* gdbint.texinfo (Formatting): Mention some formatting guidelines
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010, 2011 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 #include "tracepoint.h"
46
47 /* Prototypes for exported functions. */
48
49 void _initialize_values (void);
50
51 /* Definition of a user function. */
52 struct internal_function
53 {
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64 };
65
66 static struct cmd_list_element *functionlist;
67
68 struct value
69 {
70 /* Type of value; either not an lval, or one of the various
71 different possible kinds of lval. */
72 enum lval_type lval;
73
74 /* Is it modifiable? Only relevant if lval != not_lval. */
75 int modifiable;
76
77 /* Location of value (if lval). */
78 union
79 {
80 /* If lval == lval_memory, this is the address in the inferior.
81 If lval == lval_register, this is the byte offset into the
82 registers structure. */
83 CORE_ADDR address;
84
85 /* Pointer to internal variable. */
86 struct internalvar *internalvar;
87
88 /* If lval == lval_computed, this is a set of function pointers
89 to use to access and describe the value, and a closure pointer
90 for them to use. */
91 struct
92 {
93 struct lval_funcs *funcs; /* Functions to call. */
94 void *closure; /* Closure for those functions to use. */
95 } computed;
96 } location;
97
98 /* Describes offset of a value within lval of a structure in bytes.
99 If lval == lval_memory, this is an offset to the address. If
100 lval == lval_register, this is a further offset from
101 location.address within the registers structure. Note also the
102 member embedded_offset below. */
103 int offset;
104
105 /* Only used for bitfields; number of bits contained in them. */
106 int bitsize;
107
108 /* Only used for bitfields; position of start of field. For
109 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
110 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
111 int bitpos;
112
113 /* Only used for bitfields; the containing value. This allows a
114 single read from the target when displaying multiple
115 bitfields. */
116 struct value *parent;
117
118 /* Frame register value is relative to. This will be described in
119 the lval enum above as "lval_register". */
120 struct frame_id frame_id;
121
122 /* Type of the value. */
123 struct type *type;
124
125 /* If a value represents a C++ object, then the `type' field gives
126 the object's compile-time type. If the object actually belongs
127 to some class derived from `type', perhaps with other base
128 classes and additional members, then `type' is just a subobject
129 of the real thing, and the full object is probably larger than
130 `type' would suggest.
131
132 If `type' is a dynamic class (i.e. one with a vtable), then GDB
133 can actually determine the object's run-time type by looking at
134 the run-time type information in the vtable. When this
135 information is available, we may elect to read in the entire
136 object, for several reasons:
137
138 - When printing the value, the user would probably rather see the
139 full object, not just the limited portion apparent from the
140 compile-time type.
141
142 - If `type' has virtual base classes, then even printing `type'
143 alone may require reaching outside the `type' portion of the
144 object to wherever the virtual base class has been stored.
145
146 When we store the entire object, `enclosing_type' is the run-time
147 type -- the complete object -- and `embedded_offset' is the
148 offset of `type' within that larger type, in bytes. The
149 value_contents() macro takes `embedded_offset' into account, so
150 most GDB code continues to see the `type' portion of the value,
151 just as the inferior would.
152
153 If `type' is a pointer to an object, then `enclosing_type' is a
154 pointer to the object's run-time type, and `pointed_to_offset' is
155 the offset in bytes from the full object to the pointed-to object
156 -- that is, the value `embedded_offset' would have if we followed
157 the pointer and fetched the complete object. (I don't really see
158 the point. Why not just determine the run-time type when you
159 indirect, and avoid the special case? The contents don't matter
160 until you indirect anyway.)
161
162 If we're not doing anything fancy, `enclosing_type' is equal to
163 `type', and `embedded_offset' is zero, so everything works
164 normally. */
165 struct type *enclosing_type;
166 int embedded_offset;
167 int pointed_to_offset;
168
169 /* Values are stored in a chain, so that they can be deleted easily
170 over calls to the inferior. Values assigned to internal
171 variables, put into the value history or exposed to Python are
172 taken off this list. */
173 struct value *next;
174
175 /* Register number if the value is from a register. */
176 short regnum;
177
178 /* If zero, contents of this value are in the contents field. If
179 nonzero, contents are in inferior. If the lval field is lval_memory,
180 the contents are in inferior memory at location.address plus offset.
181 The lval field may also be lval_register.
182
183 WARNING: This field is used by the code which handles watchpoints
184 (see breakpoint.c) to decide whether a particular value can be
185 watched by hardware watchpoints. If the lazy flag is set for
186 some member of a value chain, it is assumed that this member of
187 the chain doesn't need to be watched as part of watching the
188 value itself. This is how GDB avoids watching the entire struct
189 or array when the user wants to watch a single struct member or
190 array element. If you ever change the way lazy flag is set and
191 reset, be sure to consider this use as well! */
192 char lazy;
193
194 /* If nonzero, this is the value of a variable which does not
195 actually exist in the program. */
196 char optimized_out;
197
198 /* If value is a variable, is it initialized or not. */
199 int initialized;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 int stack;
204
205 /* Actual contents of the value. Target byte-order. NULL or not
206 valid if lazy is nonzero. */
207 gdb_byte *contents;
208
209 /* The number of references to this value. When a value is created,
210 the value chain holds a reference, so REFERENCE_COUNT is 1. If
211 release_value is called, this value is removed from the chain but
212 the caller of release_value now has a reference to this value.
213 The caller must arrange for a call to value_free later. */
214 int reference_count;
215 };
216
217 /* Prototypes for local functions. */
218
219 static void show_values (char *, int);
220
221 static void show_convenience (char *, int);
222
223
224 /* The value-history records all the values printed
225 by print commands during this session. Each chunk
226 records 60 consecutive values. The first chunk on
227 the chain records the most recent values.
228 The total number of values is in value_history_count. */
229
230 #define VALUE_HISTORY_CHUNK 60
231
232 struct value_history_chunk
233 {
234 struct value_history_chunk *next;
235 struct value *values[VALUE_HISTORY_CHUNK];
236 };
237
238 /* Chain of chunks now in use. */
239
240 static struct value_history_chunk *value_history_chain;
241
242 static int value_history_count; /* Abs number of last entry stored. */
243
244 \f
245 /* List of all value objects currently allocated
246 (except for those released by calls to release_value)
247 This is so they can be freed after each command. */
248
249 static struct value *all_values;
250
251 /* Allocate a lazy value for type TYPE. Its actual content is
252 "lazily" allocated too: the content field of the return value is
253 NULL; it will be allocated when it is fetched from the target. */
254
255 struct value *
256 allocate_value_lazy (struct type *type)
257 {
258 struct value *val;
259
260 /* Call check_typedef on our type to make sure that, if TYPE
261 is a TYPE_CODE_TYPEDEF, its length is set to the length
262 of the target type instead of zero. However, we do not
263 replace the typedef type by the target type, because we want
264 to keep the typedef in order to be able to set the VAL's type
265 description correctly. */
266 check_typedef (type);
267
268 val = (struct value *) xzalloc (sizeof (struct value));
269 val->contents = NULL;
270 val->next = all_values;
271 all_values = val;
272 val->type = type;
273 val->enclosing_type = type;
274 VALUE_LVAL (val) = not_lval;
275 val->location.address = 0;
276 VALUE_FRAME_ID (val) = null_frame_id;
277 val->offset = 0;
278 val->bitpos = 0;
279 val->bitsize = 0;
280 VALUE_REGNUM (val) = -1;
281 val->lazy = 1;
282 val->optimized_out = 0;
283 val->embedded_offset = 0;
284 val->pointed_to_offset = 0;
285 val->modifiable = 1;
286 val->initialized = 1; /* Default to initialized. */
287
288 /* Values start out on the all_values chain. */
289 val->reference_count = 1;
290
291 return val;
292 }
293
294 /* Allocate the contents of VAL if it has not been allocated yet. */
295
296 void
297 allocate_value_contents (struct value *val)
298 {
299 if (!val->contents)
300 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
301 }
302
303 /* Allocate a value and its contents for type TYPE. */
304
305 struct value *
306 allocate_value (struct type *type)
307 {
308 struct value *val = allocate_value_lazy (type);
309
310 allocate_value_contents (val);
311 val->lazy = 0;
312 return val;
313 }
314
315 /* Allocate a value that has the correct length
316 for COUNT repetitions of type TYPE. */
317
318 struct value *
319 allocate_repeat_value (struct type *type, int count)
320 {
321 int low_bound = current_language->string_lower_bound; /* ??? */
322 /* FIXME-type-allocation: need a way to free this type when we are
323 done with it. */
324 struct type *array_type
325 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
326
327 return allocate_value (array_type);
328 }
329
330 struct value *
331 allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334 {
335 struct value *v = allocate_value_lazy (type);
336
337 VALUE_LVAL (v) = lval_computed;
338 v->location.computed.funcs = funcs;
339 v->location.computed.closure = closure;
340
341 return v;
342 }
343
344 /* Accessor methods. */
345
346 struct value *
347 value_next (struct value *value)
348 {
349 return value->next;
350 }
351
352 struct type *
353 value_type (const struct value *value)
354 {
355 return value->type;
356 }
357 void
358 deprecated_set_value_type (struct value *value, struct type *type)
359 {
360 value->type = type;
361 }
362
363 int
364 value_offset (const struct value *value)
365 {
366 return value->offset;
367 }
368 void
369 set_value_offset (struct value *value, int offset)
370 {
371 value->offset = offset;
372 }
373
374 int
375 value_bitpos (const struct value *value)
376 {
377 return value->bitpos;
378 }
379 void
380 set_value_bitpos (struct value *value, int bit)
381 {
382 value->bitpos = bit;
383 }
384
385 int
386 value_bitsize (const struct value *value)
387 {
388 return value->bitsize;
389 }
390 void
391 set_value_bitsize (struct value *value, int bit)
392 {
393 value->bitsize = bit;
394 }
395
396 struct value *
397 value_parent (struct value *value)
398 {
399 return value->parent;
400 }
401
402 gdb_byte *
403 value_contents_raw (struct value *value)
404 {
405 allocate_value_contents (value);
406 return value->contents + value->embedded_offset;
407 }
408
409 gdb_byte *
410 value_contents_all_raw (struct value *value)
411 {
412 allocate_value_contents (value);
413 return value->contents;
414 }
415
416 struct type *
417 value_enclosing_type (struct value *value)
418 {
419 return value->enclosing_type;
420 }
421
422 static void
423 require_not_optimized_out (struct value *value)
424 {
425 if (value->optimized_out)
426 error (_("value has been optimized out"));
427 }
428
429 const gdb_byte *
430 value_contents_for_printing (struct value *value)
431 {
432 if (value->lazy)
433 value_fetch_lazy (value);
434 return value->contents;
435 }
436
437 const gdb_byte *
438 value_contents_for_printing_const (const struct value *value)
439 {
440 gdb_assert (!value->lazy);
441 return value->contents;
442 }
443
444 const gdb_byte *
445 value_contents_all (struct value *value)
446 {
447 const gdb_byte *result = value_contents_for_printing (value);
448 require_not_optimized_out (value);
449 return result;
450 }
451
452 int
453 value_lazy (struct value *value)
454 {
455 return value->lazy;
456 }
457
458 void
459 set_value_lazy (struct value *value, int val)
460 {
461 value->lazy = val;
462 }
463
464 int
465 value_stack (struct value *value)
466 {
467 return value->stack;
468 }
469
470 void
471 set_value_stack (struct value *value, int val)
472 {
473 value->stack = val;
474 }
475
476 const gdb_byte *
477 value_contents (struct value *value)
478 {
479 const gdb_byte *result = value_contents_writeable (value);
480 require_not_optimized_out (value);
481 return result;
482 }
483
484 gdb_byte *
485 value_contents_writeable (struct value *value)
486 {
487 if (value->lazy)
488 value_fetch_lazy (value);
489 return value_contents_raw (value);
490 }
491
492 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
493 this function is different from value_equal; in C the operator ==
494 can return 0 even if the two values being compared are equal. */
495
496 int
497 value_contents_equal (struct value *val1, struct value *val2)
498 {
499 struct type *type1;
500 struct type *type2;
501 int len;
502
503 type1 = check_typedef (value_type (val1));
504 type2 = check_typedef (value_type (val2));
505 len = TYPE_LENGTH (type1);
506 if (len != TYPE_LENGTH (type2))
507 return 0;
508
509 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
510 }
511
512 int
513 value_optimized_out (struct value *value)
514 {
515 return value->optimized_out;
516 }
517
518 void
519 set_value_optimized_out (struct value *value, int val)
520 {
521 value->optimized_out = val;
522 }
523
524 int
525 value_entirely_optimized_out (const struct value *value)
526 {
527 if (!value->optimized_out)
528 return 0;
529 if (value->lval != lval_computed
530 || !value->location.computed.funcs->check_any_valid)
531 return 1;
532 return !value->location.computed.funcs->check_any_valid (value);
533 }
534
535 int
536 value_bits_valid (const struct value *value, int offset, int length)
537 {
538 if (value == NULL || !value->optimized_out)
539 return 1;
540 if (value->lval != lval_computed
541 || !value->location.computed.funcs->check_validity)
542 return 0;
543 return value->location.computed.funcs->check_validity (value, offset,
544 length);
545 }
546
547 int
548 value_bits_synthetic_pointer (const struct value *value,
549 int offset, int length)
550 {
551 if (value == NULL || value->lval != lval_computed
552 || !value->location.computed.funcs->check_synthetic_pointer)
553 return 0;
554 return value->location.computed.funcs->check_synthetic_pointer (value,
555 offset,
556 length);
557 }
558
559 int
560 value_embedded_offset (struct value *value)
561 {
562 return value->embedded_offset;
563 }
564
565 void
566 set_value_embedded_offset (struct value *value, int val)
567 {
568 value->embedded_offset = val;
569 }
570
571 int
572 value_pointed_to_offset (struct value *value)
573 {
574 return value->pointed_to_offset;
575 }
576
577 void
578 set_value_pointed_to_offset (struct value *value, int val)
579 {
580 value->pointed_to_offset = val;
581 }
582
583 struct lval_funcs *
584 value_computed_funcs (struct value *v)
585 {
586 gdb_assert (VALUE_LVAL (v) == lval_computed);
587
588 return v->location.computed.funcs;
589 }
590
591 void *
592 value_computed_closure (const struct value *v)
593 {
594 gdb_assert (v->lval == lval_computed);
595
596 return v->location.computed.closure;
597 }
598
599 enum lval_type *
600 deprecated_value_lval_hack (struct value *value)
601 {
602 return &value->lval;
603 }
604
605 CORE_ADDR
606 value_address (const struct value *value)
607 {
608 if (value->lval == lval_internalvar
609 || value->lval == lval_internalvar_component)
610 return 0;
611 return value->location.address + value->offset;
612 }
613
614 CORE_ADDR
615 value_raw_address (struct value *value)
616 {
617 if (value->lval == lval_internalvar
618 || value->lval == lval_internalvar_component)
619 return 0;
620 return value->location.address;
621 }
622
623 void
624 set_value_address (struct value *value, CORE_ADDR addr)
625 {
626 gdb_assert (value->lval != lval_internalvar
627 && value->lval != lval_internalvar_component);
628 value->location.address = addr;
629 }
630
631 struct internalvar **
632 deprecated_value_internalvar_hack (struct value *value)
633 {
634 return &value->location.internalvar;
635 }
636
637 struct frame_id *
638 deprecated_value_frame_id_hack (struct value *value)
639 {
640 return &value->frame_id;
641 }
642
643 short *
644 deprecated_value_regnum_hack (struct value *value)
645 {
646 return &value->regnum;
647 }
648
649 int
650 deprecated_value_modifiable (struct value *value)
651 {
652 return value->modifiable;
653 }
654 void
655 deprecated_set_value_modifiable (struct value *value, int modifiable)
656 {
657 value->modifiable = modifiable;
658 }
659 \f
660 /* Return a mark in the value chain. All values allocated after the
661 mark is obtained (except for those released) are subject to being freed
662 if a subsequent value_free_to_mark is passed the mark. */
663 struct value *
664 value_mark (void)
665 {
666 return all_values;
667 }
668
669 /* Take a reference to VAL. VAL will not be deallocated until all
670 references are released. */
671
672 void
673 value_incref (struct value *val)
674 {
675 val->reference_count++;
676 }
677
678 /* Release a reference to VAL, which was acquired with value_incref.
679 This function is also called to deallocate values from the value
680 chain. */
681
682 void
683 value_free (struct value *val)
684 {
685 if (val)
686 {
687 gdb_assert (val->reference_count > 0);
688 val->reference_count--;
689 if (val->reference_count > 0)
690 return;
691
692 /* If there's an associated parent value, drop our reference to
693 it. */
694 if (val->parent != NULL)
695 value_free (val->parent);
696
697 if (VALUE_LVAL (val) == lval_computed)
698 {
699 struct lval_funcs *funcs = val->location.computed.funcs;
700
701 if (funcs->free_closure)
702 funcs->free_closure (val);
703 }
704
705 xfree (val->contents);
706 }
707 xfree (val);
708 }
709
710 /* Free all values allocated since MARK was obtained by value_mark
711 (except for those released). */
712 void
713 value_free_to_mark (struct value *mark)
714 {
715 struct value *val;
716 struct value *next;
717
718 for (val = all_values; val && val != mark; val = next)
719 {
720 next = val->next;
721 value_free (val);
722 }
723 all_values = val;
724 }
725
726 /* Free all the values that have been allocated (except for those released).
727 Call after each command, successful or not.
728 In practice this is called before each command, which is sufficient. */
729
730 void
731 free_all_values (void)
732 {
733 struct value *val;
734 struct value *next;
735
736 for (val = all_values; val; val = next)
737 {
738 next = val->next;
739 value_free (val);
740 }
741
742 all_values = 0;
743 }
744
745 /* Frees all the elements in a chain of values. */
746
747 void
748 free_value_chain (struct value *v)
749 {
750 struct value *next;
751
752 for (; v; v = next)
753 {
754 next = value_next (v);
755 value_free (v);
756 }
757 }
758
759 /* Remove VAL from the chain all_values
760 so it will not be freed automatically. */
761
762 void
763 release_value (struct value *val)
764 {
765 struct value *v;
766
767 if (all_values == val)
768 {
769 all_values = val->next;
770 val->next = NULL;
771 return;
772 }
773
774 for (v = all_values; v; v = v->next)
775 {
776 if (v->next == val)
777 {
778 v->next = val->next;
779 val->next = NULL;
780 break;
781 }
782 }
783 }
784
785 /* Release all values up to mark */
786 struct value *
787 value_release_to_mark (struct value *mark)
788 {
789 struct value *val;
790 struct value *next;
791
792 for (val = next = all_values; next; next = next->next)
793 if (next->next == mark)
794 {
795 all_values = next->next;
796 next->next = NULL;
797 return val;
798 }
799 all_values = 0;
800 return val;
801 }
802
803 /* Return a copy of the value ARG.
804 It contains the same contents, for same memory address,
805 but it's a different block of storage. */
806
807 struct value *
808 value_copy (struct value *arg)
809 {
810 struct type *encl_type = value_enclosing_type (arg);
811 struct value *val;
812
813 if (value_lazy (arg))
814 val = allocate_value_lazy (encl_type);
815 else
816 val = allocate_value (encl_type);
817 val->type = arg->type;
818 VALUE_LVAL (val) = VALUE_LVAL (arg);
819 val->location = arg->location;
820 val->offset = arg->offset;
821 val->bitpos = arg->bitpos;
822 val->bitsize = arg->bitsize;
823 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
824 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
825 val->lazy = arg->lazy;
826 val->optimized_out = arg->optimized_out;
827 val->embedded_offset = value_embedded_offset (arg);
828 val->pointed_to_offset = arg->pointed_to_offset;
829 val->modifiable = arg->modifiable;
830 if (!value_lazy (val))
831 {
832 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
833 TYPE_LENGTH (value_enclosing_type (arg)));
834
835 }
836 val->parent = arg->parent;
837 if (val->parent)
838 value_incref (val->parent);
839 if (VALUE_LVAL (val) == lval_computed)
840 {
841 struct lval_funcs *funcs = val->location.computed.funcs;
842
843 if (funcs->copy_closure)
844 val->location.computed.closure = funcs->copy_closure (val);
845 }
846 return val;
847 }
848
849 /* Return a version of ARG that is non-lvalue. */
850
851 struct value *
852 value_non_lval (struct value *arg)
853 {
854 if (VALUE_LVAL (arg) != not_lval)
855 {
856 struct type *enc_type = value_enclosing_type (arg);
857 struct value *val = allocate_value (enc_type);
858
859 memcpy (value_contents_all_raw (val), value_contents_all (arg),
860 TYPE_LENGTH (enc_type));
861 val->type = arg->type;
862 set_value_embedded_offset (val, value_embedded_offset (arg));
863 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
864 return val;
865 }
866 return arg;
867 }
868
869 void
870 set_value_component_location (struct value *component,
871 const struct value *whole)
872 {
873 if (whole->lval == lval_internalvar)
874 VALUE_LVAL (component) = lval_internalvar_component;
875 else
876 VALUE_LVAL (component) = whole->lval;
877
878 component->location = whole->location;
879 if (whole->lval == lval_computed)
880 {
881 struct lval_funcs *funcs = whole->location.computed.funcs;
882
883 if (funcs->copy_closure)
884 component->location.computed.closure = funcs->copy_closure (whole);
885 }
886 }
887
888 \f
889 /* Access to the value history. */
890
891 /* Record a new value in the value history.
892 Returns the absolute history index of the entry.
893 Result of -1 indicates the value was not saved; otherwise it is the
894 value history index of this new item. */
895
896 int
897 record_latest_value (struct value *val)
898 {
899 int i;
900
901 /* We don't want this value to have anything to do with the inferior anymore.
902 In particular, "set $1 = 50" should not affect the variable from which
903 the value was taken, and fast watchpoints should be able to assume that
904 a value on the value history never changes. */
905 if (value_lazy (val))
906 value_fetch_lazy (val);
907 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
908 from. This is a bit dubious, because then *&$1 does not just return $1
909 but the current contents of that location. c'est la vie... */
910 val->modifiable = 0;
911 release_value (val);
912
913 /* Here we treat value_history_count as origin-zero
914 and applying to the value being stored now. */
915
916 i = value_history_count % VALUE_HISTORY_CHUNK;
917 if (i == 0)
918 {
919 struct value_history_chunk *new
920 = (struct value_history_chunk *)
921
922 xmalloc (sizeof (struct value_history_chunk));
923 memset (new->values, 0, sizeof new->values);
924 new->next = value_history_chain;
925 value_history_chain = new;
926 }
927
928 value_history_chain->values[i] = val;
929
930 /* Now we regard value_history_count as origin-one
931 and applying to the value just stored. */
932
933 return ++value_history_count;
934 }
935
936 /* Return a copy of the value in the history with sequence number NUM. */
937
938 struct value *
939 access_value_history (int num)
940 {
941 struct value_history_chunk *chunk;
942 int i;
943 int absnum = num;
944
945 if (absnum <= 0)
946 absnum += value_history_count;
947
948 if (absnum <= 0)
949 {
950 if (num == 0)
951 error (_("The history is empty."));
952 else if (num == 1)
953 error (_("There is only one value in the history."));
954 else
955 error (_("History does not go back to $$%d."), -num);
956 }
957 if (absnum > value_history_count)
958 error (_("History has not yet reached $%d."), absnum);
959
960 absnum--;
961
962 /* Now absnum is always absolute and origin zero. */
963
964 chunk = value_history_chain;
965 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
966 - absnum / VALUE_HISTORY_CHUNK;
967 i > 0; i--)
968 chunk = chunk->next;
969
970 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
971 }
972
973 static void
974 show_values (char *num_exp, int from_tty)
975 {
976 int i;
977 struct value *val;
978 static int num = 1;
979
980 if (num_exp)
981 {
982 /* "show values +" should print from the stored position.
983 "show values <exp>" should print around value number <exp>. */
984 if (num_exp[0] != '+' || num_exp[1] != '\0')
985 num = parse_and_eval_long (num_exp) - 5;
986 }
987 else
988 {
989 /* "show values" means print the last 10 values. */
990 num = value_history_count - 9;
991 }
992
993 if (num <= 0)
994 num = 1;
995
996 for (i = num; i < num + 10 && i <= value_history_count; i++)
997 {
998 struct value_print_options opts;
999
1000 val = access_value_history (i);
1001 printf_filtered (("$%d = "), i);
1002 get_user_print_options (&opts);
1003 value_print (val, gdb_stdout, &opts);
1004 printf_filtered (("\n"));
1005 }
1006
1007 /* The next "show values +" should start after what we just printed. */
1008 num += 10;
1009
1010 /* Hitting just return after this command should do the same thing as
1011 "show values +". If num_exp is null, this is unnecessary, since
1012 "show values +" is not useful after "show values". */
1013 if (from_tty && num_exp)
1014 {
1015 num_exp[0] = '+';
1016 num_exp[1] = '\0';
1017 }
1018 }
1019 \f
1020 /* Internal variables. These are variables within the debugger
1021 that hold values assigned by debugger commands.
1022 The user refers to them with a '$' prefix
1023 that does not appear in the variable names stored internally. */
1024
1025 struct internalvar
1026 {
1027 struct internalvar *next;
1028 char *name;
1029
1030 /* We support various different kinds of content of an internal variable.
1031 enum internalvar_kind specifies the kind, and union internalvar_data
1032 provides the data associated with this particular kind. */
1033
1034 enum internalvar_kind
1035 {
1036 /* The internal variable is empty. */
1037 INTERNALVAR_VOID,
1038
1039 /* The value of the internal variable is provided directly as
1040 a GDB value object. */
1041 INTERNALVAR_VALUE,
1042
1043 /* A fresh value is computed via a call-back routine on every
1044 access to the internal variable. */
1045 INTERNALVAR_MAKE_VALUE,
1046
1047 /* The internal variable holds a GDB internal convenience function. */
1048 INTERNALVAR_FUNCTION,
1049
1050 /* The variable holds an integer value. */
1051 INTERNALVAR_INTEGER,
1052
1053 /* The variable holds a pointer value. */
1054 INTERNALVAR_POINTER,
1055
1056 /* The variable holds a GDB-provided string. */
1057 INTERNALVAR_STRING,
1058
1059 } kind;
1060
1061 union internalvar_data
1062 {
1063 /* A value object used with INTERNALVAR_VALUE. */
1064 struct value *value;
1065
1066 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1067 internalvar_make_value make_value;
1068
1069 /* The internal function used with INTERNALVAR_FUNCTION. */
1070 struct
1071 {
1072 struct internal_function *function;
1073 /* True if this is the canonical name for the function. */
1074 int canonical;
1075 } fn;
1076
1077 /* An integer value used with INTERNALVAR_INTEGER. */
1078 struct
1079 {
1080 /* If type is non-NULL, it will be used as the type to generate
1081 a value for this internal variable. If type is NULL, a default
1082 integer type for the architecture is used. */
1083 struct type *type;
1084 LONGEST val;
1085 } integer;
1086
1087 /* A pointer value used with INTERNALVAR_POINTER. */
1088 struct
1089 {
1090 struct type *type;
1091 CORE_ADDR val;
1092 } pointer;
1093
1094 /* A string value used with INTERNALVAR_STRING. */
1095 char *string;
1096 } u;
1097 };
1098
1099 static struct internalvar *internalvars;
1100
1101 /* If the variable does not already exist create it and give it the
1102 value given. If no value is given then the default is zero. */
1103 static void
1104 init_if_undefined_command (char* args, int from_tty)
1105 {
1106 struct internalvar* intvar;
1107
1108 /* Parse the expression - this is taken from set_command(). */
1109 struct expression *expr = parse_expression (args);
1110 register struct cleanup *old_chain =
1111 make_cleanup (free_current_contents, &expr);
1112
1113 /* Validate the expression.
1114 Was the expression an assignment?
1115 Or even an expression at all? */
1116 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1117 error (_("Init-if-undefined requires an assignment expression."));
1118
1119 /* Extract the variable from the parsed expression.
1120 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1121 if (expr->elts[1].opcode != OP_INTERNALVAR)
1122 error (_("The first parameter to init-if-undefined "
1123 "should be a GDB variable."));
1124 intvar = expr->elts[2].internalvar;
1125
1126 /* Only evaluate the expression if the lvalue is void.
1127 This may still fail if the expresssion is invalid. */
1128 if (intvar->kind == INTERNALVAR_VOID)
1129 evaluate_expression (expr);
1130
1131 do_cleanups (old_chain);
1132 }
1133
1134
1135 /* Look up an internal variable with name NAME. NAME should not
1136 normally include a dollar sign.
1137
1138 If the specified internal variable does not exist,
1139 the return value is NULL. */
1140
1141 struct internalvar *
1142 lookup_only_internalvar (const char *name)
1143 {
1144 struct internalvar *var;
1145
1146 for (var = internalvars; var; var = var->next)
1147 if (strcmp (var->name, name) == 0)
1148 return var;
1149
1150 return NULL;
1151 }
1152
1153
1154 /* Create an internal variable with name NAME and with a void value.
1155 NAME should not normally include a dollar sign. */
1156
1157 struct internalvar *
1158 create_internalvar (const char *name)
1159 {
1160 struct internalvar *var;
1161
1162 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1163 var->name = concat (name, (char *)NULL);
1164 var->kind = INTERNALVAR_VOID;
1165 var->next = internalvars;
1166 internalvars = var;
1167 return var;
1168 }
1169
1170 /* Create an internal variable with name NAME and register FUN as the
1171 function that value_of_internalvar uses to create a value whenever
1172 this variable is referenced. NAME should not normally include a
1173 dollar sign. */
1174
1175 struct internalvar *
1176 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1177 {
1178 struct internalvar *var = create_internalvar (name);
1179
1180 var->kind = INTERNALVAR_MAKE_VALUE;
1181 var->u.make_value = fun;
1182 return var;
1183 }
1184
1185 /* Look up an internal variable with name NAME. NAME should not
1186 normally include a dollar sign.
1187
1188 If the specified internal variable does not exist,
1189 one is created, with a void value. */
1190
1191 struct internalvar *
1192 lookup_internalvar (const char *name)
1193 {
1194 struct internalvar *var;
1195
1196 var = lookup_only_internalvar (name);
1197 if (var)
1198 return var;
1199
1200 return create_internalvar (name);
1201 }
1202
1203 /* Return current value of internal variable VAR. For variables that
1204 are not inherently typed, use a value type appropriate for GDBARCH. */
1205
1206 struct value *
1207 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1208 {
1209 struct value *val;
1210 struct trace_state_variable *tsv;
1211
1212 /* If there is a trace state variable of the same name, assume that
1213 is what we really want to see. */
1214 tsv = find_trace_state_variable (var->name);
1215 if (tsv)
1216 {
1217 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1218 &(tsv->value));
1219 if (tsv->value_known)
1220 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1221 tsv->value);
1222 else
1223 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1224 return val;
1225 }
1226
1227 switch (var->kind)
1228 {
1229 case INTERNALVAR_VOID:
1230 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1231 break;
1232
1233 case INTERNALVAR_FUNCTION:
1234 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1235 break;
1236
1237 case INTERNALVAR_INTEGER:
1238 if (!var->u.integer.type)
1239 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1240 var->u.integer.val);
1241 else
1242 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1243 break;
1244
1245 case INTERNALVAR_POINTER:
1246 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1247 break;
1248
1249 case INTERNALVAR_STRING:
1250 val = value_cstring (var->u.string, strlen (var->u.string),
1251 builtin_type (gdbarch)->builtin_char);
1252 break;
1253
1254 case INTERNALVAR_VALUE:
1255 val = value_copy (var->u.value);
1256 if (value_lazy (val))
1257 value_fetch_lazy (val);
1258 break;
1259
1260 case INTERNALVAR_MAKE_VALUE:
1261 val = (*var->u.make_value) (gdbarch, var);
1262 break;
1263
1264 default:
1265 internal_error (__FILE__, __LINE__, _("bad kind"));
1266 }
1267
1268 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1269 on this value go back to affect the original internal variable.
1270
1271 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1272 no underlying modifyable state in the internal variable.
1273
1274 Likewise, if the variable's value is a computed lvalue, we want
1275 references to it to produce another computed lvalue, where
1276 references and assignments actually operate through the
1277 computed value's functions.
1278
1279 This means that internal variables with computed values
1280 behave a little differently from other internal variables:
1281 assignments to them don't just replace the previous value
1282 altogether. At the moment, this seems like the behavior we
1283 want. */
1284
1285 if (var->kind != INTERNALVAR_MAKE_VALUE
1286 && val->lval != lval_computed)
1287 {
1288 VALUE_LVAL (val) = lval_internalvar;
1289 VALUE_INTERNALVAR (val) = var;
1290 }
1291
1292 return val;
1293 }
1294
1295 int
1296 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1297 {
1298 switch (var->kind)
1299 {
1300 case INTERNALVAR_INTEGER:
1301 *result = var->u.integer.val;
1302 return 1;
1303
1304 default:
1305 return 0;
1306 }
1307 }
1308
1309 static int
1310 get_internalvar_function (struct internalvar *var,
1311 struct internal_function **result)
1312 {
1313 switch (var->kind)
1314 {
1315 case INTERNALVAR_FUNCTION:
1316 *result = var->u.fn.function;
1317 return 1;
1318
1319 default:
1320 return 0;
1321 }
1322 }
1323
1324 void
1325 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1326 int bitsize, struct value *newval)
1327 {
1328 gdb_byte *addr;
1329
1330 switch (var->kind)
1331 {
1332 case INTERNALVAR_VALUE:
1333 addr = value_contents_writeable (var->u.value);
1334
1335 if (bitsize)
1336 modify_field (value_type (var->u.value), addr + offset,
1337 value_as_long (newval), bitpos, bitsize);
1338 else
1339 memcpy (addr + offset, value_contents (newval),
1340 TYPE_LENGTH (value_type (newval)));
1341 break;
1342
1343 default:
1344 /* We can never get a component of any other kind. */
1345 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
1346 }
1347 }
1348
1349 void
1350 set_internalvar (struct internalvar *var, struct value *val)
1351 {
1352 enum internalvar_kind new_kind;
1353 union internalvar_data new_data = { 0 };
1354
1355 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1356 error (_("Cannot overwrite convenience function %s"), var->name);
1357
1358 /* Prepare new contents. */
1359 switch (TYPE_CODE (check_typedef (value_type (val))))
1360 {
1361 case TYPE_CODE_VOID:
1362 new_kind = INTERNALVAR_VOID;
1363 break;
1364
1365 case TYPE_CODE_INTERNAL_FUNCTION:
1366 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1367 new_kind = INTERNALVAR_FUNCTION;
1368 get_internalvar_function (VALUE_INTERNALVAR (val),
1369 &new_data.fn.function);
1370 /* Copies created here are never canonical. */
1371 break;
1372
1373 case TYPE_CODE_INT:
1374 new_kind = INTERNALVAR_INTEGER;
1375 new_data.integer.type = value_type (val);
1376 new_data.integer.val = value_as_long (val);
1377 break;
1378
1379 case TYPE_CODE_PTR:
1380 new_kind = INTERNALVAR_POINTER;
1381 new_data.pointer.type = value_type (val);
1382 new_data.pointer.val = value_as_address (val);
1383 break;
1384
1385 default:
1386 new_kind = INTERNALVAR_VALUE;
1387 new_data.value = value_copy (val);
1388 new_data.value->modifiable = 1;
1389
1390 /* Force the value to be fetched from the target now, to avoid problems
1391 later when this internalvar is referenced and the target is gone or
1392 has changed. */
1393 if (value_lazy (new_data.value))
1394 value_fetch_lazy (new_data.value);
1395
1396 /* Release the value from the value chain to prevent it from being
1397 deleted by free_all_values. From here on this function should not
1398 call error () until new_data is installed into the var->u to avoid
1399 leaking memory. */
1400 release_value (new_data.value);
1401 break;
1402 }
1403
1404 /* Clean up old contents. */
1405 clear_internalvar (var);
1406
1407 /* Switch over. */
1408 var->kind = new_kind;
1409 var->u = new_data;
1410 /* End code which must not call error(). */
1411 }
1412
1413 void
1414 set_internalvar_integer (struct internalvar *var, LONGEST l)
1415 {
1416 /* Clean up old contents. */
1417 clear_internalvar (var);
1418
1419 var->kind = INTERNALVAR_INTEGER;
1420 var->u.integer.type = NULL;
1421 var->u.integer.val = l;
1422 }
1423
1424 void
1425 set_internalvar_string (struct internalvar *var, const char *string)
1426 {
1427 /* Clean up old contents. */
1428 clear_internalvar (var);
1429
1430 var->kind = INTERNALVAR_STRING;
1431 var->u.string = xstrdup (string);
1432 }
1433
1434 static void
1435 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1436 {
1437 /* Clean up old contents. */
1438 clear_internalvar (var);
1439
1440 var->kind = INTERNALVAR_FUNCTION;
1441 var->u.fn.function = f;
1442 var->u.fn.canonical = 1;
1443 /* Variables installed here are always the canonical version. */
1444 }
1445
1446 void
1447 clear_internalvar (struct internalvar *var)
1448 {
1449 /* Clean up old contents. */
1450 switch (var->kind)
1451 {
1452 case INTERNALVAR_VALUE:
1453 value_free (var->u.value);
1454 break;
1455
1456 case INTERNALVAR_STRING:
1457 xfree (var->u.string);
1458 break;
1459
1460 default:
1461 break;
1462 }
1463
1464 /* Reset to void kind. */
1465 var->kind = INTERNALVAR_VOID;
1466 }
1467
1468 char *
1469 internalvar_name (struct internalvar *var)
1470 {
1471 return var->name;
1472 }
1473
1474 static struct internal_function *
1475 create_internal_function (const char *name,
1476 internal_function_fn handler, void *cookie)
1477 {
1478 struct internal_function *ifn = XNEW (struct internal_function);
1479
1480 ifn->name = xstrdup (name);
1481 ifn->handler = handler;
1482 ifn->cookie = cookie;
1483 return ifn;
1484 }
1485
1486 char *
1487 value_internal_function_name (struct value *val)
1488 {
1489 struct internal_function *ifn;
1490 int result;
1491
1492 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1493 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1494 gdb_assert (result);
1495
1496 return ifn->name;
1497 }
1498
1499 struct value *
1500 call_internal_function (struct gdbarch *gdbarch,
1501 const struct language_defn *language,
1502 struct value *func, int argc, struct value **argv)
1503 {
1504 struct internal_function *ifn;
1505 int result;
1506
1507 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1508 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1509 gdb_assert (result);
1510
1511 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1512 }
1513
1514 /* The 'function' command. This does nothing -- it is just a
1515 placeholder to let "help function NAME" work. This is also used as
1516 the implementation of the sub-command that is created when
1517 registering an internal function. */
1518 static void
1519 function_command (char *command, int from_tty)
1520 {
1521 /* Do nothing. */
1522 }
1523
1524 /* Clean up if an internal function's command is destroyed. */
1525 static void
1526 function_destroyer (struct cmd_list_element *self, void *ignore)
1527 {
1528 xfree (self->name);
1529 xfree (self->doc);
1530 }
1531
1532 /* Add a new internal function. NAME is the name of the function; DOC
1533 is a documentation string describing the function. HANDLER is
1534 called when the function is invoked. COOKIE is an arbitrary
1535 pointer which is passed to HANDLER and is intended for "user
1536 data". */
1537 void
1538 add_internal_function (const char *name, const char *doc,
1539 internal_function_fn handler, void *cookie)
1540 {
1541 struct cmd_list_element *cmd;
1542 struct internal_function *ifn;
1543 struct internalvar *var = lookup_internalvar (name);
1544
1545 ifn = create_internal_function (name, handler, cookie);
1546 set_internalvar_function (var, ifn);
1547
1548 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1549 &functionlist);
1550 cmd->destroyer = function_destroyer;
1551 }
1552
1553 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1554 prevent cycles / duplicates. */
1555
1556 void
1557 preserve_one_value (struct value *value, struct objfile *objfile,
1558 htab_t copied_types)
1559 {
1560 if (TYPE_OBJFILE (value->type) == objfile)
1561 value->type = copy_type_recursive (objfile, value->type, copied_types);
1562
1563 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1564 value->enclosing_type = copy_type_recursive (objfile,
1565 value->enclosing_type,
1566 copied_types);
1567 }
1568
1569 /* Likewise for internal variable VAR. */
1570
1571 static void
1572 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1573 htab_t copied_types)
1574 {
1575 switch (var->kind)
1576 {
1577 case INTERNALVAR_INTEGER:
1578 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1579 var->u.integer.type
1580 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1581 break;
1582
1583 case INTERNALVAR_POINTER:
1584 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1585 var->u.pointer.type
1586 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1587 break;
1588
1589 case INTERNALVAR_VALUE:
1590 preserve_one_value (var->u.value, objfile, copied_types);
1591 break;
1592 }
1593 }
1594
1595 /* Update the internal variables and value history when OBJFILE is
1596 discarded; we must copy the types out of the objfile. New global types
1597 will be created for every convenience variable which currently points to
1598 this objfile's types, and the convenience variables will be adjusted to
1599 use the new global types. */
1600
1601 void
1602 preserve_values (struct objfile *objfile)
1603 {
1604 htab_t copied_types;
1605 struct value_history_chunk *cur;
1606 struct internalvar *var;
1607 int i;
1608
1609 /* Create the hash table. We allocate on the objfile's obstack, since
1610 it is soon to be deleted. */
1611 copied_types = create_copied_types_hash (objfile);
1612
1613 for (cur = value_history_chain; cur; cur = cur->next)
1614 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1615 if (cur->values[i])
1616 preserve_one_value (cur->values[i], objfile, copied_types);
1617
1618 for (var = internalvars; var; var = var->next)
1619 preserve_one_internalvar (var, objfile, copied_types);
1620
1621 preserve_python_values (objfile, copied_types);
1622
1623 htab_delete (copied_types);
1624 }
1625
1626 static void
1627 show_convenience (char *ignore, int from_tty)
1628 {
1629 struct gdbarch *gdbarch = get_current_arch ();
1630 struct internalvar *var;
1631 int varseen = 0;
1632 struct value_print_options opts;
1633
1634 get_user_print_options (&opts);
1635 for (var = internalvars; var; var = var->next)
1636 {
1637 if (!varseen)
1638 {
1639 varseen = 1;
1640 }
1641 printf_filtered (("$%s = "), var->name);
1642 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1643 &opts);
1644 printf_filtered (("\n"));
1645 }
1646 if (!varseen)
1647 printf_unfiltered (_("No debugger convenience variables now defined.\n"
1648 "Convenience variables have "
1649 "names starting with \"$\";\n"
1650 "use \"set\" as in \"set "
1651 "$foo = 5\" to define them.\n"));
1652 }
1653 \f
1654 /* Extract a value as a C number (either long or double).
1655 Knows how to convert fixed values to double, or
1656 floating values to long.
1657 Does not deallocate the value. */
1658
1659 LONGEST
1660 value_as_long (struct value *val)
1661 {
1662 /* This coerces arrays and functions, which is necessary (e.g.
1663 in disassemble_command). It also dereferences references, which
1664 I suspect is the most logical thing to do. */
1665 val = coerce_array (val);
1666 return unpack_long (value_type (val), value_contents (val));
1667 }
1668
1669 DOUBLEST
1670 value_as_double (struct value *val)
1671 {
1672 DOUBLEST foo;
1673 int inv;
1674
1675 foo = unpack_double (value_type (val), value_contents (val), &inv);
1676 if (inv)
1677 error (_("Invalid floating value found in program."));
1678 return foo;
1679 }
1680
1681 /* Extract a value as a C pointer. Does not deallocate the value.
1682 Note that val's type may not actually be a pointer; value_as_long
1683 handles all the cases. */
1684 CORE_ADDR
1685 value_as_address (struct value *val)
1686 {
1687 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1688
1689 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1690 whether we want this to be true eventually. */
1691 #if 0
1692 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1693 non-address (e.g. argument to "signal", "info break", etc.), or
1694 for pointers to char, in which the low bits *are* significant. */
1695 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1696 #else
1697
1698 /* There are several targets (IA-64, PowerPC, and others) which
1699 don't represent pointers to functions as simply the address of
1700 the function's entry point. For example, on the IA-64, a
1701 function pointer points to a two-word descriptor, generated by
1702 the linker, which contains the function's entry point, and the
1703 value the IA-64 "global pointer" register should have --- to
1704 support position-independent code. The linker generates
1705 descriptors only for those functions whose addresses are taken.
1706
1707 On such targets, it's difficult for GDB to convert an arbitrary
1708 function address into a function pointer; it has to either find
1709 an existing descriptor for that function, or call malloc and
1710 build its own. On some targets, it is impossible for GDB to
1711 build a descriptor at all: the descriptor must contain a jump
1712 instruction; data memory cannot be executed; and code memory
1713 cannot be modified.
1714
1715 Upon entry to this function, if VAL is a value of type `function'
1716 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1717 value_address (val) is the address of the function. This is what
1718 you'll get if you evaluate an expression like `main'. The call
1719 to COERCE_ARRAY below actually does all the usual unary
1720 conversions, which includes converting values of type `function'
1721 to `pointer to function'. This is the challenging conversion
1722 discussed above. Then, `unpack_long' will convert that pointer
1723 back into an address.
1724
1725 So, suppose the user types `disassemble foo' on an architecture
1726 with a strange function pointer representation, on which GDB
1727 cannot build its own descriptors, and suppose further that `foo'
1728 has no linker-built descriptor. The address->pointer conversion
1729 will signal an error and prevent the command from running, even
1730 though the next step would have been to convert the pointer
1731 directly back into the same address.
1732
1733 The following shortcut avoids this whole mess. If VAL is a
1734 function, just return its address directly. */
1735 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1736 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1737 return value_address (val);
1738
1739 val = coerce_array (val);
1740
1741 /* Some architectures (e.g. Harvard), map instruction and data
1742 addresses onto a single large unified address space. For
1743 instance: An architecture may consider a large integer in the
1744 range 0x10000000 .. 0x1000ffff to already represent a data
1745 addresses (hence not need a pointer to address conversion) while
1746 a small integer would still need to be converted integer to
1747 pointer to address. Just assume such architectures handle all
1748 integer conversions in a single function. */
1749
1750 /* JimB writes:
1751
1752 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1753 must admonish GDB hackers to make sure its behavior matches the
1754 compiler's, whenever possible.
1755
1756 In general, I think GDB should evaluate expressions the same way
1757 the compiler does. When the user copies an expression out of
1758 their source code and hands it to a `print' command, they should
1759 get the same value the compiler would have computed. Any
1760 deviation from this rule can cause major confusion and annoyance,
1761 and needs to be justified carefully. In other words, GDB doesn't
1762 really have the freedom to do these conversions in clever and
1763 useful ways.
1764
1765 AndrewC pointed out that users aren't complaining about how GDB
1766 casts integers to pointers; they are complaining that they can't
1767 take an address from a disassembly listing and give it to `x/i'.
1768 This is certainly important.
1769
1770 Adding an architecture method like integer_to_address() certainly
1771 makes it possible for GDB to "get it right" in all circumstances
1772 --- the target has complete control over how things get done, so
1773 people can Do The Right Thing for their target without breaking
1774 anyone else. The standard doesn't specify how integers get
1775 converted to pointers; usually, the ABI doesn't either, but
1776 ABI-specific code is a more reasonable place to handle it. */
1777
1778 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1779 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1780 && gdbarch_integer_to_address_p (gdbarch))
1781 return gdbarch_integer_to_address (gdbarch, value_type (val),
1782 value_contents (val));
1783
1784 return unpack_long (value_type (val), value_contents (val));
1785 #endif
1786 }
1787 \f
1788 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1789 as a long, or as a double, assuming the raw data is described
1790 by type TYPE. Knows how to convert different sizes of values
1791 and can convert between fixed and floating point. We don't assume
1792 any alignment for the raw data. Return value is in host byte order.
1793
1794 If you want functions and arrays to be coerced to pointers, and
1795 references to be dereferenced, call value_as_long() instead.
1796
1797 C++: It is assumed that the front-end has taken care of
1798 all matters concerning pointers to members. A pointer
1799 to member which reaches here is considered to be equivalent
1800 to an INT (or some size). After all, it is only an offset. */
1801
1802 LONGEST
1803 unpack_long (struct type *type, const gdb_byte *valaddr)
1804 {
1805 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1806 enum type_code code = TYPE_CODE (type);
1807 int len = TYPE_LENGTH (type);
1808 int nosign = TYPE_UNSIGNED (type);
1809
1810 switch (code)
1811 {
1812 case TYPE_CODE_TYPEDEF:
1813 return unpack_long (check_typedef (type), valaddr);
1814 case TYPE_CODE_ENUM:
1815 case TYPE_CODE_FLAGS:
1816 case TYPE_CODE_BOOL:
1817 case TYPE_CODE_INT:
1818 case TYPE_CODE_CHAR:
1819 case TYPE_CODE_RANGE:
1820 case TYPE_CODE_MEMBERPTR:
1821 if (nosign)
1822 return extract_unsigned_integer (valaddr, len, byte_order);
1823 else
1824 return extract_signed_integer (valaddr, len, byte_order);
1825
1826 case TYPE_CODE_FLT:
1827 return extract_typed_floating (valaddr, type);
1828
1829 case TYPE_CODE_DECFLOAT:
1830 /* libdecnumber has a function to convert from decimal to integer, but
1831 it doesn't work when the decimal number has a fractional part. */
1832 return decimal_to_doublest (valaddr, len, byte_order);
1833
1834 case TYPE_CODE_PTR:
1835 case TYPE_CODE_REF:
1836 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1837 whether we want this to be true eventually. */
1838 return extract_typed_address (valaddr, type);
1839
1840 default:
1841 error (_("Value can't be converted to integer."));
1842 }
1843 return 0; /* Placate lint. */
1844 }
1845
1846 /* Return a double value from the specified type and address.
1847 INVP points to an int which is set to 0 for valid value,
1848 1 for invalid value (bad float format). In either case,
1849 the returned double is OK to use. Argument is in target
1850 format, result is in host format. */
1851
1852 DOUBLEST
1853 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1854 {
1855 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1856 enum type_code code;
1857 int len;
1858 int nosign;
1859
1860 *invp = 0; /* Assume valid. */
1861 CHECK_TYPEDEF (type);
1862 code = TYPE_CODE (type);
1863 len = TYPE_LENGTH (type);
1864 nosign = TYPE_UNSIGNED (type);
1865 if (code == TYPE_CODE_FLT)
1866 {
1867 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1868 floating-point value was valid (using the macro
1869 INVALID_FLOAT). That test/macro have been removed.
1870
1871 It turns out that only the VAX defined this macro and then
1872 only in a non-portable way. Fixing the portability problem
1873 wouldn't help since the VAX floating-point code is also badly
1874 bit-rotten. The target needs to add definitions for the
1875 methods gdbarch_float_format and gdbarch_double_format - these
1876 exactly describe the target floating-point format. The
1877 problem here is that the corresponding floatformat_vax_f and
1878 floatformat_vax_d values these methods should be set to are
1879 also not defined either. Oops!
1880
1881 Hopefully someone will add both the missing floatformat
1882 definitions and the new cases for floatformat_is_valid (). */
1883
1884 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1885 {
1886 *invp = 1;
1887 return 0.0;
1888 }
1889
1890 return extract_typed_floating (valaddr, type);
1891 }
1892 else if (code == TYPE_CODE_DECFLOAT)
1893 return decimal_to_doublest (valaddr, len, byte_order);
1894 else if (nosign)
1895 {
1896 /* Unsigned -- be sure we compensate for signed LONGEST. */
1897 return (ULONGEST) unpack_long (type, valaddr);
1898 }
1899 else
1900 {
1901 /* Signed -- we are OK with unpack_long. */
1902 return unpack_long (type, valaddr);
1903 }
1904 }
1905
1906 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1907 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1908 We don't assume any alignment for the raw data. Return value is in
1909 host byte order.
1910
1911 If you want functions and arrays to be coerced to pointers, and
1912 references to be dereferenced, call value_as_address() instead.
1913
1914 C++: It is assumed that the front-end has taken care of
1915 all matters concerning pointers to members. A pointer
1916 to member which reaches here is considered to be equivalent
1917 to an INT (or some size). After all, it is only an offset. */
1918
1919 CORE_ADDR
1920 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1921 {
1922 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1923 whether we want this to be true eventually. */
1924 return unpack_long (type, valaddr);
1925 }
1926
1927 \f
1928 /* Get the value of the FIELDNO'th field (which must be static) of
1929 TYPE. Return NULL if the field doesn't exist or has been
1930 optimized out. */
1931
1932 struct value *
1933 value_static_field (struct type *type, int fieldno)
1934 {
1935 struct value *retval;
1936
1937 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1938 {
1939 case FIELD_LOC_KIND_PHYSADDR:
1940 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1941 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1942 break;
1943 case FIELD_LOC_KIND_PHYSNAME:
1944 {
1945 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1946 /* TYPE_FIELD_NAME (type, fieldno); */
1947 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1948
1949 if (sym == NULL)
1950 {
1951 /* With some compilers, e.g. HP aCC, static data members are
1952 reported as non-debuggable symbols. */
1953 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1954 NULL, NULL);
1955
1956 if (!msym)
1957 return NULL;
1958 else
1959 {
1960 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1961 SYMBOL_VALUE_ADDRESS (msym));
1962 }
1963 }
1964 else
1965 retval = value_of_variable (sym, NULL);
1966 break;
1967 }
1968 default:
1969 gdb_assert_not_reached ("unexpected field location kind");
1970 }
1971
1972 return retval;
1973 }
1974
1975 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1976 You have to be careful here, since the size of the data area for the value
1977 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1978 than the old enclosing type, you have to allocate more space for the
1979 data. */
1980
1981 void
1982 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
1983 {
1984 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1985 val->contents =
1986 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1987
1988 val->enclosing_type = new_encl_type;
1989 }
1990
1991 /* Given a value ARG1 (offset by OFFSET bytes)
1992 of a struct or union type ARG_TYPE,
1993 extract and return the value of one of its (non-static) fields.
1994 FIELDNO says which field. */
1995
1996 struct value *
1997 value_primitive_field (struct value *arg1, int offset,
1998 int fieldno, struct type *arg_type)
1999 {
2000 struct value *v;
2001 struct type *type;
2002
2003 CHECK_TYPEDEF (arg_type);
2004 type = TYPE_FIELD_TYPE (arg_type, fieldno);
2005
2006 /* Call check_typedef on our type to make sure that, if TYPE
2007 is a TYPE_CODE_TYPEDEF, its length is set to the length
2008 of the target type instead of zero. However, we do not
2009 replace the typedef type by the target type, because we want
2010 to keep the typedef in order to be able to print the type
2011 description correctly. */
2012 check_typedef (type);
2013
2014 /* Handle packed fields */
2015
2016 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2017 {
2018 /* Create a new value for the bitfield, with bitpos and bitsize
2019 set. If possible, arrange offset and bitpos so that we can
2020 do a single aligned read of the size of the containing type.
2021 Otherwise, adjust offset to the byte containing the first
2022 bit. Assume that the address, offset, and embedded offset
2023 are sufficiently aligned. */
2024 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2025 int container_bitsize = TYPE_LENGTH (type) * 8;
2026
2027 v = allocate_value_lazy (type);
2028 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2029 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2030 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2031 v->bitpos = bitpos % container_bitsize;
2032 else
2033 v->bitpos = bitpos % 8;
2034 v->offset = (value_embedded_offset (arg1)
2035 + offset
2036 + (bitpos - v->bitpos) / 8);
2037 v->parent = arg1;
2038 value_incref (v->parent);
2039 if (!value_lazy (arg1))
2040 value_fetch_lazy (v);
2041 }
2042 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2043 {
2044 /* This field is actually a base subobject, so preserve the
2045 entire object's contents for later references to virtual
2046 bases, etc. */
2047
2048 /* Lazy register values with offsets are not supported. */
2049 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2050 value_fetch_lazy (arg1);
2051
2052 if (value_lazy (arg1))
2053 v = allocate_value_lazy (value_enclosing_type (arg1));
2054 else
2055 {
2056 v = allocate_value (value_enclosing_type (arg1));
2057 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2058 TYPE_LENGTH (value_enclosing_type (arg1)));
2059 }
2060 v->type = type;
2061 v->offset = value_offset (arg1);
2062 v->embedded_offset = (offset + value_embedded_offset (arg1)
2063 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
2064 }
2065 else
2066 {
2067 /* Plain old data member */
2068 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2069
2070 /* Lazy register values with offsets are not supported. */
2071 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2072 value_fetch_lazy (arg1);
2073
2074 if (value_lazy (arg1))
2075 v = allocate_value_lazy (type);
2076 else
2077 {
2078 v = allocate_value (type);
2079 memcpy (value_contents_raw (v),
2080 value_contents_raw (arg1) + offset,
2081 TYPE_LENGTH (type));
2082 }
2083 v->offset = (value_offset (arg1) + offset
2084 + value_embedded_offset (arg1));
2085 }
2086 set_value_component_location (v, arg1);
2087 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2088 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2089 return v;
2090 }
2091
2092 /* Given a value ARG1 of a struct or union type,
2093 extract and return the value of one of its (non-static) fields.
2094 FIELDNO says which field. */
2095
2096 struct value *
2097 value_field (struct value *arg1, int fieldno)
2098 {
2099 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2100 }
2101
2102 /* Return a non-virtual function as a value.
2103 F is the list of member functions which contains the desired method.
2104 J is an index into F which provides the desired method.
2105
2106 We only use the symbol for its address, so be happy with either a
2107 full symbol or a minimal symbol. */
2108
2109 struct value *
2110 value_fn_field (struct value **arg1p, struct fn_field *f,
2111 int j, struct type *type,
2112 int offset)
2113 {
2114 struct value *v;
2115 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2116 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2117 struct symbol *sym;
2118 struct minimal_symbol *msym;
2119
2120 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2121 if (sym != NULL)
2122 {
2123 msym = NULL;
2124 }
2125 else
2126 {
2127 gdb_assert (sym == NULL);
2128 msym = lookup_minimal_symbol (physname, NULL, NULL);
2129 if (msym == NULL)
2130 return NULL;
2131 }
2132
2133 v = allocate_value (ftype);
2134 if (sym)
2135 {
2136 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2137 }
2138 else
2139 {
2140 /* The minimal symbol might point to a function descriptor;
2141 resolve it to the actual code address instead. */
2142 struct objfile *objfile = msymbol_objfile (msym);
2143 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2144
2145 set_value_address (v,
2146 gdbarch_convert_from_func_ptr_addr
2147 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2148 }
2149
2150 if (arg1p)
2151 {
2152 if (type != value_type (*arg1p))
2153 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2154 value_addr (*arg1p)));
2155
2156 /* Move the `this' pointer according to the offset.
2157 VALUE_OFFSET (*arg1p) += offset; */
2158 }
2159
2160 return v;
2161 }
2162
2163 \f
2164 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2165 object at VALADDR. The bitfield starts at BITPOS bits and contains
2166 BITSIZE bits.
2167
2168 Extracting bits depends on endianness of the machine. Compute the
2169 number of least significant bits to discard. For big endian machines,
2170 we compute the total number of bits in the anonymous object, subtract
2171 off the bit count from the MSB of the object to the MSB of the
2172 bitfield, then the size of the bitfield, which leaves the LSB discard
2173 count. For little endian machines, the discard count is simply the
2174 number of bits from the LSB of the anonymous object to the LSB of the
2175 bitfield.
2176
2177 If the field is signed, we also do sign extension. */
2178
2179 LONGEST
2180 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2181 int bitpos, int bitsize)
2182 {
2183 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2184 ULONGEST val;
2185 ULONGEST valmask;
2186 int lsbcount;
2187 int bytes_read;
2188
2189 /* Read the minimum number of bytes required; there may not be
2190 enough bytes to read an entire ULONGEST. */
2191 CHECK_TYPEDEF (field_type);
2192 if (bitsize)
2193 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2194 else
2195 bytes_read = TYPE_LENGTH (field_type);
2196
2197 val = extract_unsigned_integer (valaddr + bitpos / 8,
2198 bytes_read, byte_order);
2199
2200 /* Extract bits. See comment above. */
2201
2202 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2203 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2204 else
2205 lsbcount = (bitpos % 8);
2206 val >>= lsbcount;
2207
2208 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2209 If the field is signed, and is negative, then sign extend. */
2210
2211 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2212 {
2213 valmask = (((ULONGEST) 1) << bitsize) - 1;
2214 val &= valmask;
2215 if (!TYPE_UNSIGNED (field_type))
2216 {
2217 if (val & (valmask ^ (valmask >> 1)))
2218 {
2219 val |= ~valmask;
2220 }
2221 }
2222 }
2223 return (val);
2224 }
2225
2226 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2227 VALADDR. See unpack_bits_as_long for more details. */
2228
2229 LONGEST
2230 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2231 {
2232 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2233 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2234 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2235
2236 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2237 }
2238
2239 /* Modify the value of a bitfield. ADDR points to a block of memory in
2240 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2241 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2242 indicate which bits (in target bit order) comprise the bitfield.
2243 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
2244 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2245
2246 void
2247 modify_field (struct type *type, gdb_byte *addr,
2248 LONGEST fieldval, int bitpos, int bitsize)
2249 {
2250 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2251 ULONGEST oword;
2252 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2253 int bytesize;
2254
2255 /* Normalize BITPOS. */
2256 addr += bitpos / 8;
2257 bitpos %= 8;
2258
2259 /* If a negative fieldval fits in the field in question, chop
2260 off the sign extension bits. */
2261 if ((~fieldval & ~(mask >> 1)) == 0)
2262 fieldval &= mask;
2263
2264 /* Warn if value is too big to fit in the field in question. */
2265 if (0 != (fieldval & ~mask))
2266 {
2267 /* FIXME: would like to include fieldval in the message, but
2268 we don't have a sprintf_longest. */
2269 warning (_("Value does not fit in %d bits."), bitsize);
2270
2271 /* Truncate it, otherwise adjoining fields may be corrupted. */
2272 fieldval &= mask;
2273 }
2274
2275 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2276 false valgrind reports. */
2277
2278 bytesize = (bitpos + bitsize + 7) / 8;
2279 oword = extract_unsigned_integer (addr, bytesize, byte_order);
2280
2281 /* Shifting for bit field depends on endianness of the target machine. */
2282 if (gdbarch_bits_big_endian (get_type_arch (type)))
2283 bitpos = bytesize * 8 - bitpos - bitsize;
2284
2285 oword &= ~(mask << bitpos);
2286 oword |= fieldval << bitpos;
2287
2288 store_unsigned_integer (addr, bytesize, byte_order, oword);
2289 }
2290 \f
2291 /* Pack NUM into BUF using a target format of TYPE. */
2292
2293 void
2294 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2295 {
2296 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2297 int len;
2298
2299 type = check_typedef (type);
2300 len = TYPE_LENGTH (type);
2301
2302 switch (TYPE_CODE (type))
2303 {
2304 case TYPE_CODE_INT:
2305 case TYPE_CODE_CHAR:
2306 case TYPE_CODE_ENUM:
2307 case TYPE_CODE_FLAGS:
2308 case TYPE_CODE_BOOL:
2309 case TYPE_CODE_RANGE:
2310 case TYPE_CODE_MEMBERPTR:
2311 store_signed_integer (buf, len, byte_order, num);
2312 break;
2313
2314 case TYPE_CODE_REF:
2315 case TYPE_CODE_PTR:
2316 store_typed_address (buf, type, (CORE_ADDR) num);
2317 break;
2318
2319 default:
2320 error (_("Unexpected type (%d) encountered for integer constant."),
2321 TYPE_CODE (type));
2322 }
2323 }
2324
2325
2326 /* Pack NUM into BUF using a target format of TYPE. */
2327
2328 void
2329 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2330 {
2331 int len;
2332 enum bfd_endian byte_order;
2333
2334 type = check_typedef (type);
2335 len = TYPE_LENGTH (type);
2336 byte_order = gdbarch_byte_order (get_type_arch (type));
2337
2338 switch (TYPE_CODE (type))
2339 {
2340 case TYPE_CODE_INT:
2341 case TYPE_CODE_CHAR:
2342 case TYPE_CODE_ENUM:
2343 case TYPE_CODE_FLAGS:
2344 case TYPE_CODE_BOOL:
2345 case TYPE_CODE_RANGE:
2346 case TYPE_CODE_MEMBERPTR:
2347 store_unsigned_integer (buf, len, byte_order, num);
2348 break;
2349
2350 case TYPE_CODE_REF:
2351 case TYPE_CODE_PTR:
2352 store_typed_address (buf, type, (CORE_ADDR) num);
2353 break;
2354
2355 default:
2356 error (_("Unexpected type (%d) encountered "
2357 "for unsigned integer constant."),
2358 TYPE_CODE (type));
2359 }
2360 }
2361
2362
2363 /* Convert C numbers into newly allocated values. */
2364
2365 struct value *
2366 value_from_longest (struct type *type, LONGEST num)
2367 {
2368 struct value *val = allocate_value (type);
2369
2370 pack_long (value_contents_raw (val), type, num);
2371 return val;
2372 }
2373
2374
2375 /* Convert C unsigned numbers into newly allocated values. */
2376
2377 struct value *
2378 value_from_ulongest (struct type *type, ULONGEST num)
2379 {
2380 struct value *val = allocate_value (type);
2381
2382 pack_unsigned_long (value_contents_raw (val), type, num);
2383
2384 return val;
2385 }
2386
2387
2388 /* Create a value representing a pointer of type TYPE to the address
2389 ADDR. */
2390 struct value *
2391 value_from_pointer (struct type *type, CORE_ADDR addr)
2392 {
2393 struct value *val = allocate_value (type);
2394
2395 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2396 return val;
2397 }
2398
2399
2400 /* Create a value of type TYPE whose contents come from VALADDR, if it
2401 is non-null, and whose memory address (in the inferior) is
2402 ADDRESS. */
2403
2404 struct value *
2405 value_from_contents_and_address (struct type *type,
2406 const gdb_byte *valaddr,
2407 CORE_ADDR address)
2408 {
2409 struct value *v;
2410
2411 if (valaddr == NULL)
2412 v = allocate_value_lazy (type);
2413 else
2414 {
2415 v = allocate_value (type);
2416 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2417 }
2418 set_value_address (v, address);
2419 VALUE_LVAL (v) = lval_memory;
2420 return v;
2421 }
2422
2423 struct value *
2424 value_from_double (struct type *type, DOUBLEST num)
2425 {
2426 struct value *val = allocate_value (type);
2427 struct type *base_type = check_typedef (type);
2428 enum type_code code = TYPE_CODE (base_type);
2429
2430 if (code == TYPE_CODE_FLT)
2431 {
2432 store_typed_floating (value_contents_raw (val), base_type, num);
2433 }
2434 else
2435 error (_("Unexpected type encountered for floating constant."));
2436
2437 return val;
2438 }
2439
2440 struct value *
2441 value_from_decfloat (struct type *type, const gdb_byte *dec)
2442 {
2443 struct value *val = allocate_value (type);
2444
2445 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2446 return val;
2447 }
2448
2449 struct value *
2450 coerce_ref (struct value *arg)
2451 {
2452 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2453
2454 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2455 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2456 unpack_pointer (value_type (arg),
2457 value_contents (arg)));
2458 return arg;
2459 }
2460
2461 struct value *
2462 coerce_array (struct value *arg)
2463 {
2464 struct type *type;
2465
2466 arg = coerce_ref (arg);
2467 type = check_typedef (value_type (arg));
2468
2469 switch (TYPE_CODE (type))
2470 {
2471 case TYPE_CODE_ARRAY:
2472 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
2473 arg = value_coerce_array (arg);
2474 break;
2475 case TYPE_CODE_FUNC:
2476 arg = value_coerce_function (arg);
2477 break;
2478 }
2479 return arg;
2480 }
2481 \f
2482
2483 /* Return true if the function returning the specified type is using
2484 the convention of returning structures in memory (passing in the
2485 address as a hidden first parameter). */
2486
2487 int
2488 using_struct_return (struct gdbarch *gdbarch,
2489 struct type *func_type, struct type *value_type)
2490 {
2491 enum type_code code = TYPE_CODE (value_type);
2492
2493 if (code == TYPE_CODE_ERROR)
2494 error (_("Function return type unknown."));
2495
2496 if (code == TYPE_CODE_VOID)
2497 /* A void return value is never in memory. See also corresponding
2498 code in "print_return_value". */
2499 return 0;
2500
2501 /* Probe the architecture for the return-value convention. */
2502 return (gdbarch_return_value (gdbarch, func_type, value_type,
2503 NULL, NULL, NULL)
2504 != RETURN_VALUE_REGISTER_CONVENTION);
2505 }
2506
2507 /* Set the initialized field in a value struct. */
2508
2509 void
2510 set_value_initialized (struct value *val, int status)
2511 {
2512 val->initialized = status;
2513 }
2514
2515 /* Return the initialized field in a value struct. */
2516
2517 int
2518 value_initialized (struct value *val)
2519 {
2520 return val->initialized;
2521 }
2522
2523 void
2524 _initialize_values (void)
2525 {
2526 add_cmd ("convenience", no_class, show_convenience, _("\
2527 Debugger convenience (\"$foo\") variables.\n\
2528 These variables are created when you assign them values;\n\
2529 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2530 \n\
2531 A few convenience variables are given values automatically:\n\
2532 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2533 \"$__\" holds the contents of the last address examined with \"x\"."),
2534 &showlist);
2535
2536 add_cmd ("values", no_class, show_values, _("\
2537 Elements of value history around item number IDX (or last ten)."),
2538 &showlist);
2539
2540 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2541 Initialize a convenience variable if necessary.\n\
2542 init-if-undefined VARIABLE = EXPRESSION\n\
2543 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2544 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2545 VARIABLE is already initialized."));
2546
2547 add_prefix_cmd ("function", no_class, function_command, _("\
2548 Placeholder command for showing help on convenience functions."),
2549 &functionlist, "function ", 0, &cmdlist);
2550 }
This page took 0.080387 seconds and 4 git commands to generate.