2005-02-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 val->lazy = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct type *
127 value_type (struct value *value)
128 {
129 return value->type;
130 }
131
132 int
133 value_offset (struct value *value)
134 {
135 return value->offset;
136 }
137
138 int
139 value_bitpos (struct value *value)
140 {
141 return value->bitpos;
142 }
143
144 int
145 value_bitsize (struct value *value)
146 {
147 return value->bitsize;
148 }
149
150 bfd_byte *
151 value_contents_raw (struct value *value)
152 {
153 return value->aligner.contents + value->embedded_offset;
154 }
155
156 bfd_byte *
157 value_contents_all_raw (struct value *value)
158 {
159 return value->aligner.contents;
160 }
161
162 struct type *
163 value_enclosing_type (struct value *value)
164 {
165 return value->enclosing_type;
166 }
167
168 const bfd_byte *
169 value_contents_all (struct value *value)
170 {
171 if (value->lazy)
172 value_fetch_lazy (value);
173 return value->aligner.contents;
174 }
175
176 int
177 value_lazy (struct value *value)
178 {
179 return value->lazy;
180 }
181
182 \f
183 /* Return a mark in the value chain. All values allocated after the
184 mark is obtained (except for those released) are subject to being freed
185 if a subsequent value_free_to_mark is passed the mark. */
186 struct value *
187 value_mark (void)
188 {
189 return all_values;
190 }
191
192 /* Free all values allocated since MARK was obtained by value_mark
193 (except for those released). */
194 void
195 value_free_to_mark (struct value *mark)
196 {
197 struct value *val;
198 struct value *next;
199
200 for (val = all_values; val && val != mark; val = next)
201 {
202 next = val->next;
203 value_free (val);
204 }
205 all_values = val;
206 }
207
208 /* Free all the values that have been allocated (except for those released).
209 Called after each command, successful or not. */
210
211 void
212 free_all_values (void)
213 {
214 struct value *val;
215 struct value *next;
216
217 for (val = all_values; val; val = next)
218 {
219 next = val->next;
220 value_free (val);
221 }
222
223 all_values = 0;
224 }
225
226 /* Remove VAL from the chain all_values
227 so it will not be freed automatically. */
228
229 void
230 release_value (struct value *val)
231 {
232 struct value *v;
233
234 if (all_values == val)
235 {
236 all_values = val->next;
237 return;
238 }
239
240 for (v = all_values; v; v = v->next)
241 {
242 if (v->next == val)
243 {
244 v->next = val->next;
245 break;
246 }
247 }
248 }
249
250 /* Release all values up to mark */
251 struct value *
252 value_release_to_mark (struct value *mark)
253 {
254 struct value *val;
255 struct value *next;
256
257 for (val = next = all_values; next; next = next->next)
258 if (next->next == mark)
259 {
260 all_values = next->next;
261 next->next = NULL;
262 return val;
263 }
264 all_values = 0;
265 return val;
266 }
267
268 /* Return a copy of the value ARG.
269 It contains the same contents, for same memory address,
270 but it's a different block of storage. */
271
272 struct value *
273 value_copy (struct value *arg)
274 {
275 struct type *encl_type = value_enclosing_type (arg);
276 struct value *val = allocate_value (encl_type);
277 val->type = arg->type;
278 VALUE_LVAL (val) = VALUE_LVAL (arg);
279 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
280 val->offset = arg->offset;
281 val->bitpos = arg->bitpos;
282 val->bitsize = arg->bitsize;
283 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
284 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
285 val->lazy = arg->lazy;
286 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
287 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
288 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
289 val->modifiable = arg->modifiable;
290 if (!value_lazy (val))
291 {
292 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
293 TYPE_LENGTH (value_enclosing_type (arg)));
294
295 }
296 return val;
297 }
298 \f
299 /* Access to the value history. */
300
301 /* Record a new value in the value history.
302 Returns the absolute history index of the entry.
303 Result of -1 indicates the value was not saved; otherwise it is the
304 value history index of this new item. */
305
306 int
307 record_latest_value (struct value *val)
308 {
309 int i;
310
311 /* We don't want this value to have anything to do with the inferior anymore.
312 In particular, "set $1 = 50" should not affect the variable from which
313 the value was taken, and fast watchpoints should be able to assume that
314 a value on the value history never changes. */
315 if (value_lazy (val))
316 value_fetch_lazy (val);
317 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
318 from. This is a bit dubious, because then *&$1 does not just return $1
319 but the current contents of that location. c'est la vie... */
320 val->modifiable = 0;
321 release_value (val);
322
323 /* Here we treat value_history_count as origin-zero
324 and applying to the value being stored now. */
325
326 i = value_history_count % VALUE_HISTORY_CHUNK;
327 if (i == 0)
328 {
329 struct value_history_chunk *new
330 = (struct value_history_chunk *)
331 xmalloc (sizeof (struct value_history_chunk));
332 memset (new->values, 0, sizeof new->values);
333 new->next = value_history_chain;
334 value_history_chain = new;
335 }
336
337 value_history_chain->values[i] = val;
338
339 /* Now we regard value_history_count as origin-one
340 and applying to the value just stored. */
341
342 return ++value_history_count;
343 }
344
345 /* Return a copy of the value in the history with sequence number NUM. */
346
347 struct value *
348 access_value_history (int num)
349 {
350 struct value_history_chunk *chunk;
351 int i;
352 int absnum = num;
353
354 if (absnum <= 0)
355 absnum += value_history_count;
356
357 if (absnum <= 0)
358 {
359 if (num == 0)
360 error ("The history is empty.");
361 else if (num == 1)
362 error ("There is only one value in the history.");
363 else
364 error ("History does not go back to $$%d.", -num);
365 }
366 if (absnum > value_history_count)
367 error ("History has not yet reached $%d.", absnum);
368
369 absnum--;
370
371 /* Now absnum is always absolute and origin zero. */
372
373 chunk = value_history_chain;
374 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
375 i > 0; i--)
376 chunk = chunk->next;
377
378 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
379 }
380
381 /* Clear the value history entirely.
382 Must be done when new symbol tables are loaded,
383 because the type pointers become invalid. */
384
385 void
386 clear_value_history (void)
387 {
388 struct value_history_chunk *next;
389 int i;
390 struct value *val;
391
392 while (value_history_chain)
393 {
394 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
395 if ((val = value_history_chain->values[i]) != NULL)
396 xfree (val);
397 next = value_history_chain->next;
398 xfree (value_history_chain);
399 value_history_chain = next;
400 }
401 value_history_count = 0;
402 }
403
404 static void
405 show_values (char *num_exp, int from_tty)
406 {
407 int i;
408 struct value *val;
409 static int num = 1;
410
411 if (num_exp)
412 {
413 /* "info history +" should print from the stored position.
414 "info history <exp>" should print around value number <exp>. */
415 if (num_exp[0] != '+' || num_exp[1] != '\0')
416 num = parse_and_eval_long (num_exp) - 5;
417 }
418 else
419 {
420 /* "info history" means print the last 10 values. */
421 num = value_history_count - 9;
422 }
423
424 if (num <= 0)
425 num = 1;
426
427 for (i = num; i < num + 10 && i <= value_history_count; i++)
428 {
429 val = access_value_history (i);
430 printf_filtered ("$%d = ", i);
431 value_print (val, gdb_stdout, 0, Val_pretty_default);
432 printf_filtered ("\n");
433 }
434
435 /* The next "info history +" should start after what we just printed. */
436 num += 10;
437
438 /* Hitting just return after this command should do the same thing as
439 "info history +". If num_exp is null, this is unnecessary, since
440 "info history +" is not useful after "info history". */
441 if (from_tty && num_exp)
442 {
443 num_exp[0] = '+';
444 num_exp[1] = '\0';
445 }
446 }
447 \f
448 /* Internal variables. These are variables within the debugger
449 that hold values assigned by debugger commands.
450 The user refers to them with a '$' prefix
451 that does not appear in the variable names stored internally. */
452
453 static struct internalvar *internalvars;
454
455 /* Look up an internal variable with name NAME. NAME should not
456 normally include a dollar sign.
457
458 If the specified internal variable does not exist,
459 one is created, with a void value. */
460
461 struct internalvar *
462 lookup_internalvar (char *name)
463 {
464 struct internalvar *var;
465
466 for (var = internalvars; var; var = var->next)
467 if (strcmp (var->name, name) == 0)
468 return var;
469
470 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
471 var->name = concat (name, NULL);
472 var->value = allocate_value (builtin_type_void);
473 release_value (var->value);
474 var->next = internalvars;
475 internalvars = var;
476 return var;
477 }
478
479 struct value *
480 value_of_internalvar (struct internalvar *var)
481 {
482 struct value *val;
483
484 val = value_copy (var->value);
485 if (value_lazy (val))
486 value_fetch_lazy (val);
487 VALUE_LVAL (val) = lval_internalvar;
488 VALUE_INTERNALVAR (val) = var;
489 return val;
490 }
491
492 void
493 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
494 int bitsize, struct value *newval)
495 {
496 char *addr = VALUE_CONTENTS (var->value) + offset;
497
498 if (bitsize)
499 modify_field (addr, value_as_long (newval),
500 bitpos, bitsize);
501 else
502 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
503 }
504
505 void
506 set_internalvar (struct internalvar *var, struct value *val)
507 {
508 struct value *newval;
509
510 newval = value_copy (val);
511 newval->modifiable = 1;
512
513 /* Force the value to be fetched from the target now, to avoid problems
514 later when this internalvar is referenced and the target is gone or
515 has changed. */
516 if (value_lazy (newval))
517 value_fetch_lazy (newval);
518
519 /* Begin code which must not call error(). If var->value points to
520 something free'd, an error() obviously leaves a dangling pointer.
521 But we also get a danling pointer if var->value points to
522 something in the value chain (i.e., before release_value is
523 called), because after the error free_all_values will get called before
524 long. */
525 xfree (var->value);
526 var->value = newval;
527 release_value (newval);
528 /* End code which must not call error(). */
529 }
530
531 char *
532 internalvar_name (struct internalvar *var)
533 {
534 return var->name;
535 }
536
537 /* Free all internalvars. Done when new symtabs are loaded,
538 because that makes the values invalid. */
539
540 void
541 clear_internalvars (void)
542 {
543 struct internalvar *var;
544
545 while (internalvars)
546 {
547 var = internalvars;
548 internalvars = var->next;
549 xfree (var->name);
550 xfree (var->value);
551 xfree (var);
552 }
553 }
554
555 static void
556 show_convenience (char *ignore, int from_tty)
557 {
558 struct internalvar *var;
559 int varseen = 0;
560
561 for (var = internalvars; var; var = var->next)
562 {
563 if (!varseen)
564 {
565 varseen = 1;
566 }
567 printf_filtered ("$%s = ", var->name);
568 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
569 printf_filtered ("\n");
570 }
571 if (!varseen)
572 printf_unfiltered ("No debugger convenience variables now defined.\n\
573 Convenience variables have names starting with \"$\";\n\
574 use \"set\" as in \"set $foo = 5\" to define them.\n");
575 }
576 \f
577 /* Extract a value as a C number (either long or double).
578 Knows how to convert fixed values to double, or
579 floating values to long.
580 Does not deallocate the value. */
581
582 LONGEST
583 value_as_long (struct value *val)
584 {
585 /* This coerces arrays and functions, which is necessary (e.g.
586 in disassemble_command). It also dereferences references, which
587 I suspect is the most logical thing to do. */
588 val = coerce_array (val);
589 return unpack_long (value_type (val), VALUE_CONTENTS (val));
590 }
591
592 DOUBLEST
593 value_as_double (struct value *val)
594 {
595 DOUBLEST foo;
596 int inv;
597
598 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
599 if (inv)
600 error ("Invalid floating value found in program.");
601 return foo;
602 }
603 /* Extract a value as a C pointer. Does not deallocate the value.
604 Note that val's type may not actually be a pointer; value_as_long
605 handles all the cases. */
606 CORE_ADDR
607 value_as_address (struct value *val)
608 {
609 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
610 whether we want this to be true eventually. */
611 #if 0
612 /* ADDR_BITS_REMOVE is wrong if we are being called for a
613 non-address (e.g. argument to "signal", "info break", etc.), or
614 for pointers to char, in which the low bits *are* significant. */
615 return ADDR_BITS_REMOVE (value_as_long (val));
616 #else
617
618 /* There are several targets (IA-64, PowerPC, and others) which
619 don't represent pointers to functions as simply the address of
620 the function's entry point. For example, on the IA-64, a
621 function pointer points to a two-word descriptor, generated by
622 the linker, which contains the function's entry point, and the
623 value the IA-64 "global pointer" register should have --- to
624 support position-independent code. The linker generates
625 descriptors only for those functions whose addresses are taken.
626
627 On such targets, it's difficult for GDB to convert an arbitrary
628 function address into a function pointer; it has to either find
629 an existing descriptor for that function, or call malloc and
630 build its own. On some targets, it is impossible for GDB to
631 build a descriptor at all: the descriptor must contain a jump
632 instruction; data memory cannot be executed; and code memory
633 cannot be modified.
634
635 Upon entry to this function, if VAL is a value of type `function'
636 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
637 VALUE_ADDRESS (val) is the address of the function. This is what
638 you'll get if you evaluate an expression like `main'. The call
639 to COERCE_ARRAY below actually does all the usual unary
640 conversions, which includes converting values of type `function'
641 to `pointer to function'. This is the challenging conversion
642 discussed above. Then, `unpack_long' will convert that pointer
643 back into an address.
644
645 So, suppose the user types `disassemble foo' on an architecture
646 with a strange function pointer representation, on which GDB
647 cannot build its own descriptors, and suppose further that `foo'
648 has no linker-built descriptor. The address->pointer conversion
649 will signal an error and prevent the command from running, even
650 though the next step would have been to convert the pointer
651 directly back into the same address.
652
653 The following shortcut avoids this whole mess. If VAL is a
654 function, just return its address directly. */
655 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
656 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
657 return VALUE_ADDRESS (val);
658
659 val = coerce_array (val);
660
661 /* Some architectures (e.g. Harvard), map instruction and data
662 addresses onto a single large unified address space. For
663 instance: An architecture may consider a large integer in the
664 range 0x10000000 .. 0x1000ffff to already represent a data
665 addresses (hence not need a pointer to address conversion) while
666 a small integer would still need to be converted integer to
667 pointer to address. Just assume such architectures handle all
668 integer conversions in a single function. */
669
670 /* JimB writes:
671
672 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
673 must admonish GDB hackers to make sure its behavior matches the
674 compiler's, whenever possible.
675
676 In general, I think GDB should evaluate expressions the same way
677 the compiler does. When the user copies an expression out of
678 their source code and hands it to a `print' command, they should
679 get the same value the compiler would have computed. Any
680 deviation from this rule can cause major confusion and annoyance,
681 and needs to be justified carefully. In other words, GDB doesn't
682 really have the freedom to do these conversions in clever and
683 useful ways.
684
685 AndrewC pointed out that users aren't complaining about how GDB
686 casts integers to pointers; they are complaining that they can't
687 take an address from a disassembly listing and give it to `x/i'.
688 This is certainly important.
689
690 Adding an architecture method like integer_to_address() certainly
691 makes it possible for GDB to "get it right" in all circumstances
692 --- the target has complete control over how things get done, so
693 people can Do The Right Thing for their target without breaking
694 anyone else. The standard doesn't specify how integers get
695 converted to pointers; usually, the ABI doesn't either, but
696 ABI-specific code is a more reasonable place to handle it. */
697
698 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
699 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
700 && gdbarch_integer_to_address_p (current_gdbarch))
701 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
702 VALUE_CONTENTS (val));
703
704 return unpack_long (value_type (val), VALUE_CONTENTS (val));
705 #endif
706 }
707 \f
708 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
709 as a long, or as a double, assuming the raw data is described
710 by type TYPE. Knows how to convert different sizes of values
711 and can convert between fixed and floating point. We don't assume
712 any alignment for the raw data. Return value is in host byte order.
713
714 If you want functions and arrays to be coerced to pointers, and
715 references to be dereferenced, call value_as_long() instead.
716
717 C++: It is assumed that the front-end has taken care of
718 all matters concerning pointers to members. A pointer
719 to member which reaches here is considered to be equivalent
720 to an INT (or some size). After all, it is only an offset. */
721
722 LONGEST
723 unpack_long (struct type *type, const char *valaddr)
724 {
725 enum type_code code = TYPE_CODE (type);
726 int len = TYPE_LENGTH (type);
727 int nosign = TYPE_UNSIGNED (type);
728
729 if (current_language->la_language == language_scm
730 && is_scmvalue_type (type))
731 return scm_unpack (type, valaddr, TYPE_CODE_INT);
732
733 switch (code)
734 {
735 case TYPE_CODE_TYPEDEF:
736 return unpack_long (check_typedef (type), valaddr);
737 case TYPE_CODE_ENUM:
738 case TYPE_CODE_BOOL:
739 case TYPE_CODE_INT:
740 case TYPE_CODE_CHAR:
741 case TYPE_CODE_RANGE:
742 if (nosign)
743 return extract_unsigned_integer (valaddr, len);
744 else
745 return extract_signed_integer (valaddr, len);
746
747 case TYPE_CODE_FLT:
748 return extract_typed_floating (valaddr, type);
749
750 case TYPE_CODE_PTR:
751 case TYPE_CODE_REF:
752 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
753 whether we want this to be true eventually. */
754 return extract_typed_address (valaddr, type);
755
756 case TYPE_CODE_MEMBER:
757 error ("not implemented: member types in unpack_long");
758
759 default:
760 error ("Value can't be converted to integer.");
761 }
762 return 0; /* Placate lint. */
763 }
764
765 /* Return a double value from the specified type and address.
766 INVP points to an int which is set to 0 for valid value,
767 1 for invalid value (bad float format). In either case,
768 the returned double is OK to use. Argument is in target
769 format, result is in host format. */
770
771 DOUBLEST
772 unpack_double (struct type *type, const char *valaddr, int *invp)
773 {
774 enum type_code code;
775 int len;
776 int nosign;
777
778 *invp = 0; /* Assume valid. */
779 CHECK_TYPEDEF (type);
780 code = TYPE_CODE (type);
781 len = TYPE_LENGTH (type);
782 nosign = TYPE_UNSIGNED (type);
783 if (code == TYPE_CODE_FLT)
784 {
785 /* NOTE: cagney/2002-02-19: There was a test here to see if the
786 floating-point value was valid (using the macro
787 INVALID_FLOAT). That test/macro have been removed.
788
789 It turns out that only the VAX defined this macro and then
790 only in a non-portable way. Fixing the portability problem
791 wouldn't help since the VAX floating-point code is also badly
792 bit-rotten. The target needs to add definitions for the
793 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
794 exactly describe the target floating-point format. The
795 problem here is that the corresponding floatformat_vax_f and
796 floatformat_vax_d values these methods should be set to are
797 also not defined either. Oops!
798
799 Hopefully someone will add both the missing floatformat
800 definitions and the new cases for floatformat_is_valid (). */
801
802 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
803 {
804 *invp = 1;
805 return 0.0;
806 }
807
808 return extract_typed_floating (valaddr, type);
809 }
810 else if (nosign)
811 {
812 /* Unsigned -- be sure we compensate for signed LONGEST. */
813 return (ULONGEST) unpack_long (type, valaddr);
814 }
815 else
816 {
817 /* Signed -- we are OK with unpack_long. */
818 return unpack_long (type, valaddr);
819 }
820 }
821
822 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
823 as a CORE_ADDR, assuming the raw data is described by type TYPE.
824 We don't assume any alignment for the raw data. Return value is in
825 host byte order.
826
827 If you want functions and arrays to be coerced to pointers, and
828 references to be dereferenced, call value_as_address() instead.
829
830 C++: It is assumed that the front-end has taken care of
831 all matters concerning pointers to members. A pointer
832 to member which reaches here is considered to be equivalent
833 to an INT (or some size). After all, it is only an offset. */
834
835 CORE_ADDR
836 unpack_pointer (struct type *type, const char *valaddr)
837 {
838 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
839 whether we want this to be true eventually. */
840 return unpack_long (type, valaddr);
841 }
842
843 \f
844 /* Get the value of the FIELDN'th field (which must be static) of
845 TYPE. Return NULL if the field doesn't exist or has been
846 optimized out. */
847
848 struct value *
849 value_static_field (struct type *type, int fieldno)
850 {
851 struct value *retval;
852
853 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
854 {
855 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
856 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
857 }
858 else
859 {
860 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
861 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
862 if (sym == NULL)
863 {
864 /* With some compilers, e.g. HP aCC, static data members are reported
865 as non-debuggable symbols */
866 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
867 if (!msym)
868 return NULL;
869 else
870 {
871 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
872 SYMBOL_VALUE_ADDRESS (msym));
873 }
874 }
875 else
876 {
877 /* SYM should never have a SYMBOL_CLASS which will require
878 read_var_value to use the FRAME parameter. */
879 if (symbol_read_needs_frame (sym))
880 warning ("static field's value depends on the current "
881 "frame - bad debug info?");
882 retval = read_var_value (sym, NULL);
883 }
884 if (retval && VALUE_LVAL (retval) == lval_memory)
885 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
886 VALUE_ADDRESS (retval));
887 }
888 return retval;
889 }
890
891 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
892 You have to be careful here, since the size of the data area for the value
893 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
894 than the old enclosing type, you have to allocate more space for the data.
895 The return value is a pointer to the new version of this value structure. */
896
897 struct value *
898 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
899 {
900 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
901 {
902 val->enclosing_type = new_encl_type;
903 return val;
904 }
905 else
906 {
907 struct value *new_val;
908 struct value *prev;
909
910 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
911
912 new_val->enclosing_type = new_encl_type;
913
914 /* We have to make sure this ends up in the same place in the value
915 chain as the original copy, so it's clean-up behavior is the same.
916 If the value has been released, this is a waste of time, but there
917 is no way to tell that in advance, so... */
918
919 if (val != all_values)
920 {
921 for (prev = all_values; prev != NULL; prev = prev->next)
922 {
923 if (prev->next == val)
924 {
925 prev->next = new_val;
926 break;
927 }
928 }
929 }
930
931 return new_val;
932 }
933 }
934
935 /* Given a value ARG1 (offset by OFFSET bytes)
936 of a struct or union type ARG_TYPE,
937 extract and return the value of one of its (non-static) fields.
938 FIELDNO says which field. */
939
940 struct value *
941 value_primitive_field (struct value *arg1, int offset,
942 int fieldno, struct type *arg_type)
943 {
944 struct value *v;
945 struct type *type;
946
947 CHECK_TYPEDEF (arg_type);
948 type = TYPE_FIELD_TYPE (arg_type, fieldno);
949
950 /* Handle packed fields */
951
952 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
953 {
954 v = value_from_longest (type,
955 unpack_field_as_long (arg_type,
956 VALUE_CONTENTS (arg1)
957 + offset,
958 fieldno));
959 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
960 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
961 v->offset = value_offset (arg1) + offset
962 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
963 }
964 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
965 {
966 /* This field is actually a base subobject, so preserve the
967 entire object's contents for later references to virtual
968 bases, etc. */
969 v = allocate_value (value_enclosing_type (arg1));
970 v->type = type;
971 if (value_lazy (arg1))
972 VALUE_LAZY (v) = 1;
973 else
974 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
975 TYPE_LENGTH (value_enclosing_type (arg1)));
976 v->offset = value_offset (arg1);
977 VALUE_EMBEDDED_OFFSET (v)
978 = offset +
979 VALUE_EMBEDDED_OFFSET (arg1) +
980 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
981 }
982 else
983 {
984 /* Plain old data member */
985 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
986 v = allocate_value (type);
987 if (value_lazy (arg1))
988 VALUE_LAZY (v) = 1;
989 else
990 memcpy (value_contents_raw (v),
991 value_contents_raw (arg1) + offset,
992 TYPE_LENGTH (type));
993 v->offset = (value_offset (arg1) + offset
994 + VALUE_EMBEDDED_OFFSET (arg1));
995 }
996 VALUE_LVAL (v) = VALUE_LVAL (arg1);
997 if (VALUE_LVAL (arg1) == lval_internalvar)
998 VALUE_LVAL (v) = lval_internalvar_component;
999 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1000 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1001 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1002 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1003 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1004 return v;
1005 }
1006
1007 /* Given a value ARG1 of a struct or union type,
1008 extract and return the value of one of its (non-static) fields.
1009 FIELDNO says which field. */
1010
1011 struct value *
1012 value_field (struct value *arg1, int fieldno)
1013 {
1014 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1015 }
1016
1017 /* Return a non-virtual function as a value.
1018 F is the list of member functions which contains the desired method.
1019 J is an index into F which provides the desired method.
1020
1021 We only use the symbol for its address, so be happy with either a
1022 full symbol or a minimal symbol.
1023 */
1024
1025 struct value *
1026 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1027 int offset)
1028 {
1029 struct value *v;
1030 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1031 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1032 struct symbol *sym;
1033 struct minimal_symbol *msym;
1034
1035 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1036 if (sym != NULL)
1037 {
1038 msym = NULL;
1039 }
1040 else
1041 {
1042 gdb_assert (sym == NULL);
1043 msym = lookup_minimal_symbol (physname, NULL, NULL);
1044 if (msym == NULL)
1045 return NULL;
1046 }
1047
1048 v = allocate_value (ftype);
1049 if (sym)
1050 {
1051 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1052 }
1053 else
1054 {
1055 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1056 }
1057
1058 if (arg1p)
1059 {
1060 if (type != value_type (*arg1p))
1061 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1062 value_addr (*arg1p)));
1063
1064 /* Move the `this' pointer according to the offset.
1065 VALUE_OFFSET (*arg1p) += offset;
1066 */
1067 }
1068
1069 return v;
1070 }
1071
1072 \f
1073 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1074 VALADDR.
1075
1076 Extracting bits depends on endianness of the machine. Compute the
1077 number of least significant bits to discard. For big endian machines,
1078 we compute the total number of bits in the anonymous object, subtract
1079 off the bit count from the MSB of the object to the MSB of the
1080 bitfield, then the size of the bitfield, which leaves the LSB discard
1081 count. For little endian machines, the discard count is simply the
1082 number of bits from the LSB of the anonymous object to the LSB of the
1083 bitfield.
1084
1085 If the field is signed, we also do sign extension. */
1086
1087 LONGEST
1088 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1089 {
1090 ULONGEST val;
1091 ULONGEST valmask;
1092 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1093 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1094 int lsbcount;
1095 struct type *field_type;
1096
1097 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1098 field_type = TYPE_FIELD_TYPE (type, fieldno);
1099 CHECK_TYPEDEF (field_type);
1100
1101 /* Extract bits. See comment above. */
1102
1103 if (BITS_BIG_ENDIAN)
1104 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1105 else
1106 lsbcount = (bitpos % 8);
1107 val >>= lsbcount;
1108
1109 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1110 If the field is signed, and is negative, then sign extend. */
1111
1112 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1113 {
1114 valmask = (((ULONGEST) 1) << bitsize) - 1;
1115 val &= valmask;
1116 if (!TYPE_UNSIGNED (field_type))
1117 {
1118 if (val & (valmask ^ (valmask >> 1)))
1119 {
1120 val |= ~valmask;
1121 }
1122 }
1123 }
1124 return (val);
1125 }
1126
1127 /* Modify the value of a bitfield. ADDR points to a block of memory in
1128 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1129 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1130 indicate which bits (in target bit order) comprise the bitfield.
1131 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1132 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1133
1134 void
1135 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1136 {
1137 ULONGEST oword;
1138 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1139
1140 /* If a negative fieldval fits in the field in question, chop
1141 off the sign extension bits. */
1142 if ((~fieldval & ~(mask >> 1)) == 0)
1143 fieldval &= mask;
1144
1145 /* Warn if value is too big to fit in the field in question. */
1146 if (0 != (fieldval & ~mask))
1147 {
1148 /* FIXME: would like to include fieldval in the message, but
1149 we don't have a sprintf_longest. */
1150 warning ("Value does not fit in %d bits.", bitsize);
1151
1152 /* Truncate it, otherwise adjoining fields may be corrupted. */
1153 fieldval &= mask;
1154 }
1155
1156 oword = extract_unsigned_integer (addr, sizeof oword);
1157
1158 /* Shifting for bit field depends on endianness of the target machine. */
1159 if (BITS_BIG_ENDIAN)
1160 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1161
1162 oword &= ~(mask << bitpos);
1163 oword |= fieldval << bitpos;
1164
1165 store_unsigned_integer (addr, sizeof oword, oword);
1166 }
1167 \f
1168 /* Convert C numbers into newly allocated values */
1169
1170 struct value *
1171 value_from_longest (struct type *type, LONGEST num)
1172 {
1173 struct value *val = allocate_value (type);
1174 enum type_code code;
1175 int len;
1176 retry:
1177 code = TYPE_CODE (type);
1178 len = TYPE_LENGTH (type);
1179
1180 switch (code)
1181 {
1182 case TYPE_CODE_TYPEDEF:
1183 type = check_typedef (type);
1184 goto retry;
1185 case TYPE_CODE_INT:
1186 case TYPE_CODE_CHAR:
1187 case TYPE_CODE_ENUM:
1188 case TYPE_CODE_BOOL:
1189 case TYPE_CODE_RANGE:
1190 store_signed_integer (value_contents_raw (val), len, num);
1191 break;
1192
1193 case TYPE_CODE_REF:
1194 case TYPE_CODE_PTR:
1195 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1196 break;
1197
1198 default:
1199 error ("Unexpected type (%d) encountered for integer constant.", code);
1200 }
1201 return val;
1202 }
1203
1204
1205 /* Create a value representing a pointer of type TYPE to the address
1206 ADDR. */
1207 struct value *
1208 value_from_pointer (struct type *type, CORE_ADDR addr)
1209 {
1210 struct value *val = allocate_value (type);
1211 store_typed_address (value_contents_raw (val), type, addr);
1212 return val;
1213 }
1214
1215
1216 /* Create a value for a string constant to be stored locally
1217 (not in the inferior's memory space, but in GDB memory).
1218 This is analogous to value_from_longest, which also does not
1219 use inferior memory. String shall NOT contain embedded nulls. */
1220
1221 struct value *
1222 value_from_string (char *ptr)
1223 {
1224 struct value *val;
1225 int len = strlen (ptr);
1226 int lowbound = current_language->string_lower_bound;
1227 struct type *string_char_type;
1228 struct type *rangetype;
1229 struct type *stringtype;
1230
1231 rangetype = create_range_type ((struct type *) NULL,
1232 builtin_type_int,
1233 lowbound, len + lowbound - 1);
1234 string_char_type = language_string_char_type (current_language,
1235 current_gdbarch);
1236 stringtype = create_array_type ((struct type *) NULL,
1237 string_char_type,
1238 rangetype);
1239 val = allocate_value (stringtype);
1240 memcpy (value_contents_raw (val), ptr, len);
1241 return val;
1242 }
1243
1244 struct value *
1245 value_from_double (struct type *type, DOUBLEST num)
1246 {
1247 struct value *val = allocate_value (type);
1248 struct type *base_type = check_typedef (type);
1249 enum type_code code = TYPE_CODE (base_type);
1250 int len = TYPE_LENGTH (base_type);
1251
1252 if (code == TYPE_CODE_FLT)
1253 {
1254 store_typed_floating (value_contents_raw (val), base_type, num);
1255 }
1256 else
1257 error ("Unexpected type encountered for floating constant.");
1258
1259 return val;
1260 }
1261
1262 struct value *
1263 coerce_ref (struct value *arg)
1264 {
1265 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1266 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1267 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1268 unpack_pointer (value_type (arg),
1269 VALUE_CONTENTS (arg)));
1270 return arg;
1271 }
1272
1273 struct value *
1274 coerce_array (struct value *arg)
1275 {
1276 arg = coerce_ref (arg);
1277 if (current_language->c_style_arrays
1278 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1279 arg = value_coerce_array (arg);
1280 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1281 arg = value_coerce_function (arg);
1282 return arg;
1283 }
1284
1285 struct value *
1286 coerce_number (struct value *arg)
1287 {
1288 arg = coerce_array (arg);
1289 arg = coerce_enum (arg);
1290 return arg;
1291 }
1292
1293 struct value *
1294 coerce_enum (struct value *arg)
1295 {
1296 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1297 arg = value_cast (builtin_type_unsigned_int, arg);
1298 return arg;
1299 }
1300 \f
1301
1302 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1303 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1304 is the type (which is known to be struct, union or array).
1305
1306 On most machines, the struct convention is used unless we are
1307 using gcc and the type is of a special size. */
1308 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1309 native compiler. GCC 2.3.3 was the last release that did it the
1310 old way. Since gcc2_compiled was not changed, we have no
1311 way to correctly win in all cases, so we just do the right thing
1312 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1313 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1314 would cause more chaos than dealing with some struct returns being
1315 handled wrong. */
1316 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1317 dead. */
1318
1319 int
1320 generic_use_struct_convention (int gcc_p, struct type *value_type)
1321 {
1322 return !(TYPE_LENGTH (value_type) == 1
1323 || TYPE_LENGTH (value_type) == 2
1324 || TYPE_LENGTH (value_type) == 4
1325 || TYPE_LENGTH (value_type) == 8);
1326 }
1327
1328 /* Return true if the function returning the specified type is using
1329 the convention of returning structures in memory (passing in the
1330 address as a hidden first parameter). GCC_P is nonzero if compiled
1331 with GCC. */
1332
1333 int
1334 using_struct_return (struct type *value_type, int gcc_p)
1335 {
1336 enum type_code code = TYPE_CODE (value_type);
1337
1338 if (code == TYPE_CODE_ERROR)
1339 error ("Function return type unknown.");
1340
1341 if (code == TYPE_CODE_VOID)
1342 /* A void return value is never in memory. See also corresponding
1343 code in "print_return_value". */
1344 return 0;
1345
1346 /* Probe the architecture for the return-value convention. */
1347 return (gdbarch_return_value (current_gdbarch, value_type,
1348 NULL, NULL, NULL)
1349 != RETURN_VALUE_REGISTER_CONVENTION);
1350 }
1351
1352 void
1353 _initialize_values (void)
1354 {
1355 add_cmd ("convenience", no_class, show_convenience,
1356 "Debugger convenience (\"$foo\") variables.\n\
1357 These variables are created when you assign them values;\n\
1358 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1359 A few convenience variables are given values automatically:\n\
1360 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1361 \"$__\" holds the contents of the last address examined with \"x\".",
1362 &showlist);
1363
1364 add_cmd ("values", no_class, show_values,
1365 "Elements of value history around item number IDX (or last ten).",
1366 &showlist);
1367 }
This page took 0.066673 seconds and 5 git commands to generate.