2005-02-06 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / value.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2
3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "value.h"
29 #include "gdbcore.h"
30 #include "command.h"
31 #include "gdbcmd.h"
32 #include "target.h"
33 #include "language.h"
34 #include "scm-lang.h"
35 #include "demangle.h"
36 #include "doublest.h"
37 #include "gdb_assert.h"
38 #include "regcache.h"
39 #include "block.h"
40
41 /* Prototypes for exported functions. */
42
43 void _initialize_values (void);
44
45 /* Prototypes for local functions. */
46
47 static void show_values (char *, int);
48
49 static void show_convenience (char *, int);
50
51
52 /* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58 #define VALUE_HISTORY_CHUNK 60
59
60 struct value_history_chunk
61 {
62 struct value_history_chunk *next;
63 struct value *values[VALUE_HISTORY_CHUNK];
64 };
65
66 /* Chain of chunks now in use. */
67
68 static struct value_history_chunk *value_history_chain;
69
70 static int value_history_count; /* Abs number of last entry stored */
71 \f
72 /* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
76 static struct value *all_values;
77
78 /* Allocate a value that has the correct length for type TYPE. */
79
80 struct value *
81 allocate_value (struct type *type)
82 {
83 struct value *val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 val->next = all_values;
88 all_values = val;
89 val->type = type;
90 val->enclosing_type = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME_ID (val) = null_frame_id;
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
97 VALUE_REGNUM (val) = -1;
98 val->lazy = 0;
99 val->optimized_out = 0;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104 }
105
106 /* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109 struct value *
110 allocate_repeat_value (struct type *type, int count)
111 {
112 int low_bound = current_language->string_lower_bound; /* ??? */
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122 }
123
124 /* Accessor methods. */
125
126 struct type *
127 value_type (struct value *value)
128 {
129 return value->type;
130 }
131
132 int
133 value_offset (struct value *value)
134 {
135 return value->offset;
136 }
137
138 int
139 value_bitpos (struct value *value)
140 {
141 return value->bitpos;
142 }
143
144 int
145 value_bitsize (struct value *value)
146 {
147 return value->bitsize;
148 }
149
150 bfd_byte *
151 value_contents_raw (struct value *value)
152 {
153 return value->aligner.contents + value->embedded_offset;
154 }
155
156 bfd_byte *
157 value_contents_all_raw (struct value *value)
158 {
159 return value->aligner.contents;
160 }
161
162 struct type *
163 value_enclosing_type (struct value *value)
164 {
165 return value->enclosing_type;
166 }
167
168 const bfd_byte *
169 value_contents_all (struct value *value)
170 {
171 if (value->lazy)
172 value_fetch_lazy (value);
173 return value->aligner.contents;
174 }
175
176 int
177 value_lazy (struct value *value)
178 {
179 return value->lazy;
180 }
181
182 const bfd_byte *
183 value_contents (struct value *value)
184 {
185 return value_contents_writeable (value);
186 }
187
188 bfd_byte *
189 value_contents_writeable (struct value *value)
190 {
191 if (value->lazy)
192 value_fetch_lazy (value);
193 return value->aligner.contents;
194 }
195
196 int
197 value_optimized_out (struct value *value)
198 {
199 return value->optimized_out;
200 }
201
202 void
203 set_value_optimized_out (struct value *value, int val)
204 {
205 value->optimized_out = val;
206 }
207 \f
208 /* Return a mark in the value chain. All values allocated after the
209 mark is obtained (except for those released) are subject to being freed
210 if a subsequent value_free_to_mark is passed the mark. */
211 struct value *
212 value_mark (void)
213 {
214 return all_values;
215 }
216
217 /* Free all values allocated since MARK was obtained by value_mark
218 (except for those released). */
219 void
220 value_free_to_mark (struct value *mark)
221 {
222 struct value *val;
223 struct value *next;
224
225 for (val = all_values; val && val != mark; val = next)
226 {
227 next = val->next;
228 value_free (val);
229 }
230 all_values = val;
231 }
232
233 /* Free all the values that have been allocated (except for those released).
234 Called after each command, successful or not. */
235
236 void
237 free_all_values (void)
238 {
239 struct value *val;
240 struct value *next;
241
242 for (val = all_values; val; val = next)
243 {
244 next = val->next;
245 value_free (val);
246 }
247
248 all_values = 0;
249 }
250
251 /* Remove VAL from the chain all_values
252 so it will not be freed automatically. */
253
254 void
255 release_value (struct value *val)
256 {
257 struct value *v;
258
259 if (all_values == val)
260 {
261 all_values = val->next;
262 return;
263 }
264
265 for (v = all_values; v; v = v->next)
266 {
267 if (v->next == val)
268 {
269 v->next = val->next;
270 break;
271 }
272 }
273 }
274
275 /* Release all values up to mark */
276 struct value *
277 value_release_to_mark (struct value *mark)
278 {
279 struct value *val;
280 struct value *next;
281
282 for (val = next = all_values; next; next = next->next)
283 if (next->next == mark)
284 {
285 all_values = next->next;
286 next->next = NULL;
287 return val;
288 }
289 all_values = 0;
290 return val;
291 }
292
293 /* Return a copy of the value ARG.
294 It contains the same contents, for same memory address,
295 but it's a different block of storage. */
296
297 struct value *
298 value_copy (struct value *arg)
299 {
300 struct type *encl_type = value_enclosing_type (arg);
301 struct value *val = allocate_value (encl_type);
302 val->type = arg->type;
303 VALUE_LVAL (val) = VALUE_LVAL (arg);
304 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
305 val->offset = arg->offset;
306 val->bitpos = arg->bitpos;
307 val->bitsize = arg->bitsize;
308 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
309 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
310 val->lazy = arg->lazy;
311 val->optimized_out = arg->optimized_out;
312 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
313 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
314 val->modifiable = arg->modifiable;
315 if (!value_lazy (val))
316 {
317 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
318 TYPE_LENGTH (value_enclosing_type (arg)));
319
320 }
321 return val;
322 }
323 \f
324 /* Access to the value history. */
325
326 /* Record a new value in the value history.
327 Returns the absolute history index of the entry.
328 Result of -1 indicates the value was not saved; otherwise it is the
329 value history index of this new item. */
330
331 int
332 record_latest_value (struct value *val)
333 {
334 int i;
335
336 /* We don't want this value to have anything to do with the inferior anymore.
337 In particular, "set $1 = 50" should not affect the variable from which
338 the value was taken, and fast watchpoints should be able to assume that
339 a value on the value history never changes. */
340 if (value_lazy (val))
341 value_fetch_lazy (val);
342 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
343 from. This is a bit dubious, because then *&$1 does not just return $1
344 but the current contents of that location. c'est la vie... */
345 val->modifiable = 0;
346 release_value (val);
347
348 /* Here we treat value_history_count as origin-zero
349 and applying to the value being stored now. */
350
351 i = value_history_count % VALUE_HISTORY_CHUNK;
352 if (i == 0)
353 {
354 struct value_history_chunk *new
355 = (struct value_history_chunk *)
356 xmalloc (sizeof (struct value_history_chunk));
357 memset (new->values, 0, sizeof new->values);
358 new->next = value_history_chain;
359 value_history_chain = new;
360 }
361
362 value_history_chain->values[i] = val;
363
364 /* Now we regard value_history_count as origin-one
365 and applying to the value just stored. */
366
367 return ++value_history_count;
368 }
369
370 /* Return a copy of the value in the history with sequence number NUM. */
371
372 struct value *
373 access_value_history (int num)
374 {
375 struct value_history_chunk *chunk;
376 int i;
377 int absnum = num;
378
379 if (absnum <= 0)
380 absnum += value_history_count;
381
382 if (absnum <= 0)
383 {
384 if (num == 0)
385 error ("The history is empty.");
386 else if (num == 1)
387 error ("There is only one value in the history.");
388 else
389 error ("History does not go back to $$%d.", -num);
390 }
391 if (absnum > value_history_count)
392 error ("History has not yet reached $%d.", absnum);
393
394 absnum--;
395
396 /* Now absnum is always absolute and origin zero. */
397
398 chunk = value_history_chain;
399 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
400 i > 0; i--)
401 chunk = chunk->next;
402
403 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
404 }
405
406 /* Clear the value history entirely.
407 Must be done when new symbol tables are loaded,
408 because the type pointers become invalid. */
409
410 void
411 clear_value_history (void)
412 {
413 struct value_history_chunk *next;
414 int i;
415 struct value *val;
416
417 while (value_history_chain)
418 {
419 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
420 if ((val = value_history_chain->values[i]) != NULL)
421 xfree (val);
422 next = value_history_chain->next;
423 xfree (value_history_chain);
424 value_history_chain = next;
425 }
426 value_history_count = 0;
427 }
428
429 static void
430 show_values (char *num_exp, int from_tty)
431 {
432 int i;
433 struct value *val;
434 static int num = 1;
435
436 if (num_exp)
437 {
438 /* "info history +" should print from the stored position.
439 "info history <exp>" should print around value number <exp>. */
440 if (num_exp[0] != '+' || num_exp[1] != '\0')
441 num = parse_and_eval_long (num_exp) - 5;
442 }
443 else
444 {
445 /* "info history" means print the last 10 values. */
446 num = value_history_count - 9;
447 }
448
449 if (num <= 0)
450 num = 1;
451
452 for (i = num; i < num + 10 && i <= value_history_count; i++)
453 {
454 val = access_value_history (i);
455 printf_filtered ("$%d = ", i);
456 value_print (val, gdb_stdout, 0, Val_pretty_default);
457 printf_filtered ("\n");
458 }
459
460 /* The next "info history +" should start after what we just printed. */
461 num += 10;
462
463 /* Hitting just return after this command should do the same thing as
464 "info history +". If num_exp is null, this is unnecessary, since
465 "info history +" is not useful after "info history". */
466 if (from_tty && num_exp)
467 {
468 num_exp[0] = '+';
469 num_exp[1] = '\0';
470 }
471 }
472 \f
473 /* Internal variables. These are variables within the debugger
474 that hold values assigned by debugger commands.
475 The user refers to them with a '$' prefix
476 that does not appear in the variable names stored internally. */
477
478 static struct internalvar *internalvars;
479
480 /* Look up an internal variable with name NAME. NAME should not
481 normally include a dollar sign.
482
483 If the specified internal variable does not exist,
484 one is created, with a void value. */
485
486 struct internalvar *
487 lookup_internalvar (char *name)
488 {
489 struct internalvar *var;
490
491 for (var = internalvars; var; var = var->next)
492 if (strcmp (var->name, name) == 0)
493 return var;
494
495 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
496 var->name = concat (name, NULL);
497 var->value = allocate_value (builtin_type_void);
498 release_value (var->value);
499 var->next = internalvars;
500 internalvars = var;
501 return var;
502 }
503
504 struct value *
505 value_of_internalvar (struct internalvar *var)
506 {
507 struct value *val;
508
509 val = value_copy (var->value);
510 if (value_lazy (val))
511 value_fetch_lazy (val);
512 VALUE_LVAL (val) = lval_internalvar;
513 VALUE_INTERNALVAR (val) = var;
514 return val;
515 }
516
517 void
518 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
519 int bitsize, struct value *newval)
520 {
521 bfd_byte *addr = value_contents_writeable (var->value) + offset;
522
523 if (bitsize)
524 modify_field (addr, value_as_long (newval),
525 bitpos, bitsize);
526 else
527 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
528 }
529
530 void
531 set_internalvar (struct internalvar *var, struct value *val)
532 {
533 struct value *newval;
534
535 newval = value_copy (val);
536 newval->modifiable = 1;
537
538 /* Force the value to be fetched from the target now, to avoid problems
539 later when this internalvar is referenced and the target is gone or
540 has changed. */
541 if (value_lazy (newval))
542 value_fetch_lazy (newval);
543
544 /* Begin code which must not call error(). If var->value points to
545 something free'd, an error() obviously leaves a dangling pointer.
546 But we also get a danling pointer if var->value points to
547 something in the value chain (i.e., before release_value is
548 called), because after the error free_all_values will get called before
549 long. */
550 xfree (var->value);
551 var->value = newval;
552 release_value (newval);
553 /* End code which must not call error(). */
554 }
555
556 char *
557 internalvar_name (struct internalvar *var)
558 {
559 return var->name;
560 }
561
562 /* Free all internalvars. Done when new symtabs are loaded,
563 because that makes the values invalid. */
564
565 void
566 clear_internalvars (void)
567 {
568 struct internalvar *var;
569
570 while (internalvars)
571 {
572 var = internalvars;
573 internalvars = var->next;
574 xfree (var->name);
575 xfree (var->value);
576 xfree (var);
577 }
578 }
579
580 static void
581 show_convenience (char *ignore, int from_tty)
582 {
583 struct internalvar *var;
584 int varseen = 0;
585
586 for (var = internalvars; var; var = var->next)
587 {
588 if (!varseen)
589 {
590 varseen = 1;
591 }
592 printf_filtered ("$%s = ", var->name);
593 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
594 printf_filtered ("\n");
595 }
596 if (!varseen)
597 printf_unfiltered ("No debugger convenience variables now defined.\n\
598 Convenience variables have names starting with \"$\";\n\
599 use \"set\" as in \"set $foo = 5\" to define them.\n");
600 }
601 \f
602 /* Extract a value as a C number (either long or double).
603 Knows how to convert fixed values to double, or
604 floating values to long.
605 Does not deallocate the value. */
606
607 LONGEST
608 value_as_long (struct value *val)
609 {
610 /* This coerces arrays and functions, which is necessary (e.g.
611 in disassemble_command). It also dereferences references, which
612 I suspect is the most logical thing to do. */
613 val = coerce_array (val);
614 return unpack_long (value_type (val), value_contents (val));
615 }
616
617 DOUBLEST
618 value_as_double (struct value *val)
619 {
620 DOUBLEST foo;
621 int inv;
622
623 foo = unpack_double (value_type (val), value_contents (val), &inv);
624 if (inv)
625 error ("Invalid floating value found in program.");
626 return foo;
627 }
628 /* Extract a value as a C pointer. Does not deallocate the value.
629 Note that val's type may not actually be a pointer; value_as_long
630 handles all the cases. */
631 CORE_ADDR
632 value_as_address (struct value *val)
633 {
634 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
635 whether we want this to be true eventually. */
636 #if 0
637 /* ADDR_BITS_REMOVE is wrong if we are being called for a
638 non-address (e.g. argument to "signal", "info break", etc.), or
639 for pointers to char, in which the low bits *are* significant. */
640 return ADDR_BITS_REMOVE (value_as_long (val));
641 #else
642
643 /* There are several targets (IA-64, PowerPC, and others) which
644 don't represent pointers to functions as simply the address of
645 the function's entry point. For example, on the IA-64, a
646 function pointer points to a two-word descriptor, generated by
647 the linker, which contains the function's entry point, and the
648 value the IA-64 "global pointer" register should have --- to
649 support position-independent code. The linker generates
650 descriptors only for those functions whose addresses are taken.
651
652 On such targets, it's difficult for GDB to convert an arbitrary
653 function address into a function pointer; it has to either find
654 an existing descriptor for that function, or call malloc and
655 build its own. On some targets, it is impossible for GDB to
656 build a descriptor at all: the descriptor must contain a jump
657 instruction; data memory cannot be executed; and code memory
658 cannot be modified.
659
660 Upon entry to this function, if VAL is a value of type `function'
661 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
662 VALUE_ADDRESS (val) is the address of the function. This is what
663 you'll get if you evaluate an expression like `main'. The call
664 to COERCE_ARRAY below actually does all the usual unary
665 conversions, which includes converting values of type `function'
666 to `pointer to function'. This is the challenging conversion
667 discussed above. Then, `unpack_long' will convert that pointer
668 back into an address.
669
670 So, suppose the user types `disassemble foo' on an architecture
671 with a strange function pointer representation, on which GDB
672 cannot build its own descriptors, and suppose further that `foo'
673 has no linker-built descriptor. The address->pointer conversion
674 will signal an error and prevent the command from running, even
675 though the next step would have been to convert the pointer
676 directly back into the same address.
677
678 The following shortcut avoids this whole mess. If VAL is a
679 function, just return its address directly. */
680 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
681 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
682 return VALUE_ADDRESS (val);
683
684 val = coerce_array (val);
685
686 /* Some architectures (e.g. Harvard), map instruction and data
687 addresses onto a single large unified address space. For
688 instance: An architecture may consider a large integer in the
689 range 0x10000000 .. 0x1000ffff to already represent a data
690 addresses (hence not need a pointer to address conversion) while
691 a small integer would still need to be converted integer to
692 pointer to address. Just assume such architectures handle all
693 integer conversions in a single function. */
694
695 /* JimB writes:
696
697 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
698 must admonish GDB hackers to make sure its behavior matches the
699 compiler's, whenever possible.
700
701 In general, I think GDB should evaluate expressions the same way
702 the compiler does. When the user copies an expression out of
703 their source code and hands it to a `print' command, they should
704 get the same value the compiler would have computed. Any
705 deviation from this rule can cause major confusion and annoyance,
706 and needs to be justified carefully. In other words, GDB doesn't
707 really have the freedom to do these conversions in clever and
708 useful ways.
709
710 AndrewC pointed out that users aren't complaining about how GDB
711 casts integers to pointers; they are complaining that they can't
712 take an address from a disassembly listing and give it to `x/i'.
713 This is certainly important.
714
715 Adding an architecture method like integer_to_address() certainly
716 makes it possible for GDB to "get it right" in all circumstances
717 --- the target has complete control over how things get done, so
718 people can Do The Right Thing for their target without breaking
719 anyone else. The standard doesn't specify how integers get
720 converted to pointers; usually, the ABI doesn't either, but
721 ABI-specific code is a more reasonable place to handle it. */
722
723 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
724 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
725 && gdbarch_integer_to_address_p (current_gdbarch))
726 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
727 value_contents (val));
728
729 return unpack_long (value_type (val), value_contents (val));
730 #endif
731 }
732 \f
733 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
734 as a long, or as a double, assuming the raw data is described
735 by type TYPE. Knows how to convert different sizes of values
736 and can convert between fixed and floating point. We don't assume
737 any alignment for the raw data. Return value is in host byte order.
738
739 If you want functions and arrays to be coerced to pointers, and
740 references to be dereferenced, call value_as_long() instead.
741
742 C++: It is assumed that the front-end has taken care of
743 all matters concerning pointers to members. A pointer
744 to member which reaches here is considered to be equivalent
745 to an INT (or some size). After all, it is only an offset. */
746
747 LONGEST
748 unpack_long (struct type *type, const char *valaddr)
749 {
750 enum type_code code = TYPE_CODE (type);
751 int len = TYPE_LENGTH (type);
752 int nosign = TYPE_UNSIGNED (type);
753
754 if (current_language->la_language == language_scm
755 && is_scmvalue_type (type))
756 return scm_unpack (type, valaddr, TYPE_CODE_INT);
757
758 switch (code)
759 {
760 case TYPE_CODE_TYPEDEF:
761 return unpack_long (check_typedef (type), valaddr);
762 case TYPE_CODE_ENUM:
763 case TYPE_CODE_BOOL:
764 case TYPE_CODE_INT:
765 case TYPE_CODE_CHAR:
766 case TYPE_CODE_RANGE:
767 if (nosign)
768 return extract_unsigned_integer (valaddr, len);
769 else
770 return extract_signed_integer (valaddr, len);
771
772 case TYPE_CODE_FLT:
773 return extract_typed_floating (valaddr, type);
774
775 case TYPE_CODE_PTR:
776 case TYPE_CODE_REF:
777 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
778 whether we want this to be true eventually. */
779 return extract_typed_address (valaddr, type);
780
781 case TYPE_CODE_MEMBER:
782 error ("not implemented: member types in unpack_long");
783
784 default:
785 error ("Value can't be converted to integer.");
786 }
787 return 0; /* Placate lint. */
788 }
789
790 /* Return a double value from the specified type and address.
791 INVP points to an int which is set to 0 for valid value,
792 1 for invalid value (bad float format). In either case,
793 the returned double is OK to use. Argument is in target
794 format, result is in host format. */
795
796 DOUBLEST
797 unpack_double (struct type *type, const char *valaddr, int *invp)
798 {
799 enum type_code code;
800 int len;
801 int nosign;
802
803 *invp = 0; /* Assume valid. */
804 CHECK_TYPEDEF (type);
805 code = TYPE_CODE (type);
806 len = TYPE_LENGTH (type);
807 nosign = TYPE_UNSIGNED (type);
808 if (code == TYPE_CODE_FLT)
809 {
810 /* NOTE: cagney/2002-02-19: There was a test here to see if the
811 floating-point value was valid (using the macro
812 INVALID_FLOAT). That test/macro have been removed.
813
814 It turns out that only the VAX defined this macro and then
815 only in a non-portable way. Fixing the portability problem
816 wouldn't help since the VAX floating-point code is also badly
817 bit-rotten. The target needs to add definitions for the
818 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
819 exactly describe the target floating-point format. The
820 problem here is that the corresponding floatformat_vax_f and
821 floatformat_vax_d values these methods should be set to are
822 also not defined either. Oops!
823
824 Hopefully someone will add both the missing floatformat
825 definitions and the new cases for floatformat_is_valid (). */
826
827 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
828 {
829 *invp = 1;
830 return 0.0;
831 }
832
833 return extract_typed_floating (valaddr, type);
834 }
835 else if (nosign)
836 {
837 /* Unsigned -- be sure we compensate for signed LONGEST. */
838 return (ULONGEST) unpack_long (type, valaddr);
839 }
840 else
841 {
842 /* Signed -- we are OK with unpack_long. */
843 return unpack_long (type, valaddr);
844 }
845 }
846
847 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
848 as a CORE_ADDR, assuming the raw data is described by type TYPE.
849 We don't assume any alignment for the raw data. Return value is in
850 host byte order.
851
852 If you want functions and arrays to be coerced to pointers, and
853 references to be dereferenced, call value_as_address() instead.
854
855 C++: It is assumed that the front-end has taken care of
856 all matters concerning pointers to members. A pointer
857 to member which reaches here is considered to be equivalent
858 to an INT (or some size). After all, it is only an offset. */
859
860 CORE_ADDR
861 unpack_pointer (struct type *type, const char *valaddr)
862 {
863 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
864 whether we want this to be true eventually. */
865 return unpack_long (type, valaddr);
866 }
867
868 \f
869 /* Get the value of the FIELDN'th field (which must be static) of
870 TYPE. Return NULL if the field doesn't exist or has been
871 optimized out. */
872
873 struct value *
874 value_static_field (struct type *type, int fieldno)
875 {
876 struct value *retval;
877
878 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
879 {
880 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
881 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
882 }
883 else
884 {
885 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
886 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
887 if (sym == NULL)
888 {
889 /* With some compilers, e.g. HP aCC, static data members are reported
890 as non-debuggable symbols */
891 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
892 if (!msym)
893 return NULL;
894 else
895 {
896 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
897 SYMBOL_VALUE_ADDRESS (msym));
898 }
899 }
900 else
901 {
902 /* SYM should never have a SYMBOL_CLASS which will require
903 read_var_value to use the FRAME parameter. */
904 if (symbol_read_needs_frame (sym))
905 warning ("static field's value depends on the current "
906 "frame - bad debug info?");
907 retval = read_var_value (sym, NULL);
908 }
909 if (retval && VALUE_LVAL (retval) == lval_memory)
910 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
911 VALUE_ADDRESS (retval));
912 }
913 return retval;
914 }
915
916 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
917 You have to be careful here, since the size of the data area for the value
918 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
919 than the old enclosing type, you have to allocate more space for the data.
920 The return value is a pointer to the new version of this value structure. */
921
922 struct value *
923 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
924 {
925 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
926 {
927 val->enclosing_type = new_encl_type;
928 return val;
929 }
930 else
931 {
932 struct value *new_val;
933 struct value *prev;
934
935 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
936
937 new_val->enclosing_type = new_encl_type;
938
939 /* We have to make sure this ends up in the same place in the value
940 chain as the original copy, so it's clean-up behavior is the same.
941 If the value has been released, this is a waste of time, but there
942 is no way to tell that in advance, so... */
943
944 if (val != all_values)
945 {
946 for (prev = all_values; prev != NULL; prev = prev->next)
947 {
948 if (prev->next == val)
949 {
950 prev->next = new_val;
951 break;
952 }
953 }
954 }
955
956 return new_val;
957 }
958 }
959
960 /* Given a value ARG1 (offset by OFFSET bytes)
961 of a struct or union type ARG_TYPE,
962 extract and return the value of one of its (non-static) fields.
963 FIELDNO says which field. */
964
965 struct value *
966 value_primitive_field (struct value *arg1, int offset,
967 int fieldno, struct type *arg_type)
968 {
969 struct value *v;
970 struct type *type;
971
972 CHECK_TYPEDEF (arg_type);
973 type = TYPE_FIELD_TYPE (arg_type, fieldno);
974
975 /* Handle packed fields */
976
977 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
978 {
979 v = value_from_longest (type,
980 unpack_field_as_long (arg_type,
981 value_contents (arg1)
982 + offset,
983 fieldno));
984 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
985 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
986 v->offset = value_offset (arg1) + offset
987 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
988 }
989 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
990 {
991 /* This field is actually a base subobject, so preserve the
992 entire object's contents for later references to virtual
993 bases, etc. */
994 v = allocate_value (value_enclosing_type (arg1));
995 v->type = type;
996 if (value_lazy (arg1))
997 VALUE_LAZY (v) = 1;
998 else
999 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1000 TYPE_LENGTH (value_enclosing_type (arg1)));
1001 v->offset = value_offset (arg1);
1002 VALUE_EMBEDDED_OFFSET (v)
1003 = offset +
1004 VALUE_EMBEDDED_OFFSET (arg1) +
1005 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1006 }
1007 else
1008 {
1009 /* Plain old data member */
1010 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1011 v = allocate_value (type);
1012 if (value_lazy (arg1))
1013 VALUE_LAZY (v) = 1;
1014 else
1015 memcpy (value_contents_raw (v),
1016 value_contents_raw (arg1) + offset,
1017 TYPE_LENGTH (type));
1018 v->offset = (value_offset (arg1) + offset
1019 + VALUE_EMBEDDED_OFFSET (arg1));
1020 }
1021 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1022 if (VALUE_LVAL (arg1) == lval_internalvar)
1023 VALUE_LVAL (v) = lval_internalvar_component;
1024 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
1025 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
1026 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
1027 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
1028 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
1029 return v;
1030 }
1031
1032 /* Given a value ARG1 of a struct or union type,
1033 extract and return the value of one of its (non-static) fields.
1034 FIELDNO says which field. */
1035
1036 struct value *
1037 value_field (struct value *arg1, int fieldno)
1038 {
1039 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
1040 }
1041
1042 /* Return a non-virtual function as a value.
1043 F is the list of member functions which contains the desired method.
1044 J is an index into F which provides the desired method.
1045
1046 We only use the symbol for its address, so be happy with either a
1047 full symbol or a minimal symbol.
1048 */
1049
1050 struct value *
1051 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
1052 int offset)
1053 {
1054 struct value *v;
1055 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1056 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1057 struct symbol *sym;
1058 struct minimal_symbol *msym;
1059
1060 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
1061 if (sym != NULL)
1062 {
1063 msym = NULL;
1064 }
1065 else
1066 {
1067 gdb_assert (sym == NULL);
1068 msym = lookup_minimal_symbol (physname, NULL, NULL);
1069 if (msym == NULL)
1070 return NULL;
1071 }
1072
1073 v = allocate_value (ftype);
1074 if (sym)
1075 {
1076 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1077 }
1078 else
1079 {
1080 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1081 }
1082
1083 if (arg1p)
1084 {
1085 if (type != value_type (*arg1p))
1086 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1087 value_addr (*arg1p)));
1088
1089 /* Move the `this' pointer according to the offset.
1090 VALUE_OFFSET (*arg1p) += offset;
1091 */
1092 }
1093
1094 return v;
1095 }
1096
1097 \f
1098 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1099 VALADDR.
1100
1101 Extracting bits depends on endianness of the machine. Compute the
1102 number of least significant bits to discard. For big endian machines,
1103 we compute the total number of bits in the anonymous object, subtract
1104 off the bit count from the MSB of the object to the MSB of the
1105 bitfield, then the size of the bitfield, which leaves the LSB discard
1106 count. For little endian machines, the discard count is simply the
1107 number of bits from the LSB of the anonymous object to the LSB of the
1108 bitfield.
1109
1110 If the field is signed, we also do sign extension. */
1111
1112 LONGEST
1113 unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
1114 {
1115 ULONGEST val;
1116 ULONGEST valmask;
1117 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1118 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1119 int lsbcount;
1120 struct type *field_type;
1121
1122 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1123 field_type = TYPE_FIELD_TYPE (type, fieldno);
1124 CHECK_TYPEDEF (field_type);
1125
1126 /* Extract bits. See comment above. */
1127
1128 if (BITS_BIG_ENDIAN)
1129 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1130 else
1131 lsbcount = (bitpos % 8);
1132 val >>= lsbcount;
1133
1134 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1135 If the field is signed, and is negative, then sign extend. */
1136
1137 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1138 {
1139 valmask = (((ULONGEST) 1) << bitsize) - 1;
1140 val &= valmask;
1141 if (!TYPE_UNSIGNED (field_type))
1142 {
1143 if (val & (valmask ^ (valmask >> 1)))
1144 {
1145 val |= ~valmask;
1146 }
1147 }
1148 }
1149 return (val);
1150 }
1151
1152 /* Modify the value of a bitfield. ADDR points to a block of memory in
1153 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1154 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1155 indicate which bits (in target bit order) comprise the bitfield.
1156 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1157 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
1158
1159 void
1160 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1161 {
1162 ULONGEST oword;
1163 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
1164
1165 /* If a negative fieldval fits in the field in question, chop
1166 off the sign extension bits. */
1167 if ((~fieldval & ~(mask >> 1)) == 0)
1168 fieldval &= mask;
1169
1170 /* Warn if value is too big to fit in the field in question. */
1171 if (0 != (fieldval & ~mask))
1172 {
1173 /* FIXME: would like to include fieldval in the message, but
1174 we don't have a sprintf_longest. */
1175 warning ("Value does not fit in %d bits.", bitsize);
1176
1177 /* Truncate it, otherwise adjoining fields may be corrupted. */
1178 fieldval &= mask;
1179 }
1180
1181 oword = extract_unsigned_integer (addr, sizeof oword);
1182
1183 /* Shifting for bit field depends on endianness of the target machine. */
1184 if (BITS_BIG_ENDIAN)
1185 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1186
1187 oword &= ~(mask << bitpos);
1188 oword |= fieldval << bitpos;
1189
1190 store_unsigned_integer (addr, sizeof oword, oword);
1191 }
1192 \f
1193 /* Convert C numbers into newly allocated values */
1194
1195 struct value *
1196 value_from_longest (struct type *type, LONGEST num)
1197 {
1198 struct value *val = allocate_value (type);
1199 enum type_code code;
1200 int len;
1201 retry:
1202 code = TYPE_CODE (type);
1203 len = TYPE_LENGTH (type);
1204
1205 switch (code)
1206 {
1207 case TYPE_CODE_TYPEDEF:
1208 type = check_typedef (type);
1209 goto retry;
1210 case TYPE_CODE_INT:
1211 case TYPE_CODE_CHAR:
1212 case TYPE_CODE_ENUM:
1213 case TYPE_CODE_BOOL:
1214 case TYPE_CODE_RANGE:
1215 store_signed_integer (value_contents_raw (val), len, num);
1216 break;
1217
1218 case TYPE_CODE_REF:
1219 case TYPE_CODE_PTR:
1220 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
1221 break;
1222
1223 default:
1224 error ("Unexpected type (%d) encountered for integer constant.", code);
1225 }
1226 return val;
1227 }
1228
1229
1230 /* Create a value representing a pointer of type TYPE to the address
1231 ADDR. */
1232 struct value *
1233 value_from_pointer (struct type *type, CORE_ADDR addr)
1234 {
1235 struct value *val = allocate_value (type);
1236 store_typed_address (value_contents_raw (val), type, addr);
1237 return val;
1238 }
1239
1240
1241 /* Create a value for a string constant to be stored locally
1242 (not in the inferior's memory space, but in GDB memory).
1243 This is analogous to value_from_longest, which also does not
1244 use inferior memory. String shall NOT contain embedded nulls. */
1245
1246 struct value *
1247 value_from_string (char *ptr)
1248 {
1249 struct value *val;
1250 int len = strlen (ptr);
1251 int lowbound = current_language->string_lower_bound;
1252 struct type *string_char_type;
1253 struct type *rangetype;
1254 struct type *stringtype;
1255
1256 rangetype = create_range_type ((struct type *) NULL,
1257 builtin_type_int,
1258 lowbound, len + lowbound - 1);
1259 string_char_type = language_string_char_type (current_language,
1260 current_gdbarch);
1261 stringtype = create_array_type ((struct type *) NULL,
1262 string_char_type,
1263 rangetype);
1264 val = allocate_value (stringtype);
1265 memcpy (value_contents_raw (val), ptr, len);
1266 return val;
1267 }
1268
1269 struct value *
1270 value_from_double (struct type *type, DOUBLEST num)
1271 {
1272 struct value *val = allocate_value (type);
1273 struct type *base_type = check_typedef (type);
1274 enum type_code code = TYPE_CODE (base_type);
1275 int len = TYPE_LENGTH (base_type);
1276
1277 if (code == TYPE_CODE_FLT)
1278 {
1279 store_typed_floating (value_contents_raw (val), base_type, num);
1280 }
1281 else
1282 error ("Unexpected type encountered for floating constant.");
1283
1284 return val;
1285 }
1286
1287 struct value *
1288 coerce_ref (struct value *arg)
1289 {
1290 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
1291 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1292 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
1293 unpack_pointer (value_type (arg),
1294 value_contents (arg)));
1295 return arg;
1296 }
1297
1298 struct value *
1299 coerce_array (struct value *arg)
1300 {
1301 arg = coerce_ref (arg);
1302 if (current_language->c_style_arrays
1303 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
1304 arg = value_coerce_array (arg);
1305 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
1306 arg = value_coerce_function (arg);
1307 return arg;
1308 }
1309
1310 struct value *
1311 coerce_number (struct value *arg)
1312 {
1313 arg = coerce_array (arg);
1314 arg = coerce_enum (arg);
1315 return arg;
1316 }
1317
1318 struct value *
1319 coerce_enum (struct value *arg)
1320 {
1321 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
1322 arg = value_cast (builtin_type_unsigned_int, arg);
1323 return arg;
1324 }
1325 \f
1326
1327 /* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1328 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1329 is the type (which is known to be struct, union or array).
1330
1331 On most machines, the struct convention is used unless we are
1332 using gcc and the type is of a special size. */
1333 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1334 native compiler. GCC 2.3.3 was the last release that did it the
1335 old way. Since gcc2_compiled was not changed, we have no
1336 way to correctly win in all cases, so we just do the right thing
1337 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1338 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1339 would cause more chaos than dealing with some struct returns being
1340 handled wrong. */
1341 /* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1342 dead. */
1343
1344 int
1345 generic_use_struct_convention (int gcc_p, struct type *value_type)
1346 {
1347 return !(TYPE_LENGTH (value_type) == 1
1348 || TYPE_LENGTH (value_type) == 2
1349 || TYPE_LENGTH (value_type) == 4
1350 || TYPE_LENGTH (value_type) == 8);
1351 }
1352
1353 /* Return true if the function returning the specified type is using
1354 the convention of returning structures in memory (passing in the
1355 address as a hidden first parameter). GCC_P is nonzero if compiled
1356 with GCC. */
1357
1358 int
1359 using_struct_return (struct type *value_type, int gcc_p)
1360 {
1361 enum type_code code = TYPE_CODE (value_type);
1362
1363 if (code == TYPE_CODE_ERROR)
1364 error ("Function return type unknown.");
1365
1366 if (code == TYPE_CODE_VOID)
1367 /* A void return value is never in memory. See also corresponding
1368 code in "print_return_value". */
1369 return 0;
1370
1371 /* Probe the architecture for the return-value convention. */
1372 return (gdbarch_return_value (current_gdbarch, value_type,
1373 NULL, NULL, NULL)
1374 != RETURN_VALUE_REGISTER_CONVENTION);
1375 }
1376
1377 void
1378 _initialize_values (void)
1379 {
1380 add_cmd ("convenience", no_class, show_convenience,
1381 "Debugger convenience (\"$foo\") variables.\n\
1382 These variables are created when you assign them values;\n\
1383 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1384 A few convenience variables are given values automatically:\n\
1385 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1386 \"$__\" holds the contents of the last address examined with \"x\".",
1387 &showlist);
1388
1389 add_cmd ("values", no_class, show_values,
1390 "Elements of value history around item number IDX (or last ten).",
1391 &showlist);
1392 }
This page took 0.056594 seconds and 5 git commands to generate.