gdbarch: Remove duplicate `struct objfile' declaration
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "doublest.h"
32 #include "regcache.h"
33 #include "block.h"
34 #include "dfp.h"
35 #include "objfiles.h"
36 #include "valprint.h"
37 #include "cli/cli-decode.h"
38 #include "extension.h"
39 #include <ctype.h>
40 #include "tracepoint.h"
41 #include "cp-abi.h"
42 #include "user-regs.h"
43 #include <algorithm>
44 #include "completer.h"
45
46 /* Definition of a user function. */
47 struct internal_function
48 {
49 /* The name of the function. It is a bit odd to have this in the
50 function itself -- the user might use a differently-named
51 convenience variable to hold the function. */
52 char *name;
53
54 /* The handler. */
55 internal_function_fn handler;
56
57 /* User data for the handler. */
58 void *cookie;
59 };
60
61 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
62
63 struct range
64 {
65 /* Lowest offset in the range. */
66 LONGEST offset;
67
68 /* Length of the range. */
69 LONGEST length;
70 };
71
72 typedef struct range range_s;
73
74 DEF_VEC_O(range_s);
75
76 /* Returns true if the ranges defined by [offset1, offset1+len1) and
77 [offset2, offset2+len2) overlap. */
78
79 static int
80 ranges_overlap (LONGEST offset1, LONGEST len1,
81 LONGEST offset2, LONGEST len2)
82 {
83 ULONGEST h, l;
84
85 l = std::max (offset1, offset2);
86 h = std::min (offset1 + len1, offset2 + len2);
87 return (l < h);
88 }
89
90 /* Returns true if the first argument is strictly less than the
91 second, useful for VEC_lower_bound. We keep ranges sorted by
92 offset and coalesce overlapping and contiguous ranges, so this just
93 compares the starting offset. */
94
95 static int
96 range_lessthan (const range_s *r1, const range_s *r2)
97 {
98 return r1->offset < r2->offset;
99 }
100
101 /* Returns true if RANGES contains any range that overlaps [OFFSET,
102 OFFSET+LENGTH). */
103
104 static int
105 ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
106 {
107 range_s what;
108 LONGEST i;
109
110 what.offset = offset;
111 what.length = length;
112
113 /* We keep ranges sorted by offset and coalesce overlapping and
114 contiguous ranges, so to check if a range list contains a given
115 range, we can do a binary search for the position the given range
116 would be inserted if we only considered the starting OFFSET of
117 ranges. We call that position I. Since we also have LENGTH to
118 care for (this is a range afterall), we need to check if the
119 _previous_ range overlaps the I range. E.g.,
120
121 R
122 |---|
123 |---| |---| |------| ... |--|
124 0 1 2 N
125
126 I=1
127
128 In the case above, the binary search would return `I=1', meaning,
129 this OFFSET should be inserted at position 1, and the current
130 position 1 should be pushed further (and before 2). But, `0'
131 overlaps with R.
132
133 Then we need to check if the I range overlaps the I range itself.
134 E.g.,
135
136 R
137 |---|
138 |---| |---| |-------| ... |--|
139 0 1 2 N
140
141 I=1
142 */
143
144 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
145
146 if (i > 0)
147 {
148 struct range *bef = VEC_index (range_s, ranges, i - 1);
149
150 if (ranges_overlap (bef->offset, bef->length, offset, length))
151 return 1;
152 }
153
154 if (i < VEC_length (range_s, ranges))
155 {
156 struct range *r = VEC_index (range_s, ranges, i);
157
158 if (ranges_overlap (r->offset, r->length, offset, length))
159 return 1;
160 }
161
162 return 0;
163 }
164
165 static struct cmd_list_element *functionlist;
166
167 /* Note that the fields in this structure are arranged to save a bit
168 of memory. */
169
170 struct value
171 {
172 /* Type of value; either not an lval, or one of the various
173 different possible kinds of lval. */
174 enum lval_type lval;
175
176 /* Is it modifiable? Only relevant if lval != not_lval. */
177 unsigned int modifiable : 1;
178
179 /* If zero, contents of this value are in the contents field. If
180 nonzero, contents are in inferior. If the lval field is lval_memory,
181 the contents are in inferior memory at location.address plus offset.
182 The lval field may also be lval_register.
183
184 WARNING: This field is used by the code which handles watchpoints
185 (see breakpoint.c) to decide whether a particular value can be
186 watched by hardware watchpoints. If the lazy flag is set for
187 some member of a value chain, it is assumed that this member of
188 the chain doesn't need to be watched as part of watching the
189 value itself. This is how GDB avoids watching the entire struct
190 or array when the user wants to watch a single struct member or
191 array element. If you ever change the way lazy flag is set and
192 reset, be sure to consider this use as well! */
193 unsigned int lazy : 1;
194
195 /* If value is a variable, is it initialized or not. */
196 unsigned int initialized : 1;
197
198 /* If value is from the stack. If this is set, read_stack will be
199 used instead of read_memory to enable extra caching. */
200 unsigned int stack : 1;
201
202 /* If the value has been released. */
203 unsigned int released : 1;
204
205 /* Location of value (if lval). */
206 union
207 {
208 /* If lval == lval_memory, this is the address in the inferior */
209 CORE_ADDR address;
210
211 /*If lval == lval_register, the value is from a register. */
212 struct
213 {
214 /* Register number. */
215 int regnum;
216 /* Frame ID of "next" frame to which a register value is relative.
217 If the register value is found relative to frame F, then the
218 frame id of F->next will be stored in next_frame_id. */
219 struct frame_id next_frame_id;
220 } reg;
221
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
224
225 /* Pointer to xmethod worker. */
226 struct xmethod_worker *xm_worker;
227
228 /* If lval == lval_computed, this is a set of function pointers
229 to use to access and describe the value, and a closure pointer
230 for them to use. */
231 struct
232 {
233 /* Functions to call. */
234 const struct lval_funcs *funcs;
235
236 /* Closure for those functions to use. */
237 void *closure;
238 } computed;
239 } location;
240
241 /* Describes offset of a value within lval of a structure in target
242 addressable memory units. Note also the member embedded_offset
243 below. */
244 LONGEST offset;
245
246 /* Only used for bitfields; number of bits contained in them. */
247 LONGEST bitsize;
248
249 /* Only used for bitfields; position of start of field. For
250 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
251 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
252 LONGEST bitpos;
253
254 /* The number of references to this value. When a value is created,
255 the value chain holds a reference, so REFERENCE_COUNT is 1. If
256 release_value is called, this value is removed from the chain but
257 the caller of release_value now has a reference to this value.
258 The caller must arrange for a call to value_free later. */
259 int reference_count;
260
261 /* Only used for bitfields; the containing value. This allows a
262 single read from the target when displaying multiple
263 bitfields. */
264 struct value *parent;
265
266 /* Type of the value. */
267 struct type *type;
268
269 /* If a value represents a C++ object, then the `type' field gives
270 the object's compile-time type. If the object actually belongs
271 to some class derived from `type', perhaps with other base
272 classes and additional members, then `type' is just a subobject
273 of the real thing, and the full object is probably larger than
274 `type' would suggest.
275
276 If `type' is a dynamic class (i.e. one with a vtable), then GDB
277 can actually determine the object's run-time type by looking at
278 the run-time type information in the vtable. When this
279 information is available, we may elect to read in the entire
280 object, for several reasons:
281
282 - When printing the value, the user would probably rather see the
283 full object, not just the limited portion apparent from the
284 compile-time type.
285
286 - If `type' has virtual base classes, then even printing `type'
287 alone may require reaching outside the `type' portion of the
288 object to wherever the virtual base class has been stored.
289
290 When we store the entire object, `enclosing_type' is the run-time
291 type -- the complete object -- and `embedded_offset' is the
292 offset of `type' within that larger type, in target addressable memory
293 units. The value_contents() macro takes `embedded_offset' into account,
294 so most GDB code continues to see the `type' portion of the value, just
295 as the inferior would.
296
297 If `type' is a pointer to an object, then `enclosing_type' is a
298 pointer to the object's run-time type, and `pointed_to_offset' is
299 the offset in target addressable memory units from the full object
300 to the pointed-to object -- that is, the value `embedded_offset' would
301 have if we followed the pointer and fetched the complete object.
302 (I don't really see the point. Why not just determine the
303 run-time type when you indirect, and avoid the special case? The
304 contents don't matter until you indirect anyway.)
305
306 If we're not doing anything fancy, `enclosing_type' is equal to
307 `type', and `embedded_offset' is zero, so everything works
308 normally. */
309 struct type *enclosing_type;
310 LONGEST embedded_offset;
311 LONGEST pointed_to_offset;
312
313 /* Values are stored in a chain, so that they can be deleted easily
314 over calls to the inferior. Values assigned to internal
315 variables, put into the value history or exposed to Python are
316 taken off this list. */
317 struct value *next;
318
319 /* Actual contents of the value. Target byte-order. NULL or not
320 valid if lazy is nonzero. */
321 gdb_byte *contents;
322
323 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
324 rather than available, since the common and default case is for a
325 value to be available. This is filled in at value read time.
326 The unavailable ranges are tracked in bits. Note that a contents
327 bit that has been optimized out doesn't really exist in the
328 program, so it can't be marked unavailable either. */
329 VEC(range_s) *unavailable;
330
331 /* Likewise, but for optimized out contents (a chunk of the value of
332 a variable that does not actually exist in the program). If LVAL
333 is lval_register, this is a register ($pc, $sp, etc., never a
334 program variable) that has not been saved in the frame. Not
335 saved registers and optimized-out program variables values are
336 treated pretty much the same, except not-saved registers have a
337 different string representation and related error strings. */
338 VEC(range_s) *optimized_out;
339 };
340
341 /* See value.h. */
342
343 struct gdbarch *
344 get_value_arch (const struct value *value)
345 {
346 return get_type_arch (value_type (value));
347 }
348
349 int
350 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
351 {
352 gdb_assert (!value->lazy);
353
354 return !ranges_contain (value->unavailable, offset, length);
355 }
356
357 int
358 value_bytes_available (const struct value *value,
359 LONGEST offset, LONGEST length)
360 {
361 return value_bits_available (value,
362 offset * TARGET_CHAR_BIT,
363 length * TARGET_CHAR_BIT);
364 }
365
366 int
367 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
368 {
369 gdb_assert (!value->lazy);
370
371 return ranges_contain (value->optimized_out, bit_offset, bit_length);
372 }
373
374 int
375 value_entirely_available (struct value *value)
376 {
377 /* We can only tell whether the whole value is available when we try
378 to read it. */
379 if (value->lazy)
380 value_fetch_lazy (value);
381
382 if (VEC_empty (range_s, value->unavailable))
383 return 1;
384 return 0;
385 }
386
387 /* Returns true if VALUE is entirely covered by RANGES. If the value
388 is lazy, it'll be read now. Note that RANGE is a pointer to
389 pointer because reading the value might change *RANGE. */
390
391 static int
392 value_entirely_covered_by_range_vector (struct value *value,
393 VEC(range_s) **ranges)
394 {
395 /* We can only tell whether the whole value is optimized out /
396 unavailable when we try to read it. */
397 if (value->lazy)
398 value_fetch_lazy (value);
399
400 if (VEC_length (range_s, *ranges) == 1)
401 {
402 struct range *t = VEC_index (range_s, *ranges, 0);
403
404 if (t->offset == 0
405 && t->length == (TARGET_CHAR_BIT
406 * TYPE_LENGTH (value_enclosing_type (value))))
407 return 1;
408 }
409
410 return 0;
411 }
412
413 int
414 value_entirely_unavailable (struct value *value)
415 {
416 return value_entirely_covered_by_range_vector (value, &value->unavailable);
417 }
418
419 int
420 value_entirely_optimized_out (struct value *value)
421 {
422 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
423 }
424
425 /* Insert into the vector pointed to by VECTORP the bit range starting of
426 OFFSET bits, and extending for the next LENGTH bits. */
427
428 static void
429 insert_into_bit_range_vector (VEC(range_s) **vectorp,
430 LONGEST offset, LONGEST length)
431 {
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
522 if (i > 0)
523 {
524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = std::min (bef->offset, offset);
530 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
545 VEC_safe_insert (range_s, *vectorp, i, &newr);
546 }
547 }
548 else
549 {
550 /* #4 */
551 VEC_safe_insert (range_s, *vectorp, i, &newr);
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
556 if (i + 1 < VEC_length (range_s, *vectorp))
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
564 t = VEC_index (range_s, *vectorp, i);
565 removed = 0;
566
567 i = next;
568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = std::min (t->offset, r->offset);
574 h = std::max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
590 VEC_block_remove (range_s, *vectorp, next, removed);
591 }
592 }
593
594 void
595 mark_value_bits_unavailable (struct value *value,
596 LONGEST offset, LONGEST length)
597 {
598 insert_into_bit_range_vector (&value->unavailable, offset, length);
599 }
600
601 void
602 mark_value_bytes_unavailable (struct value *value,
603 LONGEST offset, LONGEST length)
604 {
605 mark_value_bits_unavailable (value,
606 offset * TARGET_CHAR_BIT,
607 length * TARGET_CHAR_BIT);
608 }
609
610 /* Find the first range in RANGES that overlaps the range defined by
611 OFFSET and LENGTH, starting at element POS in the RANGES vector,
612 Returns the index into RANGES where such overlapping range was
613 found, or -1 if none was found. */
614
615 static int
616 find_first_range_overlap (VEC(range_s) *ranges, int pos,
617 LONGEST offset, LONGEST length)
618 {
619 range_s *r;
620 int i;
621
622 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
623 if (ranges_overlap (r->offset, r->length, offset, length))
624 return i;
625
626 return -1;
627 }
628
629 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
630 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
631 return non-zero.
632
633 It must always be the case that:
634 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
635
636 It is assumed that memory can be accessed from:
637 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
638 to:
639 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
640 / TARGET_CHAR_BIT) */
641 static int
642 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
643 const gdb_byte *ptr2, size_t offset2_bits,
644 size_t length_bits)
645 {
646 gdb_assert (offset1_bits % TARGET_CHAR_BIT
647 == offset2_bits % TARGET_CHAR_BIT);
648
649 if (offset1_bits % TARGET_CHAR_BIT != 0)
650 {
651 size_t bits;
652 gdb_byte mask, b1, b2;
653
654 /* The offset from the base pointers PTR1 and PTR2 is not a complete
655 number of bytes. A number of bits up to either the next exact
656 byte boundary, or LENGTH_BITS (which ever is sooner) will be
657 compared. */
658 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
659 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
660 mask = (1 << bits) - 1;
661
662 if (length_bits < bits)
663 {
664 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
665 bits = length_bits;
666 }
667
668 /* Now load the two bytes and mask off the bits we care about. */
669 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
670 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
671
672 if (b1 != b2)
673 return 1;
674
675 /* Now update the length and offsets to take account of the bits
676 we've just compared. */
677 length_bits -= bits;
678 offset1_bits += bits;
679 offset2_bits += bits;
680 }
681
682 if (length_bits % TARGET_CHAR_BIT != 0)
683 {
684 size_t bits;
685 size_t o1, o2;
686 gdb_byte mask, b1, b2;
687
688 /* The length is not an exact number of bytes. After the previous
689 IF.. block then the offsets are byte aligned, or the
690 length is zero (in which case this code is not reached). Compare
691 a number of bits at the end of the region, starting from an exact
692 byte boundary. */
693 bits = length_bits % TARGET_CHAR_BIT;
694 o1 = offset1_bits + length_bits - bits;
695 o2 = offset2_bits + length_bits - bits;
696
697 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
698 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
699
700 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
701 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
702
703 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
704 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
705
706 if (b1 != b2)
707 return 1;
708
709 length_bits -= bits;
710 }
711
712 if (length_bits > 0)
713 {
714 /* We've now taken care of any stray "bits" at the start, or end of
715 the region to compare, the remainder can be covered with a simple
716 memcmp. */
717 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
719 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
720
721 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
722 ptr2 + offset2_bits / TARGET_CHAR_BIT,
723 length_bits / TARGET_CHAR_BIT);
724 }
725
726 /* Length is zero, regions match. */
727 return 0;
728 }
729
730 /* Helper struct for find_first_range_overlap_and_match and
731 value_contents_bits_eq. Keep track of which slot of a given ranges
732 vector have we last looked at. */
733
734 struct ranges_and_idx
735 {
736 /* The ranges. */
737 VEC(range_s) *ranges;
738
739 /* The range we've last found in RANGES. Given ranges are sorted,
740 we can start the next lookup here. */
741 int idx;
742 };
743
744 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
745 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
746 ranges starting at OFFSET2 bits. Return true if the ranges match
747 and fill in *L and *H with the overlapping window relative to
748 (both) OFFSET1 or OFFSET2. */
749
750 static int
751 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
752 struct ranges_and_idx *rp2,
753 LONGEST offset1, LONGEST offset2,
754 LONGEST length, ULONGEST *l, ULONGEST *h)
755 {
756 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
757 offset1, length);
758 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
759 offset2, length);
760
761 if (rp1->idx == -1 && rp2->idx == -1)
762 {
763 *l = length;
764 *h = length;
765 return 1;
766 }
767 else if (rp1->idx == -1 || rp2->idx == -1)
768 return 0;
769 else
770 {
771 range_s *r1, *r2;
772 ULONGEST l1, h1;
773 ULONGEST l2, h2;
774
775 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
776 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
777
778 /* Get the unavailable windows intersected by the incoming
779 ranges. The first and last ranges that overlap the argument
780 range may be wider than said incoming arguments ranges. */
781 l1 = std::max (offset1, r1->offset);
782 h1 = std::min (offset1 + length, r1->offset + r1->length);
783
784 l2 = std::max (offset2, r2->offset);
785 h2 = std::min (offset2 + length, offset2 + r2->length);
786
787 /* Make them relative to the respective start offsets, so we can
788 compare them for equality. */
789 l1 -= offset1;
790 h1 -= offset1;
791
792 l2 -= offset2;
793 h2 -= offset2;
794
795 /* Different ranges, no match. */
796 if (l1 != l2 || h1 != h2)
797 return 0;
798
799 *h = h1;
800 *l = l1;
801 return 1;
802 }
803 }
804
805 /* Helper function for value_contents_eq. The only difference is that
806 this function is bit rather than byte based.
807
808 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
809 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
810 Return true if the available bits match. */
811
812 static int
813 value_contents_bits_eq (const struct value *val1, int offset1,
814 const struct value *val2, int offset2,
815 int length)
816 {
817 /* Each array element corresponds to a ranges source (unavailable,
818 optimized out). '1' is for VAL1, '2' for VAL2. */
819 struct ranges_and_idx rp1[2], rp2[2];
820
821 /* See function description in value.h. */
822 gdb_assert (!val1->lazy && !val2->lazy);
823
824 /* We shouldn't be trying to compare past the end of the values. */
825 gdb_assert (offset1 + length
826 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
827 gdb_assert (offset2 + length
828 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
829
830 memset (&rp1, 0, sizeof (rp1));
831 memset (&rp2, 0, sizeof (rp2));
832 rp1[0].ranges = val1->unavailable;
833 rp2[0].ranges = val2->unavailable;
834 rp1[1].ranges = val1->optimized_out;
835 rp2[1].ranges = val2->optimized_out;
836
837 while (length > 0)
838 {
839 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
840 int i;
841
842 for (i = 0; i < 2; i++)
843 {
844 ULONGEST l_tmp, h_tmp;
845
846 /* The contents only match equal if the invalid/unavailable
847 contents ranges match as well. */
848 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
849 offset1, offset2, length,
850 &l_tmp, &h_tmp))
851 return 0;
852
853 /* We're interested in the lowest/first range found. */
854 if (i == 0 || l_tmp < l)
855 {
856 l = l_tmp;
857 h = h_tmp;
858 }
859 }
860
861 /* Compare the available/valid contents. */
862 if (memcmp_with_bit_offsets (val1->contents, offset1,
863 val2->contents, offset2, l) != 0)
864 return 0;
865
866 length -= h;
867 offset1 += h;
868 offset2 += h;
869 }
870
871 return 1;
872 }
873
874 int
875 value_contents_eq (const struct value *val1, LONGEST offset1,
876 const struct value *val2, LONGEST offset2,
877 LONGEST length)
878 {
879 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
880 val2, offset2 * TARGET_CHAR_BIT,
881 length * TARGET_CHAR_BIT);
882 }
883
884 /* Prototypes for local functions. */
885
886 static void show_values (char *, int);
887
888
889 /* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895 #define VALUE_HISTORY_CHUNK 60
896
897 struct value_history_chunk
898 {
899 struct value_history_chunk *next;
900 struct value *values[VALUE_HISTORY_CHUNK];
901 };
902
903 /* Chain of chunks now in use. */
904
905 static struct value_history_chunk *value_history_chain;
906
907 static int value_history_count; /* Abs number of last entry stored. */
908
909 \f
910 /* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
914 static struct value *all_values;
915
916 /* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
919
920 struct value *
921 allocate_value_lazy (struct type *type)
922 {
923 struct value *val;
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
932
933 val = XCNEW (struct value);
934 val->contents = NULL;
935 val->next = all_values;
936 all_values = val;
937 val->type = type;
938 val->enclosing_type = type;
939 VALUE_LVAL (val) = not_lval;
940 val->location.address = 0;
941 val->offset = 0;
942 val->bitpos = 0;
943 val->bitsize = 0;
944 val->lazy = 1;
945 val->embedded_offset = 0;
946 val->pointed_to_offset = 0;
947 val->modifiable = 1;
948 val->initialized = 1; /* Default to initialized. */
949
950 /* Values start out on the all_values chain. */
951 val->reference_count = 1;
952
953 return val;
954 }
955
956 /* The maximum size, in bytes, that GDB will try to allocate for a value.
957 The initial value of 64k was not selected for any specific reason, it is
958 just a reasonable starting point. */
959
960 static int max_value_size = 65536; /* 64k bytes */
961
962 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
963 LONGEST, otherwise GDB will not be able to parse integer values from the
964 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
965 be unable to parse "set max-value-size 2".
966
967 As we want a consistent GDB experience across hosts with different sizes
968 of LONGEST, this arbitrary minimum value was selected, so long as this
969 is bigger than LONGEST on all GDB supported hosts we're fine. */
970
971 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
972 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
973
974 /* Implement the "set max-value-size" command. */
975
976 static void
977 set_max_value_size (char *args, int from_tty,
978 struct cmd_list_element *c)
979 {
980 gdb_assert (max_value_size == -1 || max_value_size >= 0);
981
982 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
983 {
984 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
985 error (_("max-value-size set too low, increasing to %d bytes"),
986 max_value_size);
987 }
988 }
989
990 /* Implement the "show max-value-size" command. */
991
992 static void
993 show_max_value_size (struct ui_file *file, int from_tty,
994 struct cmd_list_element *c, const char *value)
995 {
996 if (max_value_size == -1)
997 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
998 else
999 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1000 max_value_size);
1001 }
1002
1003 /* Called before we attempt to allocate or reallocate a buffer for the
1004 contents of a value. TYPE is the type of the value for which we are
1005 allocating the buffer. If the buffer is too large (based on the user
1006 controllable setting) then throw an error. If this function returns
1007 then we should attempt to allocate the buffer. */
1008
1009 static void
1010 check_type_length_before_alloc (const struct type *type)
1011 {
1012 unsigned int length = TYPE_LENGTH (type);
1013
1014 if (max_value_size > -1 && length > max_value_size)
1015 {
1016 if (TYPE_NAME (type) != NULL)
1017 error (_("value of type `%s' requires %u bytes, which is more "
1018 "than max-value-size"), TYPE_NAME (type), length);
1019 else
1020 error (_("value requires %u bytes, which is more than "
1021 "max-value-size"), length);
1022 }
1023 }
1024
1025 /* Allocate the contents of VAL if it has not been allocated yet. */
1026
1027 static void
1028 allocate_value_contents (struct value *val)
1029 {
1030 if (!val->contents)
1031 {
1032 check_type_length_before_alloc (val->enclosing_type);
1033 val->contents
1034 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1035 }
1036 }
1037
1038 /* Allocate a value and its contents for type TYPE. */
1039
1040 struct value *
1041 allocate_value (struct type *type)
1042 {
1043 struct value *val = allocate_value_lazy (type);
1044
1045 allocate_value_contents (val);
1046 val->lazy = 0;
1047 return val;
1048 }
1049
1050 /* Allocate a value that has the correct length
1051 for COUNT repetitions of type TYPE. */
1052
1053 struct value *
1054 allocate_repeat_value (struct type *type, int count)
1055 {
1056 int low_bound = current_language->string_lower_bound; /* ??? */
1057 /* FIXME-type-allocation: need a way to free this type when we are
1058 done with it. */
1059 struct type *array_type
1060 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1061
1062 return allocate_value (array_type);
1063 }
1064
1065 struct value *
1066 allocate_computed_value (struct type *type,
1067 const struct lval_funcs *funcs,
1068 void *closure)
1069 {
1070 struct value *v = allocate_value_lazy (type);
1071
1072 VALUE_LVAL (v) = lval_computed;
1073 v->location.computed.funcs = funcs;
1074 v->location.computed.closure = closure;
1075
1076 return v;
1077 }
1078
1079 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1080
1081 struct value *
1082 allocate_optimized_out_value (struct type *type)
1083 {
1084 struct value *retval = allocate_value_lazy (type);
1085
1086 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1087 set_value_lazy (retval, 0);
1088 return retval;
1089 }
1090
1091 /* Accessor methods. */
1092
1093 struct value *
1094 value_next (const struct value *value)
1095 {
1096 return value->next;
1097 }
1098
1099 struct type *
1100 value_type (const struct value *value)
1101 {
1102 return value->type;
1103 }
1104 void
1105 deprecated_set_value_type (struct value *value, struct type *type)
1106 {
1107 value->type = type;
1108 }
1109
1110 LONGEST
1111 value_offset (const struct value *value)
1112 {
1113 return value->offset;
1114 }
1115 void
1116 set_value_offset (struct value *value, LONGEST offset)
1117 {
1118 value->offset = offset;
1119 }
1120
1121 LONGEST
1122 value_bitpos (const struct value *value)
1123 {
1124 return value->bitpos;
1125 }
1126 void
1127 set_value_bitpos (struct value *value, LONGEST bit)
1128 {
1129 value->bitpos = bit;
1130 }
1131
1132 LONGEST
1133 value_bitsize (const struct value *value)
1134 {
1135 return value->bitsize;
1136 }
1137 void
1138 set_value_bitsize (struct value *value, LONGEST bit)
1139 {
1140 value->bitsize = bit;
1141 }
1142
1143 struct value *
1144 value_parent (const struct value *value)
1145 {
1146 return value->parent;
1147 }
1148
1149 /* See value.h. */
1150
1151 void
1152 set_value_parent (struct value *value, struct value *parent)
1153 {
1154 struct value *old = value->parent;
1155
1156 value->parent = parent;
1157 if (parent != NULL)
1158 value_incref (parent);
1159 value_free (old);
1160 }
1161
1162 gdb_byte *
1163 value_contents_raw (struct value *value)
1164 {
1165 struct gdbarch *arch = get_value_arch (value);
1166 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1167
1168 allocate_value_contents (value);
1169 return value->contents + value->embedded_offset * unit_size;
1170 }
1171
1172 gdb_byte *
1173 value_contents_all_raw (struct value *value)
1174 {
1175 allocate_value_contents (value);
1176 return value->contents;
1177 }
1178
1179 struct type *
1180 value_enclosing_type (const struct value *value)
1181 {
1182 return value->enclosing_type;
1183 }
1184
1185 /* Look at value.h for description. */
1186
1187 struct type *
1188 value_actual_type (struct value *value, int resolve_simple_types,
1189 int *real_type_found)
1190 {
1191 struct value_print_options opts;
1192 struct type *result;
1193
1194 get_user_print_options (&opts);
1195
1196 if (real_type_found)
1197 *real_type_found = 0;
1198 result = value_type (value);
1199 if (opts.objectprint)
1200 {
1201 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1202 fetch its rtti type. */
1203 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1204 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1205 == TYPE_CODE_STRUCT
1206 && !value_optimized_out (value))
1207 {
1208 struct type *real_type;
1209
1210 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1211 if (real_type)
1212 {
1213 if (real_type_found)
1214 *real_type_found = 1;
1215 result = real_type;
1216 }
1217 }
1218 else if (resolve_simple_types)
1219 {
1220 if (real_type_found)
1221 *real_type_found = 1;
1222 result = value_enclosing_type (value);
1223 }
1224 }
1225
1226 return result;
1227 }
1228
1229 void
1230 error_value_optimized_out (void)
1231 {
1232 error (_("value has been optimized out"));
1233 }
1234
1235 static void
1236 require_not_optimized_out (const struct value *value)
1237 {
1238 if (!VEC_empty (range_s, value->optimized_out))
1239 {
1240 if (value->lval == lval_register)
1241 error (_("register has not been saved in frame"));
1242 else
1243 error_value_optimized_out ();
1244 }
1245 }
1246
1247 static void
1248 require_available (const struct value *value)
1249 {
1250 if (!VEC_empty (range_s, value->unavailable))
1251 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1252 }
1253
1254 const gdb_byte *
1255 value_contents_for_printing (struct value *value)
1256 {
1257 if (value->lazy)
1258 value_fetch_lazy (value);
1259 return value->contents;
1260 }
1261
1262 const gdb_byte *
1263 value_contents_for_printing_const (const struct value *value)
1264 {
1265 gdb_assert (!value->lazy);
1266 return value->contents;
1267 }
1268
1269 const gdb_byte *
1270 value_contents_all (struct value *value)
1271 {
1272 const gdb_byte *result = value_contents_for_printing (value);
1273 require_not_optimized_out (value);
1274 require_available (value);
1275 return result;
1276 }
1277
1278 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1280
1281 static void
1282 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1283 VEC (range_s) *src_range, int src_bit_offset,
1284 int bit_length)
1285 {
1286 range_s *r;
1287 int i;
1288
1289 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1290 {
1291 ULONGEST h, l;
1292
1293 l = std::max (r->offset, (LONGEST) src_bit_offset);
1294 h = std::min (r->offset + r->length,
1295 (LONGEST) src_bit_offset + bit_length);
1296
1297 if (l < h)
1298 insert_into_bit_range_vector (dst_range,
1299 dst_bit_offset + (l - src_bit_offset),
1300 h - l);
1301 }
1302 }
1303
1304 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1305 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1306
1307 static void
1308 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1309 const struct value *src, int src_bit_offset,
1310 int bit_length)
1311 {
1312 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1313 src->unavailable, src_bit_offset,
1314 bit_length);
1315 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1316 src->optimized_out, src_bit_offset,
1317 bit_length);
1318 }
1319
1320 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1321 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1322 contents, starting at DST_OFFSET. If unavailable contents are
1323 being copied from SRC, the corresponding DST contents are marked
1324 unavailable accordingly. Neither DST nor SRC may be lazy
1325 values.
1326
1327 It is assumed the contents of DST in the [DST_OFFSET,
1328 DST_OFFSET+LENGTH) range are wholly available. */
1329
1330 void
1331 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1332 struct value *src, LONGEST src_offset, LONGEST length)
1333 {
1334 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1335 struct gdbarch *arch = get_value_arch (src);
1336 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1337
1338 /* A lazy DST would make that this copy operation useless, since as
1339 soon as DST's contents were un-lazied (by a later value_contents
1340 call, say), the contents would be overwritten. A lazy SRC would
1341 mean we'd be copying garbage. */
1342 gdb_assert (!dst->lazy && !src->lazy);
1343
1344 /* The overwritten DST range gets unavailability ORed in, not
1345 replaced. Make sure to remember to implement replacing if it
1346 turns out actually necessary. */
1347 gdb_assert (value_bytes_available (dst, dst_offset, length));
1348 gdb_assert (!value_bits_any_optimized_out (dst,
1349 TARGET_CHAR_BIT * dst_offset,
1350 TARGET_CHAR_BIT * length));
1351
1352 /* Copy the data. */
1353 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1354 value_contents_all_raw (src) + src_offset * unit_size,
1355 length * unit_size);
1356
1357 /* Copy the meta-data, adjusted. */
1358 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1359 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1360 bit_length = length * unit_size * HOST_CHAR_BIT;
1361
1362 value_ranges_copy_adjusted (dst, dst_bit_offset,
1363 src, src_bit_offset,
1364 bit_length);
1365 }
1366
1367 /* Copy LENGTH bytes of SRC value's (all) contents
1368 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1369 (all) contents, starting at DST_OFFSET. If unavailable contents
1370 are being copied from SRC, the corresponding DST contents are
1371 marked unavailable accordingly. DST must not be lazy. If SRC is
1372 lazy, it will be fetched now.
1373
1374 It is assumed the contents of DST in the [DST_OFFSET,
1375 DST_OFFSET+LENGTH) range are wholly available. */
1376
1377 void
1378 value_contents_copy (struct value *dst, LONGEST dst_offset,
1379 struct value *src, LONGEST src_offset, LONGEST length)
1380 {
1381 if (src->lazy)
1382 value_fetch_lazy (src);
1383
1384 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1385 }
1386
1387 int
1388 value_lazy (const struct value *value)
1389 {
1390 return value->lazy;
1391 }
1392
1393 void
1394 set_value_lazy (struct value *value, int val)
1395 {
1396 value->lazy = val;
1397 }
1398
1399 int
1400 value_stack (const struct value *value)
1401 {
1402 return value->stack;
1403 }
1404
1405 void
1406 set_value_stack (struct value *value, int val)
1407 {
1408 value->stack = val;
1409 }
1410
1411 const gdb_byte *
1412 value_contents (struct value *value)
1413 {
1414 const gdb_byte *result = value_contents_writeable (value);
1415 require_not_optimized_out (value);
1416 require_available (value);
1417 return result;
1418 }
1419
1420 gdb_byte *
1421 value_contents_writeable (struct value *value)
1422 {
1423 if (value->lazy)
1424 value_fetch_lazy (value);
1425 return value_contents_raw (value);
1426 }
1427
1428 int
1429 value_optimized_out (struct value *value)
1430 {
1431 /* We can only know if a value is optimized out once we have tried to
1432 fetch it. */
1433 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
1434 {
1435 TRY
1436 {
1437 value_fetch_lazy (value);
1438 }
1439 CATCH (ex, RETURN_MASK_ERROR)
1440 {
1441 /* Fall back to checking value->optimized_out. */
1442 }
1443 END_CATCH
1444 }
1445
1446 return !VEC_empty (range_s, value->optimized_out);
1447 }
1448
1449 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1450 the following LENGTH bytes. */
1451
1452 void
1453 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1454 {
1455 mark_value_bits_optimized_out (value,
1456 offset * TARGET_CHAR_BIT,
1457 length * TARGET_CHAR_BIT);
1458 }
1459
1460 /* See value.h. */
1461
1462 void
1463 mark_value_bits_optimized_out (struct value *value,
1464 LONGEST offset, LONGEST length)
1465 {
1466 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1467 }
1468
1469 int
1470 value_bits_synthetic_pointer (const struct value *value,
1471 LONGEST offset, LONGEST length)
1472 {
1473 if (value->lval != lval_computed
1474 || !value->location.computed.funcs->check_synthetic_pointer)
1475 return 0;
1476 return value->location.computed.funcs->check_synthetic_pointer (value,
1477 offset,
1478 length);
1479 }
1480
1481 LONGEST
1482 value_embedded_offset (const struct value *value)
1483 {
1484 return value->embedded_offset;
1485 }
1486
1487 void
1488 set_value_embedded_offset (struct value *value, LONGEST val)
1489 {
1490 value->embedded_offset = val;
1491 }
1492
1493 LONGEST
1494 value_pointed_to_offset (const struct value *value)
1495 {
1496 return value->pointed_to_offset;
1497 }
1498
1499 void
1500 set_value_pointed_to_offset (struct value *value, LONGEST val)
1501 {
1502 value->pointed_to_offset = val;
1503 }
1504
1505 const struct lval_funcs *
1506 value_computed_funcs (const struct value *v)
1507 {
1508 gdb_assert (value_lval_const (v) == lval_computed);
1509
1510 return v->location.computed.funcs;
1511 }
1512
1513 void *
1514 value_computed_closure (const struct value *v)
1515 {
1516 gdb_assert (v->lval == lval_computed);
1517
1518 return v->location.computed.closure;
1519 }
1520
1521 enum lval_type *
1522 deprecated_value_lval_hack (struct value *value)
1523 {
1524 return &value->lval;
1525 }
1526
1527 enum lval_type
1528 value_lval_const (const struct value *value)
1529 {
1530 return value->lval;
1531 }
1532
1533 CORE_ADDR
1534 value_address (const struct value *value)
1535 {
1536 if (value->lval != lval_memory)
1537 return 0;
1538 if (value->parent != NULL)
1539 return value_address (value->parent) + value->offset;
1540 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1541 {
1542 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1543 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1544 }
1545
1546 return value->location.address + value->offset;
1547 }
1548
1549 CORE_ADDR
1550 value_raw_address (const struct value *value)
1551 {
1552 if (value->lval != lval_memory)
1553 return 0;
1554 return value->location.address;
1555 }
1556
1557 void
1558 set_value_address (struct value *value, CORE_ADDR addr)
1559 {
1560 gdb_assert (value->lval == lval_memory);
1561 value->location.address = addr;
1562 }
1563
1564 struct internalvar **
1565 deprecated_value_internalvar_hack (struct value *value)
1566 {
1567 return &value->location.internalvar;
1568 }
1569
1570 struct frame_id *
1571 deprecated_value_next_frame_id_hack (struct value *value)
1572 {
1573 gdb_assert (value->lval == lval_register);
1574 return &value->location.reg.next_frame_id;
1575 }
1576
1577 int *
1578 deprecated_value_regnum_hack (struct value *value)
1579 {
1580 gdb_assert (value->lval == lval_register);
1581 return &value->location.reg.regnum;
1582 }
1583
1584 int
1585 deprecated_value_modifiable (const struct value *value)
1586 {
1587 return value->modifiable;
1588 }
1589 \f
1590 /* Return a mark in the value chain. All values allocated after the
1591 mark is obtained (except for those released) are subject to being freed
1592 if a subsequent value_free_to_mark is passed the mark. */
1593 struct value *
1594 value_mark (void)
1595 {
1596 return all_values;
1597 }
1598
1599 /* Take a reference to VAL. VAL will not be deallocated until all
1600 references are released. */
1601
1602 void
1603 value_incref (struct value *val)
1604 {
1605 val->reference_count++;
1606 }
1607
1608 /* Release a reference to VAL, which was acquired with value_incref.
1609 This function is also called to deallocate values from the value
1610 chain. */
1611
1612 void
1613 value_free (struct value *val)
1614 {
1615 if (val)
1616 {
1617 gdb_assert (val->reference_count > 0);
1618 val->reference_count--;
1619 if (val->reference_count > 0)
1620 return;
1621
1622 /* If there's an associated parent value, drop our reference to
1623 it. */
1624 if (val->parent != NULL)
1625 value_free (val->parent);
1626
1627 if (VALUE_LVAL (val) == lval_computed)
1628 {
1629 const struct lval_funcs *funcs = val->location.computed.funcs;
1630
1631 if (funcs->free_closure)
1632 funcs->free_closure (val);
1633 }
1634 else if (VALUE_LVAL (val) == lval_xcallable)
1635 free_xmethod_worker (val->location.xm_worker);
1636
1637 xfree (val->contents);
1638 VEC_free (range_s, val->unavailable);
1639 }
1640 xfree (val);
1641 }
1642
1643 /* Free all values allocated since MARK was obtained by value_mark
1644 (except for those released). */
1645 void
1646 value_free_to_mark (const struct value *mark)
1647 {
1648 struct value *val;
1649 struct value *next;
1650
1651 for (val = all_values; val && val != mark; val = next)
1652 {
1653 next = val->next;
1654 val->released = 1;
1655 value_free (val);
1656 }
1657 all_values = val;
1658 }
1659
1660 /* Free all the values that have been allocated (except for those released).
1661 Call after each command, successful or not.
1662 In practice this is called before each command, which is sufficient. */
1663
1664 void
1665 free_all_values (void)
1666 {
1667 struct value *val;
1668 struct value *next;
1669
1670 for (val = all_values; val; val = next)
1671 {
1672 next = val->next;
1673 val->released = 1;
1674 value_free (val);
1675 }
1676
1677 all_values = 0;
1678 }
1679
1680 /* Frees all the elements in a chain of values. */
1681
1682 void
1683 free_value_chain (struct value *v)
1684 {
1685 struct value *next;
1686
1687 for (; v; v = next)
1688 {
1689 next = value_next (v);
1690 value_free (v);
1691 }
1692 }
1693
1694 /* Remove VAL from the chain all_values
1695 so it will not be freed automatically. */
1696
1697 void
1698 release_value (struct value *val)
1699 {
1700 struct value *v;
1701
1702 if (all_values == val)
1703 {
1704 all_values = val->next;
1705 val->next = NULL;
1706 val->released = 1;
1707 return;
1708 }
1709
1710 for (v = all_values; v; v = v->next)
1711 {
1712 if (v->next == val)
1713 {
1714 v->next = val->next;
1715 val->next = NULL;
1716 val->released = 1;
1717 break;
1718 }
1719 }
1720 }
1721
1722 /* If the value is not already released, release it.
1723 If the value is already released, increment its reference count.
1724 That is, this function ensures that the value is released from the
1725 value chain and that the caller owns a reference to it. */
1726
1727 void
1728 release_value_or_incref (struct value *val)
1729 {
1730 if (val->released)
1731 value_incref (val);
1732 else
1733 release_value (val);
1734 }
1735
1736 /* Release all values up to mark */
1737 struct value *
1738 value_release_to_mark (const struct value *mark)
1739 {
1740 struct value *val;
1741 struct value *next;
1742
1743 for (val = next = all_values; next; next = next->next)
1744 {
1745 if (next->next == mark)
1746 {
1747 all_values = next->next;
1748 next->next = NULL;
1749 return val;
1750 }
1751 next->released = 1;
1752 }
1753 all_values = 0;
1754 return val;
1755 }
1756
1757 /* Return a copy of the value ARG.
1758 It contains the same contents, for same memory address,
1759 but it's a different block of storage. */
1760
1761 struct value *
1762 value_copy (struct value *arg)
1763 {
1764 struct type *encl_type = value_enclosing_type (arg);
1765 struct value *val;
1766
1767 if (value_lazy (arg))
1768 val = allocate_value_lazy (encl_type);
1769 else
1770 val = allocate_value (encl_type);
1771 val->type = arg->type;
1772 VALUE_LVAL (val) = VALUE_LVAL (arg);
1773 val->location = arg->location;
1774 val->offset = arg->offset;
1775 val->bitpos = arg->bitpos;
1776 val->bitsize = arg->bitsize;
1777 val->lazy = arg->lazy;
1778 val->embedded_offset = value_embedded_offset (arg);
1779 val->pointed_to_offset = arg->pointed_to_offset;
1780 val->modifiable = arg->modifiable;
1781 if (!value_lazy (val))
1782 {
1783 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1784 TYPE_LENGTH (value_enclosing_type (arg)));
1785
1786 }
1787 val->unavailable = VEC_copy (range_s, arg->unavailable);
1788 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
1789 set_value_parent (val, arg->parent);
1790 if (VALUE_LVAL (val) == lval_computed)
1791 {
1792 const struct lval_funcs *funcs = val->location.computed.funcs;
1793
1794 if (funcs->copy_closure)
1795 val->location.computed.closure = funcs->copy_closure (val);
1796 }
1797 return val;
1798 }
1799
1800 /* Return a "const" and/or "volatile" qualified version of the value V.
1801 If CNST is true, then the returned value will be qualified with
1802 "const".
1803 if VOLTL is true, then the returned value will be qualified with
1804 "volatile". */
1805
1806 struct value *
1807 make_cv_value (int cnst, int voltl, struct value *v)
1808 {
1809 struct type *val_type = value_type (v);
1810 struct type *enclosing_type = value_enclosing_type (v);
1811 struct value *cv_val = value_copy (v);
1812
1813 deprecated_set_value_type (cv_val,
1814 make_cv_type (cnst, voltl, val_type, NULL));
1815 set_value_enclosing_type (cv_val,
1816 make_cv_type (cnst, voltl, enclosing_type, NULL));
1817
1818 return cv_val;
1819 }
1820
1821 /* Return a version of ARG that is non-lvalue. */
1822
1823 struct value *
1824 value_non_lval (struct value *arg)
1825 {
1826 if (VALUE_LVAL (arg) != not_lval)
1827 {
1828 struct type *enc_type = value_enclosing_type (arg);
1829 struct value *val = allocate_value (enc_type);
1830
1831 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1832 TYPE_LENGTH (enc_type));
1833 val->type = arg->type;
1834 set_value_embedded_offset (val, value_embedded_offset (arg));
1835 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1836 return val;
1837 }
1838 return arg;
1839 }
1840
1841 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1842
1843 void
1844 value_force_lval (struct value *v, CORE_ADDR addr)
1845 {
1846 gdb_assert (VALUE_LVAL (v) == not_lval);
1847
1848 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1849 v->lval = lval_memory;
1850 v->location.address = addr;
1851 }
1852
1853 void
1854 set_value_component_location (struct value *component,
1855 const struct value *whole)
1856 {
1857 struct type *type;
1858
1859 gdb_assert (whole->lval != lval_xcallable);
1860
1861 if (whole->lval == lval_internalvar)
1862 VALUE_LVAL (component) = lval_internalvar_component;
1863 else
1864 VALUE_LVAL (component) = whole->lval;
1865
1866 component->location = whole->location;
1867 if (whole->lval == lval_computed)
1868 {
1869 const struct lval_funcs *funcs = whole->location.computed.funcs;
1870
1871 if (funcs->copy_closure)
1872 component->location.computed.closure = funcs->copy_closure (whole);
1873 }
1874
1875 /* If type has a dynamic resolved location property
1876 update it's value address. */
1877 type = value_type (whole);
1878 if (NULL != TYPE_DATA_LOCATION (type)
1879 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1880 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1881 }
1882
1883 /* Access to the value history. */
1884
1885 /* Record a new value in the value history.
1886 Returns the absolute history index of the entry. */
1887
1888 int
1889 record_latest_value (struct value *val)
1890 {
1891 int i;
1892
1893 /* We don't want this value to have anything to do with the inferior anymore.
1894 In particular, "set $1 = 50" should not affect the variable from which
1895 the value was taken, and fast watchpoints should be able to assume that
1896 a value on the value history never changes. */
1897 if (value_lazy (val))
1898 value_fetch_lazy (val);
1899 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1900 from. This is a bit dubious, because then *&$1 does not just return $1
1901 but the current contents of that location. c'est la vie... */
1902 val->modifiable = 0;
1903
1904 /* The value may have already been released, in which case we're adding a
1905 new reference for its entry in the history. That is why we call
1906 release_value_or_incref here instead of release_value. */
1907 release_value_or_incref (val);
1908
1909 /* Here we treat value_history_count as origin-zero
1910 and applying to the value being stored now. */
1911
1912 i = value_history_count % VALUE_HISTORY_CHUNK;
1913 if (i == 0)
1914 {
1915 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
1916
1917 newobj->next = value_history_chain;
1918 value_history_chain = newobj;
1919 }
1920
1921 value_history_chain->values[i] = val;
1922
1923 /* Now we regard value_history_count as origin-one
1924 and applying to the value just stored. */
1925
1926 return ++value_history_count;
1927 }
1928
1929 /* Return a copy of the value in the history with sequence number NUM. */
1930
1931 struct value *
1932 access_value_history (int num)
1933 {
1934 struct value_history_chunk *chunk;
1935 int i;
1936 int absnum = num;
1937
1938 if (absnum <= 0)
1939 absnum += value_history_count;
1940
1941 if (absnum <= 0)
1942 {
1943 if (num == 0)
1944 error (_("The history is empty."));
1945 else if (num == 1)
1946 error (_("There is only one value in the history."));
1947 else
1948 error (_("History does not go back to $$%d."), -num);
1949 }
1950 if (absnum > value_history_count)
1951 error (_("History has not yet reached $%d."), absnum);
1952
1953 absnum--;
1954
1955 /* Now absnum is always absolute and origin zero. */
1956
1957 chunk = value_history_chain;
1958 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1959 - absnum / VALUE_HISTORY_CHUNK;
1960 i > 0; i--)
1961 chunk = chunk->next;
1962
1963 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1964 }
1965
1966 static void
1967 show_values (char *num_exp, int from_tty)
1968 {
1969 int i;
1970 struct value *val;
1971 static int num = 1;
1972
1973 if (num_exp)
1974 {
1975 /* "show values +" should print from the stored position.
1976 "show values <exp>" should print around value number <exp>. */
1977 if (num_exp[0] != '+' || num_exp[1] != '\0')
1978 num = parse_and_eval_long (num_exp) - 5;
1979 }
1980 else
1981 {
1982 /* "show values" means print the last 10 values. */
1983 num = value_history_count - 9;
1984 }
1985
1986 if (num <= 0)
1987 num = 1;
1988
1989 for (i = num; i < num + 10 && i <= value_history_count; i++)
1990 {
1991 struct value_print_options opts;
1992
1993 val = access_value_history (i);
1994 printf_filtered (("$%d = "), i);
1995 get_user_print_options (&opts);
1996 value_print (val, gdb_stdout, &opts);
1997 printf_filtered (("\n"));
1998 }
1999
2000 /* The next "show values +" should start after what we just printed. */
2001 num += 10;
2002
2003 /* Hitting just return after this command should do the same thing as
2004 "show values +". If num_exp is null, this is unnecessary, since
2005 "show values +" is not useful after "show values". */
2006 if (from_tty && num_exp)
2007 {
2008 num_exp[0] = '+';
2009 num_exp[1] = '\0';
2010 }
2011 }
2012 \f
2013 enum internalvar_kind
2014 {
2015 /* The internal variable is empty. */
2016 INTERNALVAR_VOID,
2017
2018 /* The value of the internal variable is provided directly as
2019 a GDB value object. */
2020 INTERNALVAR_VALUE,
2021
2022 /* A fresh value is computed via a call-back routine on every
2023 access to the internal variable. */
2024 INTERNALVAR_MAKE_VALUE,
2025
2026 /* The internal variable holds a GDB internal convenience function. */
2027 INTERNALVAR_FUNCTION,
2028
2029 /* The variable holds an integer value. */
2030 INTERNALVAR_INTEGER,
2031
2032 /* The variable holds a GDB-provided string. */
2033 INTERNALVAR_STRING,
2034 };
2035
2036 union internalvar_data
2037 {
2038 /* A value object used with INTERNALVAR_VALUE. */
2039 struct value *value;
2040
2041 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2042 struct
2043 {
2044 /* The functions to call. */
2045 const struct internalvar_funcs *functions;
2046
2047 /* The function's user-data. */
2048 void *data;
2049 } make_value;
2050
2051 /* The internal function used with INTERNALVAR_FUNCTION. */
2052 struct
2053 {
2054 struct internal_function *function;
2055 /* True if this is the canonical name for the function. */
2056 int canonical;
2057 } fn;
2058
2059 /* An integer value used with INTERNALVAR_INTEGER. */
2060 struct
2061 {
2062 /* If type is non-NULL, it will be used as the type to generate
2063 a value for this internal variable. If type is NULL, a default
2064 integer type for the architecture is used. */
2065 struct type *type;
2066 LONGEST val;
2067 } integer;
2068
2069 /* A string value used with INTERNALVAR_STRING. */
2070 char *string;
2071 };
2072
2073 /* Internal variables. These are variables within the debugger
2074 that hold values assigned by debugger commands.
2075 The user refers to them with a '$' prefix
2076 that does not appear in the variable names stored internally. */
2077
2078 struct internalvar
2079 {
2080 struct internalvar *next;
2081 char *name;
2082
2083 /* We support various different kinds of content of an internal variable.
2084 enum internalvar_kind specifies the kind, and union internalvar_data
2085 provides the data associated with this particular kind. */
2086
2087 enum internalvar_kind kind;
2088
2089 union internalvar_data u;
2090 };
2091
2092 static struct internalvar *internalvars;
2093
2094 /* If the variable does not already exist create it and give it the
2095 value given. If no value is given then the default is zero. */
2096 static void
2097 init_if_undefined_command (char* args, int from_tty)
2098 {
2099 struct internalvar* intvar;
2100
2101 /* Parse the expression - this is taken from set_command(). */
2102 expression_up expr = parse_expression (args);
2103
2104 /* Validate the expression.
2105 Was the expression an assignment?
2106 Or even an expression at all? */
2107 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2108 error (_("Init-if-undefined requires an assignment expression."));
2109
2110 /* Extract the variable from the parsed expression.
2111 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2112 if (expr->elts[1].opcode != OP_INTERNALVAR)
2113 error (_("The first parameter to init-if-undefined "
2114 "should be a GDB variable."));
2115 intvar = expr->elts[2].internalvar;
2116
2117 /* Only evaluate the expression if the lvalue is void.
2118 This may still fail if the expresssion is invalid. */
2119 if (intvar->kind == INTERNALVAR_VOID)
2120 evaluate_expression (expr.get ());
2121 }
2122
2123
2124 /* Look up an internal variable with name NAME. NAME should not
2125 normally include a dollar sign.
2126
2127 If the specified internal variable does not exist,
2128 the return value is NULL. */
2129
2130 struct internalvar *
2131 lookup_only_internalvar (const char *name)
2132 {
2133 struct internalvar *var;
2134
2135 for (var = internalvars; var; var = var->next)
2136 if (strcmp (var->name, name) == 0)
2137 return var;
2138
2139 return NULL;
2140 }
2141
2142 /* Complete NAME by comparing it to the names of internal
2143 variables. */
2144
2145 void
2146 complete_internalvar (completion_tracker &tracker, const char *name)
2147 {
2148 struct internalvar *var;
2149 int len;
2150
2151 len = strlen (name);
2152
2153 for (var = internalvars; var; var = var->next)
2154 if (strncmp (var->name, name, len) == 0)
2155 {
2156 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
2157
2158 tracker.add_completion (std::move (copy));
2159 }
2160 }
2161
2162 /* Create an internal variable with name NAME and with a void value.
2163 NAME should not normally include a dollar sign. */
2164
2165 struct internalvar *
2166 create_internalvar (const char *name)
2167 {
2168 struct internalvar *var = XNEW (struct internalvar);
2169
2170 var->name = concat (name, (char *)NULL);
2171 var->kind = INTERNALVAR_VOID;
2172 var->next = internalvars;
2173 internalvars = var;
2174 return var;
2175 }
2176
2177 /* Create an internal variable with name NAME and register FUN as the
2178 function that value_of_internalvar uses to create a value whenever
2179 this variable is referenced. NAME should not normally include a
2180 dollar sign. DATA is passed uninterpreted to FUN when it is
2181 called. CLEANUP, if not NULL, is called when the internal variable
2182 is destroyed. It is passed DATA as its only argument. */
2183
2184 struct internalvar *
2185 create_internalvar_type_lazy (const char *name,
2186 const struct internalvar_funcs *funcs,
2187 void *data)
2188 {
2189 struct internalvar *var = create_internalvar (name);
2190
2191 var->kind = INTERNALVAR_MAKE_VALUE;
2192 var->u.make_value.functions = funcs;
2193 var->u.make_value.data = data;
2194 return var;
2195 }
2196
2197 /* See documentation in value.h. */
2198
2199 int
2200 compile_internalvar_to_ax (struct internalvar *var,
2201 struct agent_expr *expr,
2202 struct axs_value *value)
2203 {
2204 if (var->kind != INTERNALVAR_MAKE_VALUE
2205 || var->u.make_value.functions->compile_to_ax == NULL)
2206 return 0;
2207
2208 var->u.make_value.functions->compile_to_ax (var, expr, value,
2209 var->u.make_value.data);
2210 return 1;
2211 }
2212
2213 /* Look up an internal variable with name NAME. NAME should not
2214 normally include a dollar sign.
2215
2216 If the specified internal variable does not exist,
2217 one is created, with a void value. */
2218
2219 struct internalvar *
2220 lookup_internalvar (const char *name)
2221 {
2222 struct internalvar *var;
2223
2224 var = lookup_only_internalvar (name);
2225 if (var)
2226 return var;
2227
2228 return create_internalvar (name);
2229 }
2230
2231 /* Return current value of internal variable VAR. For variables that
2232 are not inherently typed, use a value type appropriate for GDBARCH. */
2233
2234 struct value *
2235 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2236 {
2237 struct value *val;
2238 struct trace_state_variable *tsv;
2239
2240 /* If there is a trace state variable of the same name, assume that
2241 is what we really want to see. */
2242 tsv = find_trace_state_variable (var->name);
2243 if (tsv)
2244 {
2245 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2246 &(tsv->value));
2247 if (tsv->value_known)
2248 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2249 tsv->value);
2250 else
2251 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2252 return val;
2253 }
2254
2255 switch (var->kind)
2256 {
2257 case INTERNALVAR_VOID:
2258 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2259 break;
2260
2261 case INTERNALVAR_FUNCTION:
2262 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2263 break;
2264
2265 case INTERNALVAR_INTEGER:
2266 if (!var->u.integer.type)
2267 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2268 var->u.integer.val);
2269 else
2270 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2271 break;
2272
2273 case INTERNALVAR_STRING:
2274 val = value_cstring (var->u.string, strlen (var->u.string),
2275 builtin_type (gdbarch)->builtin_char);
2276 break;
2277
2278 case INTERNALVAR_VALUE:
2279 val = value_copy (var->u.value);
2280 if (value_lazy (val))
2281 value_fetch_lazy (val);
2282 break;
2283
2284 case INTERNALVAR_MAKE_VALUE:
2285 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2286 var->u.make_value.data);
2287 break;
2288
2289 default:
2290 internal_error (__FILE__, __LINE__, _("bad kind"));
2291 }
2292
2293 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2294 on this value go back to affect the original internal variable.
2295
2296 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2297 no underlying modifyable state in the internal variable.
2298
2299 Likewise, if the variable's value is a computed lvalue, we want
2300 references to it to produce another computed lvalue, where
2301 references and assignments actually operate through the
2302 computed value's functions.
2303
2304 This means that internal variables with computed values
2305 behave a little differently from other internal variables:
2306 assignments to them don't just replace the previous value
2307 altogether. At the moment, this seems like the behavior we
2308 want. */
2309
2310 if (var->kind != INTERNALVAR_MAKE_VALUE
2311 && val->lval != lval_computed)
2312 {
2313 VALUE_LVAL (val) = lval_internalvar;
2314 VALUE_INTERNALVAR (val) = var;
2315 }
2316
2317 return val;
2318 }
2319
2320 int
2321 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2322 {
2323 if (var->kind == INTERNALVAR_INTEGER)
2324 {
2325 *result = var->u.integer.val;
2326 return 1;
2327 }
2328
2329 if (var->kind == INTERNALVAR_VALUE)
2330 {
2331 struct type *type = check_typedef (value_type (var->u.value));
2332
2333 if (TYPE_CODE (type) == TYPE_CODE_INT)
2334 {
2335 *result = value_as_long (var->u.value);
2336 return 1;
2337 }
2338 }
2339
2340 return 0;
2341 }
2342
2343 static int
2344 get_internalvar_function (struct internalvar *var,
2345 struct internal_function **result)
2346 {
2347 switch (var->kind)
2348 {
2349 case INTERNALVAR_FUNCTION:
2350 *result = var->u.fn.function;
2351 return 1;
2352
2353 default:
2354 return 0;
2355 }
2356 }
2357
2358 void
2359 set_internalvar_component (struct internalvar *var,
2360 LONGEST offset, LONGEST bitpos,
2361 LONGEST bitsize, struct value *newval)
2362 {
2363 gdb_byte *addr;
2364 struct gdbarch *arch;
2365 int unit_size;
2366
2367 switch (var->kind)
2368 {
2369 case INTERNALVAR_VALUE:
2370 addr = value_contents_writeable (var->u.value);
2371 arch = get_value_arch (var->u.value);
2372 unit_size = gdbarch_addressable_memory_unit_size (arch);
2373
2374 if (bitsize)
2375 modify_field (value_type (var->u.value), addr + offset,
2376 value_as_long (newval), bitpos, bitsize);
2377 else
2378 memcpy (addr + offset * unit_size, value_contents (newval),
2379 TYPE_LENGTH (value_type (newval)));
2380 break;
2381
2382 default:
2383 /* We can never get a component of any other kind. */
2384 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2385 }
2386 }
2387
2388 void
2389 set_internalvar (struct internalvar *var, struct value *val)
2390 {
2391 enum internalvar_kind new_kind;
2392 union internalvar_data new_data = { 0 };
2393
2394 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2395 error (_("Cannot overwrite convenience function %s"), var->name);
2396
2397 /* Prepare new contents. */
2398 switch (TYPE_CODE (check_typedef (value_type (val))))
2399 {
2400 case TYPE_CODE_VOID:
2401 new_kind = INTERNALVAR_VOID;
2402 break;
2403
2404 case TYPE_CODE_INTERNAL_FUNCTION:
2405 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2406 new_kind = INTERNALVAR_FUNCTION;
2407 get_internalvar_function (VALUE_INTERNALVAR (val),
2408 &new_data.fn.function);
2409 /* Copies created here are never canonical. */
2410 break;
2411
2412 default:
2413 new_kind = INTERNALVAR_VALUE;
2414 new_data.value = value_copy (val);
2415 new_data.value->modifiable = 1;
2416
2417 /* Force the value to be fetched from the target now, to avoid problems
2418 later when this internalvar is referenced and the target is gone or
2419 has changed. */
2420 if (value_lazy (new_data.value))
2421 value_fetch_lazy (new_data.value);
2422
2423 /* Release the value from the value chain to prevent it from being
2424 deleted by free_all_values. From here on this function should not
2425 call error () until new_data is installed into the var->u to avoid
2426 leaking memory. */
2427 release_value (new_data.value);
2428
2429 /* Internal variables which are created from values with a dynamic
2430 location don't need the location property of the origin anymore.
2431 The resolved dynamic location is used prior then any other address
2432 when accessing the value.
2433 If we keep it, we would still refer to the origin value.
2434 Remove the location property in case it exist. */
2435 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2436
2437 break;
2438 }
2439
2440 /* Clean up old contents. */
2441 clear_internalvar (var);
2442
2443 /* Switch over. */
2444 var->kind = new_kind;
2445 var->u = new_data;
2446 /* End code which must not call error(). */
2447 }
2448
2449 void
2450 set_internalvar_integer (struct internalvar *var, LONGEST l)
2451 {
2452 /* Clean up old contents. */
2453 clear_internalvar (var);
2454
2455 var->kind = INTERNALVAR_INTEGER;
2456 var->u.integer.type = NULL;
2457 var->u.integer.val = l;
2458 }
2459
2460 void
2461 set_internalvar_string (struct internalvar *var, const char *string)
2462 {
2463 /* Clean up old contents. */
2464 clear_internalvar (var);
2465
2466 var->kind = INTERNALVAR_STRING;
2467 var->u.string = xstrdup (string);
2468 }
2469
2470 static void
2471 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2472 {
2473 /* Clean up old contents. */
2474 clear_internalvar (var);
2475
2476 var->kind = INTERNALVAR_FUNCTION;
2477 var->u.fn.function = f;
2478 var->u.fn.canonical = 1;
2479 /* Variables installed here are always the canonical version. */
2480 }
2481
2482 void
2483 clear_internalvar (struct internalvar *var)
2484 {
2485 /* Clean up old contents. */
2486 switch (var->kind)
2487 {
2488 case INTERNALVAR_VALUE:
2489 value_free (var->u.value);
2490 break;
2491
2492 case INTERNALVAR_STRING:
2493 xfree (var->u.string);
2494 break;
2495
2496 case INTERNALVAR_MAKE_VALUE:
2497 if (var->u.make_value.functions->destroy != NULL)
2498 var->u.make_value.functions->destroy (var->u.make_value.data);
2499 break;
2500
2501 default:
2502 break;
2503 }
2504
2505 /* Reset to void kind. */
2506 var->kind = INTERNALVAR_VOID;
2507 }
2508
2509 char *
2510 internalvar_name (const struct internalvar *var)
2511 {
2512 return var->name;
2513 }
2514
2515 static struct internal_function *
2516 create_internal_function (const char *name,
2517 internal_function_fn handler, void *cookie)
2518 {
2519 struct internal_function *ifn = XNEW (struct internal_function);
2520
2521 ifn->name = xstrdup (name);
2522 ifn->handler = handler;
2523 ifn->cookie = cookie;
2524 return ifn;
2525 }
2526
2527 char *
2528 value_internal_function_name (struct value *val)
2529 {
2530 struct internal_function *ifn;
2531 int result;
2532
2533 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2534 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2535 gdb_assert (result);
2536
2537 return ifn->name;
2538 }
2539
2540 struct value *
2541 call_internal_function (struct gdbarch *gdbarch,
2542 const struct language_defn *language,
2543 struct value *func, int argc, struct value **argv)
2544 {
2545 struct internal_function *ifn;
2546 int result;
2547
2548 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2549 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2550 gdb_assert (result);
2551
2552 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2553 }
2554
2555 /* The 'function' command. This does nothing -- it is just a
2556 placeholder to let "help function NAME" work. This is also used as
2557 the implementation of the sub-command that is created when
2558 registering an internal function. */
2559 static void
2560 function_command (char *command, int from_tty)
2561 {
2562 /* Do nothing. */
2563 }
2564
2565 /* Clean up if an internal function's command is destroyed. */
2566 static void
2567 function_destroyer (struct cmd_list_element *self, void *ignore)
2568 {
2569 xfree ((char *) self->name);
2570 xfree ((char *) self->doc);
2571 }
2572
2573 /* Add a new internal function. NAME is the name of the function; DOC
2574 is a documentation string describing the function. HANDLER is
2575 called when the function is invoked. COOKIE is an arbitrary
2576 pointer which is passed to HANDLER and is intended for "user
2577 data". */
2578 void
2579 add_internal_function (const char *name, const char *doc,
2580 internal_function_fn handler, void *cookie)
2581 {
2582 struct cmd_list_element *cmd;
2583 struct internal_function *ifn;
2584 struct internalvar *var = lookup_internalvar (name);
2585
2586 ifn = create_internal_function (name, handler, cookie);
2587 set_internalvar_function (var, ifn);
2588
2589 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2590 &functionlist);
2591 cmd->destroyer = function_destroyer;
2592 }
2593
2594 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2595 prevent cycles / duplicates. */
2596
2597 void
2598 preserve_one_value (struct value *value, struct objfile *objfile,
2599 htab_t copied_types)
2600 {
2601 if (TYPE_OBJFILE (value->type) == objfile)
2602 value->type = copy_type_recursive (objfile, value->type, copied_types);
2603
2604 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2605 value->enclosing_type = copy_type_recursive (objfile,
2606 value->enclosing_type,
2607 copied_types);
2608 }
2609
2610 /* Likewise for internal variable VAR. */
2611
2612 static void
2613 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2614 htab_t copied_types)
2615 {
2616 switch (var->kind)
2617 {
2618 case INTERNALVAR_INTEGER:
2619 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2620 var->u.integer.type
2621 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2622 break;
2623
2624 case INTERNALVAR_VALUE:
2625 preserve_one_value (var->u.value, objfile, copied_types);
2626 break;
2627 }
2628 }
2629
2630 /* Update the internal variables and value history when OBJFILE is
2631 discarded; we must copy the types out of the objfile. New global types
2632 will be created for every convenience variable which currently points to
2633 this objfile's types, and the convenience variables will be adjusted to
2634 use the new global types. */
2635
2636 void
2637 preserve_values (struct objfile *objfile)
2638 {
2639 htab_t copied_types;
2640 struct value_history_chunk *cur;
2641 struct internalvar *var;
2642 int i;
2643
2644 /* Create the hash table. We allocate on the objfile's obstack, since
2645 it is soon to be deleted. */
2646 copied_types = create_copied_types_hash (objfile);
2647
2648 for (cur = value_history_chain; cur; cur = cur->next)
2649 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2650 if (cur->values[i])
2651 preserve_one_value (cur->values[i], objfile, copied_types);
2652
2653 for (var = internalvars; var; var = var->next)
2654 preserve_one_internalvar (var, objfile, copied_types);
2655
2656 preserve_ext_lang_values (objfile, copied_types);
2657
2658 htab_delete (copied_types);
2659 }
2660
2661 static void
2662 show_convenience (const char *ignore, int from_tty)
2663 {
2664 struct gdbarch *gdbarch = get_current_arch ();
2665 struct internalvar *var;
2666 int varseen = 0;
2667 struct value_print_options opts;
2668
2669 get_user_print_options (&opts);
2670 for (var = internalvars; var; var = var->next)
2671 {
2672
2673 if (!varseen)
2674 {
2675 varseen = 1;
2676 }
2677 printf_filtered (("$%s = "), var->name);
2678
2679 TRY
2680 {
2681 struct value *val;
2682
2683 val = value_of_internalvar (gdbarch, var);
2684 value_print (val, gdb_stdout, &opts);
2685 }
2686 CATCH (ex, RETURN_MASK_ERROR)
2687 {
2688 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2689 }
2690 END_CATCH
2691
2692 printf_filtered (("\n"));
2693 }
2694 if (!varseen)
2695 {
2696 /* This text does not mention convenience functions on purpose.
2697 The user can't create them except via Python, and if Python support
2698 is installed this message will never be printed ($_streq will
2699 exist). */
2700 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2701 "Convenience variables have "
2702 "names starting with \"$\";\n"
2703 "use \"set\" as in \"set "
2704 "$foo = 5\" to define them.\n"));
2705 }
2706 }
2707 \f
2708 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2709
2710 struct value *
2711 value_of_xmethod (struct xmethod_worker *worker)
2712 {
2713 if (worker->value == NULL)
2714 {
2715 struct value *v;
2716
2717 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2718 v->lval = lval_xcallable;
2719 v->location.xm_worker = worker;
2720 v->modifiable = 0;
2721 worker->value = v;
2722 }
2723
2724 return worker->value;
2725 }
2726
2727 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2728
2729 struct type *
2730 result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2731 {
2732 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2733 && method->lval == lval_xcallable && argc > 0);
2734
2735 return get_xmethod_result_type (method->location.xm_worker,
2736 argv[0], argv + 1, argc - 1);
2737 }
2738
2739 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2740
2741 struct value *
2742 call_xmethod (struct value *method, int argc, struct value **argv)
2743 {
2744 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2745 && method->lval == lval_xcallable && argc > 0);
2746
2747 return invoke_xmethod (method->location.xm_worker,
2748 argv[0], argv + 1, argc - 1);
2749 }
2750 \f
2751 /* Extract a value as a C number (either long or double).
2752 Knows how to convert fixed values to double, or
2753 floating values to long.
2754 Does not deallocate the value. */
2755
2756 LONGEST
2757 value_as_long (struct value *val)
2758 {
2759 /* This coerces arrays and functions, which is necessary (e.g.
2760 in disassemble_command). It also dereferences references, which
2761 I suspect is the most logical thing to do. */
2762 val = coerce_array (val);
2763 return unpack_long (value_type (val), value_contents (val));
2764 }
2765
2766 DOUBLEST
2767 value_as_double (struct value *val)
2768 {
2769 DOUBLEST foo;
2770 int inv;
2771
2772 foo = unpack_double (value_type (val), value_contents (val), &inv);
2773 if (inv)
2774 error (_("Invalid floating value found in program."));
2775 return foo;
2776 }
2777
2778 /* Extract a value as a C pointer. Does not deallocate the value.
2779 Note that val's type may not actually be a pointer; value_as_long
2780 handles all the cases. */
2781 CORE_ADDR
2782 value_as_address (struct value *val)
2783 {
2784 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2785
2786 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2787 whether we want this to be true eventually. */
2788 #if 0
2789 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2790 non-address (e.g. argument to "signal", "info break", etc.), or
2791 for pointers to char, in which the low bits *are* significant. */
2792 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2793 #else
2794
2795 /* There are several targets (IA-64, PowerPC, and others) which
2796 don't represent pointers to functions as simply the address of
2797 the function's entry point. For example, on the IA-64, a
2798 function pointer points to a two-word descriptor, generated by
2799 the linker, which contains the function's entry point, and the
2800 value the IA-64 "global pointer" register should have --- to
2801 support position-independent code. The linker generates
2802 descriptors only for those functions whose addresses are taken.
2803
2804 On such targets, it's difficult for GDB to convert an arbitrary
2805 function address into a function pointer; it has to either find
2806 an existing descriptor for that function, or call malloc and
2807 build its own. On some targets, it is impossible for GDB to
2808 build a descriptor at all: the descriptor must contain a jump
2809 instruction; data memory cannot be executed; and code memory
2810 cannot be modified.
2811
2812 Upon entry to this function, if VAL is a value of type `function'
2813 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2814 value_address (val) is the address of the function. This is what
2815 you'll get if you evaluate an expression like `main'. The call
2816 to COERCE_ARRAY below actually does all the usual unary
2817 conversions, which includes converting values of type `function'
2818 to `pointer to function'. This is the challenging conversion
2819 discussed above. Then, `unpack_long' will convert that pointer
2820 back into an address.
2821
2822 So, suppose the user types `disassemble foo' on an architecture
2823 with a strange function pointer representation, on which GDB
2824 cannot build its own descriptors, and suppose further that `foo'
2825 has no linker-built descriptor. The address->pointer conversion
2826 will signal an error and prevent the command from running, even
2827 though the next step would have been to convert the pointer
2828 directly back into the same address.
2829
2830 The following shortcut avoids this whole mess. If VAL is a
2831 function, just return its address directly. */
2832 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2833 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2834 return value_address (val);
2835
2836 val = coerce_array (val);
2837
2838 /* Some architectures (e.g. Harvard), map instruction and data
2839 addresses onto a single large unified address space. For
2840 instance: An architecture may consider a large integer in the
2841 range 0x10000000 .. 0x1000ffff to already represent a data
2842 addresses (hence not need a pointer to address conversion) while
2843 a small integer would still need to be converted integer to
2844 pointer to address. Just assume such architectures handle all
2845 integer conversions in a single function. */
2846
2847 /* JimB writes:
2848
2849 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2850 must admonish GDB hackers to make sure its behavior matches the
2851 compiler's, whenever possible.
2852
2853 In general, I think GDB should evaluate expressions the same way
2854 the compiler does. When the user copies an expression out of
2855 their source code and hands it to a `print' command, they should
2856 get the same value the compiler would have computed. Any
2857 deviation from this rule can cause major confusion and annoyance,
2858 and needs to be justified carefully. In other words, GDB doesn't
2859 really have the freedom to do these conversions in clever and
2860 useful ways.
2861
2862 AndrewC pointed out that users aren't complaining about how GDB
2863 casts integers to pointers; they are complaining that they can't
2864 take an address from a disassembly listing and give it to `x/i'.
2865 This is certainly important.
2866
2867 Adding an architecture method like integer_to_address() certainly
2868 makes it possible for GDB to "get it right" in all circumstances
2869 --- the target has complete control over how things get done, so
2870 people can Do The Right Thing for their target without breaking
2871 anyone else. The standard doesn't specify how integers get
2872 converted to pointers; usually, the ABI doesn't either, but
2873 ABI-specific code is a more reasonable place to handle it. */
2874
2875 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2876 && !TYPE_IS_REFERENCE (value_type (val))
2877 && gdbarch_integer_to_address_p (gdbarch))
2878 return gdbarch_integer_to_address (gdbarch, value_type (val),
2879 value_contents (val));
2880
2881 return unpack_long (value_type (val), value_contents (val));
2882 #endif
2883 }
2884 \f
2885 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2886 as a long, or as a double, assuming the raw data is described
2887 by type TYPE. Knows how to convert different sizes of values
2888 and can convert between fixed and floating point. We don't assume
2889 any alignment for the raw data. Return value is in host byte order.
2890
2891 If you want functions and arrays to be coerced to pointers, and
2892 references to be dereferenced, call value_as_long() instead.
2893
2894 C++: It is assumed that the front-end has taken care of
2895 all matters concerning pointers to members. A pointer
2896 to member which reaches here is considered to be equivalent
2897 to an INT (or some size). After all, it is only an offset. */
2898
2899 LONGEST
2900 unpack_long (struct type *type, const gdb_byte *valaddr)
2901 {
2902 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2903 enum type_code code = TYPE_CODE (type);
2904 int len = TYPE_LENGTH (type);
2905 int nosign = TYPE_UNSIGNED (type);
2906
2907 switch (code)
2908 {
2909 case TYPE_CODE_TYPEDEF:
2910 return unpack_long (check_typedef (type), valaddr);
2911 case TYPE_CODE_ENUM:
2912 case TYPE_CODE_FLAGS:
2913 case TYPE_CODE_BOOL:
2914 case TYPE_CODE_INT:
2915 case TYPE_CODE_CHAR:
2916 case TYPE_CODE_RANGE:
2917 case TYPE_CODE_MEMBERPTR:
2918 if (nosign)
2919 return extract_unsigned_integer (valaddr, len, byte_order);
2920 else
2921 return extract_signed_integer (valaddr, len, byte_order);
2922
2923 case TYPE_CODE_FLT:
2924 return (LONGEST) extract_typed_floating (valaddr, type);
2925
2926 case TYPE_CODE_DECFLOAT:
2927 /* libdecnumber has a function to convert from decimal to integer, but
2928 it doesn't work when the decimal number has a fractional part. */
2929 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
2930
2931 case TYPE_CODE_PTR:
2932 case TYPE_CODE_REF:
2933 case TYPE_CODE_RVALUE_REF:
2934 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2935 whether we want this to be true eventually. */
2936 return extract_typed_address (valaddr, type);
2937
2938 default:
2939 error (_("Value can't be converted to integer."));
2940 }
2941 return 0; /* Placate lint. */
2942 }
2943
2944 /* Return a double value from the specified type and address.
2945 INVP points to an int which is set to 0 for valid value,
2946 1 for invalid value (bad float format). In either case,
2947 the returned double is OK to use. Argument is in target
2948 format, result is in host format. */
2949
2950 DOUBLEST
2951 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
2952 {
2953 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2954 enum type_code code;
2955 int len;
2956 int nosign;
2957
2958 *invp = 0; /* Assume valid. */
2959 type = check_typedef (type);
2960 code = TYPE_CODE (type);
2961 len = TYPE_LENGTH (type);
2962 nosign = TYPE_UNSIGNED (type);
2963 if (code == TYPE_CODE_FLT)
2964 {
2965 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2966 floating-point value was valid (using the macro
2967 INVALID_FLOAT). That test/macro have been removed.
2968
2969 It turns out that only the VAX defined this macro and then
2970 only in a non-portable way. Fixing the portability problem
2971 wouldn't help since the VAX floating-point code is also badly
2972 bit-rotten. The target needs to add definitions for the
2973 methods gdbarch_float_format and gdbarch_double_format - these
2974 exactly describe the target floating-point format. The
2975 problem here is that the corresponding floatformat_vax_f and
2976 floatformat_vax_d values these methods should be set to are
2977 also not defined either. Oops!
2978
2979 Hopefully someone will add both the missing floatformat
2980 definitions and the new cases for floatformat_is_valid (). */
2981
2982 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2983 {
2984 *invp = 1;
2985 return 0.0;
2986 }
2987
2988 return extract_typed_floating (valaddr, type);
2989 }
2990 else if (code == TYPE_CODE_DECFLOAT)
2991 return decimal_to_doublest (valaddr, len, byte_order);
2992 else if (nosign)
2993 {
2994 /* Unsigned -- be sure we compensate for signed LONGEST. */
2995 return (ULONGEST) unpack_long (type, valaddr);
2996 }
2997 else
2998 {
2999 /* Signed -- we are OK with unpack_long. */
3000 return unpack_long (type, valaddr);
3001 }
3002 }
3003
3004 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
3005 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3006 We don't assume any alignment for the raw data. Return value is in
3007 host byte order.
3008
3009 If you want functions and arrays to be coerced to pointers, and
3010 references to be dereferenced, call value_as_address() instead.
3011
3012 C++: It is assumed that the front-end has taken care of
3013 all matters concerning pointers to members. A pointer
3014 to member which reaches here is considered to be equivalent
3015 to an INT (or some size). After all, it is only an offset. */
3016
3017 CORE_ADDR
3018 unpack_pointer (struct type *type, const gdb_byte *valaddr)
3019 {
3020 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3021 whether we want this to be true eventually. */
3022 return unpack_long (type, valaddr);
3023 }
3024
3025 \f
3026 /* Get the value of the FIELDNO'th field (which must be static) of
3027 TYPE. */
3028
3029 struct value *
3030 value_static_field (struct type *type, int fieldno)
3031 {
3032 struct value *retval;
3033
3034 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
3035 {
3036 case FIELD_LOC_KIND_PHYSADDR:
3037 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3038 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
3039 break;
3040 case FIELD_LOC_KIND_PHYSNAME:
3041 {
3042 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
3043 /* TYPE_FIELD_NAME (type, fieldno); */
3044 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
3045
3046 if (sym.symbol == NULL)
3047 {
3048 /* With some compilers, e.g. HP aCC, static data members are
3049 reported as non-debuggable symbols. */
3050 struct bound_minimal_symbol msym
3051 = lookup_minimal_symbol (phys_name, NULL, NULL);
3052
3053 if (!msym.minsym)
3054 return allocate_optimized_out_value (type);
3055 else
3056 {
3057 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3058 BMSYMBOL_VALUE_ADDRESS (msym));
3059 }
3060 }
3061 else
3062 retval = value_of_variable (sym.symbol, sym.block);
3063 break;
3064 }
3065 default:
3066 gdb_assert_not_reached ("unexpected field location kind");
3067 }
3068
3069 return retval;
3070 }
3071
3072 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3073 You have to be careful here, since the size of the data area for the value
3074 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3075 than the old enclosing type, you have to allocate more space for the
3076 data. */
3077
3078 void
3079 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
3080 {
3081 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3082 {
3083 check_type_length_before_alloc (new_encl_type);
3084 val->contents
3085 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3086 }
3087
3088 val->enclosing_type = new_encl_type;
3089 }
3090
3091 /* Given a value ARG1 (offset by OFFSET bytes)
3092 of a struct or union type ARG_TYPE,
3093 extract and return the value of one of its (non-static) fields.
3094 FIELDNO says which field. */
3095
3096 struct value *
3097 value_primitive_field (struct value *arg1, LONGEST offset,
3098 int fieldno, struct type *arg_type)
3099 {
3100 struct value *v;
3101 struct type *type;
3102 struct gdbarch *arch = get_value_arch (arg1);
3103 int unit_size = gdbarch_addressable_memory_unit_size (arch);
3104
3105 arg_type = check_typedef (arg_type);
3106 type = TYPE_FIELD_TYPE (arg_type, fieldno);
3107
3108 /* Call check_typedef on our type to make sure that, if TYPE
3109 is a TYPE_CODE_TYPEDEF, its length is set to the length
3110 of the target type instead of zero. However, we do not
3111 replace the typedef type by the target type, because we want
3112 to keep the typedef in order to be able to print the type
3113 description correctly. */
3114 check_typedef (type);
3115
3116 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
3117 {
3118 /* Handle packed fields.
3119
3120 Create a new value for the bitfield, with bitpos and bitsize
3121 set. If possible, arrange offset and bitpos so that we can
3122 do a single aligned read of the size of the containing type.
3123 Otherwise, adjust offset to the byte containing the first
3124 bit. Assume that the address, offset, and embedded offset
3125 are sufficiently aligned. */
3126
3127 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3128 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
3129
3130 v = allocate_value_lazy (type);
3131 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3132 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3133 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3134 v->bitpos = bitpos % container_bitsize;
3135 else
3136 v->bitpos = bitpos % 8;
3137 v->offset = (value_embedded_offset (arg1)
3138 + offset
3139 + (bitpos - v->bitpos) / 8);
3140 set_value_parent (v, arg1);
3141 if (!value_lazy (arg1))
3142 value_fetch_lazy (v);
3143 }
3144 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3145 {
3146 /* This field is actually a base subobject, so preserve the
3147 entire object's contents for later references to virtual
3148 bases, etc. */
3149 LONGEST boffset;
3150
3151 /* Lazy register values with offsets are not supported. */
3152 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3153 value_fetch_lazy (arg1);
3154
3155 /* We special case virtual inheritance here because this
3156 requires access to the contents, which we would rather avoid
3157 for references to ordinary fields of unavailable values. */
3158 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3159 boffset = baseclass_offset (arg_type, fieldno,
3160 value_contents (arg1),
3161 value_embedded_offset (arg1),
3162 value_address (arg1),
3163 arg1);
3164 else
3165 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
3166
3167 if (value_lazy (arg1))
3168 v = allocate_value_lazy (value_enclosing_type (arg1));
3169 else
3170 {
3171 v = allocate_value (value_enclosing_type (arg1));
3172 value_contents_copy_raw (v, 0, arg1, 0,
3173 TYPE_LENGTH (value_enclosing_type (arg1)));
3174 }
3175 v->type = type;
3176 v->offset = value_offset (arg1);
3177 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3178 }
3179 else if (NULL != TYPE_DATA_LOCATION (type))
3180 {
3181 /* Field is a dynamic data member. */
3182
3183 gdb_assert (0 == offset);
3184 /* We expect an already resolved data location. */
3185 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3186 /* For dynamic data types defer memory allocation
3187 until we actual access the value. */
3188 v = allocate_value_lazy (type);
3189 }
3190 else
3191 {
3192 /* Plain old data member */
3193 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3194 / (HOST_CHAR_BIT * unit_size));
3195
3196 /* Lazy register values with offsets are not supported. */
3197 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3198 value_fetch_lazy (arg1);
3199
3200 if (value_lazy (arg1))
3201 v = allocate_value_lazy (type);
3202 else
3203 {
3204 v = allocate_value (type);
3205 value_contents_copy_raw (v, value_embedded_offset (v),
3206 arg1, value_embedded_offset (arg1) + offset,
3207 type_length_units (type));
3208 }
3209 v->offset = (value_offset (arg1) + offset
3210 + value_embedded_offset (arg1));
3211 }
3212 set_value_component_location (v, arg1);
3213 return v;
3214 }
3215
3216 /* Given a value ARG1 of a struct or union type,
3217 extract and return the value of one of its (non-static) fields.
3218 FIELDNO says which field. */
3219
3220 struct value *
3221 value_field (struct value *arg1, int fieldno)
3222 {
3223 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3224 }
3225
3226 /* Return a non-virtual function as a value.
3227 F is the list of member functions which contains the desired method.
3228 J is an index into F which provides the desired method.
3229
3230 We only use the symbol for its address, so be happy with either a
3231 full symbol or a minimal symbol. */
3232
3233 struct value *
3234 value_fn_field (struct value **arg1p, struct fn_field *f,
3235 int j, struct type *type,
3236 LONGEST offset)
3237 {
3238 struct value *v;
3239 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3240 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3241 struct symbol *sym;
3242 struct bound_minimal_symbol msym;
3243
3244 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3245 if (sym != NULL)
3246 {
3247 memset (&msym, 0, sizeof (msym));
3248 }
3249 else
3250 {
3251 gdb_assert (sym == NULL);
3252 msym = lookup_bound_minimal_symbol (physname);
3253 if (msym.minsym == NULL)
3254 return NULL;
3255 }
3256
3257 v = allocate_value (ftype);
3258 VALUE_LVAL (v) = lval_memory;
3259 if (sym)
3260 {
3261 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
3262 }
3263 else
3264 {
3265 /* The minimal symbol might point to a function descriptor;
3266 resolve it to the actual code address instead. */
3267 struct objfile *objfile = msym.objfile;
3268 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3269
3270 set_value_address (v,
3271 gdbarch_convert_from_func_ptr_addr
3272 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
3273 }
3274
3275 if (arg1p)
3276 {
3277 if (type != value_type (*arg1p))
3278 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3279 value_addr (*arg1p)));
3280
3281 /* Move the `this' pointer according to the offset.
3282 VALUE_OFFSET (*arg1p) += offset; */
3283 }
3284
3285 return v;
3286 }
3287
3288 \f
3289
3290 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3291 VALADDR, and store the result in *RESULT.
3292 The bitfield starts at BITPOS bits and contains BITSIZE bits.
3293
3294 Extracting bits depends on endianness of the machine. Compute the
3295 number of least significant bits to discard. For big endian machines,
3296 we compute the total number of bits in the anonymous object, subtract
3297 off the bit count from the MSB of the object to the MSB of the
3298 bitfield, then the size of the bitfield, which leaves the LSB discard
3299 count. For little endian machines, the discard count is simply the
3300 number of bits from the LSB of the anonymous object to the LSB of the
3301 bitfield.
3302
3303 If the field is signed, we also do sign extension. */
3304
3305 static LONGEST
3306 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3307 LONGEST bitpos, LONGEST bitsize)
3308 {
3309 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3310 ULONGEST val;
3311 ULONGEST valmask;
3312 int lsbcount;
3313 LONGEST bytes_read;
3314 LONGEST read_offset;
3315
3316 /* Read the minimum number of bytes required; there may not be
3317 enough bytes to read an entire ULONGEST. */
3318 field_type = check_typedef (field_type);
3319 if (bitsize)
3320 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3321 else
3322 bytes_read = TYPE_LENGTH (field_type);
3323
3324 read_offset = bitpos / 8;
3325
3326 val = extract_unsigned_integer (valaddr + read_offset,
3327 bytes_read, byte_order);
3328
3329 /* Extract bits. See comment above. */
3330
3331 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3332 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3333 else
3334 lsbcount = (bitpos % 8);
3335 val >>= lsbcount;
3336
3337 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3338 If the field is signed, and is negative, then sign extend. */
3339
3340 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3341 {
3342 valmask = (((ULONGEST) 1) << bitsize) - 1;
3343 val &= valmask;
3344 if (!TYPE_UNSIGNED (field_type))
3345 {
3346 if (val & (valmask ^ (valmask >> 1)))
3347 {
3348 val |= ~valmask;
3349 }
3350 }
3351 }
3352
3353 return val;
3354 }
3355
3356 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3357 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3358 ORIGINAL_VALUE, which must not be NULL. See
3359 unpack_value_bits_as_long for more details. */
3360
3361 int
3362 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3363 LONGEST embedded_offset, int fieldno,
3364 const struct value *val, LONGEST *result)
3365 {
3366 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3367 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3368 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3369 int bit_offset;
3370
3371 gdb_assert (val != NULL);
3372
3373 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3374 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3375 || !value_bits_available (val, bit_offset, bitsize))
3376 return 0;
3377
3378 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3379 bitpos, bitsize);
3380 return 1;
3381 }
3382
3383 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3384 object at VALADDR. See unpack_bits_as_long for more details. */
3385
3386 LONGEST
3387 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3388 {
3389 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3390 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3391 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3392
3393 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3394 }
3395
3396 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3397 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3398 the contents in DEST_VAL, zero or sign extending if the type of
3399 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3400 VAL. If the VAL's contents required to extract the bitfield from
3401 are unavailable/optimized out, DEST_VAL is correspondingly
3402 marked unavailable/optimized out. */
3403
3404 void
3405 unpack_value_bitfield (struct value *dest_val,
3406 LONGEST bitpos, LONGEST bitsize,
3407 const gdb_byte *valaddr, LONGEST embedded_offset,
3408 const struct value *val)
3409 {
3410 enum bfd_endian byte_order;
3411 int src_bit_offset;
3412 int dst_bit_offset;
3413 struct type *field_type = value_type (dest_val);
3414
3415 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3416
3417 /* First, unpack and sign extend the bitfield as if it was wholly
3418 valid. Optimized out/unavailable bits are read as zero, but
3419 that's OK, as they'll end up marked below. If the VAL is
3420 wholly-invalid we may have skipped allocating its contents,
3421 though. See allocate_optimized_out_value. */
3422 if (valaddr != NULL)
3423 {
3424 LONGEST num;
3425
3426 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3427 bitpos, bitsize);
3428 store_signed_integer (value_contents_raw (dest_val),
3429 TYPE_LENGTH (field_type), byte_order, num);
3430 }
3431
3432 /* Now copy the optimized out / unavailability ranges to the right
3433 bits. */
3434 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3435 if (byte_order == BFD_ENDIAN_BIG)
3436 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3437 else
3438 dst_bit_offset = 0;
3439 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3440 val, src_bit_offset, bitsize);
3441 }
3442
3443 /* Return a new value with type TYPE, which is FIELDNO field of the
3444 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3445 of VAL. If the VAL's contents required to extract the bitfield
3446 from are unavailable/optimized out, the new value is
3447 correspondingly marked unavailable/optimized out. */
3448
3449 struct value *
3450 value_field_bitfield (struct type *type, int fieldno,
3451 const gdb_byte *valaddr,
3452 LONGEST embedded_offset, const struct value *val)
3453 {
3454 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3455 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3456 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3457
3458 unpack_value_bitfield (res_val, bitpos, bitsize,
3459 valaddr, embedded_offset, val);
3460
3461 return res_val;
3462 }
3463
3464 /* Modify the value of a bitfield. ADDR points to a block of memory in
3465 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3466 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3467 indicate which bits (in target bit order) comprise the bitfield.
3468 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3469 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3470
3471 void
3472 modify_field (struct type *type, gdb_byte *addr,
3473 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3474 {
3475 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3476 ULONGEST oword;
3477 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3478 LONGEST bytesize;
3479
3480 /* Normalize BITPOS. */
3481 addr += bitpos / 8;
3482 bitpos %= 8;
3483
3484 /* If a negative fieldval fits in the field in question, chop
3485 off the sign extension bits. */
3486 if ((~fieldval & ~(mask >> 1)) == 0)
3487 fieldval &= mask;
3488
3489 /* Warn if value is too big to fit in the field in question. */
3490 if (0 != (fieldval & ~mask))
3491 {
3492 /* FIXME: would like to include fieldval in the message, but
3493 we don't have a sprintf_longest. */
3494 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3495
3496 /* Truncate it, otherwise adjoining fields may be corrupted. */
3497 fieldval &= mask;
3498 }
3499
3500 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3501 false valgrind reports. */
3502
3503 bytesize = (bitpos + bitsize + 7) / 8;
3504 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3505
3506 /* Shifting for bit field depends on endianness of the target machine. */
3507 if (gdbarch_bits_big_endian (get_type_arch (type)))
3508 bitpos = bytesize * 8 - bitpos - bitsize;
3509
3510 oword &= ~(mask << bitpos);
3511 oword |= fieldval << bitpos;
3512
3513 store_unsigned_integer (addr, bytesize, byte_order, oword);
3514 }
3515 \f
3516 /* Pack NUM into BUF using a target format of TYPE. */
3517
3518 void
3519 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3520 {
3521 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3522 LONGEST len;
3523
3524 type = check_typedef (type);
3525 len = TYPE_LENGTH (type);
3526
3527 switch (TYPE_CODE (type))
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_CHAR:
3531 case TYPE_CODE_ENUM:
3532 case TYPE_CODE_FLAGS:
3533 case TYPE_CODE_BOOL:
3534 case TYPE_CODE_RANGE:
3535 case TYPE_CODE_MEMBERPTR:
3536 store_signed_integer (buf, len, byte_order, num);
3537 break;
3538
3539 case TYPE_CODE_REF:
3540 case TYPE_CODE_RVALUE_REF:
3541 case TYPE_CODE_PTR:
3542 store_typed_address (buf, type, (CORE_ADDR) num);
3543 break;
3544
3545 default:
3546 error (_("Unexpected type (%d) encountered for integer constant."),
3547 TYPE_CODE (type));
3548 }
3549 }
3550
3551
3552 /* Pack NUM into BUF using a target format of TYPE. */
3553
3554 static void
3555 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3556 {
3557 LONGEST len;
3558 enum bfd_endian byte_order;
3559
3560 type = check_typedef (type);
3561 len = TYPE_LENGTH (type);
3562 byte_order = gdbarch_byte_order (get_type_arch (type));
3563
3564 switch (TYPE_CODE (type))
3565 {
3566 case TYPE_CODE_INT:
3567 case TYPE_CODE_CHAR:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_FLAGS:
3570 case TYPE_CODE_BOOL:
3571 case TYPE_CODE_RANGE:
3572 case TYPE_CODE_MEMBERPTR:
3573 store_unsigned_integer (buf, len, byte_order, num);
3574 break;
3575
3576 case TYPE_CODE_REF:
3577 case TYPE_CODE_RVALUE_REF:
3578 case TYPE_CODE_PTR:
3579 store_typed_address (buf, type, (CORE_ADDR) num);
3580 break;
3581
3582 default:
3583 error (_("Unexpected type (%d) encountered "
3584 "for unsigned integer constant."),
3585 TYPE_CODE (type));
3586 }
3587 }
3588
3589
3590 /* Convert C numbers into newly allocated values. */
3591
3592 struct value *
3593 value_from_longest (struct type *type, LONGEST num)
3594 {
3595 struct value *val = allocate_value (type);
3596
3597 pack_long (value_contents_raw (val), type, num);
3598 return val;
3599 }
3600
3601
3602 /* Convert C unsigned numbers into newly allocated values. */
3603
3604 struct value *
3605 value_from_ulongest (struct type *type, ULONGEST num)
3606 {
3607 struct value *val = allocate_value (type);
3608
3609 pack_unsigned_long (value_contents_raw (val), type, num);
3610
3611 return val;
3612 }
3613
3614
3615 /* Create a value representing a pointer of type TYPE to the address
3616 ADDR. */
3617
3618 struct value *
3619 value_from_pointer (struct type *type, CORE_ADDR addr)
3620 {
3621 struct value *val = allocate_value (type);
3622
3623 store_typed_address (value_contents_raw (val),
3624 check_typedef (type), addr);
3625 return val;
3626 }
3627
3628
3629 /* Create a value of type TYPE whose contents come from VALADDR, if it
3630 is non-null, and whose memory address (in the inferior) is
3631 ADDRESS. The type of the created value may differ from the passed
3632 type TYPE. Make sure to retrieve values new type after this call.
3633 Note that TYPE is not passed through resolve_dynamic_type; this is
3634 a special API intended for use only by Ada. */
3635
3636 struct value *
3637 value_from_contents_and_address_unresolved (struct type *type,
3638 const gdb_byte *valaddr,
3639 CORE_ADDR address)
3640 {
3641 struct value *v;
3642
3643 if (valaddr == NULL)
3644 v = allocate_value_lazy (type);
3645 else
3646 v = value_from_contents (type, valaddr);
3647 VALUE_LVAL (v) = lval_memory;
3648 set_value_address (v, address);
3649 return v;
3650 }
3651
3652 /* Create a value of type TYPE whose contents come from VALADDR, if it
3653 is non-null, and whose memory address (in the inferior) is
3654 ADDRESS. The type of the created value may differ from the passed
3655 type TYPE. Make sure to retrieve values new type after this call. */
3656
3657 struct value *
3658 value_from_contents_and_address (struct type *type,
3659 const gdb_byte *valaddr,
3660 CORE_ADDR address)
3661 {
3662 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3663 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3664 struct value *v;
3665
3666 if (valaddr == NULL)
3667 v = allocate_value_lazy (resolved_type);
3668 else
3669 v = value_from_contents (resolved_type, valaddr);
3670 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3671 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3672 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3673 VALUE_LVAL (v) = lval_memory;
3674 set_value_address (v, address);
3675 return v;
3676 }
3677
3678 /* Create a value of type TYPE holding the contents CONTENTS.
3679 The new value is `not_lval'. */
3680
3681 struct value *
3682 value_from_contents (struct type *type, const gdb_byte *contents)
3683 {
3684 struct value *result;
3685
3686 result = allocate_value (type);
3687 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3688 return result;
3689 }
3690
3691 struct value *
3692 value_from_double (struct type *type, DOUBLEST num)
3693 {
3694 struct value *val = allocate_value (type);
3695 struct type *base_type = check_typedef (type);
3696 enum type_code code = TYPE_CODE (base_type);
3697
3698 if (code == TYPE_CODE_FLT)
3699 {
3700 store_typed_floating (value_contents_raw (val), base_type, num);
3701 }
3702 else
3703 error (_("Unexpected type encountered for floating constant."));
3704
3705 return val;
3706 }
3707
3708 struct value *
3709 value_from_decfloat (struct type *type, const gdb_byte *dec)
3710 {
3711 struct value *val = allocate_value (type);
3712
3713 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
3714 return val;
3715 }
3716
3717 /* Extract a value from the history file. Input will be of the form
3718 $digits or $$digits. See block comment above 'write_dollar_variable'
3719 for details. */
3720
3721 struct value *
3722 value_from_history_ref (const char *h, const char **endp)
3723 {
3724 int index, len;
3725
3726 if (h[0] == '$')
3727 len = 1;
3728 else
3729 return NULL;
3730
3731 if (h[1] == '$')
3732 len = 2;
3733
3734 /* Find length of numeral string. */
3735 for (; isdigit (h[len]); len++)
3736 ;
3737
3738 /* Make sure numeral string is not part of an identifier. */
3739 if (h[len] == '_' || isalpha (h[len]))
3740 return NULL;
3741
3742 /* Now collect the index value. */
3743 if (h[1] == '$')
3744 {
3745 if (len == 2)
3746 {
3747 /* For some bizarre reason, "$$" is equivalent to "$$1",
3748 rather than to "$$0" as it ought to be! */
3749 index = -1;
3750 *endp += len;
3751 }
3752 else
3753 {
3754 char *local_end;
3755
3756 index = -strtol (&h[2], &local_end, 10);
3757 *endp = local_end;
3758 }
3759 }
3760 else
3761 {
3762 if (len == 1)
3763 {
3764 /* "$" is equivalent to "$0". */
3765 index = 0;
3766 *endp += len;
3767 }
3768 else
3769 {
3770 char *local_end;
3771
3772 index = strtol (&h[1], &local_end, 10);
3773 *endp = local_end;
3774 }
3775 }
3776
3777 return access_value_history (index);
3778 }
3779
3780 /* Get the component value (offset by OFFSET bytes) of a struct or
3781 union WHOLE. Component's type is TYPE. */
3782
3783 struct value *
3784 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3785 {
3786 struct value *v;
3787
3788 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3789 v = allocate_value_lazy (type);
3790 else
3791 {
3792 v = allocate_value (type);
3793 value_contents_copy (v, value_embedded_offset (v),
3794 whole, value_embedded_offset (whole) + offset,
3795 type_length_units (type));
3796 }
3797 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3798 set_value_component_location (v, whole);
3799
3800 return v;
3801 }
3802
3803 struct value *
3804 coerce_ref_if_computed (const struct value *arg)
3805 {
3806 const struct lval_funcs *funcs;
3807
3808 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3809 return NULL;
3810
3811 if (value_lval_const (arg) != lval_computed)
3812 return NULL;
3813
3814 funcs = value_computed_funcs (arg);
3815 if (funcs->coerce_ref == NULL)
3816 return NULL;
3817
3818 return funcs->coerce_ref (arg);
3819 }
3820
3821 /* Look at value.h for description. */
3822
3823 struct value *
3824 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3825 const struct type *original_type,
3826 const struct value *original_value)
3827 {
3828 /* Re-adjust type. */
3829 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3830
3831 /* Add embedding info. */
3832 set_value_enclosing_type (value, enc_type);
3833 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3834
3835 /* We may be pointing to an object of some derived type. */
3836 return value_full_object (value, NULL, 0, 0, 0);
3837 }
3838
3839 struct value *
3840 coerce_ref (struct value *arg)
3841 {
3842 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3843 struct value *retval;
3844 struct type *enc_type;
3845
3846 retval = coerce_ref_if_computed (arg);
3847 if (retval)
3848 return retval;
3849
3850 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3851 return arg;
3852
3853 enc_type = check_typedef (value_enclosing_type (arg));
3854 enc_type = TYPE_TARGET_TYPE (enc_type);
3855
3856 retval = value_at_lazy (enc_type,
3857 unpack_pointer (value_type (arg),
3858 value_contents (arg)));
3859 enc_type = value_type (retval);
3860 return readjust_indirect_value_type (retval, enc_type,
3861 value_type_arg_tmp, arg);
3862 }
3863
3864 struct value *
3865 coerce_array (struct value *arg)
3866 {
3867 struct type *type;
3868
3869 arg = coerce_ref (arg);
3870 type = check_typedef (value_type (arg));
3871
3872 switch (TYPE_CODE (type))
3873 {
3874 case TYPE_CODE_ARRAY:
3875 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3876 arg = value_coerce_array (arg);
3877 break;
3878 case TYPE_CODE_FUNC:
3879 arg = value_coerce_function (arg);
3880 break;
3881 }
3882 return arg;
3883 }
3884 \f
3885
3886 /* Return the return value convention that will be used for the
3887 specified type. */
3888
3889 enum return_value_convention
3890 struct_return_convention (struct gdbarch *gdbarch,
3891 struct value *function, struct type *value_type)
3892 {
3893 enum type_code code = TYPE_CODE (value_type);
3894
3895 if (code == TYPE_CODE_ERROR)
3896 error (_("Function return type unknown."));
3897
3898 /* Probe the architecture for the return-value convention. */
3899 return gdbarch_return_value (gdbarch, function, value_type,
3900 NULL, NULL, NULL);
3901 }
3902
3903 /* Return true if the function returning the specified type is using
3904 the convention of returning structures in memory (passing in the
3905 address as a hidden first parameter). */
3906
3907 int
3908 using_struct_return (struct gdbarch *gdbarch,
3909 struct value *function, struct type *value_type)
3910 {
3911 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3912 /* A void return value is never in memory. See also corresponding
3913 code in "print_return_value". */
3914 return 0;
3915
3916 return (struct_return_convention (gdbarch, function, value_type)
3917 != RETURN_VALUE_REGISTER_CONVENTION);
3918 }
3919
3920 /* Set the initialized field in a value struct. */
3921
3922 void
3923 set_value_initialized (struct value *val, int status)
3924 {
3925 val->initialized = status;
3926 }
3927
3928 /* Return the initialized field in a value struct. */
3929
3930 int
3931 value_initialized (const struct value *val)
3932 {
3933 return val->initialized;
3934 }
3935
3936 /* Load the actual content of a lazy value. Fetch the data from the
3937 user's process and clear the lazy flag to indicate that the data in
3938 the buffer is valid.
3939
3940 If the value is zero-length, we avoid calling read_memory, which
3941 would abort. We mark the value as fetched anyway -- all 0 bytes of
3942 it. */
3943
3944 void
3945 value_fetch_lazy (struct value *val)
3946 {
3947 gdb_assert (value_lazy (val));
3948 allocate_value_contents (val);
3949 /* A value is either lazy, or fully fetched. The
3950 availability/validity is only established as we try to fetch a
3951 value. */
3952 gdb_assert (VEC_empty (range_s, val->optimized_out));
3953 gdb_assert (VEC_empty (range_s, val->unavailable));
3954 if (value_bitsize (val))
3955 {
3956 /* To read a lazy bitfield, read the entire enclosing value. This
3957 prevents reading the same block of (possibly volatile) memory once
3958 per bitfield. It would be even better to read only the containing
3959 word, but we have no way to record that just specific bits of a
3960 value have been fetched. */
3961 struct type *type = check_typedef (value_type (val));
3962 struct value *parent = value_parent (val);
3963
3964 if (value_lazy (parent))
3965 value_fetch_lazy (parent);
3966
3967 unpack_value_bitfield (val,
3968 value_bitpos (val), value_bitsize (val),
3969 value_contents_for_printing (parent),
3970 value_offset (val), parent);
3971 }
3972 else if (VALUE_LVAL (val) == lval_memory)
3973 {
3974 CORE_ADDR addr = value_address (val);
3975 struct type *type = check_typedef (value_enclosing_type (val));
3976
3977 if (TYPE_LENGTH (type))
3978 read_value_memory (val, 0, value_stack (val),
3979 addr, value_contents_all_raw (val),
3980 type_length_units (type));
3981 }
3982 else if (VALUE_LVAL (val) == lval_register)
3983 {
3984 struct frame_info *next_frame;
3985 int regnum;
3986 struct type *type = check_typedef (value_type (val));
3987 struct value *new_val = val, *mark = value_mark ();
3988
3989 /* Offsets are not supported here; lazy register values must
3990 refer to the entire register. */
3991 gdb_assert (value_offset (val) == 0);
3992
3993 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3994 {
3995 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3996
3997 next_frame = frame_find_by_id (next_frame_id);
3998 regnum = VALUE_REGNUM (new_val);
3999
4000 gdb_assert (next_frame != NULL);
4001
4002 /* Convertible register routines are used for multi-register
4003 values and for interpretation in different types
4004 (e.g. float or int from a double register). Lazy
4005 register values should have the register's natural type,
4006 so they do not apply. */
4007 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
4008 regnum, type));
4009
4010 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4011 Since a "->next" operation was performed when setting
4012 this field, we do not need to perform a "next" operation
4013 again when unwinding the register. That's why
4014 frame_unwind_register_value() is called here instead of
4015 get_frame_register_value(). */
4016 new_val = frame_unwind_register_value (next_frame, regnum);
4017
4018 /* If we get another lazy lval_register value, it means the
4019 register is found by reading it from NEXT_FRAME's next frame.
4020 frame_unwind_register_value should never return a value with
4021 the frame id pointing to NEXT_FRAME. If it does, it means we
4022 either have two consecutive frames with the same frame id
4023 in the frame chain, or some code is trying to unwind
4024 behind get_prev_frame's back (e.g., a frame unwind
4025 sniffer trying to unwind), bypassing its validations. In
4026 any case, it should always be an internal error to end up
4027 in this situation. */
4028 if (VALUE_LVAL (new_val) == lval_register
4029 && value_lazy (new_val)
4030 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
4031 internal_error (__FILE__, __LINE__,
4032 _("infinite loop while fetching a register"));
4033 }
4034
4035 /* If it's still lazy (for instance, a saved register on the
4036 stack), fetch it. */
4037 if (value_lazy (new_val))
4038 value_fetch_lazy (new_val);
4039
4040 /* Copy the contents and the unavailability/optimized-out
4041 meta-data from NEW_VAL to VAL. */
4042 set_value_lazy (val, 0);
4043 value_contents_copy (val, value_embedded_offset (val),
4044 new_val, value_embedded_offset (new_val),
4045 type_length_units (type));
4046
4047 if (frame_debug)
4048 {
4049 struct gdbarch *gdbarch;
4050 struct frame_info *frame;
4051 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4052 so that the frame level will be shown correctly. */
4053 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4054 regnum = VALUE_REGNUM (val);
4055 gdbarch = get_frame_arch (frame);
4056
4057 fprintf_unfiltered (gdb_stdlog,
4058 "{ value_fetch_lazy "
4059 "(frame=%d,regnum=%d(%s),...) ",
4060 frame_relative_level (frame), regnum,
4061 user_reg_map_regnum_to_name (gdbarch, regnum));
4062
4063 fprintf_unfiltered (gdb_stdlog, "->");
4064 if (value_optimized_out (new_val))
4065 {
4066 fprintf_unfiltered (gdb_stdlog, " ");
4067 val_print_optimized_out (new_val, gdb_stdlog);
4068 }
4069 else
4070 {
4071 int i;
4072 const gdb_byte *buf = value_contents (new_val);
4073
4074 if (VALUE_LVAL (new_val) == lval_register)
4075 fprintf_unfiltered (gdb_stdlog, " register=%d",
4076 VALUE_REGNUM (new_val));
4077 else if (VALUE_LVAL (new_val) == lval_memory)
4078 fprintf_unfiltered (gdb_stdlog, " address=%s",
4079 paddress (gdbarch,
4080 value_address (new_val)));
4081 else
4082 fprintf_unfiltered (gdb_stdlog, " computed");
4083
4084 fprintf_unfiltered (gdb_stdlog, " bytes=");
4085 fprintf_unfiltered (gdb_stdlog, "[");
4086 for (i = 0; i < register_size (gdbarch, regnum); i++)
4087 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4088 fprintf_unfiltered (gdb_stdlog, "]");
4089 }
4090
4091 fprintf_unfiltered (gdb_stdlog, " }\n");
4092 }
4093
4094 /* Dispose of the intermediate values. This prevents
4095 watchpoints from trying to watch the saved frame pointer. */
4096 value_free_to_mark (mark);
4097 }
4098 else if (VALUE_LVAL (val) == lval_computed
4099 && value_computed_funcs (val)->read != NULL)
4100 value_computed_funcs (val)->read (val);
4101 else
4102 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4103
4104 set_value_lazy (val, 0);
4105 }
4106
4107 /* Implementation of the convenience function $_isvoid. */
4108
4109 static struct value *
4110 isvoid_internal_fn (struct gdbarch *gdbarch,
4111 const struct language_defn *language,
4112 void *cookie, int argc, struct value **argv)
4113 {
4114 int ret;
4115
4116 if (argc != 1)
4117 error (_("You must provide one argument for $_isvoid."));
4118
4119 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4120
4121 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4122 }
4123
4124 void
4125 _initialize_values (void)
4126 {
4127 add_cmd ("convenience", no_class, show_convenience, _("\
4128 Debugger convenience (\"$foo\") variables and functions.\n\
4129 Convenience variables are created when you assign them values;\n\
4130 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4131 \n\
4132 A few convenience variables are given values automatically:\n\
4133 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4134 \"$__\" holds the contents of the last address examined with \"x\"."
4135 #ifdef HAVE_PYTHON
4136 "\n\n\
4137 Convenience functions are defined via the Python API."
4138 #endif
4139 ), &showlist);
4140 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4141
4142 add_cmd ("values", no_set_class, show_values, _("\
4143 Elements of value history around item number IDX (or last ten)."),
4144 &showlist);
4145
4146 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4147 Initialize a convenience variable if necessary.\n\
4148 init-if-undefined VARIABLE = EXPRESSION\n\
4149 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4150 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4151 VARIABLE is already initialized."));
4152
4153 add_prefix_cmd ("function", no_class, function_command, _("\
4154 Placeholder command for showing help on convenience functions."),
4155 &functionlist, "function ", 0, &cmdlist);
4156
4157 add_internal_function ("_isvoid", _("\
4158 Check whether an expression is void.\n\
4159 Usage: $_isvoid (expression)\n\
4160 Return 1 if the expression is void, zero otherwise."),
4161 isvoid_internal_fn, NULL);
4162
4163 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4164 class_support, &max_value_size, _("\
4165 Set maximum sized value gdb will load from the inferior."), _("\
4166 Show maximum sized value gdb will load from the inferior."), _("\
4167 Use this to control the maximum size, in bytes, of a value that gdb\n\
4168 will load from the inferior. Setting this value to 'unlimited'\n\
4169 disables checking.\n\
4170 Setting this does not invalidate already allocated values, it only\n\
4171 prevents future values, larger than this size, from being allocated."),
4172 set_max_value_size,
4173 show_max_value_size,
4174 &setlist, &showlist);
4175 }
This page took 0.114373 seconds and 4 git commands to generate.