* value.c (value_from_contents_and_address): Always return
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38 #include "objfiles.h"
39 #include "valprint.h"
40
41 #include "python/python.h"
42
43 /* Prototypes for exported functions. */
44
45 void _initialize_values (void);
46
47 struct value
48 {
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
166 /* Actual contents of the value. Target byte-order. NULL or not
167 valid if lazy is nonzero. */
168 gdb_byte *contents;
169 };
170
171 /* Prototypes for local functions. */
172
173 static void show_values (char *, int);
174
175 static void show_convenience (char *, int);
176
177
178 /* The value-history records all the values printed
179 by print commands during this session. Each chunk
180 records 60 consecutive values. The first chunk on
181 the chain records the most recent values.
182 The total number of values is in value_history_count. */
183
184 #define VALUE_HISTORY_CHUNK 60
185
186 struct value_history_chunk
187 {
188 struct value_history_chunk *next;
189 struct value *values[VALUE_HISTORY_CHUNK];
190 };
191
192 /* Chain of chunks now in use. */
193
194 static struct value_history_chunk *value_history_chain;
195
196 static int value_history_count; /* Abs number of last entry stored */
197 \f
198 /* List of all value objects currently allocated
199 (except for those released by calls to release_value)
200 This is so they can be freed after each command. */
201
202 static struct value *all_values;
203
204 /* Allocate a lazy value for type TYPE. Its actual content is
205 "lazily" allocated too: the content field of the return value is
206 NULL; it will be allocated when it is fetched from the target. */
207
208 struct value *
209 allocate_value_lazy (struct type *type)
210 {
211 struct value *val;
212 struct type *atype = check_typedef (type);
213
214 val = (struct value *) xzalloc (sizeof (struct value));
215 val->contents = NULL;
216 val->next = all_values;
217 all_values = val;
218 val->type = type;
219 val->enclosing_type = type;
220 VALUE_LVAL (val) = not_lval;
221 VALUE_ADDRESS (val) = 0;
222 VALUE_FRAME_ID (val) = null_frame_id;
223 val->offset = 0;
224 val->bitpos = 0;
225 val->bitsize = 0;
226 VALUE_REGNUM (val) = -1;
227 val->lazy = 1;
228 val->optimized_out = 0;
229 val->embedded_offset = 0;
230 val->pointed_to_offset = 0;
231 val->modifiable = 1;
232 val->initialized = 1; /* Default to initialized. */
233 return val;
234 }
235
236 /* Allocate the contents of VAL if it has not been allocated yet. */
237
238 void
239 allocate_value_contents (struct value *val)
240 {
241 if (!val->contents)
242 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
243 }
244
245 /* Allocate a value and its contents for type TYPE. */
246
247 struct value *
248 allocate_value (struct type *type)
249 {
250 struct value *val = allocate_value_lazy (type);
251 allocate_value_contents (val);
252 val->lazy = 0;
253 return val;
254 }
255
256 /* Allocate a value that has the correct length
257 for COUNT repetitions of type TYPE. */
258
259 struct value *
260 allocate_repeat_value (struct type *type, int count)
261 {
262 int low_bound = current_language->string_lower_bound; /* ??? */
263 /* FIXME-type-allocation: need a way to free this type when we are
264 done with it. */
265 struct type *range_type
266 = create_range_type ((struct type *) NULL, builtin_type_int32,
267 low_bound, count + low_bound - 1);
268 /* FIXME-type-allocation: need a way to free this type when we are
269 done with it. */
270 return allocate_value (create_array_type ((struct type *) NULL,
271 type, range_type));
272 }
273
274 /* Needed if another module needs to maintain its on list of values. */
275 void
276 value_prepend_to_list (struct value **head, struct value *val)
277 {
278 val->next = *head;
279 *head = val;
280 }
281
282 /* Needed if another module needs to maintain its on list of values. */
283 void
284 value_remove_from_list (struct value **head, struct value *val)
285 {
286 struct value *prev;
287
288 if (*head == val)
289 *head = (*head)->next;
290 else
291 for (prev = *head; prev->next; prev = prev->next)
292 if (prev->next == val)
293 {
294 prev->next = val->next;
295 break;
296 }
297 }
298
299 /* Accessor methods. */
300
301 struct value *
302 value_next (struct value *value)
303 {
304 return value->next;
305 }
306
307 struct type *
308 value_type (struct value *value)
309 {
310 return value->type;
311 }
312 void
313 deprecated_set_value_type (struct value *value, struct type *type)
314 {
315 value->type = type;
316 }
317
318 int
319 value_offset (struct value *value)
320 {
321 return value->offset;
322 }
323 void
324 set_value_offset (struct value *value, int offset)
325 {
326 value->offset = offset;
327 }
328
329 int
330 value_bitpos (struct value *value)
331 {
332 return value->bitpos;
333 }
334 void
335 set_value_bitpos (struct value *value, int bit)
336 {
337 value->bitpos = bit;
338 }
339
340 int
341 value_bitsize (struct value *value)
342 {
343 return value->bitsize;
344 }
345 void
346 set_value_bitsize (struct value *value, int bit)
347 {
348 value->bitsize = bit;
349 }
350
351 gdb_byte *
352 value_contents_raw (struct value *value)
353 {
354 allocate_value_contents (value);
355 return value->contents + value->embedded_offset;
356 }
357
358 gdb_byte *
359 value_contents_all_raw (struct value *value)
360 {
361 allocate_value_contents (value);
362 return value->contents;
363 }
364
365 struct type *
366 value_enclosing_type (struct value *value)
367 {
368 return value->enclosing_type;
369 }
370
371 const gdb_byte *
372 value_contents_all (struct value *value)
373 {
374 if (value->lazy)
375 value_fetch_lazy (value);
376 return value->contents;
377 }
378
379 int
380 value_lazy (struct value *value)
381 {
382 return value->lazy;
383 }
384
385 void
386 set_value_lazy (struct value *value, int val)
387 {
388 value->lazy = val;
389 }
390
391 const gdb_byte *
392 value_contents (struct value *value)
393 {
394 return value_contents_writeable (value);
395 }
396
397 gdb_byte *
398 value_contents_writeable (struct value *value)
399 {
400 if (value->lazy)
401 value_fetch_lazy (value);
402 return value_contents_raw (value);
403 }
404
405 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
406 this function is different from value_equal; in C the operator ==
407 can return 0 even if the two values being compared are equal. */
408
409 int
410 value_contents_equal (struct value *val1, struct value *val2)
411 {
412 struct type *type1;
413 struct type *type2;
414 int len;
415
416 type1 = check_typedef (value_type (val1));
417 type2 = check_typedef (value_type (val2));
418 len = TYPE_LENGTH (type1);
419 if (len != TYPE_LENGTH (type2))
420 return 0;
421
422 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
423 }
424
425 int
426 value_optimized_out (struct value *value)
427 {
428 return value->optimized_out;
429 }
430
431 void
432 set_value_optimized_out (struct value *value, int val)
433 {
434 value->optimized_out = val;
435 }
436
437 int
438 value_embedded_offset (struct value *value)
439 {
440 return value->embedded_offset;
441 }
442
443 void
444 set_value_embedded_offset (struct value *value, int val)
445 {
446 value->embedded_offset = val;
447 }
448
449 int
450 value_pointed_to_offset (struct value *value)
451 {
452 return value->pointed_to_offset;
453 }
454
455 void
456 set_value_pointed_to_offset (struct value *value, int val)
457 {
458 value->pointed_to_offset = val;
459 }
460
461 enum lval_type *
462 deprecated_value_lval_hack (struct value *value)
463 {
464 return &value->lval;
465 }
466
467 CORE_ADDR *
468 deprecated_value_address_hack (struct value *value)
469 {
470 return &value->location.address;
471 }
472
473 struct internalvar **
474 deprecated_value_internalvar_hack (struct value *value)
475 {
476 return &value->location.internalvar;
477 }
478
479 struct frame_id *
480 deprecated_value_frame_id_hack (struct value *value)
481 {
482 return &value->frame_id;
483 }
484
485 short *
486 deprecated_value_regnum_hack (struct value *value)
487 {
488 return &value->regnum;
489 }
490
491 int
492 deprecated_value_modifiable (struct value *value)
493 {
494 return value->modifiable;
495 }
496 void
497 deprecated_set_value_modifiable (struct value *value, int modifiable)
498 {
499 value->modifiable = modifiable;
500 }
501 \f
502 /* Return a mark in the value chain. All values allocated after the
503 mark is obtained (except for those released) are subject to being freed
504 if a subsequent value_free_to_mark is passed the mark. */
505 struct value *
506 value_mark (void)
507 {
508 return all_values;
509 }
510
511 void
512 value_free (struct value *val)
513 {
514 if (val)
515 xfree (val->contents);
516 xfree (val);
517 }
518
519 /* Free all values allocated since MARK was obtained by value_mark
520 (except for those released). */
521 void
522 value_free_to_mark (struct value *mark)
523 {
524 struct value *val;
525 struct value *next;
526
527 for (val = all_values; val && val != mark; val = next)
528 {
529 next = val->next;
530 value_free (val);
531 }
532 all_values = val;
533 }
534
535 /* Free all the values that have been allocated (except for those released).
536 Called after each command, successful or not. */
537
538 void
539 free_all_values (void)
540 {
541 struct value *val;
542 struct value *next;
543
544 for (val = all_values; val; val = next)
545 {
546 next = val->next;
547 value_free (val);
548 }
549
550 all_values = 0;
551 }
552
553 /* Remove VAL from the chain all_values
554 so it will not be freed automatically. */
555
556 void
557 release_value (struct value *val)
558 {
559 struct value *v;
560
561 if (all_values == val)
562 {
563 all_values = val->next;
564 return;
565 }
566
567 for (v = all_values; v; v = v->next)
568 {
569 if (v->next == val)
570 {
571 v->next = val->next;
572 break;
573 }
574 }
575 }
576
577 /* Release all values up to mark */
578 struct value *
579 value_release_to_mark (struct value *mark)
580 {
581 struct value *val;
582 struct value *next;
583
584 for (val = next = all_values; next; next = next->next)
585 if (next->next == mark)
586 {
587 all_values = next->next;
588 next->next = NULL;
589 return val;
590 }
591 all_values = 0;
592 return val;
593 }
594
595 /* Return a copy of the value ARG.
596 It contains the same contents, for same memory address,
597 but it's a different block of storage. */
598
599 struct value *
600 value_copy (struct value *arg)
601 {
602 struct type *encl_type = value_enclosing_type (arg);
603 struct value *val;
604
605 if (value_lazy (arg))
606 val = allocate_value_lazy (encl_type);
607 else
608 val = allocate_value (encl_type);
609 val->type = arg->type;
610 VALUE_LVAL (val) = VALUE_LVAL (arg);
611 val->location = arg->location;
612 val->offset = arg->offset;
613 val->bitpos = arg->bitpos;
614 val->bitsize = arg->bitsize;
615 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
616 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
617 val->lazy = arg->lazy;
618 val->optimized_out = arg->optimized_out;
619 val->embedded_offset = value_embedded_offset (arg);
620 val->pointed_to_offset = arg->pointed_to_offset;
621 val->modifiable = arg->modifiable;
622 if (!value_lazy (val))
623 {
624 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
625 TYPE_LENGTH (value_enclosing_type (arg)));
626
627 }
628 return val;
629 }
630
631 void
632 set_value_component_location (struct value *component, struct value *whole)
633 {
634 if (VALUE_LVAL (whole) == lval_internalvar)
635 VALUE_LVAL (component) = lval_internalvar_component;
636 else
637 VALUE_LVAL (component) = VALUE_LVAL (whole);
638 component->location = whole->location;
639 }
640
641 \f
642 /* Access to the value history. */
643
644 /* Record a new value in the value history.
645 Returns the absolute history index of the entry.
646 Result of -1 indicates the value was not saved; otherwise it is the
647 value history index of this new item. */
648
649 int
650 record_latest_value (struct value *val)
651 {
652 int i;
653
654 /* We don't want this value to have anything to do with the inferior anymore.
655 In particular, "set $1 = 50" should not affect the variable from which
656 the value was taken, and fast watchpoints should be able to assume that
657 a value on the value history never changes. */
658 if (value_lazy (val))
659 value_fetch_lazy (val);
660 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
661 from. This is a bit dubious, because then *&$1 does not just return $1
662 but the current contents of that location. c'est la vie... */
663 val->modifiable = 0;
664 release_value (val);
665
666 /* Here we treat value_history_count as origin-zero
667 and applying to the value being stored now. */
668
669 i = value_history_count % VALUE_HISTORY_CHUNK;
670 if (i == 0)
671 {
672 struct value_history_chunk *new
673 = (struct value_history_chunk *)
674 xmalloc (sizeof (struct value_history_chunk));
675 memset (new->values, 0, sizeof new->values);
676 new->next = value_history_chain;
677 value_history_chain = new;
678 }
679
680 value_history_chain->values[i] = val;
681
682 /* Now we regard value_history_count as origin-one
683 and applying to the value just stored. */
684
685 return ++value_history_count;
686 }
687
688 /* Return a copy of the value in the history with sequence number NUM. */
689
690 struct value *
691 access_value_history (int num)
692 {
693 struct value_history_chunk *chunk;
694 int i;
695 int absnum = num;
696
697 if (absnum <= 0)
698 absnum += value_history_count;
699
700 if (absnum <= 0)
701 {
702 if (num == 0)
703 error (_("The history is empty."));
704 else if (num == 1)
705 error (_("There is only one value in the history."));
706 else
707 error (_("History does not go back to $$%d."), -num);
708 }
709 if (absnum > value_history_count)
710 error (_("History has not yet reached $%d."), absnum);
711
712 absnum--;
713
714 /* Now absnum is always absolute and origin zero. */
715
716 chunk = value_history_chain;
717 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
718 i > 0; i--)
719 chunk = chunk->next;
720
721 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
722 }
723
724 static void
725 show_values (char *num_exp, int from_tty)
726 {
727 int i;
728 struct value *val;
729 static int num = 1;
730
731 if (num_exp)
732 {
733 /* "show values +" should print from the stored position.
734 "show values <exp>" should print around value number <exp>. */
735 if (num_exp[0] != '+' || num_exp[1] != '\0')
736 num = parse_and_eval_long (num_exp) - 5;
737 }
738 else
739 {
740 /* "show values" means print the last 10 values. */
741 num = value_history_count - 9;
742 }
743
744 if (num <= 0)
745 num = 1;
746
747 for (i = num; i < num + 10 && i <= value_history_count; i++)
748 {
749 struct value_print_options opts;
750 val = access_value_history (i);
751 printf_filtered (("$%d = "), i);
752 get_user_print_options (&opts);
753 value_print (val, gdb_stdout, &opts);
754 printf_filtered (("\n"));
755 }
756
757 /* The next "show values +" should start after what we just printed. */
758 num += 10;
759
760 /* Hitting just return after this command should do the same thing as
761 "show values +". If num_exp is null, this is unnecessary, since
762 "show values +" is not useful after "show values". */
763 if (from_tty && num_exp)
764 {
765 num_exp[0] = '+';
766 num_exp[1] = '\0';
767 }
768 }
769 \f
770 /* Internal variables. These are variables within the debugger
771 that hold values assigned by debugger commands.
772 The user refers to them with a '$' prefix
773 that does not appear in the variable names stored internally. */
774
775 static struct internalvar *internalvars;
776
777 /* If the variable does not already exist create it and give it the value given.
778 If no value is given then the default is zero. */
779 static void
780 init_if_undefined_command (char* args, int from_tty)
781 {
782 struct internalvar* intvar;
783
784 /* Parse the expression - this is taken from set_command(). */
785 struct expression *expr = parse_expression (args);
786 register struct cleanup *old_chain =
787 make_cleanup (free_current_contents, &expr);
788
789 /* Validate the expression.
790 Was the expression an assignment?
791 Or even an expression at all? */
792 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
793 error (_("Init-if-undefined requires an assignment expression."));
794
795 /* Extract the variable from the parsed expression.
796 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
797 if (expr->elts[1].opcode != OP_INTERNALVAR)
798 error (_("The first parameter to init-if-undefined should be a GDB variable."));
799 intvar = expr->elts[2].internalvar;
800
801 /* Only evaluate the expression if the lvalue is void.
802 This may still fail if the expresssion is invalid. */
803 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
804 evaluate_expression (expr);
805
806 do_cleanups (old_chain);
807 }
808
809
810 /* Look up an internal variable with name NAME. NAME should not
811 normally include a dollar sign.
812
813 If the specified internal variable does not exist,
814 the return value is NULL. */
815
816 struct internalvar *
817 lookup_only_internalvar (char *name)
818 {
819 struct internalvar *var;
820
821 for (var = internalvars; var; var = var->next)
822 if (strcmp (var->name, name) == 0)
823 return var;
824
825 return NULL;
826 }
827
828
829 /* Create an internal variable with name NAME and with a void value.
830 NAME should not normally include a dollar sign. */
831
832 struct internalvar *
833 create_internalvar (char *name)
834 {
835 struct internalvar *var;
836 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
837 var->name = concat (name, (char *)NULL);
838 var->value = allocate_value (builtin_type_void);
839 var->endian = gdbarch_byte_order (current_gdbarch);
840 release_value (var->value);
841 var->next = internalvars;
842 internalvars = var;
843 return var;
844 }
845
846
847 /* Look up an internal variable with name NAME. NAME should not
848 normally include a dollar sign.
849
850 If the specified internal variable does not exist,
851 one is created, with a void value. */
852
853 struct internalvar *
854 lookup_internalvar (char *name)
855 {
856 struct internalvar *var;
857
858 var = lookup_only_internalvar (name);
859 if (var)
860 return var;
861
862 return create_internalvar (name);
863 }
864
865 struct value *
866 value_of_internalvar (struct internalvar *var)
867 {
868 struct value *val;
869 int i, j;
870 gdb_byte temp;
871
872 val = value_copy (var->value);
873 if (value_lazy (val))
874 value_fetch_lazy (val);
875 VALUE_LVAL (val) = lval_internalvar;
876 VALUE_INTERNALVAR (val) = var;
877
878 /* Values are always stored in the target's byte order. When connected to a
879 target this will most likely always be correct, so there's normally no
880 need to worry about it.
881
882 However, internal variables can be set up before the target endian is
883 known and so may become out of date. Fix it up before anybody sees.
884
885 Internal variables usually hold simple scalar values, and we can
886 correct those. More complex values (e.g. structures and floating
887 point types) are left alone, because they would be too complicated
888 to correct. */
889
890 if (var->endian != gdbarch_byte_order (current_gdbarch))
891 {
892 gdb_byte *array = value_contents_raw (val);
893 struct type *type = check_typedef (value_enclosing_type (val));
894 switch (TYPE_CODE (type))
895 {
896 case TYPE_CODE_INT:
897 case TYPE_CODE_PTR:
898 /* Reverse the bytes. */
899 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
900 {
901 temp = array[j];
902 array[j] = array[i];
903 array[i] = temp;
904 }
905 break;
906 }
907 }
908
909 return val;
910 }
911
912 void
913 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
914 int bitsize, struct value *newval)
915 {
916 gdb_byte *addr = value_contents_writeable (var->value) + offset;
917
918 if (bitsize)
919 modify_field (addr, value_as_long (newval),
920 bitpos, bitsize);
921 else
922 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
923 }
924
925 void
926 set_internalvar (struct internalvar *var, struct value *val)
927 {
928 struct value *newval;
929
930 newval = value_copy (val);
931 newval->modifiable = 1;
932
933 /* Force the value to be fetched from the target now, to avoid problems
934 later when this internalvar is referenced and the target is gone or
935 has changed. */
936 if (value_lazy (newval))
937 value_fetch_lazy (newval);
938
939 /* Begin code which must not call error(). If var->value points to
940 something free'd, an error() obviously leaves a dangling pointer.
941 But we also get a danling pointer if var->value points to
942 something in the value chain (i.e., before release_value is
943 called), because after the error free_all_values will get called before
944 long. */
945 value_free (var->value);
946 var->value = newval;
947 var->endian = gdbarch_byte_order (current_gdbarch);
948 release_value (newval);
949 /* End code which must not call error(). */
950 }
951
952 char *
953 internalvar_name (struct internalvar *var)
954 {
955 return var->name;
956 }
957
958 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
959 prevent cycles / duplicates. */
960
961 static void
962 preserve_one_value (struct value *value, struct objfile *objfile,
963 htab_t copied_types)
964 {
965 if (TYPE_OBJFILE (value->type) == objfile)
966 value->type = copy_type_recursive (objfile, value->type, copied_types);
967
968 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
969 value->enclosing_type = copy_type_recursive (objfile,
970 value->enclosing_type,
971 copied_types);
972 }
973
974 /* Update the internal variables and value history when OBJFILE is
975 discarded; we must copy the types out of the objfile. New global types
976 will be created for every convenience variable which currently points to
977 this objfile's types, and the convenience variables will be adjusted to
978 use the new global types. */
979
980 void
981 preserve_values (struct objfile *objfile)
982 {
983 htab_t copied_types;
984 struct value_history_chunk *cur;
985 struct internalvar *var;
986 struct value *val;
987 int i;
988
989 /* Create the hash table. We allocate on the objfile's obstack, since
990 it is soon to be deleted. */
991 copied_types = create_copied_types_hash (objfile);
992
993 for (cur = value_history_chain; cur; cur = cur->next)
994 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
995 if (cur->values[i])
996 preserve_one_value (cur->values[i], objfile, copied_types);
997
998 for (var = internalvars; var; var = var->next)
999 preserve_one_value (var->value, objfile, copied_types);
1000
1001 for (val = values_in_python; val; val = val->next)
1002 preserve_one_value (val, objfile, copied_types);
1003
1004 htab_delete (copied_types);
1005 }
1006
1007 static void
1008 show_convenience (char *ignore, int from_tty)
1009 {
1010 struct internalvar *var;
1011 int varseen = 0;
1012 struct value_print_options opts;
1013
1014 get_user_print_options (&opts);
1015 for (var = internalvars; var; var = var->next)
1016 {
1017 if (!varseen)
1018 {
1019 varseen = 1;
1020 }
1021 printf_filtered (("$%s = "), var->name);
1022 value_print (value_of_internalvar (var), gdb_stdout,
1023 &opts);
1024 printf_filtered (("\n"));
1025 }
1026 if (!varseen)
1027 printf_unfiltered (_("\
1028 No debugger convenience variables now defined.\n\
1029 Convenience variables have names starting with \"$\";\n\
1030 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1031 }
1032 \f
1033 /* Extract a value as a C number (either long or double).
1034 Knows how to convert fixed values to double, or
1035 floating values to long.
1036 Does not deallocate the value. */
1037
1038 LONGEST
1039 value_as_long (struct value *val)
1040 {
1041 /* This coerces arrays and functions, which is necessary (e.g.
1042 in disassemble_command). It also dereferences references, which
1043 I suspect is the most logical thing to do. */
1044 val = coerce_array (val);
1045 return unpack_long (value_type (val), value_contents (val));
1046 }
1047
1048 DOUBLEST
1049 value_as_double (struct value *val)
1050 {
1051 DOUBLEST foo;
1052 int inv;
1053
1054 foo = unpack_double (value_type (val), value_contents (val), &inv);
1055 if (inv)
1056 error (_("Invalid floating value found in program."));
1057 return foo;
1058 }
1059
1060 /* Extract a value as a C pointer. Does not deallocate the value.
1061 Note that val's type may not actually be a pointer; value_as_long
1062 handles all the cases. */
1063 CORE_ADDR
1064 value_as_address (struct value *val)
1065 {
1066 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1067 whether we want this to be true eventually. */
1068 #if 0
1069 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1070 non-address (e.g. argument to "signal", "info break", etc.), or
1071 for pointers to char, in which the low bits *are* significant. */
1072 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
1073 #else
1074
1075 /* There are several targets (IA-64, PowerPC, and others) which
1076 don't represent pointers to functions as simply the address of
1077 the function's entry point. For example, on the IA-64, a
1078 function pointer points to a two-word descriptor, generated by
1079 the linker, which contains the function's entry point, and the
1080 value the IA-64 "global pointer" register should have --- to
1081 support position-independent code. The linker generates
1082 descriptors only for those functions whose addresses are taken.
1083
1084 On such targets, it's difficult for GDB to convert an arbitrary
1085 function address into a function pointer; it has to either find
1086 an existing descriptor for that function, or call malloc and
1087 build its own. On some targets, it is impossible for GDB to
1088 build a descriptor at all: the descriptor must contain a jump
1089 instruction; data memory cannot be executed; and code memory
1090 cannot be modified.
1091
1092 Upon entry to this function, if VAL is a value of type `function'
1093 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1094 VALUE_ADDRESS (val) is the address of the function. This is what
1095 you'll get if you evaluate an expression like `main'. The call
1096 to COERCE_ARRAY below actually does all the usual unary
1097 conversions, which includes converting values of type `function'
1098 to `pointer to function'. This is the challenging conversion
1099 discussed above. Then, `unpack_long' will convert that pointer
1100 back into an address.
1101
1102 So, suppose the user types `disassemble foo' on an architecture
1103 with a strange function pointer representation, on which GDB
1104 cannot build its own descriptors, and suppose further that `foo'
1105 has no linker-built descriptor. The address->pointer conversion
1106 will signal an error and prevent the command from running, even
1107 though the next step would have been to convert the pointer
1108 directly back into the same address.
1109
1110 The following shortcut avoids this whole mess. If VAL is a
1111 function, just return its address directly. */
1112 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1113 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1114 return VALUE_ADDRESS (val);
1115
1116 val = coerce_array (val);
1117
1118 /* Some architectures (e.g. Harvard), map instruction and data
1119 addresses onto a single large unified address space. For
1120 instance: An architecture may consider a large integer in the
1121 range 0x10000000 .. 0x1000ffff to already represent a data
1122 addresses (hence not need a pointer to address conversion) while
1123 a small integer would still need to be converted integer to
1124 pointer to address. Just assume such architectures handle all
1125 integer conversions in a single function. */
1126
1127 /* JimB writes:
1128
1129 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1130 must admonish GDB hackers to make sure its behavior matches the
1131 compiler's, whenever possible.
1132
1133 In general, I think GDB should evaluate expressions the same way
1134 the compiler does. When the user copies an expression out of
1135 their source code and hands it to a `print' command, they should
1136 get the same value the compiler would have computed. Any
1137 deviation from this rule can cause major confusion and annoyance,
1138 and needs to be justified carefully. In other words, GDB doesn't
1139 really have the freedom to do these conversions in clever and
1140 useful ways.
1141
1142 AndrewC pointed out that users aren't complaining about how GDB
1143 casts integers to pointers; they are complaining that they can't
1144 take an address from a disassembly listing and give it to `x/i'.
1145 This is certainly important.
1146
1147 Adding an architecture method like integer_to_address() certainly
1148 makes it possible for GDB to "get it right" in all circumstances
1149 --- the target has complete control over how things get done, so
1150 people can Do The Right Thing for their target without breaking
1151 anyone else. The standard doesn't specify how integers get
1152 converted to pointers; usually, the ABI doesn't either, but
1153 ABI-specific code is a more reasonable place to handle it. */
1154
1155 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1156 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1157 && gdbarch_integer_to_address_p (current_gdbarch))
1158 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1159 value_contents (val));
1160
1161 return unpack_long (value_type (val), value_contents (val));
1162 #endif
1163 }
1164 \f
1165 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1166 as a long, or as a double, assuming the raw data is described
1167 by type TYPE. Knows how to convert different sizes of values
1168 and can convert between fixed and floating point. We don't assume
1169 any alignment for the raw data. Return value is in host byte order.
1170
1171 If you want functions and arrays to be coerced to pointers, and
1172 references to be dereferenced, call value_as_long() instead.
1173
1174 C++: It is assumed that the front-end has taken care of
1175 all matters concerning pointers to members. A pointer
1176 to member which reaches here is considered to be equivalent
1177 to an INT (or some size). After all, it is only an offset. */
1178
1179 LONGEST
1180 unpack_long (struct type *type, const gdb_byte *valaddr)
1181 {
1182 enum type_code code = TYPE_CODE (type);
1183 int len = TYPE_LENGTH (type);
1184 int nosign = TYPE_UNSIGNED (type);
1185
1186 switch (code)
1187 {
1188 case TYPE_CODE_TYPEDEF:
1189 return unpack_long (check_typedef (type), valaddr);
1190 case TYPE_CODE_ENUM:
1191 case TYPE_CODE_FLAGS:
1192 case TYPE_CODE_BOOL:
1193 case TYPE_CODE_INT:
1194 case TYPE_CODE_CHAR:
1195 case TYPE_CODE_RANGE:
1196 case TYPE_CODE_MEMBERPTR:
1197 if (nosign)
1198 return extract_unsigned_integer (valaddr, len);
1199 else
1200 return extract_signed_integer (valaddr, len);
1201
1202 case TYPE_CODE_FLT:
1203 return extract_typed_floating (valaddr, type);
1204
1205 case TYPE_CODE_DECFLOAT:
1206 /* libdecnumber has a function to convert from decimal to integer, but
1207 it doesn't work when the decimal number has a fractional part. */
1208 return decimal_to_doublest (valaddr, len);
1209
1210 case TYPE_CODE_PTR:
1211 case TYPE_CODE_REF:
1212 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1213 whether we want this to be true eventually. */
1214 return extract_typed_address (valaddr, type);
1215
1216 default:
1217 error (_("Value can't be converted to integer."));
1218 }
1219 return 0; /* Placate lint. */
1220 }
1221
1222 /* Return a double value from the specified type and address.
1223 INVP points to an int which is set to 0 for valid value,
1224 1 for invalid value (bad float format). In either case,
1225 the returned double is OK to use. Argument is in target
1226 format, result is in host format. */
1227
1228 DOUBLEST
1229 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1230 {
1231 enum type_code code;
1232 int len;
1233 int nosign;
1234
1235 *invp = 0; /* Assume valid. */
1236 CHECK_TYPEDEF (type);
1237 code = TYPE_CODE (type);
1238 len = TYPE_LENGTH (type);
1239 nosign = TYPE_UNSIGNED (type);
1240 if (code == TYPE_CODE_FLT)
1241 {
1242 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1243 floating-point value was valid (using the macro
1244 INVALID_FLOAT). That test/macro have been removed.
1245
1246 It turns out that only the VAX defined this macro and then
1247 only in a non-portable way. Fixing the portability problem
1248 wouldn't help since the VAX floating-point code is also badly
1249 bit-rotten. The target needs to add definitions for the
1250 methods gdbarch_float_format and gdbarch_double_format - these
1251 exactly describe the target floating-point format. The
1252 problem here is that the corresponding floatformat_vax_f and
1253 floatformat_vax_d values these methods should be set to are
1254 also not defined either. Oops!
1255
1256 Hopefully someone will add both the missing floatformat
1257 definitions and the new cases for floatformat_is_valid (). */
1258
1259 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1260 {
1261 *invp = 1;
1262 return 0.0;
1263 }
1264
1265 return extract_typed_floating (valaddr, type);
1266 }
1267 else if (code == TYPE_CODE_DECFLOAT)
1268 return decimal_to_doublest (valaddr, len);
1269 else if (nosign)
1270 {
1271 /* Unsigned -- be sure we compensate for signed LONGEST. */
1272 return (ULONGEST) unpack_long (type, valaddr);
1273 }
1274 else
1275 {
1276 /* Signed -- we are OK with unpack_long. */
1277 return unpack_long (type, valaddr);
1278 }
1279 }
1280
1281 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1282 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1283 We don't assume any alignment for the raw data. Return value is in
1284 host byte order.
1285
1286 If you want functions and arrays to be coerced to pointers, and
1287 references to be dereferenced, call value_as_address() instead.
1288
1289 C++: It is assumed that the front-end has taken care of
1290 all matters concerning pointers to members. A pointer
1291 to member which reaches here is considered to be equivalent
1292 to an INT (or some size). After all, it is only an offset. */
1293
1294 CORE_ADDR
1295 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1296 {
1297 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1298 whether we want this to be true eventually. */
1299 return unpack_long (type, valaddr);
1300 }
1301
1302 \f
1303 /* Get the value of the FIELDN'th field (which must be static) of
1304 TYPE. Return NULL if the field doesn't exist or has been
1305 optimized out. */
1306
1307 struct value *
1308 value_static_field (struct type *type, int fieldno)
1309 {
1310 struct value *retval;
1311
1312 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1313 {
1314 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1315 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1316 }
1317 else
1318 {
1319 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1320 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1321 if (sym == NULL)
1322 {
1323 /* With some compilers, e.g. HP aCC, static data members are reported
1324 as non-debuggable symbols */
1325 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1326 if (!msym)
1327 return NULL;
1328 else
1329 {
1330 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1331 SYMBOL_VALUE_ADDRESS (msym));
1332 }
1333 }
1334 else
1335 {
1336 /* SYM should never have a SYMBOL_CLASS which will require
1337 read_var_value to use the FRAME parameter. */
1338 if (symbol_read_needs_frame (sym))
1339 warning (_("static field's value depends on the current "
1340 "frame - bad debug info?"));
1341 retval = read_var_value (sym, NULL);
1342 }
1343 if (retval && VALUE_LVAL (retval) == lval_memory)
1344 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1345 VALUE_ADDRESS (retval));
1346 }
1347 return retval;
1348 }
1349
1350 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1351 You have to be careful here, since the size of the data area for the value
1352 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1353 than the old enclosing type, you have to allocate more space for the data.
1354 The return value is a pointer to the new version of this value structure. */
1355
1356 struct value *
1357 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1358 {
1359 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1360 val->contents =
1361 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1362
1363 val->enclosing_type = new_encl_type;
1364 return val;
1365 }
1366
1367 /* Given a value ARG1 (offset by OFFSET bytes)
1368 of a struct or union type ARG_TYPE,
1369 extract and return the value of one of its (non-static) fields.
1370 FIELDNO says which field. */
1371
1372 struct value *
1373 value_primitive_field (struct value *arg1, int offset,
1374 int fieldno, struct type *arg_type)
1375 {
1376 struct value *v;
1377 struct type *type;
1378
1379 CHECK_TYPEDEF (arg_type);
1380 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1381
1382 /* Handle packed fields */
1383
1384 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1385 {
1386 v = value_from_longest (type,
1387 unpack_field_as_long (arg_type,
1388 value_contents (arg1)
1389 + offset,
1390 fieldno));
1391 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1392 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1393 v->offset = value_offset (arg1) + offset
1394 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1395 }
1396 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1397 {
1398 /* This field is actually a base subobject, so preserve the
1399 entire object's contents for later references to virtual
1400 bases, etc. */
1401
1402 /* Lazy register values with offsets are not supported. */
1403 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1404 value_fetch_lazy (arg1);
1405
1406 if (value_lazy (arg1))
1407 v = allocate_value_lazy (value_enclosing_type (arg1));
1408 else
1409 {
1410 v = allocate_value (value_enclosing_type (arg1));
1411 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1412 TYPE_LENGTH (value_enclosing_type (arg1)));
1413 }
1414 v->type = type;
1415 v->offset = value_offset (arg1);
1416 v->embedded_offset = (offset + value_embedded_offset (arg1)
1417 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1418 }
1419 else
1420 {
1421 /* Plain old data member */
1422 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1423
1424 /* Lazy register values with offsets are not supported. */
1425 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1426 value_fetch_lazy (arg1);
1427
1428 if (value_lazy (arg1))
1429 v = allocate_value_lazy (type);
1430 else
1431 {
1432 v = allocate_value (type);
1433 memcpy (value_contents_raw (v),
1434 value_contents_raw (arg1) + offset,
1435 TYPE_LENGTH (type));
1436 }
1437 v->offset = (value_offset (arg1) + offset
1438 + value_embedded_offset (arg1));
1439 }
1440 set_value_component_location (v, arg1);
1441 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1442 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1443 return v;
1444 }
1445
1446 /* Given a value ARG1 of a struct or union type,
1447 extract and return the value of one of its (non-static) fields.
1448 FIELDNO says which field. */
1449
1450 struct value *
1451 value_field (struct value *arg1, int fieldno)
1452 {
1453 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1454 }
1455
1456 /* Return a non-virtual function as a value.
1457 F is the list of member functions which contains the desired method.
1458 J is an index into F which provides the desired method.
1459
1460 We only use the symbol for its address, so be happy with either a
1461 full symbol or a minimal symbol.
1462 */
1463
1464 struct value *
1465 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1466 int offset)
1467 {
1468 struct value *v;
1469 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1470 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1471 struct symbol *sym;
1472 struct minimal_symbol *msym;
1473
1474 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1475 if (sym != NULL)
1476 {
1477 msym = NULL;
1478 }
1479 else
1480 {
1481 gdb_assert (sym == NULL);
1482 msym = lookup_minimal_symbol (physname, NULL, NULL);
1483 if (msym == NULL)
1484 return NULL;
1485 }
1486
1487 v = allocate_value (ftype);
1488 if (sym)
1489 {
1490 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1491 }
1492 else
1493 {
1494 /* The minimal symbol might point to a function descriptor;
1495 resolve it to the actual code address instead. */
1496 struct objfile *objfile = msymbol_objfile (msym);
1497 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1498
1499 VALUE_ADDRESS (v)
1500 = gdbarch_convert_from_func_ptr_addr
1501 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
1502 }
1503
1504 if (arg1p)
1505 {
1506 if (type != value_type (*arg1p))
1507 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1508 value_addr (*arg1p)));
1509
1510 /* Move the `this' pointer according to the offset.
1511 VALUE_OFFSET (*arg1p) += offset;
1512 */
1513 }
1514
1515 return v;
1516 }
1517
1518 \f
1519 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1520 VALADDR.
1521
1522 Extracting bits depends on endianness of the machine. Compute the
1523 number of least significant bits to discard. For big endian machines,
1524 we compute the total number of bits in the anonymous object, subtract
1525 off the bit count from the MSB of the object to the MSB of the
1526 bitfield, then the size of the bitfield, which leaves the LSB discard
1527 count. For little endian machines, the discard count is simply the
1528 number of bits from the LSB of the anonymous object to the LSB of the
1529 bitfield.
1530
1531 If the field is signed, we also do sign extension. */
1532
1533 LONGEST
1534 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1535 {
1536 ULONGEST val;
1537 ULONGEST valmask;
1538 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1539 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1540 int lsbcount;
1541 struct type *field_type;
1542
1543 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1544 field_type = TYPE_FIELD_TYPE (type, fieldno);
1545 CHECK_TYPEDEF (field_type);
1546
1547 /* Extract bits. See comment above. */
1548
1549 if (gdbarch_bits_big_endian (current_gdbarch))
1550 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1551 else
1552 lsbcount = (bitpos % 8);
1553 val >>= lsbcount;
1554
1555 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1556 If the field is signed, and is negative, then sign extend. */
1557
1558 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1559 {
1560 valmask = (((ULONGEST) 1) << bitsize) - 1;
1561 val &= valmask;
1562 if (!TYPE_UNSIGNED (field_type))
1563 {
1564 if (val & (valmask ^ (valmask >> 1)))
1565 {
1566 val |= ~valmask;
1567 }
1568 }
1569 }
1570 return (val);
1571 }
1572
1573 /* Modify the value of a bitfield. ADDR points to a block of memory in
1574 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1575 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1576 indicate which bits (in target bit order) comprise the bitfield.
1577 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1578 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1579
1580 void
1581 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1582 {
1583 ULONGEST oword;
1584 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1585
1586 /* If a negative fieldval fits in the field in question, chop
1587 off the sign extension bits. */
1588 if ((~fieldval & ~(mask >> 1)) == 0)
1589 fieldval &= mask;
1590
1591 /* Warn if value is too big to fit in the field in question. */
1592 if (0 != (fieldval & ~mask))
1593 {
1594 /* FIXME: would like to include fieldval in the message, but
1595 we don't have a sprintf_longest. */
1596 warning (_("Value does not fit in %d bits."), bitsize);
1597
1598 /* Truncate it, otherwise adjoining fields may be corrupted. */
1599 fieldval &= mask;
1600 }
1601
1602 oword = extract_unsigned_integer (addr, sizeof oword);
1603
1604 /* Shifting for bit field depends on endianness of the target machine. */
1605 if (gdbarch_bits_big_endian (current_gdbarch))
1606 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1607
1608 oword &= ~(mask << bitpos);
1609 oword |= fieldval << bitpos;
1610
1611 store_unsigned_integer (addr, sizeof oword, oword);
1612 }
1613 \f
1614 /* Pack NUM into BUF using a target format of TYPE. */
1615
1616 void
1617 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1618 {
1619 int len;
1620
1621 type = check_typedef (type);
1622 len = TYPE_LENGTH (type);
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_INT:
1627 case TYPE_CODE_CHAR:
1628 case TYPE_CODE_ENUM:
1629 case TYPE_CODE_FLAGS:
1630 case TYPE_CODE_BOOL:
1631 case TYPE_CODE_RANGE:
1632 case TYPE_CODE_MEMBERPTR:
1633 store_signed_integer (buf, len, num);
1634 break;
1635
1636 case TYPE_CODE_REF:
1637 case TYPE_CODE_PTR:
1638 store_typed_address (buf, type, (CORE_ADDR) num);
1639 break;
1640
1641 default:
1642 error (_("Unexpected type (%d) encountered for integer constant."),
1643 TYPE_CODE (type));
1644 }
1645 }
1646
1647
1648 /* Convert C numbers into newly allocated values. */
1649
1650 struct value *
1651 value_from_longest (struct type *type, LONGEST num)
1652 {
1653 struct value *val = allocate_value (type);
1654
1655 pack_long (value_contents_raw (val), type, num);
1656
1657 return val;
1658 }
1659
1660
1661 /* Create a value representing a pointer of type TYPE to the address
1662 ADDR. */
1663 struct value *
1664 value_from_pointer (struct type *type, CORE_ADDR addr)
1665 {
1666 struct value *val = allocate_value (type);
1667 store_typed_address (value_contents_raw (val), type, addr);
1668 return val;
1669 }
1670
1671
1672 /* Create a value for a string constant to be stored locally
1673 (not in the inferior's memory space, but in GDB memory).
1674 This is analogous to value_from_longest, which also does not
1675 use inferior memory. String shall NOT contain embedded nulls. */
1676
1677 struct value *
1678 value_from_string (char *ptr)
1679 {
1680 struct value *val;
1681 int len = strlen (ptr);
1682 int lowbound = current_language->string_lower_bound;
1683 struct type *string_char_type;
1684 struct type *rangetype;
1685 struct type *stringtype;
1686
1687 rangetype = create_range_type ((struct type *) NULL,
1688 builtin_type_int32,
1689 lowbound, len + lowbound - 1);
1690 string_char_type = language_string_char_type (current_language,
1691 current_gdbarch);
1692 stringtype = create_array_type ((struct type *) NULL,
1693 string_char_type,
1694 rangetype);
1695 val = allocate_value (stringtype);
1696 memcpy (value_contents_raw (val), ptr, len);
1697 return val;
1698 }
1699
1700 /* Create a value of type TYPE whose contents come from VALADDR, if it
1701 is non-null, and whose memory address (in the inferior) is
1702 ADDRESS. */
1703
1704 struct value *
1705 value_from_contents_and_address (struct type *type,
1706 const gdb_byte *valaddr,
1707 CORE_ADDR address)
1708 {
1709 struct value *v = allocate_value (type);
1710 if (valaddr == NULL)
1711 set_value_lazy (v, 1);
1712 else
1713 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1714 VALUE_ADDRESS (v) = address;
1715 VALUE_LVAL (v) = lval_memory;
1716 return v;
1717 }
1718
1719 struct value *
1720 value_from_double (struct type *type, DOUBLEST num)
1721 {
1722 struct value *val = allocate_value (type);
1723 struct type *base_type = check_typedef (type);
1724 enum type_code code = TYPE_CODE (base_type);
1725 int len = TYPE_LENGTH (base_type);
1726
1727 if (code == TYPE_CODE_FLT)
1728 {
1729 store_typed_floating (value_contents_raw (val), base_type, num);
1730 }
1731 else
1732 error (_("Unexpected type encountered for floating constant."));
1733
1734 return val;
1735 }
1736
1737 struct value *
1738 value_from_decfloat (struct type *type, const gdb_byte *dec)
1739 {
1740 struct value *val = allocate_value (type);
1741
1742 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1743
1744 return val;
1745 }
1746
1747 struct value *
1748 coerce_ref (struct value *arg)
1749 {
1750 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1751 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1752 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1753 unpack_pointer (value_type (arg),
1754 value_contents (arg)));
1755 return arg;
1756 }
1757
1758 struct value *
1759 coerce_array (struct value *arg)
1760 {
1761 struct type *type;
1762
1763 arg = coerce_ref (arg);
1764 type = check_typedef (value_type (arg));
1765
1766 switch (TYPE_CODE (type))
1767 {
1768 case TYPE_CODE_ARRAY:
1769 if (current_language->c_style_arrays)
1770 arg = value_coerce_array (arg);
1771 break;
1772 case TYPE_CODE_FUNC:
1773 arg = value_coerce_function (arg);
1774 break;
1775 }
1776 return arg;
1777 }
1778 \f
1779
1780 /* Return true if the function returning the specified type is using
1781 the convention of returning structures in memory (passing in the
1782 address as a hidden first parameter). */
1783
1784 int
1785 using_struct_return (struct type *func_type, struct type *value_type)
1786 {
1787 enum type_code code = TYPE_CODE (value_type);
1788
1789 if (code == TYPE_CODE_ERROR)
1790 error (_("Function return type unknown."));
1791
1792 if (code == TYPE_CODE_VOID)
1793 /* A void return value is never in memory. See also corresponding
1794 code in "print_return_value". */
1795 return 0;
1796
1797 /* Probe the architecture for the return-value convention. */
1798 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
1799 NULL, NULL, NULL)
1800 != RETURN_VALUE_REGISTER_CONVENTION);
1801 }
1802
1803 /* Set the initialized field in a value struct. */
1804
1805 void
1806 set_value_initialized (struct value *val, int status)
1807 {
1808 val->initialized = status;
1809 }
1810
1811 /* Return the initialized field in a value struct. */
1812
1813 int
1814 value_initialized (struct value *val)
1815 {
1816 return val->initialized;
1817 }
1818
1819 void
1820 _initialize_values (void)
1821 {
1822 add_cmd ("convenience", no_class, show_convenience, _("\
1823 Debugger convenience (\"$foo\") variables.\n\
1824 These variables are created when you assign them values;\n\
1825 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1826 \n\
1827 A few convenience variables are given values automatically:\n\
1828 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1829 \"$__\" holds the contents of the last address examined with \"x\"."),
1830 &showlist);
1831
1832 add_cmd ("values", no_class, show_values,
1833 _("Elements of value history around item number IDX (or last ten)."),
1834 &showlist);
1835
1836 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1837 Initialize a convenience variable if necessary.\n\
1838 init-if-undefined VARIABLE = EXPRESSION\n\
1839 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1840 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1841 VARIABLE is already initialized."));
1842 }
This page took 0.071005 seconds and 5 git commands to generate.