de9fd15c36df26d6aba040385a0a548b71f11b38
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 val->lazy = 0;
99 val->optimized_out = 0;
100 val->embedded_offset = 0;
101 val->pointed_to_offset = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct value *
127 value_next (struct value *value)
128 {
129 return value->next;
130 }
131
132 struct type *
133 value_type (struct value *value)
134 {
135 return value->type;
136 }
137 void
138 deprecated_set_value_type (struct value *value, struct type *type)
139 {
140 value->type = type;
141 }
142
143 int
144 value_offset (struct value *value)
145 {
146 return value->offset;
147 }
148 void
149 set_value_offset (struct value *value, int offset)
150 {
151 value->offset = offset;
152 }
153
154 int
155 value_bitpos (struct value *value)
156 {
157 return value->bitpos;
158 }
159 void
160 set_value_bitpos (struct value *value, int bit)
161 {
162 value->bitpos = bit;
163 }
164
165 int
166 value_bitsize (struct value *value)
167 {
168 return value->bitsize;
169 }
170 void
171 set_value_bitsize (struct value *value, int bit)
172 {
173 value->bitsize = bit;
174 }
175
176 bfd_byte *
177 value_contents_raw (struct value *value)
178 {
179 return value->aligner.contents + value->embedded_offset;
180 }
181
182 bfd_byte *
183 value_contents_all_raw (struct value *value)
184 {
185 return value->aligner.contents;
186 }
187
188 struct type *
189 value_enclosing_type (struct value *value)
190 {
191 return value->enclosing_type;
192 }
193
194 const bfd_byte *
195 value_contents_all (struct value *value)
196 {
197 if (value->lazy)
198 value_fetch_lazy (value);
199 return value->aligner.contents;
200 }
201
202 int
203 value_lazy (struct value *value)
204 {
205 return value->lazy;
206 }
207
208 void
209 set_value_lazy (struct value *value, int val)
210 {
211 value->lazy = val;
212 }
213
214 const bfd_byte *
215 value_contents (struct value *value)
216 {
217 return value_contents_writeable (value);
218 }
219
220 bfd_byte *
221 value_contents_writeable (struct value *value)
222 {
223 if (value->lazy)
224 value_fetch_lazy (value);
225 return value->aligner.contents;
226 }
227
228 int
229 value_optimized_out (struct value *value)
230 {
231 return value->optimized_out;
232 }
233
234 void
235 set_value_optimized_out (struct value *value, int val)
236 {
237 value->optimized_out = val;
238 }
239
240 int
241 value_embedded_offset (struct value *value)
242 {
243 return value->embedded_offset;
244 }
245
246 void
247 set_value_embedded_offset (struct value *value, int val)
248 {
249 value->embedded_offset = val;
250 }
251
252 int
253 value_pointed_to_offset (struct value *value)
254 {
255 return value->pointed_to_offset;
256 }
257
258 void
259 set_value_pointed_to_offset (struct value *value, int val)
260 {
261 value->pointed_to_offset = val;
262 }
263
264 enum lval_type *
265 deprecated_value_lval_hack (struct value *value)
266 {
267 return &value->lval;
268 }
269
270 CORE_ADDR *
271 deprecated_value_address_hack (struct value *value)
272 {
273 return &value->location.address;
274 }
275
276 struct internalvar **
277 deprecated_value_internalvar_hack (struct value *value)
278 {
279 return &value->location.internalvar;
280 }
281
282 struct frame_id *
283 deprecated_value_frame_id_hack (struct value *value)
284 {
285 return &value->frame_id;
286 }
287
288 short *
289 deprecated_value_regnum_hack (struct value *value)
290 {
291 return &value->regnum;
292 }
293
294 int
295 deprecated_value_modifiable (struct value *value)
296 {
297 return value->modifiable;
298 }
299 void
300 deprecated_set_value_modifiable (struct value *value, int modifiable)
301 {
302 value->modifiable = modifiable;
303 }
304 \f
305 /* Return a mark in the value chain. All values allocated after the
306 mark is obtained (except for those released) are subject to being freed
307 if a subsequent value_free_to_mark is passed the mark. */
308 struct value *
309 value_mark (void)
310 {
311 return all_values;
312 }
313
314 /* Free all values allocated since MARK was obtained by value_mark
315 (except for those released). */
316 void
317 value_free_to_mark (struct value *mark)
318 {
319 struct value *val;
320 struct value *next;
321
322 for (val = all_values; val && val != mark; val = next)
323 {
324 next = val->next;
325 value_free (val);
326 }
327 all_values = val;
328 }
329
330 /* Free all the values that have been allocated (except for those released).
331 Called after each command, successful or not. */
332
333 void
334 free_all_values (void)
335 {
336 struct value *val;
337 struct value *next;
338
339 for (val = all_values; val; val = next)
340 {
341 next = val->next;
342 value_free (val);
343 }
344
345 all_values = 0;
346 }
347
348 /* Remove VAL from the chain all_values
349 so it will not be freed automatically. */
350
351 void
352 release_value (struct value *val)
353 {
354 struct value *v;
355
356 if (all_values == val)
357 {
358 all_values = val->next;
359 return;
360 }
361
362 for (v = all_values; v; v = v->next)
363 {
364 if (v->next == val)
365 {
366 v->next = val->next;
367 break;
368 }
369 }
370 }
371
372 /* Release all values up to mark */
373 struct value *
374 value_release_to_mark (struct value *mark)
375 {
376 struct value *val;
377 struct value *next;
378
379 for (val = next = all_values; next; next = next->next)
380 if (next->next == mark)
381 {
382 all_values = next->next;
383 next->next = NULL;
384 return val;
385 }
386 all_values = 0;
387 return val;
388 }
389
390 /* Return a copy of the value ARG.
391 It contains the same contents, for same memory address,
392 but it's a different block of storage. */
393
394 struct value *
395 value_copy (struct value *arg)
396 {
397 struct type *encl_type = value_enclosing_type (arg);
398 struct value *val = allocate_value (encl_type);
399 val->type = arg->type;
400 VALUE_LVAL (val) = VALUE_LVAL (arg);
401 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
402 val->offset = arg->offset;
403 val->bitpos = arg->bitpos;
404 val->bitsize = arg->bitsize;
405 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
406 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
407 val->lazy = arg->lazy;
408 val->optimized_out = arg->optimized_out;
409 val->embedded_offset = value_embedded_offset (arg);
410 val->pointed_to_offset = arg->pointed_to_offset;
411 val->modifiable = arg->modifiable;
412 if (!value_lazy (val))
413 {
414 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
415 TYPE_LENGTH (value_enclosing_type (arg)));
416
417 }
418 return val;
419 }
420 \f
421 /* Access to the value history. */
422
423 /* Record a new value in the value history.
424 Returns the absolute history index of the entry.
425 Result of -1 indicates the value was not saved; otherwise it is the
426 value history index of this new item. */
427
428 int
429 record_latest_value (struct value *val)
430 {
431 int i;
432
433 /* We don't want this value to have anything to do with the inferior anymore.
434 In particular, "set $1 = 50" should not affect the variable from which
435 the value was taken, and fast watchpoints should be able to assume that
436 a value on the value history never changes. */
437 if (value_lazy (val))
438 value_fetch_lazy (val);
439 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
440 from. This is a bit dubious, because then *&$1 does not just return $1
441 but the current contents of that location. c'est la vie... */
442 val->modifiable = 0;
443 release_value (val);
444
445 /* Here we treat value_history_count as origin-zero
446 and applying to the value being stored now. */
447
448 i = value_history_count % VALUE_HISTORY_CHUNK;
449 if (i == 0)
450 {
451 struct value_history_chunk *new
452 = (struct value_history_chunk *)
453 xmalloc (sizeof (struct value_history_chunk));
454 memset (new->values, 0, sizeof new->values);
455 new->next = value_history_chain;
456 value_history_chain = new;
457 }
458
459 value_history_chain->values[i] = val;
460
461 /* Now we regard value_history_count as origin-one
462 and applying to the value just stored. */
463
464 return ++value_history_count;
465 }
466
467 /* Return a copy of the value in the history with sequence number NUM. */
468
469 struct value *
470 access_value_history (int num)
471 {
472 struct value_history_chunk *chunk;
473 int i;
474 int absnum = num;
475
476 if (absnum <= 0)
477 absnum += value_history_count;
478
479 if (absnum <= 0)
480 {
481 if (num == 0)
482 error ("The history is empty.");
483 else if (num == 1)
484 error ("There is only one value in the history.");
485 else
486 error ("History does not go back to $$%d.", -num);
487 }
488 if (absnum > value_history_count)
489 error ("History has not yet reached $%d.", absnum);
490
491 absnum--;
492
493 /* Now absnum is always absolute and origin zero. */
494
495 chunk = value_history_chain;
496 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
497 i > 0; i--)
498 chunk = chunk->next;
499
500 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
501 }
502
503 /* Clear the value history entirely.
504 Must be done when new symbol tables are loaded,
505 because the type pointers become invalid. */
506
507 void
508 clear_value_history (void)
509 {
510 struct value_history_chunk *next;
511 int i;
512 struct value *val;
513
514 while (value_history_chain)
515 {
516 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
517 if ((val = value_history_chain->values[i]) != NULL)
518 xfree (val);
519 next = value_history_chain->next;
520 xfree (value_history_chain);
521 value_history_chain = next;
522 }
523 value_history_count = 0;
524 }
525
526 static void
527 show_values (char *num_exp, int from_tty)
528 {
529 int i;
530 struct value *val;
531 static int num = 1;
532
533 if (num_exp)
534 {
535 /* "info history +" should print from the stored position.
536 "info history <exp>" should print around value number <exp>. */
537 if (num_exp[0] != '+' || num_exp[1] != '\0')
538 num = parse_and_eval_long (num_exp) - 5;
539 }
540 else
541 {
542 /* "info history" means print the last 10 values. */
543 num = value_history_count - 9;
544 }
545
546 if (num <= 0)
547 num = 1;
548
549 for (i = num; i < num + 10 && i <= value_history_count; i++)
550 {
551 val = access_value_history (i);
552 printf_filtered ("$%d = ", i);
553 value_print (val, gdb_stdout, 0, Val_pretty_default);
554 printf_filtered ("\n");
555 }
556
557 /* The next "info history +" should start after what we just printed. */
558 num += 10;
559
560 /* Hitting just return after this command should do the same thing as
561 "info history +". If num_exp is null, this is unnecessary, since
562 "info history +" is not useful after "info history". */
563 if (from_tty && num_exp)
564 {
565 num_exp[0] = '+';
566 num_exp[1] = '\0';
567 }
568 }
569 \f
570 /* Internal variables. These are variables within the debugger
571 that hold values assigned by debugger commands.
572 The user refers to them with a '$' prefix
573 that does not appear in the variable names stored internally. */
574
575 static struct internalvar *internalvars;
576
577 /* Look up an internal variable with name NAME. NAME should not
578 normally include a dollar sign.
579
580 If the specified internal variable does not exist,
581 one is created, with a void value. */
582
583 struct internalvar *
584 lookup_internalvar (char *name)
585 {
586 struct internalvar *var;
587
588 for (var = internalvars; var; var = var->next)
589 if (strcmp (var->name, name) == 0)
590 return var;
591
592 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
593 var->name = concat (name, NULL);
594 var->value = allocate_value (builtin_type_void);
595 release_value (var->value);
596 var->next = internalvars;
597 internalvars = var;
598 return var;
599 }
600
601 struct value *
602 value_of_internalvar (struct internalvar *var)
603 {
604 struct value *val;
605
606 val = value_copy (var->value);
607 if (value_lazy (val))
608 value_fetch_lazy (val);
609 VALUE_LVAL (val) = lval_internalvar;
610 VALUE_INTERNALVAR (val) = var;
611 return val;
612 }
613
614 void
615 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
616 int bitsize, struct value *newval)
617 {
618 bfd_byte *addr = value_contents_writeable (var->value) + offset;
619
620 if (bitsize)
621 modify_field (addr, value_as_long (newval),
622 bitpos, bitsize);
623 else
624 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
625 }
626
627 void
628 set_internalvar (struct internalvar *var, struct value *val)
629 {
630 struct value *newval;
631
632 newval = value_copy (val);
633 newval->modifiable = 1;
634
635 /* Force the value to be fetched from the target now, to avoid problems
636 later when this internalvar is referenced and the target is gone or
637 has changed. */
638 if (value_lazy (newval))
639 value_fetch_lazy (newval);
640
641 /* Begin code which must not call error(). If var->value points to
642 something free'd, an error() obviously leaves a dangling pointer.
643 But we also get a danling pointer if var->value points to
644 something in the value chain (i.e., before release_value is
645 called), because after the error free_all_values will get called before
646 long. */
647 xfree (var->value);
648 var->value = newval;
649 release_value (newval);
650 /* End code which must not call error(). */
651 }
652
653 char *
654 internalvar_name (struct internalvar *var)
655 {
656 return var->name;
657 }
658
659 /* Free all internalvars. Done when new symtabs are loaded,
660 because that makes the values invalid. */
661
662 void
663 clear_internalvars (void)
664 {
665 struct internalvar *var;
666
667 while (internalvars)
668 {
669 var = internalvars;
670 internalvars = var->next;
671 xfree (var->name);
672 xfree (var->value);
673 xfree (var);
674 }
675 }
676
677 static void
678 show_convenience (char *ignore, int from_tty)
679 {
680 struct internalvar *var;
681 int varseen = 0;
682
683 for (var = internalvars; var; var = var->next)
684 {
685 if (!varseen)
686 {
687 varseen = 1;
688 }
689 printf_filtered ("$%s = ", var->name);
690 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
691 printf_filtered ("\n");
692 }
693 if (!varseen)
694 printf_unfiltered ("No debugger convenience variables now defined.\n\
695 Convenience variables have names starting with \"$\";\n\
696 use \"set\" as in \"set $foo = 5\" to define them.\n");
697 }
698 \f
699 /* Extract a value as a C number (either long or double).
700 Knows how to convert fixed values to double, or
701 floating values to long.
702 Does not deallocate the value. */
703
704 LONGEST
705 value_as_long (struct value *val)
706 {
707 /* This coerces arrays and functions, which is necessary (e.g.
708 in disassemble_command). It also dereferences references, which
709 I suspect is the most logical thing to do. */
710 val = coerce_array (val);
711 return unpack_long (value_type (val), value_contents (val));
712 }
713
714 DOUBLEST
715 value_as_double (struct value *val)
716 {
717 DOUBLEST foo;
718 int inv;
719
720 foo = unpack_double (value_type (val), value_contents (val), &inv);
721 if (inv)
722 error ("Invalid floating value found in program.");
723 return foo;
724 }
725 /* Extract a value as a C pointer. Does not deallocate the value.
726 Note that val's type may not actually be a pointer; value_as_long
727 handles all the cases. */
728 CORE_ADDR
729 value_as_address (struct value *val)
730 {
731 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
732 whether we want this to be true eventually. */
733 #if 0
734 /* ADDR_BITS_REMOVE is wrong if we are being called for a
735 non-address (e.g. argument to "signal", "info break", etc.), or
736 for pointers to char, in which the low bits *are* significant. */
737 return ADDR_BITS_REMOVE (value_as_long (val));
738 #else
739
740 /* There are several targets (IA-64, PowerPC, and others) which
741 don't represent pointers to functions as simply the address of
742 the function's entry point. For example, on the IA-64, a
743 function pointer points to a two-word descriptor, generated by
744 the linker, which contains the function's entry point, and the
745 value the IA-64 "global pointer" register should have --- to
746 support position-independent code. The linker generates
747 descriptors only for those functions whose addresses are taken.
748
749 On such targets, it's difficult for GDB to convert an arbitrary
750 function address into a function pointer; it has to either find
751 an existing descriptor for that function, or call malloc and
752 build its own. On some targets, it is impossible for GDB to
753 build a descriptor at all: the descriptor must contain a jump
754 instruction; data memory cannot be executed; and code memory
755 cannot be modified.
756
757 Upon entry to this function, if VAL is a value of type `function'
758 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
759 VALUE_ADDRESS (val) is the address of the function. This is what
760 you'll get if you evaluate an expression like `main'. The call
761 to COERCE_ARRAY below actually does all the usual unary
762 conversions, which includes converting values of type `function'
763 to `pointer to function'. This is the challenging conversion
764 discussed above. Then, `unpack_long' will convert that pointer
765 back into an address.
766
767 So, suppose the user types `disassemble foo' on an architecture
768 with a strange function pointer representation, on which GDB
769 cannot build its own descriptors, and suppose further that `foo'
770 has no linker-built descriptor. The address->pointer conversion
771 will signal an error and prevent the command from running, even
772 though the next step would have been to convert the pointer
773 directly back into the same address.
774
775 The following shortcut avoids this whole mess. If VAL is a
776 function, just return its address directly. */
777 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
778 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
779 return VALUE_ADDRESS (val);
780
781 val = coerce_array (val);
782
783 /* Some architectures (e.g. Harvard), map instruction and data
784 addresses onto a single large unified address space. For
785 instance: An architecture may consider a large integer in the
786 range 0x10000000 .. 0x1000ffff to already represent a data
787 addresses (hence not need a pointer to address conversion) while
788 a small integer would still need to be converted integer to
789 pointer to address. Just assume such architectures handle all
790 integer conversions in a single function. */
791
792 /* JimB writes:
793
794 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
795 must admonish GDB hackers to make sure its behavior matches the
796 compiler's, whenever possible.
797
798 In general, I think GDB should evaluate expressions the same way
799 the compiler does. When the user copies an expression out of
800 their source code and hands it to a `print' command, they should
801 get the same value the compiler would have computed. Any
802 deviation from this rule can cause major confusion and annoyance,
803 and needs to be justified carefully. In other words, GDB doesn't
804 really have the freedom to do these conversions in clever and
805 useful ways.
806
807 AndrewC pointed out that users aren't complaining about how GDB
808 casts integers to pointers; they are complaining that they can't
809 take an address from a disassembly listing and give it to `x/i'.
810 This is certainly important.
811
812 Adding an architecture method like integer_to_address() certainly
813 makes it possible for GDB to "get it right" in all circumstances
814 --- the target has complete control over how things get done, so
815 people can Do The Right Thing for their target without breaking
816 anyone else. The standard doesn't specify how integers get
817 converted to pointers; usually, the ABI doesn't either, but
818 ABI-specific code is a more reasonable place to handle it. */
819
820 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
821 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
822 && gdbarch_integer_to_address_p (current_gdbarch))
823 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
824 value_contents (val));
825
826 return unpack_long (value_type (val), value_contents (val));
827 #endif
828 }
829 \f
830 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
831 as a long, or as a double, assuming the raw data is described
832 by type TYPE. Knows how to convert different sizes of values
833 and can convert between fixed and floating point. We don't assume
834 any alignment for the raw data. Return value is in host byte order.
835
836 If you want functions and arrays to be coerced to pointers, and
837 references to be dereferenced, call value_as_long() instead.
838
839 C++: It is assumed that the front-end has taken care of
840 all matters concerning pointers to members. A pointer
841 to member which reaches here is considered to be equivalent
842 to an INT (or some size). After all, it is only an offset. */
843
844 LONGEST
845 unpack_long (struct type *type, const char *valaddr)
846 {
847 enum type_code code = TYPE_CODE (type);
848 int len = TYPE_LENGTH (type);
849 int nosign = TYPE_UNSIGNED (type);
850
851 if (current_language->la_language == language_scm
852 && is_scmvalue_type (type))
853 return scm_unpack (type, valaddr, TYPE_CODE_INT);
854
855 switch (code)
856 {
857 case TYPE_CODE_TYPEDEF:
858 return unpack_long (check_typedef (type), valaddr);
859 case TYPE_CODE_ENUM:
860 case TYPE_CODE_BOOL:
861 case TYPE_CODE_INT:
862 case TYPE_CODE_CHAR:
863 case TYPE_CODE_RANGE:
864 if (nosign)
865 return extract_unsigned_integer (valaddr, len);
866 else
867 return extract_signed_integer (valaddr, len);
868
869 case TYPE_CODE_FLT:
870 return extract_typed_floating (valaddr, type);
871
872 case TYPE_CODE_PTR:
873 case TYPE_CODE_REF:
874 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
875 whether we want this to be true eventually. */
876 return extract_typed_address (valaddr, type);
877
878 case TYPE_CODE_MEMBER:
879 error ("not implemented: member types in unpack_long");
880
881 default:
882 error ("Value can't be converted to integer.");
883 }
884 return 0; /* Placate lint. */
885 }
886
887 /* Return a double value from the specified type and address.
888 INVP points to an int which is set to 0 for valid value,
889 1 for invalid value (bad float format). In either case,
890 the returned double is OK to use. Argument is in target
891 format, result is in host format. */
892
893 DOUBLEST
894 unpack_double (struct type *type, const char *valaddr, int *invp)
895 {
896 enum type_code code;
897 int len;
898 int nosign;
899
900 *invp = 0; /* Assume valid. */
901 CHECK_TYPEDEF (type);
902 code = TYPE_CODE (type);
903 len = TYPE_LENGTH (type);
904 nosign = TYPE_UNSIGNED (type);
905 if (code == TYPE_CODE_FLT)
906 {
907 /* NOTE: cagney/2002-02-19: There was a test here to see if the
908 floating-point value was valid (using the macro
909 INVALID_FLOAT). That test/macro have been removed.
910
911 It turns out that only the VAX defined this macro and then
912 only in a non-portable way. Fixing the portability problem
913 wouldn't help since the VAX floating-point code is also badly
914 bit-rotten. The target needs to add definitions for the
915 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
916 exactly describe the target floating-point format. The
917 problem here is that the corresponding floatformat_vax_f and
918 floatformat_vax_d values these methods should be set to are
919 also not defined either. Oops!
920
921 Hopefully someone will add both the missing floatformat
922 definitions and the new cases for floatformat_is_valid (). */
923
924 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
925 {
926 *invp = 1;
927 return 0.0;
928 }
929
930 return extract_typed_floating (valaddr, type);
931 }
932 else if (nosign)
933 {
934 /* Unsigned -- be sure we compensate for signed LONGEST. */
935 return (ULONGEST) unpack_long (type, valaddr);
936 }
937 else
938 {
939 /* Signed -- we are OK with unpack_long. */
940 return unpack_long (type, valaddr);
941 }
942 }
943
944 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
945 as a CORE_ADDR, assuming the raw data is described by type TYPE.
946 We don't assume any alignment for the raw data. Return value is in
947 host byte order.
948
949 If you want functions and arrays to be coerced to pointers, and
950 references to be dereferenced, call value_as_address() instead.
951
952 C++: It is assumed that the front-end has taken care of
953 all matters concerning pointers to members. A pointer
954 to member which reaches here is considered to be equivalent
955 to an INT (or some size). After all, it is only an offset. */
956
957 CORE_ADDR
958 unpack_pointer (struct type *type, const char *valaddr)
959 {
960 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
961 whether we want this to be true eventually. */
962 return unpack_long (type, valaddr);
963 }
964
965 \f
966 /* Get the value of the FIELDN'th field (which must be static) of
967 TYPE. Return NULL if the field doesn't exist or has been
968 optimized out. */
969
970 struct value *
971 value_static_field (struct type *type, int fieldno)
972 {
973 struct value *retval;
974
975 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
976 {
977 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
978 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
979 }
980 else
981 {
982 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
983 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
984 if (sym == NULL)
985 {
986 /* With some compilers, e.g. HP aCC, static data members are reported
987 as non-debuggable symbols */
988 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
989 if (!msym)
990 return NULL;
991 else
992 {
993 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
994 SYMBOL_VALUE_ADDRESS (msym));
995 }
996 }
997 else
998 {
999 /* SYM should never have a SYMBOL_CLASS which will require
1000 read_var_value to use the FRAME parameter. */
1001 if (symbol_read_needs_frame (sym))
1002 warning ("static field's value depends on the current "
1003 "frame - bad debug info?");
1004 retval = read_var_value (sym, NULL);
1005 }
1006 if (retval && VALUE_LVAL (retval) == lval_memory)
1007 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1008 VALUE_ADDRESS (retval));
1009 }
1010 return retval;
1011 }
1012
1013 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1014 You have to be careful here, since the size of the data area for the value
1015 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1016 than the old enclosing type, you have to allocate more space for the data.
1017 The return value is a pointer to the new version of this value structure. */
1018
1019 struct value *
1020 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1021 {
1022 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
1023 {
1024 val->enclosing_type = new_encl_type;
1025 return val;
1026 }
1027 else
1028 {
1029 struct value *new_val;
1030 struct value *prev;
1031
1032 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
1033
1034 new_val->enclosing_type = new_encl_type;
1035
1036 /* We have to make sure this ends up in the same place in the value
1037 chain as the original copy, so it's clean-up behavior is the same.
1038 If the value has been released, this is a waste of time, but there
1039 is no way to tell that in advance, so... */
1040
1041 if (val != all_values)
1042 {
1043 for (prev = all_values; prev != NULL; prev = prev->next)
1044 {
1045 if (prev->next == val)
1046 {
1047 prev->next = new_val;
1048 break;
1049 }
1050 }
1051 }
1052
1053 return new_val;
1054 }
1055 }
1056
1057 /* Given a value ARG1 (offset by OFFSET bytes)
1058 of a struct or union type ARG_TYPE,
1059 extract and return the value of one of its (non-static) fields.
1060 FIELDNO says which field. */
1061
1062 struct value *
1063 value_primitive_field (struct value *arg1, int offset,
1064 int fieldno, struct type *arg_type)
1065 {
1066 struct value *v;
1067 struct type *type;
1068
1069 CHECK_TYPEDEF (arg_type);
1070 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1071
1072 /* Handle packed fields */
1073
1074 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1075 {
1076 v = value_from_longest (type,
1077 unpack_field_as_long (arg_type,
1078 value_contents (arg1)
1079 + offset,
1080 fieldno));
1081 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1082 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1083 v->offset = value_offset (arg1) + offset
1084 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1085 }
1086 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1087 {
1088 /* This field is actually a base subobject, so preserve the
1089 entire object's contents for later references to virtual
1090 bases, etc. */
1091 v = allocate_value (value_enclosing_type (arg1));
1092 v->type = type;
1093 if (value_lazy (arg1))
1094 set_value_lazy (v, 1);
1095 else
1096 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1097 TYPE_LENGTH (value_enclosing_type (arg1)));
1098 v->offset = value_offset (arg1);
1099 v->embedded_offset = (offset + value_embedded_offset (arg1)
1100 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1101 }
1102 else
1103 {
1104 /* Plain old data member */
1105 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1106 v = allocate_value (type);
1107 if (value_lazy (arg1))
1108 set_value_lazy (v, 1);
1109 else
1110 memcpy (value_contents_raw (v),
1111 value_contents_raw (arg1) + offset,
1112 TYPE_LENGTH (type));
1113 v->offset = (value_offset (arg1) + offset
1114 + value_embedded_offset (arg1));
1115 }
1116 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1117 if (VALUE_LVAL (arg1) == lval_internalvar)
1118 VALUE_LVAL (v) = lval_internalvar_component;
1119 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1120 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1121 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1122 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1123 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1124 return v;
1125 }
1126
1127 /* Given a value ARG1 of a struct or union type,
1128 extract and return the value of one of its (non-static) fields.
1129 FIELDNO says which field. */
1130
1131 struct value *
1132 value_field (struct value *arg1, int fieldno)
1133 {
1134 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1135 }
1136
1137 /* Return a non-virtual function as a value.
1138 F is the list of member functions which contains the desired method.
1139 J is an index into F which provides the desired method.
1140
1141 We only use the symbol for its address, so be happy with either a
1142 full symbol or a minimal symbol.
1143 */
1144
1145 struct value *
1146 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1147 int offset)
1148 {
1149 struct value *v;
1150 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1151 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1152 struct symbol *sym;
1153 struct minimal_symbol *msym;
1154
1155 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1156 if (sym != NULL)
1157 {
1158 msym = NULL;
1159 }
1160 else
1161 {
1162 gdb_assert (sym == NULL);
1163 msym = lookup_minimal_symbol (physname, NULL, NULL);
1164 if (msym == NULL)
1165 return NULL;
1166 }
1167
1168 v = allocate_value (ftype);
1169 if (sym)
1170 {
1171 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1172 }
1173 else
1174 {
1175 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1176 }
1177
1178 if (arg1p)
1179 {
1180 if (type != value_type (*arg1p))
1181 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1182 value_addr (*arg1p)));
1183
1184 /* Move the `this' pointer according to the offset.
1185 VALUE_OFFSET (*arg1p) += offset;
1186 */
1187 }
1188
1189 return v;
1190 }
1191
1192 \f
1193 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1194 VALADDR.
1195
1196 Extracting bits depends on endianness of the machine. Compute the
1197 number of least significant bits to discard. For big endian machines,
1198 we compute the total number of bits in the anonymous object, subtract
1199 off the bit count from the MSB of the object to the MSB of the
1200 bitfield, then the size of the bitfield, which leaves the LSB discard
1201 count. For little endian machines, the discard count is simply the
1202 number of bits from the LSB of the anonymous object to the LSB of the
1203 bitfield.
1204
1205 If the field is signed, we also do sign extension. */
1206
1207 LONGEST
1208 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1209 {
1210 ULONGEST val;
1211 ULONGEST valmask;
1212 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1213 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1214 int lsbcount;
1215 struct type *field_type;
1216
1217 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1218 field_type = TYPE_FIELD_TYPE (type, fieldno);
1219 CHECK_TYPEDEF (field_type);
1220
1221 /* Extract bits. See comment above. */
1222
1223 if (BITS_BIG_ENDIAN)
1224 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1225 else
1226 lsbcount = (bitpos % 8);
1227 val >>= lsbcount;
1228
1229 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1230 If the field is signed, and is negative, then sign extend. */
1231
1232 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1233 {
1234 valmask = (((ULONGEST) 1) << bitsize) - 1;
1235 val &= valmask;
1236 if (!TYPE_UNSIGNED (field_type))
1237 {
1238 if (val & (valmask ^ (valmask >> 1)))
1239 {
1240 val |= ~valmask;
1241 }
1242 }
1243 }
1244 return (val);
1245 }
1246
1247 /* Modify the value of a bitfield. ADDR points to a block of memory in
1248 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1249 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1250 indicate which bits (in target bit order) comprise the bitfield.
1251 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1252 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1253
1254 void
1255 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1256 {
1257 ULONGEST oword;
1258 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1259
1260 /* If a negative fieldval fits in the field in question, chop
1261 off the sign extension bits. */
1262 if ((~fieldval & ~(mask >> 1)) == 0)
1263 fieldval &= mask;
1264
1265 /* Warn if value is too big to fit in the field in question. */
1266 if (0 != (fieldval & ~mask))
1267 {
1268 /* FIXME: would like to include fieldval in the message, but
1269 we don't have a sprintf_longest. */
1270 warning ("Value does not fit in %d bits.", bitsize);
1271
1272 /* Truncate it, otherwise adjoining fields may be corrupted. */
1273 fieldval &= mask;
1274 }
1275
1276 oword = extract_unsigned_integer (addr, sizeof oword);
1277
1278 /* Shifting for bit field depends on endianness of the target machine. */
1279 if (BITS_BIG_ENDIAN)
1280 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1281
1282 oword &= ~(mask << bitpos);
1283 oword |= fieldval << bitpos;
1284
1285 store_unsigned_integer (addr, sizeof oword, oword);
1286 }
1287 \f
1288 /* Convert C numbers into newly allocated values */
1289
1290 struct value *
1291 value_from_longest (struct type *type, LONGEST num)
1292 {
1293 struct value *val = allocate_value (type);
1294 enum type_code code;
1295 int len;
1296 retry:
1297 code = TYPE_CODE (type);
1298 len = TYPE_LENGTH (type);
1299
1300 switch (code)
1301 {
1302 case TYPE_CODE_TYPEDEF:
1303 type = check_typedef (type);
1304 goto retry;
1305 case TYPE_CODE_INT:
1306 case TYPE_CODE_CHAR:
1307 case TYPE_CODE_ENUM:
1308 case TYPE_CODE_BOOL:
1309 case TYPE_CODE_RANGE:
1310 store_signed_integer (value_contents_raw (val), len, num);
1311 break;
1312
1313 case TYPE_CODE_REF:
1314 case TYPE_CODE_PTR:
1315 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1316 break;
1317
1318 default:
1319 error ("Unexpected type (%d) encountered for integer constant.", code);
1320 }
1321 return val;
1322 }
1323
1324
1325 /* Create a value representing a pointer of type TYPE to the address
1326 ADDR. */
1327 struct value *
1328 value_from_pointer (struct type *type, CORE_ADDR addr)
1329 {
1330 struct value *val = allocate_value (type);
1331 store_typed_address (value_contents_raw (val), type, addr);
1332 return val;
1333 }
1334
1335
1336 /* Create a value for a string constant to be stored locally
1337 (not in the inferior's memory space, but in GDB memory).
1338 This is analogous to value_from_longest, which also does not
1339 use inferior memory. String shall NOT contain embedded nulls. */
1340
1341 struct value *
1342 value_from_string (char *ptr)
1343 {
1344 struct value *val;
1345 int len = strlen (ptr);
1346 int lowbound = current_language->string_lower_bound;
1347 struct type *string_char_type;
1348 struct type *rangetype;
1349 struct type *stringtype;
1350
1351 rangetype = create_range_type ((struct type *) NULL,
1352 builtin_type_int,
1353 lowbound, len + lowbound - 1);
1354 string_char_type = language_string_char_type (current_language,
1355 current_gdbarch);
1356 stringtype = create_array_type ((struct type *) NULL,
1357 string_char_type,
1358 rangetype);
1359 val = allocate_value (stringtype);
1360 memcpy (value_contents_raw (val), ptr, len);
1361 return val;
1362 }
1363
1364 struct value *
1365 value_from_double (struct type *type, DOUBLEST num)
1366 {
1367 struct value *val = allocate_value (type);
1368 struct type *base_type = check_typedef (type);
1369 enum type_code code = TYPE_CODE (base_type);
1370 int len = TYPE_LENGTH (base_type);
1371
1372 if (code == TYPE_CODE_FLT)
1373 {
1374 store_typed_floating (value_contents_raw (val), base_type, num);
1375 }
1376 else
1377 error ("Unexpected type encountered for floating constant.");
1378
1379 return val;
1380 }
1381
1382 struct value *
1383 coerce_ref (struct value *arg)
1384 {
1385 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1386 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1387 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1388 unpack_pointer (value_type (arg),
1389 value_contents (arg)));
1390 return arg;
1391 }
1392
1393 struct value *
1394 coerce_array (struct value *arg)
1395 {
1396 arg = coerce_ref (arg);
1397 if (current_language->c_style_arrays
1398 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1399 arg = value_coerce_array (arg);
1400 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1401 arg = value_coerce_function (arg);
1402 return arg;
1403 }
1404
1405 struct value *
1406 coerce_number (struct value *arg)
1407 {
1408 arg = coerce_array (arg);
1409 arg = coerce_enum (arg);
1410 return arg;
1411 }
1412
1413 struct value *
1414 coerce_enum (struct value *arg)
1415 {
1416 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1417 arg = value_cast (builtin_type_unsigned_int, arg);
1418 return arg;
1419 }
1420 \f
1421
1422 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1423 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1424 is the type (which is known to be struct, union or array).
1425
1426 On most machines, the struct convention is used unless we are
1427 using gcc and the type is of a special size. */
1428 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1429 native compiler. GCC 2.3.3 was the last release that did it the
1430 old way. Since gcc2_compiled was not changed, we have no
1431 way to correctly win in all cases, so we just do the right thing
1432 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1433 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1434 would cause more chaos than dealing with some struct returns being
1435 handled wrong. */
1436 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1437 dead. */
1438
1439 int
1440 generic_use_struct_convention (int gcc_p, struct type *value_type)
1441 {
1442 return !(TYPE_LENGTH (value_type) == 1
1443 || TYPE_LENGTH (value_type) == 2
1444 || TYPE_LENGTH (value_type) == 4
1445 || TYPE_LENGTH (value_type) == 8);
1446 }
1447
1448 /* Return true if the function returning the specified type is using
1449 the convention of returning structures in memory (passing in the
1450 address as a hidden first parameter). GCC_P is nonzero if compiled
1451 with GCC. */
1452
1453 int
1454 using_struct_return (struct type *value_type, int gcc_p)
1455 {
1456 enum type_code code = TYPE_CODE (value_type);
1457
1458 if (code == TYPE_CODE_ERROR)
1459 error ("Function return type unknown.");
1460
1461 if (code == TYPE_CODE_VOID)
1462 /* A void return value is never in memory. See also corresponding
1463 code in "print_return_value". */
1464 return 0;
1465
1466 /* Probe the architecture for the return-value convention. */
1467 return (gdbarch_return_value (current_gdbarch, value_type,
1468 NULL, NULL, NULL)
1469 != RETURN_VALUE_REGISTER_CONVENTION);
1470 }
1471
1472 void
1473 _initialize_values (void)
1474 {
1475 add_cmd ("convenience", no_class, show_convenience,
1476 "Debugger convenience (\"$foo\") variables.\n\
1477 These variables are created when you assign them values;\n\
1478 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1479 A few convenience variables are given values automatically:\n\
1480 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1481 \"$__\" holds the contents of the last address examined with \"x\".",
1482 &showlist);
1483
1484 add_cmd ("values", no_class, show_values,
1485 "Elements of value history around item number IDX (or last ten).",
1486 &showlist);
1487 }
This page took 0.060296 seconds and 4 git commands to generate.