE_CODE (type))
3795 {
3796 case TYPE_CODE_ARRAY:
3797 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3798 arg = value_coerce_array (arg);
3799 break;
3800 case TYPE_CODE_FUNC:
3801 arg = value_coerce_function (arg);
3802 break;
3803 }
3804 return arg;
3805 }
3806 \f
3807
3808 /* Return the return value convention that will be used for the
3809 specified type. */
3810
3811 enum return_value_convention
3812 struct_return_convention (struct gdbarch *gdbarch,
3813 struct value *function, struct type *value_type)
3814 {
3815 enum type_code code = TYPE_CODE (value_type);
3816
3817 if (code == TYPE_CODE_ERROR)
3818 error (_("Function return type unknown."));
3819
3820 /* Probe the architecture for the return-value convention. */
3821 return gdbarch_return_value (gdbarch, function, value_type,
3822 NULL, NULL, NULL);
3823 }
3824
3825 /* Return true if the function returning the specified type is using
3826 the convention of returning structures in memory (passing in the
3827 address as a hidden first parameter). */
3828
3829 int
3830 using_struct_return (struct gdbarch *gdbarch,
3831 struct value *function, struct type *value_type)
3832 {
3833 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3834 /* A void return value is never in memory. See also corresponding
3835 code in "print_return_value". */
3836 return 0;
3837
3838 return (struct_return_convention (gdbarch, function, value_type)
3839 != RETURN_VALUE_REGISTER_CONVENTION);
3840 }
3841
3842 /* Set the initialized field in a value struct. */
3843
3844 void
3845 set_value_initialized (struct value *val, int status)
3846 {
3847 val->initialized = status;
3848 }
3849
3850 /* Return the initialized field in a value struct. */
3851
3852 int
3853 value_initialized (const struct value *val)
3854 {
3855 return val->initialized;
3856 }
3857
3858 /* Load the actual content of a lazy value. Fetch the data from the
3859 user's process and clear the lazy flag to indicate that the data in
3860 the buffer is valid.
3861
3862 If the value is zero-length, we avoid calling read_memory, which
3863 would abort. We mark the value as fetched anyway -- all 0 bytes of
3864 it. */
3865
3866 void
3867 value_fetch_lazy (struct value *val)
3868 {
3869 gdb_assert (value_lazy (val));
3870 allocate_value_contents (val);
3871 /* A value is either lazy, or fully fetched. The
3872 availability/validity is only established as we try to fetch a
3873 value. */
3874 gdb_assert (VEC_empty (range_s, val->optimized_out));
3875 gdb_assert (VEC_empty (range_s, val->unavailable));
3876 if (value_bitsize (val))
3877 {
3878 /* To read a lazy bitfield, read the entire enclosing value. This
3879 prevents reading the same block of (possibly volatile) memory once
3880 per bitfield. It would be even better to read only the containing
3881 word, but we have no way to record that just specific bits of a
3882 value have been fetched. */
3883 struct type *type = check_typedef (value_type (val));
3884 struct value *parent = value_parent (val);
3885
3886 if (value_lazy (parent))
3887 value_fetch_lazy (parent);
3888
3889 unpack_value_bitfield (val,
3890 value_bitpos (val), value_bitsize (val),
3891 value_contents_for_printing (parent),
3892 value_offset (val), parent);
3893 }
3894 else if (VALUE_LVAL (val) == lval_memory)
3895 {
3896 CORE_ADDR addr = value_address (val);
3897 struct type *type = check_typedef (value_enclosing_type (val));
3898
3899 if (TYPE_LENGTH (type))
3900 read_value_memory (val, 0, value_stack (val),
3901 addr, value_contents_all_raw (val),
3902 type_length_units (type));
3903 }
3904 else if (VALUE_LVAL (val) == lval_register)
3905 {
3906 struct frame_info *next_frame;
3907 int regnum;
3908 struct type *type = check_typedef (value_type (val));
3909 struct value *new_val = val, *mark = value_mark ();
3910
3911 /* Offsets are not supported here; lazy register values must
3912 refer to the entire register. */
3913 gdb_assert (value_offset (val) == 0);
3914
3915 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3916 {
3917 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3918
3919 next_frame = frame_find_by_id (next_frame_id);
3920 regnum = VALUE_REGNUM (new_val);
3921
3922 gdb_assert (next_frame != NULL);
3923
3924 /* Convertible register routines are used for multi-register
3925 values and for interpretation in different types
3926 (e.g. float or int from a double register). Lazy
3927 register values should have the register's natural type,
3928 so they do not apply. */
3929 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3930 regnum, type));
3931
3932 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3933 Since a "->next" operation was performed when setting
3934 this field, we do not need to perform a "next" operation
3935 again when unwinding the register. That's why
3936 frame_unwind_register_value() is called here instead of
3937 get_frame_register_value(). */
3938 new_val = frame_unwind_register_value (next_frame, regnum);
3939
3940 /* If we get another lazy lval_register value, it means the
3941 register is found by reading it from NEXT_FRAME's next frame.
3942 frame_unwind_register_value should never return a value with
3943 the frame id pointing to NEXT_FRAME. If it does, it means we
3944 either have two consecutive frames with the same frame id
3945 in the frame chain, or some code is trying to unwind
3946 behind get_prev_frame's back (e.g., a frame unwind
3947 sniffer trying to unwind), bypassing its validations. In
3948 any case, it should always be an internal error to end up
3949 in this situation. */
3950 if (VALUE_LVAL (new_val) == lval_register
3951 && value_lazy (new_val)
3952 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3953 internal_error (__FILE__, __LINE__,
3954 _("infinite loop while fetching a register"));
3955 }
3956
3957 /* If it's still lazy (for instance, a saved register on the
3958 stack), fetch it. */
3959 if (value_lazy (new_val))
3960 value_fetch_lazy (new_val);
3961
3962 /* Copy the contents and the unavailability/optimized-out
3963 meta-data from NEW_VAL to VAL. */
3964 set_value_lazy (val, 0);
3965 value_contents_copy (val, value_embedded_offset (val),
3966 new_val, value_embedded_offset (new_val),
3967 type_length_units (type));
3968
3969 if (frame_debug)
3970 {
3971 struct gdbarch *gdbarch;
3972 struct frame_info *frame;
3973 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3974 so that the frame level will be shown correctly. */
3975 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3976 regnum = VALUE_REGNUM (val);
3977 gdbarch = get_frame_arch (frame);
3978
3979 fprintf_unfiltered (gdb_stdlog,
3980 "{ value_fetch_lazy "
3981 "(frame=%d,regnum=%d(%s),...) ",
3982 frame_relative_level (frame), regnum,
3983 user_reg_map_regnum_to_name (gdbarch, regnum));
3984
3985 fprintf_unfiltered (gdb_stdlog, "->");
3986 if (value_optimized_out (new_val))
3987 {
3988 fprintf_unfiltered (gdb_stdlog, " ");
3989 val_print_optimized_out (new_val, gdb_stdlog);
3990 }
3991 else
3992 {
3993 int i;
3994 const gdb_byte *buf = value_contents (new_val);
3995
3996 if (VALUE_LVAL (new_val) == lval_register)
3997 fprintf_unfiltered (gdb_stdlog, " register=%d",
3998 VALUE_REGNUM (new_val));
3999 else if (VALUE_LVAL (new_val) == lval_memory)
4000 fprintf_unfiltered (gdb_stdlog, " address=%s",
4001 paddress (gdbarch,
4002 value_address (new_val)));
4003 else
4004 fprintf_unfiltered (gdb_stdlog, " computed");
4005
4006 fprintf_unfiltered (gdb_stdlog, " bytes=");
4007 fprintf_unfiltered (gdb_stdlog, "[");
4008 for (i = 0; i < register_size (gdbarch, regnum); i++)
4009 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4010 fprintf_unfiltered (gdb_stdlog, "]");
4011 }
4012
4013 fprintf_unfiltered (gdb_stdlog, " }\n");
4014 }
4015
4016 /* Dispose of the intermediate values. This prevents
4017 watchpoints from trying to watch the saved frame pointer. */
4018 value_free_to_mark (mark);
4019 }
4020 else if (VALUE_LVAL (val) == lval_computed
4021 && value_computed_funcs (val)->read != NULL)
4022 value_computed_funcs (val)->read (val);
4023 else
4024 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4025
4026 set_value_lazy (val, 0);
4027 }
4028
4029 /* Implementation of the convenience function $_isvoid. */
4030
4031 static struct value *
4032 isvoid_internal_fn (struct gdbarch *gdbarch,
4033 const struct language_defn *language,
4034 void *cookie, int argc, struct value **argv)
4035 {
4036 int ret;
4037
4038 if (argc != 1)
4039 error (_("You must provide one argument for $_isvoid."));
4040
4041 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4042
4043 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4044 }
4045
4046 void
4047 _initialize_values (void)
4048 {
4049 add_cmd ("convenience", no_class, show_convenience, _("\
4050 Debugger convenience (\"$foo\") variables and functions.\n\
4051 Convenience variables are created when you assign them values;\n\
4052 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4053 \n\
4054 A few convenience variables are given values automatically:\n\
4055 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4056 \"$__\" holds the contents of the last address examined with \"x\"."
4057 #ifdef HAVE_PYTHON
4058 "\n\n\
4059 Convenience functions are defined via the Python API."
4060 #endif
4061 ), &showlist);
4062 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4063
4064 add_cmd ("values", no_set_class, show_values, _("\
4065 Elements of value history around item number IDX (or last ten)."),
4066 &showlist);
4067
4068 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4069 Initialize a convenience variable if necessary.\n\
4070 init-if-undefined VARIABLE = EXPRESSION\n\
4071 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4072 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4073 VARIABLE is already initialized."));
4074
4075 add_prefix_cmd ("function", no_class, function_command, _("\
4076 Placeholder command for showing help on convenience functions."),
4077 &functionlist, "function ", 0, &cmdlist);
4078
4079 add_internal_function ("_isvoid", _("\
4080 Check whether an expression is void.\n\
4081 Usage: $_isvoid (expression)\n\
4082 Return 1 if the expression is void, zero otherwise."),
4083 isvoid_internal_fn, NULL);
4084
4085 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4086 class_support, &max_value_size, _("\
4087 Set maximum sized value gdb will load from the inferior."), _("\
4088 Show maximum sized value gdb will load from the inferior."), _("\
4089 Use this to control the maximum size, in bytes, of a value that gdb\n\
4090 will load from the inferior. Setting this value to 'unlimited'\n\
4091 disables checking.\n\
4092 Setting this does not invalidate already allocated values, it only\n\
4093 prevents future values, larger than this size, from being allocated."),
4094 set_max_value_size,
4095 show_max_value_size,
4096 &setlist, &showlist);
4097 }
This page took 0.113391 seconds and 4 git commands to generate.