bc1239d05aa01b84dea2102f77009ae5b6c34425
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
210
211 /* If the value has been released. */
212 unsigned int released : 1;
213
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
328
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
333 };
334
335 int
336 value_bytes_available (const struct value *value, int offset, int length)
337 {
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341 }
342
343 int
344 value_entirely_available (struct value *value)
345 {
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354 }
355
356 int
357 value_entirely_unavailable (struct value *value)
358 {
359 /* We can only tell whether the whole value is available when we try
360 to read it. */
361 if (value->lazy)
362 value_fetch_lazy (value);
363
364 if (VEC_length (range_s, value->unavailable) == 1)
365 {
366 struct range *t = VEC_index (range_s, value->unavailable, 0);
367
368 if (t->offset == 0
369 && t->length == TYPE_LENGTH (value_enclosing_type (value)))
370 return 1;
371 }
372
373 return 0;
374 }
375
376 void
377 mark_value_bytes_unavailable (struct value *value, int offset, int length)
378 {
379 range_s newr;
380 int i;
381
382 /* Insert the range sorted. If there's overlap or the new range
383 would be contiguous with an existing range, merge. */
384
385 newr.offset = offset;
386 newr.length = length;
387
388 /* Do a binary search for the position the given range would be
389 inserted if we only considered the starting OFFSET of ranges.
390 Call that position I. Since we also have LENGTH to care for
391 (this is a range afterall), we need to check if the _previous_
392 range overlaps the I range. E.g., calling R the new range:
393
394 #1 - overlaps with previous
395
396 R
397 |-...-|
398 |---| |---| |------| ... |--|
399 0 1 2 N
400
401 I=1
402
403 In the case #1 above, the binary search would return `I=1',
404 meaning, this OFFSET should be inserted at position 1, and the
405 current position 1 should be pushed further (and become 2). But,
406 note that `0' overlaps with R, so we want to merge them.
407
408 A similar consideration needs to be taken if the new range would
409 be contiguous with the previous range:
410
411 #2 - contiguous with previous
412
413 R
414 |-...-|
415 |--| |---| |------| ... |--|
416 0 1 2 N
417
418 I=1
419
420 If there's no overlap with the previous range, as in:
421
422 #3 - not overlapping and not contiguous
423
424 R
425 |-...-|
426 |--| |---| |------| ... |--|
427 0 1 2 N
428
429 I=1
430
431 or if I is 0:
432
433 #4 - R is the range with lowest offset
434
435 R
436 |-...-|
437 |--| |---| |------| ... |--|
438 0 1 2 N
439
440 I=0
441
442 ... we just push the new range to I.
443
444 All the 4 cases above need to consider that the new range may
445 also overlap several of the ranges that follow, or that R may be
446 contiguous with the following range, and merge. E.g.,
447
448 #5 - overlapping following ranges
449
450 R
451 |------------------------|
452 |--| |---| |------| ... |--|
453 0 1 2 N
454
455 I=0
456
457 or:
458
459 R
460 |-------|
461 |--| |---| |------| ... |--|
462 0 1 2 N
463
464 I=1
465
466 */
467
468 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
469 if (i > 0)
470 {
471 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
472
473 if (ranges_overlap (bef->offset, bef->length, offset, length))
474 {
475 /* #1 */
476 ULONGEST l = min (bef->offset, offset);
477 ULONGEST h = max (bef->offset + bef->length, offset + length);
478
479 bef->offset = l;
480 bef->length = h - l;
481 i--;
482 }
483 else if (offset == bef->offset + bef->length)
484 {
485 /* #2 */
486 bef->length += length;
487 i--;
488 }
489 else
490 {
491 /* #3 */
492 VEC_safe_insert (range_s, value->unavailable, i, &newr);
493 }
494 }
495 else
496 {
497 /* #4 */
498 VEC_safe_insert (range_s, value->unavailable, i, &newr);
499 }
500
501 /* Check whether the ranges following the one we've just added or
502 touched can be folded in (#5 above). */
503 if (i + 1 < VEC_length (range_s, value->unavailable))
504 {
505 struct range *t;
506 struct range *r;
507 int removed = 0;
508 int next = i + 1;
509
510 /* Get the range we just touched. */
511 t = VEC_index (range_s, value->unavailable, i);
512 removed = 0;
513
514 i = next;
515 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
516 if (r->offset <= t->offset + t->length)
517 {
518 ULONGEST l, h;
519
520 l = min (t->offset, r->offset);
521 h = max (t->offset + t->length, r->offset + r->length);
522
523 t->offset = l;
524 t->length = h - l;
525
526 removed++;
527 }
528 else
529 {
530 /* If we couldn't merge this one, we won't be able to
531 merge following ones either, since the ranges are
532 always sorted by OFFSET. */
533 break;
534 }
535
536 if (removed != 0)
537 VEC_block_remove (range_s, value->unavailable, next, removed);
538 }
539 }
540
541 /* Find the first range in RANGES that overlaps the range defined by
542 OFFSET and LENGTH, starting at element POS in the RANGES vector,
543 Returns the index into RANGES where such overlapping range was
544 found, or -1 if none was found. */
545
546 static int
547 find_first_range_overlap (VEC(range_s) *ranges, int pos,
548 int offset, int length)
549 {
550 range_s *r;
551 int i;
552
553 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
554 if (ranges_overlap (r->offset, r->length, offset, length))
555 return i;
556
557 return -1;
558 }
559
560 int
561 value_available_contents_eq (const struct value *val1, int offset1,
562 const struct value *val2, int offset2,
563 int length)
564 {
565 int idx1 = 0, idx2 = 0;
566
567 /* See function description in value.h. */
568 gdb_assert (!val1->lazy && !val2->lazy);
569
570 while (length > 0)
571 {
572 range_s *r1, *r2;
573 ULONGEST l1, h1;
574 ULONGEST l2, h2;
575
576 idx1 = find_first_range_overlap (val1->unavailable, idx1,
577 offset1, length);
578 idx2 = find_first_range_overlap (val2->unavailable, idx2,
579 offset2, length);
580
581 /* The usual case is for both values to be completely available. */
582 if (idx1 == -1 && idx2 == -1)
583 return (memcmp (val1->contents + offset1,
584 val2->contents + offset2,
585 length) == 0);
586 /* The contents only match equal if the available set matches as
587 well. */
588 else if (idx1 == -1 || idx2 == -1)
589 return 0;
590
591 gdb_assert (idx1 != -1 && idx2 != -1);
592
593 r1 = VEC_index (range_s, val1->unavailable, idx1);
594 r2 = VEC_index (range_s, val2->unavailable, idx2);
595
596 /* Get the unavailable windows intersected by the incoming
597 ranges. The first and last ranges that overlap the argument
598 range may be wider than said incoming arguments ranges. */
599 l1 = max (offset1, r1->offset);
600 h1 = min (offset1 + length, r1->offset + r1->length);
601
602 l2 = max (offset2, r2->offset);
603 h2 = min (offset2 + length, r2->offset + r2->length);
604
605 /* Make them relative to the respective start offsets, so we can
606 compare them for equality. */
607 l1 -= offset1;
608 h1 -= offset1;
609
610 l2 -= offset2;
611 h2 -= offset2;
612
613 /* Different availability, no match. */
614 if (l1 != l2 || h1 != h2)
615 return 0;
616
617 /* Compare the _available_ contents. */
618 if (memcmp (val1->contents + offset1,
619 val2->contents + offset2,
620 l1) != 0)
621 return 0;
622
623 length -= h1;
624 offset1 += h1;
625 offset2 += h1;
626 }
627
628 return 1;
629 }
630
631 /* Prototypes for local functions. */
632
633 static void show_values (char *, int);
634
635 static void show_convenience (char *, int);
636
637
638 /* The value-history records all the values printed
639 by print commands during this session. Each chunk
640 records 60 consecutive values. The first chunk on
641 the chain records the most recent values.
642 The total number of values is in value_history_count. */
643
644 #define VALUE_HISTORY_CHUNK 60
645
646 struct value_history_chunk
647 {
648 struct value_history_chunk *next;
649 struct value *values[VALUE_HISTORY_CHUNK];
650 };
651
652 /* Chain of chunks now in use. */
653
654 static struct value_history_chunk *value_history_chain;
655
656 static int value_history_count; /* Abs number of last entry stored. */
657
658 \f
659 /* List of all value objects currently allocated
660 (except for those released by calls to release_value)
661 This is so they can be freed after each command. */
662
663 static struct value *all_values;
664
665 /* Allocate a lazy value for type TYPE. Its actual content is
666 "lazily" allocated too: the content field of the return value is
667 NULL; it will be allocated when it is fetched from the target. */
668
669 struct value *
670 allocate_value_lazy (struct type *type)
671 {
672 struct value *val;
673
674 /* Call check_typedef on our type to make sure that, if TYPE
675 is a TYPE_CODE_TYPEDEF, its length is set to the length
676 of the target type instead of zero. However, we do not
677 replace the typedef type by the target type, because we want
678 to keep the typedef in order to be able to set the VAL's type
679 description correctly. */
680 check_typedef (type);
681
682 val = (struct value *) xzalloc (sizeof (struct value));
683 val->contents = NULL;
684 val->next = all_values;
685 all_values = val;
686 val->type = type;
687 val->enclosing_type = type;
688 VALUE_LVAL (val) = not_lval;
689 val->location.address = 0;
690 VALUE_FRAME_ID (val) = null_frame_id;
691 val->offset = 0;
692 val->bitpos = 0;
693 val->bitsize = 0;
694 VALUE_REGNUM (val) = -1;
695 val->lazy = 1;
696 val->optimized_out = 0;
697 val->embedded_offset = 0;
698 val->pointed_to_offset = 0;
699 val->modifiable = 1;
700 val->initialized = 1; /* Default to initialized. */
701
702 /* Values start out on the all_values chain. */
703 val->reference_count = 1;
704
705 return val;
706 }
707
708 /* Allocate the contents of VAL if it has not been allocated yet. */
709
710 static void
711 allocate_value_contents (struct value *val)
712 {
713 if (!val->contents)
714 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
715 }
716
717 /* Allocate a value and its contents for type TYPE. */
718
719 struct value *
720 allocate_value (struct type *type)
721 {
722 struct value *val = allocate_value_lazy (type);
723
724 allocate_value_contents (val);
725 val->lazy = 0;
726 return val;
727 }
728
729 /* Allocate a value that has the correct length
730 for COUNT repetitions of type TYPE. */
731
732 struct value *
733 allocate_repeat_value (struct type *type, int count)
734 {
735 int low_bound = current_language->string_lower_bound; /* ??? */
736 /* FIXME-type-allocation: need a way to free this type when we are
737 done with it. */
738 struct type *array_type
739 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
740
741 return allocate_value (array_type);
742 }
743
744 struct value *
745 allocate_computed_value (struct type *type,
746 const struct lval_funcs *funcs,
747 void *closure)
748 {
749 struct value *v = allocate_value_lazy (type);
750
751 VALUE_LVAL (v) = lval_computed;
752 v->location.computed.funcs = funcs;
753 v->location.computed.closure = closure;
754
755 return v;
756 }
757
758 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
759
760 struct value *
761 allocate_optimized_out_value (struct type *type)
762 {
763 struct value *retval = allocate_value_lazy (type);
764
765 set_value_optimized_out (retval, 1);
766
767 return retval;
768 }
769
770 /* Accessor methods. */
771
772 struct value *
773 value_next (struct value *value)
774 {
775 return value->next;
776 }
777
778 struct type *
779 value_type (const struct value *value)
780 {
781 return value->type;
782 }
783 void
784 deprecated_set_value_type (struct value *value, struct type *type)
785 {
786 value->type = type;
787 }
788
789 int
790 value_offset (const struct value *value)
791 {
792 return value->offset;
793 }
794 void
795 set_value_offset (struct value *value, int offset)
796 {
797 value->offset = offset;
798 }
799
800 int
801 value_bitpos (const struct value *value)
802 {
803 return value->bitpos;
804 }
805 void
806 set_value_bitpos (struct value *value, int bit)
807 {
808 value->bitpos = bit;
809 }
810
811 int
812 value_bitsize (const struct value *value)
813 {
814 return value->bitsize;
815 }
816 void
817 set_value_bitsize (struct value *value, int bit)
818 {
819 value->bitsize = bit;
820 }
821
822 struct value *
823 value_parent (struct value *value)
824 {
825 return value->parent;
826 }
827
828 /* See value.h. */
829
830 void
831 set_value_parent (struct value *value, struct value *parent)
832 {
833 struct value *old = value->parent;
834
835 value->parent = parent;
836 if (parent != NULL)
837 value_incref (parent);
838 value_free (old);
839 }
840
841 gdb_byte *
842 value_contents_raw (struct value *value)
843 {
844 allocate_value_contents (value);
845 return value->contents + value->embedded_offset;
846 }
847
848 gdb_byte *
849 value_contents_all_raw (struct value *value)
850 {
851 allocate_value_contents (value);
852 return value->contents;
853 }
854
855 struct type *
856 value_enclosing_type (struct value *value)
857 {
858 return value->enclosing_type;
859 }
860
861 /* Look at value.h for description. */
862
863 struct type *
864 value_actual_type (struct value *value, int resolve_simple_types,
865 int *real_type_found)
866 {
867 struct value_print_options opts;
868 struct type *result;
869
870 get_user_print_options (&opts);
871
872 if (real_type_found)
873 *real_type_found = 0;
874 result = value_type (value);
875 if (opts.objectprint)
876 {
877 /* If result's target type is TYPE_CODE_STRUCT, proceed to
878 fetch its rtti type. */
879 if ((TYPE_CODE (result) == TYPE_CODE_PTR
880 || TYPE_CODE (result) == TYPE_CODE_REF)
881 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
882 == TYPE_CODE_STRUCT)
883 {
884 struct type *real_type;
885
886 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
887 if (real_type)
888 {
889 if (real_type_found)
890 *real_type_found = 1;
891 result = real_type;
892 }
893 }
894 else if (resolve_simple_types)
895 {
896 if (real_type_found)
897 *real_type_found = 1;
898 result = value_enclosing_type (value);
899 }
900 }
901
902 return result;
903 }
904
905 static void
906 require_not_optimized_out (const struct value *value)
907 {
908 if (value->optimized_out)
909 error (_("value has been optimized out"));
910 }
911
912 static void
913 require_available (const struct value *value)
914 {
915 if (!VEC_empty (range_s, value->unavailable))
916 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
917 }
918
919 const gdb_byte *
920 value_contents_for_printing (struct value *value)
921 {
922 if (value->lazy)
923 value_fetch_lazy (value);
924 return value->contents;
925 }
926
927 const gdb_byte *
928 value_contents_for_printing_const (const struct value *value)
929 {
930 gdb_assert (!value->lazy);
931 return value->contents;
932 }
933
934 const gdb_byte *
935 value_contents_all (struct value *value)
936 {
937 const gdb_byte *result = value_contents_for_printing (value);
938 require_not_optimized_out (value);
939 require_available (value);
940 return result;
941 }
942
943 /* Copy LENGTH bytes of SRC value's (all) contents
944 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
945 contents, starting at DST_OFFSET. If unavailable contents are
946 being copied from SRC, the corresponding DST contents are marked
947 unavailable accordingly. Neither DST nor SRC may be lazy
948 values.
949
950 It is assumed the contents of DST in the [DST_OFFSET,
951 DST_OFFSET+LENGTH) range are wholly available. */
952
953 void
954 value_contents_copy_raw (struct value *dst, int dst_offset,
955 struct value *src, int src_offset, int length)
956 {
957 range_s *r;
958 int i;
959
960 /* A lazy DST would make that this copy operation useless, since as
961 soon as DST's contents were un-lazied (by a later value_contents
962 call, say), the contents would be overwritten. A lazy SRC would
963 mean we'd be copying garbage. */
964 gdb_assert (!dst->lazy && !src->lazy);
965
966 /* The overwritten DST range gets unavailability ORed in, not
967 replaced. Make sure to remember to implement replacing if it
968 turns out actually necessary. */
969 gdb_assert (value_bytes_available (dst, dst_offset, length));
970
971 /* Copy the data. */
972 memcpy (value_contents_all_raw (dst) + dst_offset,
973 value_contents_all_raw (src) + src_offset,
974 length);
975
976 /* Copy the meta-data, adjusted. */
977 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
978 {
979 ULONGEST h, l;
980
981 l = max (r->offset, src_offset);
982 h = min (r->offset + r->length, src_offset + length);
983
984 if (l < h)
985 mark_value_bytes_unavailable (dst,
986 dst_offset + (l - src_offset),
987 h - l);
988 }
989 }
990
991 /* Copy LENGTH bytes of SRC value's (all) contents
992 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
993 (all) contents, starting at DST_OFFSET. If unavailable contents
994 are being copied from SRC, the corresponding DST contents are
995 marked unavailable accordingly. DST must not be lazy. If SRC is
996 lazy, it will be fetched now. If SRC is not valid (is optimized
997 out), an error is thrown.
998
999 It is assumed the contents of DST in the [DST_OFFSET,
1000 DST_OFFSET+LENGTH) range are wholly available. */
1001
1002 void
1003 value_contents_copy (struct value *dst, int dst_offset,
1004 struct value *src, int src_offset, int length)
1005 {
1006 require_not_optimized_out (src);
1007
1008 if (src->lazy)
1009 value_fetch_lazy (src);
1010
1011 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1012 }
1013
1014 int
1015 value_lazy (struct value *value)
1016 {
1017 return value->lazy;
1018 }
1019
1020 void
1021 set_value_lazy (struct value *value, int val)
1022 {
1023 value->lazy = val;
1024 }
1025
1026 int
1027 value_stack (struct value *value)
1028 {
1029 return value->stack;
1030 }
1031
1032 void
1033 set_value_stack (struct value *value, int val)
1034 {
1035 value->stack = val;
1036 }
1037
1038 const gdb_byte *
1039 value_contents (struct value *value)
1040 {
1041 const gdb_byte *result = value_contents_writeable (value);
1042 require_not_optimized_out (value);
1043 require_available (value);
1044 return result;
1045 }
1046
1047 gdb_byte *
1048 value_contents_writeable (struct value *value)
1049 {
1050 if (value->lazy)
1051 value_fetch_lazy (value);
1052 return value_contents_raw (value);
1053 }
1054
1055 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1056 this function is different from value_equal; in C the operator ==
1057 can return 0 even if the two values being compared are equal. */
1058
1059 int
1060 value_contents_equal (struct value *val1, struct value *val2)
1061 {
1062 struct type *type1;
1063 struct type *type2;
1064
1065 type1 = check_typedef (value_type (val1));
1066 type2 = check_typedef (value_type (val2));
1067 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1068 return 0;
1069
1070 return (memcmp (value_contents (val1), value_contents (val2),
1071 TYPE_LENGTH (type1)) == 0);
1072 }
1073
1074 int
1075 value_optimized_out (struct value *value)
1076 {
1077 /* We can only know if a value is optimized out once we have tried to
1078 fetch it. */
1079 if (!value->optimized_out && value->lazy)
1080 value_fetch_lazy (value);
1081
1082 return value->optimized_out;
1083 }
1084
1085 int
1086 value_optimized_out_const (const struct value *value)
1087 {
1088 return value->optimized_out;
1089 }
1090
1091 void
1092 set_value_optimized_out (struct value *value, int val)
1093 {
1094 value->optimized_out = val;
1095 }
1096
1097 int
1098 value_entirely_optimized_out (const struct value *value)
1099 {
1100 if (!value->optimized_out)
1101 return 0;
1102 if (value->lval != lval_computed
1103 || !value->location.computed.funcs->check_any_valid)
1104 return 1;
1105 return !value->location.computed.funcs->check_any_valid (value);
1106 }
1107
1108 int
1109 value_bits_valid (const struct value *value, int offset, int length)
1110 {
1111 if (!value->optimized_out)
1112 return 1;
1113 if (value->lval != lval_computed
1114 || !value->location.computed.funcs->check_validity)
1115 return 0;
1116 return value->location.computed.funcs->check_validity (value, offset,
1117 length);
1118 }
1119
1120 int
1121 value_bits_synthetic_pointer (const struct value *value,
1122 int offset, int length)
1123 {
1124 if (value->lval != lval_computed
1125 || !value->location.computed.funcs->check_synthetic_pointer)
1126 return 0;
1127 return value->location.computed.funcs->check_synthetic_pointer (value,
1128 offset,
1129 length);
1130 }
1131
1132 int
1133 value_embedded_offset (struct value *value)
1134 {
1135 return value->embedded_offset;
1136 }
1137
1138 void
1139 set_value_embedded_offset (struct value *value, int val)
1140 {
1141 value->embedded_offset = val;
1142 }
1143
1144 int
1145 value_pointed_to_offset (struct value *value)
1146 {
1147 return value->pointed_to_offset;
1148 }
1149
1150 void
1151 set_value_pointed_to_offset (struct value *value, int val)
1152 {
1153 value->pointed_to_offset = val;
1154 }
1155
1156 const struct lval_funcs *
1157 value_computed_funcs (const struct value *v)
1158 {
1159 gdb_assert (value_lval_const (v) == lval_computed);
1160
1161 return v->location.computed.funcs;
1162 }
1163
1164 void *
1165 value_computed_closure (const struct value *v)
1166 {
1167 gdb_assert (v->lval == lval_computed);
1168
1169 return v->location.computed.closure;
1170 }
1171
1172 enum lval_type *
1173 deprecated_value_lval_hack (struct value *value)
1174 {
1175 return &value->lval;
1176 }
1177
1178 enum lval_type
1179 value_lval_const (const struct value *value)
1180 {
1181 return value->lval;
1182 }
1183
1184 CORE_ADDR
1185 value_address (const struct value *value)
1186 {
1187 if (value->lval == lval_internalvar
1188 || value->lval == lval_internalvar_component)
1189 return 0;
1190 if (value->parent != NULL)
1191 return value_address (value->parent) + value->offset;
1192 else
1193 return value->location.address + value->offset;
1194 }
1195
1196 CORE_ADDR
1197 value_raw_address (struct value *value)
1198 {
1199 if (value->lval == lval_internalvar
1200 || value->lval == lval_internalvar_component)
1201 return 0;
1202 return value->location.address;
1203 }
1204
1205 void
1206 set_value_address (struct value *value, CORE_ADDR addr)
1207 {
1208 gdb_assert (value->lval != lval_internalvar
1209 && value->lval != lval_internalvar_component);
1210 value->location.address = addr;
1211 }
1212
1213 struct internalvar **
1214 deprecated_value_internalvar_hack (struct value *value)
1215 {
1216 return &value->location.internalvar;
1217 }
1218
1219 struct frame_id *
1220 deprecated_value_frame_id_hack (struct value *value)
1221 {
1222 return &value->frame_id;
1223 }
1224
1225 short *
1226 deprecated_value_regnum_hack (struct value *value)
1227 {
1228 return &value->regnum;
1229 }
1230
1231 int
1232 deprecated_value_modifiable (struct value *value)
1233 {
1234 return value->modifiable;
1235 }
1236 \f
1237 /* Return a mark in the value chain. All values allocated after the
1238 mark is obtained (except for those released) are subject to being freed
1239 if a subsequent value_free_to_mark is passed the mark. */
1240 struct value *
1241 value_mark (void)
1242 {
1243 return all_values;
1244 }
1245
1246 /* Take a reference to VAL. VAL will not be deallocated until all
1247 references are released. */
1248
1249 void
1250 value_incref (struct value *val)
1251 {
1252 val->reference_count++;
1253 }
1254
1255 /* Release a reference to VAL, which was acquired with value_incref.
1256 This function is also called to deallocate values from the value
1257 chain. */
1258
1259 void
1260 value_free (struct value *val)
1261 {
1262 if (val)
1263 {
1264 gdb_assert (val->reference_count > 0);
1265 val->reference_count--;
1266 if (val->reference_count > 0)
1267 return;
1268
1269 /* If there's an associated parent value, drop our reference to
1270 it. */
1271 if (val->parent != NULL)
1272 value_free (val->parent);
1273
1274 if (VALUE_LVAL (val) == lval_computed)
1275 {
1276 const struct lval_funcs *funcs = val->location.computed.funcs;
1277
1278 if (funcs->free_closure)
1279 funcs->free_closure (val);
1280 }
1281
1282 xfree (val->contents);
1283 VEC_free (range_s, val->unavailable);
1284 }
1285 xfree (val);
1286 }
1287
1288 /* Free all values allocated since MARK was obtained by value_mark
1289 (except for those released). */
1290 void
1291 value_free_to_mark (struct value *mark)
1292 {
1293 struct value *val;
1294 struct value *next;
1295
1296 for (val = all_values; val && val != mark; val = next)
1297 {
1298 next = val->next;
1299 val->released = 1;
1300 value_free (val);
1301 }
1302 all_values = val;
1303 }
1304
1305 /* Free all the values that have been allocated (except for those released).
1306 Call after each command, successful or not.
1307 In practice this is called before each command, which is sufficient. */
1308
1309 void
1310 free_all_values (void)
1311 {
1312 struct value *val;
1313 struct value *next;
1314
1315 for (val = all_values; val; val = next)
1316 {
1317 next = val->next;
1318 val->released = 1;
1319 value_free (val);
1320 }
1321
1322 all_values = 0;
1323 }
1324
1325 /* Frees all the elements in a chain of values. */
1326
1327 void
1328 free_value_chain (struct value *v)
1329 {
1330 struct value *next;
1331
1332 for (; v; v = next)
1333 {
1334 next = value_next (v);
1335 value_free (v);
1336 }
1337 }
1338
1339 /* Remove VAL from the chain all_values
1340 so it will not be freed automatically. */
1341
1342 void
1343 release_value (struct value *val)
1344 {
1345 struct value *v;
1346
1347 if (all_values == val)
1348 {
1349 all_values = val->next;
1350 val->next = NULL;
1351 val->released = 1;
1352 return;
1353 }
1354
1355 for (v = all_values; v; v = v->next)
1356 {
1357 if (v->next == val)
1358 {
1359 v->next = val->next;
1360 val->next = NULL;
1361 val->released = 1;
1362 break;
1363 }
1364 }
1365 }
1366
1367 /* If the value is not already released, release it.
1368 If the value is already released, increment its reference count.
1369 That is, this function ensures that the value is released from the
1370 value chain and that the caller owns a reference to it. */
1371
1372 void
1373 release_value_or_incref (struct value *val)
1374 {
1375 if (val->released)
1376 value_incref (val);
1377 else
1378 release_value (val);
1379 }
1380
1381 /* Release all values up to mark */
1382 struct value *
1383 value_release_to_mark (struct value *mark)
1384 {
1385 struct value *val;
1386 struct value *next;
1387
1388 for (val = next = all_values; next; next = next->next)
1389 {
1390 if (next->next == mark)
1391 {
1392 all_values = next->next;
1393 next->next = NULL;
1394 return val;
1395 }
1396 next->released = 1;
1397 }
1398 all_values = 0;
1399 return val;
1400 }
1401
1402 /* Return a copy of the value ARG.
1403 It contains the same contents, for same memory address,
1404 but it's a different block of storage. */
1405
1406 struct value *
1407 value_copy (struct value *arg)
1408 {
1409 struct type *encl_type = value_enclosing_type (arg);
1410 struct value *val;
1411
1412 if (value_lazy (arg))
1413 val = allocate_value_lazy (encl_type);
1414 else
1415 val = allocate_value (encl_type);
1416 val->type = arg->type;
1417 VALUE_LVAL (val) = VALUE_LVAL (arg);
1418 val->location = arg->location;
1419 val->offset = arg->offset;
1420 val->bitpos = arg->bitpos;
1421 val->bitsize = arg->bitsize;
1422 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1423 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1424 val->lazy = arg->lazy;
1425 val->optimized_out = arg->optimized_out;
1426 val->embedded_offset = value_embedded_offset (arg);
1427 val->pointed_to_offset = arg->pointed_to_offset;
1428 val->modifiable = arg->modifiable;
1429 if (!value_lazy (val))
1430 {
1431 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1432 TYPE_LENGTH (value_enclosing_type (arg)));
1433
1434 }
1435 val->unavailable = VEC_copy (range_s, arg->unavailable);
1436 set_value_parent (val, arg->parent);
1437 if (VALUE_LVAL (val) == lval_computed)
1438 {
1439 const struct lval_funcs *funcs = val->location.computed.funcs;
1440
1441 if (funcs->copy_closure)
1442 val->location.computed.closure = funcs->copy_closure (val);
1443 }
1444 return val;
1445 }
1446
1447 /* Return a version of ARG that is non-lvalue. */
1448
1449 struct value *
1450 value_non_lval (struct value *arg)
1451 {
1452 if (VALUE_LVAL (arg) != not_lval)
1453 {
1454 struct type *enc_type = value_enclosing_type (arg);
1455 struct value *val = allocate_value (enc_type);
1456
1457 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1458 TYPE_LENGTH (enc_type));
1459 val->type = arg->type;
1460 set_value_embedded_offset (val, value_embedded_offset (arg));
1461 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1462 return val;
1463 }
1464 return arg;
1465 }
1466
1467 void
1468 set_value_component_location (struct value *component,
1469 const struct value *whole)
1470 {
1471 if (whole->lval == lval_internalvar)
1472 VALUE_LVAL (component) = lval_internalvar_component;
1473 else
1474 VALUE_LVAL (component) = whole->lval;
1475
1476 component->location = whole->location;
1477 if (whole->lval == lval_computed)
1478 {
1479 const struct lval_funcs *funcs = whole->location.computed.funcs;
1480
1481 if (funcs->copy_closure)
1482 component->location.computed.closure = funcs->copy_closure (whole);
1483 }
1484 }
1485
1486 \f
1487 /* Access to the value history. */
1488
1489 /* Record a new value in the value history.
1490 Returns the absolute history index of the entry.
1491 Result of -1 indicates the value was not saved; otherwise it is the
1492 value history index of this new item. */
1493
1494 int
1495 record_latest_value (struct value *val)
1496 {
1497 int i;
1498
1499 /* We don't want this value to have anything to do with the inferior anymore.
1500 In particular, "set $1 = 50" should not affect the variable from which
1501 the value was taken, and fast watchpoints should be able to assume that
1502 a value on the value history never changes. */
1503 if (value_lazy (val))
1504 value_fetch_lazy (val);
1505 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1506 from. This is a bit dubious, because then *&$1 does not just return $1
1507 but the current contents of that location. c'est la vie... */
1508 val->modifiable = 0;
1509 release_value (val);
1510
1511 /* Here we treat value_history_count as origin-zero
1512 and applying to the value being stored now. */
1513
1514 i = value_history_count % VALUE_HISTORY_CHUNK;
1515 if (i == 0)
1516 {
1517 struct value_history_chunk *new
1518 = (struct value_history_chunk *)
1519
1520 xmalloc (sizeof (struct value_history_chunk));
1521 memset (new->values, 0, sizeof new->values);
1522 new->next = value_history_chain;
1523 value_history_chain = new;
1524 }
1525
1526 value_history_chain->values[i] = val;
1527
1528 /* Now we regard value_history_count as origin-one
1529 and applying to the value just stored. */
1530
1531 return ++value_history_count;
1532 }
1533
1534 /* Return a copy of the value in the history with sequence number NUM. */
1535
1536 struct value *
1537 access_value_history (int num)
1538 {
1539 struct value_history_chunk *chunk;
1540 int i;
1541 int absnum = num;
1542
1543 if (absnum <= 0)
1544 absnum += value_history_count;
1545
1546 if (absnum <= 0)
1547 {
1548 if (num == 0)
1549 error (_("The history is empty."));
1550 else if (num == 1)
1551 error (_("There is only one value in the history."));
1552 else
1553 error (_("History does not go back to $$%d."), -num);
1554 }
1555 if (absnum > value_history_count)
1556 error (_("History has not yet reached $%d."), absnum);
1557
1558 absnum--;
1559
1560 /* Now absnum is always absolute and origin zero. */
1561
1562 chunk = value_history_chain;
1563 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1564 - absnum / VALUE_HISTORY_CHUNK;
1565 i > 0; i--)
1566 chunk = chunk->next;
1567
1568 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1569 }
1570
1571 static void
1572 show_values (char *num_exp, int from_tty)
1573 {
1574 int i;
1575 struct value *val;
1576 static int num = 1;
1577
1578 if (num_exp)
1579 {
1580 /* "show values +" should print from the stored position.
1581 "show values <exp>" should print around value number <exp>. */
1582 if (num_exp[0] != '+' || num_exp[1] != '\0')
1583 num = parse_and_eval_long (num_exp) - 5;
1584 }
1585 else
1586 {
1587 /* "show values" means print the last 10 values. */
1588 num = value_history_count - 9;
1589 }
1590
1591 if (num <= 0)
1592 num = 1;
1593
1594 for (i = num; i < num + 10 && i <= value_history_count; i++)
1595 {
1596 struct value_print_options opts;
1597
1598 val = access_value_history (i);
1599 printf_filtered (("$%d = "), i);
1600 get_user_print_options (&opts);
1601 value_print (val, gdb_stdout, &opts);
1602 printf_filtered (("\n"));
1603 }
1604
1605 /* The next "show values +" should start after what we just printed. */
1606 num += 10;
1607
1608 /* Hitting just return after this command should do the same thing as
1609 "show values +". If num_exp is null, this is unnecessary, since
1610 "show values +" is not useful after "show values". */
1611 if (from_tty && num_exp)
1612 {
1613 num_exp[0] = '+';
1614 num_exp[1] = '\0';
1615 }
1616 }
1617 \f
1618 /* Internal variables. These are variables within the debugger
1619 that hold values assigned by debugger commands.
1620 The user refers to them with a '$' prefix
1621 that does not appear in the variable names stored internally. */
1622
1623 struct internalvar
1624 {
1625 struct internalvar *next;
1626 char *name;
1627
1628 /* We support various different kinds of content of an internal variable.
1629 enum internalvar_kind specifies the kind, and union internalvar_data
1630 provides the data associated with this particular kind. */
1631
1632 enum internalvar_kind
1633 {
1634 /* The internal variable is empty. */
1635 INTERNALVAR_VOID,
1636
1637 /* The value of the internal variable is provided directly as
1638 a GDB value object. */
1639 INTERNALVAR_VALUE,
1640
1641 /* A fresh value is computed via a call-back routine on every
1642 access to the internal variable. */
1643 INTERNALVAR_MAKE_VALUE,
1644
1645 /* The internal variable holds a GDB internal convenience function. */
1646 INTERNALVAR_FUNCTION,
1647
1648 /* The variable holds an integer value. */
1649 INTERNALVAR_INTEGER,
1650
1651 /* The variable holds a GDB-provided string. */
1652 INTERNALVAR_STRING,
1653
1654 } kind;
1655
1656 union internalvar_data
1657 {
1658 /* A value object used with INTERNALVAR_VALUE. */
1659 struct value *value;
1660
1661 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1662 struct
1663 {
1664 /* The functions to call. */
1665 const struct internalvar_funcs *functions;
1666
1667 /* The function's user-data. */
1668 void *data;
1669 } make_value;
1670
1671 /* The internal function used with INTERNALVAR_FUNCTION. */
1672 struct
1673 {
1674 struct internal_function *function;
1675 /* True if this is the canonical name for the function. */
1676 int canonical;
1677 } fn;
1678
1679 /* An integer value used with INTERNALVAR_INTEGER. */
1680 struct
1681 {
1682 /* If type is non-NULL, it will be used as the type to generate
1683 a value for this internal variable. If type is NULL, a default
1684 integer type for the architecture is used. */
1685 struct type *type;
1686 LONGEST val;
1687 } integer;
1688
1689 /* A string value used with INTERNALVAR_STRING. */
1690 char *string;
1691 } u;
1692 };
1693
1694 static struct internalvar *internalvars;
1695
1696 /* If the variable does not already exist create it and give it the
1697 value given. If no value is given then the default is zero. */
1698 static void
1699 init_if_undefined_command (char* args, int from_tty)
1700 {
1701 struct internalvar* intvar;
1702
1703 /* Parse the expression - this is taken from set_command(). */
1704 struct expression *expr = parse_expression (args);
1705 register struct cleanup *old_chain =
1706 make_cleanup (free_current_contents, &expr);
1707
1708 /* Validate the expression.
1709 Was the expression an assignment?
1710 Or even an expression at all? */
1711 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1712 error (_("Init-if-undefined requires an assignment expression."));
1713
1714 /* Extract the variable from the parsed expression.
1715 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1716 if (expr->elts[1].opcode != OP_INTERNALVAR)
1717 error (_("The first parameter to init-if-undefined "
1718 "should be a GDB variable."));
1719 intvar = expr->elts[2].internalvar;
1720
1721 /* Only evaluate the expression if the lvalue is void.
1722 This may still fail if the expresssion is invalid. */
1723 if (intvar->kind == INTERNALVAR_VOID)
1724 evaluate_expression (expr);
1725
1726 do_cleanups (old_chain);
1727 }
1728
1729
1730 /* Look up an internal variable with name NAME. NAME should not
1731 normally include a dollar sign.
1732
1733 If the specified internal variable does not exist,
1734 the return value is NULL. */
1735
1736 struct internalvar *
1737 lookup_only_internalvar (const char *name)
1738 {
1739 struct internalvar *var;
1740
1741 for (var = internalvars; var; var = var->next)
1742 if (strcmp (var->name, name) == 0)
1743 return var;
1744
1745 return NULL;
1746 }
1747
1748 /* Complete NAME by comparing it to the names of internal variables.
1749 Returns a vector of newly allocated strings, or NULL if no matches
1750 were found. */
1751
1752 VEC (char_ptr) *
1753 complete_internalvar (const char *name)
1754 {
1755 VEC (char_ptr) *result = NULL;
1756 struct internalvar *var;
1757 int len;
1758
1759 len = strlen (name);
1760
1761 for (var = internalvars; var; var = var->next)
1762 if (strncmp (var->name, name, len) == 0)
1763 {
1764 char *r = xstrdup (var->name);
1765
1766 VEC_safe_push (char_ptr, result, r);
1767 }
1768
1769 return result;
1770 }
1771
1772 /* Create an internal variable with name NAME and with a void value.
1773 NAME should not normally include a dollar sign. */
1774
1775 struct internalvar *
1776 create_internalvar (const char *name)
1777 {
1778 struct internalvar *var;
1779
1780 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1781 var->name = concat (name, (char *)NULL);
1782 var->kind = INTERNALVAR_VOID;
1783 var->next = internalvars;
1784 internalvars = var;
1785 return var;
1786 }
1787
1788 /* Create an internal variable with name NAME and register FUN as the
1789 function that value_of_internalvar uses to create a value whenever
1790 this variable is referenced. NAME should not normally include a
1791 dollar sign. DATA is passed uninterpreted to FUN when it is
1792 called. CLEANUP, if not NULL, is called when the internal variable
1793 is destroyed. It is passed DATA as its only argument. */
1794
1795 struct internalvar *
1796 create_internalvar_type_lazy (const char *name,
1797 const struct internalvar_funcs *funcs,
1798 void *data)
1799 {
1800 struct internalvar *var = create_internalvar (name);
1801
1802 var->kind = INTERNALVAR_MAKE_VALUE;
1803 var->u.make_value.functions = funcs;
1804 var->u.make_value.data = data;
1805 return var;
1806 }
1807
1808 /* See documentation in value.h. */
1809
1810 int
1811 compile_internalvar_to_ax (struct internalvar *var,
1812 struct agent_expr *expr,
1813 struct axs_value *value)
1814 {
1815 if (var->kind != INTERNALVAR_MAKE_VALUE
1816 || var->u.make_value.functions->compile_to_ax == NULL)
1817 return 0;
1818
1819 var->u.make_value.functions->compile_to_ax (var, expr, value,
1820 var->u.make_value.data);
1821 return 1;
1822 }
1823
1824 /* Look up an internal variable with name NAME. NAME should not
1825 normally include a dollar sign.
1826
1827 If the specified internal variable does not exist,
1828 one is created, with a void value. */
1829
1830 struct internalvar *
1831 lookup_internalvar (const char *name)
1832 {
1833 struct internalvar *var;
1834
1835 var = lookup_only_internalvar (name);
1836 if (var)
1837 return var;
1838
1839 return create_internalvar (name);
1840 }
1841
1842 /* Return current value of internal variable VAR. For variables that
1843 are not inherently typed, use a value type appropriate for GDBARCH. */
1844
1845 struct value *
1846 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1847 {
1848 struct value *val;
1849 struct trace_state_variable *tsv;
1850
1851 /* If there is a trace state variable of the same name, assume that
1852 is what we really want to see. */
1853 tsv = find_trace_state_variable (var->name);
1854 if (tsv)
1855 {
1856 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1857 &(tsv->value));
1858 if (tsv->value_known)
1859 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1860 tsv->value);
1861 else
1862 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1863 return val;
1864 }
1865
1866 switch (var->kind)
1867 {
1868 case INTERNALVAR_VOID:
1869 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1870 break;
1871
1872 case INTERNALVAR_FUNCTION:
1873 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1874 break;
1875
1876 case INTERNALVAR_INTEGER:
1877 if (!var->u.integer.type)
1878 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1879 var->u.integer.val);
1880 else
1881 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1882 break;
1883
1884 case INTERNALVAR_STRING:
1885 val = value_cstring (var->u.string, strlen (var->u.string),
1886 builtin_type (gdbarch)->builtin_char);
1887 break;
1888
1889 case INTERNALVAR_VALUE:
1890 val = value_copy (var->u.value);
1891 if (value_lazy (val))
1892 value_fetch_lazy (val);
1893 break;
1894
1895 case INTERNALVAR_MAKE_VALUE:
1896 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1897 var->u.make_value.data);
1898 break;
1899
1900 default:
1901 internal_error (__FILE__, __LINE__, _("bad kind"));
1902 }
1903
1904 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1905 on this value go back to affect the original internal variable.
1906
1907 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1908 no underlying modifyable state in the internal variable.
1909
1910 Likewise, if the variable's value is a computed lvalue, we want
1911 references to it to produce another computed lvalue, where
1912 references and assignments actually operate through the
1913 computed value's functions.
1914
1915 This means that internal variables with computed values
1916 behave a little differently from other internal variables:
1917 assignments to them don't just replace the previous value
1918 altogether. At the moment, this seems like the behavior we
1919 want. */
1920
1921 if (var->kind != INTERNALVAR_MAKE_VALUE
1922 && val->lval != lval_computed)
1923 {
1924 VALUE_LVAL (val) = lval_internalvar;
1925 VALUE_INTERNALVAR (val) = var;
1926 }
1927
1928 return val;
1929 }
1930
1931 int
1932 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1933 {
1934 if (var->kind == INTERNALVAR_INTEGER)
1935 {
1936 *result = var->u.integer.val;
1937 return 1;
1938 }
1939
1940 if (var->kind == INTERNALVAR_VALUE)
1941 {
1942 struct type *type = check_typedef (value_type (var->u.value));
1943
1944 if (TYPE_CODE (type) == TYPE_CODE_INT)
1945 {
1946 *result = value_as_long (var->u.value);
1947 return 1;
1948 }
1949 }
1950
1951 return 0;
1952 }
1953
1954 static int
1955 get_internalvar_function (struct internalvar *var,
1956 struct internal_function **result)
1957 {
1958 switch (var->kind)
1959 {
1960 case INTERNALVAR_FUNCTION:
1961 *result = var->u.fn.function;
1962 return 1;
1963
1964 default:
1965 return 0;
1966 }
1967 }
1968
1969 void
1970 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1971 int bitsize, struct value *newval)
1972 {
1973 gdb_byte *addr;
1974
1975 switch (var->kind)
1976 {
1977 case INTERNALVAR_VALUE:
1978 addr = value_contents_writeable (var->u.value);
1979
1980 if (bitsize)
1981 modify_field (value_type (var->u.value), addr + offset,
1982 value_as_long (newval), bitpos, bitsize);
1983 else
1984 memcpy (addr + offset, value_contents (newval),
1985 TYPE_LENGTH (value_type (newval)));
1986 break;
1987
1988 default:
1989 /* We can never get a component of any other kind. */
1990 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1991 }
1992 }
1993
1994 void
1995 set_internalvar (struct internalvar *var, struct value *val)
1996 {
1997 enum internalvar_kind new_kind;
1998 union internalvar_data new_data = { 0 };
1999
2000 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2001 error (_("Cannot overwrite convenience function %s"), var->name);
2002
2003 /* Prepare new contents. */
2004 switch (TYPE_CODE (check_typedef (value_type (val))))
2005 {
2006 case TYPE_CODE_VOID:
2007 new_kind = INTERNALVAR_VOID;
2008 break;
2009
2010 case TYPE_CODE_INTERNAL_FUNCTION:
2011 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2012 new_kind = INTERNALVAR_FUNCTION;
2013 get_internalvar_function (VALUE_INTERNALVAR (val),
2014 &new_data.fn.function);
2015 /* Copies created here are never canonical. */
2016 break;
2017
2018 default:
2019 new_kind = INTERNALVAR_VALUE;
2020 new_data.value = value_copy (val);
2021 new_data.value->modifiable = 1;
2022
2023 /* Force the value to be fetched from the target now, to avoid problems
2024 later when this internalvar is referenced and the target is gone or
2025 has changed. */
2026 if (value_lazy (new_data.value))
2027 value_fetch_lazy (new_data.value);
2028
2029 /* Release the value from the value chain to prevent it from being
2030 deleted by free_all_values. From here on this function should not
2031 call error () until new_data is installed into the var->u to avoid
2032 leaking memory. */
2033 release_value (new_data.value);
2034 break;
2035 }
2036
2037 /* Clean up old contents. */
2038 clear_internalvar (var);
2039
2040 /* Switch over. */
2041 var->kind = new_kind;
2042 var->u = new_data;
2043 /* End code which must not call error(). */
2044 }
2045
2046 void
2047 set_internalvar_integer (struct internalvar *var, LONGEST l)
2048 {
2049 /* Clean up old contents. */
2050 clear_internalvar (var);
2051
2052 var->kind = INTERNALVAR_INTEGER;
2053 var->u.integer.type = NULL;
2054 var->u.integer.val = l;
2055 }
2056
2057 void
2058 set_internalvar_string (struct internalvar *var, const char *string)
2059 {
2060 /* Clean up old contents. */
2061 clear_internalvar (var);
2062
2063 var->kind = INTERNALVAR_STRING;
2064 var->u.string = xstrdup (string);
2065 }
2066
2067 static void
2068 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2069 {
2070 /* Clean up old contents. */
2071 clear_internalvar (var);
2072
2073 var->kind = INTERNALVAR_FUNCTION;
2074 var->u.fn.function = f;
2075 var->u.fn.canonical = 1;
2076 /* Variables installed here are always the canonical version. */
2077 }
2078
2079 void
2080 clear_internalvar (struct internalvar *var)
2081 {
2082 /* Clean up old contents. */
2083 switch (var->kind)
2084 {
2085 case INTERNALVAR_VALUE:
2086 value_free (var->u.value);
2087 break;
2088
2089 case INTERNALVAR_STRING:
2090 xfree (var->u.string);
2091 break;
2092
2093 case INTERNALVAR_MAKE_VALUE:
2094 if (var->u.make_value.functions->destroy != NULL)
2095 var->u.make_value.functions->destroy (var->u.make_value.data);
2096 break;
2097
2098 default:
2099 break;
2100 }
2101
2102 /* Reset to void kind. */
2103 var->kind = INTERNALVAR_VOID;
2104 }
2105
2106 char *
2107 internalvar_name (struct internalvar *var)
2108 {
2109 return var->name;
2110 }
2111
2112 static struct internal_function *
2113 create_internal_function (const char *name,
2114 internal_function_fn handler, void *cookie)
2115 {
2116 struct internal_function *ifn = XNEW (struct internal_function);
2117
2118 ifn->name = xstrdup (name);
2119 ifn->handler = handler;
2120 ifn->cookie = cookie;
2121 return ifn;
2122 }
2123
2124 char *
2125 value_internal_function_name (struct value *val)
2126 {
2127 struct internal_function *ifn;
2128 int result;
2129
2130 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2131 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2132 gdb_assert (result);
2133
2134 return ifn->name;
2135 }
2136
2137 struct value *
2138 call_internal_function (struct gdbarch *gdbarch,
2139 const struct language_defn *language,
2140 struct value *func, int argc, struct value **argv)
2141 {
2142 struct internal_function *ifn;
2143 int result;
2144
2145 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2146 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2147 gdb_assert (result);
2148
2149 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2150 }
2151
2152 /* The 'function' command. This does nothing -- it is just a
2153 placeholder to let "help function NAME" work. This is also used as
2154 the implementation of the sub-command that is created when
2155 registering an internal function. */
2156 static void
2157 function_command (char *command, int from_tty)
2158 {
2159 /* Do nothing. */
2160 }
2161
2162 /* Clean up if an internal function's command is destroyed. */
2163 static void
2164 function_destroyer (struct cmd_list_element *self, void *ignore)
2165 {
2166 xfree ((char *) self->name);
2167 xfree (self->doc);
2168 }
2169
2170 /* Add a new internal function. NAME is the name of the function; DOC
2171 is a documentation string describing the function. HANDLER is
2172 called when the function is invoked. COOKIE is an arbitrary
2173 pointer which is passed to HANDLER and is intended for "user
2174 data". */
2175 void
2176 add_internal_function (const char *name, const char *doc,
2177 internal_function_fn handler, void *cookie)
2178 {
2179 struct cmd_list_element *cmd;
2180 struct internal_function *ifn;
2181 struct internalvar *var = lookup_internalvar (name);
2182
2183 ifn = create_internal_function (name, handler, cookie);
2184 set_internalvar_function (var, ifn);
2185
2186 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2187 &functionlist);
2188 cmd->destroyer = function_destroyer;
2189 }
2190
2191 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2192 prevent cycles / duplicates. */
2193
2194 void
2195 preserve_one_value (struct value *value, struct objfile *objfile,
2196 htab_t copied_types)
2197 {
2198 if (TYPE_OBJFILE (value->type) == objfile)
2199 value->type = copy_type_recursive (objfile, value->type, copied_types);
2200
2201 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2202 value->enclosing_type = copy_type_recursive (objfile,
2203 value->enclosing_type,
2204 copied_types);
2205 }
2206
2207 /* Likewise for internal variable VAR. */
2208
2209 static void
2210 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2211 htab_t copied_types)
2212 {
2213 switch (var->kind)
2214 {
2215 case INTERNALVAR_INTEGER:
2216 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2217 var->u.integer.type
2218 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2219 break;
2220
2221 case INTERNALVAR_VALUE:
2222 preserve_one_value (var->u.value, objfile, copied_types);
2223 break;
2224 }
2225 }
2226
2227 /* Update the internal variables and value history when OBJFILE is
2228 discarded; we must copy the types out of the objfile. New global types
2229 will be created for every convenience variable which currently points to
2230 this objfile's types, and the convenience variables will be adjusted to
2231 use the new global types. */
2232
2233 void
2234 preserve_values (struct objfile *objfile)
2235 {
2236 htab_t copied_types;
2237 struct value_history_chunk *cur;
2238 struct internalvar *var;
2239 int i;
2240
2241 /* Create the hash table. We allocate on the objfile's obstack, since
2242 it is soon to be deleted. */
2243 copied_types = create_copied_types_hash (objfile);
2244
2245 for (cur = value_history_chain; cur; cur = cur->next)
2246 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2247 if (cur->values[i])
2248 preserve_one_value (cur->values[i], objfile, copied_types);
2249
2250 for (var = internalvars; var; var = var->next)
2251 preserve_one_internalvar (var, objfile, copied_types);
2252
2253 preserve_python_values (objfile, copied_types);
2254
2255 htab_delete (copied_types);
2256 }
2257
2258 static void
2259 show_convenience (char *ignore, int from_tty)
2260 {
2261 struct gdbarch *gdbarch = get_current_arch ();
2262 struct internalvar *var;
2263 int varseen = 0;
2264 struct value_print_options opts;
2265
2266 get_user_print_options (&opts);
2267 for (var = internalvars; var; var = var->next)
2268 {
2269 volatile struct gdb_exception ex;
2270
2271 if (!varseen)
2272 {
2273 varseen = 1;
2274 }
2275 printf_filtered (("$%s = "), var->name);
2276
2277 TRY_CATCH (ex, RETURN_MASK_ERROR)
2278 {
2279 struct value *val;
2280
2281 val = value_of_internalvar (gdbarch, var);
2282 value_print (val, gdb_stdout, &opts);
2283 }
2284 if (ex.reason < 0)
2285 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2286 printf_filtered (("\n"));
2287 }
2288 if (!varseen)
2289 {
2290 /* This text does not mention convenience functions on purpose.
2291 The user can't create them except via Python, and if Python support
2292 is installed this message will never be printed ($_streq will
2293 exist). */
2294 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2295 "Convenience variables have "
2296 "names starting with \"$\";\n"
2297 "use \"set\" as in \"set "
2298 "$foo = 5\" to define them.\n"));
2299 }
2300 }
2301 \f
2302 /* Extract a value as a C number (either long or double).
2303 Knows how to convert fixed values to double, or
2304 floating values to long.
2305 Does not deallocate the value. */
2306
2307 LONGEST
2308 value_as_long (struct value *val)
2309 {
2310 /* This coerces arrays and functions, which is necessary (e.g.
2311 in disassemble_command). It also dereferences references, which
2312 I suspect is the most logical thing to do. */
2313 val = coerce_array (val);
2314 return unpack_long (value_type (val), value_contents (val));
2315 }
2316
2317 DOUBLEST
2318 value_as_double (struct value *val)
2319 {
2320 DOUBLEST foo;
2321 int inv;
2322
2323 foo = unpack_double (value_type (val), value_contents (val), &inv);
2324 if (inv)
2325 error (_("Invalid floating value found in program."));
2326 return foo;
2327 }
2328
2329 /* Extract a value as a C pointer. Does not deallocate the value.
2330 Note that val's type may not actually be a pointer; value_as_long
2331 handles all the cases. */
2332 CORE_ADDR
2333 value_as_address (struct value *val)
2334 {
2335 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2336
2337 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2338 whether we want this to be true eventually. */
2339 #if 0
2340 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2341 non-address (e.g. argument to "signal", "info break", etc.), or
2342 for pointers to char, in which the low bits *are* significant. */
2343 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2344 #else
2345
2346 /* There are several targets (IA-64, PowerPC, and others) which
2347 don't represent pointers to functions as simply the address of
2348 the function's entry point. For example, on the IA-64, a
2349 function pointer points to a two-word descriptor, generated by
2350 the linker, which contains the function's entry point, and the
2351 value the IA-64 "global pointer" register should have --- to
2352 support position-independent code. The linker generates
2353 descriptors only for those functions whose addresses are taken.
2354
2355 On such targets, it's difficult for GDB to convert an arbitrary
2356 function address into a function pointer; it has to either find
2357 an existing descriptor for that function, or call malloc and
2358 build its own. On some targets, it is impossible for GDB to
2359 build a descriptor at all: the descriptor must contain a jump
2360 instruction; data memory cannot be executed; and code memory
2361 cannot be modified.
2362
2363 Upon entry to this function, if VAL is a value of type `function'
2364 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2365 value_address (val) is the address of the function. This is what
2366 you'll get if you evaluate an expression like `main'. The call
2367 to COERCE_ARRAY below actually does all the usual unary
2368 conversions, which includes converting values of type `function'
2369 to `pointer to function'. This is the challenging conversion
2370 discussed above. Then, `unpack_long' will convert that pointer
2371 back into an address.
2372
2373 So, suppose the user types `disassemble foo' on an architecture
2374 with a strange function pointer representation, on which GDB
2375 cannot build its own descriptors, and suppose further that `foo'
2376 has no linker-built descriptor. The address->pointer conversion
2377 will signal an error and prevent the command from running, even
2378 though the next step would have been to convert the pointer
2379 directly back into the same address.
2380
2381 The following shortcut avoids this whole mess. If VAL is a
2382 function, just return its address directly. */
2383 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2384 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2385 return value_address (val);
2386
2387 val = coerce_array (val);
2388
2389 /* Some architectures (e.g. Harvard), map instruction and data
2390 addresses onto a single large unified address space. For
2391 instance: An architecture may consider a large integer in the
2392 range 0x10000000 .. 0x1000ffff to already represent a data
2393 addresses (hence not need a pointer to address conversion) while
2394 a small integer would still need to be converted integer to
2395 pointer to address. Just assume such architectures handle all
2396 integer conversions in a single function. */
2397
2398 /* JimB writes:
2399
2400 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2401 must admonish GDB hackers to make sure its behavior matches the
2402 compiler's, whenever possible.
2403
2404 In general, I think GDB should evaluate expressions the same way
2405 the compiler does. When the user copies an expression out of
2406 their source code and hands it to a `print' command, they should
2407 get the same value the compiler would have computed. Any
2408 deviation from this rule can cause major confusion and annoyance,
2409 and needs to be justified carefully. In other words, GDB doesn't
2410 really have the freedom to do these conversions in clever and
2411 useful ways.
2412
2413 AndrewC pointed out that users aren't complaining about how GDB
2414 casts integers to pointers; they are complaining that they can't
2415 take an address from a disassembly listing and give it to `x/i'.
2416 This is certainly important.
2417
2418 Adding an architecture method like integer_to_address() certainly
2419 makes it possible for GDB to "get it right" in all circumstances
2420 --- the target has complete control over how things get done, so
2421 people can Do The Right Thing for their target without breaking
2422 anyone else. The standard doesn't specify how integers get
2423 converted to pointers; usually, the ABI doesn't either, but
2424 ABI-specific code is a more reasonable place to handle it. */
2425
2426 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2427 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2428 && gdbarch_integer_to_address_p (gdbarch))
2429 return gdbarch_integer_to_address (gdbarch, value_type (val),
2430 value_contents (val));
2431
2432 return unpack_long (value_type (val), value_contents (val));
2433 #endif
2434 }
2435 \f
2436 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2437 as a long, or as a double, assuming the raw data is described
2438 by type TYPE. Knows how to convert different sizes of values
2439 and can convert between fixed and floating point. We don't assume
2440 any alignment for the raw data. Return value is in host byte order.
2441
2442 If you want functions and arrays to be coerced to pointers, and
2443 references to be dereferenced, call value_as_long() instead.
2444
2445 C++: It is assumed that the front-end has taken care of
2446 all matters concerning pointers to members. A pointer
2447 to member which reaches here is considered to be equivalent
2448 to an INT (or some size). After all, it is only an offset. */
2449
2450 LONGEST
2451 unpack_long (struct type *type, const gdb_byte *valaddr)
2452 {
2453 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2454 enum type_code code = TYPE_CODE (type);
2455 int len = TYPE_LENGTH (type);
2456 int nosign = TYPE_UNSIGNED (type);
2457
2458 switch (code)
2459 {
2460 case TYPE_CODE_TYPEDEF:
2461 return unpack_long (check_typedef (type), valaddr);
2462 case TYPE_CODE_ENUM:
2463 case TYPE_CODE_FLAGS:
2464 case TYPE_CODE_BOOL:
2465 case TYPE_CODE_INT:
2466 case TYPE_CODE_CHAR:
2467 case TYPE_CODE_RANGE:
2468 case TYPE_CODE_MEMBERPTR:
2469 if (nosign)
2470 return extract_unsigned_integer (valaddr, len, byte_order);
2471 else
2472 return extract_signed_integer (valaddr, len, byte_order);
2473
2474 case TYPE_CODE_FLT:
2475 return extract_typed_floating (valaddr, type);
2476
2477 case TYPE_CODE_DECFLOAT:
2478 /* libdecnumber has a function to convert from decimal to integer, but
2479 it doesn't work when the decimal number has a fractional part. */
2480 return decimal_to_doublest (valaddr, len, byte_order);
2481
2482 case TYPE_CODE_PTR:
2483 case TYPE_CODE_REF:
2484 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2485 whether we want this to be true eventually. */
2486 return extract_typed_address (valaddr, type);
2487
2488 default:
2489 error (_("Value can't be converted to integer."));
2490 }
2491 return 0; /* Placate lint. */
2492 }
2493
2494 /* Return a double value from the specified type and address.
2495 INVP points to an int which is set to 0 for valid value,
2496 1 for invalid value (bad float format). In either case,
2497 the returned double is OK to use. Argument is in target
2498 format, result is in host format. */
2499
2500 DOUBLEST
2501 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2502 {
2503 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2504 enum type_code code;
2505 int len;
2506 int nosign;
2507
2508 *invp = 0; /* Assume valid. */
2509 CHECK_TYPEDEF (type);
2510 code = TYPE_CODE (type);
2511 len = TYPE_LENGTH (type);
2512 nosign = TYPE_UNSIGNED (type);
2513 if (code == TYPE_CODE_FLT)
2514 {
2515 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2516 floating-point value was valid (using the macro
2517 INVALID_FLOAT). That test/macro have been removed.
2518
2519 It turns out that only the VAX defined this macro and then
2520 only in a non-portable way. Fixing the portability problem
2521 wouldn't help since the VAX floating-point code is also badly
2522 bit-rotten. The target needs to add definitions for the
2523 methods gdbarch_float_format and gdbarch_double_format - these
2524 exactly describe the target floating-point format. The
2525 problem here is that the corresponding floatformat_vax_f and
2526 floatformat_vax_d values these methods should be set to are
2527 also not defined either. Oops!
2528
2529 Hopefully someone will add both the missing floatformat
2530 definitions and the new cases for floatformat_is_valid (). */
2531
2532 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2533 {
2534 *invp = 1;
2535 return 0.0;
2536 }
2537
2538 return extract_typed_floating (valaddr, type);
2539 }
2540 else if (code == TYPE_CODE_DECFLOAT)
2541 return decimal_to_doublest (valaddr, len, byte_order);
2542 else if (nosign)
2543 {
2544 /* Unsigned -- be sure we compensate for signed LONGEST. */
2545 return (ULONGEST) unpack_long (type, valaddr);
2546 }
2547 else
2548 {
2549 /* Signed -- we are OK with unpack_long. */
2550 return unpack_long (type, valaddr);
2551 }
2552 }
2553
2554 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2555 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2556 We don't assume any alignment for the raw data. Return value is in
2557 host byte order.
2558
2559 If you want functions and arrays to be coerced to pointers, and
2560 references to be dereferenced, call value_as_address() instead.
2561
2562 C++: It is assumed that the front-end has taken care of
2563 all matters concerning pointers to members. A pointer
2564 to member which reaches here is considered to be equivalent
2565 to an INT (or some size). After all, it is only an offset. */
2566
2567 CORE_ADDR
2568 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2569 {
2570 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2571 whether we want this to be true eventually. */
2572 return unpack_long (type, valaddr);
2573 }
2574
2575 \f
2576 /* Get the value of the FIELDNO'th field (which must be static) of
2577 TYPE. Return NULL if the field doesn't exist or has been
2578 optimized out. */
2579
2580 struct value *
2581 value_static_field (struct type *type, int fieldno)
2582 {
2583 struct value *retval;
2584
2585 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2586 {
2587 case FIELD_LOC_KIND_PHYSADDR:
2588 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2589 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2590 break;
2591 case FIELD_LOC_KIND_PHYSNAME:
2592 {
2593 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2594 /* TYPE_FIELD_NAME (type, fieldno); */
2595 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2596
2597 if (sym == NULL)
2598 {
2599 /* With some compilers, e.g. HP aCC, static data members are
2600 reported as non-debuggable symbols. */
2601 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2602 NULL, NULL);
2603
2604 if (!msym)
2605 return NULL;
2606 else
2607 {
2608 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2609 SYMBOL_VALUE_ADDRESS (msym));
2610 }
2611 }
2612 else
2613 retval = value_of_variable (sym, NULL);
2614 break;
2615 }
2616 default:
2617 gdb_assert_not_reached ("unexpected field location kind");
2618 }
2619
2620 return retval;
2621 }
2622
2623 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2624 You have to be careful here, since the size of the data area for the value
2625 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2626 than the old enclosing type, you have to allocate more space for the
2627 data. */
2628
2629 void
2630 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2631 {
2632 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2633 val->contents =
2634 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2635
2636 val->enclosing_type = new_encl_type;
2637 }
2638
2639 /* Given a value ARG1 (offset by OFFSET bytes)
2640 of a struct or union type ARG_TYPE,
2641 extract and return the value of one of its (non-static) fields.
2642 FIELDNO says which field. */
2643
2644 struct value *
2645 value_primitive_field (struct value *arg1, int offset,
2646 int fieldno, struct type *arg_type)
2647 {
2648 struct value *v;
2649 struct type *type;
2650
2651 CHECK_TYPEDEF (arg_type);
2652 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2653
2654 /* Call check_typedef on our type to make sure that, if TYPE
2655 is a TYPE_CODE_TYPEDEF, its length is set to the length
2656 of the target type instead of zero. However, we do not
2657 replace the typedef type by the target type, because we want
2658 to keep the typedef in order to be able to print the type
2659 description correctly. */
2660 check_typedef (type);
2661
2662 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2663 {
2664 /* Handle packed fields.
2665
2666 Create a new value for the bitfield, with bitpos and bitsize
2667 set. If possible, arrange offset and bitpos so that we can
2668 do a single aligned read of the size of the containing type.
2669 Otherwise, adjust offset to the byte containing the first
2670 bit. Assume that the address, offset, and embedded offset
2671 are sufficiently aligned. */
2672
2673 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2674 int container_bitsize = TYPE_LENGTH (type) * 8;
2675
2676 if (arg1->optimized_out)
2677 v = allocate_optimized_out_value (type);
2678 else
2679 {
2680 v = allocate_value_lazy (type);
2681 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2682 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2683 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2684 v->bitpos = bitpos % container_bitsize;
2685 else
2686 v->bitpos = bitpos % 8;
2687 v->offset = (value_embedded_offset (arg1)
2688 + offset
2689 + (bitpos - v->bitpos) / 8);
2690 set_value_parent (v, arg1);
2691 if (!value_lazy (arg1))
2692 value_fetch_lazy (v);
2693 }
2694 }
2695 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2696 {
2697 /* This field is actually a base subobject, so preserve the
2698 entire object's contents for later references to virtual
2699 bases, etc. */
2700 int boffset;
2701
2702 /* Lazy register values with offsets are not supported. */
2703 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2704 value_fetch_lazy (arg1);
2705
2706 /* The optimized_out flag is only set correctly once a lazy value is
2707 loaded, having just loaded some lazy values we should check the
2708 optimized out case now. */
2709 if (arg1->optimized_out)
2710 v = allocate_optimized_out_value (type);
2711 else
2712 {
2713 /* We special case virtual inheritance here because this
2714 requires access to the contents, which we would rather avoid
2715 for references to ordinary fields of unavailable values. */
2716 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2717 boffset = baseclass_offset (arg_type, fieldno,
2718 value_contents (arg1),
2719 value_embedded_offset (arg1),
2720 value_address (arg1),
2721 arg1);
2722 else
2723 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2724
2725 if (value_lazy (arg1))
2726 v = allocate_value_lazy (value_enclosing_type (arg1));
2727 else
2728 {
2729 v = allocate_value (value_enclosing_type (arg1));
2730 value_contents_copy_raw (v, 0, arg1, 0,
2731 TYPE_LENGTH (value_enclosing_type (arg1)));
2732 }
2733 v->type = type;
2734 v->offset = value_offset (arg1);
2735 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2736 }
2737 }
2738 else
2739 {
2740 /* Plain old data member */
2741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2742
2743 /* Lazy register values with offsets are not supported. */
2744 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2745 value_fetch_lazy (arg1);
2746
2747 /* The optimized_out flag is only set correctly once a lazy value is
2748 loaded, having just loaded some lazy values we should check for
2749 the optimized out case now. */
2750 if (arg1->optimized_out)
2751 v = allocate_optimized_out_value (type);
2752 else if (value_lazy (arg1))
2753 v = allocate_value_lazy (type);
2754 else
2755 {
2756 v = allocate_value (type);
2757 value_contents_copy_raw (v, value_embedded_offset (v),
2758 arg1, value_embedded_offset (arg1) + offset,
2759 TYPE_LENGTH (type));
2760 }
2761 v->offset = (value_offset (arg1) + offset
2762 + value_embedded_offset (arg1));
2763 }
2764 set_value_component_location (v, arg1);
2765 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2766 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2767 return v;
2768 }
2769
2770 /* Given a value ARG1 of a struct or union type,
2771 extract and return the value of one of its (non-static) fields.
2772 FIELDNO says which field. */
2773
2774 struct value *
2775 value_field (struct value *arg1, int fieldno)
2776 {
2777 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2778 }
2779
2780 /* Return a non-virtual function as a value.
2781 F is the list of member functions which contains the desired method.
2782 J is an index into F which provides the desired method.
2783
2784 We only use the symbol for its address, so be happy with either a
2785 full symbol or a minimal symbol. */
2786
2787 struct value *
2788 value_fn_field (struct value **arg1p, struct fn_field *f,
2789 int j, struct type *type,
2790 int offset)
2791 {
2792 struct value *v;
2793 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2794 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2795 struct symbol *sym;
2796 struct bound_minimal_symbol msym;
2797
2798 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2799 if (sym != NULL)
2800 {
2801 memset (&msym, 0, sizeof (msym));
2802 }
2803 else
2804 {
2805 gdb_assert (sym == NULL);
2806 msym = lookup_bound_minimal_symbol (physname);
2807 if (msym.minsym == NULL)
2808 return NULL;
2809 }
2810
2811 v = allocate_value (ftype);
2812 if (sym)
2813 {
2814 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2815 }
2816 else
2817 {
2818 /* The minimal symbol might point to a function descriptor;
2819 resolve it to the actual code address instead. */
2820 struct objfile *objfile = msym.objfile;
2821 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2822
2823 set_value_address (v,
2824 gdbarch_convert_from_func_ptr_addr
2825 (gdbarch, SYMBOL_VALUE_ADDRESS (msym.minsym), &current_target));
2826 }
2827
2828 if (arg1p)
2829 {
2830 if (type != value_type (*arg1p))
2831 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2832 value_addr (*arg1p)));
2833
2834 /* Move the `this' pointer according to the offset.
2835 VALUE_OFFSET (*arg1p) += offset; */
2836 }
2837
2838 return v;
2839 }
2840
2841 \f
2842
2843 /* Helper function for both unpack_value_bits_as_long and
2844 unpack_bits_as_long. See those functions for more details on the
2845 interface; the only difference is that this function accepts either
2846 a NULL or a non-NULL ORIGINAL_VALUE. */
2847
2848 static int
2849 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2850 int embedded_offset, int bitpos, int bitsize,
2851 const struct value *original_value,
2852 LONGEST *result)
2853 {
2854 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2855 ULONGEST val;
2856 ULONGEST valmask;
2857 int lsbcount;
2858 int bytes_read;
2859 int read_offset;
2860
2861 /* Read the minimum number of bytes required; there may not be
2862 enough bytes to read an entire ULONGEST. */
2863 CHECK_TYPEDEF (field_type);
2864 if (bitsize)
2865 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2866 else
2867 bytes_read = TYPE_LENGTH (field_type);
2868
2869 read_offset = bitpos / 8;
2870
2871 if (original_value != NULL
2872 && !value_bytes_available (original_value, embedded_offset + read_offset,
2873 bytes_read))
2874 return 0;
2875
2876 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2877 bytes_read, byte_order);
2878
2879 /* Extract bits. See comment above. */
2880
2881 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2882 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2883 else
2884 lsbcount = (bitpos % 8);
2885 val >>= lsbcount;
2886
2887 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2888 If the field is signed, and is negative, then sign extend. */
2889
2890 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2891 {
2892 valmask = (((ULONGEST) 1) << bitsize) - 1;
2893 val &= valmask;
2894 if (!TYPE_UNSIGNED (field_type))
2895 {
2896 if (val & (valmask ^ (valmask >> 1)))
2897 {
2898 val |= ~valmask;
2899 }
2900 }
2901 }
2902
2903 *result = val;
2904 return 1;
2905 }
2906
2907 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2908 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2909 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2910 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2911 bits.
2912
2913 Returns false if the value contents are unavailable, otherwise
2914 returns true, indicating a valid value has been stored in *RESULT.
2915
2916 Extracting bits depends on endianness of the machine. Compute the
2917 number of least significant bits to discard. For big endian machines,
2918 we compute the total number of bits in the anonymous object, subtract
2919 off the bit count from the MSB of the object to the MSB of the
2920 bitfield, then the size of the bitfield, which leaves the LSB discard
2921 count. For little endian machines, the discard count is simply the
2922 number of bits from the LSB of the anonymous object to the LSB of the
2923 bitfield.
2924
2925 If the field is signed, we also do sign extension. */
2926
2927 int
2928 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2929 int embedded_offset, int bitpos, int bitsize,
2930 const struct value *original_value,
2931 LONGEST *result)
2932 {
2933 gdb_assert (original_value != NULL);
2934
2935 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2936 bitpos, bitsize, original_value, result);
2937
2938 }
2939
2940 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2941 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2942 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2943 details. */
2944
2945 static int
2946 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2947 int embedded_offset, int fieldno,
2948 const struct value *val, LONGEST *result)
2949 {
2950 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2951 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2952 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2953
2954 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2955 bitpos, bitsize, val,
2956 result);
2957 }
2958
2959 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2960 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2961 ORIGINAL_VALUE, which must not be NULL. See
2962 unpack_value_bits_as_long for more details. */
2963
2964 int
2965 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2966 int embedded_offset, int fieldno,
2967 const struct value *val, LONGEST *result)
2968 {
2969 gdb_assert (val != NULL);
2970
2971 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2972 fieldno, val, result);
2973 }
2974
2975 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2976 object at VALADDR. See unpack_value_bits_as_long for more details.
2977 This function differs from unpack_value_field_as_long in that it
2978 operates without a struct value object. */
2979
2980 LONGEST
2981 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2982 {
2983 LONGEST result;
2984
2985 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2986 return result;
2987 }
2988
2989 /* Return a new value with type TYPE, which is FIELDNO field of the
2990 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2991 of VAL. If the VAL's contents required to extract the bitfield
2992 from are unavailable, the new value is correspondingly marked as
2993 unavailable. */
2994
2995 struct value *
2996 value_field_bitfield (struct type *type, int fieldno,
2997 const gdb_byte *valaddr,
2998 int embedded_offset, const struct value *val)
2999 {
3000 LONGEST l;
3001
3002 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3003 val, &l))
3004 {
3005 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3006 struct value *retval = allocate_value (field_type);
3007 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3008 return retval;
3009 }
3010 else
3011 {
3012 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3013 }
3014 }
3015
3016 /* Modify the value of a bitfield. ADDR points to a block of memory in
3017 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3018 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3019 indicate which bits (in target bit order) comprise the bitfield.
3020 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3021 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3022
3023 void
3024 modify_field (struct type *type, gdb_byte *addr,
3025 LONGEST fieldval, int bitpos, int bitsize)
3026 {
3027 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3028 ULONGEST oword;
3029 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3030 int bytesize;
3031
3032 /* Normalize BITPOS. */
3033 addr += bitpos / 8;
3034 bitpos %= 8;
3035
3036 /* If a negative fieldval fits in the field in question, chop
3037 off the sign extension bits. */
3038 if ((~fieldval & ~(mask >> 1)) == 0)
3039 fieldval &= mask;
3040
3041 /* Warn if value is too big to fit in the field in question. */
3042 if (0 != (fieldval & ~mask))
3043 {
3044 /* FIXME: would like to include fieldval in the message, but
3045 we don't have a sprintf_longest. */
3046 warning (_("Value does not fit in %d bits."), bitsize);
3047
3048 /* Truncate it, otherwise adjoining fields may be corrupted. */
3049 fieldval &= mask;
3050 }
3051
3052 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3053 false valgrind reports. */
3054
3055 bytesize = (bitpos + bitsize + 7) / 8;
3056 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3057
3058 /* Shifting for bit field depends on endianness of the target machine. */
3059 if (gdbarch_bits_big_endian (get_type_arch (type)))
3060 bitpos = bytesize * 8 - bitpos - bitsize;
3061
3062 oword &= ~(mask << bitpos);
3063 oword |= fieldval << bitpos;
3064
3065 store_unsigned_integer (addr, bytesize, byte_order, oword);
3066 }
3067 \f
3068 /* Pack NUM into BUF using a target format of TYPE. */
3069
3070 void
3071 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3072 {
3073 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3074 int len;
3075
3076 type = check_typedef (type);
3077 len = TYPE_LENGTH (type);
3078
3079 switch (TYPE_CODE (type))
3080 {
3081 case TYPE_CODE_INT:
3082 case TYPE_CODE_CHAR:
3083 case TYPE_CODE_ENUM:
3084 case TYPE_CODE_FLAGS:
3085 case TYPE_CODE_BOOL:
3086 case TYPE_CODE_RANGE:
3087 case TYPE_CODE_MEMBERPTR:
3088 store_signed_integer (buf, len, byte_order, num);
3089 break;
3090
3091 case TYPE_CODE_REF:
3092 case TYPE_CODE_PTR:
3093 store_typed_address (buf, type, (CORE_ADDR) num);
3094 break;
3095
3096 default:
3097 error (_("Unexpected type (%d) encountered for integer constant."),
3098 TYPE_CODE (type));
3099 }
3100 }
3101
3102
3103 /* Pack NUM into BUF using a target format of TYPE. */
3104
3105 static void
3106 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3107 {
3108 int len;
3109 enum bfd_endian byte_order;
3110
3111 type = check_typedef (type);
3112 len = TYPE_LENGTH (type);
3113 byte_order = gdbarch_byte_order (get_type_arch (type));
3114
3115 switch (TYPE_CODE (type))
3116 {
3117 case TYPE_CODE_INT:
3118 case TYPE_CODE_CHAR:
3119 case TYPE_CODE_ENUM:
3120 case TYPE_CODE_FLAGS:
3121 case TYPE_CODE_BOOL:
3122 case TYPE_CODE_RANGE:
3123 case TYPE_CODE_MEMBERPTR:
3124 store_unsigned_integer (buf, len, byte_order, num);
3125 break;
3126
3127 case TYPE_CODE_REF:
3128 case TYPE_CODE_PTR:
3129 store_typed_address (buf, type, (CORE_ADDR) num);
3130 break;
3131
3132 default:
3133 error (_("Unexpected type (%d) encountered "
3134 "for unsigned integer constant."),
3135 TYPE_CODE (type));
3136 }
3137 }
3138
3139
3140 /* Convert C numbers into newly allocated values. */
3141
3142 struct value *
3143 value_from_longest (struct type *type, LONGEST num)
3144 {
3145 struct value *val = allocate_value (type);
3146
3147 pack_long (value_contents_raw (val), type, num);
3148 return val;
3149 }
3150
3151
3152 /* Convert C unsigned numbers into newly allocated values. */
3153
3154 struct value *
3155 value_from_ulongest (struct type *type, ULONGEST num)
3156 {
3157 struct value *val = allocate_value (type);
3158
3159 pack_unsigned_long (value_contents_raw (val), type, num);
3160
3161 return val;
3162 }
3163
3164
3165 /* Create a value representing a pointer of type TYPE to the address
3166 ADDR. */
3167 struct value *
3168 value_from_pointer (struct type *type, CORE_ADDR addr)
3169 {
3170 struct value *val = allocate_value (type);
3171
3172 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3173 return val;
3174 }
3175
3176
3177 /* Create a value of type TYPE whose contents come from VALADDR, if it
3178 is non-null, and whose memory address (in the inferior) is
3179 ADDRESS. */
3180
3181 struct value *
3182 value_from_contents_and_address (struct type *type,
3183 const gdb_byte *valaddr,
3184 CORE_ADDR address)
3185 {
3186 struct value *v;
3187
3188 if (valaddr == NULL)
3189 v = allocate_value_lazy (type);
3190 else
3191 v = value_from_contents (type, valaddr);
3192 set_value_address (v, address);
3193 VALUE_LVAL (v) = lval_memory;
3194 return v;
3195 }
3196
3197 /* Create a value of type TYPE holding the contents CONTENTS.
3198 The new value is `not_lval'. */
3199
3200 struct value *
3201 value_from_contents (struct type *type, const gdb_byte *contents)
3202 {
3203 struct value *result;
3204
3205 result = allocate_value (type);
3206 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3207 return result;
3208 }
3209
3210 struct value *
3211 value_from_double (struct type *type, DOUBLEST num)
3212 {
3213 struct value *val = allocate_value (type);
3214 struct type *base_type = check_typedef (type);
3215 enum type_code code = TYPE_CODE (base_type);
3216
3217 if (code == TYPE_CODE_FLT)
3218 {
3219 store_typed_floating (value_contents_raw (val), base_type, num);
3220 }
3221 else
3222 error (_("Unexpected type encountered for floating constant."));
3223
3224 return val;
3225 }
3226
3227 struct value *
3228 value_from_decfloat (struct type *type, const gdb_byte *dec)
3229 {
3230 struct value *val = allocate_value (type);
3231
3232 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3233 return val;
3234 }
3235
3236 /* Extract a value from the history file. Input will be of the form
3237 $digits or $$digits. See block comment above 'write_dollar_variable'
3238 for details. */
3239
3240 struct value *
3241 value_from_history_ref (char *h, char **endp)
3242 {
3243 int index, len;
3244
3245 if (h[0] == '$')
3246 len = 1;
3247 else
3248 return NULL;
3249
3250 if (h[1] == '$')
3251 len = 2;
3252
3253 /* Find length of numeral string. */
3254 for (; isdigit (h[len]); len++)
3255 ;
3256
3257 /* Make sure numeral string is not part of an identifier. */
3258 if (h[len] == '_' || isalpha (h[len]))
3259 return NULL;
3260
3261 /* Now collect the index value. */
3262 if (h[1] == '$')
3263 {
3264 if (len == 2)
3265 {
3266 /* For some bizarre reason, "$$" is equivalent to "$$1",
3267 rather than to "$$0" as it ought to be! */
3268 index = -1;
3269 *endp += len;
3270 }
3271 else
3272 index = -strtol (&h[2], endp, 10);
3273 }
3274 else
3275 {
3276 if (len == 1)
3277 {
3278 /* "$" is equivalent to "$0". */
3279 index = 0;
3280 *endp += len;
3281 }
3282 else
3283 index = strtol (&h[1], endp, 10);
3284 }
3285
3286 return access_value_history (index);
3287 }
3288
3289 struct value *
3290 coerce_ref_if_computed (const struct value *arg)
3291 {
3292 const struct lval_funcs *funcs;
3293
3294 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3295 return NULL;
3296
3297 if (value_lval_const (arg) != lval_computed)
3298 return NULL;
3299
3300 funcs = value_computed_funcs (arg);
3301 if (funcs->coerce_ref == NULL)
3302 return NULL;
3303
3304 return funcs->coerce_ref (arg);
3305 }
3306
3307 /* Look at value.h for description. */
3308
3309 struct value *
3310 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3311 struct type *original_type,
3312 struct value *original_value)
3313 {
3314 /* Re-adjust type. */
3315 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3316
3317 /* Add embedding info. */
3318 set_value_enclosing_type (value, enc_type);
3319 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3320
3321 /* We may be pointing to an object of some derived type. */
3322 return value_full_object (value, NULL, 0, 0, 0);
3323 }
3324
3325 struct value *
3326 coerce_ref (struct value *arg)
3327 {
3328 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3329 struct value *retval;
3330 struct type *enc_type;
3331
3332 retval = coerce_ref_if_computed (arg);
3333 if (retval)
3334 return retval;
3335
3336 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3337 return arg;
3338
3339 enc_type = check_typedef (value_enclosing_type (arg));
3340 enc_type = TYPE_TARGET_TYPE (enc_type);
3341
3342 retval = value_at_lazy (enc_type,
3343 unpack_pointer (value_type (arg),
3344 value_contents (arg)));
3345 return readjust_indirect_value_type (retval, enc_type,
3346 value_type_arg_tmp, arg);
3347 }
3348
3349 struct value *
3350 coerce_array (struct value *arg)
3351 {
3352 struct type *type;
3353
3354 arg = coerce_ref (arg);
3355 type = check_typedef (value_type (arg));
3356
3357 switch (TYPE_CODE (type))
3358 {
3359 case TYPE_CODE_ARRAY:
3360 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3361 arg = value_coerce_array (arg);
3362 break;
3363 case TYPE_CODE_FUNC:
3364 arg = value_coerce_function (arg);
3365 break;
3366 }
3367 return arg;
3368 }
3369 \f
3370
3371 /* Return the return value convention that will be used for the
3372 specified type. */
3373
3374 enum return_value_convention
3375 struct_return_convention (struct gdbarch *gdbarch,
3376 struct value *function, struct type *value_type)
3377 {
3378 enum type_code code = TYPE_CODE (value_type);
3379
3380 if (code == TYPE_CODE_ERROR)
3381 error (_("Function return type unknown."));
3382
3383 /* Probe the architecture for the return-value convention. */
3384 return gdbarch_return_value (gdbarch, function, value_type,
3385 NULL, NULL, NULL);
3386 }
3387
3388 /* Return true if the function returning the specified type is using
3389 the convention of returning structures in memory (passing in the
3390 address as a hidden first parameter). */
3391
3392 int
3393 using_struct_return (struct gdbarch *gdbarch,
3394 struct value *function, struct type *value_type)
3395 {
3396 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3397 /* A void return value is never in memory. See also corresponding
3398 code in "print_return_value". */
3399 return 0;
3400
3401 return (struct_return_convention (gdbarch, function, value_type)
3402 != RETURN_VALUE_REGISTER_CONVENTION);
3403 }
3404
3405 /* Set the initialized field in a value struct. */
3406
3407 void
3408 set_value_initialized (struct value *val, int status)
3409 {
3410 val->initialized = status;
3411 }
3412
3413 /* Return the initialized field in a value struct. */
3414
3415 int
3416 value_initialized (struct value *val)
3417 {
3418 return val->initialized;
3419 }
3420
3421 /* Called only from the value_contents and value_contents_all()
3422 macros, if the current data for a variable needs to be loaded into
3423 value_contents(VAL). Fetches the data from the user's process, and
3424 clears the lazy flag to indicate that the data in the buffer is
3425 valid.
3426
3427 If the value is zero-length, we avoid calling read_memory, which
3428 would abort. We mark the value as fetched anyway -- all 0 bytes of
3429 it.
3430
3431 This function returns a value because it is used in the
3432 value_contents macro as part of an expression, where a void would
3433 not work. The value is ignored. */
3434
3435 int
3436 value_fetch_lazy (struct value *val)
3437 {
3438 gdb_assert (value_lazy (val));
3439 allocate_value_contents (val);
3440 if (value_bitsize (val))
3441 {
3442 /* To read a lazy bitfield, read the entire enclosing value. This
3443 prevents reading the same block of (possibly volatile) memory once
3444 per bitfield. It would be even better to read only the containing
3445 word, but we have no way to record that just specific bits of a
3446 value have been fetched. */
3447 struct type *type = check_typedef (value_type (val));
3448 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3449 struct value *parent = value_parent (val);
3450 LONGEST offset = value_offset (val);
3451 LONGEST num;
3452
3453 if (value_lazy (parent))
3454 value_fetch_lazy (parent);
3455
3456 if (!value_bits_valid (parent,
3457 TARGET_CHAR_BIT * offset + value_bitpos (val),
3458 value_bitsize (val)))
3459 set_value_optimized_out (val, 1);
3460 else if (!unpack_value_bits_as_long (value_type (val),
3461 value_contents_for_printing (parent),
3462 offset,
3463 value_bitpos (val),
3464 value_bitsize (val), parent, &num))
3465 mark_value_bytes_unavailable (val,
3466 value_embedded_offset (val),
3467 TYPE_LENGTH (type));
3468 else
3469 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3470 byte_order, num);
3471 }
3472 else if (VALUE_LVAL (val) == lval_memory)
3473 {
3474 CORE_ADDR addr = value_address (val);
3475 struct type *type = check_typedef (value_enclosing_type (val));
3476
3477 if (TYPE_LENGTH (type))
3478 read_value_memory (val, 0, value_stack (val),
3479 addr, value_contents_all_raw (val),
3480 TYPE_LENGTH (type));
3481 }
3482 else if (VALUE_LVAL (val) == lval_register)
3483 {
3484 struct frame_info *frame;
3485 int regnum;
3486 struct type *type = check_typedef (value_type (val));
3487 struct value *new_val = val, *mark = value_mark ();
3488
3489 /* Offsets are not supported here; lazy register values must
3490 refer to the entire register. */
3491 gdb_assert (value_offset (val) == 0);
3492
3493 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3494 {
3495 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3496 regnum = VALUE_REGNUM (new_val);
3497
3498 gdb_assert (frame != NULL);
3499
3500 /* Convertible register routines are used for multi-register
3501 values and for interpretation in different types
3502 (e.g. float or int from a double register). Lazy
3503 register values should have the register's natural type,
3504 so they do not apply. */
3505 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3506 regnum, type));
3507
3508 new_val = get_frame_register_value (frame, regnum);
3509 }
3510
3511 /* If it's still lazy (for instance, a saved register on the
3512 stack), fetch it. */
3513 if (value_lazy (new_val))
3514 value_fetch_lazy (new_val);
3515
3516 /* If the register was not saved, mark it optimized out. */
3517 if (value_optimized_out (new_val))
3518 set_value_optimized_out (val, 1);
3519 else
3520 {
3521 set_value_lazy (val, 0);
3522 value_contents_copy (val, value_embedded_offset (val),
3523 new_val, value_embedded_offset (new_val),
3524 TYPE_LENGTH (type));
3525 }
3526
3527 if (frame_debug)
3528 {
3529 struct gdbarch *gdbarch;
3530 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3531 regnum = VALUE_REGNUM (val);
3532 gdbarch = get_frame_arch (frame);
3533
3534 fprintf_unfiltered (gdb_stdlog,
3535 "{ value_fetch_lazy "
3536 "(frame=%d,regnum=%d(%s),...) ",
3537 frame_relative_level (frame), regnum,
3538 user_reg_map_regnum_to_name (gdbarch, regnum));
3539
3540 fprintf_unfiltered (gdb_stdlog, "->");
3541 if (value_optimized_out (new_val))
3542 fprintf_unfiltered (gdb_stdlog, " optimized out");
3543 else
3544 {
3545 int i;
3546 const gdb_byte *buf = value_contents (new_val);
3547
3548 if (VALUE_LVAL (new_val) == lval_register)
3549 fprintf_unfiltered (gdb_stdlog, " register=%d",
3550 VALUE_REGNUM (new_val));
3551 else if (VALUE_LVAL (new_val) == lval_memory)
3552 fprintf_unfiltered (gdb_stdlog, " address=%s",
3553 paddress (gdbarch,
3554 value_address (new_val)));
3555 else
3556 fprintf_unfiltered (gdb_stdlog, " computed");
3557
3558 fprintf_unfiltered (gdb_stdlog, " bytes=");
3559 fprintf_unfiltered (gdb_stdlog, "[");
3560 for (i = 0; i < register_size (gdbarch, regnum); i++)
3561 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3562 fprintf_unfiltered (gdb_stdlog, "]");
3563 }
3564
3565 fprintf_unfiltered (gdb_stdlog, " }\n");
3566 }
3567
3568 /* Dispose of the intermediate values. This prevents
3569 watchpoints from trying to watch the saved frame pointer. */
3570 value_free_to_mark (mark);
3571 }
3572 else if (VALUE_LVAL (val) == lval_computed
3573 && value_computed_funcs (val)->read != NULL)
3574 value_computed_funcs (val)->read (val);
3575 /* Don't call value_optimized_out on val, doing so would result in a
3576 recursive call back to value_fetch_lazy, instead check the
3577 optimized_out flag directly. */
3578 else if (val->optimized_out)
3579 /* Keep it optimized out. */;
3580 else
3581 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3582
3583 set_value_lazy (val, 0);
3584 return 0;
3585 }
3586
3587 /* Implementation of the convenience function $_isvoid. */
3588
3589 static struct value *
3590 isvoid_internal_fn (struct gdbarch *gdbarch,
3591 const struct language_defn *language,
3592 void *cookie, int argc, struct value **argv)
3593 {
3594 int ret;
3595
3596 if (argc != 1)
3597 error (_("You must provide one argument for $_isvoid."));
3598
3599 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3600
3601 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3602 }
3603
3604 void
3605 _initialize_values (void)
3606 {
3607 add_cmd ("convenience", no_class, show_convenience, _("\
3608 Debugger convenience (\"$foo\") variables and functions.\n\
3609 Convenience variables are created when you assign them values;\n\
3610 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3611 \n\
3612 A few convenience variables are given values automatically:\n\
3613 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3614 \"$__\" holds the contents of the last address examined with \"x\"."
3615 #ifdef HAVE_PYTHON
3616 "\n\n\
3617 Convenience functions are defined via the Python API."
3618 #endif
3619 ), &showlist);
3620 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3621
3622 add_cmd ("values", no_set_class, show_values, _("\
3623 Elements of value history around item number IDX (or last ten)."),
3624 &showlist);
3625
3626 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3627 Initialize a convenience variable if necessary.\n\
3628 init-if-undefined VARIABLE = EXPRESSION\n\
3629 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3630 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3631 VARIABLE is already initialized."));
3632
3633 add_prefix_cmd ("function", no_class, function_command, _("\
3634 Placeholder command for showing help on convenience functions."),
3635 &functionlist, "function ", 0, &cmdlist);
3636
3637 add_internal_function ("_isvoid", _("\
3638 Check whether an expression is void.\n\
3639 Usage: $_isvoid (expression)\n\
3640 Return 1 if the expression is void, zero otherwise."),
3641 isvoid_internal_fn, NULL);
3642 }
This page took 0.104506 seconds and 4 git commands to generate.