Fix FAIL: gdb.ada/small_reg_param.exp: continue to call_me
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "language.h"
31 #include "demangle.h"
32 #include "doublest.h"
33 #include "gdb_assert.h"
34 #include "regcache.h"
35 #include "block.h"
36 #include "dfp.h"
37 #include "objfiles.h"
38 #include "valprint.h"
39 #include "cli/cli-decode.h"
40 #include "exceptions.h"
41 #include "python/python.h"
42 #include <ctype.h>
43 #include "tracepoint.h"
44 #include "cp-abi.h"
45 #include "user-regs.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68 struct range
69 {
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75 };
76
77 typedef struct range range_s;
78
79 DEF_VEC_O(range_s);
80
81 /* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84 static int
85 ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87 {
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93 }
94
95 /* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100 static int
101 range_lessthan (const range_s *r1, const range_s *r2)
102 {
103 return r1->offset < r2->offset;
104 }
105
106 /* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109 static int
110 ranges_contain (VEC(range_s) *ranges, int offset, int length)
111 {
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 static struct cmd_list_element *functionlist;
171
172 /* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
175 struct value
176 {
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
200 /* If nonzero, this is the value of a variable which does not
201 actually exist in the program. */
202 unsigned int optimized_out : 1;
203
204 /* If value is a variable, is it initialized or not. */
205 unsigned int initialized : 1;
206
207 /* If value is from the stack. If this is set, read_stack will be
208 used instead of read_memory to enable extra caching. */
209 unsigned int stack : 1;
210
211 /* If the value has been released. */
212 unsigned int released : 1;
213
214 /* Location of value (if lval). */
215 union
216 {
217 /* If lval == lval_memory, this is the address in the inferior.
218 If lval == lval_register, this is the byte offset into the
219 registers structure. */
220 CORE_ADDR address;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
235 } computed;
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
251 int bitpos;
252
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
320 struct value *next;
321
322 /* Register number if the value is from a register. */
323 short regnum;
324
325 /* Actual contents of the value. Target byte-order. NULL or not
326 valid if lazy is nonzero. */
327 gdb_byte *contents;
328
329 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
330 rather than available, since the common and default case is for a
331 value to be available. This is filled in at value read time. */
332 VEC(range_s) *unavailable;
333 };
334
335 int
336 value_bytes_available (const struct value *value, int offset, int length)
337 {
338 gdb_assert (!value->lazy);
339
340 return !ranges_contain (value->unavailable, offset, length);
341 }
342
343 int
344 value_entirely_available (struct value *value)
345 {
346 /* We can only tell whether the whole value is available when we try
347 to read it. */
348 if (value->lazy)
349 value_fetch_lazy (value);
350
351 if (VEC_empty (range_s, value->unavailable))
352 return 1;
353 return 0;
354 }
355
356 void
357 mark_value_bytes_unavailable (struct value *value, int offset, int length)
358 {
359 range_s newr;
360 int i;
361
362 /* Insert the range sorted. If there's overlap or the new range
363 would be contiguous with an existing range, merge. */
364
365 newr.offset = offset;
366 newr.length = length;
367
368 /* Do a binary search for the position the given range would be
369 inserted if we only considered the starting OFFSET of ranges.
370 Call that position I. Since we also have LENGTH to care for
371 (this is a range afterall), we need to check if the _previous_
372 range overlaps the I range. E.g., calling R the new range:
373
374 #1 - overlaps with previous
375
376 R
377 |-...-|
378 |---| |---| |------| ... |--|
379 0 1 2 N
380
381 I=1
382
383 In the case #1 above, the binary search would return `I=1',
384 meaning, this OFFSET should be inserted at position 1, and the
385 current position 1 should be pushed further (and become 2). But,
386 note that `0' overlaps with R, so we want to merge them.
387
388 A similar consideration needs to be taken if the new range would
389 be contiguous with the previous range:
390
391 #2 - contiguous with previous
392
393 R
394 |-...-|
395 |--| |---| |------| ... |--|
396 0 1 2 N
397
398 I=1
399
400 If there's no overlap with the previous range, as in:
401
402 #3 - not overlapping and not contiguous
403
404 R
405 |-...-|
406 |--| |---| |------| ... |--|
407 0 1 2 N
408
409 I=1
410
411 or if I is 0:
412
413 #4 - R is the range with lowest offset
414
415 R
416 |-...-|
417 |--| |---| |------| ... |--|
418 0 1 2 N
419
420 I=0
421
422 ... we just push the new range to I.
423
424 All the 4 cases above need to consider that the new range may
425 also overlap several of the ranges that follow, or that R may be
426 contiguous with the following range, and merge. E.g.,
427
428 #5 - overlapping following ranges
429
430 R
431 |------------------------|
432 |--| |---| |------| ... |--|
433 0 1 2 N
434
435 I=0
436
437 or:
438
439 R
440 |-------|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 */
447
448 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
449 if (i > 0)
450 {
451 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
452
453 if (ranges_overlap (bef->offset, bef->length, offset, length))
454 {
455 /* #1 */
456 ULONGEST l = min (bef->offset, offset);
457 ULONGEST h = max (bef->offset + bef->length, offset + length);
458
459 bef->offset = l;
460 bef->length = h - l;
461 i--;
462 }
463 else if (offset == bef->offset + bef->length)
464 {
465 /* #2 */
466 bef->length += length;
467 i--;
468 }
469 else
470 {
471 /* #3 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474 }
475 else
476 {
477 /* #4 */
478 VEC_safe_insert (range_s, value->unavailable, i, &newr);
479 }
480
481 /* Check whether the ranges following the one we've just added or
482 touched can be folded in (#5 above). */
483 if (i + 1 < VEC_length (range_s, value->unavailable))
484 {
485 struct range *t;
486 struct range *r;
487 int removed = 0;
488 int next = i + 1;
489
490 /* Get the range we just touched. */
491 t = VEC_index (range_s, value->unavailable, i);
492 removed = 0;
493
494 i = next;
495 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
496 if (r->offset <= t->offset + t->length)
497 {
498 ULONGEST l, h;
499
500 l = min (t->offset, r->offset);
501 h = max (t->offset + t->length, r->offset + r->length);
502
503 t->offset = l;
504 t->length = h - l;
505
506 removed++;
507 }
508 else
509 {
510 /* If we couldn't merge this one, we won't be able to
511 merge following ones either, since the ranges are
512 always sorted by OFFSET. */
513 break;
514 }
515
516 if (removed != 0)
517 VEC_block_remove (range_s, value->unavailable, next, removed);
518 }
519 }
520
521 /* Find the first range in RANGES that overlaps the range defined by
522 OFFSET and LENGTH, starting at element POS in the RANGES vector,
523 Returns the index into RANGES where such overlapping range was
524 found, or -1 if none was found. */
525
526 static int
527 find_first_range_overlap (VEC(range_s) *ranges, int pos,
528 int offset, int length)
529 {
530 range_s *r;
531 int i;
532
533 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
534 if (ranges_overlap (r->offset, r->length, offset, length))
535 return i;
536
537 return -1;
538 }
539
540 int
541 value_available_contents_eq (const struct value *val1, int offset1,
542 const struct value *val2, int offset2,
543 int length)
544 {
545 int idx1 = 0, idx2 = 0;
546
547 /* See function description in value.h. */
548 gdb_assert (!val1->lazy && !val2->lazy);
549
550 while (length > 0)
551 {
552 range_s *r1, *r2;
553 ULONGEST l1, h1;
554 ULONGEST l2, h2;
555
556 idx1 = find_first_range_overlap (val1->unavailable, idx1,
557 offset1, length);
558 idx2 = find_first_range_overlap (val2->unavailable, idx2,
559 offset2, length);
560
561 /* The usual case is for both values to be completely available. */
562 if (idx1 == -1 && idx2 == -1)
563 return (memcmp (val1->contents + offset1,
564 val2->contents + offset2,
565 length) == 0);
566 /* The contents only match equal if the available set matches as
567 well. */
568 else if (idx1 == -1 || idx2 == -1)
569 return 0;
570
571 gdb_assert (idx1 != -1 && idx2 != -1);
572
573 r1 = VEC_index (range_s, val1->unavailable, idx1);
574 r2 = VEC_index (range_s, val2->unavailable, idx2);
575
576 /* Get the unavailable windows intersected by the incoming
577 ranges. The first and last ranges that overlap the argument
578 range may be wider than said incoming arguments ranges. */
579 l1 = max (offset1, r1->offset);
580 h1 = min (offset1 + length, r1->offset + r1->length);
581
582 l2 = max (offset2, r2->offset);
583 h2 = min (offset2 + length, r2->offset + r2->length);
584
585 /* Make them relative to the respective start offsets, so we can
586 compare them for equality. */
587 l1 -= offset1;
588 h1 -= offset1;
589
590 l2 -= offset2;
591 h2 -= offset2;
592
593 /* Different availability, no match. */
594 if (l1 != l2 || h1 != h2)
595 return 0;
596
597 /* Compare the _available_ contents. */
598 if (memcmp (val1->contents + offset1,
599 val2->contents + offset2,
600 l1) != 0)
601 return 0;
602
603 length -= h1;
604 offset1 += h1;
605 offset2 += h1;
606 }
607
608 return 1;
609 }
610
611 /* Prototypes for local functions. */
612
613 static void show_values (char *, int);
614
615 static void show_convenience (char *, int);
616
617
618 /* The value-history records all the values printed
619 by print commands during this session. Each chunk
620 records 60 consecutive values. The first chunk on
621 the chain records the most recent values.
622 The total number of values is in value_history_count. */
623
624 #define VALUE_HISTORY_CHUNK 60
625
626 struct value_history_chunk
627 {
628 struct value_history_chunk *next;
629 struct value *values[VALUE_HISTORY_CHUNK];
630 };
631
632 /* Chain of chunks now in use. */
633
634 static struct value_history_chunk *value_history_chain;
635
636 static int value_history_count; /* Abs number of last entry stored. */
637
638 \f
639 /* List of all value objects currently allocated
640 (except for those released by calls to release_value)
641 This is so they can be freed after each command. */
642
643 static struct value *all_values;
644
645 /* Allocate a lazy value for type TYPE. Its actual content is
646 "lazily" allocated too: the content field of the return value is
647 NULL; it will be allocated when it is fetched from the target. */
648
649 struct value *
650 allocate_value_lazy (struct type *type)
651 {
652 struct value *val;
653
654 /* Call check_typedef on our type to make sure that, if TYPE
655 is a TYPE_CODE_TYPEDEF, its length is set to the length
656 of the target type instead of zero. However, we do not
657 replace the typedef type by the target type, because we want
658 to keep the typedef in order to be able to set the VAL's type
659 description correctly. */
660 check_typedef (type);
661
662 val = (struct value *) xzalloc (sizeof (struct value));
663 val->contents = NULL;
664 val->next = all_values;
665 all_values = val;
666 val->type = type;
667 val->enclosing_type = type;
668 VALUE_LVAL (val) = not_lval;
669 val->location.address = 0;
670 VALUE_FRAME_ID (val) = null_frame_id;
671 val->offset = 0;
672 val->bitpos = 0;
673 val->bitsize = 0;
674 VALUE_REGNUM (val) = -1;
675 val->lazy = 1;
676 val->optimized_out = 0;
677 val->embedded_offset = 0;
678 val->pointed_to_offset = 0;
679 val->modifiable = 1;
680 val->initialized = 1; /* Default to initialized. */
681
682 /* Values start out on the all_values chain. */
683 val->reference_count = 1;
684
685 return val;
686 }
687
688 /* Allocate the contents of VAL if it has not been allocated yet. */
689
690 void
691 allocate_value_contents (struct value *val)
692 {
693 if (!val->contents)
694 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
695 }
696
697 /* Allocate a value and its contents for type TYPE. */
698
699 struct value *
700 allocate_value (struct type *type)
701 {
702 struct value *val = allocate_value_lazy (type);
703
704 allocate_value_contents (val);
705 val->lazy = 0;
706 return val;
707 }
708
709 /* Allocate a value that has the correct length
710 for COUNT repetitions of type TYPE. */
711
712 struct value *
713 allocate_repeat_value (struct type *type, int count)
714 {
715 int low_bound = current_language->string_lower_bound; /* ??? */
716 /* FIXME-type-allocation: need a way to free this type when we are
717 done with it. */
718 struct type *array_type
719 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
720
721 return allocate_value (array_type);
722 }
723
724 struct value *
725 allocate_computed_value (struct type *type,
726 const struct lval_funcs *funcs,
727 void *closure)
728 {
729 struct value *v = allocate_value_lazy (type);
730
731 VALUE_LVAL (v) = lval_computed;
732 v->location.computed.funcs = funcs;
733 v->location.computed.closure = closure;
734
735 return v;
736 }
737
738 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
739
740 struct value *
741 allocate_optimized_out_value (struct type *type)
742 {
743 struct value *retval = allocate_value_lazy (type);
744
745 set_value_optimized_out (retval, 1);
746
747 return retval;
748 }
749
750 /* Accessor methods. */
751
752 struct value *
753 value_next (struct value *value)
754 {
755 return value->next;
756 }
757
758 struct type *
759 value_type (const struct value *value)
760 {
761 return value->type;
762 }
763 void
764 deprecated_set_value_type (struct value *value, struct type *type)
765 {
766 value->type = type;
767 }
768
769 int
770 value_offset (const struct value *value)
771 {
772 return value->offset;
773 }
774 void
775 set_value_offset (struct value *value, int offset)
776 {
777 value->offset = offset;
778 }
779
780 int
781 value_bitpos (const struct value *value)
782 {
783 return value->bitpos;
784 }
785 void
786 set_value_bitpos (struct value *value, int bit)
787 {
788 value->bitpos = bit;
789 }
790
791 int
792 value_bitsize (const struct value *value)
793 {
794 return value->bitsize;
795 }
796 void
797 set_value_bitsize (struct value *value, int bit)
798 {
799 value->bitsize = bit;
800 }
801
802 struct value *
803 value_parent (struct value *value)
804 {
805 return value->parent;
806 }
807
808 /* See value.h. */
809
810 void
811 set_value_parent (struct value *value, struct value *parent)
812 {
813 struct value *old = value->parent;
814
815 value->parent = parent;
816 if (parent != NULL)
817 value_incref (parent);
818 value_free (old);
819 }
820
821 gdb_byte *
822 value_contents_raw (struct value *value)
823 {
824 allocate_value_contents (value);
825 return value->contents + value->embedded_offset;
826 }
827
828 gdb_byte *
829 value_contents_all_raw (struct value *value)
830 {
831 allocate_value_contents (value);
832 return value->contents;
833 }
834
835 struct type *
836 value_enclosing_type (struct value *value)
837 {
838 return value->enclosing_type;
839 }
840
841 /* Look at value.h for description. */
842
843 struct type *
844 value_actual_type (struct value *value, int resolve_simple_types,
845 int *real_type_found)
846 {
847 struct value_print_options opts;
848 struct type *result;
849
850 get_user_print_options (&opts);
851
852 if (real_type_found)
853 *real_type_found = 0;
854 result = value_type (value);
855 if (opts.objectprint)
856 {
857 /* If result's target type is TYPE_CODE_STRUCT, proceed to
858 fetch its rtti type. */
859 if ((TYPE_CODE (result) == TYPE_CODE_PTR
860 || TYPE_CODE (result) == TYPE_CODE_REF)
861 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
862 == TYPE_CODE_STRUCT)
863 {
864 struct type *real_type;
865
866 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
867 if (real_type)
868 {
869 if (real_type_found)
870 *real_type_found = 1;
871 result = real_type;
872 }
873 }
874 else if (resolve_simple_types)
875 {
876 if (real_type_found)
877 *real_type_found = 1;
878 result = value_enclosing_type (value);
879 }
880 }
881
882 return result;
883 }
884
885 static void
886 require_not_optimized_out (const struct value *value)
887 {
888 if (value->optimized_out)
889 error (_("value has been optimized out"));
890 }
891
892 static void
893 require_available (const struct value *value)
894 {
895 if (!VEC_empty (range_s, value->unavailable))
896 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
897 }
898
899 const gdb_byte *
900 value_contents_for_printing (struct value *value)
901 {
902 if (value->lazy)
903 value_fetch_lazy (value);
904 return value->contents;
905 }
906
907 const gdb_byte *
908 value_contents_for_printing_const (const struct value *value)
909 {
910 gdb_assert (!value->lazy);
911 return value->contents;
912 }
913
914 const gdb_byte *
915 value_contents_all (struct value *value)
916 {
917 const gdb_byte *result = value_contents_for_printing (value);
918 require_not_optimized_out (value);
919 require_available (value);
920 return result;
921 }
922
923 /* Copy LENGTH bytes of SRC value's (all) contents
924 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
925 contents, starting at DST_OFFSET. If unavailable contents are
926 being copied from SRC, the corresponding DST contents are marked
927 unavailable accordingly. Neither DST nor SRC may be lazy
928 values.
929
930 It is assumed the contents of DST in the [DST_OFFSET,
931 DST_OFFSET+LENGTH) range are wholly available. */
932
933 void
934 value_contents_copy_raw (struct value *dst, int dst_offset,
935 struct value *src, int src_offset, int length)
936 {
937 range_s *r;
938 int i;
939
940 /* A lazy DST would make that this copy operation useless, since as
941 soon as DST's contents were un-lazied (by a later value_contents
942 call, say), the contents would be overwritten. A lazy SRC would
943 mean we'd be copying garbage. */
944 gdb_assert (!dst->lazy && !src->lazy);
945
946 /* The overwritten DST range gets unavailability ORed in, not
947 replaced. Make sure to remember to implement replacing if it
948 turns out actually necessary. */
949 gdb_assert (value_bytes_available (dst, dst_offset, length));
950
951 /* Copy the data. */
952 memcpy (value_contents_all_raw (dst) + dst_offset,
953 value_contents_all_raw (src) + src_offset,
954 length);
955
956 /* Copy the meta-data, adjusted. */
957 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
958 {
959 ULONGEST h, l;
960
961 l = max (r->offset, src_offset);
962 h = min (r->offset + r->length, src_offset + length);
963
964 if (l < h)
965 mark_value_bytes_unavailable (dst,
966 dst_offset + (l - src_offset),
967 h - l);
968 }
969 }
970
971 /* Copy LENGTH bytes of SRC value's (all) contents
972 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
973 (all) contents, starting at DST_OFFSET. If unavailable contents
974 are being copied from SRC, the corresponding DST contents are
975 marked unavailable accordingly. DST must not be lazy. If SRC is
976 lazy, it will be fetched now. If SRC is not valid (is optimized
977 out), an error is thrown.
978
979 It is assumed the contents of DST in the [DST_OFFSET,
980 DST_OFFSET+LENGTH) range are wholly available. */
981
982 void
983 value_contents_copy (struct value *dst, int dst_offset,
984 struct value *src, int src_offset, int length)
985 {
986 require_not_optimized_out (src);
987
988 if (src->lazy)
989 value_fetch_lazy (src);
990
991 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
992 }
993
994 int
995 value_lazy (struct value *value)
996 {
997 return value->lazy;
998 }
999
1000 void
1001 set_value_lazy (struct value *value, int val)
1002 {
1003 value->lazy = val;
1004 }
1005
1006 int
1007 value_stack (struct value *value)
1008 {
1009 return value->stack;
1010 }
1011
1012 void
1013 set_value_stack (struct value *value, int val)
1014 {
1015 value->stack = val;
1016 }
1017
1018 const gdb_byte *
1019 value_contents (struct value *value)
1020 {
1021 const gdb_byte *result = value_contents_writeable (value);
1022 require_not_optimized_out (value);
1023 require_available (value);
1024 return result;
1025 }
1026
1027 gdb_byte *
1028 value_contents_writeable (struct value *value)
1029 {
1030 if (value->lazy)
1031 value_fetch_lazy (value);
1032 return value_contents_raw (value);
1033 }
1034
1035 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1036 this function is different from value_equal; in C the operator ==
1037 can return 0 even if the two values being compared are equal. */
1038
1039 int
1040 value_contents_equal (struct value *val1, struct value *val2)
1041 {
1042 struct type *type1;
1043 struct type *type2;
1044
1045 type1 = check_typedef (value_type (val1));
1046 type2 = check_typedef (value_type (val2));
1047 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
1048 return 0;
1049
1050 return (memcmp (value_contents (val1), value_contents (val2),
1051 TYPE_LENGTH (type1)) == 0);
1052 }
1053
1054 int
1055 value_optimized_out (struct value *value)
1056 {
1057 /* We can only know if a value is optimized out once we have tried to
1058 fetch it. */
1059 if (!value->optimized_out && value->lazy)
1060 value_fetch_lazy (value);
1061
1062 return value->optimized_out;
1063 }
1064
1065 void
1066 set_value_optimized_out (struct value *value, int val)
1067 {
1068 value->optimized_out = val;
1069 }
1070
1071 int
1072 value_entirely_optimized_out (const struct value *value)
1073 {
1074 if (!value->optimized_out)
1075 return 0;
1076 if (value->lval != lval_computed
1077 || !value->location.computed.funcs->check_any_valid)
1078 return 1;
1079 return !value->location.computed.funcs->check_any_valid (value);
1080 }
1081
1082 int
1083 value_bits_valid (const struct value *value, int offset, int length)
1084 {
1085 if (!value->optimized_out)
1086 return 1;
1087 if (value->lval != lval_computed
1088 || !value->location.computed.funcs->check_validity)
1089 return 0;
1090 return value->location.computed.funcs->check_validity (value, offset,
1091 length);
1092 }
1093
1094 int
1095 value_bits_synthetic_pointer (const struct value *value,
1096 int offset, int length)
1097 {
1098 if (value->lval != lval_computed
1099 || !value->location.computed.funcs->check_synthetic_pointer)
1100 return 0;
1101 return value->location.computed.funcs->check_synthetic_pointer (value,
1102 offset,
1103 length);
1104 }
1105
1106 int
1107 value_embedded_offset (struct value *value)
1108 {
1109 return value->embedded_offset;
1110 }
1111
1112 void
1113 set_value_embedded_offset (struct value *value, int val)
1114 {
1115 value->embedded_offset = val;
1116 }
1117
1118 int
1119 value_pointed_to_offset (struct value *value)
1120 {
1121 return value->pointed_to_offset;
1122 }
1123
1124 void
1125 set_value_pointed_to_offset (struct value *value, int val)
1126 {
1127 value->pointed_to_offset = val;
1128 }
1129
1130 const struct lval_funcs *
1131 value_computed_funcs (const struct value *v)
1132 {
1133 gdb_assert (value_lval_const (v) == lval_computed);
1134
1135 return v->location.computed.funcs;
1136 }
1137
1138 void *
1139 value_computed_closure (const struct value *v)
1140 {
1141 gdb_assert (v->lval == lval_computed);
1142
1143 return v->location.computed.closure;
1144 }
1145
1146 enum lval_type *
1147 deprecated_value_lval_hack (struct value *value)
1148 {
1149 return &value->lval;
1150 }
1151
1152 enum lval_type
1153 value_lval_const (const struct value *value)
1154 {
1155 return value->lval;
1156 }
1157
1158 CORE_ADDR
1159 value_address (const struct value *value)
1160 {
1161 if (value->lval == lval_internalvar
1162 || value->lval == lval_internalvar_component)
1163 return 0;
1164 if (value->parent != NULL)
1165 return value_address (value->parent) + value->offset;
1166 else
1167 return value->location.address + value->offset;
1168 }
1169
1170 CORE_ADDR
1171 value_raw_address (struct value *value)
1172 {
1173 if (value->lval == lval_internalvar
1174 || value->lval == lval_internalvar_component)
1175 return 0;
1176 return value->location.address;
1177 }
1178
1179 void
1180 set_value_address (struct value *value, CORE_ADDR addr)
1181 {
1182 gdb_assert (value->lval != lval_internalvar
1183 && value->lval != lval_internalvar_component);
1184 value->location.address = addr;
1185 }
1186
1187 struct internalvar **
1188 deprecated_value_internalvar_hack (struct value *value)
1189 {
1190 return &value->location.internalvar;
1191 }
1192
1193 struct frame_id *
1194 deprecated_value_frame_id_hack (struct value *value)
1195 {
1196 return &value->frame_id;
1197 }
1198
1199 short *
1200 deprecated_value_regnum_hack (struct value *value)
1201 {
1202 return &value->regnum;
1203 }
1204
1205 int
1206 deprecated_value_modifiable (struct value *value)
1207 {
1208 return value->modifiable;
1209 }
1210 \f
1211 /* Return a mark in the value chain. All values allocated after the
1212 mark is obtained (except for those released) are subject to being freed
1213 if a subsequent value_free_to_mark is passed the mark. */
1214 struct value *
1215 value_mark (void)
1216 {
1217 return all_values;
1218 }
1219
1220 /* Take a reference to VAL. VAL will not be deallocated until all
1221 references are released. */
1222
1223 void
1224 value_incref (struct value *val)
1225 {
1226 val->reference_count++;
1227 }
1228
1229 /* Release a reference to VAL, which was acquired with value_incref.
1230 This function is also called to deallocate values from the value
1231 chain. */
1232
1233 void
1234 value_free (struct value *val)
1235 {
1236 if (val)
1237 {
1238 gdb_assert (val->reference_count > 0);
1239 val->reference_count--;
1240 if (val->reference_count > 0)
1241 return;
1242
1243 /* If there's an associated parent value, drop our reference to
1244 it. */
1245 if (val->parent != NULL)
1246 value_free (val->parent);
1247
1248 if (VALUE_LVAL (val) == lval_computed)
1249 {
1250 const struct lval_funcs *funcs = val->location.computed.funcs;
1251
1252 if (funcs->free_closure)
1253 funcs->free_closure (val);
1254 }
1255
1256 xfree (val->contents);
1257 VEC_free (range_s, val->unavailable);
1258 }
1259 xfree (val);
1260 }
1261
1262 /* Free all values allocated since MARK was obtained by value_mark
1263 (except for those released). */
1264 void
1265 value_free_to_mark (struct value *mark)
1266 {
1267 struct value *val;
1268 struct value *next;
1269
1270 for (val = all_values; val && val != mark; val = next)
1271 {
1272 next = val->next;
1273 val->released = 1;
1274 value_free (val);
1275 }
1276 all_values = val;
1277 }
1278
1279 /* Free all the values that have been allocated (except for those released).
1280 Call after each command, successful or not.
1281 In practice this is called before each command, which is sufficient. */
1282
1283 void
1284 free_all_values (void)
1285 {
1286 struct value *val;
1287 struct value *next;
1288
1289 for (val = all_values; val; val = next)
1290 {
1291 next = val->next;
1292 val->released = 1;
1293 value_free (val);
1294 }
1295
1296 all_values = 0;
1297 }
1298
1299 /* Frees all the elements in a chain of values. */
1300
1301 void
1302 free_value_chain (struct value *v)
1303 {
1304 struct value *next;
1305
1306 for (; v; v = next)
1307 {
1308 next = value_next (v);
1309 value_free (v);
1310 }
1311 }
1312
1313 /* Remove VAL from the chain all_values
1314 so it will not be freed automatically. */
1315
1316 void
1317 release_value (struct value *val)
1318 {
1319 struct value *v;
1320
1321 if (all_values == val)
1322 {
1323 all_values = val->next;
1324 val->next = NULL;
1325 val->released = 1;
1326 return;
1327 }
1328
1329 for (v = all_values; v; v = v->next)
1330 {
1331 if (v->next == val)
1332 {
1333 v->next = val->next;
1334 val->next = NULL;
1335 val->released = 1;
1336 break;
1337 }
1338 }
1339 }
1340
1341 /* If the value is not already released, release it.
1342 If the value is already released, increment its reference count.
1343 That is, this function ensures that the value is released from the
1344 value chain and that the caller owns a reference to it. */
1345
1346 void
1347 release_value_or_incref (struct value *val)
1348 {
1349 if (val->released)
1350 value_incref (val);
1351 else
1352 release_value (val);
1353 }
1354
1355 /* Release all values up to mark */
1356 struct value *
1357 value_release_to_mark (struct value *mark)
1358 {
1359 struct value *val;
1360 struct value *next;
1361
1362 for (val = next = all_values; next; next = next->next)
1363 {
1364 if (next->next == mark)
1365 {
1366 all_values = next->next;
1367 next->next = NULL;
1368 return val;
1369 }
1370 next->released = 1;
1371 }
1372 all_values = 0;
1373 return val;
1374 }
1375
1376 /* Return a copy of the value ARG.
1377 It contains the same contents, for same memory address,
1378 but it's a different block of storage. */
1379
1380 struct value *
1381 value_copy (struct value *arg)
1382 {
1383 struct type *encl_type = value_enclosing_type (arg);
1384 struct value *val;
1385
1386 if (value_lazy (arg))
1387 val = allocate_value_lazy (encl_type);
1388 else
1389 val = allocate_value (encl_type);
1390 val->type = arg->type;
1391 VALUE_LVAL (val) = VALUE_LVAL (arg);
1392 val->location = arg->location;
1393 val->offset = arg->offset;
1394 val->bitpos = arg->bitpos;
1395 val->bitsize = arg->bitsize;
1396 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
1397 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
1398 val->lazy = arg->lazy;
1399 val->optimized_out = arg->optimized_out;
1400 val->embedded_offset = value_embedded_offset (arg);
1401 val->pointed_to_offset = arg->pointed_to_offset;
1402 val->modifiable = arg->modifiable;
1403 if (!value_lazy (val))
1404 {
1405 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1406 TYPE_LENGTH (value_enclosing_type (arg)));
1407
1408 }
1409 val->unavailable = VEC_copy (range_s, arg->unavailable);
1410 set_value_parent (val, arg->parent);
1411 if (VALUE_LVAL (val) == lval_computed)
1412 {
1413 const struct lval_funcs *funcs = val->location.computed.funcs;
1414
1415 if (funcs->copy_closure)
1416 val->location.computed.closure = funcs->copy_closure (val);
1417 }
1418 return val;
1419 }
1420
1421 /* Return a version of ARG that is non-lvalue. */
1422
1423 struct value *
1424 value_non_lval (struct value *arg)
1425 {
1426 if (VALUE_LVAL (arg) != not_lval)
1427 {
1428 struct type *enc_type = value_enclosing_type (arg);
1429 struct value *val = allocate_value (enc_type);
1430
1431 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1432 TYPE_LENGTH (enc_type));
1433 val->type = arg->type;
1434 set_value_embedded_offset (val, value_embedded_offset (arg));
1435 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1436 return val;
1437 }
1438 return arg;
1439 }
1440
1441 void
1442 set_value_component_location (struct value *component,
1443 const struct value *whole)
1444 {
1445 if (whole->lval == lval_internalvar)
1446 VALUE_LVAL (component) = lval_internalvar_component;
1447 else
1448 VALUE_LVAL (component) = whole->lval;
1449
1450 component->location = whole->location;
1451 if (whole->lval == lval_computed)
1452 {
1453 const struct lval_funcs *funcs = whole->location.computed.funcs;
1454
1455 if (funcs->copy_closure)
1456 component->location.computed.closure = funcs->copy_closure (whole);
1457 }
1458 }
1459
1460 \f
1461 /* Access to the value history. */
1462
1463 /* Record a new value in the value history.
1464 Returns the absolute history index of the entry.
1465 Result of -1 indicates the value was not saved; otherwise it is the
1466 value history index of this new item. */
1467
1468 int
1469 record_latest_value (struct value *val)
1470 {
1471 int i;
1472
1473 /* We don't want this value to have anything to do with the inferior anymore.
1474 In particular, "set $1 = 50" should not affect the variable from which
1475 the value was taken, and fast watchpoints should be able to assume that
1476 a value on the value history never changes. */
1477 if (value_lazy (val))
1478 value_fetch_lazy (val);
1479 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1480 from. This is a bit dubious, because then *&$1 does not just return $1
1481 but the current contents of that location. c'est la vie... */
1482 val->modifiable = 0;
1483 release_value (val);
1484
1485 /* Here we treat value_history_count as origin-zero
1486 and applying to the value being stored now. */
1487
1488 i = value_history_count % VALUE_HISTORY_CHUNK;
1489 if (i == 0)
1490 {
1491 struct value_history_chunk *new
1492 = (struct value_history_chunk *)
1493
1494 xmalloc (sizeof (struct value_history_chunk));
1495 memset (new->values, 0, sizeof new->values);
1496 new->next = value_history_chain;
1497 value_history_chain = new;
1498 }
1499
1500 value_history_chain->values[i] = val;
1501
1502 /* Now we regard value_history_count as origin-one
1503 and applying to the value just stored. */
1504
1505 return ++value_history_count;
1506 }
1507
1508 /* Return a copy of the value in the history with sequence number NUM. */
1509
1510 struct value *
1511 access_value_history (int num)
1512 {
1513 struct value_history_chunk *chunk;
1514 int i;
1515 int absnum = num;
1516
1517 if (absnum <= 0)
1518 absnum += value_history_count;
1519
1520 if (absnum <= 0)
1521 {
1522 if (num == 0)
1523 error (_("The history is empty."));
1524 else if (num == 1)
1525 error (_("There is only one value in the history."));
1526 else
1527 error (_("History does not go back to $$%d."), -num);
1528 }
1529 if (absnum > value_history_count)
1530 error (_("History has not yet reached $%d."), absnum);
1531
1532 absnum--;
1533
1534 /* Now absnum is always absolute and origin zero. */
1535
1536 chunk = value_history_chain;
1537 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1538 - absnum / VALUE_HISTORY_CHUNK;
1539 i > 0; i--)
1540 chunk = chunk->next;
1541
1542 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1543 }
1544
1545 static void
1546 show_values (char *num_exp, int from_tty)
1547 {
1548 int i;
1549 struct value *val;
1550 static int num = 1;
1551
1552 if (num_exp)
1553 {
1554 /* "show values +" should print from the stored position.
1555 "show values <exp>" should print around value number <exp>. */
1556 if (num_exp[0] != '+' || num_exp[1] != '\0')
1557 num = parse_and_eval_long (num_exp) - 5;
1558 }
1559 else
1560 {
1561 /* "show values" means print the last 10 values. */
1562 num = value_history_count - 9;
1563 }
1564
1565 if (num <= 0)
1566 num = 1;
1567
1568 for (i = num; i < num + 10 && i <= value_history_count; i++)
1569 {
1570 struct value_print_options opts;
1571
1572 val = access_value_history (i);
1573 printf_filtered (("$%d = "), i);
1574 get_user_print_options (&opts);
1575 value_print (val, gdb_stdout, &opts);
1576 printf_filtered (("\n"));
1577 }
1578
1579 /* The next "show values +" should start after what we just printed. */
1580 num += 10;
1581
1582 /* Hitting just return after this command should do the same thing as
1583 "show values +". If num_exp is null, this is unnecessary, since
1584 "show values +" is not useful after "show values". */
1585 if (from_tty && num_exp)
1586 {
1587 num_exp[0] = '+';
1588 num_exp[1] = '\0';
1589 }
1590 }
1591 \f
1592 /* Internal variables. These are variables within the debugger
1593 that hold values assigned by debugger commands.
1594 The user refers to them with a '$' prefix
1595 that does not appear in the variable names stored internally. */
1596
1597 struct internalvar
1598 {
1599 struct internalvar *next;
1600 char *name;
1601
1602 /* We support various different kinds of content of an internal variable.
1603 enum internalvar_kind specifies the kind, and union internalvar_data
1604 provides the data associated with this particular kind. */
1605
1606 enum internalvar_kind
1607 {
1608 /* The internal variable is empty. */
1609 INTERNALVAR_VOID,
1610
1611 /* The value of the internal variable is provided directly as
1612 a GDB value object. */
1613 INTERNALVAR_VALUE,
1614
1615 /* A fresh value is computed via a call-back routine on every
1616 access to the internal variable. */
1617 INTERNALVAR_MAKE_VALUE,
1618
1619 /* The internal variable holds a GDB internal convenience function. */
1620 INTERNALVAR_FUNCTION,
1621
1622 /* The variable holds an integer value. */
1623 INTERNALVAR_INTEGER,
1624
1625 /* The variable holds a GDB-provided string. */
1626 INTERNALVAR_STRING,
1627
1628 } kind;
1629
1630 union internalvar_data
1631 {
1632 /* A value object used with INTERNALVAR_VALUE. */
1633 struct value *value;
1634
1635 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1636 struct
1637 {
1638 /* The functions to call. */
1639 const struct internalvar_funcs *functions;
1640
1641 /* The function's user-data. */
1642 void *data;
1643 } make_value;
1644
1645 /* The internal function used with INTERNALVAR_FUNCTION. */
1646 struct
1647 {
1648 struct internal_function *function;
1649 /* True if this is the canonical name for the function. */
1650 int canonical;
1651 } fn;
1652
1653 /* An integer value used with INTERNALVAR_INTEGER. */
1654 struct
1655 {
1656 /* If type is non-NULL, it will be used as the type to generate
1657 a value for this internal variable. If type is NULL, a default
1658 integer type for the architecture is used. */
1659 struct type *type;
1660 LONGEST val;
1661 } integer;
1662
1663 /* A string value used with INTERNALVAR_STRING. */
1664 char *string;
1665 } u;
1666 };
1667
1668 static struct internalvar *internalvars;
1669
1670 /* If the variable does not already exist create it and give it the
1671 value given. If no value is given then the default is zero. */
1672 static void
1673 init_if_undefined_command (char* args, int from_tty)
1674 {
1675 struct internalvar* intvar;
1676
1677 /* Parse the expression - this is taken from set_command(). */
1678 struct expression *expr = parse_expression (args);
1679 register struct cleanup *old_chain =
1680 make_cleanup (free_current_contents, &expr);
1681
1682 /* Validate the expression.
1683 Was the expression an assignment?
1684 Or even an expression at all? */
1685 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1686 error (_("Init-if-undefined requires an assignment expression."));
1687
1688 /* Extract the variable from the parsed expression.
1689 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1690 if (expr->elts[1].opcode != OP_INTERNALVAR)
1691 error (_("The first parameter to init-if-undefined "
1692 "should be a GDB variable."));
1693 intvar = expr->elts[2].internalvar;
1694
1695 /* Only evaluate the expression if the lvalue is void.
1696 This may still fail if the expresssion is invalid. */
1697 if (intvar->kind == INTERNALVAR_VOID)
1698 evaluate_expression (expr);
1699
1700 do_cleanups (old_chain);
1701 }
1702
1703
1704 /* Look up an internal variable with name NAME. NAME should not
1705 normally include a dollar sign.
1706
1707 If the specified internal variable does not exist,
1708 the return value is NULL. */
1709
1710 struct internalvar *
1711 lookup_only_internalvar (const char *name)
1712 {
1713 struct internalvar *var;
1714
1715 for (var = internalvars; var; var = var->next)
1716 if (strcmp (var->name, name) == 0)
1717 return var;
1718
1719 return NULL;
1720 }
1721
1722 /* Complete NAME by comparing it to the names of internal variables.
1723 Returns a vector of newly allocated strings, or NULL if no matches
1724 were found. */
1725
1726 VEC (char_ptr) *
1727 complete_internalvar (const char *name)
1728 {
1729 VEC (char_ptr) *result = NULL;
1730 struct internalvar *var;
1731 int len;
1732
1733 len = strlen (name);
1734
1735 for (var = internalvars; var; var = var->next)
1736 if (strncmp (var->name, name, len) == 0)
1737 {
1738 char *r = xstrdup (var->name);
1739
1740 VEC_safe_push (char_ptr, result, r);
1741 }
1742
1743 return result;
1744 }
1745
1746 /* Create an internal variable with name NAME and with a void value.
1747 NAME should not normally include a dollar sign. */
1748
1749 struct internalvar *
1750 create_internalvar (const char *name)
1751 {
1752 struct internalvar *var;
1753
1754 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1755 var->name = concat (name, (char *)NULL);
1756 var->kind = INTERNALVAR_VOID;
1757 var->next = internalvars;
1758 internalvars = var;
1759 return var;
1760 }
1761
1762 /* Create an internal variable with name NAME and register FUN as the
1763 function that value_of_internalvar uses to create a value whenever
1764 this variable is referenced. NAME should not normally include a
1765 dollar sign. DATA is passed uninterpreted to FUN when it is
1766 called. CLEANUP, if not NULL, is called when the internal variable
1767 is destroyed. It is passed DATA as its only argument. */
1768
1769 struct internalvar *
1770 create_internalvar_type_lazy (const char *name,
1771 const struct internalvar_funcs *funcs,
1772 void *data)
1773 {
1774 struct internalvar *var = create_internalvar (name);
1775
1776 var->kind = INTERNALVAR_MAKE_VALUE;
1777 var->u.make_value.functions = funcs;
1778 var->u.make_value.data = data;
1779 return var;
1780 }
1781
1782 /* See documentation in value.h. */
1783
1784 int
1785 compile_internalvar_to_ax (struct internalvar *var,
1786 struct agent_expr *expr,
1787 struct axs_value *value)
1788 {
1789 if (var->kind != INTERNALVAR_MAKE_VALUE
1790 || var->u.make_value.functions->compile_to_ax == NULL)
1791 return 0;
1792
1793 var->u.make_value.functions->compile_to_ax (var, expr, value,
1794 var->u.make_value.data);
1795 return 1;
1796 }
1797
1798 /* Look up an internal variable with name NAME. NAME should not
1799 normally include a dollar sign.
1800
1801 If the specified internal variable does not exist,
1802 one is created, with a void value. */
1803
1804 struct internalvar *
1805 lookup_internalvar (const char *name)
1806 {
1807 struct internalvar *var;
1808
1809 var = lookup_only_internalvar (name);
1810 if (var)
1811 return var;
1812
1813 return create_internalvar (name);
1814 }
1815
1816 /* Return current value of internal variable VAR. For variables that
1817 are not inherently typed, use a value type appropriate for GDBARCH. */
1818
1819 struct value *
1820 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1821 {
1822 struct value *val;
1823 struct trace_state_variable *tsv;
1824
1825 /* If there is a trace state variable of the same name, assume that
1826 is what we really want to see. */
1827 tsv = find_trace_state_variable (var->name);
1828 if (tsv)
1829 {
1830 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1831 &(tsv->value));
1832 if (tsv->value_known)
1833 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1834 tsv->value);
1835 else
1836 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1837 return val;
1838 }
1839
1840 switch (var->kind)
1841 {
1842 case INTERNALVAR_VOID:
1843 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1844 break;
1845
1846 case INTERNALVAR_FUNCTION:
1847 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1848 break;
1849
1850 case INTERNALVAR_INTEGER:
1851 if (!var->u.integer.type)
1852 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1853 var->u.integer.val);
1854 else
1855 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1856 break;
1857
1858 case INTERNALVAR_STRING:
1859 val = value_cstring (var->u.string, strlen (var->u.string),
1860 builtin_type (gdbarch)->builtin_char);
1861 break;
1862
1863 case INTERNALVAR_VALUE:
1864 val = value_copy (var->u.value);
1865 if (value_lazy (val))
1866 value_fetch_lazy (val);
1867 break;
1868
1869 case INTERNALVAR_MAKE_VALUE:
1870 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
1871 var->u.make_value.data);
1872 break;
1873
1874 default:
1875 internal_error (__FILE__, __LINE__, _("bad kind"));
1876 }
1877
1878 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1879 on this value go back to affect the original internal variable.
1880
1881 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1882 no underlying modifyable state in the internal variable.
1883
1884 Likewise, if the variable's value is a computed lvalue, we want
1885 references to it to produce another computed lvalue, where
1886 references and assignments actually operate through the
1887 computed value's functions.
1888
1889 This means that internal variables with computed values
1890 behave a little differently from other internal variables:
1891 assignments to them don't just replace the previous value
1892 altogether. At the moment, this seems like the behavior we
1893 want. */
1894
1895 if (var->kind != INTERNALVAR_MAKE_VALUE
1896 && val->lval != lval_computed)
1897 {
1898 VALUE_LVAL (val) = lval_internalvar;
1899 VALUE_INTERNALVAR (val) = var;
1900 }
1901
1902 return val;
1903 }
1904
1905 int
1906 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1907 {
1908 if (var->kind == INTERNALVAR_INTEGER)
1909 {
1910 *result = var->u.integer.val;
1911 return 1;
1912 }
1913
1914 if (var->kind == INTERNALVAR_VALUE)
1915 {
1916 struct type *type = check_typedef (value_type (var->u.value));
1917
1918 if (TYPE_CODE (type) == TYPE_CODE_INT)
1919 {
1920 *result = value_as_long (var->u.value);
1921 return 1;
1922 }
1923 }
1924
1925 return 0;
1926 }
1927
1928 static int
1929 get_internalvar_function (struct internalvar *var,
1930 struct internal_function **result)
1931 {
1932 switch (var->kind)
1933 {
1934 case INTERNALVAR_FUNCTION:
1935 *result = var->u.fn.function;
1936 return 1;
1937
1938 default:
1939 return 0;
1940 }
1941 }
1942
1943 void
1944 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1945 int bitsize, struct value *newval)
1946 {
1947 gdb_byte *addr;
1948
1949 switch (var->kind)
1950 {
1951 case INTERNALVAR_VALUE:
1952 addr = value_contents_writeable (var->u.value);
1953
1954 if (bitsize)
1955 modify_field (value_type (var->u.value), addr + offset,
1956 value_as_long (newval), bitpos, bitsize);
1957 else
1958 memcpy (addr + offset, value_contents (newval),
1959 TYPE_LENGTH (value_type (newval)));
1960 break;
1961
1962 default:
1963 /* We can never get a component of any other kind. */
1964 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1965 }
1966 }
1967
1968 void
1969 set_internalvar (struct internalvar *var, struct value *val)
1970 {
1971 enum internalvar_kind new_kind;
1972 union internalvar_data new_data = { 0 };
1973
1974 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1975 error (_("Cannot overwrite convenience function %s"), var->name);
1976
1977 /* Prepare new contents. */
1978 switch (TYPE_CODE (check_typedef (value_type (val))))
1979 {
1980 case TYPE_CODE_VOID:
1981 new_kind = INTERNALVAR_VOID;
1982 break;
1983
1984 case TYPE_CODE_INTERNAL_FUNCTION:
1985 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1986 new_kind = INTERNALVAR_FUNCTION;
1987 get_internalvar_function (VALUE_INTERNALVAR (val),
1988 &new_data.fn.function);
1989 /* Copies created here are never canonical. */
1990 break;
1991
1992 default:
1993 new_kind = INTERNALVAR_VALUE;
1994 new_data.value = value_copy (val);
1995 new_data.value->modifiable = 1;
1996
1997 /* Force the value to be fetched from the target now, to avoid problems
1998 later when this internalvar is referenced and the target is gone or
1999 has changed. */
2000 if (value_lazy (new_data.value))
2001 value_fetch_lazy (new_data.value);
2002
2003 /* Release the value from the value chain to prevent it from being
2004 deleted by free_all_values. From here on this function should not
2005 call error () until new_data is installed into the var->u to avoid
2006 leaking memory. */
2007 release_value (new_data.value);
2008 break;
2009 }
2010
2011 /* Clean up old contents. */
2012 clear_internalvar (var);
2013
2014 /* Switch over. */
2015 var->kind = new_kind;
2016 var->u = new_data;
2017 /* End code which must not call error(). */
2018 }
2019
2020 void
2021 set_internalvar_integer (struct internalvar *var, LONGEST l)
2022 {
2023 /* Clean up old contents. */
2024 clear_internalvar (var);
2025
2026 var->kind = INTERNALVAR_INTEGER;
2027 var->u.integer.type = NULL;
2028 var->u.integer.val = l;
2029 }
2030
2031 void
2032 set_internalvar_string (struct internalvar *var, const char *string)
2033 {
2034 /* Clean up old contents. */
2035 clear_internalvar (var);
2036
2037 var->kind = INTERNALVAR_STRING;
2038 var->u.string = xstrdup (string);
2039 }
2040
2041 static void
2042 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2043 {
2044 /* Clean up old contents. */
2045 clear_internalvar (var);
2046
2047 var->kind = INTERNALVAR_FUNCTION;
2048 var->u.fn.function = f;
2049 var->u.fn.canonical = 1;
2050 /* Variables installed here are always the canonical version. */
2051 }
2052
2053 void
2054 clear_internalvar (struct internalvar *var)
2055 {
2056 /* Clean up old contents. */
2057 switch (var->kind)
2058 {
2059 case INTERNALVAR_VALUE:
2060 value_free (var->u.value);
2061 break;
2062
2063 case INTERNALVAR_STRING:
2064 xfree (var->u.string);
2065 break;
2066
2067 case INTERNALVAR_MAKE_VALUE:
2068 if (var->u.make_value.functions->destroy != NULL)
2069 var->u.make_value.functions->destroy (var->u.make_value.data);
2070 break;
2071
2072 default:
2073 break;
2074 }
2075
2076 /* Reset to void kind. */
2077 var->kind = INTERNALVAR_VOID;
2078 }
2079
2080 char *
2081 internalvar_name (struct internalvar *var)
2082 {
2083 return var->name;
2084 }
2085
2086 static struct internal_function *
2087 create_internal_function (const char *name,
2088 internal_function_fn handler, void *cookie)
2089 {
2090 struct internal_function *ifn = XNEW (struct internal_function);
2091
2092 ifn->name = xstrdup (name);
2093 ifn->handler = handler;
2094 ifn->cookie = cookie;
2095 return ifn;
2096 }
2097
2098 char *
2099 value_internal_function_name (struct value *val)
2100 {
2101 struct internal_function *ifn;
2102 int result;
2103
2104 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2105 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2106 gdb_assert (result);
2107
2108 return ifn->name;
2109 }
2110
2111 struct value *
2112 call_internal_function (struct gdbarch *gdbarch,
2113 const struct language_defn *language,
2114 struct value *func, int argc, struct value **argv)
2115 {
2116 struct internal_function *ifn;
2117 int result;
2118
2119 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2120 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2121 gdb_assert (result);
2122
2123 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2124 }
2125
2126 /* The 'function' command. This does nothing -- it is just a
2127 placeholder to let "help function NAME" work. This is also used as
2128 the implementation of the sub-command that is created when
2129 registering an internal function. */
2130 static void
2131 function_command (char *command, int from_tty)
2132 {
2133 /* Do nothing. */
2134 }
2135
2136 /* Clean up if an internal function's command is destroyed. */
2137 static void
2138 function_destroyer (struct cmd_list_element *self, void *ignore)
2139 {
2140 xfree ((char *) self->name);
2141 xfree (self->doc);
2142 }
2143
2144 /* Add a new internal function. NAME is the name of the function; DOC
2145 is a documentation string describing the function. HANDLER is
2146 called when the function is invoked. COOKIE is an arbitrary
2147 pointer which is passed to HANDLER and is intended for "user
2148 data". */
2149 void
2150 add_internal_function (const char *name, const char *doc,
2151 internal_function_fn handler, void *cookie)
2152 {
2153 struct cmd_list_element *cmd;
2154 struct internal_function *ifn;
2155 struct internalvar *var = lookup_internalvar (name);
2156
2157 ifn = create_internal_function (name, handler, cookie);
2158 set_internalvar_function (var, ifn);
2159
2160 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2161 &functionlist);
2162 cmd->destroyer = function_destroyer;
2163 }
2164
2165 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2166 prevent cycles / duplicates. */
2167
2168 void
2169 preserve_one_value (struct value *value, struct objfile *objfile,
2170 htab_t copied_types)
2171 {
2172 if (TYPE_OBJFILE (value->type) == objfile)
2173 value->type = copy_type_recursive (objfile, value->type, copied_types);
2174
2175 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2176 value->enclosing_type = copy_type_recursive (objfile,
2177 value->enclosing_type,
2178 copied_types);
2179 }
2180
2181 /* Likewise for internal variable VAR. */
2182
2183 static void
2184 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2185 htab_t copied_types)
2186 {
2187 switch (var->kind)
2188 {
2189 case INTERNALVAR_INTEGER:
2190 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2191 var->u.integer.type
2192 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2193 break;
2194
2195 case INTERNALVAR_VALUE:
2196 preserve_one_value (var->u.value, objfile, copied_types);
2197 break;
2198 }
2199 }
2200
2201 /* Update the internal variables and value history when OBJFILE is
2202 discarded; we must copy the types out of the objfile. New global types
2203 will be created for every convenience variable which currently points to
2204 this objfile's types, and the convenience variables will be adjusted to
2205 use the new global types. */
2206
2207 void
2208 preserve_values (struct objfile *objfile)
2209 {
2210 htab_t copied_types;
2211 struct value_history_chunk *cur;
2212 struct internalvar *var;
2213 int i;
2214
2215 /* Create the hash table. We allocate on the objfile's obstack, since
2216 it is soon to be deleted. */
2217 copied_types = create_copied_types_hash (objfile);
2218
2219 for (cur = value_history_chain; cur; cur = cur->next)
2220 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2221 if (cur->values[i])
2222 preserve_one_value (cur->values[i], objfile, copied_types);
2223
2224 for (var = internalvars; var; var = var->next)
2225 preserve_one_internalvar (var, objfile, copied_types);
2226
2227 preserve_python_values (objfile, copied_types);
2228
2229 htab_delete (copied_types);
2230 }
2231
2232 static void
2233 show_convenience (char *ignore, int from_tty)
2234 {
2235 struct gdbarch *gdbarch = get_current_arch ();
2236 struct internalvar *var;
2237 int varseen = 0;
2238 struct value_print_options opts;
2239
2240 get_user_print_options (&opts);
2241 for (var = internalvars; var; var = var->next)
2242 {
2243 volatile struct gdb_exception ex;
2244
2245 if (!varseen)
2246 {
2247 varseen = 1;
2248 }
2249 printf_filtered (("$%s = "), var->name);
2250
2251 TRY_CATCH (ex, RETURN_MASK_ERROR)
2252 {
2253 struct value *val;
2254
2255 val = value_of_internalvar (gdbarch, var);
2256 value_print (val, gdb_stdout, &opts);
2257 }
2258 if (ex.reason < 0)
2259 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2260 printf_filtered (("\n"));
2261 }
2262 if (!varseen)
2263 {
2264 /* This text does not mention convenience functions on purpose.
2265 The user can't create them except via Python, and if Python support
2266 is installed this message will never be printed ($_streq will
2267 exist). */
2268 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2269 "Convenience variables have "
2270 "names starting with \"$\";\n"
2271 "use \"set\" as in \"set "
2272 "$foo = 5\" to define them.\n"));
2273 }
2274 }
2275 \f
2276 /* Extract a value as a C number (either long or double).
2277 Knows how to convert fixed values to double, or
2278 floating values to long.
2279 Does not deallocate the value. */
2280
2281 LONGEST
2282 value_as_long (struct value *val)
2283 {
2284 /* This coerces arrays and functions, which is necessary (e.g.
2285 in disassemble_command). It also dereferences references, which
2286 I suspect is the most logical thing to do. */
2287 val = coerce_array (val);
2288 return unpack_long (value_type (val), value_contents (val));
2289 }
2290
2291 DOUBLEST
2292 value_as_double (struct value *val)
2293 {
2294 DOUBLEST foo;
2295 int inv;
2296
2297 foo = unpack_double (value_type (val), value_contents (val), &inv);
2298 if (inv)
2299 error (_("Invalid floating value found in program."));
2300 return foo;
2301 }
2302
2303 /* Extract a value as a C pointer. Does not deallocate the value.
2304 Note that val's type may not actually be a pointer; value_as_long
2305 handles all the cases. */
2306 CORE_ADDR
2307 value_as_address (struct value *val)
2308 {
2309 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2310
2311 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2312 whether we want this to be true eventually. */
2313 #if 0
2314 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2315 non-address (e.g. argument to "signal", "info break", etc.), or
2316 for pointers to char, in which the low bits *are* significant. */
2317 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2318 #else
2319
2320 /* There are several targets (IA-64, PowerPC, and others) which
2321 don't represent pointers to functions as simply the address of
2322 the function's entry point. For example, on the IA-64, a
2323 function pointer points to a two-word descriptor, generated by
2324 the linker, which contains the function's entry point, and the
2325 value the IA-64 "global pointer" register should have --- to
2326 support position-independent code. The linker generates
2327 descriptors only for those functions whose addresses are taken.
2328
2329 On such targets, it's difficult for GDB to convert an arbitrary
2330 function address into a function pointer; it has to either find
2331 an existing descriptor for that function, or call malloc and
2332 build its own. On some targets, it is impossible for GDB to
2333 build a descriptor at all: the descriptor must contain a jump
2334 instruction; data memory cannot be executed; and code memory
2335 cannot be modified.
2336
2337 Upon entry to this function, if VAL is a value of type `function'
2338 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2339 value_address (val) is the address of the function. This is what
2340 you'll get if you evaluate an expression like `main'. The call
2341 to COERCE_ARRAY below actually does all the usual unary
2342 conversions, which includes converting values of type `function'
2343 to `pointer to function'. This is the challenging conversion
2344 discussed above. Then, `unpack_long' will convert that pointer
2345 back into an address.
2346
2347 So, suppose the user types `disassemble foo' on an architecture
2348 with a strange function pointer representation, on which GDB
2349 cannot build its own descriptors, and suppose further that `foo'
2350 has no linker-built descriptor. The address->pointer conversion
2351 will signal an error and prevent the command from running, even
2352 though the next step would have been to convert the pointer
2353 directly back into the same address.
2354
2355 The following shortcut avoids this whole mess. If VAL is a
2356 function, just return its address directly. */
2357 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2358 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2359 return value_address (val);
2360
2361 val = coerce_array (val);
2362
2363 /* Some architectures (e.g. Harvard), map instruction and data
2364 addresses onto a single large unified address space. For
2365 instance: An architecture may consider a large integer in the
2366 range 0x10000000 .. 0x1000ffff to already represent a data
2367 addresses (hence not need a pointer to address conversion) while
2368 a small integer would still need to be converted integer to
2369 pointer to address. Just assume such architectures handle all
2370 integer conversions in a single function. */
2371
2372 /* JimB writes:
2373
2374 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2375 must admonish GDB hackers to make sure its behavior matches the
2376 compiler's, whenever possible.
2377
2378 In general, I think GDB should evaluate expressions the same way
2379 the compiler does. When the user copies an expression out of
2380 their source code and hands it to a `print' command, they should
2381 get the same value the compiler would have computed. Any
2382 deviation from this rule can cause major confusion and annoyance,
2383 and needs to be justified carefully. In other words, GDB doesn't
2384 really have the freedom to do these conversions in clever and
2385 useful ways.
2386
2387 AndrewC pointed out that users aren't complaining about how GDB
2388 casts integers to pointers; they are complaining that they can't
2389 take an address from a disassembly listing and give it to `x/i'.
2390 This is certainly important.
2391
2392 Adding an architecture method like integer_to_address() certainly
2393 makes it possible for GDB to "get it right" in all circumstances
2394 --- the target has complete control over how things get done, so
2395 people can Do The Right Thing for their target without breaking
2396 anyone else. The standard doesn't specify how integers get
2397 converted to pointers; usually, the ABI doesn't either, but
2398 ABI-specific code is a more reasonable place to handle it. */
2399
2400 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2401 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
2402 && gdbarch_integer_to_address_p (gdbarch))
2403 return gdbarch_integer_to_address (gdbarch, value_type (val),
2404 value_contents (val));
2405
2406 return unpack_long (value_type (val), value_contents (val));
2407 #endif
2408 }
2409 \f
2410 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2411 as a long, or as a double, assuming the raw data is described
2412 by type TYPE. Knows how to convert different sizes of values
2413 and can convert between fixed and floating point. We don't assume
2414 any alignment for the raw data. Return value is in host byte order.
2415
2416 If you want functions and arrays to be coerced to pointers, and
2417 references to be dereferenced, call value_as_long() instead.
2418
2419 C++: It is assumed that the front-end has taken care of
2420 all matters concerning pointers to members. A pointer
2421 to member which reaches here is considered to be equivalent
2422 to an INT (or some size). After all, it is only an offset. */
2423
2424 LONGEST
2425 unpack_long (struct type *type, const gdb_byte *valaddr)
2426 {
2427 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2428 enum type_code code = TYPE_CODE (type);
2429 int len = TYPE_LENGTH (type);
2430 int nosign = TYPE_UNSIGNED (type);
2431
2432 switch (code)
2433 {
2434 case TYPE_CODE_TYPEDEF:
2435 return unpack_long (check_typedef (type), valaddr);
2436 case TYPE_CODE_ENUM:
2437 case TYPE_CODE_FLAGS:
2438 case TYPE_CODE_BOOL:
2439 case TYPE_CODE_INT:
2440 case TYPE_CODE_CHAR:
2441 case TYPE_CODE_RANGE:
2442 case TYPE_CODE_MEMBERPTR:
2443 if (nosign)
2444 return extract_unsigned_integer (valaddr, len, byte_order);
2445 else
2446 return extract_signed_integer (valaddr, len, byte_order);
2447
2448 case TYPE_CODE_FLT:
2449 return extract_typed_floating (valaddr, type);
2450
2451 case TYPE_CODE_DECFLOAT:
2452 /* libdecnumber has a function to convert from decimal to integer, but
2453 it doesn't work when the decimal number has a fractional part. */
2454 return decimal_to_doublest (valaddr, len, byte_order);
2455
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_REF:
2458 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2459 whether we want this to be true eventually. */
2460 return extract_typed_address (valaddr, type);
2461
2462 default:
2463 error (_("Value can't be converted to integer."));
2464 }
2465 return 0; /* Placate lint. */
2466 }
2467
2468 /* Return a double value from the specified type and address.
2469 INVP points to an int which is set to 0 for valid value,
2470 1 for invalid value (bad float format). In either case,
2471 the returned double is OK to use. Argument is in target
2472 format, result is in host format. */
2473
2474 DOUBLEST
2475 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2476 {
2477 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2478 enum type_code code;
2479 int len;
2480 int nosign;
2481
2482 *invp = 0; /* Assume valid. */
2483 CHECK_TYPEDEF (type);
2484 code = TYPE_CODE (type);
2485 len = TYPE_LENGTH (type);
2486 nosign = TYPE_UNSIGNED (type);
2487 if (code == TYPE_CODE_FLT)
2488 {
2489 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2490 floating-point value was valid (using the macro
2491 INVALID_FLOAT). That test/macro have been removed.
2492
2493 It turns out that only the VAX defined this macro and then
2494 only in a non-portable way. Fixing the portability problem
2495 wouldn't help since the VAX floating-point code is also badly
2496 bit-rotten. The target needs to add definitions for the
2497 methods gdbarch_float_format and gdbarch_double_format - these
2498 exactly describe the target floating-point format. The
2499 problem here is that the corresponding floatformat_vax_f and
2500 floatformat_vax_d values these methods should be set to are
2501 also not defined either. Oops!
2502
2503 Hopefully someone will add both the missing floatformat
2504 definitions and the new cases for floatformat_is_valid (). */
2505
2506 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2507 {
2508 *invp = 1;
2509 return 0.0;
2510 }
2511
2512 return extract_typed_floating (valaddr, type);
2513 }
2514 else if (code == TYPE_CODE_DECFLOAT)
2515 return decimal_to_doublest (valaddr, len, byte_order);
2516 else if (nosign)
2517 {
2518 /* Unsigned -- be sure we compensate for signed LONGEST. */
2519 return (ULONGEST) unpack_long (type, valaddr);
2520 }
2521 else
2522 {
2523 /* Signed -- we are OK with unpack_long. */
2524 return unpack_long (type, valaddr);
2525 }
2526 }
2527
2528 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2529 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2530 We don't assume any alignment for the raw data. Return value is in
2531 host byte order.
2532
2533 If you want functions and arrays to be coerced to pointers, and
2534 references to be dereferenced, call value_as_address() instead.
2535
2536 C++: It is assumed that the front-end has taken care of
2537 all matters concerning pointers to members. A pointer
2538 to member which reaches here is considered to be equivalent
2539 to an INT (or some size). After all, it is only an offset. */
2540
2541 CORE_ADDR
2542 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2543 {
2544 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2545 whether we want this to be true eventually. */
2546 return unpack_long (type, valaddr);
2547 }
2548
2549 \f
2550 /* Get the value of the FIELDNO'th field (which must be static) of
2551 TYPE. Return NULL if the field doesn't exist or has been
2552 optimized out. */
2553
2554 struct value *
2555 value_static_field (struct type *type, int fieldno)
2556 {
2557 struct value *retval;
2558
2559 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2560 {
2561 case FIELD_LOC_KIND_PHYSADDR:
2562 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2563 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2564 break;
2565 case FIELD_LOC_KIND_PHYSNAME:
2566 {
2567 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2568 /* TYPE_FIELD_NAME (type, fieldno); */
2569 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2570
2571 if (sym == NULL)
2572 {
2573 /* With some compilers, e.g. HP aCC, static data members are
2574 reported as non-debuggable symbols. */
2575 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2576 NULL, NULL);
2577
2578 if (!msym)
2579 return NULL;
2580 else
2581 {
2582 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2583 SYMBOL_VALUE_ADDRESS (msym));
2584 }
2585 }
2586 else
2587 retval = value_of_variable (sym, NULL);
2588 break;
2589 }
2590 default:
2591 gdb_assert_not_reached ("unexpected field location kind");
2592 }
2593
2594 return retval;
2595 }
2596
2597 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2598 You have to be careful here, since the size of the data area for the value
2599 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2600 than the old enclosing type, you have to allocate more space for the
2601 data. */
2602
2603 void
2604 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2605 {
2606 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2607 val->contents =
2608 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2609
2610 val->enclosing_type = new_encl_type;
2611 }
2612
2613 /* Given a value ARG1 (offset by OFFSET bytes)
2614 of a struct or union type ARG_TYPE,
2615 extract and return the value of one of its (non-static) fields.
2616 FIELDNO says which field. */
2617
2618 struct value *
2619 value_primitive_field (struct value *arg1, int offset,
2620 int fieldno, struct type *arg_type)
2621 {
2622 struct value *v;
2623 struct type *type;
2624
2625 CHECK_TYPEDEF (arg_type);
2626 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2627
2628 /* Call check_typedef on our type to make sure that, if TYPE
2629 is a TYPE_CODE_TYPEDEF, its length is set to the length
2630 of the target type instead of zero. However, we do not
2631 replace the typedef type by the target type, because we want
2632 to keep the typedef in order to be able to print the type
2633 description correctly. */
2634 check_typedef (type);
2635
2636 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2637 {
2638 /* Handle packed fields.
2639
2640 Create a new value for the bitfield, with bitpos and bitsize
2641 set. If possible, arrange offset and bitpos so that we can
2642 do a single aligned read of the size of the containing type.
2643 Otherwise, adjust offset to the byte containing the first
2644 bit. Assume that the address, offset, and embedded offset
2645 are sufficiently aligned. */
2646
2647 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2648 int container_bitsize = TYPE_LENGTH (type) * 8;
2649
2650 if (arg1->optimized_out)
2651 v = allocate_optimized_out_value (type);
2652 else
2653 {
2654 v = allocate_value_lazy (type);
2655 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2656 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2657 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2658 v->bitpos = bitpos % container_bitsize;
2659 else
2660 v->bitpos = bitpos % 8;
2661 v->offset = (value_embedded_offset (arg1)
2662 + offset
2663 + (bitpos - v->bitpos) / 8);
2664 set_value_parent (v, arg1);
2665 if (!value_lazy (arg1))
2666 value_fetch_lazy (v);
2667 }
2668 }
2669 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2670 {
2671 /* This field is actually a base subobject, so preserve the
2672 entire object's contents for later references to virtual
2673 bases, etc. */
2674 int boffset;
2675
2676 /* Lazy register values with offsets are not supported. */
2677 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2678 value_fetch_lazy (arg1);
2679
2680 /* The optimized_out flag is only set correctly once a lazy value is
2681 loaded, having just loaded some lazy values we should check the
2682 optimized out case now. */
2683 if (arg1->optimized_out)
2684 v = allocate_optimized_out_value (type);
2685 else
2686 {
2687 /* We special case virtual inheritance here because this
2688 requires access to the contents, which we would rather avoid
2689 for references to ordinary fields of unavailable values. */
2690 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2691 boffset = baseclass_offset (arg_type, fieldno,
2692 value_contents (arg1),
2693 value_embedded_offset (arg1),
2694 value_address (arg1),
2695 arg1);
2696 else
2697 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2698
2699 if (value_lazy (arg1))
2700 v = allocate_value_lazy (value_enclosing_type (arg1));
2701 else
2702 {
2703 v = allocate_value (value_enclosing_type (arg1));
2704 value_contents_copy_raw (v, 0, arg1, 0,
2705 TYPE_LENGTH (value_enclosing_type (arg1)));
2706 }
2707 v->type = type;
2708 v->offset = value_offset (arg1);
2709 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2710 }
2711 }
2712 else
2713 {
2714 /* Plain old data member */
2715 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2716
2717 /* Lazy register values with offsets are not supported. */
2718 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2719 value_fetch_lazy (arg1);
2720
2721 /* The optimized_out flag is only set correctly once a lazy value is
2722 loaded, having just loaded some lazy values we should check for
2723 the optimized out case now. */
2724 if (arg1->optimized_out)
2725 v = allocate_optimized_out_value (type);
2726 else if (value_lazy (arg1))
2727 v = allocate_value_lazy (type);
2728 else
2729 {
2730 v = allocate_value (type);
2731 value_contents_copy_raw (v, value_embedded_offset (v),
2732 arg1, value_embedded_offset (arg1) + offset,
2733 TYPE_LENGTH (type));
2734 }
2735 v->offset = (value_offset (arg1) + offset
2736 + value_embedded_offset (arg1));
2737 }
2738 set_value_component_location (v, arg1);
2739 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2740 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2741 return v;
2742 }
2743
2744 /* Given a value ARG1 of a struct or union type,
2745 extract and return the value of one of its (non-static) fields.
2746 FIELDNO says which field. */
2747
2748 struct value *
2749 value_field (struct value *arg1, int fieldno)
2750 {
2751 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2752 }
2753
2754 /* Return a non-virtual function as a value.
2755 F is the list of member functions which contains the desired method.
2756 J is an index into F which provides the desired method.
2757
2758 We only use the symbol for its address, so be happy with either a
2759 full symbol or a minimal symbol. */
2760
2761 struct value *
2762 value_fn_field (struct value **arg1p, struct fn_field *f,
2763 int j, struct type *type,
2764 int offset)
2765 {
2766 struct value *v;
2767 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2768 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2769 struct symbol *sym;
2770 struct minimal_symbol *msym;
2771
2772 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2773 if (sym != NULL)
2774 {
2775 msym = NULL;
2776 }
2777 else
2778 {
2779 gdb_assert (sym == NULL);
2780 msym = lookup_minimal_symbol (physname, NULL, NULL);
2781 if (msym == NULL)
2782 return NULL;
2783 }
2784
2785 v = allocate_value (ftype);
2786 if (sym)
2787 {
2788 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2789 }
2790 else
2791 {
2792 /* The minimal symbol might point to a function descriptor;
2793 resolve it to the actual code address instead. */
2794 struct objfile *objfile = msymbol_objfile (msym);
2795 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2796
2797 set_value_address (v,
2798 gdbarch_convert_from_func_ptr_addr
2799 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2800 }
2801
2802 if (arg1p)
2803 {
2804 if (type != value_type (*arg1p))
2805 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2806 value_addr (*arg1p)));
2807
2808 /* Move the `this' pointer according to the offset.
2809 VALUE_OFFSET (*arg1p) += offset; */
2810 }
2811
2812 return v;
2813 }
2814
2815 \f
2816
2817 /* Helper function for both unpack_value_bits_as_long and
2818 unpack_bits_as_long. See those functions for more details on the
2819 interface; the only difference is that this function accepts either
2820 a NULL or a non-NULL ORIGINAL_VALUE. */
2821
2822 static int
2823 unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2824 int embedded_offset, int bitpos, int bitsize,
2825 const struct value *original_value,
2826 LONGEST *result)
2827 {
2828 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2829 ULONGEST val;
2830 ULONGEST valmask;
2831 int lsbcount;
2832 int bytes_read;
2833 int read_offset;
2834
2835 /* Read the minimum number of bytes required; there may not be
2836 enough bytes to read an entire ULONGEST. */
2837 CHECK_TYPEDEF (field_type);
2838 if (bitsize)
2839 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2840 else
2841 bytes_read = TYPE_LENGTH (field_type);
2842
2843 read_offset = bitpos / 8;
2844
2845 if (original_value != NULL
2846 && !value_bytes_available (original_value, embedded_offset + read_offset,
2847 bytes_read))
2848 return 0;
2849
2850 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
2851 bytes_read, byte_order);
2852
2853 /* Extract bits. See comment above. */
2854
2855 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2856 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2857 else
2858 lsbcount = (bitpos % 8);
2859 val >>= lsbcount;
2860
2861 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2862 If the field is signed, and is negative, then sign extend. */
2863
2864 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2865 {
2866 valmask = (((ULONGEST) 1) << bitsize) - 1;
2867 val &= valmask;
2868 if (!TYPE_UNSIGNED (field_type))
2869 {
2870 if (val & (valmask ^ (valmask >> 1)))
2871 {
2872 val |= ~valmask;
2873 }
2874 }
2875 }
2876
2877 *result = val;
2878 return 1;
2879 }
2880
2881 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2882 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2883 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2884 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2885 bits.
2886
2887 Returns false if the value contents are unavailable, otherwise
2888 returns true, indicating a valid value has been stored in *RESULT.
2889
2890 Extracting bits depends on endianness of the machine. Compute the
2891 number of least significant bits to discard. For big endian machines,
2892 we compute the total number of bits in the anonymous object, subtract
2893 off the bit count from the MSB of the object to the MSB of the
2894 bitfield, then the size of the bitfield, which leaves the LSB discard
2895 count. For little endian machines, the discard count is simply the
2896 number of bits from the LSB of the anonymous object to the LSB of the
2897 bitfield.
2898
2899 If the field is signed, we also do sign extension. */
2900
2901 int
2902 unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2903 int embedded_offset, int bitpos, int bitsize,
2904 const struct value *original_value,
2905 LONGEST *result)
2906 {
2907 gdb_assert (original_value != NULL);
2908
2909 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2910 bitpos, bitsize, original_value, result);
2911
2912 }
2913
2914 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2915 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2916 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2917 details. */
2918
2919 static int
2920 unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2921 int embedded_offset, int fieldno,
2922 const struct value *val, LONGEST *result)
2923 {
2924 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2925 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2926 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2927
2928 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2929 bitpos, bitsize, val,
2930 result);
2931 }
2932
2933 /* Unpack a field FIELDNO of the specified TYPE, from the object at
2934 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2935 ORIGINAL_VALUE, which must not be NULL. See
2936 unpack_value_bits_as_long for more details. */
2937
2938 int
2939 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2940 int embedded_offset, int fieldno,
2941 const struct value *val, LONGEST *result)
2942 {
2943 gdb_assert (val != NULL);
2944
2945 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2946 fieldno, val, result);
2947 }
2948
2949 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2950 object at VALADDR. See unpack_value_bits_as_long for more details.
2951 This function differs from unpack_value_field_as_long in that it
2952 operates without a struct value object. */
2953
2954 LONGEST
2955 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2956 {
2957 LONGEST result;
2958
2959 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2960 return result;
2961 }
2962
2963 /* Return a new value with type TYPE, which is FIELDNO field of the
2964 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2965 of VAL. If the VAL's contents required to extract the bitfield
2966 from are unavailable, the new value is correspondingly marked as
2967 unavailable. */
2968
2969 struct value *
2970 value_field_bitfield (struct type *type, int fieldno,
2971 const gdb_byte *valaddr,
2972 int embedded_offset, const struct value *val)
2973 {
2974 LONGEST l;
2975
2976 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2977 val, &l))
2978 {
2979 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2980 struct value *retval = allocate_value (field_type);
2981 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2982 return retval;
2983 }
2984 else
2985 {
2986 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2987 }
2988 }
2989
2990 /* Modify the value of a bitfield. ADDR points to a block of memory in
2991 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2992 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2993 indicate which bits (in target bit order) comprise the bitfield.
2994 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2995 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2996
2997 void
2998 modify_field (struct type *type, gdb_byte *addr,
2999 LONGEST fieldval, int bitpos, int bitsize)
3000 {
3001 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3002 ULONGEST oword;
3003 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3004 int bytesize;
3005
3006 /* Normalize BITPOS. */
3007 addr += bitpos / 8;
3008 bitpos %= 8;
3009
3010 /* If a negative fieldval fits in the field in question, chop
3011 off the sign extension bits. */
3012 if ((~fieldval & ~(mask >> 1)) == 0)
3013 fieldval &= mask;
3014
3015 /* Warn if value is too big to fit in the field in question. */
3016 if (0 != (fieldval & ~mask))
3017 {
3018 /* FIXME: would like to include fieldval in the message, but
3019 we don't have a sprintf_longest. */
3020 warning (_("Value does not fit in %d bits."), bitsize);
3021
3022 /* Truncate it, otherwise adjoining fields may be corrupted. */
3023 fieldval &= mask;
3024 }
3025
3026 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3027 false valgrind reports. */
3028
3029 bytesize = (bitpos + bitsize + 7) / 8;
3030 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3031
3032 /* Shifting for bit field depends on endianness of the target machine. */
3033 if (gdbarch_bits_big_endian (get_type_arch (type)))
3034 bitpos = bytesize * 8 - bitpos - bitsize;
3035
3036 oword &= ~(mask << bitpos);
3037 oword |= fieldval << bitpos;
3038
3039 store_unsigned_integer (addr, bytesize, byte_order, oword);
3040 }
3041 \f
3042 /* Pack NUM into BUF using a target format of TYPE. */
3043
3044 void
3045 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3046 {
3047 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3048 int len;
3049
3050 type = check_typedef (type);
3051 len = TYPE_LENGTH (type);
3052
3053 switch (TYPE_CODE (type))
3054 {
3055 case TYPE_CODE_INT:
3056 case TYPE_CODE_CHAR:
3057 case TYPE_CODE_ENUM:
3058 case TYPE_CODE_FLAGS:
3059 case TYPE_CODE_BOOL:
3060 case TYPE_CODE_RANGE:
3061 case TYPE_CODE_MEMBERPTR:
3062 store_signed_integer (buf, len, byte_order, num);
3063 break;
3064
3065 case TYPE_CODE_REF:
3066 case TYPE_CODE_PTR:
3067 store_typed_address (buf, type, (CORE_ADDR) num);
3068 break;
3069
3070 default:
3071 error (_("Unexpected type (%d) encountered for integer constant."),
3072 TYPE_CODE (type));
3073 }
3074 }
3075
3076
3077 /* Pack NUM into BUF using a target format of TYPE. */
3078
3079 static void
3080 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3081 {
3082 int len;
3083 enum bfd_endian byte_order;
3084
3085 type = check_typedef (type);
3086 len = TYPE_LENGTH (type);
3087 byte_order = gdbarch_byte_order (get_type_arch (type));
3088
3089 switch (TYPE_CODE (type))
3090 {
3091 case TYPE_CODE_INT:
3092 case TYPE_CODE_CHAR:
3093 case TYPE_CODE_ENUM:
3094 case TYPE_CODE_FLAGS:
3095 case TYPE_CODE_BOOL:
3096 case TYPE_CODE_RANGE:
3097 case TYPE_CODE_MEMBERPTR:
3098 store_unsigned_integer (buf, len, byte_order, num);
3099 break;
3100
3101 case TYPE_CODE_REF:
3102 case TYPE_CODE_PTR:
3103 store_typed_address (buf, type, (CORE_ADDR) num);
3104 break;
3105
3106 default:
3107 error (_("Unexpected type (%d) encountered "
3108 "for unsigned integer constant."),
3109 TYPE_CODE (type));
3110 }
3111 }
3112
3113
3114 /* Convert C numbers into newly allocated values. */
3115
3116 struct value *
3117 value_from_longest (struct type *type, LONGEST num)
3118 {
3119 struct value *val = allocate_value (type);
3120
3121 pack_long (value_contents_raw (val), type, num);
3122 return val;
3123 }
3124
3125
3126 /* Convert C unsigned numbers into newly allocated values. */
3127
3128 struct value *
3129 value_from_ulongest (struct type *type, ULONGEST num)
3130 {
3131 struct value *val = allocate_value (type);
3132
3133 pack_unsigned_long (value_contents_raw (val), type, num);
3134
3135 return val;
3136 }
3137
3138
3139 /* Create a value representing a pointer of type TYPE to the address
3140 ADDR. */
3141 struct value *
3142 value_from_pointer (struct type *type, CORE_ADDR addr)
3143 {
3144 struct value *val = allocate_value (type);
3145
3146 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
3147 return val;
3148 }
3149
3150
3151 /* Create a value of type TYPE whose contents come from VALADDR, if it
3152 is non-null, and whose memory address (in the inferior) is
3153 ADDRESS. */
3154
3155 struct value *
3156 value_from_contents_and_address (struct type *type,
3157 const gdb_byte *valaddr,
3158 CORE_ADDR address)
3159 {
3160 struct value *v;
3161
3162 if (valaddr == NULL)
3163 v = allocate_value_lazy (type);
3164 else
3165 {
3166 v = allocate_value (type);
3167 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
3168 }
3169 set_value_address (v, address);
3170 VALUE_LVAL (v) = lval_memory;
3171 return v;
3172 }
3173
3174 /* Create a value of type TYPE holding the contents CONTENTS.
3175 The new value is `not_lval'. */
3176
3177 struct value *
3178 value_from_contents (struct type *type, const gdb_byte *contents)
3179 {
3180 struct value *result;
3181
3182 result = allocate_value (type);
3183 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3184 return result;
3185 }
3186
3187 struct value *
3188 value_from_double (struct type *type, DOUBLEST num)
3189 {
3190 struct value *val = allocate_value (type);
3191 struct type *base_type = check_typedef (type);
3192 enum type_code code = TYPE_CODE (base_type);
3193
3194 if (code == TYPE_CODE_FLT)
3195 {
3196 store_typed_floating (value_contents_raw (val), base_type, num);
3197 }
3198 else
3199 error (_("Unexpected type encountered for floating constant."));
3200
3201 return val;
3202 }
3203
3204 struct value *
3205 value_from_decfloat (struct type *type, const gdb_byte *dec)
3206 {
3207 struct value *val = allocate_value (type);
3208
3209 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3210 return val;
3211 }
3212
3213 /* Extract a value from the history file. Input will be of the form
3214 $digits or $$digits. See block comment above 'write_dollar_variable'
3215 for details. */
3216
3217 struct value *
3218 value_from_history_ref (char *h, char **endp)
3219 {
3220 int index, len;
3221
3222 if (h[0] == '$')
3223 len = 1;
3224 else
3225 return NULL;
3226
3227 if (h[1] == '$')
3228 len = 2;
3229
3230 /* Find length of numeral string. */
3231 for (; isdigit (h[len]); len++)
3232 ;
3233
3234 /* Make sure numeral string is not part of an identifier. */
3235 if (h[len] == '_' || isalpha (h[len]))
3236 return NULL;
3237
3238 /* Now collect the index value. */
3239 if (h[1] == '$')
3240 {
3241 if (len == 2)
3242 {
3243 /* For some bizarre reason, "$$" is equivalent to "$$1",
3244 rather than to "$$0" as it ought to be! */
3245 index = -1;
3246 *endp += len;
3247 }
3248 else
3249 index = -strtol (&h[2], endp, 10);
3250 }
3251 else
3252 {
3253 if (len == 1)
3254 {
3255 /* "$" is equivalent to "$0". */
3256 index = 0;
3257 *endp += len;
3258 }
3259 else
3260 index = strtol (&h[1], endp, 10);
3261 }
3262
3263 return access_value_history (index);
3264 }
3265
3266 struct value *
3267 coerce_ref_if_computed (const struct value *arg)
3268 {
3269 const struct lval_funcs *funcs;
3270
3271 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3272 return NULL;
3273
3274 if (value_lval_const (arg) != lval_computed)
3275 return NULL;
3276
3277 funcs = value_computed_funcs (arg);
3278 if (funcs->coerce_ref == NULL)
3279 return NULL;
3280
3281 return funcs->coerce_ref (arg);
3282 }
3283
3284 /* Look at value.h for description. */
3285
3286 struct value *
3287 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3288 struct type *original_type,
3289 struct value *original_value)
3290 {
3291 /* Re-adjust type. */
3292 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3293
3294 /* Add embedding info. */
3295 set_value_enclosing_type (value, enc_type);
3296 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3297
3298 /* We may be pointing to an object of some derived type. */
3299 return value_full_object (value, NULL, 0, 0, 0);
3300 }
3301
3302 struct value *
3303 coerce_ref (struct value *arg)
3304 {
3305 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3306 struct value *retval;
3307 struct type *enc_type;
3308
3309 retval = coerce_ref_if_computed (arg);
3310 if (retval)
3311 return retval;
3312
3313 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3314 return arg;
3315
3316 enc_type = check_typedef (value_enclosing_type (arg));
3317 enc_type = TYPE_TARGET_TYPE (enc_type);
3318
3319 retval = value_at_lazy (enc_type,
3320 unpack_pointer (value_type (arg),
3321 value_contents (arg)));
3322 return readjust_indirect_value_type (retval, enc_type,
3323 value_type_arg_tmp, arg);
3324 }
3325
3326 struct value *
3327 coerce_array (struct value *arg)
3328 {
3329 struct type *type;
3330
3331 arg = coerce_ref (arg);
3332 type = check_typedef (value_type (arg));
3333
3334 switch (TYPE_CODE (type))
3335 {
3336 case TYPE_CODE_ARRAY:
3337 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3338 arg = value_coerce_array (arg);
3339 break;
3340 case TYPE_CODE_FUNC:
3341 arg = value_coerce_function (arg);
3342 break;
3343 }
3344 return arg;
3345 }
3346 \f
3347
3348 /* Return the return value convention that will be used for the
3349 specified type. */
3350
3351 enum return_value_convention
3352 struct_return_convention (struct gdbarch *gdbarch,
3353 struct value *function, struct type *value_type)
3354 {
3355 enum type_code code = TYPE_CODE (value_type);
3356
3357 if (code == TYPE_CODE_ERROR)
3358 error (_("Function return type unknown."));
3359
3360 /* Probe the architecture for the return-value convention. */
3361 return gdbarch_return_value (gdbarch, function, value_type,
3362 NULL, NULL, NULL);
3363 }
3364
3365 /* Return true if the function returning the specified type is using
3366 the convention of returning structures in memory (passing in the
3367 address as a hidden first parameter). */
3368
3369 int
3370 using_struct_return (struct gdbarch *gdbarch,
3371 struct value *function, struct type *value_type)
3372 {
3373 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3374 /* A void return value is never in memory. See also corresponding
3375 code in "print_return_value". */
3376 return 0;
3377
3378 return (struct_return_convention (gdbarch, function, value_type)
3379 != RETURN_VALUE_REGISTER_CONVENTION);
3380 }
3381
3382 /* Set the initialized field in a value struct. */
3383
3384 void
3385 set_value_initialized (struct value *val, int status)
3386 {
3387 val->initialized = status;
3388 }
3389
3390 /* Return the initialized field in a value struct. */
3391
3392 int
3393 value_initialized (struct value *val)
3394 {
3395 return val->initialized;
3396 }
3397
3398 /* Called only from the value_contents and value_contents_all()
3399 macros, if the current data for a variable needs to be loaded into
3400 value_contents(VAL). Fetches the data from the user's process, and
3401 clears the lazy flag to indicate that the data in the buffer is
3402 valid.
3403
3404 If the value is zero-length, we avoid calling read_memory, which
3405 would abort. We mark the value as fetched anyway -- all 0 bytes of
3406 it.
3407
3408 This function returns a value because it is used in the
3409 value_contents macro as part of an expression, where a void would
3410 not work. The value is ignored. */
3411
3412 int
3413 value_fetch_lazy (struct value *val)
3414 {
3415 gdb_assert (value_lazy (val));
3416 allocate_value_contents (val);
3417 if (value_bitsize (val))
3418 {
3419 /* To read a lazy bitfield, read the entire enclosing value. This
3420 prevents reading the same block of (possibly volatile) memory once
3421 per bitfield. It would be even better to read only the containing
3422 word, but we have no way to record that just specific bits of a
3423 value have been fetched. */
3424 struct type *type = check_typedef (value_type (val));
3425 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3426 struct value *parent = value_parent (val);
3427 LONGEST offset = value_offset (val);
3428 LONGEST num;
3429
3430 if (!value_bits_valid (val,
3431 TARGET_CHAR_BIT * offset + value_bitpos (val),
3432 value_bitsize (val)))
3433 error (_("value has been optimized out"));
3434
3435 if (!unpack_value_bits_as_long (value_type (val),
3436 value_contents_for_printing (parent),
3437 offset,
3438 value_bitpos (val),
3439 value_bitsize (val), parent, &num))
3440 mark_value_bytes_unavailable (val,
3441 value_embedded_offset (val),
3442 TYPE_LENGTH (type));
3443 else
3444 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3445 byte_order, num);
3446 }
3447 else if (VALUE_LVAL (val) == lval_memory)
3448 {
3449 CORE_ADDR addr = value_address (val);
3450 struct type *type = check_typedef (value_enclosing_type (val));
3451
3452 if (TYPE_LENGTH (type))
3453 read_value_memory (val, 0, value_stack (val),
3454 addr, value_contents_all_raw (val),
3455 TYPE_LENGTH (type));
3456 }
3457 else if (VALUE_LVAL (val) == lval_register)
3458 {
3459 struct frame_info *frame;
3460 int regnum;
3461 struct type *type = check_typedef (value_type (val));
3462 struct value *new_val = val, *mark = value_mark ();
3463
3464 /* Offsets are not supported here; lazy register values must
3465 refer to the entire register. */
3466 gdb_assert (value_offset (val) == 0);
3467
3468 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3469 {
3470 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
3471 regnum = VALUE_REGNUM (new_val);
3472
3473 gdb_assert (frame != NULL);
3474
3475 /* Convertible register routines are used for multi-register
3476 values and for interpretation in different types
3477 (e.g. float or int from a double register). Lazy
3478 register values should have the register's natural type,
3479 so they do not apply. */
3480 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3481 regnum, type));
3482
3483 new_val = get_frame_register_value (frame, regnum);
3484 }
3485
3486 /* If it's still lazy (for instance, a saved register on the
3487 stack), fetch it. */
3488 if (value_lazy (new_val))
3489 value_fetch_lazy (new_val);
3490
3491 /* If the register was not saved, mark it optimized out. */
3492 if (value_optimized_out (new_val))
3493 set_value_optimized_out (val, 1);
3494 else
3495 {
3496 set_value_lazy (val, 0);
3497 value_contents_copy (val, value_embedded_offset (val),
3498 new_val, value_embedded_offset (new_val),
3499 TYPE_LENGTH (type));
3500 }
3501
3502 if (frame_debug)
3503 {
3504 struct gdbarch *gdbarch;
3505 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3506 regnum = VALUE_REGNUM (val);
3507 gdbarch = get_frame_arch (frame);
3508
3509 fprintf_unfiltered (gdb_stdlog,
3510 "{ value_fetch_lazy "
3511 "(frame=%d,regnum=%d(%s),...) ",
3512 frame_relative_level (frame), regnum,
3513 user_reg_map_regnum_to_name (gdbarch, regnum));
3514
3515 fprintf_unfiltered (gdb_stdlog, "->");
3516 if (value_optimized_out (new_val))
3517 fprintf_unfiltered (gdb_stdlog, " optimized out");
3518 else
3519 {
3520 int i;
3521 const gdb_byte *buf = value_contents (new_val);
3522
3523 if (VALUE_LVAL (new_val) == lval_register)
3524 fprintf_unfiltered (gdb_stdlog, " register=%d",
3525 VALUE_REGNUM (new_val));
3526 else if (VALUE_LVAL (new_val) == lval_memory)
3527 fprintf_unfiltered (gdb_stdlog, " address=%s",
3528 paddress (gdbarch,
3529 value_address (new_val)));
3530 else
3531 fprintf_unfiltered (gdb_stdlog, " computed");
3532
3533 fprintf_unfiltered (gdb_stdlog, " bytes=");
3534 fprintf_unfiltered (gdb_stdlog, "[");
3535 for (i = 0; i < register_size (gdbarch, regnum); i++)
3536 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3537 fprintf_unfiltered (gdb_stdlog, "]");
3538 }
3539
3540 fprintf_unfiltered (gdb_stdlog, " }\n");
3541 }
3542
3543 /* Dispose of the intermediate values. This prevents
3544 watchpoints from trying to watch the saved frame pointer. */
3545 value_free_to_mark (mark);
3546 }
3547 else if (VALUE_LVAL (val) == lval_computed
3548 && value_computed_funcs (val)->read != NULL)
3549 value_computed_funcs (val)->read (val);
3550 /* Don't call value_optimized_out on val, doing so would result in a
3551 recursive call back to value_fetch_lazy, instead check the
3552 optimized_out flag directly. */
3553 else if (val->optimized_out)
3554 /* Keep it optimized out. */;
3555 else
3556 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3557
3558 set_value_lazy (val, 0);
3559 return 0;
3560 }
3561
3562 void
3563 _initialize_values (void)
3564 {
3565 add_cmd ("convenience", no_class, show_convenience, _("\
3566 Debugger convenience (\"$foo\") variables and functions.\n\
3567 Convenience variables are created when you assign them values;\n\
3568 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3569 \n\
3570 A few convenience variables are given values automatically:\n\
3571 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
3572 \"$__\" holds the contents of the last address examined with \"x\"."
3573 #ifdef HAVE_PYTHON
3574 "\n\n\
3575 Convenience functions are defined via the Python API."
3576 #endif
3577 ), &showlist);
3578 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
3579
3580 add_cmd ("values", no_set_class, show_values, _("\
3581 Elements of value history around item number IDX (or last ten)."),
3582 &showlist);
3583
3584 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3585 Initialize a convenience variable if necessary.\n\
3586 init-if-undefined VARIABLE = EXPRESSION\n\
3587 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3588 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3589 VARIABLE is already initialized."));
3590
3591 add_prefix_cmd ("function", no_class, function_command, _("\
3592 Placeholder command for showing help on convenience functions."),
3593 &functionlist, "function ", 0, &cmdlist);
3594 }
This page took 0.127416 seconds and 4 git commands to generate.