gdb: Convert language_data::string_lower_bound to a method
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "command.h"
27 #include "gdbcmd.h"
28 #include "target.h"
29 #include "language.h"
30 #include "demangle.h"
31 #include "regcache.h"
32 #include "block.h"
33 #include "target-float.h"
34 #include "objfiles.h"
35 #include "valprint.h"
36 #include "cli/cli-decode.h"
37 #include "extension.h"
38 #include <ctype.h>
39 #include "tracepoint.h"
40 #include "cp-abi.h"
41 #include "user-regs.h"
42 #include <algorithm>
43 #include "completer.h"
44 #include "gdbsupport/selftest.h"
45 #include "gdbsupport/array-view.h"
46 #include "cli/cli-style.h"
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65 struct range
66 {
67 /* Lowest offset in the range. */
68 LONGEST offset;
69
70 /* Length of the range. */
71 LONGEST length;
72
73 /* Returns true if THIS is strictly less than OTHER, useful for
74 searching. We keep ranges sorted by offset and coalesce
75 overlapping and contiguous ranges, so this just compares the
76 starting offset. */
77
78 bool operator< (const range &other) const
79 {
80 return offset < other.offset;
81 }
82
83 /* Returns true if THIS is equal to OTHER. */
84 bool operator== (const range &other) const
85 {
86 return offset == other.offset && length == other.length;
87 }
88 };
89
90 /* Returns true if the ranges defined by [offset1, offset1+len1) and
91 [offset2, offset2+len2) overlap. */
92
93 static int
94 ranges_overlap (LONGEST offset1, LONGEST len1,
95 LONGEST offset2, LONGEST len2)
96 {
97 ULONGEST h, l;
98
99 l = std::max (offset1, offset2);
100 h = std::min (offset1 + len1, offset2 + len2);
101 return (l < h);
102 }
103
104 /* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107 static int
108 ranges_contain (const std::vector<range> &ranges, LONGEST offset,
109 LONGEST length)
110 {
111 range what;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147
148 auto i = std::lower_bound (ranges.begin (), ranges.end (), what);
149
150 if (i > ranges.begin ())
151 {
152 const struct range &bef = *(i - 1);
153
154 if (ranges_overlap (bef.offset, bef.length, offset, length))
155 return 1;
156 }
157
158 if (i < ranges.end ())
159 {
160 const struct range &r = *i;
161
162 if (ranges_overlap (r.offset, r.length, offset, length))
163 return 1;
164 }
165
166 return 0;
167 }
168
169 static struct cmd_list_element *functionlist;
170
171 /* Note that the fields in this structure are arranged to save a bit
172 of memory. */
173
174 struct value
175 {
176 explicit value (struct type *type_)
177 : modifiable (1),
178 lazy (1),
179 initialized (1),
180 stack (0),
181 type (type_),
182 enclosing_type (type_)
183 {
184 }
185
186 ~value ()
187 {
188 if (VALUE_LVAL (this) == lval_computed)
189 {
190 const struct lval_funcs *funcs = location.computed.funcs;
191
192 if (funcs->free_closure)
193 funcs->free_closure (this);
194 }
195 else if (VALUE_LVAL (this) == lval_xcallable)
196 delete location.xm_worker;
197 }
198
199 DISABLE_COPY_AND_ASSIGN (value);
200
201 /* Type of value; either not an lval, or one of the various
202 different possible kinds of lval. */
203 enum lval_type lval = not_lval;
204
205 /* Is it modifiable? Only relevant if lval != not_lval. */
206 unsigned int modifiable : 1;
207
208 /* If zero, contents of this value are in the contents field. If
209 nonzero, contents are in inferior. If the lval field is lval_memory,
210 the contents are in inferior memory at location.address plus offset.
211 The lval field may also be lval_register.
212
213 WARNING: This field is used by the code which handles watchpoints
214 (see breakpoint.c) to decide whether a particular value can be
215 watched by hardware watchpoints. If the lazy flag is set for
216 some member of a value chain, it is assumed that this member of
217 the chain doesn't need to be watched as part of watching the
218 value itself. This is how GDB avoids watching the entire struct
219 or array when the user wants to watch a single struct member or
220 array element. If you ever change the way lazy flag is set and
221 reset, be sure to consider this use as well! */
222 unsigned int lazy : 1;
223
224 /* If value is a variable, is it initialized or not. */
225 unsigned int initialized : 1;
226
227 /* If value is from the stack. If this is set, read_stack will be
228 used instead of read_memory to enable extra caching. */
229 unsigned int stack : 1;
230
231 /* Location of value (if lval). */
232 union
233 {
234 /* If lval == lval_memory, this is the address in the inferior */
235 CORE_ADDR address;
236
237 /*If lval == lval_register, the value is from a register. */
238 struct
239 {
240 /* Register number. */
241 int regnum;
242 /* Frame ID of "next" frame to which a register value is relative.
243 If the register value is found relative to frame F, then the
244 frame id of F->next will be stored in next_frame_id. */
245 struct frame_id next_frame_id;
246 } reg;
247
248 /* Pointer to internal variable. */
249 struct internalvar *internalvar;
250
251 /* Pointer to xmethod worker. */
252 struct xmethod_worker *xm_worker;
253
254 /* If lval == lval_computed, this is a set of function pointers
255 to use to access and describe the value, and a closure pointer
256 for them to use. */
257 struct
258 {
259 /* Functions to call. */
260 const struct lval_funcs *funcs;
261
262 /* Closure for those functions to use. */
263 void *closure;
264 } computed;
265 } location {};
266
267 /* Describes offset of a value within lval of a structure in target
268 addressable memory units. Note also the member embedded_offset
269 below. */
270 LONGEST offset = 0;
271
272 /* Only used for bitfields; number of bits contained in them. */
273 LONGEST bitsize = 0;
274
275 /* Only used for bitfields; position of start of field. For
276 little-endian targets, it is the position of the LSB. For
277 big-endian targets, it is the position of the MSB. */
278 LONGEST bitpos = 0;
279
280 /* The number of references to this value. When a value is created,
281 the value chain holds a reference, so REFERENCE_COUNT is 1. If
282 release_value is called, this value is removed from the chain but
283 the caller of release_value now has a reference to this value.
284 The caller must arrange for a call to value_free later. */
285 int reference_count = 1;
286
287 /* Only used for bitfields; the containing value. This allows a
288 single read from the target when displaying multiple
289 bitfields. */
290 value_ref_ptr parent;
291
292 /* Type of the value. */
293 struct type *type;
294
295 /* If a value represents a C++ object, then the `type' field gives
296 the object's compile-time type. If the object actually belongs
297 to some class derived from `type', perhaps with other base
298 classes and additional members, then `type' is just a subobject
299 of the real thing, and the full object is probably larger than
300 `type' would suggest.
301
302 If `type' is a dynamic class (i.e. one with a vtable), then GDB
303 can actually determine the object's run-time type by looking at
304 the run-time type information in the vtable. When this
305 information is available, we may elect to read in the entire
306 object, for several reasons:
307
308 - When printing the value, the user would probably rather see the
309 full object, not just the limited portion apparent from the
310 compile-time type.
311
312 - If `type' has virtual base classes, then even printing `type'
313 alone may require reaching outside the `type' portion of the
314 object to wherever the virtual base class has been stored.
315
316 When we store the entire object, `enclosing_type' is the run-time
317 type -- the complete object -- and `embedded_offset' is the
318 offset of `type' within that larger type, in target addressable memory
319 units. The value_contents() macro takes `embedded_offset' into account,
320 so most GDB code continues to see the `type' portion of the value, just
321 as the inferior would.
322
323 If `type' is a pointer to an object, then `enclosing_type' is a
324 pointer to the object's run-time type, and `pointed_to_offset' is
325 the offset in target addressable memory units from the full object
326 to the pointed-to object -- that is, the value `embedded_offset' would
327 have if we followed the pointer and fetched the complete object.
328 (I don't really see the point. Why not just determine the
329 run-time type when you indirect, and avoid the special case? The
330 contents don't matter until you indirect anyway.)
331
332 If we're not doing anything fancy, `enclosing_type' is equal to
333 `type', and `embedded_offset' is zero, so everything works
334 normally. */
335 struct type *enclosing_type;
336 LONGEST embedded_offset = 0;
337 LONGEST pointed_to_offset = 0;
338
339 /* Actual contents of the value. Target byte-order. NULL or not
340 valid if lazy is nonzero. */
341 gdb::unique_xmalloc_ptr<gdb_byte> contents;
342
343 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
344 rather than available, since the common and default case is for a
345 value to be available. This is filled in at value read time.
346 The unavailable ranges are tracked in bits. Note that a contents
347 bit that has been optimized out doesn't really exist in the
348 program, so it can't be marked unavailable either. */
349 std::vector<range> unavailable;
350
351 /* Likewise, but for optimized out contents (a chunk of the value of
352 a variable that does not actually exist in the program). If LVAL
353 is lval_register, this is a register ($pc, $sp, etc., never a
354 program variable) that has not been saved in the frame. Not
355 saved registers and optimized-out program variables values are
356 treated pretty much the same, except not-saved registers have a
357 different string representation and related error strings. */
358 std::vector<range> optimized_out;
359 };
360
361 /* See value.h. */
362
363 struct gdbarch *
364 get_value_arch (const struct value *value)
365 {
366 return get_type_arch (value_type (value));
367 }
368
369 int
370 value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
371 {
372 gdb_assert (!value->lazy);
373
374 return !ranges_contain (value->unavailable, offset, length);
375 }
376
377 int
378 value_bytes_available (const struct value *value,
379 LONGEST offset, LONGEST length)
380 {
381 return value_bits_available (value,
382 offset * TARGET_CHAR_BIT,
383 length * TARGET_CHAR_BIT);
384 }
385
386 int
387 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
388 {
389 gdb_assert (!value->lazy);
390
391 return ranges_contain (value->optimized_out, bit_offset, bit_length);
392 }
393
394 int
395 value_entirely_available (struct value *value)
396 {
397 /* We can only tell whether the whole value is available when we try
398 to read it. */
399 if (value->lazy)
400 value_fetch_lazy (value);
401
402 if (value->unavailable.empty ())
403 return 1;
404 return 0;
405 }
406
407 /* Returns true if VALUE is entirely covered by RANGES. If the value
408 is lazy, it'll be read now. Note that RANGE is a pointer to
409 pointer because reading the value might change *RANGE. */
410
411 static int
412 value_entirely_covered_by_range_vector (struct value *value,
413 const std::vector<range> &ranges)
414 {
415 /* We can only tell whether the whole value is optimized out /
416 unavailable when we try to read it. */
417 if (value->lazy)
418 value_fetch_lazy (value);
419
420 if (ranges.size () == 1)
421 {
422 const struct range &t = ranges[0];
423
424 if (t.offset == 0
425 && t.length == (TARGET_CHAR_BIT
426 * TYPE_LENGTH (value_enclosing_type (value))))
427 return 1;
428 }
429
430 return 0;
431 }
432
433 int
434 value_entirely_unavailable (struct value *value)
435 {
436 return value_entirely_covered_by_range_vector (value, value->unavailable);
437 }
438
439 int
440 value_entirely_optimized_out (struct value *value)
441 {
442 return value_entirely_covered_by_range_vector (value, value->optimized_out);
443 }
444
445 /* Insert into the vector pointed to by VECTORP the bit range starting of
446 OFFSET bits, and extending for the next LENGTH bits. */
447
448 static void
449 insert_into_bit_range_vector (std::vector<range> *vectorp,
450 LONGEST offset, LONGEST length)
451 {
452 range newr;
453
454 /* Insert the range sorted. If there's overlap or the new range
455 would be contiguous with an existing range, merge. */
456
457 newr.offset = offset;
458 newr.length = length;
459
460 /* Do a binary search for the position the given range would be
461 inserted if we only considered the starting OFFSET of ranges.
462 Call that position I. Since we also have LENGTH to care for
463 (this is a range afterall), we need to check if the _previous_
464 range overlaps the I range. E.g., calling R the new range:
465
466 #1 - overlaps with previous
467
468 R
469 |-...-|
470 |---| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 In the case #1 above, the binary search would return `I=1',
476 meaning, this OFFSET should be inserted at position 1, and the
477 current position 1 should be pushed further (and become 2). But,
478 note that `0' overlaps with R, so we want to merge them.
479
480 A similar consideration needs to be taken if the new range would
481 be contiguous with the previous range:
482
483 #2 - contiguous with previous
484
485 R
486 |-...-|
487 |--| |---| |------| ... |--|
488 0 1 2 N
489
490 I=1
491
492 If there's no overlap with the previous range, as in:
493
494 #3 - not overlapping and not contiguous
495
496 R
497 |-...-|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=1
502
503 or if I is 0:
504
505 #4 - R is the range with lowest offset
506
507 R
508 |-...-|
509 |--| |---| |------| ... |--|
510 0 1 2 N
511
512 I=0
513
514 ... we just push the new range to I.
515
516 All the 4 cases above need to consider that the new range may
517 also overlap several of the ranges that follow, or that R may be
518 contiguous with the following range, and merge. E.g.,
519
520 #5 - overlapping following ranges
521
522 R
523 |------------------------|
524 |--| |---| |------| ... |--|
525 0 1 2 N
526
527 I=0
528
529 or:
530
531 R
532 |-------|
533 |--| |---| |------| ... |--|
534 0 1 2 N
535
536 I=1
537
538 */
539
540 auto i = std::lower_bound (vectorp->begin (), vectorp->end (), newr);
541 if (i > vectorp->begin ())
542 {
543 struct range &bef = *(i - 1);
544
545 if (ranges_overlap (bef.offset, bef.length, offset, length))
546 {
547 /* #1 */
548 ULONGEST l = std::min (bef.offset, offset);
549 ULONGEST h = std::max (bef.offset + bef.length, offset + length);
550
551 bef.offset = l;
552 bef.length = h - l;
553 i--;
554 }
555 else if (offset == bef.offset + bef.length)
556 {
557 /* #2 */
558 bef.length += length;
559 i--;
560 }
561 else
562 {
563 /* #3 */
564 i = vectorp->insert (i, newr);
565 }
566 }
567 else
568 {
569 /* #4 */
570 i = vectorp->insert (i, newr);
571 }
572
573 /* Check whether the ranges following the one we've just added or
574 touched can be folded in (#5 above). */
575 if (i != vectorp->end () && i + 1 < vectorp->end ())
576 {
577 int removed = 0;
578 auto next = i + 1;
579
580 /* Get the range we just touched. */
581 struct range &t = *i;
582 removed = 0;
583
584 i = next;
585 for (; i < vectorp->end (); i++)
586 {
587 struct range &r = *i;
588 if (r.offset <= t.offset + t.length)
589 {
590 ULONGEST l, h;
591
592 l = std::min (t.offset, r.offset);
593 h = std::max (t.offset + t.length, r.offset + r.length);
594
595 t.offset = l;
596 t.length = h - l;
597
598 removed++;
599 }
600 else
601 {
602 /* If we couldn't merge this one, we won't be able to
603 merge following ones either, since the ranges are
604 always sorted by OFFSET. */
605 break;
606 }
607 }
608
609 if (removed != 0)
610 vectorp->erase (next, next + removed);
611 }
612 }
613
614 void
615 mark_value_bits_unavailable (struct value *value,
616 LONGEST offset, LONGEST length)
617 {
618 insert_into_bit_range_vector (&value->unavailable, offset, length);
619 }
620
621 void
622 mark_value_bytes_unavailable (struct value *value,
623 LONGEST offset, LONGEST length)
624 {
625 mark_value_bits_unavailable (value,
626 offset * TARGET_CHAR_BIT,
627 length * TARGET_CHAR_BIT);
628 }
629
630 /* Find the first range in RANGES that overlaps the range defined by
631 OFFSET and LENGTH, starting at element POS in the RANGES vector,
632 Returns the index into RANGES where such overlapping range was
633 found, or -1 if none was found. */
634
635 static int
636 find_first_range_overlap (const std::vector<range> *ranges, int pos,
637 LONGEST offset, LONGEST length)
638 {
639 int i;
640
641 for (i = pos; i < ranges->size (); i++)
642 {
643 const range &r = (*ranges)[i];
644 if (ranges_overlap (r.offset, r.length, offset, length))
645 return i;
646 }
647
648 return -1;
649 }
650
651 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
652 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
653 return non-zero.
654
655 It must always be the case that:
656 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
657
658 It is assumed that memory can be accessed from:
659 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
660 to:
661 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
662 / TARGET_CHAR_BIT) */
663 static int
664 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
665 const gdb_byte *ptr2, size_t offset2_bits,
666 size_t length_bits)
667 {
668 gdb_assert (offset1_bits % TARGET_CHAR_BIT
669 == offset2_bits % TARGET_CHAR_BIT);
670
671 if (offset1_bits % TARGET_CHAR_BIT != 0)
672 {
673 size_t bits;
674 gdb_byte mask, b1, b2;
675
676 /* The offset from the base pointers PTR1 and PTR2 is not a complete
677 number of bytes. A number of bits up to either the next exact
678 byte boundary, or LENGTH_BITS (which ever is sooner) will be
679 compared. */
680 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
681 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
682 mask = (1 << bits) - 1;
683
684 if (length_bits < bits)
685 {
686 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
687 bits = length_bits;
688 }
689
690 /* Now load the two bytes and mask off the bits we care about. */
691 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
692 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
693
694 if (b1 != b2)
695 return 1;
696
697 /* Now update the length and offsets to take account of the bits
698 we've just compared. */
699 length_bits -= bits;
700 offset1_bits += bits;
701 offset2_bits += bits;
702 }
703
704 if (length_bits % TARGET_CHAR_BIT != 0)
705 {
706 size_t bits;
707 size_t o1, o2;
708 gdb_byte mask, b1, b2;
709
710 /* The length is not an exact number of bytes. After the previous
711 IF.. block then the offsets are byte aligned, or the
712 length is zero (in which case this code is not reached). Compare
713 a number of bits at the end of the region, starting from an exact
714 byte boundary. */
715 bits = length_bits % TARGET_CHAR_BIT;
716 o1 = offset1_bits + length_bits - bits;
717 o2 = offset2_bits + length_bits - bits;
718
719 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
720 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
721
722 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
723 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
724
725 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
726 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
727
728 if (b1 != b2)
729 return 1;
730
731 length_bits -= bits;
732 }
733
734 if (length_bits > 0)
735 {
736 /* We've now taken care of any stray "bits" at the start, or end of
737 the region to compare, the remainder can be covered with a simple
738 memcmp. */
739 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
740 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
741 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
742
743 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
744 ptr2 + offset2_bits / TARGET_CHAR_BIT,
745 length_bits / TARGET_CHAR_BIT);
746 }
747
748 /* Length is zero, regions match. */
749 return 0;
750 }
751
752 /* Helper struct for find_first_range_overlap_and_match and
753 value_contents_bits_eq. Keep track of which slot of a given ranges
754 vector have we last looked at. */
755
756 struct ranges_and_idx
757 {
758 /* The ranges. */
759 const std::vector<range> *ranges;
760
761 /* The range we've last found in RANGES. Given ranges are sorted,
762 we can start the next lookup here. */
763 int idx;
764 };
765
766 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of
767 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
768 ranges starting at OFFSET2 bits. Return true if the ranges match
769 and fill in *L and *H with the overlapping window relative to
770 (both) OFFSET1 or OFFSET2. */
771
772 static int
773 find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
774 struct ranges_and_idx *rp2,
775 LONGEST offset1, LONGEST offset2,
776 LONGEST length, ULONGEST *l, ULONGEST *h)
777 {
778 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
779 offset1, length);
780 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
781 offset2, length);
782
783 if (rp1->idx == -1 && rp2->idx == -1)
784 {
785 *l = length;
786 *h = length;
787 return 1;
788 }
789 else if (rp1->idx == -1 || rp2->idx == -1)
790 return 0;
791 else
792 {
793 const range *r1, *r2;
794 ULONGEST l1, h1;
795 ULONGEST l2, h2;
796
797 r1 = &(*rp1->ranges)[rp1->idx];
798 r2 = &(*rp2->ranges)[rp2->idx];
799
800 /* Get the unavailable windows intersected by the incoming
801 ranges. The first and last ranges that overlap the argument
802 range may be wider than said incoming arguments ranges. */
803 l1 = std::max (offset1, r1->offset);
804 h1 = std::min (offset1 + length, r1->offset + r1->length);
805
806 l2 = std::max (offset2, r2->offset);
807 h2 = std::min (offset2 + length, offset2 + r2->length);
808
809 /* Make them relative to the respective start offsets, so we can
810 compare them for equality. */
811 l1 -= offset1;
812 h1 -= offset1;
813
814 l2 -= offset2;
815 h2 -= offset2;
816
817 /* Different ranges, no match. */
818 if (l1 != l2 || h1 != h2)
819 return 0;
820
821 *h = h1;
822 *l = l1;
823 return 1;
824 }
825 }
826
827 /* Helper function for value_contents_eq. The only difference is that
828 this function is bit rather than byte based.
829
830 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
831 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
832 Return true if the available bits match. */
833
834 static bool
835 value_contents_bits_eq (const struct value *val1, int offset1,
836 const struct value *val2, int offset2,
837 int length)
838 {
839 /* Each array element corresponds to a ranges source (unavailable,
840 optimized out). '1' is for VAL1, '2' for VAL2. */
841 struct ranges_and_idx rp1[2], rp2[2];
842
843 /* See function description in value.h. */
844 gdb_assert (!val1->lazy && !val2->lazy);
845
846 /* We shouldn't be trying to compare past the end of the values. */
847 gdb_assert (offset1 + length
848 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
849 gdb_assert (offset2 + length
850 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
851
852 memset (&rp1, 0, sizeof (rp1));
853 memset (&rp2, 0, sizeof (rp2));
854 rp1[0].ranges = &val1->unavailable;
855 rp2[0].ranges = &val2->unavailable;
856 rp1[1].ranges = &val1->optimized_out;
857 rp2[1].ranges = &val2->optimized_out;
858
859 while (length > 0)
860 {
861 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
862 int i;
863
864 for (i = 0; i < 2; i++)
865 {
866 ULONGEST l_tmp, h_tmp;
867
868 /* The contents only match equal if the invalid/unavailable
869 contents ranges match as well. */
870 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
871 offset1, offset2, length,
872 &l_tmp, &h_tmp))
873 return false;
874
875 /* We're interested in the lowest/first range found. */
876 if (i == 0 || l_tmp < l)
877 {
878 l = l_tmp;
879 h = h_tmp;
880 }
881 }
882
883 /* Compare the available/valid contents. */
884 if (memcmp_with_bit_offsets (val1->contents.get (), offset1,
885 val2->contents.get (), offset2, l) != 0)
886 return false;
887
888 length -= h;
889 offset1 += h;
890 offset2 += h;
891 }
892
893 return true;
894 }
895
896 bool
897 value_contents_eq (const struct value *val1, LONGEST offset1,
898 const struct value *val2, LONGEST offset2,
899 LONGEST length)
900 {
901 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
902 val2, offset2 * TARGET_CHAR_BIT,
903 length * TARGET_CHAR_BIT);
904 }
905
906
907 /* The value-history records all the values printed by print commands
908 during this session. */
909
910 static std::vector<value_ref_ptr> value_history;
911
912 \f
913 /* List of all value objects currently allocated
914 (except for those released by calls to release_value)
915 This is so they can be freed after each command. */
916
917 static std::vector<value_ref_ptr> all_values;
918
919 /* Allocate a lazy value for type TYPE. Its actual content is
920 "lazily" allocated too: the content field of the return value is
921 NULL; it will be allocated when it is fetched from the target. */
922
923 struct value *
924 allocate_value_lazy (struct type *type)
925 {
926 struct value *val;
927
928 /* Call check_typedef on our type to make sure that, if TYPE
929 is a TYPE_CODE_TYPEDEF, its length is set to the length
930 of the target type instead of zero. However, we do not
931 replace the typedef type by the target type, because we want
932 to keep the typedef in order to be able to set the VAL's type
933 description correctly. */
934 check_typedef (type);
935
936 val = new struct value (type);
937
938 /* Values start out on the all_values chain. */
939 all_values.emplace_back (val);
940
941 return val;
942 }
943
944 /* The maximum size, in bytes, that GDB will try to allocate for a value.
945 The initial value of 64k was not selected for any specific reason, it is
946 just a reasonable starting point. */
947
948 static int max_value_size = 65536; /* 64k bytes */
949
950 /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
951 LONGEST, otherwise GDB will not be able to parse integer values from the
952 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
953 be unable to parse "set max-value-size 2".
954
955 As we want a consistent GDB experience across hosts with different sizes
956 of LONGEST, this arbitrary minimum value was selected, so long as this
957 is bigger than LONGEST on all GDB supported hosts we're fine. */
958
959 #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
960 gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
961
962 /* Implement the "set max-value-size" command. */
963
964 static void
965 set_max_value_size (const char *args, int from_tty,
966 struct cmd_list_element *c)
967 {
968 gdb_assert (max_value_size == -1 || max_value_size >= 0);
969
970 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
971 {
972 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
973 error (_("max-value-size set too low, increasing to %d bytes"),
974 max_value_size);
975 }
976 }
977
978 /* Implement the "show max-value-size" command. */
979
980 static void
981 show_max_value_size (struct ui_file *file, int from_tty,
982 struct cmd_list_element *c, const char *value)
983 {
984 if (max_value_size == -1)
985 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
986 else
987 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
988 max_value_size);
989 }
990
991 /* Called before we attempt to allocate or reallocate a buffer for the
992 contents of a value. TYPE is the type of the value for which we are
993 allocating the buffer. If the buffer is too large (based on the user
994 controllable setting) then throw an error. If this function returns
995 then we should attempt to allocate the buffer. */
996
997 static void
998 check_type_length_before_alloc (const struct type *type)
999 {
1000 ULONGEST length = TYPE_LENGTH (type);
1001
1002 if (max_value_size > -1 && length > max_value_size)
1003 {
1004 if (type->name () != NULL)
1005 error (_("value of type `%s' requires %s bytes, which is more "
1006 "than max-value-size"), type->name (), pulongest (length));
1007 else
1008 error (_("value requires %s bytes, which is more than "
1009 "max-value-size"), pulongest (length));
1010 }
1011 }
1012
1013 /* Allocate the contents of VAL if it has not been allocated yet. */
1014
1015 static void
1016 allocate_value_contents (struct value *val)
1017 {
1018 if (!val->contents)
1019 {
1020 check_type_length_before_alloc (val->enclosing_type);
1021 val->contents.reset
1022 ((gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)));
1023 }
1024 }
1025
1026 /* Allocate a value and its contents for type TYPE. */
1027
1028 struct value *
1029 allocate_value (struct type *type)
1030 {
1031 struct value *val = allocate_value_lazy (type);
1032
1033 allocate_value_contents (val);
1034 val->lazy = 0;
1035 return val;
1036 }
1037
1038 /* Allocate a value that has the correct length
1039 for COUNT repetitions of type TYPE. */
1040
1041 struct value *
1042 allocate_repeat_value (struct type *type, int count)
1043 {
1044 /* Despite the fact that we are really creating an array of TYPE here, we
1045 use the string lower bound as the array lower bound. This seems to
1046 work fine for now. */
1047 int low_bound = current_language->string_lower_bound ();
1048 /* FIXME-type-allocation: need a way to free this type when we are
1049 done with it. */
1050 struct type *array_type
1051 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
1052
1053 return allocate_value (array_type);
1054 }
1055
1056 struct value *
1057 allocate_computed_value (struct type *type,
1058 const struct lval_funcs *funcs,
1059 void *closure)
1060 {
1061 struct value *v = allocate_value_lazy (type);
1062
1063 VALUE_LVAL (v) = lval_computed;
1064 v->location.computed.funcs = funcs;
1065 v->location.computed.closure = closure;
1066
1067 return v;
1068 }
1069
1070 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1071
1072 struct value *
1073 allocate_optimized_out_value (struct type *type)
1074 {
1075 struct value *retval = allocate_value_lazy (type);
1076
1077 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1078 set_value_lazy (retval, 0);
1079 return retval;
1080 }
1081
1082 /* Accessor methods. */
1083
1084 struct type *
1085 value_type (const struct value *value)
1086 {
1087 return value->type;
1088 }
1089 void
1090 deprecated_set_value_type (struct value *value, struct type *type)
1091 {
1092 value->type = type;
1093 }
1094
1095 LONGEST
1096 value_offset (const struct value *value)
1097 {
1098 return value->offset;
1099 }
1100 void
1101 set_value_offset (struct value *value, LONGEST offset)
1102 {
1103 value->offset = offset;
1104 }
1105
1106 LONGEST
1107 value_bitpos (const struct value *value)
1108 {
1109 return value->bitpos;
1110 }
1111 void
1112 set_value_bitpos (struct value *value, LONGEST bit)
1113 {
1114 value->bitpos = bit;
1115 }
1116
1117 LONGEST
1118 value_bitsize (const struct value *value)
1119 {
1120 return value->bitsize;
1121 }
1122 void
1123 set_value_bitsize (struct value *value, LONGEST bit)
1124 {
1125 value->bitsize = bit;
1126 }
1127
1128 struct value *
1129 value_parent (const struct value *value)
1130 {
1131 return value->parent.get ();
1132 }
1133
1134 /* See value.h. */
1135
1136 void
1137 set_value_parent (struct value *value, struct value *parent)
1138 {
1139 value->parent = value_ref_ptr::new_reference (parent);
1140 }
1141
1142 gdb_byte *
1143 value_contents_raw (struct value *value)
1144 {
1145 struct gdbarch *arch = get_value_arch (value);
1146 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1147
1148 allocate_value_contents (value);
1149 return value->contents.get () + value->embedded_offset * unit_size;
1150 }
1151
1152 gdb_byte *
1153 value_contents_all_raw (struct value *value)
1154 {
1155 allocate_value_contents (value);
1156 return value->contents.get ();
1157 }
1158
1159 struct type *
1160 value_enclosing_type (const struct value *value)
1161 {
1162 return value->enclosing_type;
1163 }
1164
1165 /* Look at value.h for description. */
1166
1167 struct type *
1168 value_actual_type (struct value *value, int resolve_simple_types,
1169 int *real_type_found)
1170 {
1171 struct value_print_options opts;
1172 struct type *result;
1173
1174 get_user_print_options (&opts);
1175
1176 if (real_type_found)
1177 *real_type_found = 0;
1178 result = value_type (value);
1179 if (opts.objectprint)
1180 {
1181 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1182 fetch its rtti type. */
1183 if ((result->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
1184 && (check_typedef (TYPE_TARGET_TYPE (result))->code ()
1185 == TYPE_CODE_STRUCT)
1186 && !value_optimized_out (value))
1187 {
1188 struct type *real_type;
1189
1190 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1191 if (real_type)
1192 {
1193 if (real_type_found)
1194 *real_type_found = 1;
1195 result = real_type;
1196 }
1197 }
1198 else if (resolve_simple_types)
1199 {
1200 if (real_type_found)
1201 *real_type_found = 1;
1202 result = value_enclosing_type (value);
1203 }
1204 }
1205
1206 return result;
1207 }
1208
1209 void
1210 error_value_optimized_out (void)
1211 {
1212 error (_("value has been optimized out"));
1213 }
1214
1215 static void
1216 require_not_optimized_out (const struct value *value)
1217 {
1218 if (!value->optimized_out.empty ())
1219 {
1220 if (value->lval == lval_register)
1221 error (_("register has not been saved in frame"));
1222 else
1223 error_value_optimized_out ();
1224 }
1225 }
1226
1227 static void
1228 require_available (const struct value *value)
1229 {
1230 if (!value->unavailable.empty ())
1231 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
1232 }
1233
1234 const gdb_byte *
1235 value_contents_for_printing (struct value *value)
1236 {
1237 if (value->lazy)
1238 value_fetch_lazy (value);
1239 return value->contents.get ();
1240 }
1241
1242 const gdb_byte *
1243 value_contents_for_printing_const (const struct value *value)
1244 {
1245 gdb_assert (!value->lazy);
1246 return value->contents.get ();
1247 }
1248
1249 const gdb_byte *
1250 value_contents_all (struct value *value)
1251 {
1252 const gdb_byte *result = value_contents_for_printing (value);
1253 require_not_optimized_out (value);
1254 require_available (value);
1255 return result;
1256 }
1257
1258 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1259 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1260
1261 static void
1262 ranges_copy_adjusted (std::vector<range> *dst_range, int dst_bit_offset,
1263 const std::vector<range> &src_range, int src_bit_offset,
1264 int bit_length)
1265 {
1266 for (const range &r : src_range)
1267 {
1268 ULONGEST h, l;
1269
1270 l = std::max (r.offset, (LONGEST) src_bit_offset);
1271 h = std::min (r.offset + r.length,
1272 (LONGEST) src_bit_offset + bit_length);
1273
1274 if (l < h)
1275 insert_into_bit_range_vector (dst_range,
1276 dst_bit_offset + (l - src_bit_offset),
1277 h - l);
1278 }
1279 }
1280
1281 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1282 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1283
1284 static void
1285 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1286 const struct value *src, int src_bit_offset,
1287 int bit_length)
1288 {
1289 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1290 src->unavailable, src_bit_offset,
1291 bit_length);
1292 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1293 src->optimized_out, src_bit_offset,
1294 bit_length);
1295 }
1296
1297 /* Copy LENGTH target addressable memory units of SRC value's (all) contents
1298 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1299 contents, starting at DST_OFFSET. If unavailable contents are
1300 being copied from SRC, the corresponding DST contents are marked
1301 unavailable accordingly. Neither DST nor SRC may be lazy
1302 values.
1303
1304 It is assumed the contents of DST in the [DST_OFFSET,
1305 DST_OFFSET+LENGTH) range are wholly available. */
1306
1307 void
1308 value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1309 struct value *src, LONGEST src_offset, LONGEST length)
1310 {
1311 LONGEST src_bit_offset, dst_bit_offset, bit_length;
1312 struct gdbarch *arch = get_value_arch (src);
1313 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1314
1315 /* A lazy DST would make that this copy operation useless, since as
1316 soon as DST's contents were un-lazied (by a later value_contents
1317 call, say), the contents would be overwritten. A lazy SRC would
1318 mean we'd be copying garbage. */
1319 gdb_assert (!dst->lazy && !src->lazy);
1320
1321 /* The overwritten DST range gets unavailability ORed in, not
1322 replaced. Make sure to remember to implement replacing if it
1323 turns out actually necessary. */
1324 gdb_assert (value_bytes_available (dst, dst_offset, length));
1325 gdb_assert (!value_bits_any_optimized_out (dst,
1326 TARGET_CHAR_BIT * dst_offset,
1327 TARGET_CHAR_BIT * length));
1328
1329 /* Copy the data. */
1330 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1331 value_contents_all_raw (src) + src_offset * unit_size,
1332 length * unit_size);
1333
1334 /* Copy the meta-data, adjusted. */
1335 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1336 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1337 bit_length = length * unit_size * HOST_CHAR_BIT;
1338
1339 value_ranges_copy_adjusted (dst, dst_bit_offset,
1340 src, src_bit_offset,
1341 bit_length);
1342 }
1343
1344 /* Copy LENGTH bytes of SRC value's (all) contents
1345 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1346 (all) contents, starting at DST_OFFSET. If unavailable contents
1347 are being copied from SRC, the corresponding DST contents are
1348 marked unavailable accordingly. DST must not be lazy. If SRC is
1349 lazy, it will be fetched now.
1350
1351 It is assumed the contents of DST in the [DST_OFFSET,
1352 DST_OFFSET+LENGTH) range are wholly available. */
1353
1354 void
1355 value_contents_copy (struct value *dst, LONGEST dst_offset,
1356 struct value *src, LONGEST src_offset, LONGEST length)
1357 {
1358 if (src->lazy)
1359 value_fetch_lazy (src);
1360
1361 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1362 }
1363
1364 int
1365 value_lazy (const struct value *value)
1366 {
1367 return value->lazy;
1368 }
1369
1370 void
1371 set_value_lazy (struct value *value, int val)
1372 {
1373 value->lazy = val;
1374 }
1375
1376 int
1377 value_stack (const struct value *value)
1378 {
1379 return value->stack;
1380 }
1381
1382 void
1383 set_value_stack (struct value *value, int val)
1384 {
1385 value->stack = val;
1386 }
1387
1388 const gdb_byte *
1389 value_contents (struct value *value)
1390 {
1391 const gdb_byte *result = value_contents_writeable (value);
1392 require_not_optimized_out (value);
1393 require_available (value);
1394 return result;
1395 }
1396
1397 gdb_byte *
1398 value_contents_writeable (struct value *value)
1399 {
1400 if (value->lazy)
1401 value_fetch_lazy (value);
1402 return value_contents_raw (value);
1403 }
1404
1405 int
1406 value_optimized_out (struct value *value)
1407 {
1408 /* We can only know if a value is optimized out once we have tried to
1409 fetch it. */
1410 if (value->optimized_out.empty () && value->lazy)
1411 {
1412 try
1413 {
1414 value_fetch_lazy (value);
1415 }
1416 catch (const gdb_exception_error &ex)
1417 {
1418 switch (ex.error)
1419 {
1420 case MEMORY_ERROR:
1421 case OPTIMIZED_OUT_ERROR:
1422 case NOT_AVAILABLE_ERROR:
1423 /* These can normally happen when we try to access an
1424 optimized out or unavailable register, either in a
1425 physical register or spilled to memory. */
1426 break;
1427 default:
1428 throw;
1429 }
1430 }
1431 }
1432
1433 return !value->optimized_out.empty ();
1434 }
1435
1436 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1437 the following LENGTH bytes. */
1438
1439 void
1440 mark_value_bytes_optimized_out (struct value *value, int offset, int length)
1441 {
1442 mark_value_bits_optimized_out (value,
1443 offset * TARGET_CHAR_BIT,
1444 length * TARGET_CHAR_BIT);
1445 }
1446
1447 /* See value.h. */
1448
1449 void
1450 mark_value_bits_optimized_out (struct value *value,
1451 LONGEST offset, LONGEST length)
1452 {
1453 insert_into_bit_range_vector (&value->optimized_out, offset, length);
1454 }
1455
1456 int
1457 value_bits_synthetic_pointer (const struct value *value,
1458 LONGEST offset, LONGEST length)
1459 {
1460 if (value->lval != lval_computed
1461 || !value->location.computed.funcs->check_synthetic_pointer)
1462 return 0;
1463 return value->location.computed.funcs->check_synthetic_pointer (value,
1464 offset,
1465 length);
1466 }
1467
1468 LONGEST
1469 value_embedded_offset (const struct value *value)
1470 {
1471 return value->embedded_offset;
1472 }
1473
1474 void
1475 set_value_embedded_offset (struct value *value, LONGEST val)
1476 {
1477 value->embedded_offset = val;
1478 }
1479
1480 LONGEST
1481 value_pointed_to_offset (const struct value *value)
1482 {
1483 return value->pointed_to_offset;
1484 }
1485
1486 void
1487 set_value_pointed_to_offset (struct value *value, LONGEST val)
1488 {
1489 value->pointed_to_offset = val;
1490 }
1491
1492 const struct lval_funcs *
1493 value_computed_funcs (const struct value *v)
1494 {
1495 gdb_assert (value_lval_const (v) == lval_computed);
1496
1497 return v->location.computed.funcs;
1498 }
1499
1500 void *
1501 value_computed_closure (const struct value *v)
1502 {
1503 gdb_assert (v->lval == lval_computed);
1504
1505 return v->location.computed.closure;
1506 }
1507
1508 enum lval_type *
1509 deprecated_value_lval_hack (struct value *value)
1510 {
1511 return &value->lval;
1512 }
1513
1514 enum lval_type
1515 value_lval_const (const struct value *value)
1516 {
1517 return value->lval;
1518 }
1519
1520 CORE_ADDR
1521 value_address (const struct value *value)
1522 {
1523 if (value->lval != lval_memory)
1524 return 0;
1525 if (value->parent != NULL)
1526 return value_address (value->parent.get ()) + value->offset;
1527 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1528 {
1529 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1530 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1531 }
1532
1533 return value->location.address + value->offset;
1534 }
1535
1536 CORE_ADDR
1537 value_raw_address (const struct value *value)
1538 {
1539 if (value->lval != lval_memory)
1540 return 0;
1541 return value->location.address;
1542 }
1543
1544 void
1545 set_value_address (struct value *value, CORE_ADDR addr)
1546 {
1547 gdb_assert (value->lval == lval_memory);
1548 value->location.address = addr;
1549 }
1550
1551 struct internalvar **
1552 deprecated_value_internalvar_hack (struct value *value)
1553 {
1554 return &value->location.internalvar;
1555 }
1556
1557 struct frame_id *
1558 deprecated_value_next_frame_id_hack (struct value *value)
1559 {
1560 gdb_assert (value->lval == lval_register);
1561 return &value->location.reg.next_frame_id;
1562 }
1563
1564 int *
1565 deprecated_value_regnum_hack (struct value *value)
1566 {
1567 gdb_assert (value->lval == lval_register);
1568 return &value->location.reg.regnum;
1569 }
1570
1571 int
1572 deprecated_value_modifiable (const struct value *value)
1573 {
1574 return value->modifiable;
1575 }
1576 \f
1577 /* Return a mark in the value chain. All values allocated after the
1578 mark is obtained (except for those released) are subject to being freed
1579 if a subsequent value_free_to_mark is passed the mark. */
1580 struct value *
1581 value_mark (void)
1582 {
1583 if (all_values.empty ())
1584 return nullptr;
1585 return all_values.back ().get ();
1586 }
1587
1588 /* See value.h. */
1589
1590 void
1591 value_incref (struct value *val)
1592 {
1593 val->reference_count++;
1594 }
1595
1596 /* Release a reference to VAL, which was acquired with value_incref.
1597 This function is also called to deallocate values from the value
1598 chain. */
1599
1600 void
1601 value_decref (struct value *val)
1602 {
1603 if (val != nullptr)
1604 {
1605 gdb_assert (val->reference_count > 0);
1606 val->reference_count--;
1607 if (val->reference_count == 0)
1608 delete val;
1609 }
1610 }
1611
1612 /* Free all values allocated since MARK was obtained by value_mark
1613 (except for those released). */
1614 void
1615 value_free_to_mark (const struct value *mark)
1616 {
1617 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1618 if (iter == all_values.end ())
1619 all_values.clear ();
1620 else
1621 all_values.erase (iter + 1, all_values.end ());
1622 }
1623
1624 /* Remove VAL from the chain all_values
1625 so it will not be freed automatically. */
1626
1627 value_ref_ptr
1628 release_value (struct value *val)
1629 {
1630 if (val == nullptr)
1631 return value_ref_ptr ();
1632
1633 std::vector<value_ref_ptr>::reverse_iterator iter;
1634 for (iter = all_values.rbegin (); iter != all_values.rend (); ++iter)
1635 {
1636 if (*iter == val)
1637 {
1638 value_ref_ptr result = *iter;
1639 all_values.erase (iter.base () - 1);
1640 return result;
1641 }
1642 }
1643
1644 /* We must always return an owned reference. Normally this happens
1645 because we transfer the reference from the value chain, but in
1646 this case the value was not on the chain. */
1647 return value_ref_ptr::new_reference (val);
1648 }
1649
1650 /* See value.h. */
1651
1652 std::vector<value_ref_ptr>
1653 value_release_to_mark (const struct value *mark)
1654 {
1655 std::vector<value_ref_ptr> result;
1656
1657 auto iter = std::find (all_values.begin (), all_values.end (), mark);
1658 if (iter == all_values.end ())
1659 std::swap (result, all_values);
1660 else
1661 {
1662 std::move (iter + 1, all_values.end (), std::back_inserter (result));
1663 all_values.erase (iter + 1, all_values.end ());
1664 }
1665 std::reverse (result.begin (), result.end ());
1666 return result;
1667 }
1668
1669 /* Return a copy of the value ARG.
1670 It contains the same contents, for same memory address,
1671 but it's a different block of storage. */
1672
1673 struct value *
1674 value_copy (struct value *arg)
1675 {
1676 struct type *encl_type = value_enclosing_type (arg);
1677 struct value *val;
1678
1679 if (value_lazy (arg))
1680 val = allocate_value_lazy (encl_type);
1681 else
1682 val = allocate_value (encl_type);
1683 val->type = arg->type;
1684 VALUE_LVAL (val) = VALUE_LVAL (arg);
1685 val->location = arg->location;
1686 val->offset = arg->offset;
1687 val->bitpos = arg->bitpos;
1688 val->bitsize = arg->bitsize;
1689 val->lazy = arg->lazy;
1690 val->embedded_offset = value_embedded_offset (arg);
1691 val->pointed_to_offset = arg->pointed_to_offset;
1692 val->modifiable = arg->modifiable;
1693 if (!value_lazy (val))
1694 {
1695 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
1696 TYPE_LENGTH (value_enclosing_type (arg)));
1697
1698 }
1699 val->unavailable = arg->unavailable;
1700 val->optimized_out = arg->optimized_out;
1701 val->parent = arg->parent;
1702 if (VALUE_LVAL (val) == lval_computed)
1703 {
1704 const struct lval_funcs *funcs = val->location.computed.funcs;
1705
1706 if (funcs->copy_closure)
1707 val->location.computed.closure = funcs->copy_closure (val);
1708 }
1709 return val;
1710 }
1711
1712 /* Return a "const" and/or "volatile" qualified version of the value V.
1713 If CNST is true, then the returned value will be qualified with
1714 "const".
1715 if VOLTL is true, then the returned value will be qualified with
1716 "volatile". */
1717
1718 struct value *
1719 make_cv_value (int cnst, int voltl, struct value *v)
1720 {
1721 struct type *val_type = value_type (v);
1722 struct type *enclosing_type = value_enclosing_type (v);
1723 struct value *cv_val = value_copy (v);
1724
1725 deprecated_set_value_type (cv_val,
1726 make_cv_type (cnst, voltl, val_type, NULL));
1727 set_value_enclosing_type (cv_val,
1728 make_cv_type (cnst, voltl, enclosing_type, NULL));
1729
1730 return cv_val;
1731 }
1732
1733 /* Return a version of ARG that is non-lvalue. */
1734
1735 struct value *
1736 value_non_lval (struct value *arg)
1737 {
1738 if (VALUE_LVAL (arg) != not_lval)
1739 {
1740 struct type *enc_type = value_enclosing_type (arg);
1741 struct value *val = allocate_value (enc_type);
1742
1743 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1744 TYPE_LENGTH (enc_type));
1745 val->type = arg->type;
1746 set_value_embedded_offset (val, value_embedded_offset (arg));
1747 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1748 return val;
1749 }
1750 return arg;
1751 }
1752
1753 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1754
1755 void
1756 value_force_lval (struct value *v, CORE_ADDR addr)
1757 {
1758 gdb_assert (VALUE_LVAL (v) == not_lval);
1759
1760 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1761 v->lval = lval_memory;
1762 v->location.address = addr;
1763 }
1764
1765 void
1766 set_value_component_location (struct value *component,
1767 const struct value *whole)
1768 {
1769 struct type *type;
1770
1771 gdb_assert (whole->lval != lval_xcallable);
1772
1773 if (whole->lval == lval_internalvar)
1774 VALUE_LVAL (component) = lval_internalvar_component;
1775 else
1776 VALUE_LVAL (component) = whole->lval;
1777
1778 component->location = whole->location;
1779 if (whole->lval == lval_computed)
1780 {
1781 const struct lval_funcs *funcs = whole->location.computed.funcs;
1782
1783 if (funcs->copy_closure)
1784 component->location.computed.closure = funcs->copy_closure (whole);
1785 }
1786
1787 /* If type has a dynamic resolved location property
1788 update it's value address. */
1789 type = value_type (whole);
1790 if (NULL != TYPE_DATA_LOCATION (type)
1791 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1792 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
1793 }
1794
1795 /* Access to the value history. */
1796
1797 /* Record a new value in the value history.
1798 Returns the absolute history index of the entry. */
1799
1800 int
1801 record_latest_value (struct value *val)
1802 {
1803 /* We don't want this value to have anything to do with the inferior anymore.
1804 In particular, "set $1 = 50" should not affect the variable from which
1805 the value was taken, and fast watchpoints should be able to assume that
1806 a value on the value history never changes. */
1807 if (value_lazy (val))
1808 value_fetch_lazy (val);
1809 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1810 from. This is a bit dubious, because then *&$1 does not just return $1
1811 but the current contents of that location. c'est la vie... */
1812 val->modifiable = 0;
1813
1814 value_history.push_back (release_value (val));
1815
1816 return value_history.size ();
1817 }
1818
1819 /* Return a copy of the value in the history with sequence number NUM. */
1820
1821 struct value *
1822 access_value_history (int num)
1823 {
1824 int absnum = num;
1825
1826 if (absnum <= 0)
1827 absnum += value_history.size ();
1828
1829 if (absnum <= 0)
1830 {
1831 if (num == 0)
1832 error (_("The history is empty."));
1833 else if (num == 1)
1834 error (_("There is only one value in the history."));
1835 else
1836 error (_("History does not go back to $$%d."), -num);
1837 }
1838 if (absnum > value_history.size ())
1839 error (_("History has not yet reached $%d."), absnum);
1840
1841 absnum--;
1842
1843 return value_copy (value_history[absnum].get ());
1844 }
1845
1846 static void
1847 show_values (const char *num_exp, int from_tty)
1848 {
1849 int i;
1850 struct value *val;
1851 static int num = 1;
1852
1853 if (num_exp)
1854 {
1855 /* "show values +" should print from the stored position.
1856 "show values <exp>" should print around value number <exp>. */
1857 if (num_exp[0] != '+' || num_exp[1] != '\0')
1858 num = parse_and_eval_long (num_exp) - 5;
1859 }
1860 else
1861 {
1862 /* "show values" means print the last 10 values. */
1863 num = value_history.size () - 9;
1864 }
1865
1866 if (num <= 0)
1867 num = 1;
1868
1869 for (i = num; i < num + 10 && i <= value_history.size (); i++)
1870 {
1871 struct value_print_options opts;
1872
1873 val = access_value_history (i);
1874 printf_filtered (("$%d = "), i);
1875 get_user_print_options (&opts);
1876 value_print (val, gdb_stdout, &opts);
1877 printf_filtered (("\n"));
1878 }
1879
1880 /* The next "show values +" should start after what we just printed. */
1881 num += 10;
1882
1883 /* Hitting just return after this command should do the same thing as
1884 "show values +". If num_exp is null, this is unnecessary, since
1885 "show values +" is not useful after "show values". */
1886 if (from_tty && num_exp)
1887 set_repeat_arguments ("+");
1888 }
1889 \f
1890 enum internalvar_kind
1891 {
1892 /* The internal variable is empty. */
1893 INTERNALVAR_VOID,
1894
1895 /* The value of the internal variable is provided directly as
1896 a GDB value object. */
1897 INTERNALVAR_VALUE,
1898
1899 /* A fresh value is computed via a call-back routine on every
1900 access to the internal variable. */
1901 INTERNALVAR_MAKE_VALUE,
1902
1903 /* The internal variable holds a GDB internal convenience function. */
1904 INTERNALVAR_FUNCTION,
1905
1906 /* The variable holds an integer value. */
1907 INTERNALVAR_INTEGER,
1908
1909 /* The variable holds a GDB-provided string. */
1910 INTERNALVAR_STRING,
1911 };
1912
1913 union internalvar_data
1914 {
1915 /* A value object used with INTERNALVAR_VALUE. */
1916 struct value *value;
1917
1918 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1919 struct
1920 {
1921 /* The functions to call. */
1922 const struct internalvar_funcs *functions;
1923
1924 /* The function's user-data. */
1925 void *data;
1926 } make_value;
1927
1928 /* The internal function used with INTERNALVAR_FUNCTION. */
1929 struct
1930 {
1931 struct internal_function *function;
1932 /* True if this is the canonical name for the function. */
1933 int canonical;
1934 } fn;
1935
1936 /* An integer value used with INTERNALVAR_INTEGER. */
1937 struct
1938 {
1939 /* If type is non-NULL, it will be used as the type to generate
1940 a value for this internal variable. If type is NULL, a default
1941 integer type for the architecture is used. */
1942 struct type *type;
1943 LONGEST val;
1944 } integer;
1945
1946 /* A string value used with INTERNALVAR_STRING. */
1947 char *string;
1948 };
1949
1950 /* Internal variables. These are variables within the debugger
1951 that hold values assigned by debugger commands.
1952 The user refers to them with a '$' prefix
1953 that does not appear in the variable names stored internally. */
1954
1955 struct internalvar
1956 {
1957 struct internalvar *next;
1958 char *name;
1959
1960 /* We support various different kinds of content of an internal variable.
1961 enum internalvar_kind specifies the kind, and union internalvar_data
1962 provides the data associated with this particular kind. */
1963
1964 enum internalvar_kind kind;
1965
1966 union internalvar_data u;
1967 };
1968
1969 static struct internalvar *internalvars;
1970
1971 /* If the variable does not already exist create it and give it the
1972 value given. If no value is given then the default is zero. */
1973 static void
1974 init_if_undefined_command (const char* args, int from_tty)
1975 {
1976 struct internalvar* intvar;
1977
1978 /* Parse the expression - this is taken from set_command(). */
1979 expression_up expr = parse_expression (args);
1980
1981 /* Validate the expression.
1982 Was the expression an assignment?
1983 Or even an expression at all? */
1984 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1985 error (_("Init-if-undefined requires an assignment expression."));
1986
1987 /* Extract the variable from the parsed expression.
1988 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1989 if (expr->elts[1].opcode != OP_INTERNALVAR)
1990 error (_("The first parameter to init-if-undefined "
1991 "should be a GDB variable."));
1992 intvar = expr->elts[2].internalvar;
1993
1994 /* Only evaluate the expression if the lvalue is void.
1995 This may still fail if the expression is invalid. */
1996 if (intvar->kind == INTERNALVAR_VOID)
1997 evaluate_expression (expr.get ());
1998 }
1999
2000
2001 /* Look up an internal variable with name NAME. NAME should not
2002 normally include a dollar sign.
2003
2004 If the specified internal variable does not exist,
2005 the return value is NULL. */
2006
2007 struct internalvar *
2008 lookup_only_internalvar (const char *name)
2009 {
2010 struct internalvar *var;
2011
2012 for (var = internalvars; var; var = var->next)
2013 if (strcmp (var->name, name) == 0)
2014 return var;
2015
2016 return NULL;
2017 }
2018
2019 /* Complete NAME by comparing it to the names of internal
2020 variables. */
2021
2022 void
2023 complete_internalvar (completion_tracker &tracker, const char *name)
2024 {
2025 struct internalvar *var;
2026 int len;
2027
2028 len = strlen (name);
2029
2030 for (var = internalvars; var; var = var->next)
2031 if (strncmp (var->name, name, len) == 0)
2032 tracker.add_completion (make_unique_xstrdup (var->name));
2033 }
2034
2035 /* Create an internal variable with name NAME and with a void value.
2036 NAME should not normally include a dollar sign. */
2037
2038 struct internalvar *
2039 create_internalvar (const char *name)
2040 {
2041 struct internalvar *var = XNEW (struct internalvar);
2042
2043 var->name = xstrdup (name);
2044 var->kind = INTERNALVAR_VOID;
2045 var->next = internalvars;
2046 internalvars = var;
2047 return var;
2048 }
2049
2050 /* Create an internal variable with name NAME and register FUN as the
2051 function that value_of_internalvar uses to create a value whenever
2052 this variable is referenced. NAME should not normally include a
2053 dollar sign. DATA is passed uninterpreted to FUN when it is
2054 called. CLEANUP, if not NULL, is called when the internal variable
2055 is destroyed. It is passed DATA as its only argument. */
2056
2057 struct internalvar *
2058 create_internalvar_type_lazy (const char *name,
2059 const struct internalvar_funcs *funcs,
2060 void *data)
2061 {
2062 struct internalvar *var = create_internalvar (name);
2063
2064 var->kind = INTERNALVAR_MAKE_VALUE;
2065 var->u.make_value.functions = funcs;
2066 var->u.make_value.data = data;
2067 return var;
2068 }
2069
2070 /* See documentation in value.h. */
2071
2072 int
2073 compile_internalvar_to_ax (struct internalvar *var,
2074 struct agent_expr *expr,
2075 struct axs_value *value)
2076 {
2077 if (var->kind != INTERNALVAR_MAKE_VALUE
2078 || var->u.make_value.functions->compile_to_ax == NULL)
2079 return 0;
2080
2081 var->u.make_value.functions->compile_to_ax (var, expr, value,
2082 var->u.make_value.data);
2083 return 1;
2084 }
2085
2086 /* Look up an internal variable with name NAME. NAME should not
2087 normally include a dollar sign.
2088
2089 If the specified internal variable does not exist,
2090 one is created, with a void value. */
2091
2092 struct internalvar *
2093 lookup_internalvar (const char *name)
2094 {
2095 struct internalvar *var;
2096
2097 var = lookup_only_internalvar (name);
2098 if (var)
2099 return var;
2100
2101 return create_internalvar (name);
2102 }
2103
2104 /* Return current value of internal variable VAR. For variables that
2105 are not inherently typed, use a value type appropriate for GDBARCH. */
2106
2107 struct value *
2108 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
2109 {
2110 struct value *val;
2111 struct trace_state_variable *tsv;
2112
2113 /* If there is a trace state variable of the same name, assume that
2114 is what we really want to see. */
2115 tsv = find_trace_state_variable (var->name);
2116 if (tsv)
2117 {
2118 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2119 &(tsv->value));
2120 if (tsv->value_known)
2121 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2122 tsv->value);
2123 else
2124 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2125 return val;
2126 }
2127
2128 switch (var->kind)
2129 {
2130 case INTERNALVAR_VOID:
2131 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2132 break;
2133
2134 case INTERNALVAR_FUNCTION:
2135 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2136 break;
2137
2138 case INTERNALVAR_INTEGER:
2139 if (!var->u.integer.type)
2140 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
2141 var->u.integer.val);
2142 else
2143 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2144 break;
2145
2146 case INTERNALVAR_STRING:
2147 val = value_cstring (var->u.string, strlen (var->u.string),
2148 builtin_type (gdbarch)->builtin_char);
2149 break;
2150
2151 case INTERNALVAR_VALUE:
2152 val = value_copy (var->u.value);
2153 if (value_lazy (val))
2154 value_fetch_lazy (val);
2155 break;
2156
2157 case INTERNALVAR_MAKE_VALUE:
2158 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2159 var->u.make_value.data);
2160 break;
2161
2162 default:
2163 internal_error (__FILE__, __LINE__, _("bad kind"));
2164 }
2165
2166 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2167 on this value go back to affect the original internal variable.
2168
2169 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2170 no underlying modifiable state in the internal variable.
2171
2172 Likewise, if the variable's value is a computed lvalue, we want
2173 references to it to produce another computed lvalue, where
2174 references and assignments actually operate through the
2175 computed value's functions.
2176
2177 This means that internal variables with computed values
2178 behave a little differently from other internal variables:
2179 assignments to them don't just replace the previous value
2180 altogether. At the moment, this seems like the behavior we
2181 want. */
2182
2183 if (var->kind != INTERNALVAR_MAKE_VALUE
2184 && val->lval != lval_computed)
2185 {
2186 VALUE_LVAL (val) = lval_internalvar;
2187 VALUE_INTERNALVAR (val) = var;
2188 }
2189
2190 return val;
2191 }
2192
2193 int
2194 get_internalvar_integer (struct internalvar *var, LONGEST *result)
2195 {
2196 if (var->kind == INTERNALVAR_INTEGER)
2197 {
2198 *result = var->u.integer.val;
2199 return 1;
2200 }
2201
2202 if (var->kind == INTERNALVAR_VALUE)
2203 {
2204 struct type *type = check_typedef (value_type (var->u.value));
2205
2206 if (type->code () == TYPE_CODE_INT)
2207 {
2208 *result = value_as_long (var->u.value);
2209 return 1;
2210 }
2211 }
2212
2213 return 0;
2214 }
2215
2216 static int
2217 get_internalvar_function (struct internalvar *var,
2218 struct internal_function **result)
2219 {
2220 switch (var->kind)
2221 {
2222 case INTERNALVAR_FUNCTION:
2223 *result = var->u.fn.function;
2224 return 1;
2225
2226 default:
2227 return 0;
2228 }
2229 }
2230
2231 void
2232 set_internalvar_component (struct internalvar *var,
2233 LONGEST offset, LONGEST bitpos,
2234 LONGEST bitsize, struct value *newval)
2235 {
2236 gdb_byte *addr;
2237 struct gdbarch *arch;
2238 int unit_size;
2239
2240 switch (var->kind)
2241 {
2242 case INTERNALVAR_VALUE:
2243 addr = value_contents_writeable (var->u.value);
2244 arch = get_value_arch (var->u.value);
2245 unit_size = gdbarch_addressable_memory_unit_size (arch);
2246
2247 if (bitsize)
2248 modify_field (value_type (var->u.value), addr + offset,
2249 value_as_long (newval), bitpos, bitsize);
2250 else
2251 memcpy (addr + offset * unit_size, value_contents (newval),
2252 TYPE_LENGTH (value_type (newval)));
2253 break;
2254
2255 default:
2256 /* We can never get a component of any other kind. */
2257 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
2258 }
2259 }
2260
2261 void
2262 set_internalvar (struct internalvar *var, struct value *val)
2263 {
2264 enum internalvar_kind new_kind;
2265 union internalvar_data new_data = { 0 };
2266
2267 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
2268 error (_("Cannot overwrite convenience function %s"), var->name);
2269
2270 /* Prepare new contents. */
2271 switch (check_typedef (value_type (val))->code ())
2272 {
2273 case TYPE_CODE_VOID:
2274 new_kind = INTERNALVAR_VOID;
2275 break;
2276
2277 case TYPE_CODE_INTERNAL_FUNCTION:
2278 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2279 new_kind = INTERNALVAR_FUNCTION;
2280 get_internalvar_function (VALUE_INTERNALVAR (val),
2281 &new_data.fn.function);
2282 /* Copies created here are never canonical. */
2283 break;
2284
2285 default:
2286 new_kind = INTERNALVAR_VALUE;
2287 struct value *copy = value_copy (val);
2288 copy->modifiable = 1;
2289
2290 /* Force the value to be fetched from the target now, to avoid problems
2291 later when this internalvar is referenced and the target is gone or
2292 has changed. */
2293 if (value_lazy (copy))
2294 value_fetch_lazy (copy);
2295
2296 /* Release the value from the value chain to prevent it from being
2297 deleted by free_all_values. From here on this function should not
2298 call error () until new_data is installed into the var->u to avoid
2299 leaking memory. */
2300 new_data.value = release_value (copy).release ();
2301
2302 /* Internal variables which are created from values with a dynamic
2303 location don't need the location property of the origin anymore.
2304 The resolved dynamic location is used prior then any other address
2305 when accessing the value.
2306 If we keep it, we would still refer to the origin value.
2307 Remove the location property in case it exist. */
2308 value_type (new_data.value)->remove_dyn_prop (DYN_PROP_DATA_LOCATION);
2309
2310 break;
2311 }
2312
2313 /* Clean up old contents. */
2314 clear_internalvar (var);
2315
2316 /* Switch over. */
2317 var->kind = new_kind;
2318 var->u = new_data;
2319 /* End code which must not call error(). */
2320 }
2321
2322 void
2323 set_internalvar_integer (struct internalvar *var, LONGEST l)
2324 {
2325 /* Clean up old contents. */
2326 clear_internalvar (var);
2327
2328 var->kind = INTERNALVAR_INTEGER;
2329 var->u.integer.type = NULL;
2330 var->u.integer.val = l;
2331 }
2332
2333 void
2334 set_internalvar_string (struct internalvar *var, const char *string)
2335 {
2336 /* Clean up old contents. */
2337 clear_internalvar (var);
2338
2339 var->kind = INTERNALVAR_STRING;
2340 var->u.string = xstrdup (string);
2341 }
2342
2343 static void
2344 set_internalvar_function (struct internalvar *var, struct internal_function *f)
2345 {
2346 /* Clean up old contents. */
2347 clear_internalvar (var);
2348
2349 var->kind = INTERNALVAR_FUNCTION;
2350 var->u.fn.function = f;
2351 var->u.fn.canonical = 1;
2352 /* Variables installed here are always the canonical version. */
2353 }
2354
2355 void
2356 clear_internalvar (struct internalvar *var)
2357 {
2358 /* Clean up old contents. */
2359 switch (var->kind)
2360 {
2361 case INTERNALVAR_VALUE:
2362 value_decref (var->u.value);
2363 break;
2364
2365 case INTERNALVAR_STRING:
2366 xfree (var->u.string);
2367 break;
2368
2369 case INTERNALVAR_MAKE_VALUE:
2370 if (var->u.make_value.functions->destroy != NULL)
2371 var->u.make_value.functions->destroy (var->u.make_value.data);
2372 break;
2373
2374 default:
2375 break;
2376 }
2377
2378 /* Reset to void kind. */
2379 var->kind = INTERNALVAR_VOID;
2380 }
2381
2382 char *
2383 internalvar_name (const struct internalvar *var)
2384 {
2385 return var->name;
2386 }
2387
2388 static struct internal_function *
2389 create_internal_function (const char *name,
2390 internal_function_fn handler, void *cookie)
2391 {
2392 struct internal_function *ifn = XNEW (struct internal_function);
2393
2394 ifn->name = xstrdup (name);
2395 ifn->handler = handler;
2396 ifn->cookie = cookie;
2397 return ifn;
2398 }
2399
2400 char *
2401 value_internal_function_name (struct value *val)
2402 {
2403 struct internal_function *ifn;
2404 int result;
2405
2406 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2407 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2408 gdb_assert (result);
2409
2410 return ifn->name;
2411 }
2412
2413 struct value *
2414 call_internal_function (struct gdbarch *gdbarch,
2415 const struct language_defn *language,
2416 struct value *func, int argc, struct value **argv)
2417 {
2418 struct internal_function *ifn;
2419 int result;
2420
2421 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2422 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2423 gdb_assert (result);
2424
2425 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
2426 }
2427
2428 /* The 'function' command. This does nothing -- it is just a
2429 placeholder to let "help function NAME" work. This is also used as
2430 the implementation of the sub-command that is created when
2431 registering an internal function. */
2432 static void
2433 function_command (const char *command, int from_tty)
2434 {
2435 /* Do nothing. */
2436 }
2437
2438 /* Helper function that does the work for add_internal_function. */
2439
2440 static struct cmd_list_element *
2441 do_add_internal_function (const char *name, const char *doc,
2442 internal_function_fn handler, void *cookie)
2443 {
2444 struct internal_function *ifn;
2445 struct internalvar *var = lookup_internalvar (name);
2446
2447 ifn = create_internal_function (name, handler, cookie);
2448 set_internalvar_function (var, ifn);
2449
2450 return add_cmd (name, no_class, function_command, doc, &functionlist);
2451 }
2452
2453 /* See value.h. */
2454
2455 void
2456 add_internal_function (const char *name, const char *doc,
2457 internal_function_fn handler, void *cookie)
2458 {
2459 do_add_internal_function (name, doc, handler, cookie);
2460 }
2461
2462 /* See value.h. */
2463
2464 void
2465 add_internal_function (gdb::unique_xmalloc_ptr<char> &&name,
2466 gdb::unique_xmalloc_ptr<char> &&doc,
2467 internal_function_fn handler, void *cookie)
2468 {
2469 struct cmd_list_element *cmd
2470 = do_add_internal_function (name.get (), doc.get (), handler, cookie);
2471 doc.release ();
2472 cmd->doc_allocated = 1;
2473 name.release ();
2474 cmd->name_allocated = 1;
2475 }
2476
2477 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2478 prevent cycles / duplicates. */
2479
2480 void
2481 preserve_one_value (struct value *value, struct objfile *objfile,
2482 htab_t copied_types)
2483 {
2484 if (TYPE_OBJFILE (value->type) == objfile)
2485 value->type = copy_type_recursive (objfile, value->type, copied_types);
2486
2487 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2488 value->enclosing_type = copy_type_recursive (objfile,
2489 value->enclosing_type,
2490 copied_types);
2491 }
2492
2493 /* Likewise for internal variable VAR. */
2494
2495 static void
2496 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2497 htab_t copied_types)
2498 {
2499 switch (var->kind)
2500 {
2501 case INTERNALVAR_INTEGER:
2502 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2503 var->u.integer.type
2504 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2505 break;
2506
2507 case INTERNALVAR_VALUE:
2508 preserve_one_value (var->u.value, objfile, copied_types);
2509 break;
2510 }
2511 }
2512
2513 /* Update the internal variables and value history when OBJFILE is
2514 discarded; we must copy the types out of the objfile. New global types
2515 will be created for every convenience variable which currently points to
2516 this objfile's types, and the convenience variables will be adjusted to
2517 use the new global types. */
2518
2519 void
2520 preserve_values (struct objfile *objfile)
2521 {
2522 htab_t copied_types;
2523 struct internalvar *var;
2524
2525 /* Create the hash table. We allocate on the objfile's obstack, since
2526 it is soon to be deleted. */
2527 copied_types = create_copied_types_hash (objfile);
2528
2529 for (const value_ref_ptr &item : value_history)
2530 preserve_one_value (item.get (), objfile, copied_types);
2531
2532 for (var = internalvars; var; var = var->next)
2533 preserve_one_internalvar (var, objfile, copied_types);
2534
2535 preserve_ext_lang_values (objfile, copied_types);
2536
2537 htab_delete (copied_types);
2538 }
2539
2540 static void
2541 show_convenience (const char *ignore, int from_tty)
2542 {
2543 struct gdbarch *gdbarch = get_current_arch ();
2544 struct internalvar *var;
2545 int varseen = 0;
2546 struct value_print_options opts;
2547
2548 get_user_print_options (&opts);
2549 for (var = internalvars; var; var = var->next)
2550 {
2551
2552 if (!varseen)
2553 {
2554 varseen = 1;
2555 }
2556 printf_filtered (("$%s = "), var->name);
2557
2558 try
2559 {
2560 struct value *val;
2561
2562 val = value_of_internalvar (gdbarch, var);
2563 value_print (val, gdb_stdout, &opts);
2564 }
2565 catch (const gdb_exception_error &ex)
2566 {
2567 fprintf_styled (gdb_stdout, metadata_style.style (),
2568 _("<error: %s>"), ex.what ());
2569 }
2570
2571 printf_filtered (("\n"));
2572 }
2573 if (!varseen)
2574 {
2575 /* This text does not mention convenience functions on purpose.
2576 The user can't create them except via Python, and if Python support
2577 is installed this message will never be printed ($_streq will
2578 exist). */
2579 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2580 "Convenience variables have "
2581 "names starting with \"$\";\n"
2582 "use \"set\" as in \"set "
2583 "$foo = 5\" to define them.\n"));
2584 }
2585 }
2586 \f
2587
2588 /* See value.h. */
2589
2590 struct value *
2591 value_from_xmethod (xmethod_worker_up &&worker)
2592 {
2593 struct value *v;
2594
2595 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2596 v->lval = lval_xcallable;
2597 v->location.xm_worker = worker.release ();
2598 v->modifiable = 0;
2599
2600 return v;
2601 }
2602
2603 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2604
2605 struct type *
2606 result_type_of_xmethod (struct value *method, gdb::array_view<value *> argv)
2607 {
2608 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2609 && method->lval == lval_xcallable && !argv.empty ());
2610
2611 return method->location.xm_worker->get_result_type (argv[0], argv.slice (1));
2612 }
2613
2614 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2615
2616 struct value *
2617 call_xmethod (struct value *method, gdb::array_view<value *> argv)
2618 {
2619 gdb_assert (value_type (method)->code () == TYPE_CODE_XMETHOD
2620 && method->lval == lval_xcallable && !argv.empty ());
2621
2622 return method->location.xm_worker->invoke (argv[0], argv.slice (1));
2623 }
2624 \f
2625 /* Extract a value as a C number (either long or double).
2626 Knows how to convert fixed values to double, or
2627 floating values to long.
2628 Does not deallocate the value. */
2629
2630 LONGEST
2631 value_as_long (struct value *val)
2632 {
2633 /* This coerces arrays and functions, which is necessary (e.g.
2634 in disassemble_command). It also dereferences references, which
2635 I suspect is the most logical thing to do. */
2636 val = coerce_array (val);
2637 return unpack_long (value_type (val), value_contents (val));
2638 }
2639
2640 /* Extract a value as a C pointer. Does not deallocate the value.
2641 Note that val's type may not actually be a pointer; value_as_long
2642 handles all the cases. */
2643 CORE_ADDR
2644 value_as_address (struct value *val)
2645 {
2646 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2647
2648 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2649 whether we want this to be true eventually. */
2650 #if 0
2651 /* gdbarch_addr_bits_remove is wrong if we are being called for a
2652 non-address (e.g. argument to "signal", "info break", etc.), or
2653 for pointers to char, in which the low bits *are* significant. */
2654 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
2655 #else
2656
2657 /* There are several targets (IA-64, PowerPC, and others) which
2658 don't represent pointers to functions as simply the address of
2659 the function's entry point. For example, on the IA-64, a
2660 function pointer points to a two-word descriptor, generated by
2661 the linker, which contains the function's entry point, and the
2662 value the IA-64 "global pointer" register should have --- to
2663 support position-independent code. The linker generates
2664 descriptors only for those functions whose addresses are taken.
2665
2666 On such targets, it's difficult for GDB to convert an arbitrary
2667 function address into a function pointer; it has to either find
2668 an existing descriptor for that function, or call malloc and
2669 build its own. On some targets, it is impossible for GDB to
2670 build a descriptor at all: the descriptor must contain a jump
2671 instruction; data memory cannot be executed; and code memory
2672 cannot be modified.
2673
2674 Upon entry to this function, if VAL is a value of type `function'
2675 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
2676 value_address (val) is the address of the function. This is what
2677 you'll get if you evaluate an expression like `main'. The call
2678 to COERCE_ARRAY below actually does all the usual unary
2679 conversions, which includes converting values of type `function'
2680 to `pointer to function'. This is the challenging conversion
2681 discussed above. Then, `unpack_long' will convert that pointer
2682 back into an address.
2683
2684 So, suppose the user types `disassemble foo' on an architecture
2685 with a strange function pointer representation, on which GDB
2686 cannot build its own descriptors, and suppose further that `foo'
2687 has no linker-built descriptor. The address->pointer conversion
2688 will signal an error and prevent the command from running, even
2689 though the next step would have been to convert the pointer
2690 directly back into the same address.
2691
2692 The following shortcut avoids this whole mess. If VAL is a
2693 function, just return its address directly. */
2694 if (value_type (val)->code () == TYPE_CODE_FUNC
2695 || value_type (val)->code () == TYPE_CODE_METHOD)
2696 return value_address (val);
2697
2698 val = coerce_array (val);
2699
2700 /* Some architectures (e.g. Harvard), map instruction and data
2701 addresses onto a single large unified address space. For
2702 instance: An architecture may consider a large integer in the
2703 range 0x10000000 .. 0x1000ffff to already represent a data
2704 addresses (hence not need a pointer to address conversion) while
2705 a small integer would still need to be converted integer to
2706 pointer to address. Just assume such architectures handle all
2707 integer conversions in a single function. */
2708
2709 /* JimB writes:
2710
2711 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2712 must admonish GDB hackers to make sure its behavior matches the
2713 compiler's, whenever possible.
2714
2715 In general, I think GDB should evaluate expressions the same way
2716 the compiler does. When the user copies an expression out of
2717 their source code and hands it to a `print' command, they should
2718 get the same value the compiler would have computed. Any
2719 deviation from this rule can cause major confusion and annoyance,
2720 and needs to be justified carefully. In other words, GDB doesn't
2721 really have the freedom to do these conversions in clever and
2722 useful ways.
2723
2724 AndrewC pointed out that users aren't complaining about how GDB
2725 casts integers to pointers; they are complaining that they can't
2726 take an address from a disassembly listing and give it to `x/i'.
2727 This is certainly important.
2728
2729 Adding an architecture method like integer_to_address() certainly
2730 makes it possible for GDB to "get it right" in all circumstances
2731 --- the target has complete control over how things get done, so
2732 people can Do The Right Thing for their target without breaking
2733 anyone else. The standard doesn't specify how integers get
2734 converted to pointers; usually, the ABI doesn't either, but
2735 ABI-specific code is a more reasonable place to handle it. */
2736
2737 if (value_type (val)->code () != TYPE_CODE_PTR
2738 && !TYPE_IS_REFERENCE (value_type (val))
2739 && gdbarch_integer_to_address_p (gdbarch))
2740 return gdbarch_integer_to_address (gdbarch, value_type (val),
2741 value_contents (val));
2742
2743 return unpack_long (value_type (val), value_contents (val));
2744 #endif
2745 }
2746 \f
2747 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2748 as a long, or as a double, assuming the raw data is described
2749 by type TYPE. Knows how to convert different sizes of values
2750 and can convert between fixed and floating point. We don't assume
2751 any alignment for the raw data. Return value is in host byte order.
2752
2753 If you want functions and arrays to be coerced to pointers, and
2754 references to be dereferenced, call value_as_long() instead.
2755
2756 C++: It is assumed that the front-end has taken care of
2757 all matters concerning pointers to members. A pointer
2758 to member which reaches here is considered to be equivalent
2759 to an INT (or some size). After all, it is only an offset. */
2760
2761 LONGEST
2762 unpack_long (struct type *type, const gdb_byte *valaddr)
2763 {
2764 enum bfd_endian byte_order = type_byte_order (type);
2765 enum type_code code = type->code ();
2766 int len = TYPE_LENGTH (type);
2767 int nosign = type->is_unsigned ();
2768
2769 switch (code)
2770 {
2771 case TYPE_CODE_TYPEDEF:
2772 return unpack_long (check_typedef (type), valaddr);
2773 case TYPE_CODE_ENUM:
2774 case TYPE_CODE_FLAGS:
2775 case TYPE_CODE_BOOL:
2776 case TYPE_CODE_INT:
2777 case TYPE_CODE_CHAR:
2778 case TYPE_CODE_RANGE:
2779 case TYPE_CODE_MEMBERPTR:
2780 {
2781 LONGEST result;
2782 if (nosign)
2783 result = extract_unsigned_integer (valaddr, len, byte_order);
2784 else
2785 result = extract_signed_integer (valaddr, len, byte_order);
2786 if (code == TYPE_CODE_RANGE)
2787 result += type->bounds ()->bias;
2788 return result;
2789 }
2790
2791 case TYPE_CODE_FLT:
2792 case TYPE_CODE_DECFLOAT:
2793 return target_float_to_longest (valaddr, type);
2794
2795 case TYPE_CODE_PTR:
2796 case TYPE_CODE_REF:
2797 case TYPE_CODE_RVALUE_REF:
2798 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2799 whether we want this to be true eventually. */
2800 return extract_typed_address (valaddr, type);
2801
2802 default:
2803 error (_("Value can't be converted to integer."));
2804 }
2805 }
2806
2807 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
2808 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2809 We don't assume any alignment for the raw data. Return value is in
2810 host byte order.
2811
2812 If you want functions and arrays to be coerced to pointers, and
2813 references to be dereferenced, call value_as_address() instead.
2814
2815 C++: It is assumed that the front-end has taken care of
2816 all matters concerning pointers to members. A pointer
2817 to member which reaches here is considered to be equivalent
2818 to an INT (or some size). After all, it is only an offset. */
2819
2820 CORE_ADDR
2821 unpack_pointer (struct type *type, const gdb_byte *valaddr)
2822 {
2823 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2824 whether we want this to be true eventually. */
2825 return unpack_long (type, valaddr);
2826 }
2827
2828 bool
2829 is_floating_value (struct value *val)
2830 {
2831 struct type *type = check_typedef (value_type (val));
2832
2833 if (is_floating_type (type))
2834 {
2835 if (!target_float_is_valid (value_contents (val), type))
2836 error (_("Invalid floating value found in program."));
2837 return true;
2838 }
2839
2840 return false;
2841 }
2842
2843 \f
2844 /* Get the value of the FIELDNO'th field (which must be static) of
2845 TYPE. */
2846
2847 struct value *
2848 value_static_field (struct type *type, int fieldno)
2849 {
2850 struct value *retval;
2851
2852 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
2853 {
2854 case FIELD_LOC_KIND_PHYSADDR:
2855 retval = value_at_lazy (type->field (fieldno).type (),
2856 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
2857 break;
2858 case FIELD_LOC_KIND_PHYSNAME:
2859 {
2860 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2861 /* TYPE_FIELD_NAME (type, fieldno); */
2862 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
2863
2864 if (sym.symbol == NULL)
2865 {
2866 /* With some compilers, e.g. HP aCC, static data members are
2867 reported as non-debuggable symbols. */
2868 struct bound_minimal_symbol msym
2869 = lookup_minimal_symbol (phys_name, NULL, NULL);
2870 struct type *field_type = type->field (fieldno).type ();
2871
2872 if (!msym.minsym)
2873 retval = allocate_optimized_out_value (field_type);
2874 else
2875 retval = value_at_lazy (field_type, BMSYMBOL_VALUE_ADDRESS (msym));
2876 }
2877 else
2878 retval = value_of_variable (sym.symbol, sym.block);
2879 break;
2880 }
2881 default:
2882 gdb_assert_not_reached ("unexpected field location kind");
2883 }
2884
2885 return retval;
2886 }
2887
2888 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2889 You have to be careful here, since the size of the data area for the value
2890 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2891 than the old enclosing type, you have to allocate more space for the
2892 data. */
2893
2894 void
2895 set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2896 {
2897 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2898 {
2899 check_type_length_before_alloc (new_encl_type);
2900 val->contents
2901 .reset ((gdb_byte *) xrealloc (val->contents.release (),
2902 TYPE_LENGTH (new_encl_type)));
2903 }
2904
2905 val->enclosing_type = new_encl_type;
2906 }
2907
2908 /* Given a value ARG1 (offset by OFFSET bytes)
2909 of a struct or union type ARG_TYPE,
2910 extract and return the value of one of its (non-static) fields.
2911 FIELDNO says which field. */
2912
2913 struct value *
2914 value_primitive_field (struct value *arg1, LONGEST offset,
2915 int fieldno, struct type *arg_type)
2916 {
2917 struct value *v;
2918 struct type *type;
2919 struct gdbarch *arch = get_value_arch (arg1);
2920 int unit_size = gdbarch_addressable_memory_unit_size (arch);
2921
2922 arg_type = check_typedef (arg_type);
2923 type = arg_type->field (fieldno).type ();
2924
2925 /* Call check_typedef on our type to make sure that, if TYPE
2926 is a TYPE_CODE_TYPEDEF, its length is set to the length
2927 of the target type instead of zero. However, we do not
2928 replace the typedef type by the target type, because we want
2929 to keep the typedef in order to be able to print the type
2930 description correctly. */
2931 check_typedef (type);
2932
2933 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2934 {
2935 /* Handle packed fields.
2936
2937 Create a new value for the bitfield, with bitpos and bitsize
2938 set. If possible, arrange offset and bitpos so that we can
2939 do a single aligned read of the size of the containing type.
2940 Otherwise, adjust offset to the byte containing the first
2941 bit. Assume that the address, offset, and embedded offset
2942 are sufficiently aligned. */
2943
2944 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2945 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
2946
2947 v = allocate_value_lazy (type);
2948 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2949 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2950 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2951 v->bitpos = bitpos % container_bitsize;
2952 else
2953 v->bitpos = bitpos % 8;
2954 v->offset = (value_embedded_offset (arg1)
2955 + offset
2956 + (bitpos - v->bitpos) / 8);
2957 set_value_parent (v, arg1);
2958 if (!value_lazy (arg1))
2959 value_fetch_lazy (v);
2960 }
2961 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2962 {
2963 /* This field is actually a base subobject, so preserve the
2964 entire object's contents for later references to virtual
2965 bases, etc. */
2966 LONGEST boffset;
2967
2968 /* Lazy register values with offsets are not supported. */
2969 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2970 value_fetch_lazy (arg1);
2971
2972 /* We special case virtual inheritance here because this
2973 requires access to the contents, which we would rather avoid
2974 for references to ordinary fields of unavailable values. */
2975 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2976 boffset = baseclass_offset (arg_type, fieldno,
2977 value_contents (arg1),
2978 value_embedded_offset (arg1),
2979 value_address (arg1),
2980 arg1);
2981 else
2982 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2983
2984 if (value_lazy (arg1))
2985 v = allocate_value_lazy (value_enclosing_type (arg1));
2986 else
2987 {
2988 v = allocate_value (value_enclosing_type (arg1));
2989 value_contents_copy_raw (v, 0, arg1, 0,
2990 TYPE_LENGTH (value_enclosing_type (arg1)));
2991 }
2992 v->type = type;
2993 v->offset = value_offset (arg1);
2994 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
2995 }
2996 else if (NULL != TYPE_DATA_LOCATION (type))
2997 {
2998 /* Field is a dynamic data member. */
2999
3000 gdb_assert (0 == offset);
3001 /* We expect an already resolved data location. */
3002 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3003 /* For dynamic data types defer memory allocation
3004 until we actual access the value. */
3005 v = allocate_value_lazy (type);
3006 }
3007 else
3008 {
3009 /* Plain old data member */
3010 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3011 / (HOST_CHAR_BIT * unit_size));
3012
3013 /* Lazy register values with offsets are not supported. */
3014 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3015 value_fetch_lazy (arg1);
3016
3017 if (value_lazy (arg1))
3018 v = allocate_value_lazy (type);
3019 else
3020 {
3021 v = allocate_value (type);
3022 value_contents_copy_raw (v, value_embedded_offset (v),
3023 arg1, value_embedded_offset (arg1) + offset,
3024 type_length_units (type));
3025 }
3026 v->offset = (value_offset (arg1) + offset
3027 + value_embedded_offset (arg1));
3028 }
3029 set_value_component_location (v, arg1);
3030 return v;
3031 }
3032
3033 /* Given a value ARG1 of a struct or union type,
3034 extract and return the value of one of its (non-static) fields.
3035 FIELDNO says which field. */
3036
3037 struct value *
3038 value_field (struct value *arg1, int fieldno)
3039 {
3040 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
3041 }
3042
3043 /* Return a non-virtual function as a value.
3044 F is the list of member functions which contains the desired method.
3045 J is an index into F which provides the desired method.
3046
3047 We only use the symbol for its address, so be happy with either a
3048 full symbol or a minimal symbol. */
3049
3050 struct value *
3051 value_fn_field (struct value **arg1p, struct fn_field *f,
3052 int j, struct type *type,
3053 LONGEST offset)
3054 {
3055 struct value *v;
3056 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
3057 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
3058 struct symbol *sym;
3059 struct bound_minimal_symbol msym;
3060
3061 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
3062 if (sym != NULL)
3063 {
3064 memset (&msym, 0, sizeof (msym));
3065 }
3066 else
3067 {
3068 gdb_assert (sym == NULL);
3069 msym = lookup_bound_minimal_symbol (physname);
3070 if (msym.minsym == NULL)
3071 return NULL;
3072 }
3073
3074 v = allocate_value (ftype);
3075 VALUE_LVAL (v) = lval_memory;
3076 if (sym)
3077 {
3078 set_value_address (v, BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)));
3079 }
3080 else
3081 {
3082 /* The minimal symbol might point to a function descriptor;
3083 resolve it to the actual code address instead. */
3084 struct objfile *objfile = msym.objfile;
3085 struct gdbarch *gdbarch = objfile->arch ();
3086
3087 set_value_address (v,
3088 gdbarch_convert_from_func_ptr_addr
3089 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), current_top_target ()));
3090 }
3091
3092 if (arg1p)
3093 {
3094 if (type != value_type (*arg1p))
3095 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3096 value_addr (*arg1p)));
3097
3098 /* Move the `this' pointer according to the offset.
3099 VALUE_OFFSET (*arg1p) += offset; */
3100 }
3101
3102 return v;
3103 }
3104
3105 \f
3106
3107 /* See value.h. */
3108
3109 LONGEST
3110 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3111 LONGEST bitpos, LONGEST bitsize)
3112 {
3113 enum bfd_endian byte_order = type_byte_order (field_type);
3114 ULONGEST val;
3115 ULONGEST valmask;
3116 int lsbcount;
3117 LONGEST bytes_read;
3118 LONGEST read_offset;
3119
3120 /* Read the minimum number of bytes required; there may not be
3121 enough bytes to read an entire ULONGEST. */
3122 field_type = check_typedef (field_type);
3123 if (bitsize)
3124 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3125 else
3126 {
3127 bytes_read = TYPE_LENGTH (field_type);
3128 bitsize = 8 * bytes_read;
3129 }
3130
3131 read_offset = bitpos / 8;
3132
3133 val = extract_unsigned_integer (valaddr + read_offset,
3134 bytes_read, byte_order);
3135
3136 /* Extract bits. See comment above. */
3137
3138 if (byte_order == BFD_ENDIAN_BIG)
3139 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
3140 else
3141 lsbcount = (bitpos % 8);
3142 val >>= lsbcount;
3143
3144 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
3145 If the field is signed, and is negative, then sign extend. */
3146
3147 if (bitsize < 8 * (int) sizeof (val))
3148 {
3149 valmask = (((ULONGEST) 1) << bitsize) - 1;
3150 val &= valmask;
3151 if (!field_type->is_unsigned ())
3152 {
3153 if (val & (valmask ^ (valmask >> 1)))
3154 {
3155 val |= ~valmask;
3156 }
3157 }
3158 }
3159
3160 return val;
3161 }
3162
3163 /* Unpack a field FIELDNO of the specified TYPE, from the object at
3164 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3165 ORIGINAL_VALUE, which must not be NULL. See
3166 unpack_value_bits_as_long for more details. */
3167
3168 int
3169 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3170 LONGEST embedded_offset, int fieldno,
3171 const struct value *val, LONGEST *result)
3172 {
3173 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3174 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3175 struct type *field_type = type->field (fieldno).type ();
3176 int bit_offset;
3177
3178 gdb_assert (val != NULL);
3179
3180 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3181 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3182 || !value_bits_available (val, bit_offset, bitsize))
3183 return 0;
3184
3185 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3186 bitpos, bitsize);
3187 return 1;
3188 }
3189
3190 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3191 object at VALADDR. See unpack_bits_as_long for more details. */
3192
3193 LONGEST
3194 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3195 {
3196 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3197 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3198 struct type *field_type = type->field (fieldno).type ();
3199
3200 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3201 }
3202
3203 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3204 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3205 the contents in DEST_VAL, zero or sign extending if the type of
3206 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3207 VAL. If the VAL's contents required to extract the bitfield from
3208 are unavailable/optimized out, DEST_VAL is correspondingly
3209 marked unavailable/optimized out. */
3210
3211 void
3212 unpack_value_bitfield (struct value *dest_val,
3213 LONGEST bitpos, LONGEST bitsize,
3214 const gdb_byte *valaddr, LONGEST embedded_offset,
3215 const struct value *val)
3216 {
3217 enum bfd_endian byte_order;
3218 int src_bit_offset;
3219 int dst_bit_offset;
3220 struct type *field_type = value_type (dest_val);
3221
3222 byte_order = type_byte_order (field_type);
3223
3224 /* First, unpack and sign extend the bitfield as if it was wholly
3225 valid. Optimized out/unavailable bits are read as zero, but
3226 that's OK, as they'll end up marked below. If the VAL is
3227 wholly-invalid we may have skipped allocating its contents,
3228 though. See allocate_optimized_out_value. */
3229 if (valaddr != NULL)
3230 {
3231 LONGEST num;
3232
3233 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3234 bitpos, bitsize);
3235 store_signed_integer (value_contents_raw (dest_val),
3236 TYPE_LENGTH (field_type), byte_order, num);
3237 }
3238
3239 /* Now copy the optimized out / unavailability ranges to the right
3240 bits. */
3241 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3242 if (byte_order == BFD_ENDIAN_BIG)
3243 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3244 else
3245 dst_bit_offset = 0;
3246 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3247 val, src_bit_offset, bitsize);
3248 }
3249
3250 /* Return a new value with type TYPE, which is FIELDNO field of the
3251 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3252 of VAL. If the VAL's contents required to extract the bitfield
3253 from are unavailable/optimized out, the new value is
3254 correspondingly marked unavailable/optimized out. */
3255
3256 struct value *
3257 value_field_bitfield (struct type *type, int fieldno,
3258 const gdb_byte *valaddr,
3259 LONGEST embedded_offset, const struct value *val)
3260 {
3261 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3262 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3263 struct value *res_val = allocate_value (type->field (fieldno).type ());
3264
3265 unpack_value_bitfield (res_val, bitpos, bitsize,
3266 valaddr, embedded_offset, val);
3267
3268 return res_val;
3269 }
3270
3271 /* Modify the value of a bitfield. ADDR points to a block of memory in
3272 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3273 is the desired value of the field, in host byte order. BITPOS and BITSIZE
3274 indicate which bits (in target bit order) comprise the bitfield.
3275 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
3276 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
3277
3278 void
3279 modify_field (struct type *type, gdb_byte *addr,
3280 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
3281 {
3282 enum bfd_endian byte_order = type_byte_order (type);
3283 ULONGEST oword;
3284 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
3285 LONGEST bytesize;
3286
3287 /* Normalize BITPOS. */
3288 addr += bitpos / 8;
3289 bitpos %= 8;
3290
3291 /* If a negative fieldval fits in the field in question, chop
3292 off the sign extension bits. */
3293 if ((~fieldval & ~(mask >> 1)) == 0)
3294 fieldval &= mask;
3295
3296 /* Warn if value is too big to fit in the field in question. */
3297 if (0 != (fieldval & ~mask))
3298 {
3299 /* FIXME: would like to include fieldval in the message, but
3300 we don't have a sprintf_longest. */
3301 warning (_("Value does not fit in %s bits."), plongest (bitsize));
3302
3303 /* Truncate it, otherwise adjoining fields may be corrupted. */
3304 fieldval &= mask;
3305 }
3306
3307 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3308 false valgrind reports. */
3309
3310 bytesize = (bitpos + bitsize + 7) / 8;
3311 oword = extract_unsigned_integer (addr, bytesize, byte_order);
3312
3313 /* Shifting for bit field depends on endianness of the target machine. */
3314 if (byte_order == BFD_ENDIAN_BIG)
3315 bitpos = bytesize * 8 - bitpos - bitsize;
3316
3317 oword &= ~(mask << bitpos);
3318 oword |= fieldval << bitpos;
3319
3320 store_unsigned_integer (addr, bytesize, byte_order, oword);
3321 }
3322 \f
3323 /* Pack NUM into BUF using a target format of TYPE. */
3324
3325 void
3326 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
3327 {
3328 enum bfd_endian byte_order = type_byte_order (type);
3329 LONGEST len;
3330
3331 type = check_typedef (type);
3332 len = TYPE_LENGTH (type);
3333
3334 switch (type->code ())
3335 {
3336 case TYPE_CODE_RANGE:
3337 num -= type->bounds ()->bias;
3338 /* Fall through. */
3339 case TYPE_CODE_INT:
3340 case TYPE_CODE_CHAR:
3341 case TYPE_CODE_ENUM:
3342 case TYPE_CODE_FLAGS:
3343 case TYPE_CODE_BOOL:
3344 case TYPE_CODE_MEMBERPTR:
3345 store_signed_integer (buf, len, byte_order, num);
3346 break;
3347
3348 case TYPE_CODE_REF:
3349 case TYPE_CODE_RVALUE_REF:
3350 case TYPE_CODE_PTR:
3351 store_typed_address (buf, type, (CORE_ADDR) num);
3352 break;
3353
3354 case TYPE_CODE_FLT:
3355 case TYPE_CODE_DECFLOAT:
3356 target_float_from_longest (buf, type, num);
3357 break;
3358
3359 default:
3360 error (_("Unexpected type (%d) encountered for integer constant."),
3361 type->code ());
3362 }
3363 }
3364
3365
3366 /* Pack NUM into BUF using a target format of TYPE. */
3367
3368 static void
3369 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3370 {
3371 LONGEST len;
3372 enum bfd_endian byte_order;
3373
3374 type = check_typedef (type);
3375 len = TYPE_LENGTH (type);
3376 byte_order = type_byte_order (type);
3377
3378 switch (type->code ())
3379 {
3380 case TYPE_CODE_INT:
3381 case TYPE_CODE_CHAR:
3382 case TYPE_CODE_ENUM:
3383 case TYPE_CODE_FLAGS:
3384 case TYPE_CODE_BOOL:
3385 case TYPE_CODE_RANGE:
3386 case TYPE_CODE_MEMBERPTR:
3387 store_unsigned_integer (buf, len, byte_order, num);
3388 break;
3389
3390 case TYPE_CODE_REF:
3391 case TYPE_CODE_RVALUE_REF:
3392 case TYPE_CODE_PTR:
3393 store_typed_address (buf, type, (CORE_ADDR) num);
3394 break;
3395
3396 case TYPE_CODE_FLT:
3397 case TYPE_CODE_DECFLOAT:
3398 target_float_from_ulongest (buf, type, num);
3399 break;
3400
3401 default:
3402 error (_("Unexpected type (%d) encountered "
3403 "for unsigned integer constant."),
3404 type->code ());
3405 }
3406 }
3407
3408
3409 /* Convert C numbers into newly allocated values. */
3410
3411 struct value *
3412 value_from_longest (struct type *type, LONGEST num)
3413 {
3414 struct value *val = allocate_value (type);
3415
3416 pack_long (value_contents_raw (val), type, num);
3417 return val;
3418 }
3419
3420
3421 /* Convert C unsigned numbers into newly allocated values. */
3422
3423 struct value *
3424 value_from_ulongest (struct type *type, ULONGEST num)
3425 {
3426 struct value *val = allocate_value (type);
3427
3428 pack_unsigned_long (value_contents_raw (val), type, num);
3429
3430 return val;
3431 }
3432
3433
3434 /* Create a value representing a pointer of type TYPE to the address
3435 ADDR. */
3436
3437 struct value *
3438 value_from_pointer (struct type *type, CORE_ADDR addr)
3439 {
3440 struct value *val = allocate_value (type);
3441
3442 store_typed_address (value_contents_raw (val),
3443 check_typedef (type), addr);
3444 return val;
3445 }
3446
3447 /* Create and return a value object of TYPE containing the value D. The
3448 TYPE must be of TYPE_CODE_FLT, and must be large enough to hold D once
3449 it is converted to target format. */
3450
3451 struct value *
3452 value_from_host_double (struct type *type, double d)
3453 {
3454 struct value *value = allocate_value (type);
3455 gdb_assert (type->code () == TYPE_CODE_FLT);
3456 target_float_from_host_double (value_contents_raw (value),
3457 value_type (value), d);
3458 return value;
3459 }
3460
3461 /* Create a value of type TYPE whose contents come from VALADDR, if it
3462 is non-null, and whose memory address (in the inferior) is
3463 ADDRESS. The type of the created value may differ from the passed
3464 type TYPE. Make sure to retrieve values new type after this call.
3465 Note that TYPE is not passed through resolve_dynamic_type; this is
3466 a special API intended for use only by Ada. */
3467
3468 struct value *
3469 value_from_contents_and_address_unresolved (struct type *type,
3470 const gdb_byte *valaddr,
3471 CORE_ADDR address)
3472 {
3473 struct value *v;
3474
3475 if (valaddr == NULL)
3476 v = allocate_value_lazy (type);
3477 else
3478 v = value_from_contents (type, valaddr);
3479 VALUE_LVAL (v) = lval_memory;
3480 set_value_address (v, address);
3481 return v;
3482 }
3483
3484 /* Create a value of type TYPE whose contents come from VALADDR, if it
3485 is non-null, and whose memory address (in the inferior) is
3486 ADDRESS. The type of the created value may differ from the passed
3487 type TYPE. Make sure to retrieve values new type after this call. */
3488
3489 struct value *
3490 value_from_contents_and_address (struct type *type,
3491 const gdb_byte *valaddr,
3492 CORE_ADDR address)
3493 {
3494 gdb::array_view<const gdb_byte> view;
3495 if (valaddr != nullptr)
3496 view = gdb::make_array_view (valaddr, TYPE_LENGTH (type));
3497 struct type *resolved_type = resolve_dynamic_type (type, view, address);
3498 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
3499 struct value *v;
3500
3501 if (valaddr == NULL)
3502 v = allocate_value_lazy (resolved_type);
3503 else
3504 v = value_from_contents (resolved_type, valaddr);
3505 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3506 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3507 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
3508 VALUE_LVAL (v) = lval_memory;
3509 set_value_address (v, address);
3510 return v;
3511 }
3512
3513 /* Create a value of type TYPE holding the contents CONTENTS.
3514 The new value is `not_lval'. */
3515
3516 struct value *
3517 value_from_contents (struct type *type, const gdb_byte *contents)
3518 {
3519 struct value *result;
3520
3521 result = allocate_value (type);
3522 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3523 return result;
3524 }
3525
3526 /* Extract a value from the history file. Input will be of the form
3527 $digits or $$digits. See block comment above 'write_dollar_variable'
3528 for details. */
3529
3530 struct value *
3531 value_from_history_ref (const char *h, const char **endp)
3532 {
3533 int index, len;
3534
3535 if (h[0] == '$')
3536 len = 1;
3537 else
3538 return NULL;
3539
3540 if (h[1] == '$')
3541 len = 2;
3542
3543 /* Find length of numeral string. */
3544 for (; isdigit (h[len]); len++)
3545 ;
3546
3547 /* Make sure numeral string is not part of an identifier. */
3548 if (h[len] == '_' || isalpha (h[len]))
3549 return NULL;
3550
3551 /* Now collect the index value. */
3552 if (h[1] == '$')
3553 {
3554 if (len == 2)
3555 {
3556 /* For some bizarre reason, "$$" is equivalent to "$$1",
3557 rather than to "$$0" as it ought to be! */
3558 index = -1;
3559 *endp += len;
3560 }
3561 else
3562 {
3563 char *local_end;
3564
3565 index = -strtol (&h[2], &local_end, 10);
3566 *endp = local_end;
3567 }
3568 }
3569 else
3570 {
3571 if (len == 1)
3572 {
3573 /* "$" is equivalent to "$0". */
3574 index = 0;
3575 *endp += len;
3576 }
3577 else
3578 {
3579 char *local_end;
3580
3581 index = strtol (&h[1], &local_end, 10);
3582 *endp = local_end;
3583 }
3584 }
3585
3586 return access_value_history (index);
3587 }
3588
3589 /* Get the component value (offset by OFFSET bytes) of a struct or
3590 union WHOLE. Component's type is TYPE. */
3591
3592 struct value *
3593 value_from_component (struct value *whole, struct type *type, LONGEST offset)
3594 {
3595 struct value *v;
3596
3597 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3598 v = allocate_value_lazy (type);
3599 else
3600 {
3601 v = allocate_value (type);
3602 value_contents_copy (v, value_embedded_offset (v),
3603 whole, value_embedded_offset (whole) + offset,
3604 type_length_units (type));
3605 }
3606 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3607 set_value_component_location (v, whole);
3608
3609 return v;
3610 }
3611
3612 struct value *
3613 coerce_ref_if_computed (const struct value *arg)
3614 {
3615 const struct lval_funcs *funcs;
3616
3617 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
3618 return NULL;
3619
3620 if (value_lval_const (arg) != lval_computed)
3621 return NULL;
3622
3623 funcs = value_computed_funcs (arg);
3624 if (funcs->coerce_ref == NULL)
3625 return NULL;
3626
3627 return funcs->coerce_ref (arg);
3628 }
3629
3630 /* Look at value.h for description. */
3631
3632 struct value *
3633 readjust_indirect_value_type (struct value *value, struct type *enc_type,
3634 const struct type *original_type,
3635 struct value *original_value,
3636 CORE_ADDR original_value_address)
3637 {
3638 gdb_assert (original_type->code () == TYPE_CODE_PTR
3639 || TYPE_IS_REFERENCE (original_type));
3640
3641 struct type *original_target_type = TYPE_TARGET_TYPE (original_type);
3642 gdb::array_view<const gdb_byte> view;
3643 struct type *resolved_original_target_type
3644 = resolve_dynamic_type (original_target_type, view,
3645 original_value_address);
3646
3647 /* Re-adjust type. */
3648 deprecated_set_value_type (value, resolved_original_target_type);
3649
3650 /* Add embedding info. */
3651 set_value_enclosing_type (value, enc_type);
3652 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3653
3654 /* We may be pointing to an object of some derived type. */
3655 return value_full_object (value, NULL, 0, 0, 0);
3656 }
3657
3658 struct value *
3659 coerce_ref (struct value *arg)
3660 {
3661 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
3662 struct value *retval;
3663 struct type *enc_type;
3664
3665 retval = coerce_ref_if_computed (arg);
3666 if (retval)
3667 return retval;
3668
3669 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
3670 return arg;
3671
3672 enc_type = check_typedef (value_enclosing_type (arg));
3673 enc_type = TYPE_TARGET_TYPE (enc_type);
3674
3675 CORE_ADDR addr = unpack_pointer (value_type (arg), value_contents (arg));
3676 retval = value_at_lazy (enc_type, addr);
3677 enc_type = value_type (retval);
3678 return readjust_indirect_value_type (retval, enc_type, value_type_arg_tmp,
3679 arg, addr);
3680 }
3681
3682 struct value *
3683 coerce_array (struct value *arg)
3684 {
3685 struct type *type;
3686
3687 arg = coerce_ref (arg);
3688 type = check_typedef (value_type (arg));
3689
3690 switch (type->code ())
3691 {
3692 case TYPE_CODE_ARRAY:
3693 if (!type->is_vector () && current_language->c_style_arrays_p ())
3694 arg = value_coerce_array (arg);
3695 break;
3696 case TYPE_CODE_FUNC:
3697 arg = value_coerce_function (arg);
3698 break;
3699 }
3700 return arg;
3701 }
3702 \f
3703
3704 /* Return the return value convention that will be used for the
3705 specified type. */
3706
3707 enum return_value_convention
3708 struct_return_convention (struct gdbarch *gdbarch,
3709 struct value *function, struct type *value_type)
3710 {
3711 enum type_code code = value_type->code ();
3712
3713 if (code == TYPE_CODE_ERROR)
3714 error (_("Function return type unknown."));
3715
3716 /* Probe the architecture for the return-value convention. */
3717 return gdbarch_return_value (gdbarch, function, value_type,
3718 NULL, NULL, NULL);
3719 }
3720
3721 /* Return true if the function returning the specified type is using
3722 the convention of returning structures in memory (passing in the
3723 address as a hidden first parameter). */
3724
3725 int
3726 using_struct_return (struct gdbarch *gdbarch,
3727 struct value *function, struct type *value_type)
3728 {
3729 if (value_type->code () == TYPE_CODE_VOID)
3730 /* A void return value is never in memory. See also corresponding
3731 code in "print_return_value". */
3732 return 0;
3733
3734 return (struct_return_convention (gdbarch, function, value_type)
3735 != RETURN_VALUE_REGISTER_CONVENTION);
3736 }
3737
3738 /* Set the initialized field in a value struct. */
3739
3740 void
3741 set_value_initialized (struct value *val, int status)
3742 {
3743 val->initialized = status;
3744 }
3745
3746 /* Return the initialized field in a value struct. */
3747
3748 int
3749 value_initialized (const struct value *val)
3750 {
3751 return val->initialized;
3752 }
3753
3754 /* Helper for value_fetch_lazy when the value is a bitfield. */
3755
3756 static void
3757 value_fetch_lazy_bitfield (struct value *val)
3758 {
3759 gdb_assert (value_bitsize (val) != 0);
3760
3761 /* To read a lazy bitfield, read the entire enclosing value. This
3762 prevents reading the same block of (possibly volatile) memory once
3763 per bitfield. It would be even better to read only the containing
3764 word, but we have no way to record that just specific bits of a
3765 value have been fetched. */
3766 struct value *parent = value_parent (val);
3767
3768 if (value_lazy (parent))
3769 value_fetch_lazy (parent);
3770
3771 unpack_value_bitfield (val, value_bitpos (val), value_bitsize (val),
3772 value_contents_for_printing (parent),
3773 value_offset (val), parent);
3774 }
3775
3776 /* Helper for value_fetch_lazy when the value is in memory. */
3777
3778 static void
3779 value_fetch_lazy_memory (struct value *val)
3780 {
3781 gdb_assert (VALUE_LVAL (val) == lval_memory);
3782
3783 CORE_ADDR addr = value_address (val);
3784 struct type *type = check_typedef (value_enclosing_type (val));
3785
3786 if (TYPE_LENGTH (type))
3787 read_value_memory (val, 0, value_stack (val),
3788 addr, value_contents_all_raw (val),
3789 type_length_units (type));
3790 }
3791
3792 /* Helper for value_fetch_lazy when the value is in a register. */
3793
3794 static void
3795 value_fetch_lazy_register (struct value *val)
3796 {
3797 struct frame_info *next_frame;
3798 int regnum;
3799 struct type *type = check_typedef (value_type (val));
3800 struct value *new_val = val, *mark = value_mark ();
3801
3802 /* Offsets are not supported here; lazy register values must
3803 refer to the entire register. */
3804 gdb_assert (value_offset (val) == 0);
3805
3806 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3807 {
3808 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
3809
3810 next_frame = frame_find_by_id (next_frame_id);
3811 regnum = VALUE_REGNUM (new_val);
3812
3813 gdb_assert (next_frame != NULL);
3814
3815 /* Convertible register routines are used for multi-register
3816 values and for interpretation in different types
3817 (e.g. float or int from a double register). Lazy
3818 register values should have the register's natural type,
3819 so they do not apply. */
3820 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
3821 regnum, type));
3822
3823 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
3824 Since a "->next" operation was performed when setting
3825 this field, we do not need to perform a "next" operation
3826 again when unwinding the register. That's why
3827 frame_unwind_register_value() is called here instead of
3828 get_frame_register_value(). */
3829 new_val = frame_unwind_register_value (next_frame, regnum);
3830
3831 /* If we get another lazy lval_register value, it means the
3832 register is found by reading it from NEXT_FRAME's next frame.
3833 frame_unwind_register_value should never return a value with
3834 the frame id pointing to NEXT_FRAME. If it does, it means we
3835 either have two consecutive frames with the same frame id
3836 in the frame chain, or some code is trying to unwind
3837 behind get_prev_frame's back (e.g., a frame unwind
3838 sniffer trying to unwind), bypassing its validations. In
3839 any case, it should always be an internal error to end up
3840 in this situation. */
3841 if (VALUE_LVAL (new_val) == lval_register
3842 && value_lazy (new_val)
3843 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
3844 internal_error (__FILE__, __LINE__,
3845 _("infinite loop while fetching a register"));
3846 }
3847
3848 /* If it's still lazy (for instance, a saved register on the
3849 stack), fetch it. */
3850 if (value_lazy (new_val))
3851 value_fetch_lazy (new_val);
3852
3853 /* Copy the contents and the unavailability/optimized-out
3854 meta-data from NEW_VAL to VAL. */
3855 set_value_lazy (val, 0);
3856 value_contents_copy (val, value_embedded_offset (val),
3857 new_val, value_embedded_offset (new_val),
3858 type_length_units (type));
3859
3860 if (frame_debug)
3861 {
3862 struct gdbarch *gdbarch;
3863 struct frame_info *frame;
3864 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
3865 so that the frame level will be shown correctly. */
3866 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3867 regnum = VALUE_REGNUM (val);
3868 gdbarch = get_frame_arch (frame);
3869
3870 fprintf_unfiltered (gdb_stdlog,
3871 "{ value_fetch_lazy "
3872 "(frame=%d,regnum=%d(%s),...) ",
3873 frame_relative_level (frame), regnum,
3874 user_reg_map_regnum_to_name (gdbarch, regnum));
3875
3876 fprintf_unfiltered (gdb_stdlog, "->");
3877 if (value_optimized_out (new_val))
3878 {
3879 fprintf_unfiltered (gdb_stdlog, " ");
3880 val_print_optimized_out (new_val, gdb_stdlog);
3881 }
3882 else
3883 {
3884 int i;
3885 const gdb_byte *buf = value_contents (new_val);
3886
3887 if (VALUE_LVAL (new_val) == lval_register)
3888 fprintf_unfiltered (gdb_stdlog, " register=%d",
3889 VALUE_REGNUM (new_val));
3890 else if (VALUE_LVAL (new_val) == lval_memory)
3891 fprintf_unfiltered (gdb_stdlog, " address=%s",
3892 paddress (gdbarch,
3893 value_address (new_val)));
3894 else
3895 fprintf_unfiltered (gdb_stdlog, " computed");
3896
3897 fprintf_unfiltered (gdb_stdlog, " bytes=");
3898 fprintf_unfiltered (gdb_stdlog, "[");
3899 for (i = 0; i < register_size (gdbarch, regnum); i++)
3900 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3901 fprintf_unfiltered (gdb_stdlog, "]");
3902 }
3903
3904 fprintf_unfiltered (gdb_stdlog, " }\n");
3905 }
3906
3907 /* Dispose of the intermediate values. This prevents
3908 watchpoints from trying to watch the saved frame pointer. */
3909 value_free_to_mark (mark);
3910 }
3911
3912 /* Load the actual content of a lazy value. Fetch the data from the
3913 user's process and clear the lazy flag to indicate that the data in
3914 the buffer is valid.
3915
3916 If the value is zero-length, we avoid calling read_memory, which
3917 would abort. We mark the value as fetched anyway -- all 0 bytes of
3918 it. */
3919
3920 void
3921 value_fetch_lazy (struct value *val)
3922 {
3923 gdb_assert (value_lazy (val));
3924 allocate_value_contents (val);
3925 /* A value is either lazy, or fully fetched. The
3926 availability/validity is only established as we try to fetch a
3927 value. */
3928 gdb_assert (val->optimized_out.empty ());
3929 gdb_assert (val->unavailable.empty ());
3930 if (value_bitsize (val))
3931 value_fetch_lazy_bitfield (val);
3932 else if (VALUE_LVAL (val) == lval_memory)
3933 value_fetch_lazy_memory (val);
3934 else if (VALUE_LVAL (val) == lval_register)
3935 value_fetch_lazy_register (val);
3936 else if (VALUE_LVAL (val) == lval_computed
3937 && value_computed_funcs (val)->read != NULL)
3938 value_computed_funcs (val)->read (val);
3939 else
3940 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3941
3942 set_value_lazy (val, 0);
3943 }
3944
3945 /* Implementation of the convenience function $_isvoid. */
3946
3947 static struct value *
3948 isvoid_internal_fn (struct gdbarch *gdbarch,
3949 const struct language_defn *language,
3950 void *cookie, int argc, struct value **argv)
3951 {
3952 int ret;
3953
3954 if (argc != 1)
3955 error (_("You must provide one argument for $_isvoid."));
3956
3957 ret = value_type (argv[0])->code () == TYPE_CODE_VOID;
3958
3959 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3960 }
3961
3962 /* Implementation of the convenience function $_creal. Extracts the
3963 real part from a complex number. */
3964
3965 static struct value *
3966 creal_internal_fn (struct gdbarch *gdbarch,
3967 const struct language_defn *language,
3968 void *cookie, int argc, struct value **argv)
3969 {
3970 if (argc != 1)
3971 error (_("You must provide one argument for $_creal."));
3972
3973 value *cval = argv[0];
3974 type *ctype = check_typedef (value_type (cval));
3975 if (ctype->code () != TYPE_CODE_COMPLEX)
3976 error (_("expected a complex number"));
3977 return value_real_part (cval);
3978 }
3979
3980 /* Implementation of the convenience function $_cimag. Extracts the
3981 imaginary part from a complex number. */
3982
3983 static struct value *
3984 cimag_internal_fn (struct gdbarch *gdbarch,
3985 const struct language_defn *language,
3986 void *cookie, int argc,
3987 struct value **argv)
3988 {
3989 if (argc != 1)
3990 error (_("You must provide one argument for $_cimag."));
3991
3992 value *cval = argv[0];
3993 type *ctype = check_typedef (value_type (cval));
3994 if (ctype->code () != TYPE_CODE_COMPLEX)
3995 error (_("expected a complex number"));
3996 return value_imaginary_part (cval);
3997 }
3998
3999 #if GDB_SELF_TEST
4000 namespace selftests
4001 {
4002
4003 /* Test the ranges_contain function. */
4004
4005 static void
4006 test_ranges_contain ()
4007 {
4008 std::vector<range> ranges;
4009 range r;
4010
4011 /* [10, 14] */
4012 r.offset = 10;
4013 r.length = 5;
4014 ranges.push_back (r);
4015
4016 /* [20, 24] */
4017 r.offset = 20;
4018 r.length = 5;
4019 ranges.push_back (r);
4020
4021 /* [2, 6] */
4022 SELF_CHECK (!ranges_contain (ranges, 2, 5));
4023 /* [9, 13] */
4024 SELF_CHECK (ranges_contain (ranges, 9, 5));
4025 /* [10, 11] */
4026 SELF_CHECK (ranges_contain (ranges, 10, 2));
4027 /* [10, 14] */
4028 SELF_CHECK (ranges_contain (ranges, 10, 5));
4029 /* [13, 18] */
4030 SELF_CHECK (ranges_contain (ranges, 13, 6));
4031 /* [14, 18] */
4032 SELF_CHECK (ranges_contain (ranges, 14, 5));
4033 /* [15, 18] */
4034 SELF_CHECK (!ranges_contain (ranges, 15, 4));
4035 /* [16, 19] */
4036 SELF_CHECK (!ranges_contain (ranges, 16, 4));
4037 /* [16, 21] */
4038 SELF_CHECK (ranges_contain (ranges, 16, 6));
4039 /* [21, 21] */
4040 SELF_CHECK (ranges_contain (ranges, 21, 1));
4041 /* [21, 25] */
4042 SELF_CHECK (ranges_contain (ranges, 21, 5));
4043 /* [26, 28] */
4044 SELF_CHECK (!ranges_contain (ranges, 26, 3));
4045 }
4046
4047 /* Check that RANGES contains the same ranges as EXPECTED. */
4048
4049 static bool
4050 check_ranges_vector (gdb::array_view<const range> ranges,
4051 gdb::array_view<const range> expected)
4052 {
4053 return ranges == expected;
4054 }
4055
4056 /* Test the insert_into_bit_range_vector function. */
4057
4058 static void
4059 test_insert_into_bit_range_vector ()
4060 {
4061 std::vector<range> ranges;
4062
4063 /* [10, 14] */
4064 {
4065 insert_into_bit_range_vector (&ranges, 10, 5);
4066 static const range expected[] = {
4067 {10, 5}
4068 };
4069 SELF_CHECK (check_ranges_vector (ranges, expected));
4070 }
4071
4072 /* [10, 14] */
4073 {
4074 insert_into_bit_range_vector (&ranges, 11, 4);
4075 static const range expected = {10, 5};
4076 SELF_CHECK (check_ranges_vector (ranges, expected));
4077 }
4078
4079 /* [10, 14] [20, 24] */
4080 {
4081 insert_into_bit_range_vector (&ranges, 20, 5);
4082 static const range expected[] = {
4083 {10, 5},
4084 {20, 5},
4085 };
4086 SELF_CHECK (check_ranges_vector (ranges, expected));
4087 }
4088
4089 /* [10, 14] [17, 24] */
4090 {
4091 insert_into_bit_range_vector (&ranges, 17, 5);
4092 static const range expected[] = {
4093 {10, 5},
4094 {17, 8},
4095 };
4096 SELF_CHECK (check_ranges_vector (ranges, expected));
4097 }
4098
4099 /* [2, 8] [10, 14] [17, 24] */
4100 {
4101 insert_into_bit_range_vector (&ranges, 2, 7);
4102 static const range expected[] = {
4103 {2, 7},
4104 {10, 5},
4105 {17, 8},
4106 };
4107 SELF_CHECK (check_ranges_vector (ranges, expected));
4108 }
4109
4110 /* [2, 14] [17, 24] */
4111 {
4112 insert_into_bit_range_vector (&ranges, 9, 1);
4113 static const range expected[] = {
4114 {2, 13},
4115 {17, 8},
4116 };
4117 SELF_CHECK (check_ranges_vector (ranges, expected));
4118 }
4119
4120 /* [2, 14] [17, 24] */
4121 {
4122 insert_into_bit_range_vector (&ranges, 9, 1);
4123 static const range expected[] = {
4124 {2, 13},
4125 {17, 8},
4126 };
4127 SELF_CHECK (check_ranges_vector (ranges, expected));
4128 }
4129
4130 /* [2, 33] */
4131 {
4132 insert_into_bit_range_vector (&ranges, 4, 30);
4133 static const range expected = {2, 32};
4134 SELF_CHECK (check_ranges_vector (ranges, expected));
4135 }
4136 }
4137
4138 } /* namespace selftests */
4139 #endif /* GDB_SELF_TEST */
4140
4141 void _initialize_values ();
4142 void
4143 _initialize_values ()
4144 {
4145 add_cmd ("convenience", no_class, show_convenience, _("\
4146 Debugger convenience (\"$foo\") variables and functions.\n\
4147 Convenience variables are created when you assign them values;\n\
4148 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
4149 \n\
4150 A few convenience variables are given values automatically:\n\
4151 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
4152 \"$__\" holds the contents of the last address examined with \"x\"."
4153 #ifdef HAVE_PYTHON
4154 "\n\n\
4155 Convenience functions are defined via the Python API."
4156 #endif
4157 ), &showlist);
4158 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
4159
4160 add_cmd ("values", no_set_class, show_values, _("\
4161 Elements of value history around item number IDX (or last ten)."),
4162 &showlist);
4163
4164 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4165 Initialize a convenience variable if necessary.\n\
4166 init-if-undefined VARIABLE = EXPRESSION\n\
4167 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4168 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4169 VARIABLE is already initialized."));
4170
4171 add_prefix_cmd ("function", no_class, function_command, _("\
4172 Placeholder command for showing help on convenience functions."),
4173 &functionlist, "function ", 0, &cmdlist);
4174
4175 add_internal_function ("_isvoid", _("\
4176 Check whether an expression is void.\n\
4177 Usage: $_isvoid (expression)\n\
4178 Return 1 if the expression is void, zero otherwise."),
4179 isvoid_internal_fn, NULL);
4180
4181 add_internal_function ("_creal", _("\
4182 Extract the real part of a complex number.\n\
4183 Usage: $_creal (expression)\n\
4184 Return the real part of a complex number, the type depends on the\n\
4185 type of a complex number."),
4186 creal_internal_fn, NULL);
4187
4188 add_internal_function ("_cimag", _("\
4189 Extract the imaginary part of a complex number.\n\
4190 Usage: $_cimag (expression)\n\
4191 Return the imaginary part of a complex number, the type depends on the\n\
4192 type of a complex number."),
4193 cimag_internal_fn, NULL);
4194
4195 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4196 class_support, &max_value_size, _("\
4197 Set maximum sized value gdb will load from the inferior."), _("\
4198 Show maximum sized value gdb will load from the inferior."), _("\
4199 Use this to control the maximum size, in bytes, of a value that gdb\n\
4200 will load from the inferior. Setting this value to 'unlimited'\n\
4201 disables checking.\n\
4202 Setting this does not invalidate already allocated values, it only\n\
4203 prevents future values, larger than this size, from being allocated."),
4204 set_max_value_size,
4205 show_max_value_size,
4206 &setlist, &showlist);
4207 #if GDB_SELF_TEST
4208 selftests::register_test ("ranges_contain", selftests::test_ranges_contain);
4209 selftests::register_test ("insert_into_bit_range_vector",
4210 selftests::test_insert_into_bit_range_vector);
4211 #endif
4212 }
4213
4214 /* See value.h. */
4215
4216 void
4217 finalize_values ()
4218 {
4219 all_values.clear ();
4220 }
This page took 0.246524 seconds and 5 git commands to generate.