Remove free_all_values
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44
45 /* Definition of a user function. */
46 struct internal_function
47 {
48 /* The name of the function. It is a bit odd to have this in the
49 function itself -- the user might use a differently-named
50 convenience variable to hold the function. */
51 char *name;
52
53 /* The handler. */
54 internal_function_fn handler;
55
56 /* User data for the handler. */
57 void *cookie;
58 };
59
60 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
61
62 struct range
63 {
64 /* Lowest offset in the range. */
65 LONGEST offset;
66
67 /* Length of the range. */
68 LONGEST length;
69 };
70
71 typedef struct range range_s;
72
73 DEF_VEC_O(range_s);
74
75 /* Returns true if the ranges defined by [offset1, offset1+len1) and
76 [offset2, offset2+len2) overlap. */
77
78 static int
79 ranges_overlap (LONGEST offset1, LONGEST len1,
80 LONGEST offset2, LONGEST len2)
81 {
82 ULONGEST h, l;
83
84 l = std::max (offset1, offset2);
85 h = std::min (offset1 + len1, offset2 + len2);
86 return (l < h);
87 }
88
89 /* Returns true if the first argument is strictly less than the
90 second, useful for VEC_lower_bound. We keep ranges sorted by
91 offset and coalesce overlapping and contiguous ranges, so this just
92 compares the starting offset. */
93
94 static int
95 range_lessthan (const range_s *r1, const range_s *r2)
96 {
97 return r1->offset < r2->offset;
98 }
99
100 /* Returns true if RANGES contains any range that overlaps [OFFSET,
101 OFFSET+LENGTH). */
102
103 static int
104 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
105 {
106 range_s what;
107 LONGEST i;
108
109 what.offset = offset;
110 what.length = length;
111
112 /* We keep ranges sorted by offset and coalesce overlapping and
113 contiguous ranges, so to check if a range list contains a given
114 range, we can do a binary search for the position the given range
115 would be inserted if we only considered the starting OFFSET of
116 ranges. We call that position I. Since we also have LENGTH to
117 care for (this is a range afterall), we need to check if the
118 _previous_ range overlaps the I range. E.g.,
119
120 R
121 |---|
122 |---| |---| |------| ... |--|
123 0 1 2 N
124
125 I=1
126
127 In the case above, the binary search would return `I=1', meaning,
128 this OFFSET should be inserted at position 1, and the current
129 position 1 should be pushed further (and before 2). But, `0'
130 overlaps with R.
131
132 Then we need to check if the I range overlaps the I range itself.
133 E.g.,
134
135 R
136 |---|
137 |---| |---| |-------| ... |--|
138 0 1 2 N
139
140 I=1
141 */
142
143 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
144
145 if (i > 0)
146 {
147 struct range *bef = VEC_index (range_s, ranges, i - 1);
148
149 if (ranges_overlap (bef->offset, bef->length, offset, length))
150 return 1;
151 }
152
153 if (i < VEC_length (range_s, ranges))
154 {
155 struct range *r = VEC_index (range_s, ranges, i);
156
157 if (ranges_overlap (r->offset, r->length, offset, length))
158 return 1;
159 }
160
161 return 0;
162 }
163
164 static struct cmd_list_element *functionlist;
165
166 /* Note that the fields in this structure are arranged to save a bit
167 of memory. */
168
169 struct value
170 {
171 /* Type of value; either not an lval, or one of the various
172 different possible kinds of lval. */
173 enum lval_type lval;
174
175 /* Is it modifiable? Only relevant if lval != not_lval. */
176 unsigned int modifiable : 1;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 unsigned int lazy : 1;
193
194 /* If value is a variable, is it initialized or not. */
195 unsigned int initialized : 1;
196
197 /* If value is from the stack. If this is set, read_stack will be
198 used instead of read_memory to enable extra caching. */
199 unsigned int stack : 1;
200
201 /* If the value has been released. */
202 unsigned int released : 1;
203
204 /* Location of value (if lval). */
205 union
206 {
207 /* If lval == lval_memory, this is the address in the inferior */
208 CORE_ADDR address;
209
210 /*If lval == lval_register, the value is from a register. */
211 struct
212 {
213 /* Register number. */
214 int regnum;
215 /* Frame ID of "next" frame to which a register value is relative.
216 If the register value is found relative to frame F, then the
217 frame id of F->next will be stored in next_frame_id. */
218 struct frame_id next_frame_id;
219 } reg;
220
221 /* Pointer to internal variable. */
222 struct internalvar *internalvar;
223
224 /* Pointer to xmethod worker. */
225 struct xmethod_worker *xm_worker;
226
227 /* If lval == lval_computed, this is a set of function pointers
228 to use to access and describe the value, and a closure pointer
229 for them to use. */
230 struct
231 {
232 /* Functions to call. */
233 const struct lval_funcs *funcs;
234
235 /* Closure for those functions to use. */
236 void *closure;
237 } computed;
238 } location;
239
240 /* Describes offset of a value within lval of a structure in target
241 addressable memory units. Note also the member embedded_offset
242 below. */
243 LONGEST offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 LONGEST bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 LONGEST bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Type of the value. */
266 struct type *type;
267
268 /* If a value represents a C++ object, then the `type' field gives
269 the object's compile-time type. If the object actually belongs
270 to some class derived from `type', perhaps with other base
271 classes and additional members, then `type' is just a subobject
272 of the real thing, and the full object is probably larger than
273 `type' would suggest.
274
275 If `type' is a dynamic class (i.e. one with a vtable), then GDB
276 can actually determine the object's run-time type by looking at
277 the run-time type information in the vtable. When this
278 information is available, we may elect to read in the entire
279 object, for several reasons:
280
281 - When printing the value, the user would probably rather see the
282 full object, not just the limited portion apparent from the
283 compile-time type.
284
285 - If `type' has virtual base classes, then even printing `type'
286 alone may require reaching outside the `type' portion of the
287 object to wherever the virtual base class has been stored.
288
289 When we store the entire object, `enclosing_type' is the run-time
290 type -- the complete object -- and `embedded_offset' is the
291 offset of `type' within that larger type, in target addressable memory
292 units. The value_contents() macro takes `embedded_offset' into account,
293 so most GDB code continues to see the `type' portion of the value, just
294 as the inferior would.
295
296 If `type' is a pointer to an object, then `enclosing_type' is a
297 pointer to the object's run-time type, and `pointed_to_offset' is
298 the offset in target addressable memory units from the full object
299 to the pointed-to object -- that is, the value `embedded_offset' would
300 have if we followed the pointer and fetched the complete object.
301 (I don't really see the point. Why not just determine the
302 run-time type when you indirect, and avoid the special case? The
303 contents don't matter until you indirect anyway.)
304
305 If we're not doing anything fancy, `enclosing_type' is equal to
306 `type', and `embedded_offset' is zero, so everything works
307 normally. */
308 struct type *enclosing_type;
309 LONGEST embedded_offset;
310 LONGEST pointed_to_offset;
311
312 /* Values are stored in a chain, so that they can be deleted easily
313 over calls to the inferior. Values assigned to internal
314 variables, put into the value history or exposed to Python are
315 taken off this list. */
316 struct value *next;
317
318 /* Actual contents of the value. Target byte-order. NULL or not
319 valid if lazy is nonzero. */
320 gdb_byte *contents;
321
322 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
323 rather than available, since the common and default case is for a
324 value to be available. This is filled in at value read time.
325 The unavailable ranges are tracked in bits. Note that a contents
326 bit that has been optimized out doesn't really exist in the
327 program, so it can't be marked unavailable either. */
328 VEC(range_s) *unavailable;
329
330 /* Likewise, but for optimized out contents (a chunk of the value of
331 a variable that does not actually exist in the program). If LVAL
332 is lval_register, this is a register ($pc, $sp, etc., never a
333 program variable) that has not been saved in the frame. Not
334 saved registers and optimized-out program variables values are
335 treated pretty much the same, except not-saved registers have a
336 different string representation and related error strings. */
337 VEC(range_s) *optimized_out;
338 };
339
340 /* See value.h. */
341
342 struct gdbarch *
343 get_value_arch (const struct value *value)
344 {
345 return get_type_arch (value_type (value));
346 }
347
348 int
349 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
350 {
351 gdb_assert (!value->lazy);
352
353 return !ranges_contain (value->unavailable, offset, length);
354 }
355
356 int
357 value_bytes_available (const struct value *value,
358 LONGEST offset, LONGEST length)
359 {
360 return value_bits_available (value,
361 offset * TARGET_CHAR_BIT,
362 length * TARGET_CHAR_BIT);
363 }
364
365 int
366 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
367 {
368 gdb_assert (!value->lazy);
369
370 return ranges_contain (value->optimized_out, bit_offset, bit_length);
371 }
372
373 int
374 value_entirely_available (struct value *value)
375 {
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_empty (range_s, value->unavailable))
382 return 1;
383 return 0;
384 }
385
386 /* Returns true if VALUE is entirely covered by RANGES. If the value
387 is lazy, it'll be read now. Note that RANGE is a pointer to
388 pointer because reading the value might change *RANGE. */
389
390 static int
391 value_entirely_covered_by_range_vector (struct value *value,
392 VEC(range_s) **ranges)
393 {
394 /* We can only tell whether the whole value is optimized out /
395 unavailable when we try to read it. */
396 if (value->lazy)
397 value_fetch_lazy (value);
398
399 if (VEC_length (range_s, *ranges) == 1)
400 {
401 struct range *t = VEC_index (range_s, *ranges, 0);
402
403 if (t->offset == 0
404 && t->length == (TARGET_CHAR_BIT
405 * TYPE_LENGTH (value_enclosing_type (value))))
406 return 1;
407 }
408
409 return 0;
410 }
411
412 int
413 value_entirely_unavailable (struct value *value)
414 {
415 return value_entirely_covered_by_range_vector (value, &value->unavailable);
416 }
417
418 int
419 value_entirely_optimized_out (struct value *value)
420 {
421 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
422 }
423
424 /* Insert into the vector pointed to by VECTORP the bit range starting of
425 OFFSET bits, and extending for the next LENGTH bits. */
426
427 static void
428 insert_into_bit_range_vector (VEC(range_s) **vectorp,
429 LONGEST offset, LONGEST length)
430 {
431 range_s newr;
432 int i;
433
434 /* Insert the range sorted. If there's overlap or the new range
435 would be contiguous with an existing range, merge. */
436
437 newr.offset = offset;
438 newr.length = length;
439
440 /* Do a binary search for the position the given range would be
441 inserted if we only considered the starting OFFSET of ranges.
442 Call that position I. Since we also have LENGTH to care for
443 (this is a range afterall), we need to check if the _previous_
444 range overlaps the I range. E.g., calling R the new range:
445
446 #1 - overlaps with previous
447
448 R
449 |-...-|
450 |---| |---| |------| ... |--|
451 0 1 2 N
452
453 I=1
454
455 In the case #1 above, the binary search would return `I=1',
456 meaning, this OFFSET should be inserted at position 1, and the
457 current position 1 should be pushed further (and become 2). But,
458 note that `0' overlaps with R, so we want to merge them.
459
460 A similar consideration needs to be taken if the new range would
461 be contiguous with the previous range:
462
463 #2 - contiguous with previous
464
465 R
466 |-...-|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=1
471
472 If there's no overlap with the previous range, as in:
473
474 #3 - not overlapping and not contiguous
475
476 R
477 |-...-|
478 |--| |---| |------| ... |--|
479 0 1 2 N
480
481 I=1
482
483 or if I is 0:
484
485 #4 - R is the range with lowest offset
486
487 R
488 |-...-|
489 |--| |---| |------| ... |--|
490 0 1 2 N
491
492 I=0
493
494 ... we just push the new range to I.
495
496 All the 4 cases above need to consider that the new range may
497 also overlap several of the ranges that follow, or that R may be
498 contiguous with the following range, and merge. E.g.,
499
500 #5 - overlapping following ranges
501
502 R
503 |------------------------|
504 |--| |---| |------| ... |--|
505 0 1 2 N
506
507 I=0
508
509 or:
510
511 R
512 |-------|
513 |--| |---| |------| ... |--|
514 0 1 2 N
515
516 I=1
517
518 */
519
520 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
521 if (i > 0)
522 {
523 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
524
525 if (ranges_overlap (bef->offset, bef->length, offset, length))
526 {
527 /* #1 */
528 ULONGEST l = std::min (bef->offset, offset);
529 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
530
531 bef->offset = l;
532 bef->length = h - l;
533 i--;
534 }
535 else if (offset == bef->offset + bef->length)
536 {
537 /* #2 */
538 bef->length += length;
539 i--;
540 }
541 else
542 {
543 /* #3 */
544 VEC_safe_insert (range_s, *vectorp, i, &newr);
545 }
546 }
547 else
548 {
549 /* #4 */
550 VEC_safe_insert (range_s, *vectorp, i, &newr);
551 }
552
553 /* Check whether the ranges following the one we've just added or
554 touched can be folded in (#5 above). */
555 if (i + 1 < VEC_length (range_s, *vectorp))
556 {
557 struct range *t;
558 struct range *r;
559 int removed = 0;
560 int next = i + 1;
561
562 /* Get the range we just touched. */
563 t = VEC_index (range_s, *vectorp, i);
564 removed = 0;
565
566 i = next;
567 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
568 if (r->offset <= t->offset + t->length)
569 {
570 ULONGEST l, h;
571
572 l = std::min (t->offset, r->offset);
573 h = std::max (t->offset + t->length, r->offset + r->length);
574
575 t->offset = l;
576 t->length = h - l;
577
578 removed++;
579 }
580 else
581 {
582 /* If we couldn't merge this one, we won't be able to
583 merge following ones either, since the ranges are
584 always sorted by OFFSET. */
585 break;
586 }
587
588 if (removed != 0)
589 VEC_block_remove (range_s, *vectorp, next, removed);
590 }
591 }
592
593 void
594 mark_value_bits_unavailable (struct value *value,
595 LONGEST offset, LONGEST length)
596 {
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598 }
599
600 void
601 mark_value_bytes_unavailable (struct value *value,
602 LONGEST offset, LONGEST length)
603 {
604 mark_value_bits_unavailable (value,
605 offset * TARGET_CHAR_BIT,
606 length * TARGET_CHAR_BIT);
607 }
608
609 /* Find the first range in RANGES that overlaps the range defined by
610 OFFSET and LENGTH, starting at element POS in the RANGES vector,
611 Returns the index into RANGES where such overlapping range was
612 found, or -1 if none was found. */
613
614 static int
615 find_first_range_overlap (VEC(range_s) *ranges, int pos,
616 LONGEST offset, LONGEST length)
617 {
618 range_s *r;
619 int i;
620
621 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
622 if (ranges_overlap (r->offset, r->length, offset, length))
623 return i;
624
625 return -1;
626 }
627
628 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
629 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
630 return non-zero.
631
632 It must always be the case that:
633 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
634
635 It is assumed that memory can be accessed from:
636 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
637 to:
638 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
639 / TARGET_CHAR_BIT) */
640 static int
641 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
642 const gdb_byte *ptr2, size_t offset2_bits,
643 size_t length_bits)
644 {
645 gdb_assert (offset1_bits % TARGET_CHAR_BIT
646 == offset2_bits % TARGET_CHAR_BIT);
647
648 if (offset1_bits % TARGET_CHAR_BIT != 0)
649 {
650 size_t bits;
651 gdb_byte mask, b1, b2;
652
653 /* The offset from the base pointers PTR1 and PTR2 is not a complete
654 number of bytes. A number of bits up to either the next exact
655 byte boundary, or LENGTH_BITS (which ever is sooner) will be
656 compared. */
657 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
658 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
659 mask = (1 << bits) - 1;
660
661 if (length_bits < bits)
662 {
663 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
664 bits = length_bits;
665 }
666
667 /* Now load the two bytes and mask off the bits we care about. */
668 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
669 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
670
671 if (b1 != b2)
672 return 1;
673
674 /* Now update the length and offsets to take account of the bits
675 we've just compared. */
676 length_bits -= bits;
677 offset1_bits += bits;
678 offset2_bits += bits;
679 }
680
681 if (length_bits % TARGET_CHAR_BIT != 0)
682 {
683 size_t bits;
684 size_t o1, o2;
685 gdb_byte mask, b1, b2;
686
687 /* The length is not an exact number of bytes. After the previous
688 IF.. block then the offsets are byte aligned, or the
689 length is zero (in which case this code is not reached). Compare
690 a number of bits at the end of the region, starting from an exact
691 byte boundary. */
692 bits = length_bits % TARGET_CHAR_BIT;
693 o1 = offset1_bits + length_bits - bits;
694 o2 = offset2_bits + length_bits - bits;
695
696 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
697 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
698
699 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
700 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
701
702 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
703 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
704
705 if (b1 != b2)
706 return 1;
707
708 length_bits -= bits;
709 }
710
711 if (length_bits > 0)
712 {
713 /* We've now taken care of any stray "bits" at the start, or end of
714 the region to compare, the remainder can be covered with a simple
715 memcmp. */
716 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
719
720 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
721 ptr2 + offset2_bits / TARGET_CHAR_BIT,
722 length_bits / TARGET_CHAR_BIT);
723 }
724
725 /* Length is zero, regions match. */
726 return 0;
727 }
728
729 /* Helper struct for find_first_range_overlap_and_match and
730 value_contents_bits_eq. Keep track of which slot of a given ranges
731 vector have we last looked at. */
732
733 struct ranges_and_idx
734 {
735 /* The ranges. */
736 VEC(range_s) *ranges;
737
738 /* The range we've last found in RANGES. Given ranges are sorted,
739 we can start the next lookup here. */
740 int idx;
741 };
742
743 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
744 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
745 ranges starting at OFFSET2 bits. Return true if the ranges match
746 and fill in *L and *H with the overlapping window relative to
747 (both) OFFSET1 or OFFSET2. */
748
749 static int
750 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
751 struct ranges_and_idx *rp2,
752 LONGEST offset1, LONGEST offset2,
753 LONGEST length, ULONGEST *l, ULONGEST *h)
754 {
755 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
756 offset1, length);
757 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
758 offset2, length);
759
760 if (rp1->idx == -1 && rp2->idx == -1)
761 {
762 *l = length;
763 *h = length;
764 return 1;
765 }
766 else if (rp1->idx == -1 || rp2->idx == -1)
767 return 0;
768 else
769 {
770 range_s *r1, *r2;
771 ULONGEST l1, h1;
772 ULONGEST l2, h2;
773
774 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
775 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
776
777 /* Get the unavailable windows intersected by the incoming
778 ranges. The first and last ranges that overlap the argument
779 range may be wider than said incoming arguments ranges. */
780 l1 = std::max (offset1, r1->offset);
781 h1 = std::min (offset1 + length, r1->offset + r1->length);
782
783 l2 = std::max (offset2, r2->offset);
784 h2 = std::min (offset2 + length, offset2 + r2->length);
785
786 /* Make them relative to the respective start offsets, so we can
787 compare them for equality. */
788 l1 -= offset1;
789 h1 -= offset1;
790
791 l2 -= offset2;
792 h2 -= offset2;
793
794 /* Different ranges, no match. */
795 if (l1 != l2 || h1 != h2)
796 return 0;
797
798 *h = h1;
799 *l = l1;
800 return 1;
801 }
802 }
803
804 /* Helper function for value_contents_eq. The only difference is that
805 this function is bit rather than byte based.
806
807 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
808 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
809 Return true if the available bits match. */
810
811 static bool
812 value_contents_bits_eq (const struct value *val1, int offset1,
813 const struct value *val2, int offset2,
814 int length)
815 {
816 /* Each array element corresponds to a ranges source (unavailable,
817 optimized out). '1' is for VAL1, '2' for VAL2. */
818 struct ranges_and_idx rp1[2], rp2[2];
819
820 /* See function description in value.h. */
821 gdb_assert (!val1->lazy && !val2->lazy);
822
823 /* We shouldn't be trying to compare past the end of the values. */
824 gdb_assert (offset1 + length
825 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
826 gdb_assert (offset2 + length
827 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
828
829 memset (&rp1, 0, sizeof (rp1));
830 memset (&rp2, 0, sizeof (rp2));
831 rp1[0].ranges = val1->unavailable;
832 rp2[0].ranges = val2->unavailable;
833 rp1[1].ranges = val1->optimized_out;
834 rp2[1].ranges = val2->optimized_out;
835
836 while (length > 0)
837 {
838 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
839 int i;
840
841 for (i = 0; i < 2; i++)
842 {
843 ULONGEST l_tmp, h_tmp;
844
845 /* The contents only match equal if the invalid/unavailable
846 contents ranges match as well. */
847 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
848 offset1, offset2, length,
849 &l_tmp, &h_tmp))
850 return false;
851
852 /* We're interested in the lowest/first range found. */
853 if (i == 0 || l_tmp < l)
854 {
855 l = l_tmp;
856 h = h_tmp;
857 }
858 }
859
860 /* Compare the available/valid contents. */
861 if (memcmp_with_bit_offsets (val1->contents, offset1,
862 val2->contents, offset2, l) != 0)
863 return false;
864
865 length -= h;
866 offset1 += h;
867 offset2 += h;
868 }
869
870 return true;
871 }
872
873 bool
874 value_contents_eq (const struct value *val1, LONGEST offset1,
875 const struct value *val2, LONGEST offset2,
876 LONGEST length)
877 {
878 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
879 val2, offset2 * TARGET_CHAR_BIT,
880 length * TARGET_CHAR_BIT);
881 }
882
883
884 /* The value-history records all the values printed by print commands
885 during this session. */
886
887 static std::vector<value_ref_ptr> value_history;
888
889 \f
890 /* List of all value objects currently allocated
891 (except for those released by calls to release_value)
892 This is so they can be freed after each command. */
893
894 static struct value *all_values;
895
896 /* Allocate a lazy value for type TYPE. Its actual content is
897 "lazily" allocated too: the content field of the return value is
898 NULL; it will be allocated when it is fetched from the target. */
899
900 struct value *
901 allocate_value_lazy (struct type *type)
902 {
903 struct value *val;
904
905 /* Call check_typedef on our type to make sure that, if TYPE
906 is a TYPE_CODE_TYPEDEF, its length is set to the length
907 of the target type instead of zero. However, we do not
908 replace the typedef type by the target type, because we want
909 to keep the typedef in order to be able to set the VAL's type
910 description correctly. */
911 check_typedef (type);
912
913 val = XCNEW (struct value);
914 val->contents = NULL;
915 val->next = all_values;
916 all_values = val;
917 val->type = type;
918 val->enclosing_type = type;
919 VALUE_LVAL (val) = not_lval;
920 val->location.address = 0;
921 val->offset = 0;
922 val->bitpos = 0;
923 val->bitsize = 0;
924 val->lazy = 1;
925 val->embedded_offset = 0;
926 val->pointed_to_offset = 0;
927 val->modifiable = 1;
928 val->initialized = 1; /* Default to initialized. */
929
930 /* Values start out on the all_values chain. */
931 val->reference_count = 1;
932
933 return val;
934 }
935
936 /* The maximum size, in bytes, that GDB will try to allocate for a value.
937 The initial value of 64k was not selected for any specific reason, it is
938 just a reasonable starting point. */
939
940 static int max_value_size = 65536; /* 64k bytes */
941
942 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
943 LONGEST, otherwise GDB will not be able to parse integer values from the
944 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
945 be unable to parse "set max-value-size 2".
946
947 As we want a consistent GDB experience across hosts with different sizes
948 of LONGEST, this arbitrary minimum value was selected, so long as this
949 is bigger than LONGEST on all GDB supported hosts we're fine. */
950
951 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
952 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
953
954 /* Implement the "set max-value-size" command. */
955
956 static void
957 set_max_value_size (const char *args, int from_tty,
958 struct cmd_list_element *c)
959 {
960 gdb_assert (max_value_size == -1 || max_value_size >= 0);
961
962 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
963 {
964 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
965 error (_("max-value-size set too low, increasing to %d bytes"),
966 max_value_size);
967 }
968 }
969
970 /* Implement the "show max-value-size" command. */
971
972 static void
973 show_max_value_size (struct ui_file *file, int from_tty,
974 struct cmd_list_element *c, const char *value)
975 {
976 if (max_value_size == -1)
977 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
978 else
979 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
980 max_value_size);
981 }
982
983 /* Called before we attempt to allocate or reallocate a buffer for the
984 contents of a value. TYPE is the type of the value for which we are
985 allocating the buffer. If the buffer is too large (based on the user
986 controllable setting) then throw an error. If this function returns
987 then we should attempt to allocate the buffer. */
988
989 static void
990 check_type_length_before_alloc (const struct type *type)
991 {
992 unsigned int length = TYPE_LENGTH (type);
993
994 if (max_value_size > -1 && length > max_value_size)
995 {
996 if (TYPE_NAME (type) != NULL)
997 error (_("value of type `%s' requires %u bytes, which is more "
998 "than max-value-size"), TYPE_NAME (type), length);
999 else
1000 error (_("value requires %u bytes, which is more than "
1001 "max-value-size"), length);
1002 }
1003 }
1004
1005 /* Allocate the contents of VAL if it has not been allocated yet. */
1006
1007 static void
1008 allocate_value_contents (struct value *val)
1009 {
1010 if (!val->contents)
1011 {
1012 check_type_length_before_alloc (val->enclosing_type);
1013 val->contents
1014 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1015 }
1016 }
1017
1018 /* Allocate a value and its contents for type TYPE. */
1019
1020 struct value *
1021 allocate_value (struct type *type)
1022 {
1023 struct value *val = allocate_value_lazy (type);
1024
1025 allocate_value_contents (val);
1026 val->lazy = 0;
1027 return val;
1028 }
1029
1030 /* Allocate a value that has the correct length
1031 for COUNT repetitions of type TYPE. */
1032
1033 struct value *
1034 allocate_repeat_value (struct type *type, int count)
1035 {
1036 int low_bound = current_language->string_lower_bound; /* ??? */
1037 /* FIXME-type-allocation: need a way to free this type when we are
1038 done with it. */
1039 struct type *array_type
1040 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1041
1042 return allocate_value (array_type);
1043 }
1044
1045 struct value *
1046 allocate_computed_value (struct type *type,
1047 const struct lval_funcs *funcs,
1048 void *closure)
1049 {
1050 struct value *v = allocate_value_lazy (type);
1051
1052 VALUE_LVAL (v) = lval_computed;
1053 v->location.computed.funcs = funcs;
1054 v->location.computed.closure = closure;
1055
1056 return v;
1057 }
1058
1059 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1060
1061 struct value *
1062 allocate_optimized_out_value (struct type *type)
1063 {
1064 struct value *retval = allocate_value_lazy (type);
1065
1066 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1067 set_value_lazy (retval, 0);
1068 return retval;
1069 }
1070
1071 /* Accessor methods. */
1072
1073 struct value *
1074 value_next (const struct value *value)
1075 {
1076 return value->next;
1077 }
1078
1079 struct type *
1080 value_type (const struct value *value)
1081 {
1082 return value->type;
1083 }
1084 void
1085 deprecated_set_value_type (struct value *value, struct type *type)
1086 {
1087 value->type = type;
1088 }
1089
1090 LONGEST
1091 value_offset (const struct value *value)
1092 {
1093 return value->offset;
1094 }
1095 void
1096 set_value_offset (struct value *value, LONGEST offset)
1097 {
1098 value->offset = offset;
1099 }
1100
1101 LONGEST
1102 value_bitpos (const struct value *value)
1103 {
1104 return value->bitpos;
1105 }
1106 void
1107 set_value_bitpos (struct value *value, LONGEST bit)
1108 {
1109 value->bitpos = bit;
1110 }
1111
1112 LONGEST
1113 value_bitsize (const struct value *value)
1114 {
1115 return value->bitsize;
1116 }
1117 void
1118 set_value_bitsize (struct value *value, LONGEST bit)
1119 {
1120 value->bitsize = bit;
1121 }
1122
1123 struct value *
1124 value_parent (const struct value *value)
1125 {
1126 return value->parent;
1127 }
1128
1129 /* See value.h. */
1130
1131 void
1132 set_value_parent (struct value *value, struct value *parent)
1133 {
1134 struct value *old = value->parent;
1135
1136 value->parent = parent;
1137 if (parent != NULL)
1138 value_incref (parent);
1139 value_decref (old);
1140 }
1141
1142 gdb_byte *
1143 value_contents_raw (struct value *value)
1144 {
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1147
1148 allocate_value_contents (value);
1149 return value->contents + value->embedded_offset * unit_size;
1150 }
1151
1152 gdb_byte *
1153 value_contents_all_raw (struct value *value)
1154 {
1155 allocate_value_contents (value);
1156 return value->contents;
1157 }
1158
1159 struct type *
1160 value_enclosing_type (const struct value *value)
1161 {
1162 return value->enclosing_type;
1163 }
1164
1165 /* Look at value.h for description. */
1166
1167 struct type *
1168 value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1170 {
1171 struct value_print_options opts;
1172 struct type *result;
1173
1174 get_user_print_options (&opts);
1175
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1180 {
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
1183 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1184 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1185 == TYPE_CODE_STRUCT
1186 && !value_optimized_out (value))
1187 {
1188 struct type *real_type;
1189
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1191 if (real_type)
1192 {
1193 if (real_type_found)
1194 *real_type_found = 1;
1195 result = real_type;
1196 }
1197 }
1198 else if (resolve_simple_types)
1199 {
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1203 }
1204 }
1205
1206 return result;
1207 }
1208
1209 void
1210 error_value_optimized_out (void)
1211 {
1212 error (_("value has been optimized out"));
1213 }
1214
1215 static void
1216 require_not_optimized_out (const struct value *value)
1217 {
1218 if (!VEC_empty (range_s, value->optimized_out))
1219 {
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1222 else
1223 error_value_optimized_out ();
1224 }
1225 }
1226
1227 static void
1228 require_available (const struct value *value)
1229 {
1230 if (!VEC_empty (range_s, value->unavailable))
1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1232 }
1233
1234 const gdb_byte *
1235 value_contents_for_printing (struct value *value)
1236 {
1237 if (value->lazy)
1238 value_fetch_lazy (value);
1239 return value->contents;
1240 }
1241
1242 const gdb_byte *
1243 value_contents_for_printing_const (const struct value *value)
1244 {
1245 gdb_assert (!value->lazy);
1246 return value->contents;
1247 }
1248
1249 const gdb_byte *
1250 value_contents_all (struct value *value)
1251 {
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
1254 require_available (value);
1255 return result;
1256 }
1257
1258 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1260
1261 static void
1262 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1263 VEC (range_s) *src_range, int src_bit_offset,
1264 int bit_length)
1265 {
1266 range_s *r;
1267 int i;
1268
1269 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1270 {
1271 ULONGEST h, l;
1272
1273 l = std::max (r->offset, (LONGEST) src_bit_offset);
1274 h = std::min (r->offset + r->length,
1275 (LONGEST) src_bit_offset + bit_length);
1276
1277 if (l < h)
1278 insert_into_bit_range_vector (dst_range,
1279 dst_bit_offset + (l - src_bit_offset),
1280 h - l);
1281 }
1282 }
1283
1284 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1286
1287 static void
1288 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1289 const struct value *src, int src_bit_offset,
1290 int bit_length)
1291 {
1292 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1293 src->unavailable, src_bit_offset,
1294 bit_length);
1295 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1296 src->optimized_out, src_bit_offset,
1297 bit_length);
1298 }
1299
1300 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1301 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1302 contents, starting at DST_OFFSET. If unavailable contents are
1303 being copied from SRC, the corresponding DST contents are marked
1304 unavailable accordingly. Neither DST nor SRC may be lazy
1305 values.
1306
1307 It is assumed the contents of DST in the [DST_OFFSET,
1308 DST_OFFSET+LENGTH) range are wholly available. */
1309
1310 void
1311 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1312 struct value *src, LONGEST src_offset, LONGEST length)
1313 {
1314 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1315 struct gdbarch *arch = get_value_arch (src);
1316 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1317
1318 /* A lazy DST would make that this copy operation useless, since as
1319 soon as DST's contents were un-lazied (by a later value_contents
1320 call, say), the contents would be overwritten. A lazy SRC would
1321 mean we'd be copying garbage. */
1322 gdb_assert (!dst->lazy && !src->lazy);
1323
1324 /* The overwritten DST range gets unavailability ORed in, not
1325 replaced. Make sure to remember to implement replacing if it
1326 turns out actually necessary. */
1327 gdb_assert (value_bytes_available (dst, dst_offset, length));
1328 gdb_assert (!value_bits_any_optimized_out (dst,
1329 TARGET_CHAR_BIT * dst_offset,
1330 TARGET_CHAR_BIT * length));
1331
1332 /* Copy the data. */
1333 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1334 value_contents_all_raw (src) + src_offset * unit_size,
1335 length * unit_size);
1336
1337 /* Copy the meta-data, adjusted. */
1338 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1339 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1340 bit_length = length * unit_size * HOST_CHAR_BIT;
1341
1342 value_ranges_copy_adjusted (dst, dst_bit_offset,
1343 src, src_bit_offset,
1344 bit_length);
1345 }
1346
1347 /* Copy LENGTH bytes of SRC value's (all) contents
1348 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1349 (all) contents, starting at DST_OFFSET. If unavailable contents
1350 are being copied from SRC, the corresponding DST contents are
1351 marked unavailable accordingly. DST must not be lazy. If SRC is
1352 lazy, it will be fetched now.
1353
1354 It is assumed the contents of DST in the [DST_OFFSET,
1355 DST_OFFSET+LENGTH) range are wholly available. */
1356
1357 void
1358 value_contents_copy (struct value *dst, LONGEST dst_offset,
1359 struct value *src, LONGEST src_offset, LONGEST length)
1360 {
1361 if (src->lazy)
1362 value_fetch_lazy (src);
1363
1364 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1365 }
1366
1367 int
1368 value_lazy (const struct value *value)
1369 {
1370 return value->lazy;
1371 }
1372
1373 void
1374 set_value_lazy (struct value *value, int val)
1375 {
1376 value->lazy = val;
1377 }
1378
1379 int
1380 value_stack (const struct value *value)
1381 {
1382 return value->stack;
1383 }
1384
1385 void
1386 set_value_stack (struct value *value, int val)
1387 {
1388 value->stack = val;
1389 }
1390
1391 const gdb_byte *
1392 value_contents (struct value *value)
1393 {
1394 const gdb_byte *result = value_contents_writeable (value);
1395 require_not_optimized_out (value);
1396 require_available (value);
1397 return result;
1398 }
1399
1400 gdb_byte *
1401 value_contents_writeable (struct value *value)
1402 {
1403 if (value->lazy)
1404 value_fetch_lazy (value);
1405 return value_contents_raw (value);
1406 }
1407
1408 int
1409 value_optimized_out (struct value *value)
1410 {
1411 /* We can only know if a value is optimized out once we have tried to
1412 fetch it. */
1413 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1414 {
1415 TRY
1416 {
1417 value_fetch_lazy (value);
1418 }
1419 CATCH (ex, RETURN_MASK_ERROR)
1420 {
1421 /* Fall back to checking value->optimized_out. */
1422 }
1423 END_CATCH
1424 }
1425
1426 return !VEC_empty (range_s, value->optimized_out);
1427 }
1428
1429 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1430 the following LENGTH bytes. */
1431
1432 void
1433 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1434 {
1435 mark_value_bits_optimized_out (value,
1436 offset * TARGET_CHAR_BIT,
1437 length * TARGET_CHAR_BIT);
1438 }
1439
1440 /* See value.h. */
1441
1442 void
1443 mark_value_bits_optimized_out (struct value *value,
1444 LONGEST offset, LONGEST length)
1445 {
1446 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1447 }
1448
1449 int
1450 value_bits_synthetic_pointer (const struct value *value,
1451 LONGEST offset, LONGEST length)
1452 {
1453 if (value->lval != lval_computed
1454 || !value->location.computed.funcs->check_synthetic_pointer)
1455 return 0;
1456 return value->location.computed.funcs->check_synthetic_pointer (value,
1457 offset,
1458 length);
1459 }
1460
1461 LONGEST
1462 value_embedded_offset (const struct value *value)
1463 {
1464 return value->embedded_offset;
1465 }
1466
1467 void
1468 set_value_embedded_offset (struct value *value, LONGEST val)
1469 {
1470 value->embedded_offset = val;
1471 }
1472
1473 LONGEST
1474 value_pointed_to_offset (const struct value *value)
1475 {
1476 return value->pointed_to_offset;
1477 }
1478
1479 void
1480 set_value_pointed_to_offset (struct value *value, LONGEST val)
1481 {
1482 value->pointed_to_offset = val;
1483 }
1484
1485 const struct lval_funcs *
1486 value_computed_funcs (const struct value *v)
1487 {
1488 gdb_assert (value_lval_const (v) == lval_computed);
1489
1490 return v->location.computed.funcs;
1491 }
1492
1493 void *
1494 value_computed_closure (const struct value *v)
1495 {
1496 gdb_assert (v->lval == lval_computed);
1497
1498 return v->location.computed.closure;
1499 }
1500
1501 enum lval_type *
1502 deprecated_value_lval_hack (struct value *value)
1503 {
1504 return &value->lval;
1505 }
1506
1507 enum lval_type
1508 value_lval_const (const struct value *value)
1509 {
1510 return value->lval;
1511 }
1512
1513 CORE_ADDR
1514 value_address (const struct value *value)
1515 {
1516 if (value->lval != lval_memory)
1517 return 0;
1518 if (value->parent != NULL)
1519 return value_address (value->parent) + value->offset;
1520 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1521 {
1522 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1523 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1524 }
1525
1526 return value->location.address + value->offset;
1527 }
1528
1529 CORE_ADDR
1530 value_raw_address (const struct value *value)
1531 {
1532 if (value->lval != lval_memory)
1533 return 0;
1534 return value->location.address;
1535 }
1536
1537 void
1538 set_value_address (struct value *value, CORE_ADDR addr)
1539 {
1540 gdb_assert (value->lval == lval_memory);
1541 value->location.address = addr;
1542 }
1543
1544 struct internalvar **
1545 deprecated_value_internalvar_hack (struct value *value)
1546 {
1547 return &value->location.internalvar;
1548 }
1549
1550 struct frame_id *
1551 deprecated_value_next_frame_id_hack (struct value *value)
1552 {
1553 gdb_assert (value->lval == lval_register);
1554 return &value->location.reg.next_frame_id;
1555 }
1556
1557 int *
1558 deprecated_value_regnum_hack (struct value *value)
1559 {
1560 gdb_assert (value->lval == lval_register);
1561 return &value->location.reg.regnum;
1562 }
1563
1564 int
1565 deprecated_value_modifiable (const struct value *value)
1566 {
1567 return value->modifiable;
1568 }
1569 \f
1570 /* Return a mark in the value chain. All values allocated after the
1571 mark is obtained (except for those released) are subject to being freed
1572 if a subsequent value_free_to_mark is passed the mark. */
1573 struct value *
1574 value_mark (void)
1575 {
1576 return all_values;
1577 }
1578
1579 /* Take a reference to VAL. VAL will not be deallocated until all
1580 references are released. */
1581
1582 struct value *
1583 value_incref (struct value *val)
1584 {
1585 val->reference_count++;
1586 return val;
1587 }
1588
1589 /* Release a reference to VAL, which was acquired with value_incref.
1590 This function is also called to deallocate values from the value
1591 chain. */
1592
1593 void
1594 value_decref (struct value *val)
1595 {
1596 if (val)
1597 {
1598 gdb_assert (val->reference_count > 0);
1599 val->reference_count--;
1600 if (val->reference_count > 0)
1601 return;
1602
1603 /* If there's an associated parent value, drop our reference to
1604 it. */
1605 if (val->parent != NULL)
1606 value_decref (val->parent);
1607
1608 if (VALUE_LVAL (val) == lval_computed)
1609 {
1610 const struct lval_funcs *funcs = val->location.computed.funcs;
1611
1612 if (funcs->free_closure)
1613 funcs->free_closure (val);
1614 }
1615 else if (VALUE_LVAL (val) == lval_xcallable)
1616 delete val->location.xm_worker;
1617
1618 xfree (val->contents);
1619 VEC_free (range_s, val->unavailable);
1620 }
1621 xfree (val);
1622 }
1623
1624 /* Free all values allocated since MARK was obtained by value_mark
1625 (except for those released). */
1626 void
1627 value_free_to_mark (const struct value *mark)
1628 {
1629 struct value *val;
1630 struct value *next;
1631
1632 for (val = all_values; val && val != mark; val = next)
1633 {
1634 next = val->next;
1635 val->released = 1;
1636 value_decref (val);
1637 }
1638 all_values = val;
1639 }
1640
1641 /* Frees all the elements in a chain of values. */
1642
1643 void
1644 free_value_chain (struct value *v)
1645 {
1646 struct value *next;
1647
1648 for (; v; v = next)
1649 {
1650 next = value_next (v);
1651 value_decref (v);
1652 }
1653 }
1654
1655 /* Remove VAL from the chain all_values
1656 so it will not be freed automatically. */
1657
1658 value_ref_ptr
1659 release_value (struct value *val)
1660 {
1661 struct value *v;
1662 bool released = false;
1663
1664 if (val == nullptr)
1665 return value_ref_ptr ();
1666
1667 if (all_values == val)
1668 {
1669 all_values = val->next;
1670 val->next = NULL;
1671 released = true;
1672 }
1673 else
1674 {
1675 for (v = all_values; v; v = v->next)
1676 {
1677 if (v->next == val)
1678 {
1679 v->next = val->next;
1680 val->next = NULL;
1681 released = true;
1682 break;
1683 }
1684 }
1685 }
1686
1687 if (!released)
1688 {
1689 /* We must always return an owned reference. Normally this
1690 happens because we transfer the reference from the value
1691 chain, but in this case the value was not on the chain. */
1692 value_incref (val);
1693 }
1694
1695 return value_ref_ptr (val);
1696 }
1697
1698 /* Release all values up to mark */
1699 struct value *
1700 value_release_to_mark (const struct value *mark)
1701 {
1702 struct value *val;
1703 struct value *next;
1704
1705 for (val = next = all_values; next; next = next->next)
1706 {
1707 if (next->next == mark)
1708 {
1709 all_values = next->next;
1710 next->next = NULL;
1711 return val;
1712 }
1713 next->released = 1;
1714 }
1715 all_values = 0;
1716 return val;
1717 }
1718
1719 /* Return a copy of the value ARG.
1720 It contains the same contents, for same memory address,
1721 but it's a different block of storage. */
1722
1723 struct value *
1724 value_copy (struct value *arg)
1725 {
1726 struct type *encl_type = value_enclosing_type (arg);
1727 struct value *val;
1728
1729 if (value_lazy (arg))
1730 val = allocate_value_lazy (encl_type);
1731 else
1732 val = allocate_value (encl_type);
1733 val->type = arg->type;
1734 VALUE_LVAL (val) = VALUE_LVAL (arg);
1735 val->location = arg->location;
1736 val->offset = arg->offset;
1737 val->bitpos = arg->bitpos;
1738 val->bitsize = arg->bitsize;
1739 val->lazy = arg->lazy;
1740 val->embedded_offset = value_embedded_offset (arg);
1741 val->pointed_to_offset = arg->pointed_to_offset;
1742 val->modifiable = arg->modifiable;
1743 if (!value_lazy (val))
1744 {
1745 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1746 TYPE_LENGTH (value_enclosing_type (arg)));
1747
1748 }
1749 val->unavailable = VEC_copy (range_s, arg->unavailable);
1750 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1751 set_value_parent (val, arg->parent);
1752 if (VALUE_LVAL (val) == lval_computed)
1753 {
1754 const struct lval_funcs *funcs = val->location.computed.funcs;
1755
1756 if (funcs->copy_closure)
1757 val->location.computed.closure = funcs->copy_closure (val);
1758 }
1759 return val;
1760 }
1761
1762 /* Return a "const" and/or "volatile" qualified version of the value V.
1763 If CNST is true, then the returned value will be qualified with
1764 "const".
1765 if VOLTL is true, then the returned value will be qualified with
1766 "volatile". */
1767
1768 struct value *
1769 make_cv_value (int cnst, int voltl, struct value *v)
1770 {
1771 struct type *val_type = value_type (v);
1772 struct type *enclosing_type = value_enclosing_type (v);
1773 struct value *cv_val = value_copy (v);
1774
1775 deprecated_set_value_type (cv_val,
1776 make_cv_type (cnst, voltl, val_type, NULL));
1777 set_value_enclosing_type (cv_val,
1778 make_cv_type (cnst, voltl, enclosing_type, NULL));
1779
1780 return cv_val;
1781 }
1782
1783 /* Return a version of ARG that is non-lvalue. */
1784
1785 struct value *
1786 value_non_lval (struct value *arg)
1787 {
1788 if (VALUE_LVAL (arg) != not_lval)
1789 {
1790 struct type *enc_type = value_enclosing_type (arg);
1791 struct value *val = allocate_value (enc_type);
1792
1793 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1794 TYPE_LENGTH (enc_type));
1795 val->type = arg->type;
1796 set_value_embedded_offset (val, value_embedded_offset (arg));
1797 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1798 return val;
1799 }
1800 return arg;
1801 }
1802
1803 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1804
1805 void
1806 value_force_lval (struct value *v, CORE_ADDR addr)
1807 {
1808 gdb_assert (VALUE_LVAL (v) == not_lval);
1809
1810 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1811 v->lval = lval_memory;
1812 v->location.address = addr;
1813 }
1814
1815 void
1816 set_value_component_location (struct value *component,
1817 const struct value *whole)
1818 {
1819 struct type *type;
1820
1821 gdb_assert (whole->lval != lval_xcallable);
1822
1823 if (whole->lval == lval_internalvar)
1824 VALUE_LVAL (component) = lval_internalvar_component;
1825 else
1826 VALUE_LVAL (component) = whole->lval;
1827
1828 component->location = whole->location;
1829 if (whole->lval == lval_computed)
1830 {
1831 const struct lval_funcs *funcs = whole->location.computed.funcs;
1832
1833 if (funcs->copy_closure)
1834 component->location.computed.closure = funcs->copy_closure (whole);
1835 }
1836
1837 /* If type has a dynamic resolved location property
1838 update it's value address. */
1839 type = value_type (whole);
1840 if (NULL != TYPE_DATA_LOCATION (type)
1841 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1842 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1843 }
1844
1845 /* Access to the value history. */
1846
1847 /* Record a new value in the value history.
1848 Returns the absolute history index of the entry. */
1849
1850 int
1851 record_latest_value (struct value *val)
1852 {
1853 int i;
1854
1855 /* We don't want this value to have anything to do with the inferior anymore.
1856 In particular, "set $1 = 50" should not affect the variable from which
1857 the value was taken, and fast watchpoints should be able to assume that
1858 a value on the value history never changes. */
1859 if (value_lazy (val))
1860 value_fetch_lazy (val);
1861 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1862 from. This is a bit dubious, because then *&$1 does not just return $1
1863 but the current contents of that location. c'est la vie... */
1864 val->modifiable = 0;
1865
1866 value_history.push_back (release_value (val));
1867
1868 return value_history.size ();
1869 }
1870
1871 /* Return a copy of the value in the history with sequence number NUM. */
1872
1873 struct value *
1874 access_value_history (int num)
1875 {
1876 int i;
1877 int absnum = num;
1878
1879 if (absnum <= 0)
1880 absnum += value_history.size ();
1881
1882 if (absnum <= 0)
1883 {
1884 if (num == 0)
1885 error (_("The history is empty."));
1886 else if (num == 1)
1887 error (_("There is only one value in the history."));
1888 else
1889 error (_("History does not go back to $$%d."), -num);
1890 }
1891 if (absnum > value_history.size ())
1892 error (_("History has not yet reached $%d."), absnum);
1893
1894 absnum--;
1895
1896 return value_copy (value_history[absnum].get ());
1897 }
1898
1899 static void
1900 show_values (const char *num_exp, int from_tty)
1901 {
1902 int i;
1903 struct value *val;
1904 static int num = 1;
1905
1906 if (num_exp)
1907 {
1908 /* "show values +" should print from the stored position.
1909 "show values <exp>" should print around value number <exp>. */
1910 if (num_exp[0] != '+' || num_exp[1] != '\0')
1911 num = parse_and_eval_long (num_exp) - 5;
1912 }
1913 else
1914 {
1915 /* "show values" means print the last 10 values. */
1916 num = value_history.size () - 9;
1917 }
1918
1919 if (num <= 0)
1920 num = 1;
1921
1922 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1923 {
1924 struct value_print_options opts;
1925
1926 val = access_value_history (i);
1927 printf_filtered (("$%d = "), i);
1928 get_user_print_options (&opts);
1929 value_print (val, gdb_stdout, &opts);
1930 printf_filtered (("\n"));
1931 }
1932
1933 /* The next "show values +" should start after what we just printed. */
1934 num += 10;
1935
1936 /* Hitting just return after this command should do the same thing as
1937 "show values +". If num_exp is null, this is unnecessary, since
1938 "show values +" is not useful after "show values". */
1939 if (from_tty && num_exp)
1940 set_repeat_arguments ("+");
1941 }
1942 \f
1943 enum internalvar_kind
1944 {
1945 /* The internal variable is empty. */
1946 INTERNALVAR_VOID,
1947
1948 /* The value of the internal variable is provided directly as
1949 a GDB value object. */
1950 INTERNALVAR_VALUE,
1951
1952 /* A fresh value is computed via a call-back routine on every
1953 access to the internal variable. */
1954 INTERNALVAR_MAKE_VALUE,
1955
1956 /* The internal variable holds a GDB internal convenience function. */
1957 INTERNALVAR_FUNCTION,
1958
1959 /* The variable holds an integer value. */
1960 INTERNALVAR_INTEGER,
1961
1962 /* The variable holds a GDB-provided string. */
1963 INTERNALVAR_STRING,
1964 };
1965
1966 union internalvar_data
1967 {
1968 /* A value object used with INTERNALVAR_VALUE. */
1969 struct value *value;
1970
1971 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1972 struct
1973 {
1974 /* The functions to call. */
1975 const struct internalvar_funcs *functions;
1976
1977 /* The function's user-data. */
1978 void *data;
1979 } make_value;
1980
1981 /* The internal function used with INTERNALVAR_FUNCTION. */
1982 struct
1983 {
1984 struct internal_function *function;
1985 /* True if this is the canonical name for the function. */
1986 int canonical;
1987 } fn;
1988
1989 /* An integer value used with INTERNALVAR_INTEGER. */
1990 struct
1991 {
1992 /* If type is non-NULL, it will be used as the type to generate
1993 a value for this internal variable. If type is NULL, a default
1994 integer type for the architecture is used. */
1995 struct type *type;
1996 LONGEST val;
1997 } integer;
1998
1999 /* A string value used with INTERNALVAR_STRING. */
2000 char *string;
2001 };
2002
2003 /* Internal variables. These are variables within the debugger
2004 that hold values assigned by debugger commands.
2005 The user refers to them with a '$' prefix
2006 that does not appear in the variable names stored internally. */
2007
2008 struct internalvar
2009 {
2010 struct internalvar *next;
2011 char *name;
2012
2013 /* We support various different kinds of content of an internal variable.
2014 enum internalvar_kind specifies the kind, and union internalvar_data
2015 provides the data associated with this particular kind. */
2016
2017 enum internalvar_kind kind;
2018
2019 union internalvar_data u;
2020 };
2021
2022 static struct internalvar *internalvars;
2023
2024 /* If the variable does not already exist create it and give it the
2025 value given. If no value is given then the default is zero. */
2026 static void
2027 init_if_undefined_command (const char* args, int from_tty)
2028 {
2029 struct internalvar* intvar;
2030
2031 /* Parse the expression - this is taken from set_command(). */
2032 expression_up expr = parse_expression (args);
2033
2034 /* Validate the expression.
2035 Was the expression an assignment?
2036 Or even an expression at all? */
2037 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2038 error (_("Init-if-undefined requires an assignment expression."));
2039
2040 /* Extract the variable from the parsed expression.
2041 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2042 if (expr->elts[1].opcode != OP_INTERNALVAR)
2043 error (_("The first parameter to init-if-undefined "
2044 "should be a GDB variable."));
2045 intvar = expr->elts[2].internalvar;
2046
2047 /* Only evaluate the expression if the lvalue is void.
2048 This may still fail if the expresssion is invalid. */
2049 if (intvar->kind == INTERNALVAR_VOID)
2050 evaluate_expression (expr.get ());
2051 }
2052
2053
2054 /* Look up an internal variable with name NAME. NAME should not
2055 normally include a dollar sign.
2056
2057 If the specified internal variable does not exist,
2058 the return value is NULL. */
2059
2060 struct internalvar *
2061 lookup_only_internalvar (const char *name)
2062 {
2063 struct internalvar *var;
2064
2065 for (var = internalvars; var; var = var->next)
2066 if (strcmp (var->name, name) == 0)
2067 return var;
2068
2069 return NULL;
2070 }
2071
2072 /* Complete NAME by comparing it to the names of internal
2073 variables. */
2074
2075 void
2076 complete_internalvar (completion_tracker &tracker, const char *name)
2077 {
2078 struct internalvar *var;
2079 int len;
2080
2081 len = strlen (name);
2082
2083 for (var = internalvars; var; var = var->next)
2084 if (strncmp (var->name, name, len) == 0)
2085 {
2086 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2087
2088 tracker.add_completion (std::move (copy));
2089 }
2090 }
2091
2092 /* Create an internal variable with name NAME and with a void value.
2093 NAME should not normally include a dollar sign. */
2094
2095 struct internalvar *
2096 create_internalvar (const char *name)
2097 {
2098 struct internalvar *var = XNEW (struct internalvar);
2099
2100 var->name = concat (name, (char *)NULL);
2101 var->kind = INTERNALVAR_VOID;
2102 var->next = internalvars;
2103 internalvars = var;
2104 return var;
2105 }
2106
2107 /* Create an internal variable with name NAME and register FUN as the
2108 function that value_of_internalvar uses to create a value whenever
2109 this variable is referenced. NAME should not normally include a
2110 dollar sign. DATA is passed uninterpreted to FUN when it is
2111 called. CLEANUP, if not NULL, is called when the internal variable
2112 is destroyed. It is passed DATA as its only argument. */
2113
2114 struct internalvar *
2115 create_internalvar_type_lazy (const char *name,
2116 const struct internalvar_funcs *funcs,
2117 void *data)
2118 {
2119 struct internalvar *var = create_internalvar (name);
2120
2121 var->kind = INTERNALVAR_MAKE_VALUE;
2122 var->u.make_value.functions = funcs;
2123 var->u.make_value.data = data;
2124 return var;
2125 }
2126
2127 /* See documentation in value.h. */
2128
2129 int
2130 compile_internalvar_to_ax (struct internalvar *var,
2131 struct agent_expr *expr,
2132 struct axs_value *value)
2133 {
2134 if (var->kind != INTERNALVAR_MAKE_VALUE
2135 || var->u.make_value.functions->compile_to_ax == NULL)
2136 return 0;
2137
2138 var->u.make_value.functions->compile_to_ax (var, expr, value,
2139 var->u.make_value.data);
2140 return 1;
2141 }
2142
2143 /* Look up an internal variable with name NAME. NAME should not
2144 normally include a dollar sign.
2145
2146 If the specified internal variable does not exist,
2147 one is created, with a void value. */
2148
2149 struct internalvar *
2150 lookup_internalvar (const char *name)
2151 {
2152 struct internalvar *var;
2153
2154 var = lookup_only_internalvar (name);
2155 if (var)
2156 return var;
2157
2158 return create_internalvar (name);
2159 }
2160
2161 /* Return current value of internal variable VAR. For variables that
2162 are not inherently typed, use a value type appropriate for GDBARCH. */
2163
2164 struct value *
2165 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2166 {
2167 struct value *val;
2168 struct trace_state_variable *tsv;
2169
2170 /* If there is a trace state variable of the same name, assume that
2171 is what we really want to see. */
2172 tsv = find_trace_state_variable (var->name);
2173 if (tsv)
2174 {
2175 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2176 &(tsv->value));
2177 if (tsv->value_known)
2178 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2179 tsv->value);
2180 else
2181 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2182 return val;
2183 }
2184
2185 switch (var->kind)
2186 {
2187 case INTERNALVAR_VOID:
2188 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2189 break;
2190
2191 case INTERNALVAR_FUNCTION:
2192 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2193 break;
2194
2195 case INTERNALVAR_INTEGER:
2196 if (!var->u.integer.type)
2197 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2198 var->u.integer.val);
2199 else
2200 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2201 break;
2202
2203 case INTERNALVAR_STRING:
2204 val = value_cstring (var->u.string, strlen (var->u.string),
2205 builtin_type (gdbarch)->builtin_char);
2206 break;
2207
2208 case INTERNALVAR_VALUE:
2209 val = value_copy (var->u.value);
2210 if (value_lazy (val))
2211 value_fetch_lazy (val);
2212 break;
2213
2214 case INTERNALVAR_MAKE_VALUE:
2215 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2216 var->u.make_value.data);
2217 break;
2218
2219 default:
2220 internal_error (__FILE__, __LINE__, _("bad kind"));
2221 }
2222
2223 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2224 on this value go back to affect the original internal variable.
2225
2226 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2227 no underlying modifyable state in the internal variable.
2228
2229 Likewise, if the variable's value is a computed lvalue, we want
2230 references to it to produce another computed lvalue, where
2231 references and assignments actually operate through the
2232 computed value's functions.
2233
2234 This means that internal variables with computed values
2235 behave a little differently from other internal variables:
2236 assignments to them don't just replace the previous value
2237 altogether. At the moment, this seems like the behavior we
2238 want. */
2239
2240 if (var->kind != INTERNALVAR_MAKE_VALUE
2241 && val->lval != lval_computed)
2242 {
2243 VALUE_LVAL (val) = lval_internalvar;
2244 VALUE_INTERNALVAR (val) = var;
2245 }
2246
2247 return val;
2248 }
2249
2250 int
2251 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2252 {
2253 if (var->kind == INTERNALVAR_INTEGER)
2254 {
2255 *result = var->u.integer.val;
2256 return 1;
2257 }
2258
2259 if (var->kind == INTERNALVAR_VALUE)
2260 {
2261 struct type *type = check_typedef (value_type (var->u.value));
2262
2263 if (TYPE_CODE (type) == TYPE_CODE_INT)
2264 {
2265 *result = value_as_long (var->u.value);
2266 return 1;
2267 }
2268 }
2269
2270 return 0;
2271 }
2272
2273 static int
2274 get_internalvar_function (struct internalvar *var,
2275 struct internal_function **result)
2276 {
2277 switch (var->kind)
2278 {
2279 case INTERNALVAR_FUNCTION:
2280 *result = var->u.fn.function;
2281 return 1;
2282
2283 default:
2284 return 0;
2285 }
2286 }
2287
2288 void
2289 set_internalvar_component (struct internalvar *var,
2290 LONGEST offset, LONGEST bitpos,
2291 LONGEST bitsize, struct value *newval)
2292 {
2293 gdb_byte *addr;
2294 struct gdbarch *arch;
2295 int unit_size;
2296
2297 switch (var->kind)
2298 {
2299 case INTERNALVAR_VALUE:
2300 addr = value_contents_writeable (var->u.value);
2301 arch = get_value_arch (var->u.value);
2302 unit_size = gdbarch_addressable_memory_unit_size (arch);
2303
2304 if (bitsize)
2305 modify_field (value_type (var->u.value), addr + offset,
2306 value_as_long (newval), bitpos, bitsize);
2307 else
2308 memcpy (addr + offset * unit_size, value_contents (newval),
2309 TYPE_LENGTH (value_type (newval)));
2310 break;
2311
2312 default:
2313 /* We can never get a component of any other kind. */
2314 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2315 }
2316 }
2317
2318 void
2319 set_internalvar (struct internalvar *var, struct value *val)
2320 {
2321 enum internalvar_kind new_kind;
2322 union internalvar_data new_data = { 0 };
2323
2324 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2325 error (_("Cannot overwrite convenience function %s"), var->name);
2326
2327 /* Prepare new contents. */
2328 switch (TYPE_CODE (check_typedef (value_type (val))))
2329 {
2330 case TYPE_CODE_VOID:
2331 new_kind = INTERNALVAR_VOID;
2332 break;
2333
2334 case TYPE_CODE_INTERNAL_FUNCTION:
2335 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2336 new_kind = INTERNALVAR_FUNCTION;
2337 get_internalvar_function (VALUE_INTERNALVAR (val),
2338 &new_data.fn.function);
2339 /* Copies created here are never canonical. */
2340 break;
2341
2342 default:
2343 new_kind = INTERNALVAR_VALUE;
2344 new_data.value = value_copy (val);
2345 new_data.value->modifiable = 1;
2346
2347 /* Force the value to be fetched from the target now, to avoid problems
2348 later when this internalvar is referenced and the target is gone or
2349 has changed. */
2350 if (value_lazy (new_data.value))
2351 value_fetch_lazy (new_data.value);
2352
2353 /* Release the value from the value chain to prevent it from being
2354 deleted by free_all_values. From here on this function should not
2355 call error () until new_data is installed into the var->u to avoid
2356 leaking memory. */
2357 release_value (new_data.value).release ();
2358
2359 /* Internal variables which are created from values with a dynamic
2360 location don't need the location property of the origin anymore.
2361 The resolved dynamic location is used prior then any other address
2362 when accessing the value.
2363 If we keep it, we would still refer to the origin value.
2364 Remove the location property in case it exist. */
2365 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2366
2367 break;
2368 }
2369
2370 /* Clean up old contents. */
2371 clear_internalvar (var);
2372
2373 /* Switch over. */
2374 var->kind = new_kind;
2375 var->u = new_data;
2376 /* End code which must not call error(). */
2377 }
2378
2379 void
2380 set_internalvar_integer (struct internalvar *var, LONGEST l)
2381 {
2382 /* Clean up old contents. */
2383 clear_internalvar (var);
2384
2385 var->kind = INTERNALVAR_INTEGER;
2386 var->u.integer.type = NULL;
2387 var->u.integer.val = l;
2388 }
2389
2390 void
2391 set_internalvar_string (struct internalvar *var, const char *string)
2392 {
2393 /* Clean up old contents. */
2394 clear_internalvar (var);
2395
2396 var->kind = INTERNALVAR_STRING;
2397 var->u.string = xstrdup (string);
2398 }
2399
2400 static void
2401 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2402 {
2403 /* Clean up old contents. */
2404 clear_internalvar (var);
2405
2406 var->kind = INTERNALVAR_FUNCTION;
2407 var->u.fn.function = f;
2408 var->u.fn.canonical = 1;
2409 /* Variables installed here are always the canonical version. */
2410 }
2411
2412 void
2413 clear_internalvar (struct internalvar *var)
2414 {
2415 /* Clean up old contents. */
2416 switch (var->kind)
2417 {
2418 case INTERNALVAR_VALUE:
2419 value_decref (var->u.value);
2420 break;
2421
2422 case INTERNALVAR_STRING:
2423 xfree (var->u.string);
2424 break;
2425
2426 case INTERNALVAR_MAKE_VALUE:
2427 if (var->u.make_value.functions->destroy != NULL)
2428 var->u.make_value.functions->destroy (var->u.make_value.data);
2429 break;
2430
2431 default:
2432 break;
2433 }
2434
2435 /* Reset to void kind. */
2436 var->kind = INTERNALVAR_VOID;
2437 }
2438
2439 char *
2440 internalvar_name (const struct internalvar *var)
2441 {
2442 return var->name;
2443 }
2444
2445 static struct internal_function *
2446 create_internal_function (const char *name,
2447 internal_function_fn handler, void *cookie)
2448 {
2449 struct internal_function *ifn = XNEW (struct internal_function);
2450
2451 ifn->name = xstrdup (name);
2452 ifn->handler = handler;
2453 ifn->cookie = cookie;
2454 return ifn;
2455 }
2456
2457 char *
2458 value_internal_function_name (struct value *val)
2459 {
2460 struct internal_function *ifn;
2461 int result;
2462
2463 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2464 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2465 gdb_assert (result);
2466
2467 return ifn->name;
2468 }
2469
2470 struct value *
2471 call_internal_function (struct gdbarch *gdbarch,
2472 const struct language_defn *language,
2473 struct value *func, int argc, struct value **argv)
2474 {
2475 struct internal_function *ifn;
2476 int result;
2477
2478 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2479 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2480 gdb_assert (result);
2481
2482 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2483 }
2484
2485 /* The 'function' command. This does nothing -- it is just a
2486 placeholder to let "help function NAME" work. This is also used as
2487 the implementation of the sub-command that is created when
2488 registering an internal function. */
2489 static void
2490 function_command (const char *command, int from_tty)
2491 {
2492 /* Do nothing. */
2493 }
2494
2495 /* Clean up if an internal function's command is destroyed. */
2496 static void
2497 function_destroyer (struct cmd_list_element *self, void *ignore)
2498 {
2499 xfree ((char *) self->name);
2500 xfree ((char *) self->doc);
2501 }
2502
2503 /* Add a new internal function. NAME is the name of the function; DOC
2504 is a documentation string describing the function. HANDLER is
2505 called when the function is invoked. COOKIE is an arbitrary
2506 pointer which is passed to HANDLER and is intended for "user
2507 data". */
2508 void
2509 add_internal_function (const char *name, const char *doc,
2510 internal_function_fn handler, void *cookie)
2511 {
2512 struct cmd_list_element *cmd;
2513 struct internal_function *ifn;
2514 struct internalvar *var = lookup_internalvar (name);
2515
2516 ifn = create_internal_function (name, handler, cookie);
2517 set_internalvar_function (var, ifn);
2518
2519 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2520 &functionlist);
2521 cmd->destroyer = function_destroyer;
2522 }
2523
2524 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2525 prevent cycles / duplicates. */
2526
2527 void
2528 preserve_one_value (struct value *value, struct objfile *objfile,
2529 htab_t copied_types)
2530 {
2531 if (TYPE_OBJFILE (value->type) == objfile)
2532 value->type = copy_type_recursive (objfile, value->type, copied_types);
2533
2534 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2535 value->enclosing_type = copy_type_recursive (objfile,
2536 value->enclosing_type,
2537 copied_types);
2538 }
2539
2540 /* Likewise for internal variable VAR. */
2541
2542 static void
2543 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2544 htab_t copied_types)
2545 {
2546 switch (var->kind)
2547 {
2548 case INTERNALVAR_INTEGER:
2549 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2550 var->u.integer.type
2551 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2552 break;
2553
2554 case INTERNALVAR_VALUE:
2555 preserve_one_value (var->u.value, objfile, copied_types);
2556 break;
2557 }
2558 }
2559
2560 /* Update the internal variables and value history when OBJFILE is
2561 discarded; we must copy the types out of the objfile. New global types
2562 will be created for every convenience variable which currently points to
2563 this objfile's types, and the convenience variables will be adjusted to
2564 use the new global types. */
2565
2566 void
2567 preserve_values (struct objfile *objfile)
2568 {
2569 htab_t copied_types;
2570 struct internalvar *var;
2571 int i;
2572
2573 /* Create the hash table. We allocate on the objfile's obstack, since
2574 it is soon to be deleted. */
2575 copied_types = create_copied_types_hash (objfile);
2576
2577 for (const value_ref_ptr &item : value_history)
2578 preserve_one_value (item.get (), objfile, copied_types);
2579
2580 for (var = internalvars; var; var = var->next)
2581 preserve_one_internalvar (var, objfile, copied_types);
2582
2583 preserve_ext_lang_values (objfile, copied_types);
2584
2585 htab_delete (copied_types);
2586 }
2587
2588 static void
2589 show_convenience (const char *ignore, int from_tty)
2590 {
2591 struct gdbarch *gdbarch = get_current_arch ();
2592 struct internalvar *var;
2593 int varseen = 0;
2594 struct value_print_options opts;
2595
2596 get_user_print_options (&opts);
2597 for (var = internalvars; var; var = var->next)
2598 {
2599
2600 if (!varseen)
2601 {
2602 varseen = 1;
2603 }
2604 printf_filtered (("$%s = "), var->name);
2605
2606 TRY
2607 {
2608 struct value *val;
2609
2610 val = value_of_internalvar (gdbarch, var);
2611 value_print (val, gdb_stdout, &opts);
2612 }
2613 CATCH (ex, RETURN_MASK_ERROR)
2614 {
2615 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2616 }
2617 END_CATCH
2618
2619 printf_filtered (("\n"));
2620 }
2621 if (!varseen)
2622 {
2623 /* This text does not mention convenience functions on purpose.
2624 The user can't create them except via Python, and if Python support
2625 is installed this message will never be printed ($_streq will
2626 exist). */
2627 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2628 "Convenience variables have "
2629 "names starting with \"$\";\n"
2630 "use \"set\" as in \"set "
2631 "$foo = 5\" to define them.\n"));
2632 }
2633 }
2634 \f
2635
2636 /* See value.h. */
2637
2638 struct value *
2639 value_from_xmethod (xmethod_worker_up &&worker)
2640 {
2641 struct value *v;
2642
2643 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2644 v->lval = lval_xcallable;
2645 v->location.xm_worker = worker.release ();
2646 v->modifiable = 0;
2647
2648 return v;
2649 }
2650
2651 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2652
2653 struct type *
2654 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2655 {
2656 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2657 && method->lval == lval_xcallable && argc > 0);
2658
2659 return method->location.xm_worker->get_result_type
2660 (argv[0], argv + 1, argc - 1);
2661 }
2662
2663 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2664
2665 struct value *
2666 call_xmethod (struct value *method, int argc, struct value **argv)
2667 {
2668 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2669 && method->lval == lval_xcallable && argc > 0);
2670
2671 return method->location.xm_worker->invoke (argv[0], argv + 1, argc - 1);
2672 }
2673 \f
2674 /* Extract a value as a C number (either long or double).
2675 Knows how to convert fixed values to double, or
2676 floating values to long.
2677 Does not deallocate the value. */
2678
2679 LONGEST
2680 value_as_long (struct value *val)
2681 {
2682 /* This coerces arrays and functions, which is necessary (e.g.
2683 in disassemble_command). It also dereferences references, which
2684 I suspect is the most logical thing to do. */
2685 val = coerce_array (val);
2686 return unpack_long (value_type (val), value_contents (val));
2687 }
2688
2689 /* Extract a value as a C pointer. Does not deallocate the value.
2690 Note that val's type may not actually be a pointer; value_as_long
2691 handles all the cases. */
2692 CORE_ADDR
2693 value_as_address (struct value *val)
2694 {
2695 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2696
2697 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2698 whether we want this to be true eventually. */
2699 #if 0
2700 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2701 non-address (e.g. argument to "signal", "info break", etc.), or
2702 for pointers to char, in which the low bits *are* significant. */
2703 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2704 #else
2705
2706 /* There are several targets (IA-64, PowerPC, and others) which
2707 don't represent pointers to functions as simply the address of
2708 the function's entry point. For example, on the IA-64, a
2709 function pointer points to a two-word descriptor, generated by
2710 the linker, which contains the function's entry point, and the
2711 value the IA-64 "global pointer" register should have --- to
2712 support position-independent code. The linker generates
2713 descriptors only for those functions whose addresses are taken.
2714
2715 On such targets, it's difficult for GDB to convert an arbitrary
2716 function address into a function pointer; it has to either find
2717 an existing descriptor for that function, or call malloc and
2718 build its own. On some targets, it is impossible for GDB to
2719 build a descriptor at all: the descriptor must contain a jump
2720 instruction; data memory cannot be executed; and code memory
2721 cannot be modified.
2722
2723 Upon entry to this function, if VAL is a value of type `function'
2724 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2725 value_address (val) is the address of the function. This is what
2726 you'll get if you evaluate an expression like `main'. The call
2727 to COERCE_ARRAY below actually does all the usual unary
2728 conversions, which includes converting values of type `function'
2729 to `pointer to function'. This is the challenging conversion
2730 discussed above. Then, `unpack_long' will convert that pointer
2731 back into an address.
2732
2733 So, suppose the user types `disassemble foo' on an architecture
2734 with a strange function pointer representation, on which GDB
2735 cannot build its own descriptors, and suppose further that `foo'
2736 has no linker-built descriptor. The address->pointer conversion
2737 will signal an error and prevent the command from running, even
2738 though the next step would have been to convert the pointer
2739 directly back into the same address.
2740
2741 The following shortcut avoids this whole mess. If VAL is a
2742 function, just return its address directly. */
2743 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2744 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2745 return value_address (val);
2746
2747 val = coerce_array (val);
2748
2749 /* Some architectures (e.g. Harvard), map instruction and data
2750 addresses onto a single large unified address space. For
2751 instance: An architecture may consider a large integer in the
2752 range 0x10000000 .. 0x1000ffff to already represent a data
2753 addresses (hence not need a pointer to address conversion) while
2754 a small integer would still need to be converted integer to
2755 pointer to address. Just assume such architectures handle all
2756 integer conversions in a single function. */
2757
2758 /* JimB writes:
2759
2760 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2761 must admonish GDB hackers to make sure its behavior matches the
2762 compiler's, whenever possible.
2763
2764 In general, I think GDB should evaluate expressions the same way
2765 the compiler does. When the user copies an expression out of
2766 their source code and hands it to a `print' command, they should
2767 get the same value the compiler would have computed. Any
2768 deviation from this rule can cause major confusion and annoyance,
2769 and needs to be justified carefully. In other words, GDB doesn't
2770 really have the freedom to do these conversions in clever and
2771 useful ways.
2772
2773 AndrewC pointed out that users aren't complaining about how GDB
2774 casts integers to pointers; they are complaining that they can't
2775 take an address from a disassembly listing and give it to `x/i'.
2776 This is certainly important.
2777
2778 Adding an architecture method like integer_to_address() certainly
2779 makes it possible for GDB to "get it right" in all circumstances
2780 --- the target has complete control over how things get done, so
2781 people can Do The Right Thing for their target without breaking
2782 anyone else. The standard doesn't specify how integers get
2783 converted to pointers; usually, the ABI doesn't either, but
2784 ABI-specific code is a more reasonable place to handle it. */
2785
2786 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2787 && !TYPE_IS_REFERENCE (value_type (val))
2788 && gdbarch_integer_to_address_p (gdbarch))
2789 return gdbarch_integer_to_address (gdbarch, value_type (val),
2790 value_contents (val));
2791
2792 return unpack_long (value_type (val), value_contents (val));
2793 #endif
2794 }
2795 \f
2796 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2797 as a long, or as a double, assuming the raw data is described
2798 by type TYPE. Knows how to convert different sizes of values
2799 and can convert between fixed and floating point. We don't assume
2800 any alignment for the raw data. Return value is in host byte order.
2801
2802 If you want functions and arrays to be coerced to pointers, and
2803 references to be dereferenced, call value_as_long() instead.
2804
2805 C++: It is assumed that the front-end has taken care of
2806 all matters concerning pointers to members. A pointer
2807 to member which reaches here is considered to be equivalent
2808 to an INT (or some size). After all, it is only an offset. */
2809
2810 LONGEST
2811 unpack_long (struct type *type, const gdb_byte *valaddr)
2812 {
2813 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2814 enum type_code code = TYPE_CODE (type);
2815 int len = TYPE_LENGTH (type);
2816 int nosign = TYPE_UNSIGNED (type);
2817
2818 switch (code)
2819 {
2820 case TYPE_CODE_TYPEDEF:
2821 return unpack_long (check_typedef (type), valaddr);
2822 case TYPE_CODE_ENUM:
2823 case TYPE_CODE_FLAGS:
2824 case TYPE_CODE_BOOL:
2825 case TYPE_CODE_INT:
2826 case TYPE_CODE_CHAR:
2827 case TYPE_CODE_RANGE:
2828 case TYPE_CODE_MEMBERPTR:
2829 if (nosign)
2830 return extract_unsigned_integer (valaddr, len, byte_order);
2831 else
2832 return extract_signed_integer (valaddr, len, byte_order);
2833
2834 case TYPE_CODE_FLT:
2835 case TYPE_CODE_DECFLOAT:
2836 return target_float_to_longest (valaddr, type);
2837
2838 case TYPE_CODE_PTR:
2839 case TYPE_CODE_REF:
2840 case TYPE_CODE_RVALUE_REF:
2841 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2842 whether we want this to be true eventually. */
2843 return extract_typed_address (valaddr, type);
2844
2845 default:
2846 error (_("Value can't be converted to integer."));
2847 }
2848 return 0; /* Placate lint. */
2849 }
2850
2851 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2852 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2853 We don't assume any alignment for the raw data. Return value is in
2854 host byte order.
2855
2856 If you want functions and arrays to be coerced to pointers, and
2857 references to be dereferenced, call value_as_address() instead.
2858
2859 C++: It is assumed that the front-end has taken care of
2860 all matters concerning pointers to members. A pointer
2861 to member which reaches here is considered to be equivalent
2862 to an INT (or some size). After all, it is only an offset. */
2863
2864 CORE_ADDR
2865 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2866 {
2867 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2868 whether we want this to be true eventually. */
2869 return unpack_long (type, valaddr);
2870 }
2871
2872 bool
2873 is_floating_value (struct value *val)
2874 {
2875 struct type *type = check_typedef (value_type (val));
2876
2877 if (is_floating_type (type))
2878 {
2879 if (!target_float_is_valid (value_contents (val), type))
2880 error (_("Invalid floating value found in program."));
2881 return true;
2882 }
2883
2884 return false;
2885 }
2886
2887 \f
2888 /* Get the value of the FIELDNO'th field (which must be static) of
2889 TYPE. */
2890
2891 struct value *
2892 value_static_field (struct type *type, int fieldno)
2893 {
2894 struct value *retval;
2895
2896 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2897 {
2898 case FIELD_LOC_KIND_PHYSADDR:
2899 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2900 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2901 break;
2902 case FIELD_LOC_KIND_PHYSNAME:
2903 {
2904 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2905 /* TYPE_FIELD_NAME (type, fieldno); */
2906 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2907
2908 if (sym.symbol == NULL)
2909 {
2910 /* With some compilers, e.g. HP aCC, static data members are
2911 reported as non-debuggable symbols. */
2912 struct bound_minimal_symbol msym
2913 = lookup_minimal_symbol (phys_name, NULL, NULL);
2914 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2915
2916 if (!msym.minsym)
2917 retval = allocate_optimized_out_value (field_type);
2918 else
2919 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2920 }
2921 else
2922 retval = value_of_variable (sym.symbol, sym.block);
2923 break;
2924 }
2925 default:
2926 gdb_assert_not_reached ("unexpected field location kind");
2927 }
2928
2929 return retval;
2930 }
2931
2932 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2933 You have to be careful here, since the size of the data area for the value
2934 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2935 than the old enclosing type, you have to allocate more space for the
2936 data. */
2937
2938 void
2939 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2940 {
2941 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2942 {
2943 check_type_length_before_alloc (new_encl_type);
2944 val->contents
2945 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2946 }
2947
2948 val->enclosing_type = new_encl_type;
2949 }
2950
2951 /* Given a value ARG1 (offset by OFFSET bytes)
2952 of a struct or union type ARG_TYPE,
2953 extract and return the value of one of its (non-static) fields.
2954 FIELDNO says which field. */
2955
2956 struct value *
2957 value_primitive_field (struct value *arg1, LONGEST offset,
2958 int fieldno, struct type *arg_type)
2959 {
2960 struct value *v;
2961 struct type *type;
2962 struct gdbarch *arch = get_value_arch (arg1);
2963 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2964
2965 arg_type = check_typedef (arg_type);
2966 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2967
2968 /* Call check_typedef on our type to make sure that, if TYPE
2969 is a TYPE_CODE_TYPEDEF, its length is set to the length
2970 of the target type instead of zero. However, we do not
2971 replace the typedef type by the target type, because we want
2972 to keep the typedef in order to be able to print the type
2973 description correctly. */
2974 check_typedef (type);
2975
2976 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2977 {
2978 /* Handle packed fields.
2979
2980 Create a new value for the bitfield, with bitpos and bitsize
2981 set. If possible, arrange offset and bitpos so that we can
2982 do a single aligned read of the size of the containing type.
2983 Otherwise, adjust offset to the byte containing the first
2984 bit. Assume that the address, offset, and embedded offset
2985 are sufficiently aligned. */
2986
2987 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2988 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2989
2990 v = allocate_value_lazy (type);
2991 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2992 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2993 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2994 v->bitpos = bitpos % container_bitsize;
2995 else
2996 v->bitpos = bitpos % 8;
2997 v->offset = (value_embedded_offset (arg1)
2998 + offset
2999 + (bitpos - v->bitpos) / 8);
3000 set_value_parent (v, arg1);
3001 if (!value_lazy (arg1))
3002 value_fetch_lazy (v);
3003 }
3004 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3005 {
3006 /* This field is actually a base subobject, so preserve the
3007 entire object's contents for later references to virtual
3008 bases, etc. */
3009 LONGEST boffset;
3010
3011 /* Lazy register values with offsets are not supported. */
3012 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3013 value_fetch_lazy (arg1);
3014
3015 /* We special case virtual inheritance here because this
3016 requires access to the contents, which we would rather avoid
3017 for references to ordinary fields of unavailable values. */
3018 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3019 boffset = baseclass_offset (arg_type, fieldno,
3020 value_contents (arg1),
3021 value_embedded_offset (arg1),
3022 value_address (arg1),
3023 arg1);
3024 else
3025 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3026
3027 if (value_lazy (arg1))
3028 v = allocate_value_lazy (value_enclosing_type (arg1));
3029 else
3030 {
3031 v = allocate_value (value_enclosing_type (arg1));
3032 value_contents_copy_raw (v, 0, arg1, 0,
3033 TYPE_LENGTH (value_enclosing_type (arg1)));
3034 }
3035 v->type = type;
3036 v->offset = value_offset (arg1);
3037 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3038 }
3039 else if (NULL != TYPE_DATA_LOCATION (type))
3040 {
3041 /* Field is a dynamic data member. */
3042
3043 gdb_assert (0 == offset);
3044 /* We expect an already resolved data location. */
3045 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3046 /* For dynamic data types defer memory allocation
3047 until we actual access the value. */
3048 v = allocate_value_lazy (type);
3049 }
3050 else
3051 {
3052 /* Plain old data member */
3053 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3054 / (HOST_CHAR_BIT * unit_size));
3055
3056 /* Lazy register values with offsets are not supported. */
3057 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3058 value_fetch_lazy (arg1);
3059
3060 if (value_lazy (arg1))
3061 v = allocate_value_lazy (type);
3062 else
3063 {
3064 v = allocate_value (type);
3065 value_contents_copy_raw (v, value_embedded_offset (v),
3066 arg1, value_embedded_offset (arg1) + offset,
3067 type_length_units (type));
3068 }
3069 v->offset = (value_offset (arg1) + offset
3070 + value_embedded_offset (arg1));
3071 }
3072 set_value_component_location (v, arg1);
3073 return v;
3074 }
3075
3076 /* Given a value ARG1 of a struct or union type,
3077 extract and return the value of one of its (non-static) fields.
3078 FIELDNO says which field. */
3079
3080 struct value *
3081 value_field (struct value *arg1, int fieldno)
3082 {
3083 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3084 }
3085
3086 /* Return a non-virtual function as a value.
3087 F is the list of member functions which contains the desired method.
3088 J is an index into F which provides the desired method.
3089
3090 We only use the symbol for its address, so be happy with either a
3091 full symbol or a minimal symbol. */
3092
3093 struct value *
3094 value_fn_field (struct value **arg1p, struct fn_field *f,
3095 int j, struct type *type,
3096 LONGEST offset)
3097 {
3098 struct value *v;
3099 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3100 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3101 struct symbol *sym;
3102 struct bound_minimal_symbol msym;
3103
3104 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3105 if (sym != NULL)
3106 {
3107 memset (&msym, 0, sizeof (msym));
3108 }
3109 else
3110 {
3111 gdb_assert (sym == NULL);
3112 msym = lookup_bound_minimal_symbol (physname);
3113 if (msym.minsym == NULL)
3114 return NULL;
3115 }
3116
3117 v = allocate_value (ftype);
3118 VALUE_LVAL (v) = lval_memory;
3119 if (sym)
3120 {
3121 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3122 }
3123 else
3124 {
3125 /* The minimal symbol might point to a function descriptor;
3126 resolve it to the actual code address instead. */
3127 struct objfile *objfile = msym.objfile;
3128 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3129
3130 set_value_address (v,
3131 gdbarch_convert_from_func_ptr_addr
3132 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3133 }
3134
3135 if (arg1p)
3136 {
3137 if (type != value_type (*arg1p))
3138 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3139 value_addr (*arg1p)));
3140
3141 /* Move the `this' pointer according to the offset.
3142 VALUE_OFFSET (*arg1p) += offset; */
3143 }
3144
3145 return v;
3146 }
3147
3148 \f
3149
3150 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3151 VALADDR, and store the result in *RESULT.
3152 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3153 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3154
3155 Extracting bits depends on endianness of the machine. Compute the
3156 number of least significant bits to discard. For big endian machines,
3157 we compute the total number of bits in the anonymous object, subtract
3158 off the bit count from the MSB of the object to the MSB of the
3159 bitfield, then the size of the bitfield, which leaves the LSB discard
3160 count. For little endian machines, the discard count is simply the
3161 number of bits from the LSB of the anonymous object to the LSB of the
3162 bitfield.
3163
3164 If the field is signed, we also do sign extension. */
3165
3166 static LONGEST
3167 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3168 LONGEST bitpos, LONGEST bitsize)
3169 {
3170 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3171 ULONGEST val;
3172 ULONGEST valmask;
3173 int lsbcount;
3174 LONGEST bytes_read;
3175 LONGEST read_offset;
3176
3177 /* Read the minimum number of bytes required; there may not be
3178 enough bytes to read an entire ULONGEST. */
3179 field_type = check_typedef (field_type);
3180 if (bitsize)
3181 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3182 else
3183 {
3184 bytes_read = TYPE_LENGTH (field_type);
3185 bitsize = 8 * bytes_read;
3186 }
3187
3188 read_offset = bitpos / 8;
3189
3190 val = extract_unsigned_integer (valaddr + read_offset,
3191 bytes_read, byte_order);
3192
3193 /* Extract bits. See comment above. */
3194
3195 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3196 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3197 else
3198 lsbcount = (bitpos % 8);
3199 val >>= lsbcount;
3200
3201 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3202 If the field is signed, and is negative, then sign extend. */
3203
3204 if (bitsize < 8 * (int) sizeof (val))
3205 {
3206 valmask = (((ULONGEST) 1) << bitsize) - 1;
3207 val &= valmask;
3208 if (!TYPE_UNSIGNED (field_type))
3209 {
3210 if (val & (valmask ^ (valmask >> 1)))
3211 {
3212 val |= ~valmask;
3213 }
3214 }
3215 }
3216
3217 return val;
3218 }
3219
3220 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3221 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3222 ORIGINAL_VALUE, which must not be NULL. See
3223 unpack_value_bits_as_long for more details. */
3224
3225 int
3226 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3227 LONGEST embedded_offset, int fieldno,
3228 const struct value *val, LONGEST *result)
3229 {
3230 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3231 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3232 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3233 int bit_offset;
3234
3235 gdb_assert (val != NULL);
3236
3237 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3238 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3239 || !value_bits_available (val, bit_offset, bitsize))
3240 return 0;
3241
3242 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3243 bitpos, bitsize);
3244 return 1;
3245 }
3246
3247 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3248 object at VALADDR. See unpack_bits_as_long for more details. */
3249
3250 LONGEST
3251 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3252 {
3253 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3254 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3255 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3256
3257 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3258 }
3259
3260 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3261 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3262 the contents in DEST_VAL, zero or sign extending if the type of
3263 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3264 VAL. If the VAL's contents required to extract the bitfield from
3265 are unavailable/optimized out, DEST_VAL is correspondingly
3266 marked unavailable/optimized out. */
3267
3268 void
3269 unpack_value_bitfield (struct value *dest_val,
3270 LONGEST bitpos, LONGEST bitsize,
3271 const gdb_byte *valaddr, LONGEST embedded_offset,
3272 const struct value *val)
3273 {
3274 enum bfd_endian byte_order;
3275 int src_bit_offset;
3276 int dst_bit_offset;
3277 struct type *field_type = value_type (dest_val);
3278
3279 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3280
3281 /* First, unpack and sign extend the bitfield as if it was wholly
3282 valid. Optimized out/unavailable bits are read as zero, but
3283 that's OK, as they'll end up marked below. If the VAL is
3284 wholly-invalid we may have skipped allocating its contents,
3285 though. See allocate_optimized_out_value. */
3286 if (valaddr != NULL)
3287 {
3288 LONGEST num;
3289
3290 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3291 bitpos, bitsize);
3292 store_signed_integer (value_contents_raw (dest_val),
3293 TYPE_LENGTH (field_type), byte_order, num);
3294 }
3295
3296 /* Now copy the optimized out / unavailability ranges to the right
3297 bits. */
3298 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3299 if (byte_order == BFD_ENDIAN_BIG)
3300 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3301 else
3302 dst_bit_offset = 0;
3303 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3304 val, src_bit_offset, bitsize);
3305 }
3306
3307 /* Return a new value with type TYPE, which is FIELDNO field of the
3308 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3309 of VAL. If the VAL's contents required to extract the bitfield
3310 from are unavailable/optimized out, the new value is
3311 correspondingly marked unavailable/optimized out. */
3312
3313 struct value *
3314 value_field_bitfield (struct type *type, int fieldno,
3315 const gdb_byte *valaddr,
3316 LONGEST embedded_offset, const struct value *val)
3317 {
3318 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3319 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3320 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3321
3322 unpack_value_bitfield (res_val, bitpos, bitsize,
3323 valaddr, embedded_offset, val);
3324
3325 return res_val;
3326 }
3327
3328 /* Modify the value of a bitfield. ADDR points to a block of memory in
3329 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3330 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3331 indicate which bits (in target bit order) comprise the bitfield.
3332 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3333 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3334
3335 void
3336 modify_field (struct type *type, gdb_byte *addr,
3337 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3338 {
3339 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3340 ULONGEST oword;
3341 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3342 LONGEST bytesize;
3343
3344 /* Normalize BITPOS. */
3345 addr += bitpos / 8;
3346 bitpos %= 8;
3347
3348 /* If a negative fieldval fits in the field in question, chop
3349 off the sign extension bits. */
3350 if ((~fieldval & ~(mask >> 1)) == 0)
3351 fieldval &= mask;
3352
3353 /* Warn if value is too big to fit in the field in question. */
3354 if (0 != (fieldval & ~mask))
3355 {
3356 /* FIXME: would like to include fieldval in the message, but
3357 we don't have a sprintf_longest. */
3358 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3359
3360 /* Truncate it, otherwise adjoining fields may be corrupted. */
3361 fieldval &= mask;
3362 }
3363
3364 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3365 false valgrind reports. */
3366
3367 bytesize = (bitpos + bitsize + 7) / 8;
3368 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3369
3370 /* Shifting for bit field depends on endianness of the target machine. */
3371 if (gdbarch_bits_big_endian (get_type_arch (type)))
3372 bitpos = bytesize * 8 - bitpos - bitsize;
3373
3374 oword &= ~(mask << bitpos);
3375 oword |= fieldval << bitpos;
3376
3377 store_unsigned_integer (addr, bytesize, byte_order, oword);
3378 }
3379 \f
3380 /* Pack NUM into BUF using a target format of TYPE. */
3381
3382 void
3383 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3384 {
3385 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3386 LONGEST len;
3387
3388 type = check_typedef (type);
3389 len = TYPE_LENGTH (type);
3390
3391 switch (TYPE_CODE (type))
3392 {
3393 case TYPE_CODE_INT:
3394 case TYPE_CODE_CHAR:
3395 case TYPE_CODE_ENUM:
3396 case TYPE_CODE_FLAGS:
3397 case TYPE_CODE_BOOL:
3398 case TYPE_CODE_RANGE:
3399 case TYPE_CODE_MEMBERPTR:
3400 store_signed_integer (buf, len, byte_order, num);
3401 break;
3402
3403 case TYPE_CODE_REF:
3404 case TYPE_CODE_RVALUE_REF:
3405 case TYPE_CODE_PTR:
3406 store_typed_address (buf, type, (CORE_ADDR) num);
3407 break;
3408
3409 case TYPE_CODE_FLT:
3410 case TYPE_CODE_DECFLOAT:
3411 target_float_from_longest (buf, type, num);
3412 break;
3413
3414 default:
3415 error (_("Unexpected type (%d) encountered for integer constant."),
3416 TYPE_CODE (type));
3417 }
3418 }
3419
3420
3421 /* Pack NUM into BUF using a target format of TYPE. */
3422
3423 static void
3424 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3425 {
3426 LONGEST len;
3427 enum bfd_endian byte_order;
3428
3429 type = check_typedef (type);
3430 len = TYPE_LENGTH (type);
3431 byte_order = gdbarch_byte_order (get_type_arch (type));
3432
3433 switch (TYPE_CODE (type))
3434 {
3435 case TYPE_CODE_INT:
3436 case TYPE_CODE_CHAR:
3437 case TYPE_CODE_ENUM:
3438 case TYPE_CODE_FLAGS:
3439 case TYPE_CODE_BOOL:
3440 case TYPE_CODE_RANGE:
3441 case TYPE_CODE_MEMBERPTR:
3442 store_unsigned_integer (buf, len, byte_order, num);
3443 break;
3444
3445 case TYPE_CODE_REF:
3446 case TYPE_CODE_RVALUE_REF:
3447 case TYPE_CODE_PTR:
3448 store_typed_address (buf, type, (CORE_ADDR) num);
3449 break;
3450
3451 case TYPE_CODE_FLT:
3452 case TYPE_CODE_DECFLOAT:
3453 target_float_from_ulongest (buf, type, num);
3454 break;
3455
3456 default:
3457 error (_("Unexpected type (%d) encountered "
3458 "for unsigned integer constant."),
3459 TYPE_CODE (type));
3460 }
3461 }
3462
3463
3464 /* Convert C numbers into newly allocated values. */
3465
3466 struct value *
3467 value_from_longest (struct type *type, LONGEST num)
3468 {
3469 struct value *val = allocate_value (type);
3470
3471 pack_long (value_contents_raw (val), type, num);
3472 return val;
3473 }
3474
3475
3476 /* Convert C unsigned numbers into newly allocated values. */
3477
3478 struct value *
3479 value_from_ulongest (struct type *type, ULONGEST num)
3480 {
3481 struct value *val = allocate_value (type);
3482
3483 pack_unsigned_long (value_contents_raw (val), type, num);
3484
3485 return val;
3486 }
3487
3488
3489 /* Create a value representing a pointer of type TYPE to the address
3490 ADDR. */
3491
3492 struct value *
3493 value_from_pointer (struct type *type, CORE_ADDR addr)
3494 {
3495 struct value *val = allocate_value (type);
3496
3497 store_typed_address (value_contents_raw (val),
3498 check_typedef (type), addr);
3499 return val;
3500 }
3501
3502
3503 /* Create a value of type TYPE whose contents come from VALADDR, if it
3504 is non-null, and whose memory address (in the inferior) is
3505 ADDRESS. The type of the created value may differ from the passed
3506 type TYPE. Make sure to retrieve values new type after this call.
3507 Note that TYPE is not passed through resolve_dynamic_type; this is
3508 a special API intended for use only by Ada. */
3509
3510 struct value *
3511 value_from_contents_and_address_unresolved (struct type *type,
3512 const gdb_byte *valaddr,
3513 CORE_ADDR address)
3514 {
3515 struct value *v;
3516
3517 if (valaddr == NULL)
3518 v = allocate_value_lazy (type);
3519 else
3520 v = value_from_contents (type, valaddr);
3521 VALUE_LVAL (v) = lval_memory;
3522 set_value_address (v, address);
3523 return v;
3524 }
3525
3526 /* Create a value of type TYPE whose contents come from VALADDR, if it
3527 is non-null, and whose memory address (in the inferior) is
3528 ADDRESS. The type of the created value may differ from the passed
3529 type TYPE. Make sure to retrieve values new type after this call. */
3530
3531 struct value *
3532 value_from_contents_and_address (struct type *type,
3533 const gdb_byte *valaddr,
3534 CORE_ADDR address)
3535 {
3536 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3537 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3538 struct value *v;
3539
3540 if (valaddr == NULL)
3541 v = allocate_value_lazy (resolved_type);
3542 else
3543 v = value_from_contents (resolved_type, valaddr);
3544 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3545 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3546 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3547 VALUE_LVAL (v) = lval_memory;
3548 set_value_address (v, address);
3549 return v;
3550 }
3551
3552 /* Create a value of type TYPE holding the contents CONTENTS.
3553 The new value is `not_lval'. */
3554
3555 struct value *
3556 value_from_contents (struct type *type, const gdb_byte *contents)
3557 {
3558 struct value *result;
3559
3560 result = allocate_value (type);
3561 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3562 return result;
3563 }
3564
3565 /* Extract a value from the history file. Input will be of the form
3566 $digits or $$digits. See block comment above 'write_dollar_variable'
3567 for details. */
3568
3569 struct value *
3570 value_from_history_ref (const char *h, const char **endp)
3571 {
3572 int index, len;
3573
3574 if (h[0] == '$')
3575 len = 1;
3576 else
3577 return NULL;
3578
3579 if (h[1] == '$')
3580 len = 2;
3581
3582 /* Find length of numeral string. */
3583 for (; isdigit (h[len]); len++)
3584 ;
3585
3586 /* Make sure numeral string is not part of an identifier. */
3587 if (h[len] == '_' || isalpha (h[len]))
3588 return NULL;
3589
3590 /* Now collect the index value. */
3591 if (h[1] == '$')
3592 {
3593 if (len == 2)
3594 {
3595 /* For some bizarre reason, "$$" is equivalent to "$$1",
3596 rather than to "$$0" as it ought to be! */
3597 index = -1;
3598 *endp += len;
3599 }
3600 else
3601 {
3602 char *local_end;
3603
3604 index = -strtol (&h[2], &local_end, 10);
3605 *endp = local_end;
3606 }
3607 }
3608 else
3609 {
3610 if (len == 1)
3611 {
3612 /* "$" is equivalent to "$0". */
3613 index = 0;
3614 *endp += len;
3615 }
3616 else
3617 {
3618 char *local_end;
3619
3620 index = strtol (&h[1], &local_end, 10);
3621 *endp = local_end;
3622 }
3623 }
3624
3625 return access_value_history (index);
3626 }
3627
3628 /* Get the component value (offset by OFFSET bytes) of a struct or
3629 union WHOLE. Component's type is TYPE. */
3630
3631 struct value *
3632 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3633 {
3634 struct value *v;
3635
3636 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3637 v = allocate_value_lazy (type);
3638 else
3639 {
3640 v = allocate_value (type);
3641 value_contents_copy (v, value_embedded_offset (v),
3642 whole, value_embedded_offset (whole) + offset,
3643 type_length_units (type));
3644 }
3645 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3646 set_value_component_location (v, whole);
3647
3648 return v;
3649 }
3650
3651 struct value *
3652 coerce_ref_if_computed (const struct value *arg)
3653 {
3654 const struct lval_funcs *funcs;
3655
3656 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3657 return NULL;
3658
3659 if (value_lval_const (arg) != lval_computed)
3660 return NULL;
3661
3662 funcs = value_computed_funcs (arg);
3663 if (funcs->coerce_ref == NULL)
3664 return NULL;
3665
3666 return funcs->coerce_ref (arg);
3667 }
3668
3669 /* Look at value.h for description. */
3670
3671 struct value *
3672 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3673 const struct type *original_type,
3674 const struct value *original_value)
3675 {
3676 /* Re-adjust type. */
3677 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3678
3679 /* Add embedding info. */
3680 set_value_enclosing_type (value, enc_type);
3681 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3682
3683 /* We may be pointing to an object of some derived type. */
3684 return value_full_object (value, NULL, 0, 0, 0);
3685 }
3686
3687 struct value *
3688 coerce_ref (struct value *arg)
3689 {
3690 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3691 struct value *retval;
3692 struct type *enc_type;
3693
3694 retval = coerce_ref_if_computed (arg);
3695 if (retval)
3696 return retval;
3697
3698 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3699 return arg;
3700
3701 enc_type = check_typedef (value_enclosing_type (arg));
3702 enc_type = TYPE_TARGET_TYPE (enc_type);
3703
3704 retval = value_at_lazy (enc_type,
3705 unpack_pointer (value_type (arg),
3706 value_contents (arg)));
3707 enc_type = value_type (retval);
3708 return readjust_indirect_value_type (retval, enc_type,
3709 value_type_arg_tmp, arg);
3710 }
3711
3712 struct value *
3713 coerce_array (struct value *arg)
3714 {
3715 struct type *type;
3716
3717 arg = coerce_ref (arg);
3718 type = check_typedef (value_type (arg));
3719
3720 switch (TYPE_CODE (type))
3721 {
3722 case TYPE_CODE_ARRAY:
3723 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3724 arg = value_coerce_array (arg);
3725 break;
3726 case TYPE_CODE_FUNC:
3727 arg = value_coerce_function (arg);
3728 break;
3729 }
3730 return arg;
3731 }
3732 \f
3733
3734 /* Return the return value convention that will be used for the
3735 specified type. */
3736
3737 enum return_value_convention
3738 struct_return_convention (struct gdbarch *gdbarch,
3739 struct value *function, struct type *value_type)
3740 {
3741 enum type_code code = TYPE_CODE (value_type);
3742
3743 if (code == TYPE_CODE_ERROR)
3744 error (_("Function return type unknown."));
3745
3746 /* Probe the architecture for the return-value convention. */
3747 return gdbarch_return_value (gdbarch, function, value_type,
3748 NULL, NULL, NULL);
3749 }
3750
3751 /* Return true if the function returning the specified type is using
3752 the convention of returning structures in memory (passing in the
3753 address as a hidden first parameter). */
3754
3755 int
3756 using_struct_return (struct gdbarch *gdbarch,
3757 struct value *function, struct type *value_type)
3758 {
3759 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3760 /* A void return value is never in memory. See also corresponding
3761 code in "print_return_value". */
3762 return 0;
3763
3764 return (struct_return_convention (gdbarch, function, value_type)
3765 != RETURN_VALUE_REGISTER_CONVENTION);
3766 }
3767
3768 /* Set the initialized field in a value struct. */
3769
3770 void
3771 set_value_initialized (struct value *val, int status)
3772 {
3773 val->initialized = status;
3774 }
3775
3776 /* Return the initialized field in a value struct. */
3777
3778 int
3779 value_initialized (const struct value *val)
3780 {
3781 return val->initialized;
3782 }
3783
3784 /* Load the actual content of a lazy value. Fetch the data from the
3785 user's process and clear the lazy flag to indicate that the data in
3786 the buffer is valid.
3787
3788 If the value is zero-length, we avoid calling read_memory, which
3789 would abort. We mark the value as fetched anyway -- all 0 bytes of
3790 it. */
3791
3792 void
3793 value_fetch_lazy (struct value *val)
3794 {
3795 gdb_assert (value_lazy (val));
3796 allocate_value_contents (val);
3797 /* A value is either lazy, or fully fetched. The
3798 availability/validity is only established as we try to fetch a
3799 value. */
3800 gdb_assert (VEC_empty (range_s, val->optimized_out));
3801 gdb_assert (VEC_empty (range_s, val->unavailable));
3802 if (value_bitsize (val))
3803 {
3804 /* To read a lazy bitfield, read the entire enclosing value. This
3805 prevents reading the same block of (possibly volatile) memory once
3806 per bitfield. It would be even better to read only the containing
3807 word, but we have no way to record that just specific bits of a
3808 value have been fetched. */
3809 struct type *type = check_typedef (value_type (val));
3810 struct value *parent = value_parent (val);
3811
3812 if (value_lazy (parent))
3813 value_fetch_lazy (parent);
3814
3815 unpack_value_bitfield (val,
3816 value_bitpos (val), value_bitsize (val),
3817 value_contents_for_printing (parent),
3818 value_offset (val), parent);
3819 }
3820 else if (VALUE_LVAL (val) == lval_memory)
3821 {
3822 CORE_ADDR addr = value_address (val);
3823 struct type *type = check_typedef (value_enclosing_type (val));
3824
3825 if (TYPE_LENGTH (type))
3826 read_value_memory (val, 0, value_stack (val),
3827 addr, value_contents_all_raw (val),
3828 type_length_units (type));
3829 }
3830 else if (VALUE_LVAL (val) == lval_register)
3831 {
3832 struct frame_info *next_frame;
3833 int regnum;
3834 struct type *type = check_typedef (value_type (val));
3835 struct value *new_val = val, *mark = value_mark ();
3836
3837 /* Offsets are not supported here; lazy register values must
3838 refer to the entire register. */
3839 gdb_assert (value_offset (val) == 0);
3840
3841 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3842 {
3843 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3844
3845 next_frame = frame_find_by_id (next_frame_id);
3846 regnum = VALUE_REGNUM (new_val);
3847
3848 gdb_assert (next_frame != NULL);
3849
3850 /* Convertible register routines are used for multi-register
3851 values and for interpretation in different types
3852 (e.g. float or int from a double register). Lazy
3853 register values should have the register's natural type,
3854 so they do not apply. */
3855 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3856 regnum, type));
3857
3858 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3859 Since a "->next" operation was performed when setting
3860 this field, we do not need to perform a "next" operation
3861 again when unwinding the register. That's why
3862 frame_unwind_register_value() is called here instead of
3863 get_frame_register_value(). */
3864 new_val = frame_unwind_register_value (next_frame, regnum);
3865
3866 /* If we get another lazy lval_register value, it means the
3867 register is found by reading it from NEXT_FRAME's next frame.
3868 frame_unwind_register_value should never return a value with
3869 the frame id pointing to NEXT_FRAME. If it does, it means we
3870 either have two consecutive frames with the same frame id
3871 in the frame chain, or some code is trying to unwind
3872 behind get_prev_frame's back (e.g., a frame unwind
3873 sniffer trying to unwind), bypassing its validations. In
3874 any case, it should always be an internal error to end up
3875 in this situation. */
3876 if (VALUE_LVAL (new_val) == lval_register
3877 && value_lazy (new_val)
3878 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3879 internal_error (__FILE__, __LINE__,
3880 _("infinite loop while fetching a register"));
3881 }
3882
3883 /* If it's still lazy (for instance, a saved register on the
3884 stack), fetch it. */
3885 if (value_lazy (new_val))
3886 value_fetch_lazy (new_val);
3887
3888 /* Copy the contents and the unavailability/optimized-out
3889 meta-data from NEW_VAL to VAL. */
3890 set_value_lazy (val, 0);
3891 value_contents_copy (val, value_embedded_offset (val),
3892 new_val, value_embedded_offset (new_val),
3893 type_length_units (type));
3894
3895 if (frame_debug)
3896 {
3897 struct gdbarch *gdbarch;
3898 struct frame_info *frame;
3899 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3900 so that the frame level will be shown correctly. */
3901 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3902 regnum = VALUE_REGNUM (val);
3903 gdbarch = get_frame_arch (frame);
3904
3905 fprintf_unfiltered (gdb_stdlog,
3906 "{ value_fetch_lazy "
3907 "(frame=%d,regnum=%d(%s),...) ",
3908 frame_relative_level (frame), regnum,
3909 user_reg_map_regnum_to_name (gdbarch, regnum));
3910
3911 fprintf_unfiltered (gdb_stdlog, "->");
3912 if (value_optimized_out (new_val))
3913 {
3914 fprintf_unfiltered (gdb_stdlog, " ");
3915 val_print_optimized_out (new_val, gdb_stdlog);
3916 }
3917 else
3918 {
3919 int i;
3920 const gdb_byte *buf = value_contents (new_val);
3921
3922 if (VALUE_LVAL (new_val) == lval_register)
3923 fprintf_unfiltered (gdb_stdlog, " register=%d",
3924 VALUE_REGNUM (new_val));
3925 else if (VALUE_LVAL (new_val) == lval_memory)
3926 fprintf_unfiltered (gdb_stdlog, " address=%s",
3927 paddress (gdbarch,
3928 value_address (new_val)));
3929 else
3930 fprintf_unfiltered (gdb_stdlog, " computed");
3931
3932 fprintf_unfiltered (gdb_stdlog, " bytes=");
3933 fprintf_unfiltered (gdb_stdlog, "[");
3934 for (i = 0; i < register_size (gdbarch, regnum); i++)
3935 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3936 fprintf_unfiltered (gdb_stdlog, "]");
3937 }
3938
3939 fprintf_unfiltered (gdb_stdlog, " }\n");
3940 }
3941
3942 /* Dispose of the intermediate values. This prevents
3943 watchpoints from trying to watch the saved frame pointer. */
3944 value_free_to_mark (mark);
3945 }
3946 else if (VALUE_LVAL (val) == lval_computed
3947 && value_computed_funcs (val)->read != NULL)
3948 value_computed_funcs (val)->read (val);
3949 else
3950 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3951
3952 set_value_lazy (val, 0);
3953 }
3954
3955 /* Implementation of the convenience function $_isvoid. */
3956
3957 static struct value *
3958 isvoid_internal_fn (struct gdbarch *gdbarch,
3959 const struct language_defn *language,
3960 void *cookie, int argc, struct value **argv)
3961 {
3962 int ret;
3963
3964 if (argc != 1)
3965 error (_("You must provide one argument for $_isvoid."));
3966
3967 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3968
3969 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3970 }
3971
3972 void
3973 _initialize_values (void)
3974 {
3975 add_cmd ("convenience", no_class, show_convenience, _("\
3976 Debugger convenience (\"$foo\") variables and functions.\n\
3977 Convenience variables are created when you assign them values;\n\
3978 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3979 \n\
3980 A few convenience variables are given values automatically:\n\
3981 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3982 \"$__\" holds the contents of the last address examined with \"x\"."
3983 #ifdef HAVE_PYTHON
3984 "\n\n\
3985 Convenience functions are defined via the Python API."
3986 #endif
3987 ), &showlist);
3988 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3989
3990 add_cmd ("values", no_set_class, show_values, _("\
3991 Elements of value history around item number IDX (or last ten)."),
3992 &showlist);
3993
3994 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3995 Initialize a convenience variable if necessary.\n\
3996 init-if-undefined VARIABLE = EXPRESSION\n\
3997 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3998 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3999 VARIABLE is already initialized."));
4000
4001 add_prefix_cmd ("function", no_class, function_command, _("\
4002 Placeholder command for showing help on convenience functions."),
4003 &functionlist, "function ", 0, &cmdlist);
4004
4005 add_internal_function ("_isvoid", _("\
4006 Check whether an expression is void.\n\
4007 Usage: $_isvoid (expression)\n\
4008 Return 1 if the expression is void, zero otherwise."),
4009 isvoid_internal_fn, NULL);
4010
4011 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4012 class_support, &max_value_size, _("\
4013 Set maximum sized value gdb will load from the inferior."), _("\
4014 Show maximum sized value gdb will load from the inferior."), _("\
4015 Use this to control the maximum size, in bytes, of a value that gdb\n\
4016 will load from the inferior. Setting this value to 'unlimited'\n\
4017 disables checking.\n\
4018 Setting this does not invalidate already allocated values, it only\n\
4019 prevents future values, larger than this size, from being allocated."),
4020 set_max_value_size,
4021 show_max_value_size,
4022 &setlist, &showlist);
4023 }
This page took 0.110362 seconds and 4 git commands to generate.