2009-05-27 Tom Tromey <tromey@redhat.com>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "value.h"
27 #include "gdbcore.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33 #include "doublest.h"
34 #include "gdb_assert.h"
35 #include "regcache.h"
36 #include "block.h"
37 #include "dfp.h"
38 #include "objfiles.h"
39 #include "valprint.h"
40 #include "cli/cli-decode.h"
41
42 #include "python/python.h"
43
44 /* Prototypes for exported functions. */
45
46 void _initialize_values (void);
47
48 /* Definition of a user function. */
49 struct internal_function
50 {
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61 };
62
63 static struct cmd_list_element *functionlist;
64
65 struct value
66 {
67 /* Type of value; either not an lval, or one of the various
68 different possible kinds of lval. */
69 enum lval_type lval;
70
71 /* Is it modifiable? Only relevant if lval != not_lval. */
72 int modifiable;
73
74 /* Location of value (if lval). */
75 union
76 {
77 /* If lval == lval_memory, this is the address in the inferior.
78 If lval == lval_register, this is the byte offset into the
79 registers structure. */
80 CORE_ADDR address;
81
82 /* Pointer to internal variable. */
83 struct internalvar *internalvar;
84
85 /* If lval == lval_computed, this is a set of function pointers
86 to use to access and describe the value, and a closure pointer
87 for them to use. */
88 struct
89 {
90 struct lval_funcs *funcs; /* Functions to call. */
91 void *closure; /* Closure for those functions to use. */
92 } computed;
93 } location;
94
95 /* Describes offset of a value within lval of a structure in bytes.
96 If lval == lval_memory, this is an offset to the address. If
97 lval == lval_register, this is a further offset from
98 location.address within the registers structure. Note also the
99 member embedded_offset below. */
100 int offset;
101
102 /* Only used for bitfields; number of bits contained in them. */
103 int bitsize;
104
105 /* Only used for bitfields; position of start of field. For
106 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
107 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
108 int bitpos;
109
110 /* Frame register value is relative to. This will be described in
111 the lval enum above as "lval_register". */
112 struct frame_id frame_id;
113
114 /* Type of the value. */
115 struct type *type;
116
117 /* If a value represents a C++ object, then the `type' field gives
118 the object's compile-time type. If the object actually belongs
119 to some class derived from `type', perhaps with other base
120 classes and additional members, then `type' is just a subobject
121 of the real thing, and the full object is probably larger than
122 `type' would suggest.
123
124 If `type' is a dynamic class (i.e. one with a vtable), then GDB
125 can actually determine the object's run-time type by looking at
126 the run-time type information in the vtable. When this
127 information is available, we may elect to read in the entire
128 object, for several reasons:
129
130 - When printing the value, the user would probably rather see the
131 full object, not just the limited portion apparent from the
132 compile-time type.
133
134 - If `type' has virtual base classes, then even printing `type'
135 alone may require reaching outside the `type' portion of the
136 object to wherever the virtual base class has been stored.
137
138 When we store the entire object, `enclosing_type' is the run-time
139 type -- the complete object -- and `embedded_offset' is the
140 offset of `type' within that larger type, in bytes. The
141 value_contents() macro takes `embedded_offset' into account, so
142 most GDB code continues to see the `type' portion of the value,
143 just as the inferior would.
144
145 If `type' is a pointer to an object, then `enclosing_type' is a
146 pointer to the object's run-time type, and `pointed_to_offset' is
147 the offset in bytes from the full object to the pointed-to object
148 -- that is, the value `embedded_offset' would have if we followed
149 the pointer and fetched the complete object. (I don't really see
150 the point. Why not just determine the run-time type when you
151 indirect, and avoid the special case? The contents don't matter
152 until you indirect anyway.)
153
154 If we're not doing anything fancy, `enclosing_type' is equal to
155 `type', and `embedded_offset' is zero, so everything works
156 normally. */
157 struct type *enclosing_type;
158 int embedded_offset;
159 int pointed_to_offset;
160
161 /* Values are stored in a chain, so that they can be deleted easily
162 over calls to the inferior. Values assigned to internal
163 variables, put into the value history or exposed to Python are
164 taken off this list. */
165 struct value *next;
166
167 /* Register number if the value is from a register. */
168 short regnum;
169
170 /* If zero, contents of this value are in the contents field. If
171 nonzero, contents are in inferior. If the lval field is lval_memory,
172 the contents are in inferior memory at location.address plus offset.
173 The lval field may also be lval_register.
174
175 WARNING: This field is used by the code which handles watchpoints
176 (see breakpoint.c) to decide whether a particular value can be
177 watched by hardware watchpoints. If the lazy flag is set for
178 some member of a value chain, it is assumed that this member of
179 the chain doesn't need to be watched as part of watching the
180 value itself. This is how GDB avoids watching the entire struct
181 or array when the user wants to watch a single struct member or
182 array element. If you ever change the way lazy flag is set and
183 reset, be sure to consider this use as well! */
184 char lazy;
185
186 /* If nonzero, this is the value of a variable which does not
187 actually exist in the program. */
188 char optimized_out;
189
190 /* If value is a variable, is it initialized or not. */
191 int initialized;
192
193 /* Actual contents of the value. Target byte-order. NULL or not
194 valid if lazy is nonzero. */
195 gdb_byte *contents;
196 };
197
198 /* Prototypes for local functions. */
199
200 static void show_values (char *, int);
201
202 static void show_convenience (char *, int);
203
204
205 /* The value-history records all the values printed
206 by print commands during this session. Each chunk
207 records 60 consecutive values. The first chunk on
208 the chain records the most recent values.
209 The total number of values is in value_history_count. */
210
211 #define VALUE_HISTORY_CHUNK 60
212
213 struct value_history_chunk
214 {
215 struct value_history_chunk *next;
216 struct value *values[VALUE_HISTORY_CHUNK];
217 };
218
219 /* Chain of chunks now in use. */
220
221 static struct value_history_chunk *value_history_chain;
222
223 static int value_history_count; /* Abs number of last entry stored */
224
225 /* The type of internal functions. */
226
227 static struct type *internal_fn_type;
228 \f
229 /* List of all value objects currently allocated
230 (except for those released by calls to release_value)
231 This is so they can be freed after each command. */
232
233 static struct value *all_values;
234
235 /* Allocate a lazy value for type TYPE. Its actual content is
236 "lazily" allocated too: the content field of the return value is
237 NULL; it will be allocated when it is fetched from the target. */
238
239 struct value *
240 allocate_value_lazy (struct type *type)
241 {
242 struct value *val;
243 struct type *atype = check_typedef (type);
244
245 val = (struct value *) xzalloc (sizeof (struct value));
246 val->contents = NULL;
247 val->next = all_values;
248 all_values = val;
249 val->type = type;
250 val->enclosing_type = type;
251 VALUE_LVAL (val) = not_lval;
252 val->location.address = 0;
253 VALUE_FRAME_ID (val) = null_frame_id;
254 val->offset = 0;
255 val->bitpos = 0;
256 val->bitsize = 0;
257 VALUE_REGNUM (val) = -1;
258 val->lazy = 1;
259 val->optimized_out = 0;
260 val->embedded_offset = 0;
261 val->pointed_to_offset = 0;
262 val->modifiable = 1;
263 val->initialized = 1; /* Default to initialized. */
264 return val;
265 }
266
267 /* Allocate the contents of VAL if it has not been allocated yet. */
268
269 void
270 allocate_value_contents (struct value *val)
271 {
272 if (!val->contents)
273 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
274 }
275
276 /* Allocate a value and its contents for type TYPE. */
277
278 struct value *
279 allocate_value (struct type *type)
280 {
281 struct value *val = allocate_value_lazy (type);
282 allocate_value_contents (val);
283 val->lazy = 0;
284 return val;
285 }
286
287 /* Allocate a value that has the correct length
288 for COUNT repetitions of type TYPE. */
289
290 struct value *
291 allocate_repeat_value (struct type *type, int count)
292 {
293 int low_bound = current_language->string_lower_bound; /* ??? */
294 /* FIXME-type-allocation: need a way to free this type when we are
295 done with it. */
296 struct type *range_type
297 = create_range_type ((struct type *) NULL, builtin_type_int32,
298 low_bound, count + low_bound - 1);
299 /* FIXME-type-allocation: need a way to free this type when we are
300 done with it. */
301 return allocate_value (create_array_type ((struct type *) NULL,
302 type, range_type));
303 }
304
305 /* Needed if another module needs to maintain its on list of values. */
306 void
307 value_prepend_to_list (struct value **head, struct value *val)
308 {
309 val->next = *head;
310 *head = val;
311 }
312
313 /* Needed if another module needs to maintain its on list of values. */
314 void
315 value_remove_from_list (struct value **head, struct value *val)
316 {
317 struct value *prev;
318
319 if (*head == val)
320 *head = (*head)->next;
321 else
322 for (prev = *head; prev->next; prev = prev->next)
323 if (prev->next == val)
324 {
325 prev->next = val->next;
326 break;
327 }
328 }
329
330 struct value *
331 allocate_computed_value (struct type *type,
332 struct lval_funcs *funcs,
333 void *closure)
334 {
335 struct value *v = allocate_value (type);
336 VALUE_LVAL (v) = lval_computed;
337 v->location.computed.funcs = funcs;
338 v->location.computed.closure = closure;
339 set_value_lazy (v, 1);
340
341 return v;
342 }
343
344 /* Accessor methods. */
345
346 struct value *
347 value_next (struct value *value)
348 {
349 return value->next;
350 }
351
352 struct type *
353 value_type (struct value *value)
354 {
355 return value->type;
356 }
357 void
358 deprecated_set_value_type (struct value *value, struct type *type)
359 {
360 value->type = type;
361 }
362
363 int
364 value_offset (struct value *value)
365 {
366 return value->offset;
367 }
368 void
369 set_value_offset (struct value *value, int offset)
370 {
371 value->offset = offset;
372 }
373
374 int
375 value_bitpos (struct value *value)
376 {
377 return value->bitpos;
378 }
379 void
380 set_value_bitpos (struct value *value, int bit)
381 {
382 value->bitpos = bit;
383 }
384
385 int
386 value_bitsize (struct value *value)
387 {
388 return value->bitsize;
389 }
390 void
391 set_value_bitsize (struct value *value, int bit)
392 {
393 value->bitsize = bit;
394 }
395
396 gdb_byte *
397 value_contents_raw (struct value *value)
398 {
399 allocate_value_contents (value);
400 return value->contents + value->embedded_offset;
401 }
402
403 gdb_byte *
404 value_contents_all_raw (struct value *value)
405 {
406 allocate_value_contents (value);
407 return value->contents;
408 }
409
410 struct type *
411 value_enclosing_type (struct value *value)
412 {
413 return value->enclosing_type;
414 }
415
416 const gdb_byte *
417 value_contents_all (struct value *value)
418 {
419 if (value->lazy)
420 value_fetch_lazy (value);
421 return value->contents;
422 }
423
424 int
425 value_lazy (struct value *value)
426 {
427 return value->lazy;
428 }
429
430 void
431 set_value_lazy (struct value *value, int val)
432 {
433 value->lazy = val;
434 }
435
436 const gdb_byte *
437 value_contents (struct value *value)
438 {
439 return value_contents_writeable (value);
440 }
441
442 gdb_byte *
443 value_contents_writeable (struct value *value)
444 {
445 if (value->lazy)
446 value_fetch_lazy (value);
447 return value_contents_raw (value);
448 }
449
450 /* Return non-zero if VAL1 and VAL2 have the same contents. Note that
451 this function is different from value_equal; in C the operator ==
452 can return 0 even if the two values being compared are equal. */
453
454 int
455 value_contents_equal (struct value *val1, struct value *val2)
456 {
457 struct type *type1;
458 struct type *type2;
459 int len;
460
461 type1 = check_typedef (value_type (val1));
462 type2 = check_typedef (value_type (val2));
463 len = TYPE_LENGTH (type1);
464 if (len != TYPE_LENGTH (type2))
465 return 0;
466
467 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
468 }
469
470 int
471 value_optimized_out (struct value *value)
472 {
473 return value->optimized_out;
474 }
475
476 void
477 set_value_optimized_out (struct value *value, int val)
478 {
479 value->optimized_out = val;
480 }
481
482 int
483 value_embedded_offset (struct value *value)
484 {
485 return value->embedded_offset;
486 }
487
488 void
489 set_value_embedded_offset (struct value *value, int val)
490 {
491 value->embedded_offset = val;
492 }
493
494 int
495 value_pointed_to_offset (struct value *value)
496 {
497 return value->pointed_to_offset;
498 }
499
500 void
501 set_value_pointed_to_offset (struct value *value, int val)
502 {
503 value->pointed_to_offset = val;
504 }
505
506 struct lval_funcs *
507 value_computed_funcs (struct value *v)
508 {
509 gdb_assert (VALUE_LVAL (v) == lval_computed);
510
511 return v->location.computed.funcs;
512 }
513
514 void *
515 value_computed_closure (struct value *v)
516 {
517 gdb_assert (VALUE_LVAL (v) == lval_computed);
518
519 return v->location.computed.closure;
520 }
521
522 enum lval_type *
523 deprecated_value_lval_hack (struct value *value)
524 {
525 return &value->lval;
526 }
527
528 CORE_ADDR
529 value_address (struct value *value)
530 {
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address + value->offset;
535 }
536
537 CORE_ADDR
538 value_raw_address (struct value *value)
539 {
540 if (value->lval == lval_internalvar
541 || value->lval == lval_internalvar_component)
542 return 0;
543 return value->location.address;
544 }
545
546 void
547 set_value_address (struct value *value, CORE_ADDR addr)
548 {
549 gdb_assert (value->lval != lval_internalvar
550 && value->lval != lval_internalvar_component);
551 value->location.address = addr;
552 }
553
554 struct internalvar **
555 deprecated_value_internalvar_hack (struct value *value)
556 {
557 return &value->location.internalvar;
558 }
559
560 struct frame_id *
561 deprecated_value_frame_id_hack (struct value *value)
562 {
563 return &value->frame_id;
564 }
565
566 short *
567 deprecated_value_regnum_hack (struct value *value)
568 {
569 return &value->regnum;
570 }
571
572 int
573 deprecated_value_modifiable (struct value *value)
574 {
575 return value->modifiable;
576 }
577 void
578 deprecated_set_value_modifiable (struct value *value, int modifiable)
579 {
580 value->modifiable = modifiable;
581 }
582 \f
583 /* Return a mark in the value chain. All values allocated after the
584 mark is obtained (except for those released) are subject to being freed
585 if a subsequent value_free_to_mark is passed the mark. */
586 struct value *
587 value_mark (void)
588 {
589 return all_values;
590 }
591
592 void
593 value_free (struct value *val)
594 {
595 if (val)
596 {
597 if (VALUE_LVAL (val) == lval_computed)
598 {
599 struct lval_funcs *funcs = val->location.computed.funcs;
600
601 if (funcs->free_closure)
602 funcs->free_closure (val);
603 }
604
605 xfree (val->contents);
606 }
607 xfree (val);
608 }
609
610 /* Free all values allocated since MARK was obtained by value_mark
611 (except for those released). */
612 void
613 value_free_to_mark (struct value *mark)
614 {
615 struct value *val;
616 struct value *next;
617
618 for (val = all_values; val && val != mark; val = next)
619 {
620 next = val->next;
621 value_free (val);
622 }
623 all_values = val;
624 }
625
626 /* Free all the values that have been allocated (except for those released).
627 Called after each command, successful or not. */
628
629 void
630 free_all_values (void)
631 {
632 struct value *val;
633 struct value *next;
634
635 for (val = all_values; val; val = next)
636 {
637 next = val->next;
638 value_free (val);
639 }
640
641 all_values = 0;
642 }
643
644 /* Remove VAL from the chain all_values
645 so it will not be freed automatically. */
646
647 void
648 release_value (struct value *val)
649 {
650 struct value *v;
651
652 if (all_values == val)
653 {
654 all_values = val->next;
655 return;
656 }
657
658 for (v = all_values; v; v = v->next)
659 {
660 if (v->next == val)
661 {
662 v->next = val->next;
663 break;
664 }
665 }
666 }
667
668 /* Release all values up to mark */
669 struct value *
670 value_release_to_mark (struct value *mark)
671 {
672 struct value *val;
673 struct value *next;
674
675 for (val = next = all_values; next; next = next->next)
676 if (next->next == mark)
677 {
678 all_values = next->next;
679 next->next = NULL;
680 return val;
681 }
682 all_values = 0;
683 return val;
684 }
685
686 /* Return a copy of the value ARG.
687 It contains the same contents, for same memory address,
688 but it's a different block of storage. */
689
690 struct value *
691 value_copy (struct value *arg)
692 {
693 struct type *encl_type = value_enclosing_type (arg);
694 struct value *val;
695
696 if (value_lazy (arg))
697 val = allocate_value_lazy (encl_type);
698 else
699 val = allocate_value (encl_type);
700 val->type = arg->type;
701 VALUE_LVAL (val) = VALUE_LVAL (arg);
702 val->location = arg->location;
703 val->offset = arg->offset;
704 val->bitpos = arg->bitpos;
705 val->bitsize = arg->bitsize;
706 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
707 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
708 val->lazy = arg->lazy;
709 val->optimized_out = arg->optimized_out;
710 val->embedded_offset = value_embedded_offset (arg);
711 val->pointed_to_offset = arg->pointed_to_offset;
712 val->modifiable = arg->modifiable;
713 if (!value_lazy (val))
714 {
715 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
716 TYPE_LENGTH (value_enclosing_type (arg)));
717
718 }
719 if (VALUE_LVAL (val) == lval_computed)
720 {
721 struct lval_funcs *funcs = val->location.computed.funcs;
722
723 if (funcs->copy_closure)
724 val->location.computed.closure = funcs->copy_closure (val);
725 }
726 return val;
727 }
728
729 void
730 set_value_component_location (struct value *component, struct value *whole)
731 {
732 if (VALUE_LVAL (whole) == lval_internalvar)
733 VALUE_LVAL (component) = lval_internalvar_component;
734 else
735 VALUE_LVAL (component) = VALUE_LVAL (whole);
736
737 component->location = whole->location;
738 if (VALUE_LVAL (whole) == lval_computed)
739 {
740 struct lval_funcs *funcs = whole->location.computed.funcs;
741
742 if (funcs->copy_closure)
743 component->location.computed.closure = funcs->copy_closure (whole);
744 }
745 }
746
747 \f
748 /* Access to the value history. */
749
750 /* Record a new value in the value history.
751 Returns the absolute history index of the entry.
752 Result of -1 indicates the value was not saved; otherwise it is the
753 value history index of this new item. */
754
755 int
756 record_latest_value (struct value *val)
757 {
758 int i;
759
760 /* We don't want this value to have anything to do with the inferior anymore.
761 In particular, "set $1 = 50" should not affect the variable from which
762 the value was taken, and fast watchpoints should be able to assume that
763 a value on the value history never changes. */
764 if (value_lazy (val))
765 value_fetch_lazy (val);
766 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
767 from. This is a bit dubious, because then *&$1 does not just return $1
768 but the current contents of that location. c'est la vie... */
769 val->modifiable = 0;
770 release_value (val);
771
772 /* Here we treat value_history_count as origin-zero
773 and applying to the value being stored now. */
774
775 i = value_history_count % VALUE_HISTORY_CHUNK;
776 if (i == 0)
777 {
778 struct value_history_chunk *new
779 = (struct value_history_chunk *)
780 xmalloc (sizeof (struct value_history_chunk));
781 memset (new->values, 0, sizeof new->values);
782 new->next = value_history_chain;
783 value_history_chain = new;
784 }
785
786 value_history_chain->values[i] = val;
787
788 /* Now we regard value_history_count as origin-one
789 and applying to the value just stored. */
790
791 return ++value_history_count;
792 }
793
794 /* Return a copy of the value in the history with sequence number NUM. */
795
796 struct value *
797 access_value_history (int num)
798 {
799 struct value_history_chunk *chunk;
800 int i;
801 int absnum = num;
802
803 if (absnum <= 0)
804 absnum += value_history_count;
805
806 if (absnum <= 0)
807 {
808 if (num == 0)
809 error (_("The history is empty."));
810 else if (num == 1)
811 error (_("There is only one value in the history."));
812 else
813 error (_("History does not go back to $$%d."), -num);
814 }
815 if (absnum > value_history_count)
816 error (_("History has not yet reached $%d."), absnum);
817
818 absnum--;
819
820 /* Now absnum is always absolute and origin zero. */
821
822 chunk = value_history_chain;
823 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
824 i > 0; i--)
825 chunk = chunk->next;
826
827 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
828 }
829
830 static void
831 show_values (char *num_exp, int from_tty)
832 {
833 int i;
834 struct value *val;
835 static int num = 1;
836
837 if (num_exp)
838 {
839 /* "show values +" should print from the stored position.
840 "show values <exp>" should print around value number <exp>. */
841 if (num_exp[0] != '+' || num_exp[1] != '\0')
842 num = parse_and_eval_long (num_exp) - 5;
843 }
844 else
845 {
846 /* "show values" means print the last 10 values. */
847 num = value_history_count - 9;
848 }
849
850 if (num <= 0)
851 num = 1;
852
853 for (i = num; i < num + 10 && i <= value_history_count; i++)
854 {
855 struct value_print_options opts;
856 val = access_value_history (i);
857 printf_filtered (("$%d = "), i);
858 get_user_print_options (&opts);
859 value_print (val, gdb_stdout, &opts);
860 printf_filtered (("\n"));
861 }
862
863 /* The next "show values +" should start after what we just printed. */
864 num += 10;
865
866 /* Hitting just return after this command should do the same thing as
867 "show values +". If num_exp is null, this is unnecessary, since
868 "show values +" is not useful after "show values". */
869 if (from_tty && num_exp)
870 {
871 num_exp[0] = '+';
872 num_exp[1] = '\0';
873 }
874 }
875 \f
876 /* Internal variables. These are variables within the debugger
877 that hold values assigned by debugger commands.
878 The user refers to them with a '$' prefix
879 that does not appear in the variable names stored internally. */
880
881 static struct internalvar *internalvars;
882
883 /* If the variable does not already exist create it and give it the value given.
884 If no value is given then the default is zero. */
885 static void
886 init_if_undefined_command (char* args, int from_tty)
887 {
888 struct internalvar* intvar;
889
890 /* Parse the expression - this is taken from set_command(). */
891 struct expression *expr = parse_expression (args);
892 register struct cleanup *old_chain =
893 make_cleanup (free_current_contents, &expr);
894
895 /* Validate the expression.
896 Was the expression an assignment?
897 Or even an expression at all? */
898 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
899 error (_("Init-if-undefined requires an assignment expression."));
900
901 /* Extract the variable from the parsed expression.
902 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
903 if (expr->elts[1].opcode != OP_INTERNALVAR)
904 error (_("The first parameter to init-if-undefined should be a GDB variable."));
905 intvar = expr->elts[2].internalvar;
906
907 /* Only evaluate the expression if the lvalue is void.
908 This may still fail if the expresssion is invalid. */
909 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
910 evaluate_expression (expr);
911
912 do_cleanups (old_chain);
913 }
914
915
916 /* Look up an internal variable with name NAME. NAME should not
917 normally include a dollar sign.
918
919 If the specified internal variable does not exist,
920 the return value is NULL. */
921
922 struct internalvar *
923 lookup_only_internalvar (const char *name)
924 {
925 struct internalvar *var;
926
927 for (var = internalvars; var; var = var->next)
928 if (strcmp (var->name, name) == 0)
929 return var;
930
931 return NULL;
932 }
933
934
935 /* Create an internal variable with name NAME and with a void value.
936 NAME should not normally include a dollar sign. */
937
938 struct internalvar *
939 create_internalvar (const char *name)
940 {
941 struct internalvar *var;
942 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
943 var->name = concat (name, (char *)NULL);
944 var->value = allocate_value (builtin_type_void);
945 var->endian = gdbarch_byte_order (current_gdbarch);
946 var->make_value = NULL;
947 var->canonical = 0;
948 release_value (var->value);
949 var->next = internalvars;
950 internalvars = var;
951 return var;
952 }
953
954 /* Create an internal variable with name NAME and register FUN as the
955 function that value_of_internalvar uses to create a value whenever
956 this variable is referenced. NAME should not normally include a
957 dollar sign. */
958
959 struct internalvar *
960 create_internalvar_type_lazy (char *name, internalvar_make_value fun)
961 {
962 struct internalvar *var;
963 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
964 var->name = concat (name, (char *)NULL);
965 var->value = NULL;
966 var->make_value = fun;
967 var->endian = gdbarch_byte_order (current_gdbarch);
968 var->next = internalvars;
969 internalvars = var;
970 return var;
971 }
972
973 /* Look up an internal variable with name NAME. NAME should not
974 normally include a dollar sign.
975
976 If the specified internal variable does not exist,
977 one is created, with a void value. */
978
979 struct internalvar *
980 lookup_internalvar (const char *name)
981 {
982 struct internalvar *var;
983
984 var = lookup_only_internalvar (name);
985 if (var)
986 return var;
987
988 return create_internalvar (name);
989 }
990
991 struct value *
992 value_of_internalvar (struct internalvar *var)
993 {
994 struct value *val;
995 int i, j;
996 gdb_byte temp;
997
998 if (var->make_value != NULL)
999 val = (*var->make_value) (var);
1000 else
1001 {
1002 val = value_copy (var->value);
1003 if (value_lazy (val))
1004 value_fetch_lazy (val);
1005
1006 /* If the variable's value is a computed lvalue, we want
1007 references to it to produce another computed lvalue, where
1008 referencces and assignments actually operate through the
1009 computed value's functions.
1010
1011 This means that internal variables with computed values
1012 behave a little differently from other internal variables:
1013 assignments to them don't just replace the previous value
1014 altogether. At the moment, this seems like the behavior we
1015 want. */
1016 if (var->value->lval == lval_computed)
1017 VALUE_LVAL (val) = lval_computed;
1018 else
1019 {
1020 VALUE_LVAL (val) = lval_internalvar;
1021 VALUE_INTERNALVAR (val) = var;
1022 }
1023 }
1024
1025 /* Values are always stored in the target's byte order. When connected to a
1026 target this will most likely always be correct, so there's normally no
1027 need to worry about it.
1028
1029 However, internal variables can be set up before the target endian is
1030 known and so may become out of date. Fix it up before anybody sees.
1031
1032 Internal variables usually hold simple scalar values, and we can
1033 correct those. More complex values (e.g. structures and floating
1034 point types) are left alone, because they would be too complicated
1035 to correct. */
1036
1037 if (var->endian != gdbarch_byte_order (current_gdbarch))
1038 {
1039 gdb_byte *array = value_contents_raw (val);
1040 struct type *type = check_typedef (value_enclosing_type (val));
1041 switch (TYPE_CODE (type))
1042 {
1043 case TYPE_CODE_INT:
1044 case TYPE_CODE_PTR:
1045 /* Reverse the bytes. */
1046 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
1047 {
1048 temp = array[j];
1049 array[j] = array[i];
1050 array[i] = temp;
1051 }
1052 break;
1053 }
1054 }
1055
1056 return val;
1057 }
1058
1059 void
1060 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
1061 int bitsize, struct value *newval)
1062 {
1063 gdb_byte *addr = value_contents_writeable (var->value) + offset;
1064
1065 if (bitsize)
1066 modify_field (addr, value_as_long (newval),
1067 bitpos, bitsize);
1068 else
1069 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
1070 }
1071
1072 void
1073 set_internalvar (struct internalvar *var, struct value *val)
1074 {
1075 struct value *newval;
1076
1077 if (var->canonical)
1078 error (_("Cannot overwrite convenience function %s"), var->name);
1079
1080 newval = value_copy (val);
1081 newval->modifiable = 1;
1082
1083 /* Force the value to be fetched from the target now, to avoid problems
1084 later when this internalvar is referenced and the target is gone or
1085 has changed. */
1086 if (value_lazy (newval))
1087 value_fetch_lazy (newval);
1088
1089 /* Begin code which must not call error(). If var->value points to
1090 something free'd, an error() obviously leaves a dangling pointer.
1091 But we also get a dangling pointer if var->value points to
1092 something in the value chain (i.e., before release_value is
1093 called), because after the error free_all_values will get called before
1094 long. */
1095 value_free (var->value);
1096 var->value = newval;
1097 var->endian = gdbarch_byte_order (current_gdbarch);
1098 release_value (newval);
1099 /* End code which must not call error(). */
1100 }
1101
1102 char *
1103 internalvar_name (struct internalvar *var)
1104 {
1105 return var->name;
1106 }
1107
1108 static struct value *
1109 value_create_internal_function (const char *name,
1110 internal_function_fn handler,
1111 void *cookie)
1112 {
1113 struct value *result = allocate_value (internal_fn_type);
1114 gdb_byte *addr = value_contents_writeable (result);
1115 struct internal_function **fnp = (struct internal_function **) addr;
1116 struct internal_function *ifn = XNEW (struct internal_function);
1117 ifn->name = xstrdup (name);
1118 ifn->handler = handler;
1119 ifn->cookie = cookie;
1120 *fnp = ifn;
1121 return result;
1122 }
1123
1124 char *
1125 value_internal_function_name (struct value *val)
1126 {
1127 gdb_byte *addr = value_contents_writeable (val);
1128 struct internal_function *ifn = * (struct internal_function **) addr;
1129 return ifn->name;
1130 }
1131
1132 struct value *
1133 call_internal_function (struct value *func, int argc, struct value **argv)
1134 {
1135 gdb_byte *addr = value_contents_writeable (func);
1136 struct internal_function *ifn = * (struct internal_function **) addr;
1137 return (*ifn->handler) (ifn->cookie, argc, argv);
1138 }
1139
1140 /* The 'function' command. This does nothing -- it is just a
1141 placeholder to let "help function NAME" work. This is also used as
1142 the implementation of the sub-command that is created when
1143 registering an internal function. */
1144 static void
1145 function_command (char *command, int from_tty)
1146 {
1147 /* Do nothing. */
1148 }
1149
1150 /* Clean up if an internal function's command is destroyed. */
1151 static void
1152 function_destroyer (struct cmd_list_element *self, void *ignore)
1153 {
1154 xfree (self->name);
1155 xfree (self->doc);
1156 }
1157
1158 /* Add a new internal function. NAME is the name of the function; DOC
1159 is a documentation string describing the function. HANDLER is
1160 called when the function is invoked. COOKIE is an arbitrary
1161 pointer which is passed to HANDLER and is intended for "user
1162 data". */
1163 void
1164 add_internal_function (const char *name, const char *doc,
1165 internal_function_fn handler, void *cookie)
1166 {
1167 struct cmd_list_element *cmd;
1168 struct internalvar *var = lookup_internalvar (name);
1169 struct value *fnval = value_create_internal_function (name, handler, cookie);
1170 set_internalvar (var, fnval);
1171 var->canonical = 1;
1172
1173 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1174 &functionlist);
1175 cmd->destroyer = function_destroyer;
1176 }
1177
1178 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1179 prevent cycles / duplicates. */
1180
1181 static void
1182 preserve_one_value (struct value *value, struct objfile *objfile,
1183 htab_t copied_types)
1184 {
1185 if (TYPE_OBJFILE (value->type) == objfile)
1186 value->type = copy_type_recursive (objfile, value->type, copied_types);
1187
1188 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1189 value->enclosing_type = copy_type_recursive (objfile,
1190 value->enclosing_type,
1191 copied_types);
1192 }
1193
1194 /* Update the internal variables and value history when OBJFILE is
1195 discarded; we must copy the types out of the objfile. New global types
1196 will be created for every convenience variable which currently points to
1197 this objfile's types, and the convenience variables will be adjusted to
1198 use the new global types. */
1199
1200 void
1201 preserve_values (struct objfile *objfile)
1202 {
1203 htab_t copied_types;
1204 struct value_history_chunk *cur;
1205 struct internalvar *var;
1206 struct value *val;
1207 int i;
1208
1209 /* Create the hash table. We allocate on the objfile's obstack, since
1210 it is soon to be deleted. */
1211 copied_types = create_copied_types_hash (objfile);
1212
1213 for (cur = value_history_chain; cur; cur = cur->next)
1214 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1215 if (cur->values[i])
1216 preserve_one_value (cur->values[i], objfile, copied_types);
1217
1218 for (var = internalvars; var; var = var->next)
1219 if (var->value)
1220 preserve_one_value (var->value, objfile, copied_types);
1221
1222 for (val = values_in_python; val; val = val->next)
1223 preserve_one_value (val, objfile, copied_types);
1224
1225 htab_delete (copied_types);
1226 }
1227
1228 static void
1229 show_convenience (char *ignore, int from_tty)
1230 {
1231 struct internalvar *var;
1232 int varseen = 0;
1233 struct value_print_options opts;
1234
1235 get_user_print_options (&opts);
1236 for (var = internalvars; var; var = var->next)
1237 {
1238 if (!varseen)
1239 {
1240 varseen = 1;
1241 }
1242 printf_filtered (("$%s = "), var->name);
1243 value_print (value_of_internalvar (var), gdb_stdout,
1244 &opts);
1245 printf_filtered (("\n"));
1246 }
1247 if (!varseen)
1248 printf_unfiltered (_("\
1249 No debugger convenience variables now defined.\n\
1250 Convenience variables have names starting with \"$\";\n\
1251 use \"set\" as in \"set $foo = 5\" to define them.\n"));
1252 }
1253 \f
1254 /* Extract a value as a C number (either long or double).
1255 Knows how to convert fixed values to double, or
1256 floating values to long.
1257 Does not deallocate the value. */
1258
1259 LONGEST
1260 value_as_long (struct value *val)
1261 {
1262 /* This coerces arrays and functions, which is necessary (e.g.
1263 in disassemble_command). It also dereferences references, which
1264 I suspect is the most logical thing to do. */
1265 val = coerce_array (val);
1266 return unpack_long (value_type (val), value_contents (val));
1267 }
1268
1269 DOUBLEST
1270 value_as_double (struct value *val)
1271 {
1272 DOUBLEST foo;
1273 int inv;
1274
1275 foo = unpack_double (value_type (val), value_contents (val), &inv);
1276 if (inv)
1277 error (_("Invalid floating value found in program."));
1278 return foo;
1279 }
1280
1281 /* Extract a value as a C pointer. Does not deallocate the value.
1282 Note that val's type may not actually be a pointer; value_as_long
1283 handles all the cases. */
1284 CORE_ADDR
1285 value_as_address (struct value *val)
1286 {
1287 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1288 whether we want this to be true eventually. */
1289 #if 0
1290 /* gdbarch_addr_bits_remove is wrong if we are being called for a
1291 non-address (e.g. argument to "signal", "info break", etc.), or
1292 for pointers to char, in which the low bits *are* significant. */
1293 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
1294 #else
1295
1296 /* There are several targets (IA-64, PowerPC, and others) which
1297 don't represent pointers to functions as simply the address of
1298 the function's entry point. For example, on the IA-64, a
1299 function pointer points to a two-word descriptor, generated by
1300 the linker, which contains the function's entry point, and the
1301 value the IA-64 "global pointer" register should have --- to
1302 support position-independent code. The linker generates
1303 descriptors only for those functions whose addresses are taken.
1304
1305 On such targets, it's difficult for GDB to convert an arbitrary
1306 function address into a function pointer; it has to either find
1307 an existing descriptor for that function, or call malloc and
1308 build its own. On some targets, it is impossible for GDB to
1309 build a descriptor at all: the descriptor must contain a jump
1310 instruction; data memory cannot be executed; and code memory
1311 cannot be modified.
1312
1313 Upon entry to this function, if VAL is a value of type `function'
1314 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1315 value_address (val) is the address of the function. This is what
1316 you'll get if you evaluate an expression like `main'. The call
1317 to COERCE_ARRAY below actually does all the usual unary
1318 conversions, which includes converting values of type `function'
1319 to `pointer to function'. This is the challenging conversion
1320 discussed above. Then, `unpack_long' will convert that pointer
1321 back into an address.
1322
1323 So, suppose the user types `disassemble foo' on an architecture
1324 with a strange function pointer representation, on which GDB
1325 cannot build its own descriptors, and suppose further that `foo'
1326 has no linker-built descriptor. The address->pointer conversion
1327 will signal an error and prevent the command from running, even
1328 though the next step would have been to convert the pointer
1329 directly back into the same address.
1330
1331 The following shortcut avoids this whole mess. If VAL is a
1332 function, just return its address directly. */
1333 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1334 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
1335 return value_address (val);
1336
1337 val = coerce_array (val);
1338
1339 /* Some architectures (e.g. Harvard), map instruction and data
1340 addresses onto a single large unified address space. For
1341 instance: An architecture may consider a large integer in the
1342 range 0x10000000 .. 0x1000ffff to already represent a data
1343 addresses (hence not need a pointer to address conversion) while
1344 a small integer would still need to be converted integer to
1345 pointer to address. Just assume such architectures handle all
1346 integer conversions in a single function. */
1347
1348 /* JimB writes:
1349
1350 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1351 must admonish GDB hackers to make sure its behavior matches the
1352 compiler's, whenever possible.
1353
1354 In general, I think GDB should evaluate expressions the same way
1355 the compiler does. When the user copies an expression out of
1356 their source code and hands it to a `print' command, they should
1357 get the same value the compiler would have computed. Any
1358 deviation from this rule can cause major confusion and annoyance,
1359 and needs to be justified carefully. In other words, GDB doesn't
1360 really have the freedom to do these conversions in clever and
1361 useful ways.
1362
1363 AndrewC pointed out that users aren't complaining about how GDB
1364 casts integers to pointers; they are complaining that they can't
1365 take an address from a disassembly listing and give it to `x/i'.
1366 This is certainly important.
1367
1368 Adding an architecture method like integer_to_address() certainly
1369 makes it possible for GDB to "get it right" in all circumstances
1370 --- the target has complete control over how things get done, so
1371 people can Do The Right Thing for their target without breaking
1372 anyone else. The standard doesn't specify how integers get
1373 converted to pointers; usually, the ABI doesn't either, but
1374 ABI-specific code is a more reasonable place to handle it. */
1375
1376 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1377 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
1378 && gdbarch_integer_to_address_p (current_gdbarch))
1379 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
1380 value_contents (val));
1381
1382 return unpack_long (value_type (val), value_contents (val));
1383 #endif
1384 }
1385 \f
1386 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1387 as a long, or as a double, assuming the raw data is described
1388 by type TYPE. Knows how to convert different sizes of values
1389 and can convert between fixed and floating point. We don't assume
1390 any alignment for the raw data. Return value is in host byte order.
1391
1392 If you want functions and arrays to be coerced to pointers, and
1393 references to be dereferenced, call value_as_long() instead.
1394
1395 C++: It is assumed that the front-end has taken care of
1396 all matters concerning pointers to members. A pointer
1397 to member which reaches here is considered to be equivalent
1398 to an INT (or some size). After all, it is only an offset. */
1399
1400 LONGEST
1401 unpack_long (struct type *type, const gdb_byte *valaddr)
1402 {
1403 enum type_code code = TYPE_CODE (type);
1404 int len = TYPE_LENGTH (type);
1405 int nosign = TYPE_UNSIGNED (type);
1406
1407 switch (code)
1408 {
1409 case TYPE_CODE_TYPEDEF:
1410 return unpack_long (check_typedef (type), valaddr);
1411 case TYPE_CODE_ENUM:
1412 case TYPE_CODE_FLAGS:
1413 case TYPE_CODE_BOOL:
1414 case TYPE_CODE_INT:
1415 case TYPE_CODE_CHAR:
1416 case TYPE_CODE_RANGE:
1417 case TYPE_CODE_MEMBERPTR:
1418 if (nosign)
1419 return extract_unsigned_integer (valaddr, len);
1420 else
1421 return extract_signed_integer (valaddr, len);
1422
1423 case TYPE_CODE_FLT:
1424 return extract_typed_floating (valaddr, type);
1425
1426 case TYPE_CODE_DECFLOAT:
1427 /* libdecnumber has a function to convert from decimal to integer, but
1428 it doesn't work when the decimal number has a fractional part. */
1429 return decimal_to_doublest (valaddr, len);
1430
1431 case TYPE_CODE_PTR:
1432 case TYPE_CODE_REF:
1433 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1434 whether we want this to be true eventually. */
1435 return extract_typed_address (valaddr, type);
1436
1437 default:
1438 error (_("Value can't be converted to integer."));
1439 }
1440 return 0; /* Placate lint. */
1441 }
1442
1443 /* Return a double value from the specified type and address.
1444 INVP points to an int which is set to 0 for valid value,
1445 1 for invalid value (bad float format). In either case,
1446 the returned double is OK to use. Argument is in target
1447 format, result is in host format. */
1448
1449 DOUBLEST
1450 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
1451 {
1452 enum type_code code;
1453 int len;
1454 int nosign;
1455
1456 *invp = 0; /* Assume valid. */
1457 CHECK_TYPEDEF (type);
1458 code = TYPE_CODE (type);
1459 len = TYPE_LENGTH (type);
1460 nosign = TYPE_UNSIGNED (type);
1461 if (code == TYPE_CODE_FLT)
1462 {
1463 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1464 floating-point value was valid (using the macro
1465 INVALID_FLOAT). That test/macro have been removed.
1466
1467 It turns out that only the VAX defined this macro and then
1468 only in a non-portable way. Fixing the portability problem
1469 wouldn't help since the VAX floating-point code is also badly
1470 bit-rotten. The target needs to add definitions for the
1471 methods gdbarch_float_format and gdbarch_double_format - these
1472 exactly describe the target floating-point format. The
1473 problem here is that the corresponding floatformat_vax_f and
1474 floatformat_vax_d values these methods should be set to are
1475 also not defined either. Oops!
1476
1477 Hopefully someone will add both the missing floatformat
1478 definitions and the new cases for floatformat_is_valid (). */
1479
1480 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1481 {
1482 *invp = 1;
1483 return 0.0;
1484 }
1485
1486 return extract_typed_floating (valaddr, type);
1487 }
1488 else if (code == TYPE_CODE_DECFLOAT)
1489 return decimal_to_doublest (valaddr, len);
1490 else if (nosign)
1491 {
1492 /* Unsigned -- be sure we compensate for signed LONGEST. */
1493 return (ULONGEST) unpack_long (type, valaddr);
1494 }
1495 else
1496 {
1497 /* Signed -- we are OK with unpack_long. */
1498 return unpack_long (type, valaddr);
1499 }
1500 }
1501
1502 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
1503 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1504 We don't assume any alignment for the raw data. Return value is in
1505 host byte order.
1506
1507 If you want functions and arrays to be coerced to pointers, and
1508 references to be dereferenced, call value_as_address() instead.
1509
1510 C++: It is assumed that the front-end has taken care of
1511 all matters concerning pointers to members. A pointer
1512 to member which reaches here is considered to be equivalent
1513 to an INT (or some size). After all, it is only an offset. */
1514
1515 CORE_ADDR
1516 unpack_pointer (struct type *type, const gdb_byte *valaddr)
1517 {
1518 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1519 whether we want this to be true eventually. */
1520 return unpack_long (type, valaddr);
1521 }
1522
1523 \f
1524 /* Get the value of the FIELDN'th field (which must be static) of
1525 TYPE. Return NULL if the field doesn't exist or has been
1526 optimized out. */
1527
1528 struct value *
1529 value_static_field (struct type *type, int fieldno)
1530 {
1531 struct value *retval;
1532
1533 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
1534 {
1535 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1536 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1537 }
1538 else
1539 {
1540 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1541 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
1542 if (sym == NULL)
1543 {
1544 /* With some compilers, e.g. HP aCC, static data members are reported
1545 as non-debuggable symbols */
1546 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
1547 if (!msym)
1548 return NULL;
1549 else
1550 {
1551 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
1552 SYMBOL_VALUE_ADDRESS (msym));
1553 }
1554 }
1555 else
1556 {
1557 /* SYM should never have a SYMBOL_CLASS which will require
1558 read_var_value to use the FRAME parameter. */
1559 if (symbol_read_needs_frame (sym))
1560 warning (_("static field's value depends on the current "
1561 "frame - bad debug info?"));
1562 retval = read_var_value (sym, NULL);
1563 }
1564 if (retval && VALUE_LVAL (retval) == lval_memory)
1565 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1566 value_address (retval));
1567 }
1568 return retval;
1569 }
1570
1571 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1572 You have to be careful here, since the size of the data area for the value
1573 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1574 than the old enclosing type, you have to allocate more space for the data.
1575 The return value is a pointer to the new version of this value structure. */
1576
1577 struct value *
1578 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
1579 {
1580 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1581 val->contents =
1582 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1583
1584 val->enclosing_type = new_encl_type;
1585 return val;
1586 }
1587
1588 /* Given a value ARG1 (offset by OFFSET bytes)
1589 of a struct or union type ARG_TYPE,
1590 extract and return the value of one of its (non-static) fields.
1591 FIELDNO says which field. */
1592
1593 struct value *
1594 value_primitive_field (struct value *arg1, int offset,
1595 int fieldno, struct type *arg_type)
1596 {
1597 struct value *v;
1598 struct type *type;
1599
1600 CHECK_TYPEDEF (arg_type);
1601 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1602
1603 /* Handle packed fields */
1604
1605 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1606 {
1607 v = value_from_longest (type,
1608 unpack_field_as_long (arg_type,
1609 value_contents (arg1)
1610 + offset,
1611 fieldno));
1612 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1613 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1614 v->offset = value_offset (arg1) + offset
1615 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1616 }
1617 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1618 {
1619 /* This field is actually a base subobject, so preserve the
1620 entire object's contents for later references to virtual
1621 bases, etc. */
1622
1623 /* Lazy register values with offsets are not supported. */
1624 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1625 value_fetch_lazy (arg1);
1626
1627 if (value_lazy (arg1))
1628 v = allocate_value_lazy (value_enclosing_type (arg1));
1629 else
1630 {
1631 v = allocate_value (value_enclosing_type (arg1));
1632 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1633 TYPE_LENGTH (value_enclosing_type (arg1)));
1634 }
1635 v->type = type;
1636 v->offset = value_offset (arg1);
1637 v->embedded_offset = (offset + value_embedded_offset (arg1)
1638 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
1639 }
1640 else
1641 {
1642 /* Plain old data member */
1643 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1644
1645 /* Lazy register values with offsets are not supported. */
1646 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1647 value_fetch_lazy (arg1);
1648
1649 if (value_lazy (arg1))
1650 v = allocate_value_lazy (type);
1651 else
1652 {
1653 v = allocate_value (type);
1654 memcpy (value_contents_raw (v),
1655 value_contents_raw (arg1) + offset,
1656 TYPE_LENGTH (type));
1657 }
1658 v->offset = (value_offset (arg1) + offset
1659 + value_embedded_offset (arg1));
1660 }
1661 set_value_component_location (v, arg1);
1662 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1663 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1664 return v;
1665 }
1666
1667 /* Given a value ARG1 of a struct or union type,
1668 extract and return the value of one of its (non-static) fields.
1669 FIELDNO says which field. */
1670
1671 struct value *
1672 value_field (struct value *arg1, int fieldno)
1673 {
1674 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1675 }
1676
1677 /* Return a non-virtual function as a value.
1678 F is the list of member functions which contains the desired method.
1679 J is an index into F which provides the desired method.
1680
1681 We only use the symbol for its address, so be happy with either a
1682 full symbol or a minimal symbol.
1683 */
1684
1685 struct value *
1686 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1687 int offset)
1688 {
1689 struct value *v;
1690 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1691 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1692 struct symbol *sym;
1693 struct minimal_symbol *msym;
1694
1695 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
1696 if (sym != NULL)
1697 {
1698 msym = NULL;
1699 }
1700 else
1701 {
1702 gdb_assert (sym == NULL);
1703 msym = lookup_minimal_symbol (physname, NULL, NULL);
1704 if (msym == NULL)
1705 return NULL;
1706 }
1707
1708 v = allocate_value (ftype);
1709 if (sym)
1710 {
1711 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
1712 }
1713 else
1714 {
1715 /* The minimal symbol might point to a function descriptor;
1716 resolve it to the actual code address instead. */
1717 struct objfile *objfile = msymbol_objfile (msym);
1718 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1719
1720 set_value_address (v,
1721 gdbarch_convert_from_func_ptr_addr
1722 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
1723 }
1724
1725 if (arg1p)
1726 {
1727 if (type != value_type (*arg1p))
1728 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1729 value_addr (*arg1p)));
1730
1731 /* Move the `this' pointer according to the offset.
1732 VALUE_OFFSET (*arg1p) += offset;
1733 */
1734 }
1735
1736 return v;
1737 }
1738
1739 \f
1740 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1741 VALADDR.
1742
1743 Extracting bits depends on endianness of the machine. Compute the
1744 number of least significant bits to discard. For big endian machines,
1745 we compute the total number of bits in the anonymous object, subtract
1746 off the bit count from the MSB of the object to the MSB of the
1747 bitfield, then the size of the bitfield, which leaves the LSB discard
1748 count. For little endian machines, the discard count is simply the
1749 number of bits from the LSB of the anonymous object to the LSB of the
1750 bitfield.
1751
1752 If the field is signed, we also do sign extension. */
1753
1754 LONGEST
1755 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
1756 {
1757 ULONGEST val;
1758 ULONGEST valmask;
1759 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1760 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1761 int lsbcount;
1762 struct type *field_type;
1763
1764 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1765 field_type = TYPE_FIELD_TYPE (type, fieldno);
1766 CHECK_TYPEDEF (field_type);
1767
1768 /* Extract bits. See comment above. */
1769
1770 if (gdbarch_bits_big_endian (current_gdbarch))
1771 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1772 else
1773 lsbcount = (bitpos % 8);
1774 val >>= lsbcount;
1775
1776 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1777 If the field is signed, and is negative, then sign extend. */
1778
1779 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1780 {
1781 valmask = (((ULONGEST) 1) << bitsize) - 1;
1782 val &= valmask;
1783 if (!TYPE_UNSIGNED (field_type))
1784 {
1785 if (val & (valmask ^ (valmask >> 1)))
1786 {
1787 val |= ~valmask;
1788 }
1789 }
1790 }
1791 return (val);
1792 }
1793
1794 /* Modify the value of a bitfield. ADDR points to a block of memory in
1795 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1796 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1797 indicate which bits (in target bit order) comprise the bitfield.
1798 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1799 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1800
1801 void
1802 modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
1803 {
1804 ULONGEST oword;
1805 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1806
1807 /* If a negative fieldval fits in the field in question, chop
1808 off the sign extension bits. */
1809 if ((~fieldval & ~(mask >> 1)) == 0)
1810 fieldval &= mask;
1811
1812 /* Warn if value is too big to fit in the field in question. */
1813 if (0 != (fieldval & ~mask))
1814 {
1815 /* FIXME: would like to include fieldval in the message, but
1816 we don't have a sprintf_longest. */
1817 warning (_("Value does not fit in %d bits."), bitsize);
1818
1819 /* Truncate it, otherwise adjoining fields may be corrupted. */
1820 fieldval &= mask;
1821 }
1822
1823 oword = extract_unsigned_integer (addr, sizeof oword);
1824
1825 /* Shifting for bit field depends on endianness of the target machine. */
1826 if (gdbarch_bits_big_endian (current_gdbarch))
1827 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1828
1829 oword &= ~(mask << bitpos);
1830 oword |= fieldval << bitpos;
1831
1832 store_unsigned_integer (addr, sizeof oword, oword);
1833 }
1834 \f
1835 /* Pack NUM into BUF using a target format of TYPE. */
1836
1837 void
1838 pack_long (gdb_byte *buf, struct type *type, LONGEST num)
1839 {
1840 int len;
1841
1842 type = check_typedef (type);
1843 len = TYPE_LENGTH (type);
1844
1845 switch (TYPE_CODE (type))
1846 {
1847 case TYPE_CODE_INT:
1848 case TYPE_CODE_CHAR:
1849 case TYPE_CODE_ENUM:
1850 case TYPE_CODE_FLAGS:
1851 case TYPE_CODE_BOOL:
1852 case TYPE_CODE_RANGE:
1853 case TYPE_CODE_MEMBERPTR:
1854 store_signed_integer (buf, len, num);
1855 break;
1856
1857 case TYPE_CODE_REF:
1858 case TYPE_CODE_PTR:
1859 store_typed_address (buf, type, (CORE_ADDR) num);
1860 break;
1861
1862 default:
1863 error (_("Unexpected type (%d) encountered for integer constant."),
1864 TYPE_CODE (type));
1865 }
1866 }
1867
1868
1869 /* Convert C numbers into newly allocated values. */
1870
1871 struct value *
1872 value_from_longest (struct type *type, LONGEST num)
1873 {
1874 struct value *val = allocate_value (type);
1875
1876 pack_long (value_contents_raw (val), type, num);
1877
1878 return val;
1879 }
1880
1881
1882 /* Create a value representing a pointer of type TYPE to the address
1883 ADDR. */
1884 struct value *
1885 value_from_pointer (struct type *type, CORE_ADDR addr)
1886 {
1887 struct value *val = allocate_value (type);
1888 store_typed_address (value_contents_raw (val), type, addr);
1889 return val;
1890 }
1891
1892
1893 /* Create a value for a string constant to be stored locally
1894 (not in the inferior's memory space, but in GDB memory).
1895 This is analogous to value_from_longest, which also does not
1896 use inferior memory. String shall NOT contain embedded nulls. */
1897
1898 struct value *
1899 value_from_string (char *ptr)
1900 {
1901 struct value *val;
1902 int len = strlen (ptr);
1903 int lowbound = current_language->string_lower_bound;
1904 struct type *string_char_type;
1905 struct type *rangetype;
1906 struct type *stringtype;
1907
1908 rangetype = create_range_type ((struct type *) NULL,
1909 builtin_type_int32,
1910 lowbound, len + lowbound - 1);
1911 string_char_type = language_string_char_type (current_language,
1912 current_gdbarch);
1913 stringtype = create_array_type ((struct type *) NULL,
1914 string_char_type,
1915 rangetype);
1916 val = allocate_value (stringtype);
1917 memcpy (value_contents_raw (val), ptr, len);
1918 return val;
1919 }
1920
1921 /* Create a value of type TYPE whose contents come from VALADDR, if it
1922 is non-null, and whose memory address (in the inferior) is
1923 ADDRESS. */
1924
1925 struct value *
1926 value_from_contents_and_address (struct type *type,
1927 const gdb_byte *valaddr,
1928 CORE_ADDR address)
1929 {
1930 struct value *v = allocate_value (type);
1931 if (valaddr == NULL)
1932 set_value_lazy (v, 1);
1933 else
1934 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1935 set_value_address (v, address);
1936 VALUE_LVAL (v) = lval_memory;
1937 return v;
1938 }
1939
1940 struct value *
1941 value_from_double (struct type *type, DOUBLEST num)
1942 {
1943 struct value *val = allocate_value (type);
1944 struct type *base_type = check_typedef (type);
1945 enum type_code code = TYPE_CODE (base_type);
1946 int len = TYPE_LENGTH (base_type);
1947
1948 if (code == TYPE_CODE_FLT)
1949 {
1950 store_typed_floating (value_contents_raw (val), base_type, num);
1951 }
1952 else
1953 error (_("Unexpected type encountered for floating constant."));
1954
1955 return val;
1956 }
1957
1958 struct value *
1959 value_from_decfloat (struct type *type, const gdb_byte *dec)
1960 {
1961 struct value *val = allocate_value (type);
1962
1963 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
1964
1965 return val;
1966 }
1967
1968 struct value *
1969 coerce_ref (struct value *arg)
1970 {
1971 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1972 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1973 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1974 unpack_pointer (value_type (arg),
1975 value_contents (arg)));
1976 return arg;
1977 }
1978
1979 struct value *
1980 coerce_array (struct value *arg)
1981 {
1982 struct type *type;
1983
1984 arg = coerce_ref (arg);
1985 type = check_typedef (value_type (arg));
1986
1987 switch (TYPE_CODE (type))
1988 {
1989 case TYPE_CODE_ARRAY:
1990 if (current_language->c_style_arrays)
1991 arg = value_coerce_array (arg);
1992 break;
1993 case TYPE_CODE_FUNC:
1994 arg = value_coerce_function (arg);
1995 break;
1996 }
1997 return arg;
1998 }
1999 \f
2000
2001 /* Return true if the function returning the specified type is using
2002 the convention of returning structures in memory (passing in the
2003 address as a hidden first parameter). */
2004
2005 int
2006 using_struct_return (struct type *func_type, struct type *value_type)
2007 {
2008 enum type_code code = TYPE_CODE (value_type);
2009
2010 if (code == TYPE_CODE_ERROR)
2011 error (_("Function return type unknown."));
2012
2013 if (code == TYPE_CODE_VOID)
2014 /* A void return value is never in memory. See also corresponding
2015 code in "print_return_value". */
2016 return 0;
2017
2018 /* Probe the architecture for the return-value convention. */
2019 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
2020 NULL, NULL, NULL)
2021 != RETURN_VALUE_REGISTER_CONVENTION);
2022 }
2023
2024 /* Set the initialized field in a value struct. */
2025
2026 void
2027 set_value_initialized (struct value *val, int status)
2028 {
2029 val->initialized = status;
2030 }
2031
2032 /* Return the initialized field in a value struct. */
2033
2034 int
2035 value_initialized (struct value *val)
2036 {
2037 return val->initialized;
2038 }
2039
2040 void
2041 _initialize_values (void)
2042 {
2043 add_cmd ("convenience", no_class, show_convenience, _("\
2044 Debugger convenience (\"$foo\") variables.\n\
2045 These variables are created when you assign them values;\n\
2046 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2047 \n\
2048 A few convenience variables are given values automatically:\n\
2049 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
2050 \"$__\" holds the contents of the last address examined with \"x\"."),
2051 &showlist);
2052
2053 add_cmd ("values", no_class, show_values,
2054 _("Elements of value history around item number IDX (or last ten)."),
2055 &showlist);
2056
2057 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2058 Initialize a convenience variable if necessary.\n\
2059 init-if-undefined VARIABLE = EXPRESSION\n\
2060 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2061 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2062 VARIABLE is already initialized."));
2063
2064 add_prefix_cmd ("function", no_class, function_command, _("\
2065 Placeholder command for showing help on convenience functions."),
2066 &functionlist, "function ", 0, &cmdlist);
2067
2068 internal_fn_type = alloc_type (NULL);
2069 TYPE_CODE (internal_fn_type) = TYPE_CODE_INTERNAL_FUNCTION;
2070 TYPE_LENGTH (internal_fn_type) = sizeof (struct internal_function *);
2071 TYPE_NAME (internal_fn_type) = "<internal function>";
2072 }
This page took 0.069458 seconds and 5 git commands to generate.