Use new %p format suffixes in gdb
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46
47 /* Definition of a user function. */
48 struct internal_function
49 {
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60 };
61
62 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64 struct range
65 {
66 /* Lowest offset in the range. */
67 LONGEST offset;
68
69 /* Length of the range. */
70 LONGEST length;
71
72 /* Returns true if THIS is strictly less than OTHER, useful for
73 searching. We keep ranges sorted by offset and coalesce
74 overlapping and contiguous ranges, so this just compares the
75 starting offset. */
76
77 bool operator< (const range &other) const
78 {
79 return offset < other.offset;
80 }
81
82 /* Returns true if THIS is equal to OTHER. */
83 bool operator== (const range &other) const
84 {
85 return offset == other.offset && length == other.length;
86 }
87 };
88
89 /* Returns true if the ranges defined by [offset1, offset1+len1) and
90 [offset2, offset2+len2) overlap. */
91
92 static int
93 ranges_overlap (LONGEST offset1, LONGEST len1,
94 LONGEST offset2, LONGEST len2)
95 {
96 ULONGEST h, l;
97
98 l = std::max (offset1, offset2);
99 h = std::min (offset1 + len1, offset2 + len2);
100 return (l < h);
101 }
102
103 /* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106 static int
107 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
108 LONGEST length)
109 {
110 range what;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146
147 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
148
149 if (i > ranges.begin ())
150 {
151 const struct range &bef = *(i - 1);
152
153 if (ranges_overlap (bef.offset, bef.length, offset, length))
154 return 1;
155 }
156
157 if (i < ranges.end ())
158 {
159 const struct range &r = *i;
160
161 if (ranges_overlap (r.offset, r.length, offset, length))
162 return 1;
163 }
164
165 return 0;
166 }
167
168 static struct cmd_list_element *functionlist;
169
170 /* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
173 struct value
174 {
175 explicit value (struct type *type_)
176 : modifiable (1),
177 lazy (1),
178 initialized (1),
179 stack (0),
180 type (type_),
181 enclosing_type (type_)
182 {
183 }
184
185 ~value ()
186 {
187 if (VALUE_LVAL (this) == lval_computed)
188 {
189 const struct lval_funcs *funcs = location.computed.funcs;
190
191 if (funcs->free_closure)
192 funcs->free_closure (this);
193 }
194 else if (VALUE_LVAL (this) == lval_xcallable)
195 delete location.xm_worker;
196 }
197
198 DISABLE_COPY_AND_ASSIGN (value);
199
200 /* Type of value; either not an lval, or one of the various
201 different possible kinds of lval. */
202 enum lval_type lval = not_lval;
203
204 /* Is it modifiable? Only relevant if lval != not_lval. */
205 unsigned int modifiable : 1;
206
207 /* If zero, contents of this value are in the contents field. If
208 nonzero, contents are in inferior. If the lval field is lval_memory,
209 the contents are in inferior memory at location.address plus offset.
210 The lval field may also be lval_register.
211
212 WARNING: This field is used by the code which handles watchpoints
213 (see breakpoint.c) to decide whether a particular value can be
214 watched by hardware watchpoints. If the lazy flag is set for
215 some member of a value chain, it is assumed that this member of
216 the chain doesn't need to be watched as part of watching the
217 value itself. This is how GDB avoids watching the entire struct
218 or array when the user wants to watch a single struct member or
219 array element. If you ever change the way lazy flag is set and
220 reset, be sure to consider this use as well! */
221 unsigned int lazy : 1;
222
223 /* If value is a variable, is it initialized or not. */
224 unsigned int initialized : 1;
225
226 /* If value is from the stack. If this is set, read_stack will be
227 used instead of read_memory to enable extra caching. */
228 unsigned int stack : 1;
229
230 /* Location of value (if lval). */
231 union
232 {
233 /* If lval == lval_memory, this is the address in the inferior */
234 CORE_ADDR address;
235
236 /*If lval == lval_register, the value is from a register. */
237 struct
238 {
239 /* Register number. */
240 int regnum;
241 /* Frame ID of "next" frame to which a register value is relative.
242 If the register value is found relative to frame F, then the
243 frame id of F->next will be stored in next_frame_id. */
244 struct frame_id next_frame_id;
245 } reg;
246
247 /* Pointer to internal variable. */
248 struct internalvar *internalvar;
249
250 /* Pointer to xmethod worker. */
251 struct xmethod_worker *xm_worker;
252
253 /* If lval == lval_computed, this is a set of function pointers
254 to use to access and describe the value, and a closure pointer
255 for them to use. */
256 struct
257 {
258 /* Functions to call. */
259 const struct lval_funcs *funcs;
260
261 /* Closure for those functions to use. */
262 void *closure;
263 } computed;
264 } location {};
265
266 /* Describes offset of a value within lval of a structure in target
267 addressable memory units. Note also the member embedded_offset
268 below. */
269 LONGEST offset = 0;
270
271 /* Only used for bitfields; number of bits contained in them. */
272 LONGEST bitsize = 0;
273
274 /* Only used for bitfields; position of start of field. For
275 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
276 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
277 LONGEST bitpos = 0;
278
279 /* The number of references to this value. When a value is created,
280 the value chain holds a reference, so REFERENCE_COUNT is 1. If
281 release_value is called, this value is removed from the chain but
282 the caller of release_value now has a reference to this value.
283 The caller must arrange for a call to value_free later. */
284 int reference_count = 1;
285
286 /* Only used for bitfields; the containing value. This allows a
287 single read from the target when displaying multiple
288 bitfields. */
289 value_ref_ptr parent;
290
291 /* Type of the value. */
292 struct type *type;
293
294 /* If a value represents a C++ object, then the `type' field gives
295 the object's compile-time type. If the object actually belongs
296 to some class derived from `type', perhaps with other base
297 classes and additional members, then `type' is just a subobject
298 of the real thing, and the full object is probably larger than
299 `type' would suggest.
300
301 If `type' is a dynamic class (i.e. one with a vtable), then GDB
302 can actually determine the object's run-time type by looking at
303 the run-time type information in the vtable. When this
304 information is available, we may elect to read in the entire
305 object, for several reasons:
306
307 - When printing the value, the user would probably rather see the
308 full object, not just the limited portion apparent from the
309 compile-time type.
310
311 - If `type' has virtual base classes, then even printing `type'
312 alone may require reaching outside the `type' portion of the
313 object to wherever the virtual base class has been stored.
314
315 When we store the entire object, `enclosing_type' is the run-time
316 type -- the complete object -- and `embedded_offset' is the
317 offset of `type' within that larger type, in target addressable memory
318 units. The value_contents() macro takes `embedded_offset' into account,
319 so most GDB code continues to see the `type' portion of the value, just
320 as the inferior would.
321
322 If `type' is a pointer to an object, then `enclosing_type' is a
323 pointer to the object's run-time type, and `pointed_to_offset' is
324 the offset in target addressable memory units from the full object
325 to the pointed-to object -- that is, the value `embedded_offset' would
326 have if we followed the pointer and fetched the complete object.
327 (I don't really see the point. Why not just determine the
328 run-time type when you indirect, and avoid the special case? The
329 contents don't matter until you indirect anyway.)
330
331 If we're not doing anything fancy, `enclosing_type' is equal to
332 `type', and `embedded_offset' is zero, so everything works
333 normally. */
334 struct type *enclosing_type;
335 LONGEST embedded_offset = 0;
336 LONGEST pointed_to_offset = 0;
337
338 /* Actual contents of the value. Target byte-order. NULL or not
339 valid if lazy is nonzero. */
340 gdb::unique_xmalloc_ptr<gdb_byte> contents;
341
342 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
343 rather than available, since the common and default case is for a
344 value to be available. This is filled in at value read time.
345 The unavailable ranges are tracked in bits. Note that a contents
346 bit that has been optimized out doesn't really exist in the
347 program, so it can't be marked unavailable either. */
348 std::vector<range> unavailable;
349
350 /* Likewise, but for optimized out contents (a chunk of the value of
351 a variable that does not actually exist in the program). If LVAL
352 is lval_register, this is a register ($pc, $sp, etc., never a
353 program variable) that has not been saved in the frame. Not
354 saved registers and optimized-out program variables values are
355 treated pretty much the same, except not-saved registers have a
356 different string representation and related error strings. */
357 std::vector<range> optimized_out;
358 };
359
360 /* See value.h. */
361
362 struct gdbarch *
363 get_value_arch (const struct value *value)
364 {
365 return get_type_arch (value_type (value));
366 }
367
368 int
369 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
370 {
371 gdb_assert (!value->lazy);
372
373 return !ranges_contain (value->unavailable, offset, length);
374 }
375
376 int
377 value_bytes_available (const struct value *value,
378 LONGEST offset, LONGEST length)
379 {
380 return value_bits_available (value,
381 offset * TARGET_CHAR_BIT,
382 length * TARGET_CHAR_BIT);
383 }
384
385 int
386 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
387 {
388 gdb_assert (!value->lazy);
389
390 return ranges_contain (value->optimized_out, bit_offset, bit_length);
391 }
392
393 int
394 value_entirely_available (struct value *value)
395 {
396 /* We can only tell whether the whole value is available when we try
397 to read it. */
398 if (value->lazy)
399 value_fetch_lazy (value);
400
401 if (value->unavailable.empty ())
402 return 1;
403 return 0;
404 }
405
406 /* Returns true if VALUE is entirely covered by RANGES. If the value
407 is lazy, it'll be read now. Note that RANGE is a pointer to
408 pointer because reading the value might change *RANGE. */
409
410 static int
411 value_entirely_covered_by_range_vector (struct value *value,
412 const std::vector<range> &ranges)
413 {
414 /* We can only tell whether the whole value is optimized out /
415 unavailable when we try to read it. */
416 if (value->lazy)
417 value_fetch_lazy (value);
418
419 if (ranges.size () == 1)
420 {
421 const struct range &t = ranges[0];
422
423 if (t.offset == 0
424 && t.length == (TARGET_CHAR_BIT
425 * TYPE_LENGTH (value_enclosing_type (value))))
426 return 1;
427 }
428
429 return 0;
430 }
431
432 int
433 value_entirely_unavailable (struct value *value)
434 {
435 return value_entirely_covered_by_range_vector (value, value->unavailable);
436 }
437
438 int
439 value_entirely_optimized_out (struct value *value)
440 {
441 return value_entirely_covered_by_range_vector (value, value->optimized_out);
442 }
443
444 /* Insert into the vector pointed to by VECTORP the bit range starting of
445 OFFSET bits, and extending for the next LENGTH bits. */
446
447 static void
448 insert_into_bit_range_vector (std::vector<range> *vectorp,
449 LONGEST offset, LONGEST length)
450 {
451 range newr;
452
453 /* Insert the range sorted. If there's overlap or the new range
454 would be contiguous with an existing range, merge. */
455
456 newr.offset = offset;
457 newr.length = length;
458
459 /* Do a binary search for the position the given range would be
460 inserted if we only considered the starting OFFSET of ranges.
461 Call that position I. Since we also have LENGTH to care for
462 (this is a range afterall), we need to check if the _previous_
463 range overlaps the I range. E.g., calling R the new range:
464
465 #1 - overlaps with previous
466
467 R
468 |-...-|
469 |---| |---| |------| ... |--|
470 0 1 2 N
471
472 I=1
473
474 In the case #1 above, the binary search would return `I=1',
475 meaning, this OFFSET should be inserted at position 1, and the
476 current position 1 should be pushed further (and become 2). But,
477 note that `0' overlaps with R, so we want to merge them.
478
479 A similar consideration needs to be taken if the new range would
480 be contiguous with the previous range:
481
482 #2 - contiguous with previous
483
484 R
485 |-...-|
486 |--| |---| |------| ... |--|
487 0 1 2 N
488
489 I=1
490
491 If there's no overlap with the previous range, as in:
492
493 #3 - not overlapping and not contiguous
494
495 R
496 |-...-|
497 |--| |---| |------| ... |--|
498 0 1 2 N
499
500 I=1
501
502 or if I is 0:
503
504 #4 - R is the range with lowest offset
505
506 R
507 |-...-|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 ... we just push the new range to I.
514
515 All the 4 cases above need to consider that the new range may
516 also overlap several of the ranges that follow, or that R may be
517 contiguous with the following range, and merge. E.g.,
518
519 #5 - overlapping following ranges
520
521 R
522 |------------------------|
523 |--| |---| |------| ... |--|
524 0 1 2 N
525
526 I=0
527
528 or:
529
530 R
531 |-------|
532 |--| |---| |------| ... |--|
533 0 1 2 N
534
535 I=1
536
537 */
538
539 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
540 if (i > vectorp->begin ())
541 {
542 struct range &bef = *(i - 1);
543
544 if (ranges_overlap (bef.offset, bef.length, offset, length))
545 {
546 /* #1 */
547 ULONGEST l = std::min (bef.offset, offset);
548 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
549
550 bef.offset = l;
551 bef.length = h - l;
552 i--;
553 }
554 else if (offset == bef.offset + bef.length)
555 {
556 /* #2 */
557 bef.length += length;
558 i--;
559 }
560 else
561 {
562 /* #3 */
563 i = vectorp->insert (i, newr);
564 }
565 }
566 else
567 {
568 /* #4 */
569 i = vectorp->insert (i, newr);
570 }
571
572 /* Check whether the ranges following the one we've just added or
573 touched can be folded in (#5 above). */
574 if (i != vectorp->end () && i + 1 < vectorp->end ())
575 {
576 int removed = 0;
577 auto next = i + 1;
578
579 /* Get the range we just touched. */
580 struct range &t = *i;
581 removed = 0;
582
583 i = next;
584 for (; i < vectorp->end (); i++)
585 {
586 struct range &r = *i;
587 if (r.offset <= t.offset + t.length)
588 {
589 ULONGEST l, h;
590
591 l = std::min (t.offset, r.offset);
592 h = std::max (t.offset + t.length, r.offset + r.length);
593
594 t.offset = l;
595 t.length = h - l;
596
597 removed++;
598 }
599 else
600 {
601 /* If we couldn't merge this one, we won't be able to
602 merge following ones either, since the ranges are
603 always sorted by OFFSET. */
604 break;
605 }
606 }
607
608 if (removed != 0)
609 vectorp->erase (next, next + removed);
610 }
611 }
612
613 void
614 mark_value_bits_unavailable (struct value *value,
615 LONGEST offset, LONGEST length)
616 {
617 insert_into_bit_range_vector (&value->unavailable, offset, length);
618 }
619
620 void
621 mark_value_bytes_unavailable (struct value *value,
622 LONGEST offset, LONGEST length)
623 {
624 mark_value_bits_unavailable (value,
625 offset * TARGET_CHAR_BIT,
626 length * TARGET_CHAR_BIT);
627 }
628
629 /* Find the first range in RANGES that overlaps the range defined by
630 OFFSET and LENGTH, starting at element POS in the RANGES vector,
631 Returns the index into RANGES where such overlapping range was
632 found, or -1 if none was found. */
633
634 static int
635 find_first_range_overlap (const std::vector<range> *ranges, int pos,
636 LONGEST offset, LONGEST length)
637 {
638 int i;
639
640 for (i = pos; i < ranges->size (); i++)
641 {
642 const range &r = (*ranges)[i];
643 if (ranges_overlap (r.offset, r.length, offset, length))
644 return i;
645 }
646
647 return -1;
648 }
649
650 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
651 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
652 return non-zero.
653
654 It must always be the case that:
655 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
656
657 It is assumed that memory can be accessed from:
658 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
659 to:
660 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
661 / TARGET_CHAR_BIT) */
662 static int
663 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
664 const gdb_byte *ptr2, size_t offset2_bits,
665 size_t length_bits)
666 {
667 gdb_assert (offset1_bits % TARGET_CHAR_BIT
668 == offset2_bits % TARGET_CHAR_BIT);
669
670 if (offset1_bits % TARGET_CHAR_BIT != 0)
671 {
672 size_t bits;
673 gdb_byte mask, b1, b2;
674
675 /* The offset from the base pointers PTR1 and PTR2 is not a complete
676 number of bytes. A number of bits up to either the next exact
677 byte boundary, or LENGTH_BITS (which ever is sooner) will be
678 compared. */
679 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
680 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
681 mask = (1 << bits) - 1;
682
683 if (length_bits < bits)
684 {
685 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
686 bits = length_bits;
687 }
688
689 /* Now load the two bytes and mask off the bits we care about. */
690 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
691 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
692
693 if (b1 != b2)
694 return 1;
695
696 /* Now update the length and offsets to take account of the bits
697 we've just compared. */
698 length_bits -= bits;
699 offset1_bits += bits;
700 offset2_bits += bits;
701 }
702
703 if (length_bits % TARGET_CHAR_BIT != 0)
704 {
705 size_t bits;
706 size_t o1, o2;
707 gdb_byte mask, b1, b2;
708
709 /* The length is not an exact number of bytes. After the previous
710 IF.. block then the offsets are byte aligned, or the
711 length is zero (in which case this code is not reached). Compare
712 a number of bits at the end of the region, starting from an exact
713 byte boundary. */
714 bits = length_bits % TARGET_CHAR_BIT;
715 o1 = offset1_bits + length_bits - bits;
716 o2 = offset2_bits + length_bits - bits;
717
718 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
719 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
720
721 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
722 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
723
724 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
725 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
726
727 if (b1 != b2)
728 return 1;
729
730 length_bits -= bits;
731 }
732
733 if (length_bits > 0)
734 {
735 /* We've now taken care of any stray "bits" at the start, or end of
736 the region to compare, the remainder can be covered with a simple
737 memcmp. */
738 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
739 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
741
742 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
743 ptr2 + offset2_bits / TARGET_CHAR_BIT,
744 length_bits / TARGET_CHAR_BIT);
745 }
746
747 /* Length is zero, regions match. */
748 return 0;
749 }
750
751 /* Helper struct for find_first_range_overlap_and_match and
752 value_contents_bits_eq. Keep track of which slot of a given ranges
753 vector have we last looked at. */
754
755 struct ranges_and_idx
756 {
757 /* The ranges. */
758 const std::vector<range> *ranges;
759
760 /* The range we've last found in RANGES. Given ranges are sorted,
761 we can start the next lookup here. */
762 int idx;
763 };
764
765 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
766 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
767 ranges starting at OFFSET2 bits. Return true if the ranges match
768 and fill in *L and *H with the overlapping window relative to
769 (both) OFFSET1 or OFFSET2. */
770
771 static int
772 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
773 struct ranges_and_idx *rp2,
774 LONGEST offset1, LONGEST offset2,
775 LONGEST length, ULONGEST *l, ULONGEST *h)
776 {
777 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
778 offset1, length);
779 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
780 offset2, length);
781
782 if (rp1->idx == -1 && rp2->idx == -1)
783 {
784 *l = length;
785 *h = length;
786 return 1;
787 }
788 else if (rp1->idx == -1 || rp2->idx == -1)
789 return 0;
790 else
791 {
792 const range *r1, *r2;
793 ULONGEST l1, h1;
794 ULONGEST l2, h2;
795
796 r1 = &(*rp1->ranges)[rp1->idx];
797 r2 = &(*rp2->ranges)[rp2->idx];
798
799 /* Get the unavailable windows intersected by the incoming
800 ranges. The first and last ranges that overlap the argument
801 range may be wider than said incoming arguments ranges. */
802 l1 = std::max (offset1, r1->offset);
803 h1 = std::min (offset1 + length, r1->offset + r1->length);
804
805 l2 = std::max (offset2, r2->offset);
806 h2 = std::min (offset2 + length, offset2 + r2->length);
807
808 /* Make them relative to the respective start offsets, so we can
809 compare them for equality. */
810 l1 -= offset1;
811 h1 -= offset1;
812
813 l2 -= offset2;
814 h2 -= offset2;
815
816 /* Different ranges, no match. */
817 if (l1 != l2 || h1 != h2)
818 return 0;
819
820 *h = h1;
821 *l = l1;
822 return 1;
823 }
824 }
825
826 /* Helper function for value_contents_eq. The only difference is that
827 this function is bit rather than byte based.
828
829 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
830 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
831 Return true if the available bits match. */
832
833 static bool
834 value_contents_bits_eq (const struct value *val1, int offset1,
835 const struct value *val2, int offset2,
836 int length)
837 {
838 /* Each array element corresponds to a ranges source (unavailable,
839 optimized out). '1' is for VAL1, '2' for VAL2. */
840 struct ranges_and_idx rp1[2], rp2[2];
841
842 /* See function description in value.h. */
843 gdb_assert (!val1->lazy && !val2->lazy);
844
845 /* We shouldn't be trying to compare past the end of the values. */
846 gdb_assert (offset1 + length
847 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
848 gdb_assert (offset2 + length
849 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
850
851 memset (&rp1, 0, sizeof (rp1));
852 memset (&rp2, 0, sizeof (rp2));
853 rp1[0].ranges = &val1->unavailable;
854 rp2[0].ranges = &val2->unavailable;
855 rp1[1].ranges = &val1->optimized_out;
856 rp2[1].ranges = &val2->optimized_out;
857
858 while (length > 0)
859 {
860 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
861 int i;
862
863 for (i = 0; i < 2; i++)
864 {
865 ULONGEST l_tmp, h_tmp;
866
867 /* The contents only match equal if the invalid/unavailable
868 contents ranges match as well. */
869 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
870 offset1, offset2, length,
871 &l_tmp, &h_tmp))
872 return false;
873
874 /* We're interested in the lowest/first range found. */
875 if (i == 0 || l_tmp < l)
876 {
877 l = l_tmp;
878 h = h_tmp;
879 }
880 }
881
882 /* Compare the available/valid contents. */
883 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
884 val2->contents.get (), offset2, l) != 0)
885 return false;
886
887 length -= h;
888 offset1 += h;
889 offset2 += h;
890 }
891
892 return true;
893 }
894
895 bool
896 value_contents_eq (const struct value *val1, LONGEST offset1,
897 const struct value *val2, LONGEST offset2,
898 LONGEST length)
899 {
900 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
901 val2, offset2 * TARGET_CHAR_BIT,
902 length * TARGET_CHAR_BIT);
903 }
904
905
906 /* The value-history records all the values printed by print commands
907 during this session. */
908
909 static std::vector<value_ref_ptr> value_history;
910
911 \f
912 /* List of all value objects currently allocated
913 (except for those released by calls to release_value)
914 This is so they can be freed after each command. */
915
916 static std::vector<value_ref_ptr> all_values;
917
918 /* Allocate a lazy value for type TYPE. Its actual content is
919 "lazily" allocated too: the content field of the return value is
920 NULL; it will be allocated when it is fetched from the target. */
921
922 struct value *
923 allocate_value_lazy (struct type *type)
924 {
925 struct value *val;
926
927 /* Call check_typedef on our type to make sure that, if TYPE
928 is a TYPE_CODE_TYPEDEF, its length is set to the length
929 of the target type instead of zero. However, we do not
930 replace the typedef type by the target type, because we want
931 to keep the typedef in order to be able to set the VAL's type
932 description correctly. */
933 check_typedef (type);
934
935 val = new struct value (type);
936
937 /* Values start out on the all_values chain. */
938 all_values.emplace_back (val);
939
940 return val;
941 }
942
943 /* The maximum size, in bytes, that GDB will try to allocate for a value.
944 The initial value of 64k was not selected for any specific reason, it is
945 just a reasonable starting point. */
946
947 static int max_value_size = 65536; /* 64k bytes */
948
949 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
950 LONGEST, otherwise GDB will not be able to parse integer values from the
951 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
952 be unable to parse "set max-value-size 2".
953
954 As we want a consistent GDB experience across hosts with different sizes
955 of LONGEST, this arbitrary minimum value was selected, so long as this
956 is bigger than LONGEST on all GDB supported hosts we're fine. */
957
958 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
959 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
960
961 /* Implement the "set max-value-size" command. */
962
963 static void
964 set_max_value_size (const char *args, int from_tty,
965 struct cmd_list_element *c)
966 {
967 gdb_assert (max_value_size == -1 || max_value_size >= 0);
968
969 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
970 {
971 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
972 error (_("max-value-size set too low, increasing to %d bytes"),
973 max_value_size);
974 }
975 }
976
977 /* Implement the "show max-value-size" command. */
978
979 static void
980 show_max_value_size (struct ui_file *file, int from_tty,
981 struct cmd_list_element *c, const char *value)
982 {
983 if (max_value_size == -1)
984 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
985 else
986 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
987 max_value_size);
988 }
989
990 /* Called before we attempt to allocate or reallocate a buffer for the
991 contents of a value. TYPE is the type of the value for which we are
992 allocating the buffer. If the buffer is too large (based on the user
993 controllable setting) then throw an error. If this function returns
994 then we should attempt to allocate the buffer. */
995
996 static void
997 check_type_length_before_alloc (const struct type *type)
998 {
999 unsigned int length = TYPE_LENGTH (type);
1000
1001 if (max_value_size > -1 && length > max_value_size)
1002 {
1003 if (TYPE_NAME (type) != NULL)
1004 error (_("value of type `%s' requires %u bytes, which is more "
1005 "than max-value-size"), TYPE_NAME (type), length);
1006 else
1007 error (_("value requires %u bytes, which is more than "
1008 "max-value-size"), length);
1009 }
1010 }
1011
1012 /* Allocate the contents of VAL if it has not been allocated yet. */
1013
1014 static void
1015 allocate_value_contents (struct value *val)
1016 {
1017 if (!val->contents)
1018 {
1019 check_type_length_before_alloc (val->enclosing_type);
1020 val->contents.reset
1021 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1022 }
1023 }
1024
1025 /* Allocate a value and its contents for type TYPE. */
1026
1027 struct value *
1028 allocate_value (struct type *type)
1029 {
1030 struct value *val = allocate_value_lazy (type);
1031
1032 allocate_value_contents (val);
1033 val->lazy = 0;
1034 return val;
1035 }
1036
1037 /* Allocate a value that has the correct length
1038 for COUNT repetitions of type TYPE. */
1039
1040 struct value *
1041 allocate_repeat_value (struct type *type, int count)
1042 {
1043 int low_bound = current_language->string_lower_bound; /* ??? */
1044 /* FIXME-type-allocation: need a way to free this type when we are
1045 done with it. */
1046 struct type *array_type
1047 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1048
1049 return allocate_value (array_type);
1050 }
1051
1052 struct value *
1053 allocate_computed_value (struct type *type,
1054 const struct lval_funcs *funcs,
1055 void *closure)
1056 {
1057 struct value *v = allocate_value_lazy (type);
1058
1059 VALUE_LVAL (v) = lval_computed;
1060 v->location.computed.funcs = funcs;
1061 v->location.computed.closure = closure;
1062
1063 return v;
1064 }
1065
1066 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1067
1068 struct value *
1069 allocate_optimized_out_value (struct type *type)
1070 {
1071 struct value *retval = allocate_value_lazy (type);
1072
1073 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1074 set_value_lazy (retval, 0);
1075 return retval;
1076 }
1077
1078 /* Accessor methods. */
1079
1080 struct type *
1081 value_type (const struct value *value)
1082 {
1083 return value->type;
1084 }
1085 void
1086 deprecated_set_value_type (struct value *value, struct type *type)
1087 {
1088 value->type = type;
1089 }
1090
1091 LONGEST
1092 value_offset (const struct value *value)
1093 {
1094 return value->offset;
1095 }
1096 void
1097 set_value_offset (struct value *value, LONGEST offset)
1098 {
1099 value->offset = offset;
1100 }
1101
1102 LONGEST
1103 value_bitpos (const struct value *value)
1104 {
1105 return value->bitpos;
1106 }
1107 void
1108 set_value_bitpos (struct value *value, LONGEST bit)
1109 {
1110 value->bitpos = bit;
1111 }
1112
1113 LONGEST
1114 value_bitsize (const struct value *value)
1115 {
1116 return value->bitsize;
1117 }
1118 void
1119 set_value_bitsize (struct value *value, LONGEST bit)
1120 {
1121 value->bitsize = bit;
1122 }
1123
1124 struct value *
1125 value_parent (const struct value *value)
1126 {
1127 return value->parent.get ();
1128 }
1129
1130 /* See value.h. */
1131
1132 void
1133 set_value_parent (struct value *value, struct value *parent)
1134 {
1135 value->parent = value_ref_ptr::new_reference (parent);
1136 }
1137
1138 gdb_byte *
1139 value_contents_raw (struct value *value)
1140 {
1141 struct gdbarch *arch = get_value_arch (value);
1142 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1143
1144 allocate_value_contents (value);
1145 return value->contents.get () + value->embedded_offset * unit_size;
1146 }
1147
1148 gdb_byte *
1149 value_contents_all_raw (struct value *value)
1150 {
1151 allocate_value_contents (value);
1152 return value->contents.get ();
1153 }
1154
1155 struct type *
1156 value_enclosing_type (const struct value *value)
1157 {
1158 return value->enclosing_type;
1159 }
1160
1161 /* Look at value.h for description. */
1162
1163 struct type *
1164 value_actual_type (struct value *value, int resolve_simple_types,
1165 int *real_type_found)
1166 {
1167 struct value_print_options opts;
1168 struct type *result;
1169
1170 get_user_print_options (&opts);
1171
1172 if (real_type_found)
1173 *real_type_found = 0;
1174 result = value_type (value);
1175 if (opts.objectprint)
1176 {
1177 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1178 fetch its rtti type. */
1179 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1180 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1181 == TYPE_CODE_STRUCT
1182 && !value_optimized_out (value))
1183 {
1184 struct type *real_type;
1185
1186 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1187 if (real_type)
1188 {
1189 if (real_type_found)
1190 *real_type_found = 1;
1191 result = real_type;
1192 }
1193 }
1194 else if (resolve_simple_types)
1195 {
1196 if (real_type_found)
1197 *real_type_found = 1;
1198 result = value_enclosing_type (value);
1199 }
1200 }
1201
1202 return result;
1203 }
1204
1205 void
1206 error_value_optimized_out (void)
1207 {
1208 error (_("value has been optimized out"));
1209 }
1210
1211 static void
1212 require_not_optimized_out (const struct value *value)
1213 {
1214 if (!value->optimized_out.empty ())
1215 {
1216 if (value->lval == lval_register)
1217 error (_("register has not been saved in frame"));
1218 else
1219 error_value_optimized_out ();
1220 }
1221 }
1222
1223 static void
1224 require_available (const struct value *value)
1225 {
1226 if (!value->unavailable.empty ())
1227 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1228 }
1229
1230 const gdb_byte *
1231 value_contents_for_printing (struct value *value)
1232 {
1233 if (value->lazy)
1234 value_fetch_lazy (value);
1235 return value->contents.get ();
1236 }
1237
1238 const gdb_byte *
1239 value_contents_for_printing_const (const struct value *value)
1240 {
1241 gdb_assert (!value->lazy);
1242 return value->contents.get ();
1243 }
1244
1245 const gdb_byte *
1246 value_contents_all (struct value *value)
1247 {
1248 const gdb_byte *result = value_contents_for_printing (value);
1249 require_not_optimized_out (value);
1250 require_available (value);
1251 return result;
1252 }
1253
1254 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1255 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1256
1257 static void
1258 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1259 const std::vector<range> &src_range, int src_bit_offset,
1260 int bit_length)
1261 {
1262 for (const range &r : src_range)
1263 {
1264 ULONGEST h, l;
1265
1266 l = std::max (r.offset, (LONGEST) src_bit_offset);
1267 h = std::min (r.offset + r.length,
1268 (LONGEST) src_bit_offset + bit_length);
1269
1270 if (l < h)
1271 insert_into_bit_range_vector (dst_range,
1272 dst_bit_offset + (l - src_bit_offset),
1273 h - l);
1274 }
1275 }
1276
1277 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1278 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1279
1280 static void
1281 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1282 const struct value *src, int src_bit_offset,
1283 int bit_length)
1284 {
1285 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1286 src->unavailable, src_bit_offset,
1287 bit_length);
1288 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1289 src->optimized_out, src_bit_offset,
1290 bit_length);
1291 }
1292
1293 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1294 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1295 contents, starting at DST_OFFSET. If unavailable contents are
1296 being copied from SRC, the corresponding DST contents are marked
1297 unavailable accordingly. Neither DST nor SRC may be lazy
1298 values.
1299
1300 It is assumed the contents of DST in the [DST_OFFSET,
1301 DST_OFFSET+LENGTH) range are wholly available. */
1302
1303 void
1304 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1305 struct value *src, LONGEST src_offset, LONGEST length)
1306 {
1307 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1308 struct gdbarch *arch = get_value_arch (src);
1309 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1310
1311 /* A lazy DST would make that this copy operation useless, since as
1312 soon as DST's contents were un-lazied (by a later value_contents
1313 call, say), the contents would be overwritten. A lazy SRC would
1314 mean we'd be copying garbage. */
1315 gdb_assert (!dst->lazy && !src->lazy);
1316
1317 /* The overwritten DST range gets unavailability ORed in, not
1318 replaced. Make sure to remember to implement replacing if it
1319 turns out actually necessary. */
1320 gdb_assert (value_bytes_available (dst, dst_offset, length));
1321 gdb_assert (!value_bits_any_optimized_out (dst,
1322 TARGET_CHAR_BIT * dst_offset,
1323 TARGET_CHAR_BIT * length));
1324
1325 /* Copy the data. */
1326 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1327 value_contents_all_raw (src) + src_offset * unit_size,
1328 length * unit_size);
1329
1330 /* Copy the meta-data, adjusted. */
1331 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1332 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1333 bit_length = length * unit_size * HOST_CHAR_BIT;
1334
1335 value_ranges_copy_adjusted (dst, dst_bit_offset,
1336 src, src_bit_offset,
1337 bit_length);
1338 }
1339
1340 /* Copy LENGTH bytes of SRC value's (all) contents
1341 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1342 (all) contents, starting at DST_OFFSET. If unavailable contents
1343 are being copied from SRC, the corresponding DST contents are
1344 marked unavailable accordingly. DST must not be lazy. If SRC is
1345 lazy, it will be fetched now.
1346
1347 It is assumed the contents of DST in the [DST_OFFSET,
1348 DST_OFFSET+LENGTH) range are wholly available. */
1349
1350 void
1351 value_contents_copy (struct value *dst, LONGEST dst_offset,
1352 struct value *src, LONGEST src_offset, LONGEST length)
1353 {
1354 if (src->lazy)
1355 value_fetch_lazy (src);
1356
1357 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1358 }
1359
1360 int
1361 value_lazy (const struct value *value)
1362 {
1363 return value->lazy;
1364 }
1365
1366 void
1367 set_value_lazy (struct value *value, int val)
1368 {
1369 value->lazy = val;
1370 }
1371
1372 int
1373 value_stack (const struct value *value)
1374 {
1375 return value->stack;
1376 }
1377
1378 void
1379 set_value_stack (struct value *value, int val)
1380 {
1381 value->stack = val;
1382 }
1383
1384 const gdb_byte *
1385 value_contents (struct value *value)
1386 {
1387 const gdb_byte *result = value_contents_writeable (value);
1388 require_not_optimized_out (value);
1389 require_available (value);
1390 return result;
1391 }
1392
1393 gdb_byte *
1394 value_contents_writeable (struct value *value)
1395 {
1396 if (value->lazy)
1397 value_fetch_lazy (value);
1398 return value_contents_raw (value);
1399 }
1400
1401 int
1402 value_optimized_out (struct value *value)
1403 {
1404 /* We can only know if a value is optimized out once we have tried to
1405 fetch it. */
1406 if (value->optimized_out.empty () && value->lazy)
1407 {
1408 try
1409 {
1410 value_fetch_lazy (value);
1411 }
1412 catch (const gdb_exception_error &ex)
1413 {
1414 /* Fall back to checking value->optimized_out. */
1415 }
1416 }
1417
1418 return !value->optimized_out.empty ();
1419 }
1420
1421 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1422 the following LENGTH bytes. */
1423
1424 void
1425 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1426 {
1427 mark_value_bits_optimized_out (value,
1428 offset * TARGET_CHAR_BIT,
1429 length * TARGET_CHAR_BIT);
1430 }
1431
1432 /* See value.h. */
1433
1434 void
1435 mark_value_bits_optimized_out (struct value *value,
1436 LONGEST offset, LONGEST length)
1437 {
1438 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1439 }
1440
1441 int
1442 value_bits_synthetic_pointer (const struct value *value,
1443 LONGEST offset, LONGEST length)
1444 {
1445 if (value->lval != lval_computed
1446 || !value->location.computed.funcs->check_synthetic_pointer)
1447 return 0;
1448 return value->location.computed.funcs->check_synthetic_pointer (value,
1449 offset,
1450 length);
1451 }
1452
1453 LONGEST
1454 value_embedded_offset (const struct value *value)
1455 {
1456 return value->embedded_offset;
1457 }
1458
1459 void
1460 set_value_embedded_offset (struct value *value, LONGEST val)
1461 {
1462 value->embedded_offset = val;
1463 }
1464
1465 LONGEST
1466 value_pointed_to_offset (const struct value *value)
1467 {
1468 return value->pointed_to_offset;
1469 }
1470
1471 void
1472 set_value_pointed_to_offset (struct value *value, LONGEST val)
1473 {
1474 value->pointed_to_offset = val;
1475 }
1476
1477 const struct lval_funcs *
1478 value_computed_funcs (const struct value *v)
1479 {
1480 gdb_assert (value_lval_const (v) == lval_computed);
1481
1482 return v->location.computed.funcs;
1483 }
1484
1485 void *
1486 value_computed_closure (const struct value *v)
1487 {
1488 gdb_assert (v->lval == lval_computed);
1489
1490 return v->location.computed.closure;
1491 }
1492
1493 enum lval_type *
1494 deprecated_value_lval_hack (struct value *value)
1495 {
1496 return &value->lval;
1497 }
1498
1499 enum lval_type
1500 value_lval_const (const struct value *value)
1501 {
1502 return value->lval;
1503 }
1504
1505 CORE_ADDR
1506 value_address (const struct value *value)
1507 {
1508 if (value->lval != lval_memory)
1509 return 0;
1510 if (value->parent != NULL)
1511 return value_address (value->parent.get ()) + value->offset;
1512 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1513 {
1514 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1515 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1516 }
1517
1518 return value->location.address + value->offset;
1519 }
1520
1521 CORE_ADDR
1522 value_raw_address (const struct value *value)
1523 {
1524 if (value->lval != lval_memory)
1525 return 0;
1526 return value->location.address;
1527 }
1528
1529 void
1530 set_value_address (struct value *value, CORE_ADDR addr)
1531 {
1532 gdb_assert (value->lval == lval_memory);
1533 value->location.address = addr;
1534 }
1535
1536 struct internalvar **
1537 deprecated_value_internalvar_hack (struct value *value)
1538 {
1539 return &value->location.internalvar;
1540 }
1541
1542 struct frame_id *
1543 deprecated_value_next_frame_id_hack (struct value *value)
1544 {
1545 gdb_assert (value->lval == lval_register);
1546 return &value->location.reg.next_frame_id;
1547 }
1548
1549 int *
1550 deprecated_value_regnum_hack (struct value *value)
1551 {
1552 gdb_assert (value->lval == lval_register);
1553 return &value->location.reg.regnum;
1554 }
1555
1556 int
1557 deprecated_value_modifiable (const struct value *value)
1558 {
1559 return value->modifiable;
1560 }
1561 \f
1562 /* Return a mark in the value chain. All values allocated after the
1563 mark is obtained (except for those released) are subject to being freed
1564 if a subsequent value_free_to_mark is passed the mark. */
1565 struct value *
1566 value_mark (void)
1567 {
1568 if (all_values.empty ())
1569 return nullptr;
1570 return all_values.back ().get ();
1571 }
1572
1573 /* See value.h. */
1574
1575 void
1576 value_incref (struct value *val)
1577 {
1578 val->reference_count++;
1579 }
1580
1581 /* Release a reference to VAL, which was acquired with value_incref.
1582 This function is also called to deallocate values from the value
1583 chain. */
1584
1585 void
1586 value_decref (struct value *val)
1587 {
1588 if (val != nullptr)
1589 {
1590 gdb_assert (val->reference_count > 0);
1591 val->reference_count--;
1592 if (val->reference_count == 0)
1593 delete val;
1594 }
1595 }
1596
1597 /* Free all values allocated since MARK was obtained by value_mark
1598 (except for those released). */
1599 void
1600 value_free_to_mark (const struct value *mark)
1601 {
1602 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1603 if (iter == all_values.end ())
1604 all_values.clear ();
1605 else
1606 all_values.erase (iter + 1, all_values.end ());
1607 }
1608
1609 /* Remove VAL from the chain all_values
1610 so it will not be freed automatically. */
1611
1612 value_ref_ptr
1613 release_value (struct value *val)
1614 {
1615 if (val == nullptr)
1616 return value_ref_ptr ();
1617
1618 std::vector<value_ref_ptr>::reverse_iterator iter;
1619 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1620 {
1621 if (*iter == val)
1622 {
1623 value_ref_ptr result = *iter;
1624 all_values.erase (iter.base () - 1);
1625 return result;
1626 }
1627 }
1628
1629 /* We must always return an owned reference. Normally this happens
1630 because we transfer the reference from the value chain, but in
1631 this case the value was not on the chain. */
1632 return value_ref_ptr::new_reference (val);
1633 }
1634
1635 /* See value.h. */
1636
1637 std::vector<value_ref_ptr>
1638 value_release_to_mark (const struct value *mark)
1639 {
1640 std::vector<value_ref_ptr> result;
1641
1642 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1643 if (iter == all_values.end ())
1644 std::swap (result, all_values);
1645 else
1646 {
1647 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1648 all_values.erase (iter + 1, all_values.end ());
1649 }
1650 std::reverse (result.begin (), result.end ());
1651 return result;
1652 }
1653
1654 /* Return a copy of the value ARG.
1655 It contains the same contents, for same memory address,
1656 but it's a different block of storage. */
1657
1658 struct value *
1659 value_copy (struct value *arg)
1660 {
1661 struct type *encl_type = value_enclosing_type (arg);
1662 struct value *val;
1663
1664 if (value_lazy (arg))
1665 val = allocate_value_lazy (encl_type);
1666 else
1667 val = allocate_value (encl_type);
1668 val->type = arg->type;
1669 VALUE_LVAL (val) = VALUE_LVAL (arg);
1670 val->location = arg->location;
1671 val->offset = arg->offset;
1672 val->bitpos = arg->bitpos;
1673 val->bitsize = arg->bitsize;
1674 val->lazy = arg->lazy;
1675 val->embedded_offset = value_embedded_offset (arg);
1676 val->pointed_to_offset = arg->pointed_to_offset;
1677 val->modifiable = arg->modifiable;
1678 if (!value_lazy (val))
1679 {
1680 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1681 TYPE_LENGTH (value_enclosing_type (arg)));
1682
1683 }
1684 val->unavailable = arg->unavailable;
1685 val->optimized_out = arg->optimized_out;
1686 val->parent = arg->parent;
1687 if (VALUE_LVAL (val) == lval_computed)
1688 {
1689 const struct lval_funcs *funcs = val->location.computed.funcs;
1690
1691 if (funcs->copy_closure)
1692 val->location.computed.closure = funcs->copy_closure (val);
1693 }
1694 return val;
1695 }
1696
1697 /* Return a "const" and/or "volatile" qualified version of the value V.
1698 If CNST is true, then the returned value will be qualified with
1699 "const".
1700 if VOLTL is true, then the returned value will be qualified with
1701 "volatile". */
1702
1703 struct value *
1704 make_cv_value (int cnst, int voltl, struct value *v)
1705 {
1706 struct type *val_type = value_type (v);
1707 struct type *enclosing_type = value_enclosing_type (v);
1708 struct value *cv_val = value_copy (v);
1709
1710 deprecated_set_value_type (cv_val,
1711 make_cv_type (cnst, voltl, val_type, NULL));
1712 set_value_enclosing_type (cv_val,
1713 make_cv_type (cnst, voltl, enclosing_type, NULL));
1714
1715 return cv_val;
1716 }
1717
1718 /* Return a version of ARG that is non-lvalue. */
1719
1720 struct value *
1721 value_non_lval (struct value *arg)
1722 {
1723 if (VALUE_LVAL (arg) != not_lval)
1724 {
1725 struct type *enc_type = value_enclosing_type (arg);
1726 struct value *val = allocate_value (enc_type);
1727
1728 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1729 TYPE_LENGTH (enc_type));
1730 val->type = arg->type;
1731 set_value_embedded_offset (val, value_embedded_offset (arg));
1732 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1733 return val;
1734 }
1735 return arg;
1736 }
1737
1738 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1739
1740 void
1741 value_force_lval (struct value *v, CORE_ADDR addr)
1742 {
1743 gdb_assert (VALUE_LVAL (v) == not_lval);
1744
1745 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1746 v->lval = lval_memory;
1747 v->location.address = addr;
1748 }
1749
1750 void
1751 set_value_component_location (struct value *component,
1752 const struct value *whole)
1753 {
1754 struct type *type;
1755
1756 gdb_assert (whole->lval != lval_xcallable);
1757
1758 if (whole->lval == lval_internalvar)
1759 VALUE_LVAL (component) = lval_internalvar_component;
1760 else
1761 VALUE_LVAL (component) = whole->lval;
1762
1763 component->location = whole->location;
1764 if (whole->lval == lval_computed)
1765 {
1766 const struct lval_funcs *funcs = whole->location.computed.funcs;
1767
1768 if (funcs->copy_closure)
1769 component->location.computed.closure = funcs->copy_closure (whole);
1770 }
1771
1772 /* If type has a dynamic resolved location property
1773 update it's value address. */
1774 type = value_type (whole);
1775 if (NULL != TYPE_DATA_LOCATION (type)
1776 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1777 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1778 }
1779
1780 /* Access to the value history. */
1781
1782 /* Record a new value in the value history.
1783 Returns the absolute history index of the entry. */
1784
1785 int
1786 record_latest_value (struct value *val)
1787 {
1788 /* We don't want this value to have anything to do with the inferior anymore.
1789 In particular, "set $1 = 50" should not affect the variable from which
1790 the value was taken, and fast watchpoints should be able to assume that
1791 a value on the value history never changes. */
1792 if (value_lazy (val))
1793 value_fetch_lazy (val);
1794 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1795 from. This is a bit dubious, because then *&$1 does not just return $1
1796 but the current contents of that location. c'est la vie... */
1797 val->modifiable = 0;
1798
1799 value_history.push_back (release_value (val));
1800
1801 return value_history.size ();
1802 }
1803
1804 /* Return a copy of the value in the history with sequence number NUM. */
1805
1806 struct value *
1807 access_value_history (int num)
1808 {
1809 int absnum = num;
1810
1811 if (absnum <= 0)
1812 absnum += value_history.size ();
1813
1814 if (absnum <= 0)
1815 {
1816 if (num == 0)
1817 error (_("The history is empty."));
1818 else if (num == 1)
1819 error (_("There is only one value in the history."));
1820 else
1821 error (_("History does not go back to $$%d."), -num);
1822 }
1823 if (absnum > value_history.size ())
1824 error (_("History has not yet reached $%d."), absnum);
1825
1826 absnum--;
1827
1828 return value_copy (value_history[absnum].get ());
1829 }
1830
1831 static void
1832 show_values (const char *num_exp, int from_tty)
1833 {
1834 int i;
1835 struct value *val;
1836 static int num = 1;
1837
1838 if (num_exp)
1839 {
1840 /* "show values +" should print from the stored position.
1841 "show values <exp>" should print around value number <exp>. */
1842 if (num_exp[0] != '+' || num_exp[1] != '\0')
1843 num = parse_and_eval_long (num_exp) - 5;
1844 }
1845 else
1846 {
1847 /* "show values" means print the last 10 values. */
1848 num = value_history.size () - 9;
1849 }
1850
1851 if (num <= 0)
1852 num = 1;
1853
1854 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1855 {
1856 struct value_print_options opts;
1857
1858 val = access_value_history (i);
1859 printf_filtered (("$%d = "), i);
1860 get_user_print_options (&opts);
1861 value_print (val, gdb_stdout, &opts);
1862 printf_filtered (("\n"));
1863 }
1864
1865 /* The next "show values +" should start after what we just printed. */
1866 num += 10;
1867
1868 /* Hitting just return after this command should do the same thing as
1869 "show values +". If num_exp is null, this is unnecessary, since
1870 "show values +" is not useful after "show values". */
1871 if (from_tty && num_exp)
1872 set_repeat_arguments ("+");
1873 }
1874 \f
1875 enum internalvar_kind
1876 {
1877 /* The internal variable is empty. */
1878 INTERNALVAR_VOID,
1879
1880 /* The value of the internal variable is provided directly as
1881 a GDB value object. */
1882 INTERNALVAR_VALUE,
1883
1884 /* A fresh value is computed via a call-back routine on every
1885 access to the internal variable. */
1886 INTERNALVAR_MAKE_VALUE,
1887
1888 /* The internal variable holds a GDB internal convenience function. */
1889 INTERNALVAR_FUNCTION,
1890
1891 /* The variable holds an integer value. */
1892 INTERNALVAR_INTEGER,
1893
1894 /* The variable holds a GDB-provided string. */
1895 INTERNALVAR_STRING,
1896 };
1897
1898 union internalvar_data
1899 {
1900 /* A value object used with INTERNALVAR_VALUE. */
1901 struct value *value;
1902
1903 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1904 struct
1905 {
1906 /* The functions to call. */
1907 const struct internalvar_funcs *functions;
1908
1909 /* The function's user-data. */
1910 void *data;
1911 } make_value;
1912
1913 /* The internal function used with INTERNALVAR_FUNCTION. */
1914 struct
1915 {
1916 struct internal_function *function;
1917 /* True if this is the canonical name for the function. */
1918 int canonical;
1919 } fn;
1920
1921 /* An integer value used with INTERNALVAR_INTEGER. */
1922 struct
1923 {
1924 /* If type is non-NULL, it will be used as the type to generate
1925 a value for this internal variable. If type is NULL, a default
1926 integer type for the architecture is used. */
1927 struct type *type;
1928 LONGEST val;
1929 } integer;
1930
1931 /* A string value used with INTERNALVAR_STRING. */
1932 char *string;
1933 };
1934
1935 /* Internal variables. These are variables within the debugger
1936 that hold values assigned by debugger commands.
1937 The user refers to them with a '$' prefix
1938 that does not appear in the variable names stored internally. */
1939
1940 struct internalvar
1941 {
1942 struct internalvar *next;
1943 char *name;
1944
1945 /* We support various different kinds of content of an internal variable.
1946 enum internalvar_kind specifies the kind, and union internalvar_data
1947 provides the data associated with this particular kind. */
1948
1949 enum internalvar_kind kind;
1950
1951 union internalvar_data u;
1952 };
1953
1954 static struct internalvar *internalvars;
1955
1956 /* If the variable does not already exist create it and give it the
1957 value given. If no value is given then the default is zero. */
1958 static void
1959 init_if_undefined_command (const char* args, int from_tty)
1960 {
1961 struct internalvar* intvar;
1962
1963 /* Parse the expression - this is taken from set_command(). */
1964 expression_up expr = parse_expression (args);
1965
1966 /* Validate the expression.
1967 Was the expression an assignment?
1968 Or even an expression at all? */
1969 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1970 error (_("Init-if-undefined requires an assignment expression."));
1971
1972 /* Extract the variable from the parsed expression.
1973 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1974 if (expr->elts[1].opcode != OP_INTERNALVAR)
1975 error (_("The first parameter to init-if-undefined "
1976 "should be a GDB variable."));
1977 intvar = expr->elts[2].internalvar;
1978
1979 /* Only evaluate the expression if the lvalue is void.
1980 This may still fail if the expresssion is invalid. */
1981 if (intvar->kind == INTERNALVAR_VOID)
1982 evaluate_expression (expr.get ());
1983 }
1984
1985
1986 /* Look up an internal variable with name NAME. NAME should not
1987 normally include a dollar sign.
1988
1989 If the specified internal variable does not exist,
1990 the return value is NULL. */
1991
1992 struct internalvar *
1993 lookup_only_internalvar (const char *name)
1994 {
1995 struct internalvar *var;
1996
1997 for (var = internalvars; var; var = var->next)
1998 if (strcmp (var->name, name) == 0)
1999 return var;
2000
2001 return NULL;
2002 }
2003
2004 /* Complete NAME by comparing it to the names of internal
2005 variables. */
2006
2007 void
2008 complete_internalvar (completion_tracker &tracker, const char *name)
2009 {
2010 struct internalvar *var;
2011 int len;
2012
2013 len = strlen (name);
2014
2015 for (var = internalvars; var; var = var->next)
2016 if (strncmp (var->name, name, len) == 0)
2017 tracker.add_completion (make_unique_xstrdup (var->name));
2018 }
2019
2020 /* Create an internal variable with name NAME and with a void value.
2021 NAME should not normally include a dollar sign. */
2022
2023 struct internalvar *
2024 create_internalvar (const char *name)
2025 {
2026 struct internalvar *var = XNEW (struct internalvar);
2027
2028 var->name = xstrdup (name);
2029 var->kind = INTERNALVAR_VOID;
2030 var->next = internalvars;
2031 internalvars = var;
2032 return var;
2033 }
2034
2035 /* Create an internal variable with name NAME and register FUN as the
2036 function that value_of_internalvar uses to create a value whenever
2037 this variable is referenced. NAME should not normally include a
2038 dollar sign. DATA is passed uninterpreted to FUN when it is
2039 called. CLEANUP, if not NULL, is called when the internal variable
2040 is destroyed. It is passed DATA as its only argument. */
2041
2042 struct internalvar *
2043 create_internalvar_type_lazy (const char *name,
2044 const struct internalvar_funcs *funcs,
2045 void *data)
2046 {
2047 struct internalvar *var = create_internalvar (name);
2048
2049 var->kind = INTERNALVAR_MAKE_VALUE;
2050 var->u.make_value.functions = funcs;
2051 var->u.make_value.data = data;
2052 return var;
2053 }
2054
2055 /* See documentation in value.h. */
2056
2057 int
2058 compile_internalvar_to_ax (struct internalvar *var,
2059 struct agent_expr *expr,
2060 struct axs_value *value)
2061 {
2062 if (var->kind != INTERNALVAR_MAKE_VALUE
2063 || var->u.make_value.functions->compile_to_ax == NULL)
2064 return 0;
2065
2066 var->u.make_value.functions->compile_to_ax (var, expr, value,
2067 var->u.make_value.data);
2068 return 1;
2069 }
2070
2071 /* Look up an internal variable with name NAME. NAME should not
2072 normally include a dollar sign.
2073
2074 If the specified internal variable does not exist,
2075 one is created, with a void value. */
2076
2077 struct internalvar *
2078 lookup_internalvar (const char *name)
2079 {
2080 struct internalvar *var;
2081
2082 var = lookup_only_internalvar (name);
2083 if (var)
2084 return var;
2085
2086 return create_internalvar (name);
2087 }
2088
2089 /* Return current value of internal variable VAR. For variables that
2090 are not inherently typed, use a value type appropriate for GDBARCH. */
2091
2092 struct value *
2093 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2094 {
2095 struct value *val;
2096 struct trace_state_variable *tsv;
2097
2098 /* If there is a trace state variable of the same name, assume that
2099 is what we really want to see. */
2100 tsv = find_trace_state_variable (var->name);
2101 if (tsv)
2102 {
2103 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2104 &(tsv->value));
2105 if (tsv->value_known)
2106 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2107 tsv->value);
2108 else
2109 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2110 return val;
2111 }
2112
2113 switch (var->kind)
2114 {
2115 case INTERNALVAR_VOID:
2116 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2117 break;
2118
2119 case INTERNALVAR_FUNCTION:
2120 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2121 break;
2122
2123 case INTERNALVAR_INTEGER:
2124 if (!var->u.integer.type)
2125 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2126 var->u.integer.val);
2127 else
2128 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2129 break;
2130
2131 case INTERNALVAR_STRING:
2132 val = value_cstring (var->u.string, strlen (var->u.string),
2133 builtin_type (gdbarch)->builtin_char);
2134 break;
2135
2136 case INTERNALVAR_VALUE:
2137 val = value_copy (var->u.value);
2138 if (value_lazy (val))
2139 value_fetch_lazy (val);
2140 break;
2141
2142 case INTERNALVAR_MAKE_VALUE:
2143 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2144 var->u.make_value.data);
2145 break;
2146
2147 default:
2148 internal_error (__FILE__, __LINE__, _("bad kind"));
2149 }
2150
2151 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2152 on this value go back to affect the original internal variable.
2153
2154 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2155 no underlying modifyable state in the internal variable.
2156
2157 Likewise, if the variable's value is a computed lvalue, we want
2158 references to it to produce another computed lvalue, where
2159 references and assignments actually operate through the
2160 computed value's functions.
2161
2162 This means that internal variables with computed values
2163 behave a little differently from other internal variables:
2164 assignments to them don't just replace the previous value
2165 altogether. At the moment, this seems like the behavior we
2166 want. */
2167
2168 if (var->kind != INTERNALVAR_MAKE_VALUE
2169 && val->lval != lval_computed)
2170 {
2171 VALUE_LVAL (val) = lval_internalvar;
2172 VALUE_INTERNALVAR (val) = var;
2173 }
2174
2175 return val;
2176 }
2177
2178 int
2179 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2180 {
2181 if (var->kind == INTERNALVAR_INTEGER)
2182 {
2183 *result = var->u.integer.val;
2184 return 1;
2185 }
2186
2187 if (var->kind == INTERNALVAR_VALUE)
2188 {
2189 struct type *type = check_typedef (value_type (var->u.value));
2190
2191 if (TYPE_CODE (type) == TYPE_CODE_INT)
2192 {
2193 *result = value_as_long (var->u.value);
2194 return 1;
2195 }
2196 }
2197
2198 return 0;
2199 }
2200
2201 static int
2202 get_internalvar_function (struct internalvar *var,
2203 struct internal_function **result)
2204 {
2205 switch (var->kind)
2206 {
2207 case INTERNALVAR_FUNCTION:
2208 *result = var->u.fn.function;
2209 return 1;
2210
2211 default:
2212 return 0;
2213 }
2214 }
2215
2216 void
2217 set_internalvar_component (struct internalvar *var,
2218 LONGEST offset, LONGEST bitpos,
2219 LONGEST bitsize, struct value *newval)
2220 {
2221 gdb_byte *addr;
2222 struct gdbarch *arch;
2223 int unit_size;
2224
2225 switch (var->kind)
2226 {
2227 case INTERNALVAR_VALUE:
2228 addr = value_contents_writeable (var->u.value);
2229 arch = get_value_arch (var->u.value);
2230 unit_size = gdbarch_addressable_memory_unit_size (arch);
2231
2232 if (bitsize)
2233 modify_field (value_type (var->u.value), addr + offset,
2234 value_as_long (newval), bitpos, bitsize);
2235 else
2236 memcpy (addr + offset * unit_size, value_contents (newval),
2237 TYPE_LENGTH (value_type (newval)));
2238 break;
2239
2240 default:
2241 /* We can never get a component of any other kind. */
2242 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2243 }
2244 }
2245
2246 void
2247 set_internalvar (struct internalvar *var, struct value *val)
2248 {
2249 enum internalvar_kind new_kind;
2250 union internalvar_data new_data = { 0 };
2251
2252 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2253 error (_("Cannot overwrite convenience function %s"), var->name);
2254
2255 /* Prepare new contents. */
2256 switch (TYPE_CODE (check_typedef (value_type (val))))
2257 {
2258 case TYPE_CODE_VOID:
2259 new_kind = INTERNALVAR_VOID;
2260 break;
2261
2262 case TYPE_CODE_INTERNAL_FUNCTION:
2263 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2264 new_kind = INTERNALVAR_FUNCTION;
2265 get_internalvar_function (VALUE_INTERNALVAR (val),
2266 &new_data.fn.function);
2267 /* Copies created here are never canonical. */
2268 break;
2269
2270 default:
2271 new_kind = INTERNALVAR_VALUE;
2272 struct value *copy = value_copy (val);
2273 copy->modifiable = 1;
2274
2275 /* Force the value to be fetched from the target now, to avoid problems
2276 later when this internalvar is referenced and the target is gone or
2277 has changed. */
2278 if (value_lazy (copy))
2279 value_fetch_lazy (copy);
2280
2281 /* Release the value from the value chain to prevent it from being
2282 deleted by free_all_values. From here on this function should not
2283 call error () until new_data is installed into the var->u to avoid
2284 leaking memory. */
2285 new_data.value = release_value (copy).release ();
2286
2287 /* Internal variables which are created from values with a dynamic
2288 location don't need the location property of the origin anymore.
2289 The resolved dynamic location is used prior then any other address
2290 when accessing the value.
2291 If we keep it, we would still refer to the origin value.
2292 Remove the location property in case it exist. */
2293 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2294
2295 break;
2296 }
2297
2298 /* Clean up old contents. */
2299 clear_internalvar (var);
2300
2301 /* Switch over. */
2302 var->kind = new_kind;
2303 var->u = new_data;
2304 /* End code which must not call error(). */
2305 }
2306
2307 void
2308 set_internalvar_integer (struct internalvar *var, LONGEST l)
2309 {
2310 /* Clean up old contents. */
2311 clear_internalvar (var);
2312
2313 var->kind = INTERNALVAR_INTEGER;
2314 var->u.integer.type = NULL;
2315 var->u.integer.val = l;
2316 }
2317
2318 void
2319 set_internalvar_string (struct internalvar *var, const char *string)
2320 {
2321 /* Clean up old contents. */
2322 clear_internalvar (var);
2323
2324 var->kind = INTERNALVAR_STRING;
2325 var->u.string = xstrdup (string);
2326 }
2327
2328 static void
2329 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2330 {
2331 /* Clean up old contents. */
2332 clear_internalvar (var);
2333
2334 var->kind = INTERNALVAR_FUNCTION;
2335 var->u.fn.function = f;
2336 var->u.fn.canonical = 1;
2337 /* Variables installed here are always the canonical version. */
2338 }
2339
2340 void
2341 clear_internalvar (struct internalvar *var)
2342 {
2343 /* Clean up old contents. */
2344 switch (var->kind)
2345 {
2346 case INTERNALVAR_VALUE:
2347 value_decref (var->u.value);
2348 break;
2349
2350 case INTERNALVAR_STRING:
2351 xfree (var->u.string);
2352 break;
2353
2354 case INTERNALVAR_MAKE_VALUE:
2355 if (var->u.make_value.functions->destroy != NULL)
2356 var->u.make_value.functions->destroy (var->u.make_value.data);
2357 break;
2358
2359 default:
2360 break;
2361 }
2362
2363 /* Reset to void kind. */
2364 var->kind = INTERNALVAR_VOID;
2365 }
2366
2367 char *
2368 internalvar_name (const struct internalvar *var)
2369 {
2370 return var->name;
2371 }
2372
2373 static struct internal_function *
2374 create_internal_function (const char *name,
2375 internal_function_fn handler, void *cookie)
2376 {
2377 struct internal_function *ifn = XNEW (struct internal_function);
2378
2379 ifn->name = xstrdup (name);
2380 ifn->handler = handler;
2381 ifn->cookie = cookie;
2382 return ifn;
2383 }
2384
2385 char *
2386 value_internal_function_name (struct value *val)
2387 {
2388 struct internal_function *ifn;
2389 int result;
2390
2391 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2392 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2393 gdb_assert (result);
2394
2395 return ifn->name;
2396 }
2397
2398 struct value *
2399 call_internal_function (struct gdbarch *gdbarch,
2400 const struct language_defn *language,
2401 struct value *func, int argc, struct value **argv)
2402 {
2403 struct internal_function *ifn;
2404 int result;
2405
2406 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2407 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2408 gdb_assert (result);
2409
2410 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2411 }
2412
2413 /* The 'function' command. This does nothing -- it is just a
2414 placeholder to let "help function NAME" work. This is also used as
2415 the implementation of the sub-command that is created when
2416 registering an internal function. */
2417 static void
2418 function_command (const char *command, int from_tty)
2419 {
2420 /* Do nothing. */
2421 }
2422
2423 /* Clean up if an internal function's command is destroyed. */
2424 static void
2425 function_destroyer (struct cmd_list_element *self, void *ignore)
2426 {
2427 xfree ((char *) self->name);
2428 xfree ((char *) self->doc);
2429 }
2430
2431 /* Add a new internal function. NAME is the name of the function; DOC
2432 is a documentation string describing the function. HANDLER is
2433 called when the function is invoked. COOKIE is an arbitrary
2434 pointer which is passed to HANDLER and is intended for "user
2435 data". */
2436 void
2437 add_internal_function (const char *name, const char *doc,
2438 internal_function_fn handler, void *cookie)
2439 {
2440 struct cmd_list_element *cmd;
2441 struct internal_function *ifn;
2442 struct internalvar *var = lookup_internalvar (name);
2443
2444 ifn = create_internal_function (name, handler, cookie);
2445 set_internalvar_function (var, ifn);
2446
2447 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2448 &functionlist);
2449 cmd->destroyer = function_destroyer;
2450 }
2451
2452 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2453 prevent cycles / duplicates. */
2454
2455 void
2456 preserve_one_value (struct value *value, struct objfile *objfile,
2457 htab_t copied_types)
2458 {
2459 if (TYPE_OBJFILE (value->type) == objfile)
2460 value->type = copy_type_recursive (objfile, value->type, copied_types);
2461
2462 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2463 value->enclosing_type = copy_type_recursive (objfile,
2464 value->enclosing_type,
2465 copied_types);
2466 }
2467
2468 /* Likewise for internal variable VAR. */
2469
2470 static void
2471 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2472 htab_t copied_types)
2473 {
2474 switch (var->kind)
2475 {
2476 case INTERNALVAR_INTEGER:
2477 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2478 var->u.integer.type
2479 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2480 break;
2481
2482 case INTERNALVAR_VALUE:
2483 preserve_one_value (var->u.value, objfile, copied_types);
2484 break;
2485 }
2486 }
2487
2488 /* Update the internal variables and value history when OBJFILE is
2489 discarded; we must copy the types out of the objfile. New global types
2490 will be created for every convenience variable which currently points to
2491 this objfile's types, and the convenience variables will be adjusted to
2492 use the new global types. */
2493
2494 void
2495 preserve_values (struct objfile *objfile)
2496 {
2497 htab_t copied_types;
2498 struct internalvar *var;
2499
2500 /* Create the hash table. We allocate on the objfile's obstack, since
2501 it is soon to be deleted. */
2502 copied_types = create_copied_types_hash (objfile);
2503
2504 for (const value_ref_ptr &item : value_history)
2505 preserve_one_value (item.get (), objfile, copied_types);
2506
2507 for (var = internalvars; var; var = var->next)
2508 preserve_one_internalvar (var, objfile, copied_types);
2509
2510 preserve_ext_lang_values (objfile, copied_types);
2511
2512 htab_delete (copied_types);
2513 }
2514
2515 static void
2516 show_convenience (const char *ignore, int from_tty)
2517 {
2518 struct gdbarch *gdbarch = get_current_arch ();
2519 struct internalvar *var;
2520 int varseen = 0;
2521 struct value_print_options opts;
2522
2523 get_user_print_options (&opts);
2524 for (var = internalvars; var; var = var->next)
2525 {
2526
2527 if (!varseen)
2528 {
2529 varseen = 1;
2530 }
2531 printf_filtered (("$%s = "), var->name);
2532
2533 try
2534 {
2535 struct value *val;
2536
2537 val = value_of_internalvar (gdbarch, var);
2538 value_print (val, gdb_stdout, &opts);
2539 }
2540 catch (const gdb_exception_error &ex)
2541 {
2542 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.what ());
2543 }
2544
2545 printf_filtered (("\n"));
2546 }
2547 if (!varseen)
2548 {
2549 /* This text does not mention convenience functions on purpose.
2550 The user can't create them except via Python, and if Python support
2551 is installed this message will never be printed ($_streq will
2552 exist). */
2553 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2554 "Convenience variables have "
2555 "names starting with \"$\";\n"
2556 "use \"set\" as in \"set "
2557 "$foo = 5\" to define them.\n"));
2558 }
2559 }
2560 \f
2561
2562 /* See value.h. */
2563
2564 struct value *
2565 value_from_xmethod (xmethod_worker_up &&worker)
2566 {
2567 struct value *v;
2568
2569 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2570 v->lval = lval_xcallable;
2571 v->location.xm_worker = worker.release ();
2572 v->modifiable = 0;
2573
2574 return v;
2575 }
2576
2577 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2578
2579 struct type *
2580 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2581 {
2582 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2583 && method->lval == lval_xcallable && !argv.empty ());
2584
2585 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2586 }
2587
2588 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2589
2590 struct value *
2591 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2592 {
2593 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2594 && method->lval == lval_xcallable && !argv.empty ());
2595
2596 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2597 }
2598 \f
2599 /* Extract a value as a C number (either long or double).
2600 Knows how to convert fixed values to double, or
2601 floating values to long.
2602 Does not deallocate the value. */
2603
2604 LONGEST
2605 value_as_long (struct value *val)
2606 {
2607 /* This coerces arrays and functions, which is necessary (e.g.
2608 in disassemble_command). It also dereferences references, which
2609 I suspect is the most logical thing to do. */
2610 val = coerce_array (val);
2611 return unpack_long (value_type (val), value_contents (val));
2612 }
2613
2614 /* Extract a value as a C pointer. Does not deallocate the value.
2615 Note that val's type may not actually be a pointer; value_as_long
2616 handles all the cases. */
2617 CORE_ADDR
2618 value_as_address (struct value *val)
2619 {
2620 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2621
2622 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2623 whether we want this to be true eventually. */
2624 #if 0
2625 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2626 non-address (e.g. argument to "signal", "info break", etc.), or
2627 for pointers to char, in which the low bits *are* significant. */
2628 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2629 #else
2630
2631 /* There are several targets (IA-64, PowerPC, and others) which
2632 don't represent pointers to functions as simply the address of
2633 the function's entry point. For example, on the IA-64, a
2634 function pointer points to a two-word descriptor, generated by
2635 the linker, which contains the function's entry point, and the
2636 value the IA-64 "global pointer" register should have --- to
2637 support position-independent code. The linker generates
2638 descriptors only for those functions whose addresses are taken.
2639
2640 On such targets, it's difficult for GDB to convert an arbitrary
2641 function address into a function pointer; it has to either find
2642 an existing descriptor for that function, or call malloc and
2643 build its own. On some targets, it is impossible for GDB to
2644 build a descriptor at all: the descriptor must contain a jump
2645 instruction; data memory cannot be executed; and code memory
2646 cannot be modified.
2647
2648 Upon entry to this function, if VAL is a value of type `function'
2649 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2650 value_address (val) is the address of the function. This is what
2651 you'll get if you evaluate an expression like `main'. The call
2652 to COERCE_ARRAY below actually does all the usual unary
2653 conversions, which includes converting values of type `function'
2654 to `pointer to function'. This is the challenging conversion
2655 discussed above. Then, `unpack_long' will convert that pointer
2656 back into an address.
2657
2658 So, suppose the user types `disassemble foo' on an architecture
2659 with a strange function pointer representation, on which GDB
2660 cannot build its own descriptors, and suppose further that `foo'
2661 has no linker-built descriptor. The address->pointer conversion
2662 will signal an error and prevent the command from running, even
2663 though the next step would have been to convert the pointer
2664 directly back into the same address.
2665
2666 The following shortcut avoids this whole mess. If VAL is a
2667 function, just return its address directly. */
2668 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2669 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
2670 return value_address (val);
2671
2672 val = coerce_array (val);
2673
2674 /* Some architectures (e.g. Harvard), map instruction and data
2675 addresses onto a single large unified address space. For
2676 instance: An architecture may consider a large integer in the
2677 range 0x10000000 .. 0x1000ffff to already represent a data
2678 addresses (hence not need a pointer to address conversion) while
2679 a small integer would still need to be converted integer to
2680 pointer to address. Just assume such architectures handle all
2681 integer conversions in a single function. */
2682
2683 /* JimB writes:
2684
2685 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2686 must admonish GDB hackers to make sure its behavior matches the
2687 compiler's, whenever possible.
2688
2689 In general, I think GDB should evaluate expressions the same way
2690 the compiler does. When the user copies an expression out of
2691 their source code and hands it to a `print' command, they should
2692 get the same value the compiler would have computed. Any
2693 deviation from this rule can cause major confusion and annoyance,
2694 and needs to be justified carefully. In other words, GDB doesn't
2695 really have the freedom to do these conversions in clever and
2696 useful ways.
2697
2698 AndrewC pointed out that users aren't complaining about how GDB
2699 casts integers to pointers; they are complaining that they can't
2700 take an address from a disassembly listing and give it to `x/i'.
2701 This is certainly important.
2702
2703 Adding an architecture method like integer_to_address() certainly
2704 makes it possible for GDB to "get it right" in all circumstances
2705 --- the target has complete control over how things get done, so
2706 people can Do The Right Thing for their target without breaking
2707 anyone else. The standard doesn't specify how integers get
2708 converted to pointers; usually, the ABI doesn't either, but
2709 ABI-specific code is a more reasonable place to handle it. */
2710
2711 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2712 && !TYPE_IS_REFERENCE (value_type (val))
2713 && gdbarch_integer_to_address_p (gdbarch))
2714 return gdbarch_integer_to_address (gdbarch, value_type (val),
2715 value_contents (val));
2716
2717 return unpack_long (value_type (val), value_contents (val));
2718 #endif
2719 }
2720 \f
2721 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2722 as a long, or as a double, assuming the raw data is described
2723 by type TYPE. Knows how to convert different sizes of values
2724 and can convert between fixed and floating point. We don't assume
2725 any alignment for the raw data. Return value is in host byte order.
2726
2727 If you want functions and arrays to be coerced to pointers, and
2728 references to be dereferenced, call value_as_long() instead.
2729
2730 C++: It is assumed that the front-end has taken care of
2731 all matters concerning pointers to members. A pointer
2732 to member which reaches here is considered to be equivalent
2733 to an INT (or some size). After all, it is only an offset. */
2734
2735 LONGEST
2736 unpack_long (struct type *type, const gdb_byte *valaddr)
2737 {
2738 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2739 enum type_code code = TYPE_CODE (type);
2740 int len = TYPE_LENGTH (type);
2741 int nosign = TYPE_UNSIGNED (type);
2742
2743 switch (code)
2744 {
2745 case TYPE_CODE_TYPEDEF:
2746 return unpack_long (check_typedef (type), valaddr);
2747 case TYPE_CODE_ENUM:
2748 case TYPE_CODE_FLAGS:
2749 case TYPE_CODE_BOOL:
2750 case TYPE_CODE_INT:
2751 case TYPE_CODE_CHAR:
2752 case TYPE_CODE_RANGE:
2753 case TYPE_CODE_MEMBERPTR:
2754 {
2755 LONGEST result;
2756 if (nosign)
2757 result = extract_unsigned_integer (valaddr, len, byte_order);
2758 else
2759 result = extract_signed_integer (valaddr, len, byte_order);
2760 if (code == TYPE_CODE_RANGE)
2761 result += TYPE_RANGE_DATA (type)->bias;
2762 return result;
2763 }
2764
2765 case TYPE_CODE_FLT:
2766 case TYPE_CODE_DECFLOAT:
2767 return target_float_to_longest (valaddr, type);
2768
2769 case TYPE_CODE_PTR:
2770 case TYPE_CODE_REF:
2771 case TYPE_CODE_RVALUE_REF:
2772 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2773 whether we want this to be true eventually. */
2774 return extract_typed_address (valaddr, type);
2775
2776 default:
2777 error (_("Value can't be converted to integer."));
2778 }
2779 }
2780
2781 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2782 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2783 We don't assume any alignment for the raw data. Return value is in
2784 host byte order.
2785
2786 If you want functions and arrays to be coerced to pointers, and
2787 references to be dereferenced, call value_as_address() instead.
2788
2789 C++: It is assumed that the front-end has taken care of
2790 all matters concerning pointers to members. A pointer
2791 to member which reaches here is considered to be equivalent
2792 to an INT (or some size). After all, it is only an offset. */
2793
2794 CORE_ADDR
2795 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2796 {
2797 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2798 whether we want this to be true eventually. */
2799 return unpack_long (type, valaddr);
2800 }
2801
2802 bool
2803 is_floating_value (struct value *val)
2804 {
2805 struct type *type = check_typedef (value_type (val));
2806
2807 if (is_floating_type (type))
2808 {
2809 if (!target_float_is_valid (value_contents (val), type))
2810 error (_("Invalid floating value found in program."));
2811 return true;
2812 }
2813
2814 return false;
2815 }
2816
2817 \f
2818 /* Get the value of the FIELDNO'th field (which must be static) of
2819 TYPE. */
2820
2821 struct value *
2822 value_static_field (struct type *type, int fieldno)
2823 {
2824 struct value *retval;
2825
2826 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2827 {
2828 case FIELD_LOC_KIND_PHYSADDR:
2829 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2830 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2831 break;
2832 case FIELD_LOC_KIND_PHYSNAME:
2833 {
2834 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2835 /* TYPE_FIELD_NAME (type, fieldno); */
2836 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2837
2838 if (sym.symbol == NULL)
2839 {
2840 /* With some compilers, e.g. HP aCC, static data members are
2841 reported as non-debuggable symbols. */
2842 struct bound_minimal_symbol msym
2843 = lookup_minimal_symbol (phys_name, NULL, NULL);
2844 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2845
2846 if (!msym.minsym)
2847 retval = allocate_optimized_out_value (field_type);
2848 else
2849 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2850 }
2851 else
2852 retval = value_of_variable (sym.symbol, sym.block);
2853 break;
2854 }
2855 default:
2856 gdb_assert_not_reached ("unexpected field location kind");
2857 }
2858
2859 return retval;
2860 }
2861
2862 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2863 You have to be careful here, since the size of the data area for the value
2864 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2865 than the old enclosing type, you have to allocate more space for the
2866 data. */
2867
2868 void
2869 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2870 {
2871 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2872 {
2873 check_type_length_before_alloc (new_encl_type);
2874 val->contents
2875 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2876 TYPE_LENGTH (new_encl_type)));
2877 }
2878
2879 val->enclosing_type = new_encl_type;
2880 }
2881
2882 /* Given a value ARG1 (offset by OFFSET bytes)
2883 of a struct or union type ARG_TYPE,
2884 extract and return the value of one of its (non-static) fields.
2885 FIELDNO says which field. */
2886
2887 struct value *
2888 value_primitive_field (struct value *arg1, LONGEST offset,
2889 int fieldno, struct type *arg_type)
2890 {
2891 struct value *v;
2892 struct type *type;
2893 struct gdbarch *arch = get_value_arch (arg1);
2894 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2895
2896 arg_type = check_typedef (arg_type);
2897 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2898
2899 /* Call check_typedef on our type to make sure that, if TYPE
2900 is a TYPE_CODE_TYPEDEF, its length is set to the length
2901 of the target type instead of zero. However, we do not
2902 replace the typedef type by the target type, because we want
2903 to keep the typedef in order to be able to print the type
2904 description correctly. */
2905 check_typedef (type);
2906
2907 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2908 {
2909 /* Handle packed fields.
2910
2911 Create a new value for the bitfield, with bitpos and bitsize
2912 set. If possible, arrange offset and bitpos so that we can
2913 do a single aligned read of the size of the containing type.
2914 Otherwise, adjust offset to the byte containing the first
2915 bit. Assume that the address, offset, and embedded offset
2916 are sufficiently aligned. */
2917
2918 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2919 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2920
2921 v = allocate_value_lazy (type);
2922 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2923 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2924 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2925 v->bitpos = bitpos % container_bitsize;
2926 else
2927 v->bitpos = bitpos % 8;
2928 v->offset = (value_embedded_offset (arg1)
2929 + offset
2930 + (bitpos - v->bitpos) / 8);
2931 set_value_parent (v, arg1);
2932 if (!value_lazy (arg1))
2933 value_fetch_lazy (v);
2934 }
2935 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2936 {
2937 /* This field is actually a base subobject, so preserve the
2938 entire object's contents for later references to virtual
2939 bases, etc. */
2940 LONGEST boffset;
2941
2942 /* Lazy register values with offsets are not supported. */
2943 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2944 value_fetch_lazy (arg1);
2945
2946 /* We special case virtual inheritance here because this
2947 requires access to the contents, which we would rather avoid
2948 for references to ordinary fields of unavailable values. */
2949 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2950 boffset = baseclass_offset (arg_type, fieldno,
2951 value_contents (arg1),
2952 value_embedded_offset (arg1),
2953 value_address (arg1),
2954 arg1);
2955 else
2956 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2957
2958 if (value_lazy (arg1))
2959 v = allocate_value_lazy (value_enclosing_type (arg1));
2960 else
2961 {
2962 v = allocate_value (value_enclosing_type (arg1));
2963 value_contents_copy_raw (v, 0, arg1, 0,
2964 TYPE_LENGTH (value_enclosing_type (arg1)));
2965 }
2966 v->type = type;
2967 v->offset = value_offset (arg1);
2968 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2969 }
2970 else if (NULL != TYPE_DATA_LOCATION (type))
2971 {
2972 /* Field is a dynamic data member. */
2973
2974 gdb_assert (0 == offset);
2975 /* We expect an already resolved data location. */
2976 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
2977 /* For dynamic data types defer memory allocation
2978 until we actual access the value. */
2979 v = allocate_value_lazy (type);
2980 }
2981 else
2982 {
2983 /* Plain old data member */
2984 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
2985 / (HOST_CHAR_BIT * unit_size));
2986
2987 /* Lazy register values with offsets are not supported. */
2988 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2989 value_fetch_lazy (arg1);
2990
2991 if (value_lazy (arg1))
2992 v = allocate_value_lazy (type);
2993 else
2994 {
2995 v = allocate_value (type);
2996 value_contents_copy_raw (v, value_embedded_offset (v),
2997 arg1, value_embedded_offset (arg1) + offset,
2998 type_length_units (type));
2999 }
3000 v->offset = (value_offset (arg1) + offset
3001 + value_embedded_offset (arg1));
3002 }
3003 set_value_component_location (v, arg1);
3004 return v;
3005 }
3006
3007 /* Given a value ARG1 of a struct or union type,
3008 extract and return the value of one of its (non-static) fields.
3009 FIELDNO says which field. */
3010
3011 struct value *
3012 value_field (struct value *arg1, int fieldno)
3013 {
3014 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3015 }
3016
3017 /* Return a non-virtual function as a value.
3018 F is the list of member functions which contains the desired method.
3019 J is an index into F which provides the desired method.
3020
3021 We only use the symbol for its address, so be happy with either a
3022 full symbol or a minimal symbol. */
3023
3024 struct value *
3025 value_fn_field (struct value **arg1p, struct fn_field *f,
3026 int j, struct type *type,
3027 LONGEST offset)
3028 {
3029 struct value *v;
3030 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3031 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3032 struct symbol *sym;
3033 struct bound_minimal_symbol msym;
3034
3035 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3036 if (sym != NULL)
3037 {
3038 memset (&msym, 0, sizeof (msym));
3039 }
3040 else
3041 {
3042 gdb_assert (sym == NULL);
3043 msym = lookup_bound_minimal_symbol (physname);
3044 if (msym.minsym == NULL)
3045 return NULL;
3046 }
3047
3048 v = allocate_value (ftype);
3049 VALUE_LVAL (v) = lval_memory;
3050 if (sym)
3051 {
3052 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3053 }
3054 else
3055 {
3056 /* The minimal symbol might point to a function descriptor;
3057 resolve it to the actual code address instead. */
3058 struct objfile *objfile = msym.objfile;
3059 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3060
3061 set_value_address (v,
3062 gdbarch_convert_from_func_ptr_addr
3063 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3064 }
3065
3066 if (arg1p)
3067 {
3068 if (type != value_type (*arg1p))
3069 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3070 value_addr (*arg1p)));
3071
3072 /* Move the `this' pointer according to the offset.
3073 VALUE_OFFSET (*arg1p) += offset; */
3074 }
3075
3076 return v;
3077 }
3078
3079 \f
3080
3081 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3082 VALADDR, and store the result in *RESULT.
3083 The bitfield starts at BITPOS bits and contains BITSIZE bits; if
3084 BITSIZE is zero, then the length is taken from FIELD_TYPE.
3085
3086 Extracting bits depends on endianness of the machine. Compute the
3087 number of least significant bits to discard. For big endian machines,
3088 we compute the total number of bits in the anonymous object, subtract
3089 off the bit count from the MSB of the object to the MSB of the
3090 bitfield, then the size of the bitfield, which leaves the LSB discard
3091 count. For little endian machines, the discard count is simply the
3092 number of bits from the LSB of the anonymous object to the LSB of the
3093 bitfield.
3094
3095 If the field is signed, we also do sign extension. */
3096
3097 static LONGEST
3098 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3099 LONGEST bitpos, LONGEST bitsize)
3100 {
3101 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
3102 ULONGEST val;
3103 ULONGEST valmask;
3104 int lsbcount;
3105 LONGEST bytes_read;
3106 LONGEST read_offset;
3107
3108 /* Read the minimum number of bytes required; there may not be
3109 enough bytes to read an entire ULONGEST. */
3110 field_type = check_typedef (field_type);
3111 if (bitsize)
3112 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3113 else
3114 {
3115 bytes_read = TYPE_LENGTH (field_type);
3116 bitsize = 8 * bytes_read;
3117 }
3118
3119 read_offset = bitpos / 8;
3120
3121 val = extract_unsigned_integer (valaddr + read_offset,
3122 bytes_read, byte_order);
3123
3124 /* Extract bits. See comment above. */
3125
3126 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
3127 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3128 else
3129 lsbcount = (bitpos % 8);
3130 val >>= lsbcount;
3131
3132 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3133 If the field is signed, and is negative, then sign extend. */
3134
3135 if (bitsize < 8 * (int) sizeof (val))
3136 {
3137 valmask = (((ULONGEST) 1) << bitsize) - 1;
3138 val &= valmask;
3139 if (!TYPE_UNSIGNED (field_type))
3140 {
3141 if (val & (valmask ^ (valmask >> 1)))
3142 {
3143 val |= ~valmask;
3144 }
3145 }
3146 }
3147
3148 return val;
3149 }
3150
3151 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3152 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3153 ORIGINAL_VALUE, which must not be NULL. See
3154 unpack_value_bits_as_long for more details. */
3155
3156 int
3157 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3158 LONGEST embedded_offset, int fieldno,
3159 const struct value *val, LONGEST *result)
3160 {
3161 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3162 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3163 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3164 int bit_offset;
3165
3166 gdb_assert (val != NULL);
3167
3168 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3169 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3170 || !value_bits_available (val, bit_offset, bitsize))
3171 return 0;
3172
3173 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3174 bitpos, bitsize);
3175 return 1;
3176 }
3177
3178 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3179 object at VALADDR. See unpack_bits_as_long for more details. */
3180
3181 LONGEST
3182 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3183 {
3184 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3185 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3187
3188 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3189 }
3190
3191 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3192 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3193 the contents in DEST_VAL, zero or sign extending if the type of
3194 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3195 VAL. If the VAL's contents required to extract the bitfield from
3196 are unavailable/optimized out, DEST_VAL is correspondingly
3197 marked unavailable/optimized out. */
3198
3199 void
3200 unpack_value_bitfield (struct value *dest_val,
3201 LONGEST bitpos, LONGEST bitsize,
3202 const gdb_byte *valaddr, LONGEST embedded_offset,
3203 const struct value *val)
3204 {
3205 enum bfd_endian byte_order;
3206 int src_bit_offset;
3207 int dst_bit_offset;
3208 struct type *field_type = value_type (dest_val);
3209
3210 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3211
3212 /* First, unpack and sign extend the bitfield as if it was wholly
3213 valid. Optimized out/unavailable bits are read as zero, but
3214 that's OK, as they'll end up marked below. If the VAL is
3215 wholly-invalid we may have skipped allocating its contents,
3216 though. See allocate_optimized_out_value. */
3217 if (valaddr != NULL)
3218 {
3219 LONGEST num;
3220
3221 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3222 bitpos, bitsize);
3223 store_signed_integer (value_contents_raw (dest_val),
3224 TYPE_LENGTH (field_type), byte_order, num);
3225 }
3226
3227 /* Now copy the optimized out / unavailability ranges to the right
3228 bits. */
3229 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3230 if (byte_order == BFD_ENDIAN_BIG)
3231 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3232 else
3233 dst_bit_offset = 0;
3234 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3235 val, src_bit_offset, bitsize);
3236 }
3237
3238 /* Return a new value with type TYPE, which is FIELDNO field of the
3239 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3240 of VAL. If the VAL's contents required to extract the bitfield
3241 from are unavailable/optimized out, the new value is
3242 correspondingly marked unavailable/optimized out. */
3243
3244 struct value *
3245 value_field_bitfield (struct type *type, int fieldno,
3246 const gdb_byte *valaddr,
3247 LONGEST embedded_offset, const struct value *val)
3248 {
3249 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3250 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3251 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
3252
3253 unpack_value_bitfield (res_val, bitpos, bitsize,
3254 valaddr, embedded_offset, val);
3255
3256 return res_val;
3257 }
3258
3259 /* Modify the value of a bitfield. ADDR points to a block of memory in
3260 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3261 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3262 indicate which bits (in target bit order) comprise the bitfield.
3263 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3264 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3265
3266 void
3267 modify_field (struct type *type, gdb_byte *addr,
3268 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3269 {
3270 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3271 ULONGEST oword;
3272 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3273 LONGEST bytesize;
3274
3275 /* Normalize BITPOS. */
3276 addr += bitpos / 8;
3277 bitpos %= 8;
3278
3279 /* If a negative fieldval fits in the field in question, chop
3280 off the sign extension bits. */
3281 if ((~fieldval & ~(mask >> 1)) == 0)
3282 fieldval &= mask;
3283
3284 /* Warn if value is too big to fit in the field in question. */
3285 if (0 != (fieldval & ~mask))
3286 {
3287 /* FIXME: would like to include fieldval in the message, but
3288 we don't have a sprintf_longest. */
3289 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3290
3291 /* Truncate it, otherwise adjoining fields may be corrupted. */
3292 fieldval &= mask;
3293 }
3294
3295 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3296 false valgrind reports. */
3297
3298 bytesize = (bitpos + bitsize + 7) / 8;
3299 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3300
3301 /* Shifting for bit field depends on endianness of the target machine. */
3302 if (gdbarch_bits_big_endian (get_type_arch (type)))
3303 bitpos = bytesize * 8 - bitpos - bitsize;
3304
3305 oword &= ~(mask << bitpos);
3306 oword |= fieldval << bitpos;
3307
3308 store_unsigned_integer (addr, bytesize, byte_order, oword);
3309 }
3310 \f
3311 /* Pack NUM into BUF using a target format of TYPE. */
3312
3313 void
3314 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3315 {
3316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3317 LONGEST len;
3318
3319 type = check_typedef (type);
3320 len = TYPE_LENGTH (type);
3321
3322 switch (TYPE_CODE (type))
3323 {
3324 case TYPE_CODE_RANGE:
3325 num -= TYPE_RANGE_DATA (type)->bias;
3326 /* Fall through. */
3327 case TYPE_CODE_INT:
3328 case TYPE_CODE_CHAR:
3329 case TYPE_CODE_ENUM:
3330 case TYPE_CODE_FLAGS:
3331 case TYPE_CODE_BOOL:
3332 case TYPE_CODE_MEMBERPTR:
3333 store_signed_integer (buf, len, byte_order, num);
3334 break;
3335
3336 case TYPE_CODE_REF:
3337 case TYPE_CODE_RVALUE_REF:
3338 case TYPE_CODE_PTR:
3339 store_typed_address (buf, type, (CORE_ADDR) num);
3340 break;
3341
3342 case TYPE_CODE_FLT:
3343 case TYPE_CODE_DECFLOAT:
3344 target_float_from_longest (buf, type, num);
3345 break;
3346
3347 default:
3348 error (_("Unexpected type (%d) encountered for integer constant."),
3349 TYPE_CODE (type));
3350 }
3351 }
3352
3353
3354 /* Pack NUM into BUF using a target format of TYPE. */
3355
3356 static void
3357 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3358 {
3359 LONGEST len;
3360 enum bfd_endian byte_order;
3361
3362 type = check_typedef (type);
3363 len = TYPE_LENGTH (type);
3364 byte_order = gdbarch_byte_order (get_type_arch (type));
3365
3366 switch (TYPE_CODE (type))
3367 {
3368 case TYPE_CODE_INT:
3369 case TYPE_CODE_CHAR:
3370 case TYPE_CODE_ENUM:
3371 case TYPE_CODE_FLAGS:
3372 case TYPE_CODE_BOOL:
3373 case TYPE_CODE_RANGE:
3374 case TYPE_CODE_MEMBERPTR:
3375 store_unsigned_integer (buf, len, byte_order, num);
3376 break;
3377
3378 case TYPE_CODE_REF:
3379 case TYPE_CODE_RVALUE_REF:
3380 case TYPE_CODE_PTR:
3381 store_typed_address (buf, type, (CORE_ADDR) num);
3382 break;
3383
3384 case TYPE_CODE_FLT:
3385 case TYPE_CODE_DECFLOAT:
3386 target_float_from_ulongest (buf, type, num);
3387 break;
3388
3389 default:
3390 error (_("Unexpected type (%d) encountered "
3391 "for unsigned integer constant."),
3392 TYPE_CODE (type));
3393 }
3394 }
3395
3396
3397 /* Convert C numbers into newly allocated values. */
3398
3399 struct value *
3400 value_from_longest (struct type *type, LONGEST num)
3401 {
3402 struct value *val = allocate_value (type);
3403
3404 pack_long (value_contents_raw (val), type, num);
3405 return val;
3406 }
3407
3408
3409 /* Convert C unsigned numbers into newly allocated values. */
3410
3411 struct value *
3412 value_from_ulongest (struct type *type, ULONGEST num)
3413 {
3414 struct value *val = allocate_value (type);
3415
3416 pack_unsigned_long (value_contents_raw (val), type, num);
3417
3418 return val;
3419 }
3420
3421
3422 /* Create a value representing a pointer of type TYPE to the address
3423 ADDR. */
3424
3425 struct value *
3426 value_from_pointer (struct type *type, CORE_ADDR addr)
3427 {
3428 struct value *val = allocate_value (type);
3429
3430 store_typed_address (value_contents_raw (val),
3431 check_typedef (type), addr);
3432 return val;
3433 }
3434
3435 /* Create and return a value object of TYPE containing the value D. The
3436 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3437 it is converted to target format. */
3438
3439 struct value *
3440 value_from_host_double (struct type *type, double d)
3441 {
3442 struct value *value = allocate_value (type);
3443 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3444 target_float_from_host_double (value_contents_raw (value),
3445 value_type (value), d);
3446 return value;
3447 }
3448
3449 /* Create a value of type TYPE whose contents come from VALADDR, if it
3450 is non-null, and whose memory address (in the inferior) is
3451 ADDRESS. The type of the created value may differ from the passed
3452 type TYPE. Make sure to retrieve values new type after this call.
3453 Note that TYPE is not passed through resolve_dynamic_type; this is
3454 a special API intended for use only by Ada. */
3455
3456 struct value *
3457 value_from_contents_and_address_unresolved (struct type *type,
3458 const gdb_byte *valaddr,
3459 CORE_ADDR address)
3460 {
3461 struct value *v;
3462
3463 if (valaddr == NULL)
3464 v = allocate_value_lazy (type);
3465 else
3466 v = value_from_contents (type, valaddr);
3467 VALUE_LVAL (v) = lval_memory;
3468 set_value_address (v, address);
3469 return v;
3470 }
3471
3472 /* Create a value of type TYPE whose contents come from VALADDR, if it
3473 is non-null, and whose memory address (in the inferior) is
3474 ADDRESS. The type of the created value may differ from the passed
3475 type TYPE. Make sure to retrieve values new type after this call. */
3476
3477 struct value *
3478 value_from_contents_and_address (struct type *type,
3479 const gdb_byte *valaddr,
3480 CORE_ADDR address)
3481 {
3482 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
3483 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3484 struct value *v;
3485
3486 if (valaddr == NULL)
3487 v = allocate_value_lazy (resolved_type);
3488 else
3489 v = value_from_contents (resolved_type, valaddr);
3490 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3491 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3492 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3493 VALUE_LVAL (v) = lval_memory;
3494 set_value_address (v, address);
3495 return v;
3496 }
3497
3498 /* Create a value of type TYPE holding the contents CONTENTS.
3499 The new value is `not_lval'. */
3500
3501 struct value *
3502 value_from_contents (struct type *type, const gdb_byte *contents)
3503 {
3504 struct value *result;
3505
3506 result = allocate_value (type);
3507 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3508 return result;
3509 }
3510
3511 /* Extract a value from the history file. Input will be of the form
3512 $digits or $$digits. See block comment above 'write_dollar_variable'
3513 for details. */
3514
3515 struct value *
3516 value_from_history_ref (const char *h, const char **endp)
3517 {
3518 int index, len;
3519
3520 if (h[0] == '$')
3521 len = 1;
3522 else
3523 return NULL;
3524
3525 if (h[1] == '$')
3526 len = 2;
3527
3528 /* Find length of numeral string. */
3529 for (; isdigit (h[len]); len++)
3530 ;
3531
3532 /* Make sure numeral string is not part of an identifier. */
3533 if (h[len] == '_' || isalpha (h[len]))
3534 return NULL;
3535
3536 /* Now collect the index value. */
3537 if (h[1] == '$')
3538 {
3539 if (len == 2)
3540 {
3541 /* For some bizarre reason, "$$" is equivalent to "$$1",
3542 rather than to "$$0" as it ought to be! */
3543 index = -1;
3544 *endp += len;
3545 }
3546 else
3547 {
3548 char *local_end;
3549
3550 index = -strtol (&h[2], &local_end, 10);
3551 *endp = local_end;
3552 }
3553 }
3554 else
3555 {
3556 if (len == 1)
3557 {
3558 /* "$" is equivalent to "$0". */
3559 index = 0;
3560 *endp += len;
3561 }
3562 else
3563 {
3564 char *local_end;
3565
3566 index = strtol (&h[1], &local_end, 10);
3567 *endp = local_end;
3568 }
3569 }
3570
3571 return access_value_history (index);
3572 }
3573
3574 /* Get the component value (offset by OFFSET bytes) of a struct or
3575 union WHOLE. Component's type is TYPE. */
3576
3577 struct value *
3578 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3579 {
3580 struct value *v;
3581
3582 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3583 v = allocate_value_lazy (type);
3584 else
3585 {
3586 v = allocate_value (type);
3587 value_contents_copy (v, value_embedded_offset (v),
3588 whole, value_embedded_offset (whole) + offset,
3589 type_length_units (type));
3590 }
3591 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3592 set_value_component_location (v, whole);
3593
3594 return v;
3595 }
3596
3597 struct value *
3598 coerce_ref_if_computed (const struct value *arg)
3599 {
3600 const struct lval_funcs *funcs;
3601
3602 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3603 return NULL;
3604
3605 if (value_lval_const (arg) != lval_computed)
3606 return NULL;
3607
3608 funcs = value_computed_funcs (arg);
3609 if (funcs->coerce_ref == NULL)
3610 return NULL;
3611
3612 return funcs->coerce_ref (arg);
3613 }
3614
3615 /* Look at value.h for description. */
3616
3617 struct value *
3618 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3619 const struct type *original_type,
3620 const struct value *original_value)
3621 {
3622 /* Re-adjust type. */
3623 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3624
3625 /* Add embedding info. */
3626 set_value_enclosing_type (value, enc_type);
3627 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3628
3629 /* We may be pointing to an object of some derived type. */
3630 return value_full_object (value, NULL, 0, 0, 0);
3631 }
3632
3633 struct value *
3634 coerce_ref (struct value *arg)
3635 {
3636 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3637 struct value *retval;
3638 struct type *enc_type;
3639
3640 retval = coerce_ref_if_computed (arg);
3641 if (retval)
3642 return retval;
3643
3644 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3645 return arg;
3646
3647 enc_type = check_typedef (value_enclosing_type (arg));
3648 enc_type = TYPE_TARGET_TYPE (enc_type);
3649
3650 retval = value_at_lazy (enc_type,
3651 unpack_pointer (value_type (arg),
3652 value_contents (arg)));
3653 enc_type = value_type (retval);
3654 return readjust_indirect_value_type (retval, enc_type,
3655 value_type_arg_tmp, arg);
3656 }
3657
3658 struct value *
3659 coerce_array (struct value *arg)
3660 {
3661 struct type *type;
3662
3663 arg = coerce_ref (arg);
3664 type = check_typedef (value_type (arg));
3665
3666 switch (TYPE_CODE (type))
3667 {
3668 case TYPE_CODE_ARRAY:
3669 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
3670 arg = value_coerce_array (arg);
3671 break;
3672 case TYPE_CODE_FUNC:
3673 arg = value_coerce_function (arg);
3674 break;
3675 }
3676 return arg;
3677 }
3678 \f
3679
3680 /* Return the return value convention that will be used for the
3681 specified type. */
3682
3683 enum return_value_convention
3684 struct_return_convention (struct gdbarch *gdbarch,
3685 struct value *function, struct type *value_type)
3686 {
3687 enum type_code code = TYPE_CODE (value_type);
3688
3689 if (code == TYPE_CODE_ERROR)
3690 error (_("Function return type unknown."));
3691
3692 /* Probe the architecture for the return-value convention. */
3693 return gdbarch_return_value (gdbarch, function, value_type,
3694 NULL, NULL, NULL);
3695 }
3696
3697 /* Return true if the function returning the specified type is using
3698 the convention of returning structures in memory (passing in the
3699 address as a hidden first parameter). */
3700
3701 int
3702 using_struct_return (struct gdbarch *gdbarch,
3703 struct value *function, struct type *value_type)
3704 {
3705 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
3706 /* A void return value is never in memory. See also corresponding
3707 code in "print_return_value". */
3708 return 0;
3709
3710 return (struct_return_convention (gdbarch, function, value_type)
3711 != RETURN_VALUE_REGISTER_CONVENTION);
3712 }
3713
3714 /* Set the initialized field in a value struct. */
3715
3716 void
3717 set_value_initialized (struct value *val, int status)
3718 {
3719 val->initialized = status;
3720 }
3721
3722 /* Return the initialized field in a value struct. */
3723
3724 int
3725 value_initialized (const struct value *val)
3726 {
3727 return val->initialized;
3728 }
3729
3730 /* Helper for value_fetch_lazy when the value is a bitfield. */
3731
3732 static void
3733 value_fetch_lazy_bitfield (struct value *val)
3734 {
3735 gdb_assert (value_bitsize (val) != 0);
3736
3737 /* To read a lazy bitfield, read the entire enclosing value. This
3738 prevents reading the same block of (possibly volatile) memory once
3739 per bitfield. It would be even better to read only the containing
3740 word, but we have no way to record that just specific bits of a
3741 value have been fetched. */
3742 struct value *parent = value_parent (val);
3743
3744 if (value_lazy (parent))
3745 value_fetch_lazy (parent);
3746
3747 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3748 value_contents_for_printing (parent),
3749 value_offset (val), parent);
3750 }
3751
3752 /* Helper for value_fetch_lazy when the value is in memory. */
3753
3754 static void
3755 value_fetch_lazy_memory (struct value *val)
3756 {
3757 gdb_assert (VALUE_LVAL (val) == lval_memory);
3758
3759 CORE_ADDR addr = value_address (val);
3760 struct type *type = check_typedef (value_enclosing_type (val));
3761
3762 if (TYPE_LENGTH (type))
3763 read_value_memory (val, 0, value_stack (val),
3764 addr, value_contents_all_raw (val),
3765 type_length_units (type));
3766 }
3767
3768 /* Helper for value_fetch_lazy when the value is in a register. */
3769
3770 static void
3771 value_fetch_lazy_register (struct value *val)
3772 {
3773 struct frame_info *next_frame;
3774 int regnum;
3775 struct type *type = check_typedef (value_type (val));
3776 struct value *new_val = val, *mark = value_mark ();
3777
3778 /* Offsets are not supported here; lazy register values must
3779 refer to the entire register. */
3780 gdb_assert (value_offset (val) == 0);
3781
3782 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3783 {
3784 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3785
3786 next_frame = frame_find_by_id (next_frame_id);
3787 regnum = VALUE_REGNUM (new_val);
3788
3789 gdb_assert (next_frame != NULL);
3790
3791 /* Convertible register routines are used for multi-register
3792 values and for interpretation in different types
3793 (e.g. float or int from a double register). Lazy
3794 register values should have the register's natural type,
3795 so they do not apply. */
3796 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3797 regnum, type));
3798
3799 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3800 Since a "->next" operation was performed when setting
3801 this field, we do not need to perform a "next" operation
3802 again when unwinding the register. That's why
3803 frame_unwind_register_value() is called here instead of
3804 get_frame_register_value(). */
3805 new_val = frame_unwind_register_value (next_frame, regnum);
3806
3807 /* If we get another lazy lval_register value, it means the
3808 register is found by reading it from NEXT_FRAME's next frame.
3809 frame_unwind_register_value should never return a value with
3810 the frame id pointing to NEXT_FRAME. If it does, it means we
3811 either have two consecutive frames with the same frame id
3812 in the frame chain, or some code is trying to unwind
3813 behind get_prev_frame's back (e.g., a frame unwind
3814 sniffer trying to unwind), bypassing its validations. In
3815 any case, it should always be an internal error to end up
3816 in this situation. */
3817 if (VALUE_LVAL (new_val) == lval_register
3818 && value_lazy (new_val)
3819 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3820 internal_error (__FILE__, __LINE__,
3821 _("infinite loop while fetching a register"));
3822 }
3823
3824 /* If it's still lazy (for instance, a saved register on the
3825 stack), fetch it. */
3826 if (value_lazy (new_val))
3827 value_fetch_lazy (new_val);
3828
3829 /* Copy the contents and the unavailability/optimized-out
3830 meta-data from NEW_VAL to VAL. */
3831 set_value_lazy (val, 0);
3832 value_contents_copy (val, value_embedded_offset (val),
3833 new_val, value_embedded_offset (new_val),
3834 type_length_units (type));
3835
3836 if (frame_debug)
3837 {
3838 struct gdbarch *gdbarch;
3839 struct frame_info *frame;
3840 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3841 so that the frame level will be shown correctly. */
3842 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3843 regnum = VALUE_REGNUM (val);
3844 gdbarch = get_frame_arch (frame);
3845
3846 fprintf_unfiltered (gdb_stdlog,
3847 "{ value_fetch_lazy "
3848 "(frame=%d,regnum=%d(%s),...) ",
3849 frame_relative_level (frame), regnum,
3850 user_reg_map_regnum_to_name (gdbarch, regnum));
3851
3852 fprintf_unfiltered (gdb_stdlog, "->");
3853 if (value_optimized_out (new_val))
3854 {
3855 fprintf_unfiltered (gdb_stdlog, " ");
3856 val_print_optimized_out (new_val, gdb_stdlog);
3857 }
3858 else
3859 {
3860 int i;
3861 const gdb_byte *buf = value_contents (new_val);
3862
3863 if (VALUE_LVAL (new_val) == lval_register)
3864 fprintf_unfiltered (gdb_stdlog, " register=%d",
3865 VALUE_REGNUM (new_val));
3866 else if (VALUE_LVAL (new_val) == lval_memory)
3867 fprintf_unfiltered (gdb_stdlog, " address=%s",
3868 paddress (gdbarch,
3869 value_address (new_val)));
3870 else
3871 fprintf_unfiltered (gdb_stdlog, " computed");
3872
3873 fprintf_unfiltered (gdb_stdlog, " bytes=");
3874 fprintf_unfiltered (gdb_stdlog, "[");
3875 for (i = 0; i < register_size (gdbarch, regnum); i++)
3876 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3877 fprintf_unfiltered (gdb_stdlog, "]");
3878 }
3879
3880 fprintf_unfiltered (gdb_stdlog, " }\n");
3881 }
3882
3883 /* Dispose of the intermediate values. This prevents
3884 watchpoints from trying to watch the saved frame pointer. */
3885 value_free_to_mark (mark);
3886 }
3887
3888 /* Load the actual content of a lazy value. Fetch the data from the
3889 user's process and clear the lazy flag to indicate that the data in
3890 the buffer is valid.
3891
3892 If the value is zero-length, we avoid calling read_memory, which
3893 would abort. We mark the value as fetched anyway -- all 0 bytes of
3894 it. */
3895
3896 void
3897 value_fetch_lazy (struct value *val)
3898 {
3899 gdb_assert (value_lazy (val));
3900 allocate_value_contents (val);
3901 /* A value is either lazy, or fully fetched. The
3902 availability/validity is only established as we try to fetch a
3903 value. */
3904 gdb_assert (val->optimized_out.empty ());
3905 gdb_assert (val->unavailable.empty ());
3906 if (value_bitsize (val))
3907 value_fetch_lazy_bitfield (val);
3908 else if (VALUE_LVAL (val) == lval_memory)
3909 value_fetch_lazy_memory (val);
3910 else if (VALUE_LVAL (val) == lval_register)
3911 value_fetch_lazy_register (val);
3912 else if (VALUE_LVAL (val) == lval_computed
3913 && value_computed_funcs (val)->read != NULL)
3914 value_computed_funcs (val)->read (val);
3915 else
3916 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3917
3918 set_value_lazy (val, 0);
3919 }
3920
3921 /* Implementation of the convenience function $_isvoid. */
3922
3923 static struct value *
3924 isvoid_internal_fn (struct gdbarch *gdbarch,
3925 const struct language_defn *language,
3926 void *cookie, int argc, struct value **argv)
3927 {
3928 int ret;
3929
3930 if (argc != 1)
3931 error (_("You must provide one argument for $_isvoid."));
3932
3933 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3934
3935 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3936 }
3937
3938 /* Implementation of the convenience function $_cimag. Extracts the
3939 real part from a complex number. */
3940
3941 static struct value *
3942 creal_internal_fn (struct gdbarch *gdbarch,
3943 const struct language_defn *language,
3944 void *cookie, int argc, struct value **argv)
3945 {
3946 if (argc != 1)
3947 error (_("You must provide one argument for $_creal."));
3948
3949 value *cval = argv[0];
3950 type *ctype = check_typedef (value_type (cval));
3951 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3952 error (_("expected a complex number"));
3953 return value_from_component (cval, TYPE_TARGET_TYPE (ctype), 0);
3954 }
3955
3956 /* Implementation of the convenience function $_cimag. Extracts the
3957 imaginary part from a complex number. */
3958
3959 static struct value *
3960 cimag_internal_fn (struct gdbarch *gdbarch,
3961 const struct language_defn *language,
3962 void *cookie, int argc,
3963 struct value **argv)
3964 {
3965 if (argc != 1)
3966 error (_("You must provide one argument for $_cimag."));
3967
3968 value *cval = argv[0];
3969 type *ctype = check_typedef (value_type (cval));
3970 if (TYPE_CODE (ctype) != TYPE_CODE_COMPLEX)
3971 error (_("expected a complex number"));
3972 return value_from_component (cval, TYPE_TARGET_TYPE (ctype),
3973 TYPE_LENGTH (TYPE_TARGET_TYPE (ctype)));
3974 }
3975
3976 #if GDB_SELF_TEST
3977 namespace selftests
3978 {
3979
3980 /* Test the ranges_contain function. */
3981
3982 static void
3983 test_ranges_contain ()
3984 {
3985 std::vector<range> ranges;
3986 range r;
3987
3988 /* [10, 14] */
3989 r.offset = 10;
3990 r.length = 5;
3991 ranges.push_back (r);
3992
3993 /* [20, 24] */
3994 r.offset = 20;
3995 r.length = 5;
3996 ranges.push_back (r);
3997
3998 /* [2, 6] */
3999 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4000 /* [9, 13] */
4001 SELF_CHECK (ranges_contain (ranges, 9, 5));
4002 /* [10, 11] */
4003 SELF_CHECK (ranges_contain (ranges, 10, 2));
4004 /* [10, 14] */
4005 SELF_CHECK (ranges_contain (ranges, 10, 5));
4006 /* [13, 18] */
4007 SELF_CHECK (ranges_contain (ranges, 13, 6));
4008 /* [14, 18] */
4009 SELF_CHECK (ranges_contain (ranges, 14, 5));
4010 /* [15, 18] */
4011 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4012 /* [16, 19] */
4013 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4014 /* [16, 21] */
4015 SELF_CHECK (ranges_contain (ranges, 16, 6));
4016 /* [21, 21] */
4017 SELF_CHECK (ranges_contain (ranges, 21, 1));
4018 /* [21, 25] */
4019 SELF_CHECK (ranges_contain (ranges, 21, 5));
4020 /* [26, 28] */
4021 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4022 }
4023
4024 /* Check that RANGES contains the same ranges as EXPECTED. */
4025
4026 static bool
4027 check_ranges_vector (gdb::array_view<const range> ranges,
4028 gdb::array_view<const range> expected)
4029 {
4030 return ranges == expected;
4031 }
4032
4033 /* Test the insert_into_bit_range_vector function. */
4034
4035 static void
4036 test_insert_into_bit_range_vector ()
4037 {
4038 std::vector<range> ranges;
4039
4040 /* [10, 14] */
4041 {
4042 insert_into_bit_range_vector (&ranges, 10, 5);
4043 static const range expected[] = {
4044 {10, 5}
4045 };
4046 SELF_CHECK (check_ranges_vector (ranges, expected));
4047 }
4048
4049 /* [10, 14] */
4050 {
4051 insert_into_bit_range_vector (&ranges, 11, 4);
4052 static const range expected = {10, 5};
4053 SELF_CHECK (check_ranges_vector (ranges, expected));
4054 }
4055
4056 /* [10, 14] [20, 24] */
4057 {
4058 insert_into_bit_range_vector (&ranges, 20, 5);
4059 static const range expected[] = {
4060 {10, 5},
4061 {20, 5},
4062 };
4063 SELF_CHECK (check_ranges_vector (ranges, expected));
4064 }
4065
4066 /* [10, 14] [17, 24] */
4067 {
4068 insert_into_bit_range_vector (&ranges, 17, 5);
4069 static const range expected[] = {
4070 {10, 5},
4071 {17, 8},
4072 };
4073 SELF_CHECK (check_ranges_vector (ranges, expected));
4074 }
4075
4076 /* [2, 8] [10, 14] [17, 24] */
4077 {
4078 insert_into_bit_range_vector (&ranges, 2, 7);
4079 static const range expected[] = {
4080 {2, 7},
4081 {10, 5},
4082 {17, 8},
4083 };
4084 SELF_CHECK (check_ranges_vector (ranges, expected));
4085 }
4086
4087 /* [2, 14] [17, 24] */
4088 {
4089 insert_into_bit_range_vector (&ranges, 9, 1);
4090 static const range expected[] = {
4091 {2, 13},
4092 {17, 8},
4093 };
4094 SELF_CHECK (check_ranges_vector (ranges, expected));
4095 }
4096
4097 /* [2, 14] [17, 24] */
4098 {
4099 insert_into_bit_range_vector (&ranges, 9, 1);
4100 static const range expected[] = {
4101 {2, 13},
4102 {17, 8},
4103 };
4104 SELF_CHECK (check_ranges_vector (ranges, expected));
4105 }
4106
4107 /* [2, 33] */
4108 {
4109 insert_into_bit_range_vector (&ranges, 4, 30);
4110 static const range expected = {2, 32};
4111 SELF_CHECK (check_ranges_vector (ranges, expected));
4112 }
4113 }
4114
4115 } /* namespace selftests */
4116 #endif /* GDB_SELF_TEST */
4117
4118 void
4119 _initialize_values (void)
4120 {
4121 add_cmd ("convenience", no_class, show_convenience, _("\
4122 Debugger convenience (\"$foo\") variables and functions.\n\
4123 Convenience variables are created when you assign them values;\n\
4124 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4125 \n\
4126 A few convenience variables are given values automatically:\n\
4127 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4128 \"$__\" holds the contents of the last address examined with \"x\"."
4129 #ifdef HAVE_PYTHON
4130 "\n\n\
4131 Convenience functions are defined via the Python API."
4132 #endif
4133 ), &showlist);
4134 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4135
4136 add_cmd ("values", no_set_class, show_values, _("\
4137 Elements of value history around item number IDX (or last ten)."),
4138 &showlist);
4139
4140 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4141 Initialize a convenience variable if necessary.\n\
4142 init-if-undefined VARIABLE = EXPRESSION\n\
4143 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4144 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4145 VARIABLE is already initialized."));
4146
4147 add_prefix_cmd ("function", no_class, function_command, _("\
4148 Placeholder command for showing help on convenience functions."),
4149 &functionlist, "function ", 0, &cmdlist);
4150
4151 add_internal_function ("_isvoid", _("\
4152 Check whether an expression is void.\n\
4153 Usage: $_isvoid (expression)\n\
4154 Return 1 if the expression is void, zero otherwise."),
4155 isvoid_internal_fn, NULL);
4156
4157 add_internal_function ("_creal", _("\
4158 Extract the real part of a complex number.\n\
4159 Usage: $_creal (expression)\n\
4160 Return the real part of a complex number, the type depends on the\n\
4161 type of a complex number."),
4162 creal_internal_fn, NULL);
4163
4164 add_internal_function ("_cimag", _("\
4165 Extract the imaginary part of a complex number.\n\
4166 Usage: $_cimag (expression)\n\
4167 Return the imaginary part of a complex number, the type depends on the\n\
4168 type of a complex number."),
4169 cimag_internal_fn, NULL);
4170
4171 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4172 class_support, &max_value_size, _("\
4173 Set maximum sized value gdb will load from the inferior."), _("\
4174 Show maximum sized value gdb will load from the inferior."), _("\
4175 Use this to control the maximum size, in bytes, of a value that gdb\n\
4176 will load from the inferior. Setting this value to 'unlimited'\n\
4177 disables checking.\n\
4178 Setting this does not invalidate already allocated values, it only\n\
4179 prevents future values, larger than this size, from being allocated."),
4180 set_max_value_size,
4181 show_max_value_size,
4182 &setlist, &showlist);
4183 #if GDB_SELF_TEST
4184 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4185 selftests::register_test ("insert_into_bit_range_vector",
4186 selftests::test_insert_into_bit_range_vector);
4187 #endif
4188 }
4189
4190 /* See value.h. */
4191
4192 void
4193 finalize_values ()
4194 {
4195 all_values.clear ();
4196 }
This page took 0.115397 seconds and 4 git commands to generate.