* value.c (value_static_field): Use `switch' instead of `if'.
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009, 2010 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "doublest.h"
35 #include "gdb_assert.h"
36 #include "regcache.h"
37 #include "block.h"
38 #include "dfp.h"
39 #include "objfiles.h"
40 #include "valprint.h"
41 #include "cli/cli-decode.h"
42
43 #include "python/python.h"
44
45 /* Prototypes for exported functions. */
46
47 void _initialize_values (void);
48
49 /* Definition of a user function. */
50 struct internal_function
51 {
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62 };
63
64 static struct cmd_list_element *functionlist;
65
66 struct value
67 {
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
109 int bitpos;
110
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
213 };
214
215 /* Prototypes for local functions. */
216
217 static void show_values (char *, int);
218
219 static void show_convenience (char *, int);
220
221
222 /* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228 #define VALUE_HISTORY_CHUNK 60
229
230 struct value_history_chunk
231 {
232 struct value_history_chunk *next;
233 struct value *values[VALUE_HISTORY_CHUNK];
234 };
235
236 /* Chain of chunks now in use. */
237
238 static struct value_history_chunk *value_history_chain;
239
240 static int value_history_count; /* Abs number of last entry stored */
241
242 \f
243 /* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
247 static struct value *all_values;
248
249 /* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
252
253 struct value *
254 allocate_value_lazy (struct type *type)
255 {
256 struct value *val;
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
265
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
268 val->next = all_values;
269 all_values = val;
270 val->type = type;
271 val->enclosing_type = type;
272 VALUE_LVAL (val) = not_lval;
273 val->location.address = 0;
274 VALUE_FRAME_ID (val) = null_frame_id;
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
278 VALUE_REGNUM (val) = -1;
279 val->lazy = 1;
280 val->optimized_out = 0;
281 val->embedded_offset = 0;
282 val->pointed_to_offset = 0;
283 val->modifiable = 1;
284 val->initialized = 1; /* Default to initialized. */
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
289 return val;
290 }
291
292 /* Allocate the contents of VAL if it has not been allocated yet. */
293
294 void
295 allocate_value_contents (struct value *val)
296 {
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299 }
300
301 /* Allocate a value and its contents for type TYPE. */
302
303 struct value *
304 allocate_value (struct type *type)
305 {
306 struct value *val = allocate_value_lazy (type);
307
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311 }
312
313 /* Allocate a value that has the correct length
314 for COUNT repetitions of type TYPE. */
315
316 struct value *
317 allocate_repeat_value (struct type *type, int count)
318 {
319 int low_bound = current_language->string_lower_bound; /* ??? */
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
324
325 return allocate_value (array_type);
326 }
327
328 struct value *
329 allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332 {
333 struct value *v = allocate_value (type);
334
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341 }
342
343 /* Accessor methods. */
344
345 struct value *
346 value_next (struct value *value)
347 {
348 return value->next;
349 }
350
351 struct type *
352 value_type (const struct value *value)
353 {
354 return value->type;
355 }
356 void
357 deprecated_set_value_type (struct value *value, struct type *type)
358 {
359 value->type = type;
360 }
361
362 int
363 value_offset (const struct value *value)
364 {
365 return value->offset;
366 }
367 void
368 set_value_offset (struct value *value, int offset)
369 {
370 value->offset = offset;
371 }
372
373 int
374 value_bitpos (const struct value *value)
375 {
376 return value->bitpos;
377 }
378 void
379 set_value_bitpos (struct value *value, int bit)
380 {
381 value->bitpos = bit;
382 }
383
384 int
385 value_bitsize (const struct value *value)
386 {
387 return value->bitsize;
388 }
389 void
390 set_value_bitsize (struct value *value, int bit)
391 {
392 value->bitsize = bit;
393 }
394
395 struct value *
396 value_parent (struct value *value)
397 {
398 return value->parent;
399 }
400
401 gdb_byte *
402 value_contents_raw (struct value *value)
403 {
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
406 }
407
408 gdb_byte *
409 value_contents_all_raw (struct value *value)
410 {
411 allocate_value_contents (value);
412 return value->contents;
413 }
414
415 struct type *
416 value_enclosing_type (struct value *value)
417 {
418 return value->enclosing_type;
419 }
420
421 static void
422 require_not_optimized_out (struct value *value)
423 {
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426 }
427
428 const gdb_byte *
429 value_contents_for_printing (struct value *value)
430 {
431 if (value->lazy)
432 value_fetch_lazy (value);
433 return value->contents;
434 }
435
436 const gdb_byte *
437 value_contents_all (struct value *value)
438 {
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442 }
443
444 int
445 value_lazy (struct value *value)
446 {
447 return value->lazy;
448 }
449
450 void
451 set_value_lazy (struct value *value, int val)
452 {
453 value->lazy = val;
454 }
455
456 int
457 value_stack (struct value *value)
458 {
459 return value->stack;
460 }
461
462 void
463 set_value_stack (struct value *value, int val)
464 {
465 value->stack = val;
466 }
467
468 const gdb_byte *
469 value_contents (struct value *value)
470 {
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
474 }
475
476 gdb_byte *
477 value_contents_writeable (struct value *value)
478 {
479 if (value->lazy)
480 value_fetch_lazy (value);
481 return value_contents_raw (value);
482 }
483
484 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488 int
489 value_contents_equal (struct value *val1, struct value *val2)
490 {
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502 }
503
504 int
505 value_optimized_out (struct value *value)
506 {
507 return value->optimized_out;
508 }
509
510 void
511 set_value_optimized_out (struct value *value, int val)
512 {
513 value->optimized_out = val;
514 }
515
516 int
517 value_entirely_optimized_out (const struct value *value)
518 {
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
524 return value->location.computed.funcs->check_all_valid (value);
525 }
526
527 int
528 value_bits_valid (const struct value *value, int offset, int length)
529 {
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537 }
538
539 int
540 value_embedded_offset (struct value *value)
541 {
542 return value->embedded_offset;
543 }
544
545 void
546 set_value_embedded_offset (struct value *value, int val)
547 {
548 value->embedded_offset = val;
549 }
550
551 int
552 value_pointed_to_offset (struct value *value)
553 {
554 return value->pointed_to_offset;
555 }
556
557 void
558 set_value_pointed_to_offset (struct value *value, int val)
559 {
560 value->pointed_to_offset = val;
561 }
562
563 struct lval_funcs *
564 value_computed_funcs (struct value *v)
565 {
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569 }
570
571 void *
572 value_computed_closure (const struct value *v)
573 {
574 gdb_assert (v->lval == lval_computed);
575
576 return v->location.computed.closure;
577 }
578
579 enum lval_type *
580 deprecated_value_lval_hack (struct value *value)
581 {
582 return &value->lval;
583 }
584
585 CORE_ADDR
586 value_address (struct value *value)
587 {
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592 }
593
594 CORE_ADDR
595 value_raw_address (struct value *value)
596 {
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601 }
602
603 void
604 set_value_address (struct value *value, CORE_ADDR addr)
605 {
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
609 }
610
611 struct internalvar **
612 deprecated_value_internalvar_hack (struct value *value)
613 {
614 return &value->location.internalvar;
615 }
616
617 struct frame_id *
618 deprecated_value_frame_id_hack (struct value *value)
619 {
620 return &value->frame_id;
621 }
622
623 short *
624 deprecated_value_regnum_hack (struct value *value)
625 {
626 return &value->regnum;
627 }
628
629 int
630 deprecated_value_modifiable (struct value *value)
631 {
632 return value->modifiable;
633 }
634 void
635 deprecated_set_value_modifiable (struct value *value, int modifiable)
636 {
637 value->modifiable = modifiable;
638 }
639 \f
640 /* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
643 struct value *
644 value_mark (void)
645 {
646 return all_values;
647 }
648
649 /* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652 void
653 value_incref (struct value *val)
654 {
655 val->reference_count++;
656 }
657
658 /* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
662 void
663 value_free (struct value *val)
664 {
665 if (val)
666 {
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
687 xfree (val);
688 }
689
690 /* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692 void
693 value_free_to_mark (struct value *mark)
694 {
695 struct value *val;
696 struct value *next;
697
698 for (val = all_values; val && val != mark; val = next)
699 {
700 next = val->next;
701 value_free (val);
702 }
703 all_values = val;
704 }
705
706 /* Free all the values that have been allocated (except for those released).
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
709
710 void
711 free_all_values (void)
712 {
713 struct value *val;
714 struct value *next;
715
716 for (val = all_values; val; val = next)
717 {
718 next = val->next;
719 value_free (val);
720 }
721
722 all_values = 0;
723 }
724
725 /* Remove VAL from the chain all_values
726 so it will not be freed automatically. */
727
728 void
729 release_value (struct value *val)
730 {
731 struct value *v;
732
733 if (all_values == val)
734 {
735 all_values = val->next;
736 return;
737 }
738
739 for (v = all_values; v; v = v->next)
740 {
741 if (v->next == val)
742 {
743 v->next = val->next;
744 break;
745 }
746 }
747 }
748
749 /* Release all values up to mark */
750 struct value *
751 value_release_to_mark (struct value *mark)
752 {
753 struct value *val;
754 struct value *next;
755
756 for (val = next = all_values; next; next = next->next)
757 if (next->next == mark)
758 {
759 all_values = next->next;
760 next->next = NULL;
761 return val;
762 }
763 all_values = 0;
764 return val;
765 }
766
767 /* Return a copy of the value ARG.
768 It contains the same contents, for same memory address,
769 but it's a different block of storage. */
770
771 struct value *
772 value_copy (struct value *arg)
773 {
774 struct type *encl_type = value_enclosing_type (arg);
775 struct value *val;
776
777 if (value_lazy (arg))
778 val = allocate_value_lazy (encl_type);
779 else
780 val = allocate_value (encl_type);
781 val->type = arg->type;
782 VALUE_LVAL (val) = VALUE_LVAL (arg);
783 val->location = arg->location;
784 val->offset = arg->offset;
785 val->bitpos = arg->bitpos;
786 val->bitsize = arg->bitsize;
787 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
788 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
789 val->lazy = arg->lazy;
790 val->optimized_out = arg->optimized_out;
791 val->embedded_offset = value_embedded_offset (arg);
792 val->pointed_to_offset = arg->pointed_to_offset;
793 val->modifiable = arg->modifiable;
794 if (!value_lazy (val))
795 {
796 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
797 TYPE_LENGTH (value_enclosing_type (arg)));
798
799 }
800 val->parent = arg->parent;
801 if (val->parent)
802 value_incref (val->parent);
803 if (VALUE_LVAL (val) == lval_computed)
804 {
805 struct lval_funcs *funcs = val->location.computed.funcs;
806
807 if (funcs->copy_closure)
808 val->location.computed.closure = funcs->copy_closure (val);
809 }
810 return val;
811 }
812
813 void
814 set_value_component_location (struct value *component,
815 const struct value *whole)
816 {
817 if (whole->lval == lval_internalvar)
818 VALUE_LVAL (component) = lval_internalvar_component;
819 else
820 VALUE_LVAL (component) = whole->lval;
821
822 component->location = whole->location;
823 if (whole->lval == lval_computed)
824 {
825 struct lval_funcs *funcs = whole->location.computed.funcs;
826
827 if (funcs->copy_closure)
828 component->location.computed.closure = funcs->copy_closure (whole);
829 }
830 }
831
832 \f
833 /* Access to the value history. */
834
835 /* Record a new value in the value history.
836 Returns the absolute history index of the entry.
837 Result of -1 indicates the value was not saved; otherwise it is the
838 value history index of this new item. */
839
840 int
841 record_latest_value (struct value *val)
842 {
843 int i;
844
845 /* We don't want this value to have anything to do with the inferior anymore.
846 In particular, "set $1 = 50" should not affect the variable from which
847 the value was taken, and fast watchpoints should be able to assume that
848 a value on the value history never changes. */
849 if (value_lazy (val))
850 value_fetch_lazy (val);
851 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
852 from. This is a bit dubious, because then *&$1 does not just return $1
853 but the current contents of that location. c'est la vie... */
854 val->modifiable = 0;
855 release_value (val);
856
857 /* Here we treat value_history_count as origin-zero
858 and applying to the value being stored now. */
859
860 i = value_history_count % VALUE_HISTORY_CHUNK;
861 if (i == 0)
862 {
863 struct value_history_chunk *new
864 = (struct value_history_chunk *)
865
866 xmalloc (sizeof (struct value_history_chunk));
867 memset (new->values, 0, sizeof new->values);
868 new->next = value_history_chain;
869 value_history_chain = new;
870 }
871
872 value_history_chain->values[i] = val;
873
874 /* Now we regard value_history_count as origin-one
875 and applying to the value just stored. */
876
877 return ++value_history_count;
878 }
879
880 /* Return a copy of the value in the history with sequence number NUM. */
881
882 struct value *
883 access_value_history (int num)
884 {
885 struct value_history_chunk *chunk;
886 int i;
887 int absnum = num;
888
889 if (absnum <= 0)
890 absnum += value_history_count;
891
892 if (absnum <= 0)
893 {
894 if (num == 0)
895 error (_("The history is empty."));
896 else if (num == 1)
897 error (_("There is only one value in the history."));
898 else
899 error (_("History does not go back to $$%d."), -num);
900 }
901 if (absnum > value_history_count)
902 error (_("History has not yet reached $%d."), absnum);
903
904 absnum--;
905
906 /* Now absnum is always absolute and origin zero. */
907
908 chunk = value_history_chain;
909 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
910 i > 0; i--)
911 chunk = chunk->next;
912
913 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
914 }
915
916 static void
917 show_values (char *num_exp, int from_tty)
918 {
919 int i;
920 struct value *val;
921 static int num = 1;
922
923 if (num_exp)
924 {
925 /* "show values +" should print from the stored position.
926 "show values <exp>" should print around value number <exp>. */
927 if (num_exp[0] != '+' || num_exp[1] != '\0')
928 num = parse_and_eval_long (num_exp) - 5;
929 }
930 else
931 {
932 /* "show values" means print the last 10 values. */
933 num = value_history_count - 9;
934 }
935
936 if (num <= 0)
937 num = 1;
938
939 for (i = num; i < num + 10 && i <= value_history_count; i++)
940 {
941 struct value_print_options opts;
942
943 val = access_value_history (i);
944 printf_filtered (("$%d = "), i);
945 get_user_print_options (&opts);
946 value_print (val, gdb_stdout, &opts);
947 printf_filtered (("\n"));
948 }
949
950 /* The next "show values +" should start after what we just printed. */
951 num += 10;
952
953 /* Hitting just return after this command should do the same thing as
954 "show values +". If num_exp is null, this is unnecessary, since
955 "show values +" is not useful after "show values". */
956 if (from_tty && num_exp)
957 {
958 num_exp[0] = '+';
959 num_exp[1] = '\0';
960 }
961 }
962 \f
963 /* Internal variables. These are variables within the debugger
964 that hold values assigned by debugger commands.
965 The user refers to them with a '$' prefix
966 that does not appear in the variable names stored internally. */
967
968 struct internalvar
969 {
970 struct internalvar *next;
971 char *name;
972
973 /* We support various different kinds of content of an internal variable.
974 enum internalvar_kind specifies the kind, and union internalvar_data
975 provides the data associated with this particular kind. */
976
977 enum internalvar_kind
978 {
979 /* The internal variable is empty. */
980 INTERNALVAR_VOID,
981
982 /* The value of the internal variable is provided directly as
983 a GDB value object. */
984 INTERNALVAR_VALUE,
985
986 /* A fresh value is computed via a call-back routine on every
987 access to the internal variable. */
988 INTERNALVAR_MAKE_VALUE,
989
990 /* The internal variable holds a GDB internal convenience function. */
991 INTERNALVAR_FUNCTION,
992
993 /* The variable holds an integer value. */
994 INTERNALVAR_INTEGER,
995
996 /* The variable holds a pointer value. */
997 INTERNALVAR_POINTER,
998
999 /* The variable holds a GDB-provided string. */
1000 INTERNALVAR_STRING,
1001
1002 } kind;
1003
1004 union internalvar_data
1005 {
1006 /* A value object used with INTERNALVAR_VALUE. */
1007 struct value *value;
1008
1009 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1010 internalvar_make_value make_value;
1011
1012 /* The internal function used with INTERNALVAR_FUNCTION. */
1013 struct
1014 {
1015 struct internal_function *function;
1016 /* True if this is the canonical name for the function. */
1017 int canonical;
1018 } fn;
1019
1020 /* An integer value used with INTERNALVAR_INTEGER. */
1021 struct
1022 {
1023 /* If type is non-NULL, it will be used as the type to generate
1024 a value for this internal variable. If type is NULL, a default
1025 integer type for the architecture is used. */
1026 struct type *type;
1027 LONGEST val;
1028 } integer;
1029
1030 /* A pointer value used with INTERNALVAR_POINTER. */
1031 struct
1032 {
1033 struct type *type;
1034 CORE_ADDR val;
1035 } pointer;
1036
1037 /* A string value used with INTERNALVAR_STRING. */
1038 char *string;
1039 } u;
1040 };
1041
1042 static struct internalvar *internalvars;
1043
1044 /* If the variable does not already exist create it and give it the value given.
1045 If no value is given then the default is zero. */
1046 static void
1047 init_if_undefined_command (char* args, int from_tty)
1048 {
1049 struct internalvar* intvar;
1050
1051 /* Parse the expression - this is taken from set_command(). */
1052 struct expression *expr = parse_expression (args);
1053 register struct cleanup *old_chain =
1054 make_cleanup (free_current_contents, &expr);
1055
1056 /* Validate the expression.
1057 Was the expression an assignment?
1058 Or even an expression at all? */
1059 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1060 error (_("Init-if-undefined requires an assignment expression."));
1061
1062 /* Extract the variable from the parsed expression.
1063 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1064 if (expr->elts[1].opcode != OP_INTERNALVAR)
1065 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1066 intvar = expr->elts[2].internalvar;
1067
1068 /* Only evaluate the expression if the lvalue is void.
1069 This may still fail if the expresssion is invalid. */
1070 if (intvar->kind == INTERNALVAR_VOID)
1071 evaluate_expression (expr);
1072
1073 do_cleanups (old_chain);
1074 }
1075
1076
1077 /* Look up an internal variable with name NAME. NAME should not
1078 normally include a dollar sign.
1079
1080 If the specified internal variable does not exist,
1081 the return value is NULL. */
1082
1083 struct internalvar *
1084 lookup_only_internalvar (const char *name)
1085 {
1086 struct internalvar *var;
1087
1088 for (var = internalvars; var; var = var->next)
1089 if (strcmp (var->name, name) == 0)
1090 return var;
1091
1092 return NULL;
1093 }
1094
1095
1096 /* Create an internal variable with name NAME and with a void value.
1097 NAME should not normally include a dollar sign. */
1098
1099 struct internalvar *
1100 create_internalvar (const char *name)
1101 {
1102 struct internalvar *var;
1103
1104 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1105 var->name = concat (name, (char *)NULL);
1106 var->kind = INTERNALVAR_VOID;
1107 var->next = internalvars;
1108 internalvars = var;
1109 return var;
1110 }
1111
1112 /* Create an internal variable with name NAME and register FUN as the
1113 function that value_of_internalvar uses to create a value whenever
1114 this variable is referenced. NAME should not normally include a
1115 dollar sign. */
1116
1117 struct internalvar *
1118 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1119 {
1120 struct internalvar *var = create_internalvar (name);
1121
1122 var->kind = INTERNALVAR_MAKE_VALUE;
1123 var->u.make_value = fun;
1124 return var;
1125 }
1126
1127 /* Look up an internal variable with name NAME. NAME should not
1128 normally include a dollar sign.
1129
1130 If the specified internal variable does not exist,
1131 one is created, with a void value. */
1132
1133 struct internalvar *
1134 lookup_internalvar (const char *name)
1135 {
1136 struct internalvar *var;
1137
1138 var = lookup_only_internalvar (name);
1139 if (var)
1140 return var;
1141
1142 return create_internalvar (name);
1143 }
1144
1145 /* Return current value of internal variable VAR. For variables that
1146 are not inherently typed, use a value type appropriate for GDBARCH. */
1147
1148 struct value *
1149 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
1150 {
1151 struct value *val;
1152
1153 switch (var->kind)
1154 {
1155 case INTERNALVAR_VOID:
1156 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1157 break;
1158
1159 case INTERNALVAR_FUNCTION:
1160 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1161 break;
1162
1163 case INTERNALVAR_INTEGER:
1164 if (!var->u.integer.type)
1165 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1166 var->u.integer.val);
1167 else
1168 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1169 break;
1170
1171 case INTERNALVAR_POINTER:
1172 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
1173 break;
1174
1175 case INTERNALVAR_STRING:
1176 val = value_cstring (var->u.string, strlen (var->u.string),
1177 builtin_type (gdbarch)->builtin_char);
1178 break;
1179
1180 case INTERNALVAR_VALUE:
1181 val = value_copy (var->u.value);
1182 if (value_lazy (val))
1183 value_fetch_lazy (val);
1184 break;
1185
1186 case INTERNALVAR_MAKE_VALUE:
1187 val = (*var->u.make_value) (gdbarch, var);
1188 break;
1189
1190 default:
1191 internal_error (__FILE__, __LINE__, "bad kind");
1192 }
1193
1194 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1195 on this value go back to affect the original internal variable.
1196
1197 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1198 no underlying modifyable state in the internal variable.
1199
1200 Likewise, if the variable's value is a computed lvalue, we want
1201 references to it to produce another computed lvalue, where
1202 references and assignments actually operate through the
1203 computed value's functions.
1204
1205 This means that internal variables with computed values
1206 behave a little differently from other internal variables:
1207 assignments to them don't just replace the previous value
1208 altogether. At the moment, this seems like the behavior we
1209 want. */
1210
1211 if (var->kind != INTERNALVAR_MAKE_VALUE
1212 && val->lval != lval_computed)
1213 {
1214 VALUE_LVAL (val) = lval_internalvar;
1215 VALUE_INTERNALVAR (val) = var;
1216 }
1217
1218 return val;
1219 }
1220
1221 int
1222 get_internalvar_integer (struct internalvar *var, LONGEST *result)
1223 {
1224 switch (var->kind)
1225 {
1226 case INTERNALVAR_INTEGER:
1227 *result = var->u.integer.val;
1228 return 1;
1229
1230 default:
1231 return 0;
1232 }
1233 }
1234
1235 static int
1236 get_internalvar_function (struct internalvar *var,
1237 struct internal_function **result)
1238 {
1239 switch (var->kind)
1240 {
1241 case INTERNALVAR_FUNCTION:
1242 *result = var->u.fn.function;
1243 return 1;
1244
1245 default:
1246 return 0;
1247 }
1248 }
1249
1250 void
1251 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1252 int bitsize, struct value *newval)
1253 {
1254 gdb_byte *addr;
1255
1256 switch (var->kind)
1257 {
1258 case INTERNALVAR_VALUE:
1259 addr = value_contents_writeable (var->u.value);
1260
1261 if (bitsize)
1262 modify_field (value_type (var->u.value), addr + offset,
1263 value_as_long (newval), bitpos, bitsize);
1264 else
1265 memcpy (addr + offset, value_contents (newval),
1266 TYPE_LENGTH (value_type (newval)));
1267 break;
1268
1269 default:
1270 /* We can never get a component of any other kind. */
1271 internal_error (__FILE__, __LINE__, "set_internalvar_component");
1272 }
1273 }
1274
1275 void
1276 set_internalvar (struct internalvar *var, struct value *val)
1277 {
1278 enum internalvar_kind new_kind;
1279 union internalvar_data new_data = { 0 };
1280
1281 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
1282 error (_("Cannot overwrite convenience function %s"), var->name);
1283
1284 /* Prepare new contents. */
1285 switch (TYPE_CODE (check_typedef (value_type (val))))
1286 {
1287 case TYPE_CODE_VOID:
1288 new_kind = INTERNALVAR_VOID;
1289 break;
1290
1291 case TYPE_CODE_INTERNAL_FUNCTION:
1292 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1293 new_kind = INTERNALVAR_FUNCTION;
1294 get_internalvar_function (VALUE_INTERNALVAR (val),
1295 &new_data.fn.function);
1296 /* Copies created here are never canonical. */
1297 break;
1298
1299 case TYPE_CODE_INT:
1300 new_kind = INTERNALVAR_INTEGER;
1301 new_data.integer.type = value_type (val);
1302 new_data.integer.val = value_as_long (val);
1303 break;
1304
1305 case TYPE_CODE_PTR:
1306 new_kind = INTERNALVAR_POINTER;
1307 new_data.pointer.type = value_type (val);
1308 new_data.pointer.val = value_as_address (val);
1309 break;
1310
1311 default:
1312 new_kind = INTERNALVAR_VALUE;
1313 new_data.value = value_copy (val);
1314 new_data.value->modifiable = 1;
1315
1316 /* Force the value to be fetched from the target now, to avoid problems
1317 later when this internalvar is referenced and the target is gone or
1318 has changed. */
1319 if (value_lazy (new_data.value))
1320 value_fetch_lazy (new_data.value);
1321
1322 /* Release the value from the value chain to prevent it from being
1323 deleted by free_all_values. From here on this function should not
1324 call error () until new_data is installed into the var->u to avoid
1325 leaking memory. */
1326 release_value (new_data.value);
1327 break;
1328 }
1329
1330 /* Clean up old contents. */
1331 clear_internalvar (var);
1332
1333 /* Switch over. */
1334 var->kind = new_kind;
1335 var->u = new_data;
1336 /* End code which must not call error(). */
1337 }
1338
1339 void
1340 set_internalvar_integer (struct internalvar *var, LONGEST l)
1341 {
1342 /* Clean up old contents. */
1343 clear_internalvar (var);
1344
1345 var->kind = INTERNALVAR_INTEGER;
1346 var->u.integer.type = NULL;
1347 var->u.integer.val = l;
1348 }
1349
1350 void
1351 set_internalvar_string (struct internalvar *var, const char *string)
1352 {
1353 /* Clean up old contents. */
1354 clear_internalvar (var);
1355
1356 var->kind = INTERNALVAR_STRING;
1357 var->u.string = xstrdup (string);
1358 }
1359
1360 static void
1361 set_internalvar_function (struct internalvar *var, struct internal_function *f)
1362 {
1363 /* Clean up old contents. */
1364 clear_internalvar (var);
1365
1366 var->kind = INTERNALVAR_FUNCTION;
1367 var->u.fn.function = f;
1368 var->u.fn.canonical = 1;
1369 /* Variables installed here are always the canonical version. */
1370 }
1371
1372 void
1373 clear_internalvar (struct internalvar *var)
1374 {
1375 /* Clean up old contents. */
1376 switch (var->kind)
1377 {
1378 case INTERNALVAR_VALUE:
1379 value_free (var->u.value);
1380 break;
1381
1382 case INTERNALVAR_STRING:
1383 xfree (var->u.string);
1384 break;
1385
1386 default:
1387 break;
1388 }
1389
1390 /* Reset to void kind. */
1391 var->kind = INTERNALVAR_VOID;
1392 }
1393
1394 char *
1395 internalvar_name (struct internalvar *var)
1396 {
1397 return var->name;
1398 }
1399
1400 static struct internal_function *
1401 create_internal_function (const char *name,
1402 internal_function_fn handler, void *cookie)
1403 {
1404 struct internal_function *ifn = XNEW (struct internal_function);
1405
1406 ifn->name = xstrdup (name);
1407 ifn->handler = handler;
1408 ifn->cookie = cookie;
1409 return ifn;
1410 }
1411
1412 char *
1413 value_internal_function_name (struct value *val)
1414 {
1415 struct internal_function *ifn;
1416 int result;
1417
1418 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1419 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1420 gdb_assert (result);
1421
1422 return ifn->name;
1423 }
1424
1425 struct value *
1426 call_internal_function (struct gdbarch *gdbarch,
1427 const struct language_defn *language,
1428 struct value *func, int argc, struct value **argv)
1429 {
1430 struct internal_function *ifn;
1431 int result;
1432
1433 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1434 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1435 gdb_assert (result);
1436
1437 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
1438 }
1439
1440 /* The 'function' command. This does nothing -- it is just a
1441 placeholder to let "help function NAME" work. This is also used as
1442 the implementation of the sub-command that is created when
1443 registering an internal function. */
1444 static void
1445 function_command (char *command, int from_tty)
1446 {
1447 /* Do nothing. */
1448 }
1449
1450 /* Clean up if an internal function's command is destroyed. */
1451 static void
1452 function_destroyer (struct cmd_list_element *self, void *ignore)
1453 {
1454 xfree (self->name);
1455 xfree (self->doc);
1456 }
1457
1458 /* Add a new internal function. NAME is the name of the function; DOC
1459 is a documentation string describing the function. HANDLER is
1460 called when the function is invoked. COOKIE is an arbitrary
1461 pointer which is passed to HANDLER and is intended for "user
1462 data". */
1463 void
1464 add_internal_function (const char *name, const char *doc,
1465 internal_function_fn handler, void *cookie)
1466 {
1467 struct cmd_list_element *cmd;
1468 struct internal_function *ifn;
1469 struct internalvar *var = lookup_internalvar (name);
1470
1471 ifn = create_internal_function (name, handler, cookie);
1472 set_internalvar_function (var, ifn);
1473
1474 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1475 &functionlist);
1476 cmd->destroyer = function_destroyer;
1477 }
1478
1479 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1480 prevent cycles / duplicates. */
1481
1482 void
1483 preserve_one_value (struct value *value, struct objfile *objfile,
1484 htab_t copied_types)
1485 {
1486 if (TYPE_OBJFILE (value->type) == objfile)
1487 value->type = copy_type_recursive (objfile, value->type, copied_types);
1488
1489 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1490 value->enclosing_type = copy_type_recursive (objfile,
1491 value->enclosing_type,
1492 copied_types);
1493 }
1494
1495 /* Likewise for internal variable VAR. */
1496
1497 static void
1498 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1499 htab_t copied_types)
1500 {
1501 switch (var->kind)
1502 {
1503 case INTERNALVAR_INTEGER:
1504 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1505 var->u.integer.type
1506 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1507 break;
1508
1509 case INTERNALVAR_POINTER:
1510 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1511 var->u.pointer.type
1512 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
1513 break;
1514
1515 case INTERNALVAR_VALUE:
1516 preserve_one_value (var->u.value, objfile, copied_types);
1517 break;
1518 }
1519 }
1520
1521 /* Update the internal variables and value history when OBJFILE is
1522 discarded; we must copy the types out of the objfile. New global types
1523 will be created for every convenience variable which currently points to
1524 this objfile's types, and the convenience variables will be adjusted to
1525 use the new global types. */
1526
1527 void
1528 preserve_values (struct objfile *objfile)
1529 {
1530 htab_t copied_types;
1531 struct value_history_chunk *cur;
1532 struct internalvar *var;
1533 int i;
1534
1535 /* Create the hash table. We allocate on the objfile's obstack, since
1536 it is soon to be deleted. */
1537 copied_types = create_copied_types_hash (objfile);
1538
1539 for (cur = value_history_chain; cur; cur = cur->next)
1540 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1541 if (cur->values[i])
1542 preserve_one_value (cur->values[i], objfile, copied_types);
1543
1544 for (var = internalvars; var; var = var->next)
1545 preserve_one_internalvar (var, objfile, copied_types);
1546
1547 preserve_python_values (objfile, copied_types);
1548
1549 htab_delete (copied_types);
1550 }
1551
1552 static void
1553 show_convenience (char *ignore, int from_tty)
1554 {
1555 struct gdbarch *gdbarch = get_current_arch ();
1556 struct internalvar *var;
1557 int varseen = 0;
1558 struct value_print_options opts;
1559
1560 get_user_print_options (&opts);
1561 for (var = internalvars; var; var = var->next)
1562 {
1563 if (!varseen)
1564 {
1565 varseen = 1;
1566 }
1567 printf_filtered (("$%s = "), var->name);
1568 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
1569 &opts);
1570 printf_filtered (("\n"));
1571 }
1572 if (!varseen)
1573 printf_unfiltered (_("\
1574 No debugger convenience variables now defined.\n\
1575 Convenience variables have names starting with \"$\";\n\
1576 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1577 }
1578 \f
1579 /* Extract a value as a C number (either long or double).
1580 Knows how to convert fixed values to double, or
1581 floating values to long.
1582 Does not deallocate the value. */
1583
1584 LONGEST
1585 value_as_long (struct value *val)
1586 {
1587 /* This coerces arrays and functions, which is necessary (e.g.
1588 in disassemble_command). It also dereferences references, which
1589 I suspect is the most logical thing to do. */
1590 val = coerce_array (val);
1591 return unpack_long (value_type (val), value_contents (val));
1592 }
1593
1594 DOUBLEST
1595 value_as_double (struct value *val)
1596 {
1597 DOUBLEST foo;
1598 int inv;
1599
1600 foo = unpack_double (value_type (val), value_contents (val), &inv);
1601 if (inv)
1602 error (_("Invalid floating value found in program."));
1603 return foo;
1604 }
1605
1606 /* Extract a value as a C pointer. Does not deallocate the value.
1607 Note that val's type may not actually be a pointer; value_as_long
1608 handles all the cases. */
1609 CORE_ADDR
1610 value_as_address (struct value *val)
1611 {
1612 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1613
1614 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1615 whether we want this to be true eventually. */
1616 #if 0
1617 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1618 non-address (e.g. argument to "signal", "info break", etc.), or
1619 for pointers to char, in which the low bits *are* significant. */
1620 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
1621 #else
1622
1623 /* There are several targets (IA-64, PowerPC, and others) which
1624 don't represent pointers to functions as simply the address of
1625 the function's entry point. For example, on the IA-64, a
1626 function pointer points to a two-word descriptor, generated by
1627 the linker, which contains the function's entry point, and the
1628 value the IA-64 "global pointer" register should have --- to
1629 support position-independent code. The linker generates
1630 descriptors only for those functions whose addresses are taken.
1631
1632 On such targets, it's difficult for GDB to convert an arbitrary
1633 function address into a function pointer; it has to either find
1634 an existing descriptor for that function, or call malloc and
1635 build its own. On some targets, it is impossible for GDB to
1636 build a descriptor at all: the descriptor must contain a jump
1637 instruction; data memory cannot be executed; and code memory
1638 cannot be modified.
1639
1640 Upon entry to this function, if VAL is a value of type `function'
1641 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1642 value_address (val) is the address of the function. This is what
1643 you'll get if you evaluate an expression like `main'. The call
1644 to COERCE_ARRAY below actually does all the usual unary
1645 conversions, which includes converting values of type `function'
1646 to `pointer to function'. This is the challenging conversion
1647 discussed above. Then, `unpack_long' will convert that pointer
1648 back into an address.
1649
1650 So, suppose the user types `disassemble foo' on an architecture
1651 with a strange function pointer representation, on which GDB
1652 cannot build its own descriptors, and suppose further that `foo'
1653 has no linker-built descriptor. The address->pointer conversion
1654 will signal an error and prevent the command from running, even
1655 though the next step would have been to convert the pointer
1656 directly back into the same address.
1657
1658 The following shortcut avoids this whole mess. If VAL is a
1659 function, just return its address directly. */
1660 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1661 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1662 return value_address (val);
1663
1664 val = coerce_array (val);
1665
1666 /* Some architectures (e.g. Harvard), map instruction and data
1667 addresses onto a single large unified address space. For
1668 instance: An architecture may consider a large integer in the
1669 range 0x10000000 .. 0x1000ffff to already represent a data
1670 addresses (hence not need a pointer to address conversion) while
1671 a small integer would still need to be converted integer to
1672 pointer to address. Just assume such architectures handle all
1673 integer conversions in a single function. */
1674
1675 /* JimB writes:
1676
1677 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1678 must admonish GDB hackers to make sure its behavior matches the
1679 compiler's, whenever possible.
1680
1681 In general, I think GDB should evaluate expressions the same way
1682 the compiler does. When the user copies an expression out of
1683 their source code and hands it to a `print' command, they should
1684 get the same value the compiler would have computed. Any
1685 deviation from this rule can cause major confusion and annoyance,
1686 and needs to be justified carefully. In other words, GDB doesn't
1687 really have the freedom to do these conversions in clever and
1688 useful ways.
1689
1690 AndrewC pointed out that users aren't complaining about how GDB
1691 casts integers to pointers; they are complaining that they can't
1692 take an address from a disassembly listing and give it to `x/i'.
1693 This is certainly important.
1694
1695 Adding an architecture method like integer_to_address() certainly
1696 makes it possible for GDB to "get it right" in all circumstances
1697 --- the target has complete control over how things get done, so
1698 people can Do The Right Thing for their target without breaking
1699 anyone else. The standard doesn't specify how integers get
1700 converted to pointers; usually, the ABI doesn't either, but
1701 ABI-specific code is a more reasonable place to handle it. */
1702
1703 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1704 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1705 && gdbarch_integer_to_address_p (gdbarch))
1706 return gdbarch_integer_to_address (gdbarch, value_type (val),
1707 value_contents (val));
1708
1709 return unpack_long (value_type (val), value_contents (val));
1710 #endif
1711 }
1712 \f
1713 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1714 as a long, or as a double, assuming the raw data is described
1715 by type TYPE. Knows how to convert different sizes of values
1716 and can convert between fixed and floating point. We don't assume
1717 any alignment for the raw data. Return value is in host byte order.
1718
1719 If you want functions and arrays to be coerced to pointers, and
1720 references to be dereferenced, call value_as_long() instead.
1721
1722 C++: It is assumed that the front-end has taken care of
1723 all matters concerning pointers to members. A pointer
1724 to member which reaches here is considered to be equivalent
1725 to an INT (or some size). After all, it is only an offset. */
1726
1727 LONGEST
1728 unpack_long (struct type *type, const gdb_byte *valaddr)
1729 {
1730 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1731 enum type_code code = TYPE_CODE (type);
1732 int len = TYPE_LENGTH (type);
1733 int nosign = TYPE_UNSIGNED (type);
1734
1735 switch (code)
1736 {
1737 case TYPE_CODE_TYPEDEF:
1738 return unpack_long (check_typedef (type), valaddr);
1739 case TYPE_CODE_ENUM:
1740 case TYPE_CODE_FLAGS:
1741 case TYPE_CODE_BOOL:
1742 case TYPE_CODE_INT:
1743 case TYPE_CODE_CHAR:
1744 case TYPE_CODE_RANGE:
1745 case TYPE_CODE_MEMBERPTR:
1746 if (nosign)
1747 return extract_unsigned_integer (valaddr, len, byte_order);
1748 else
1749 return extract_signed_integer (valaddr, len, byte_order);
1750
1751 case TYPE_CODE_FLT:
1752 return extract_typed_floating (valaddr, type);
1753
1754 case TYPE_CODE_DECFLOAT:
1755 /* libdecnumber has a function to convert from decimal to integer, but
1756 it doesn't work when the decimal number has a fractional part. */
1757 return decimal_to_doublest (valaddr, len, byte_order);
1758
1759 case TYPE_CODE_PTR:
1760 case TYPE_CODE_REF:
1761 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1762 whether we want this to be true eventually. */
1763 return extract_typed_address (valaddr, type);
1764
1765 default:
1766 error (_("Value can't be converted to integer."));
1767 }
1768 return 0; /* Placate lint. */
1769 }
1770
1771 /* Return a double value from the specified type and address.
1772 INVP points to an int which is set to 0 for valid value,
1773 1 for invalid value (bad float format). In either case,
1774 the returned double is OK to use. Argument is in target
1775 format, result is in host format. */
1776
1777 DOUBLEST
1778 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1779 {
1780 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
1781 enum type_code code;
1782 int len;
1783 int nosign;
1784
1785 *invp = 0; /* Assume valid. */
1786 CHECK_TYPEDEF (type);
1787 code = TYPE_CODE (type);
1788 len = TYPE_LENGTH (type);
1789 nosign = TYPE_UNSIGNED (type);
1790 if (code == TYPE_CODE_FLT)
1791 {
1792 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1793 floating-point value was valid (using the macro
1794 INVALID_FLOAT). That test/macro have been removed.
1795
1796 It turns out that only the VAX defined this macro and then
1797 only in a non-portable way. Fixing the portability problem
1798 wouldn't help since the VAX floating-point code is also badly
1799 bit-rotten. The target needs to add definitions for the
1800 methods gdbarch_float_format and gdbarch_double_format - these
1801 exactly describe the target floating-point format. The
1802 problem here is that the corresponding floatformat_vax_f and
1803 floatformat_vax_d values these methods should be set to are
1804 also not defined either. Oops!
1805
1806 Hopefully someone will add both the missing floatformat
1807 definitions and the new cases for floatformat_is_valid (). */
1808
1809 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1810 {
1811 *invp = 1;
1812 return 0.0;
1813 }
1814
1815 return extract_typed_floating (valaddr, type);
1816 }
1817 else if (code == TYPE_CODE_DECFLOAT)
1818 return decimal_to_doublest (valaddr, len, byte_order);
1819 else if (nosign)
1820 {
1821 /* Unsigned -- be sure we compensate for signed LONGEST. */
1822 return (ULONGEST) unpack_long (type, valaddr);
1823 }
1824 else
1825 {
1826 /* Signed -- we are OK with unpack_long. */
1827 return unpack_long (type, valaddr);
1828 }
1829 }
1830
1831 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1832 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1833 We don't assume any alignment for the raw data. Return value is in
1834 host byte order.
1835
1836 If you want functions and arrays to be coerced to pointers, and
1837 references to be dereferenced, call value_as_address() instead.
1838
1839 C++: It is assumed that the front-end has taken care of
1840 all matters concerning pointers to members. A pointer
1841 to member which reaches here is considered to be equivalent
1842 to an INT (or some size). After all, it is only an offset. */
1843
1844 CORE_ADDR
1845 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1846 {
1847 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1848 whether we want this to be true eventually. */
1849 return unpack_long (type, valaddr);
1850 }
1851
1852 \f
1853 /* Get the value of the FIELDNO'th field (which must be static) of
1854 TYPE. Return NULL if the field doesn't exist or has been
1855 optimized out. */
1856
1857 struct value *
1858 value_static_field (struct type *type, int fieldno)
1859 {
1860 struct value *retval;
1861
1862 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
1863 {
1864 case FIELD_LOC_KIND_PHYSADDR:
1865 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1866 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1867 break;
1868 case FIELD_LOC_KIND_PHYSNAME:
1869 {
1870 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1871 /*TYPE_FIELD_NAME (type, fieldno);*/
1872 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1873
1874 if (sym == NULL)
1875 {
1876 /* With some compilers, e.g. HP aCC, static data members are
1877 reported as non-debuggable symbols */
1878 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1879 NULL, NULL);
1880
1881 if (!msym)
1882 return NULL;
1883 else
1884 {
1885 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1886 SYMBOL_VALUE_ADDRESS (msym));
1887 }
1888 }
1889 else
1890 {
1891 /* SYM should never have a SYMBOL_CLASS which will require
1892 read_var_value to use the FRAME parameter. */
1893 if (symbol_read_needs_frame (sym))
1894 warning (_("static field's value depends on the current "
1895 "frame - bad debug info?"));
1896 retval = read_var_value (sym, NULL);
1897 }
1898 if (retval && VALUE_LVAL (retval) == lval_memory)
1899 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1900 value_address (retval));
1901 break;
1902 }
1903 default:
1904 gdb_assert (0);
1905 }
1906
1907 return retval;
1908 }
1909
1910 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1911 You have to be careful here, since the size of the data area for the value
1912 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1913 than the old enclosing type, you have to allocate more space for the data.
1914 The return value is a pointer to the new version of this value structure. */
1915
1916 struct value *
1917 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1918 {
1919 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1920 val->contents =
1921 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1922
1923 val->enclosing_type = new_encl_type;
1924 return val;
1925 }
1926
1927 /* Given a value ARG1 (offset by OFFSET bytes)
1928 of a struct or union type ARG_TYPE,
1929 extract and return the value of one of its (non-static) fields.
1930 FIELDNO says which field. */
1931
1932 struct value *
1933 value_primitive_field (struct value *arg1, int offset,
1934 int fieldno, struct type *arg_type)
1935 {
1936 struct value *v;
1937 struct type *type;
1938
1939 CHECK_TYPEDEF (arg_type);
1940 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1941
1942 /* Call check_typedef on our type to make sure that, if TYPE
1943 is a TYPE_CODE_TYPEDEF, its length is set to the length
1944 of the target type instead of zero. However, we do not
1945 replace the typedef type by the target type, because we want
1946 to keep the typedef in order to be able to print the type
1947 description correctly. */
1948 check_typedef (type);
1949
1950 /* Handle packed fields */
1951
1952 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1953 {
1954 /* Create a new value for the bitfield, with bitpos and bitsize
1955 set. If possible, arrange offset and bitpos so that we can
1956 do a single aligned read of the size of the containing type.
1957 Otherwise, adjust offset to the byte containing the first
1958 bit. Assume that the address, offset, and embedded offset
1959 are sufficiently aligned. */
1960 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1961 int container_bitsize = TYPE_LENGTH (type) * 8;
1962
1963 v = allocate_value_lazy (type);
1964 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1965 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1966 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1967 v->bitpos = bitpos % container_bitsize;
1968 else
1969 v->bitpos = bitpos % 8;
1970 v->offset = value_embedded_offset (arg1)
1971 + (bitpos - v->bitpos) / 8;
1972 v->parent = arg1;
1973 value_incref (v->parent);
1974 if (!value_lazy (arg1))
1975 value_fetch_lazy (v);
1976 }
1977 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1978 {
1979 /* This field is actually a base subobject, so preserve the
1980 entire object's contents for later references to virtual
1981 bases, etc. */
1982
1983 /* Lazy register values with offsets are not supported. */
1984 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1985 value_fetch_lazy (arg1);
1986
1987 if (value_lazy (arg1))
1988 v = allocate_value_lazy (value_enclosing_type (arg1));
1989 else
1990 {
1991 v = allocate_value (value_enclosing_type (arg1));
1992 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1993 TYPE_LENGTH (value_enclosing_type (arg1)));
1994 }
1995 v->type = type;
1996 v->offset = value_offset (arg1);
1997 v->embedded_offset = (offset + value_embedded_offset (arg1)
1998 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1999 }
2000 else
2001 {
2002 /* Plain old data member */
2003 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2004
2005 /* Lazy register values with offsets are not supported. */
2006 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2007 value_fetch_lazy (arg1);
2008
2009 if (value_lazy (arg1))
2010 v = allocate_value_lazy (type);
2011 else
2012 {
2013 v = allocate_value (type);
2014 memcpy (value_contents_raw (v),
2015 value_contents_raw (arg1) + offset,
2016 TYPE_LENGTH (type));
2017 }
2018 v->offset = (value_offset (arg1) + offset
2019 + value_embedded_offset (arg1));
2020 }
2021 set_value_component_location (v, arg1);
2022 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
2023 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
2024 return v;
2025 }
2026
2027 /* Given a value ARG1 of a struct or union type,
2028 extract and return the value of one of its (non-static) fields.
2029 FIELDNO says which field. */
2030
2031 struct value *
2032 value_field (struct value *arg1, int fieldno)
2033 {
2034 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
2035 }
2036
2037 /* Return a non-virtual function as a value.
2038 F is the list of member functions which contains the desired method.
2039 J is an index into F which provides the desired method.
2040
2041 We only use the symbol for its address, so be happy with either a
2042 full symbol or a minimal symbol.
2043 */
2044
2045 struct value *
2046 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
2047 int offset)
2048 {
2049 struct value *v;
2050 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
2051 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
2052 struct symbol *sym;
2053 struct minimal_symbol *msym;
2054
2055 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
2056 if (sym != NULL)
2057 {
2058 msym = NULL;
2059 }
2060 else
2061 {
2062 gdb_assert (sym == NULL);
2063 msym = lookup_minimal_symbol (physname, NULL, NULL);
2064 if (msym == NULL)
2065 return NULL;
2066 }
2067
2068 v = allocate_value (ftype);
2069 if (sym)
2070 {
2071 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
2072 }
2073 else
2074 {
2075 /* The minimal symbol might point to a function descriptor;
2076 resolve it to the actual code address instead. */
2077 struct objfile *objfile = msymbol_objfile (msym);
2078 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2079
2080 set_value_address (v,
2081 gdbarch_convert_from_func_ptr_addr
2082 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
2083 }
2084
2085 if (arg1p)
2086 {
2087 if (type != value_type (*arg1p))
2088 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2089 value_addr (*arg1p)));
2090
2091 /* Move the `this' pointer according to the offset.
2092 VALUE_OFFSET (*arg1p) += offset;
2093 */
2094 }
2095
2096 return v;
2097 }
2098
2099 \f
2100 /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2101 object at VALADDR. The bitfield starts at BITPOS bits and contains
2102 BITSIZE bits.
2103
2104 Extracting bits depends on endianness of the machine. Compute the
2105 number of least significant bits to discard. For big endian machines,
2106 we compute the total number of bits in the anonymous object, subtract
2107 off the bit count from the MSB of the object to the MSB of the
2108 bitfield, then the size of the bitfield, which leaves the LSB discard
2109 count. For little endian machines, the discard count is simply the
2110 number of bits from the LSB of the anonymous object to the LSB of the
2111 bitfield.
2112
2113 If the field is signed, we also do sign extension. */
2114
2115 LONGEST
2116 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2117 int bitpos, int bitsize)
2118 {
2119 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
2120 ULONGEST val;
2121 ULONGEST valmask;
2122 int lsbcount;
2123 int bytes_read;
2124
2125 /* Read the minimum number of bytes required; there may not be
2126 enough bytes to read an entire ULONGEST. */
2127 CHECK_TYPEDEF (field_type);
2128 if (bitsize)
2129 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2130 else
2131 bytes_read = TYPE_LENGTH (field_type);
2132
2133 val = extract_unsigned_integer (valaddr + bitpos / 8,
2134 bytes_read, byte_order);
2135
2136 /* Extract bits. See comment above. */
2137
2138 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
2139 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
2140 else
2141 lsbcount = (bitpos % 8);
2142 val >>= lsbcount;
2143
2144 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2145 If the field is signed, and is negative, then sign extend. */
2146
2147 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2148 {
2149 valmask = (((ULONGEST) 1) << bitsize) - 1;
2150 val &= valmask;
2151 if (!TYPE_UNSIGNED (field_type))
2152 {
2153 if (val & (valmask ^ (valmask >> 1)))
2154 {
2155 val |= ~valmask;
2156 }
2157 }
2158 }
2159 return (val);
2160 }
2161
2162 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2163 VALADDR. See unpack_bits_as_long for more details. */
2164
2165 LONGEST
2166 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2167 {
2168 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2169 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2170 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2171
2172 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2173 }
2174
2175 /* Modify the value of a bitfield. ADDR points to a block of memory in
2176 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2177 is the desired value of the field, in host byte order. BITPOS and BITSIZE
2178 indicate which bits (in target bit order) comprise the bitfield.
2179 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2180 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
2181
2182 void
2183 modify_field (struct type *type, gdb_byte *addr,
2184 LONGEST fieldval, int bitpos, int bitsize)
2185 {
2186 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2187 ULONGEST oword;
2188 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
2189
2190 /* If a negative fieldval fits in the field in question, chop
2191 off the sign extension bits. */
2192 if ((~fieldval & ~(mask >> 1)) == 0)
2193 fieldval &= mask;
2194
2195 /* Warn if value is too big to fit in the field in question. */
2196 if (0 != (fieldval & ~mask))
2197 {
2198 /* FIXME: would like to include fieldval in the message, but
2199 we don't have a sprintf_longest. */
2200 warning (_("Value does not fit in %d bits."), bitsize);
2201
2202 /* Truncate it, otherwise adjoining fields may be corrupted. */
2203 fieldval &= mask;
2204 }
2205
2206 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
2207
2208 /* Shifting for bit field depends on endianness of the target machine. */
2209 if (gdbarch_bits_big_endian (get_type_arch (type)))
2210 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2211
2212 oword &= ~(mask << bitpos);
2213 oword |= fieldval << bitpos;
2214
2215 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
2216 }
2217 \f
2218 /* Pack NUM into BUF using a target format of TYPE. */
2219
2220 void
2221 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
2222 {
2223 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
2224 int len;
2225
2226 type = check_typedef (type);
2227 len = TYPE_LENGTH (type);
2228
2229 switch (TYPE_CODE (type))
2230 {
2231 case TYPE_CODE_INT:
2232 case TYPE_CODE_CHAR:
2233 case TYPE_CODE_ENUM:
2234 case TYPE_CODE_FLAGS:
2235 case TYPE_CODE_BOOL:
2236 case TYPE_CODE_RANGE:
2237 case TYPE_CODE_MEMBERPTR:
2238 store_signed_integer (buf, len, byte_order, num);
2239 break;
2240
2241 case TYPE_CODE_REF:
2242 case TYPE_CODE_PTR:
2243 store_typed_address (buf, type, (CORE_ADDR) num);
2244 break;
2245
2246 default:
2247 error (_("Unexpected type (%d) encountered for integer constant."),
2248 TYPE_CODE (type));
2249 }
2250 }
2251
2252
2253 /* Convert C numbers into newly allocated values. */
2254
2255 struct value *
2256 value_from_longest (struct type *type, LONGEST num)
2257 {
2258 struct value *val = allocate_value (type);
2259
2260 pack_long (value_contents_raw (val), type, num);
2261 return val;
2262 }
2263
2264
2265 /* Create a value representing a pointer of type TYPE to the address
2266 ADDR. */
2267 struct value *
2268 value_from_pointer (struct type *type, CORE_ADDR addr)
2269 {
2270 struct value *val = allocate_value (type);
2271
2272 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
2273 return val;
2274 }
2275
2276
2277 /* Create a value of type TYPE whose contents come from VALADDR, if it
2278 is non-null, and whose memory address (in the inferior) is
2279 ADDRESS. */
2280
2281 struct value *
2282 value_from_contents_and_address (struct type *type,
2283 const gdb_byte *valaddr,
2284 CORE_ADDR address)
2285 {
2286 struct value *v = allocate_value (type);
2287
2288 if (valaddr == NULL)
2289 set_value_lazy (v, 1);
2290 else
2291 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2292 set_value_address (v, address);
2293 VALUE_LVAL (v) = lval_memory;
2294 return v;
2295 }
2296
2297 struct value *
2298 value_from_double (struct type *type, DOUBLEST num)
2299 {
2300 struct value *val = allocate_value (type);
2301 struct type *base_type = check_typedef (type);
2302 enum type_code code = TYPE_CODE (base_type);
2303
2304 if (code == TYPE_CODE_FLT)
2305 {
2306 store_typed_floating (value_contents_raw (val), base_type, num);
2307 }
2308 else
2309 error (_("Unexpected type encountered for floating constant."));
2310
2311 return val;
2312 }
2313
2314 struct value *
2315 value_from_decfloat (struct type *type, const gdb_byte *dec)
2316 {
2317 struct value *val = allocate_value (type);
2318
2319 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
2320 return val;
2321 }
2322
2323 struct value *
2324 coerce_ref (struct value *arg)
2325 {
2326 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
2327
2328 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2329 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
2330 unpack_pointer (value_type (arg),
2331 value_contents (arg)));
2332 return arg;
2333 }
2334
2335 struct value *
2336 coerce_array (struct value *arg)
2337 {
2338 struct type *type;
2339
2340 arg = coerce_ref (arg);
2341 type = check_typedef (value_type (arg));
2342
2343 switch (TYPE_CODE (type))
2344 {
2345 case TYPE_CODE_ARRAY:
2346 if (current_language->c_style_arrays)
2347 arg = value_coerce_array (arg);
2348 break;
2349 case TYPE_CODE_FUNC:
2350 arg = value_coerce_function (arg);
2351 break;
2352 }
2353 return arg;
2354 }
2355 \f
2356
2357 /* Return true if the function returning the specified type is using
2358 the convention of returning structures in memory (passing in the
2359 address as a hidden first parameter). */
2360
2361 int
2362 using_struct_return (struct gdbarch *gdbarch,
2363 struct type *func_type, struct type *value_type)
2364 {
2365 enum type_code code = TYPE_CODE (value_type);
2366
2367 if (code == TYPE_CODE_ERROR)
2368 error (_("Function return type unknown."));
2369
2370 if (code == TYPE_CODE_VOID)
2371 /* A void return value is never in memory. See also corresponding
2372 code in "print_return_value". */
2373 return 0;
2374
2375 /* Probe the architecture for the return-value convention. */
2376 return (gdbarch_return_value (gdbarch, func_type, value_type,
2377 NULL, NULL, NULL)
2378 != RETURN_VALUE_REGISTER_CONVENTION);
2379 }
2380
2381 /* Set the initialized field in a value struct. */
2382
2383 void
2384 set_value_initialized (struct value *val, int status)
2385 {
2386 val->initialized = status;
2387 }
2388
2389 /* Return the initialized field in a value struct. */
2390
2391 int
2392 value_initialized (struct value *val)
2393 {
2394 return val->initialized;
2395 }
2396
2397 void
2398 _initialize_values (void)
2399 {
2400 add_cmd ("convenience", no_class, show_convenience, _("\
2401 Debugger convenience (\"$foo\") variables.\n\
2402 These variables are created when you assign them values;\n\
2403 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2404 \n\
2405 A few convenience variables are given values automatically:\n\
2406 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2407 \"$__\" holds the contents of the last address examined with \"x\"."),
2408 &showlist);
2409
2410 add_cmd ("values", no_class, show_values,
2411 _("Elements of value history around item number IDX (or last ten)."),
2412 &showlist);
2413
2414 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2415 Initialize a convenience variable if necessary.\n\
2416 init-if-undefined VARIABLE = EXPRESSION\n\
2417 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2418 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2419 VARIABLE is already initialized."));
2420
2421 add_prefix_cmd ("function", no_class, function_command, _("\
2422 Placeholder command for showing help on convenience functions."),
2423 &functionlist, "function ", 0, &cmdlist);
2424 }
This page took 0.075821 seconds and 5 git commands to generate.