*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
3 1995, 1996, 1997, 1998, 1999, 2000, 2002.
4 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "value.h"
28 #include "gdbcore.h"
29 #include "command.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "language.h"
33 #include "scm-lang.h"
34 #include "demangle.h"
35 #include "doublest.h"
36 #include "gdb_assert.h"
37
38 /* Prototypes for exported functions. */
39
40 void _initialize_values (void);
41
42 /* Prototypes for local functions. */
43
44 static void show_values (char *, int);
45
46 static void show_convenience (char *, int);
47
48
49 /* The value-history records all the values printed
50 by print commands during this session. Each chunk
51 records 60 consecutive values. The first chunk on
52 the chain records the most recent values.
53 The total number of values is in value_history_count. */
54
55 #define VALUE_HISTORY_CHUNK 60
56
57 struct value_history_chunk
58 {
59 struct value_history_chunk *next;
60 struct value *values[VALUE_HISTORY_CHUNK];
61 };
62
63 /* Chain of chunks now in use. */
64
65 static struct value_history_chunk *value_history_chain;
66
67 static int value_history_count; /* Abs number of last entry stored */
68 \f
69 /* List of all value objects currently allocated
70 (except for those released by calls to release_value)
71 This is so they can be freed after each command. */
72
73 static struct value *all_values;
74
75 /* Allocate a value that has the correct length for type TYPE. */
76
77 struct value *
78 allocate_value (struct type *type)
79 {
80 struct value *val;
81 struct type *atype = check_typedef (type);
82
83 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
84 VALUE_NEXT (val) = all_values;
85 all_values = val;
86 VALUE_TYPE (val) = type;
87 VALUE_ENCLOSING_TYPE (val) = type;
88 VALUE_LVAL (val) = not_lval;
89 VALUE_ADDRESS (val) = 0;
90 VALUE_FRAME (val) = 0;
91 VALUE_OFFSET (val) = 0;
92 VALUE_BITPOS (val) = 0;
93 VALUE_BITSIZE (val) = 0;
94 VALUE_REGNO (val) = -1;
95 VALUE_LAZY (val) = 0;
96 VALUE_OPTIMIZED_OUT (val) = 0;
97 VALUE_BFD_SECTION (val) = NULL;
98 VALUE_EMBEDDED_OFFSET (val) = 0;
99 VALUE_POINTED_TO_OFFSET (val) = 0;
100 val->modifiable = 1;
101 return val;
102 }
103
104 /* Allocate a value that has the correct length
105 for COUNT repetitions type TYPE. */
106
107 struct value *
108 allocate_repeat_value (struct type *type, int count)
109 {
110 int low_bound = current_language->string_lower_bound; /* ??? */
111 /* FIXME-type-allocation: need a way to free this type when we are
112 done with it. */
113 struct type *range_type
114 = create_range_type ((struct type *) NULL, builtin_type_int,
115 low_bound, count + low_bound - 1);
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 return allocate_value (create_array_type ((struct type *) NULL,
119 type, range_type));
120 }
121
122 /* Return a mark in the value chain. All values allocated after the
123 mark is obtained (except for those released) are subject to being freed
124 if a subsequent value_free_to_mark is passed the mark. */
125 struct value *
126 value_mark (void)
127 {
128 return all_values;
129 }
130
131 /* Free all values allocated since MARK was obtained by value_mark
132 (except for those released). */
133 void
134 value_free_to_mark (struct value *mark)
135 {
136 struct value *val;
137 struct value *next;
138
139 for (val = all_values; val && val != mark; val = next)
140 {
141 next = VALUE_NEXT (val);
142 value_free (val);
143 }
144 all_values = val;
145 }
146
147 /* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
149
150 void
151 free_all_values (void)
152 {
153 struct value *val;
154 struct value *next;
155
156 for (val = all_values; val; val = next)
157 {
158 next = VALUE_NEXT (val);
159 value_free (val);
160 }
161
162 all_values = 0;
163 }
164
165 /* Remove VAL from the chain all_values
166 so it will not be freed automatically. */
167
168 void
169 release_value (struct value *val)
170 {
171 struct value *v;
172
173 if (all_values == val)
174 {
175 all_values = val->next;
176 return;
177 }
178
179 for (v = all_values; v; v = v->next)
180 {
181 if (v->next == val)
182 {
183 v->next = val->next;
184 break;
185 }
186 }
187 }
188
189 /* Release all values up to mark */
190 struct value *
191 value_release_to_mark (struct value *mark)
192 {
193 struct value *val;
194 struct value *next;
195
196 for (val = next = all_values; next; next = VALUE_NEXT (next))
197 if (VALUE_NEXT (next) == mark)
198 {
199 all_values = VALUE_NEXT (next);
200 VALUE_NEXT (next) = 0;
201 return val;
202 }
203 all_values = 0;
204 return val;
205 }
206
207 /* Return a copy of the value ARG.
208 It contains the same contents, for same memory address,
209 but it's a different block of storage. */
210
211 struct value *
212 value_copy (struct value *arg)
213 {
214 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
215 struct value *val = allocate_value (encl_type);
216 VALUE_TYPE (val) = VALUE_TYPE (arg);
217 VALUE_LVAL (val) = VALUE_LVAL (arg);
218 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
219 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
220 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
221 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
222 VALUE_FRAME (val) = VALUE_FRAME (arg);
223 VALUE_REGNO (val) = VALUE_REGNO (arg);
224 VALUE_LAZY (val) = VALUE_LAZY (arg);
225 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
226 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
227 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
228 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
229 val->modifiable = arg->modifiable;
230 if (!VALUE_LAZY (val))
231 {
232 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
233 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
234
235 }
236 return val;
237 }
238 \f
239 /* Access to the value history. */
240
241 /* Record a new value in the value history.
242 Returns the absolute history index of the entry.
243 Result of -1 indicates the value was not saved; otherwise it is the
244 value history index of this new item. */
245
246 int
247 record_latest_value (struct value *val)
248 {
249 int i;
250
251 /* We don't want this value to have anything to do with the inferior anymore.
252 In particular, "set $1 = 50" should not affect the variable from which
253 the value was taken, and fast watchpoints should be able to assume that
254 a value on the value history never changes. */
255 if (VALUE_LAZY (val))
256 value_fetch_lazy (val);
257 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
258 from. This is a bit dubious, because then *&$1 does not just return $1
259 but the current contents of that location. c'est la vie... */
260 val->modifiable = 0;
261 release_value (val);
262
263 /* Here we treat value_history_count as origin-zero
264 and applying to the value being stored now. */
265
266 i = value_history_count % VALUE_HISTORY_CHUNK;
267 if (i == 0)
268 {
269 struct value_history_chunk *new
270 = (struct value_history_chunk *)
271 xmalloc (sizeof (struct value_history_chunk));
272 memset (new->values, 0, sizeof new->values);
273 new->next = value_history_chain;
274 value_history_chain = new;
275 }
276
277 value_history_chain->values[i] = val;
278
279 /* Now we regard value_history_count as origin-one
280 and applying to the value just stored. */
281
282 return ++value_history_count;
283 }
284
285 /* Return a copy of the value in the history with sequence number NUM. */
286
287 struct value *
288 access_value_history (int num)
289 {
290 struct value_history_chunk *chunk;
291 register int i;
292 register int absnum = num;
293
294 if (absnum <= 0)
295 absnum += value_history_count;
296
297 if (absnum <= 0)
298 {
299 if (num == 0)
300 error ("The history is empty.");
301 else if (num == 1)
302 error ("There is only one value in the history.");
303 else
304 error ("History does not go back to $$%d.", -num);
305 }
306 if (absnum > value_history_count)
307 error ("History has not yet reached $%d.", absnum);
308
309 absnum--;
310
311 /* Now absnum is always absolute and origin zero. */
312
313 chunk = value_history_chain;
314 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
315 i > 0; i--)
316 chunk = chunk->next;
317
318 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
319 }
320
321 /* Clear the value history entirely.
322 Must be done when new symbol tables are loaded,
323 because the type pointers become invalid. */
324
325 void
326 clear_value_history (void)
327 {
328 struct value_history_chunk *next;
329 register int i;
330 struct value *val;
331
332 while (value_history_chain)
333 {
334 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
335 if ((val = value_history_chain->values[i]) != NULL)
336 xfree (val);
337 next = value_history_chain->next;
338 xfree (value_history_chain);
339 value_history_chain = next;
340 }
341 value_history_count = 0;
342 }
343
344 static void
345 show_values (char *num_exp, int from_tty)
346 {
347 register int i;
348 struct value *val;
349 static int num = 1;
350
351 if (num_exp)
352 {
353 /* "info history +" should print from the stored position.
354 "info history <exp>" should print around value number <exp>. */
355 if (num_exp[0] != '+' || num_exp[1] != '\0')
356 num = parse_and_eval_long (num_exp) - 5;
357 }
358 else
359 {
360 /* "info history" means print the last 10 values. */
361 num = value_history_count - 9;
362 }
363
364 if (num <= 0)
365 num = 1;
366
367 for (i = num; i < num + 10 && i <= value_history_count; i++)
368 {
369 val = access_value_history (i);
370 printf_filtered ("$%d = ", i);
371 value_print (val, gdb_stdout, 0, Val_pretty_default);
372 printf_filtered ("\n");
373 }
374
375 /* The next "info history +" should start after what we just printed. */
376 num += 10;
377
378 /* Hitting just return after this command should do the same thing as
379 "info history +". If num_exp is null, this is unnecessary, since
380 "info history +" is not useful after "info history". */
381 if (from_tty && num_exp)
382 {
383 num_exp[0] = '+';
384 num_exp[1] = '\0';
385 }
386 }
387 \f
388 /* Internal variables. These are variables within the debugger
389 that hold values assigned by debugger commands.
390 The user refers to them with a '$' prefix
391 that does not appear in the variable names stored internally. */
392
393 static struct internalvar *internalvars;
394
395 /* Look up an internal variable with name NAME. NAME should not
396 normally include a dollar sign.
397
398 If the specified internal variable does not exist,
399 one is created, with a void value. */
400
401 struct internalvar *
402 lookup_internalvar (char *name)
403 {
404 register struct internalvar *var;
405
406 for (var = internalvars; var; var = var->next)
407 if (STREQ (var->name, name))
408 return var;
409
410 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
411 var->name = concat (name, NULL);
412 var->value = allocate_value (builtin_type_void);
413 release_value (var->value);
414 var->next = internalvars;
415 internalvars = var;
416 return var;
417 }
418
419 struct value *
420 value_of_internalvar (struct internalvar *var)
421 {
422 struct value *val;
423
424 #ifdef IS_TRAPPED_INTERNALVAR
425 if (IS_TRAPPED_INTERNALVAR (var->name))
426 return VALUE_OF_TRAPPED_INTERNALVAR (var);
427 #endif
428
429 val = value_copy (var->value);
430 if (VALUE_LAZY (val))
431 value_fetch_lazy (val);
432 VALUE_LVAL (val) = lval_internalvar;
433 VALUE_INTERNALVAR (val) = var;
434 return val;
435 }
436
437 void
438 set_internalvar_component (struct internalvar *var, int offset, int bitpos,
439 int bitsize, struct value *newval)
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (struct internalvar *var, struct value *val)
457 {
458 struct value *newval;
459
460 #ifdef IS_TRAPPED_INTERNALVAR
461 if (IS_TRAPPED_INTERNALVAR (var->name))
462 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
463 #endif
464
465 newval = value_copy (val);
466 newval->modifiable = 1;
467
468 /* Force the value to be fetched from the target now, to avoid problems
469 later when this internalvar is referenced and the target is gone or
470 has changed. */
471 if (VALUE_LAZY (newval))
472 value_fetch_lazy (newval);
473
474 /* Begin code which must not call error(). If var->value points to
475 something free'd, an error() obviously leaves a dangling pointer.
476 But we also get a danling pointer if var->value points to
477 something in the value chain (i.e., before release_value is
478 called), because after the error free_all_values will get called before
479 long. */
480 xfree (var->value);
481 var->value = newval;
482 release_value (newval);
483 /* End code which must not call error(). */
484 }
485
486 char *
487 internalvar_name (struct internalvar *var)
488 {
489 return var->name;
490 }
491
492 /* Free all internalvars. Done when new symtabs are loaded,
493 because that makes the values invalid. */
494
495 void
496 clear_internalvars (void)
497 {
498 register struct internalvar *var;
499
500 while (internalvars)
501 {
502 var = internalvars;
503 internalvars = var->next;
504 xfree (var->name);
505 xfree (var->value);
506 xfree (var);
507 }
508 }
509
510 static void
511 show_convenience (char *ignore, int from_tty)
512 {
513 register struct internalvar *var;
514 int varseen = 0;
515
516 for (var = internalvars; var; var = var->next)
517 {
518 #ifdef IS_TRAPPED_INTERNALVAR
519 if (IS_TRAPPED_INTERNALVAR (var->name))
520 continue;
521 #endif
522 if (!varseen)
523 {
524 varseen = 1;
525 }
526 printf_filtered ("$%s = ", var->name);
527 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
528 printf_filtered ("\n");
529 }
530 if (!varseen)
531 printf_unfiltered ("No debugger convenience variables now defined.\n\
532 Convenience variables have names starting with \"$\";\n\
533 use \"set\" as in \"set $foo = 5\" to define them.\n");
534 }
535 \f
536 /* Extract a value as a C number (either long or double).
537 Knows how to convert fixed values to double, or
538 floating values to long.
539 Does not deallocate the value. */
540
541 LONGEST
542 value_as_long (struct value *val)
543 {
544 /* This coerces arrays and functions, which is necessary (e.g.
545 in disassemble_command). It also dereferences references, which
546 I suspect is the most logical thing to do. */
547 COERCE_ARRAY (val);
548 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
549 }
550
551 DOUBLEST
552 value_as_double (struct value *val)
553 {
554 DOUBLEST foo;
555 int inv;
556
557 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
558 if (inv)
559 error ("Invalid floating value found in program.");
560 return foo;
561 }
562 /* Extract a value as a C pointer. Does not deallocate the value.
563 Note that val's type may not actually be a pointer; value_as_long
564 handles all the cases. */
565 CORE_ADDR
566 value_as_address (struct value *val)
567 {
568 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
569 whether we want this to be true eventually. */
570 #if 0
571 /* ADDR_BITS_REMOVE is wrong if we are being called for a
572 non-address (e.g. argument to "signal", "info break", etc.), or
573 for pointers to char, in which the low bits *are* significant. */
574 return ADDR_BITS_REMOVE (value_as_long (val));
575 #else
576
577 /* There are several targets (IA-64, PowerPC, and others) which
578 don't represent pointers to functions as simply the address of
579 the function's entry point. For example, on the IA-64, a
580 function pointer points to a two-word descriptor, generated by
581 the linker, which contains the function's entry point, and the
582 value the IA-64 "global pointer" register should have --- to
583 support position-independent code. The linker generates
584 descriptors only for those functions whose addresses are taken.
585
586 On such targets, it's difficult for GDB to convert an arbitrary
587 function address into a function pointer; it has to either find
588 an existing descriptor for that function, or call malloc and
589 build its own. On some targets, it is impossible for GDB to
590 build a descriptor at all: the descriptor must contain a jump
591 instruction; data memory cannot be executed; and code memory
592 cannot be modified.
593
594 Upon entry to this function, if VAL is a value of type `function'
595 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
596 VALUE_ADDRESS (val) is the address of the function. This is what
597 you'll get if you evaluate an expression like `main'. The call
598 to COERCE_ARRAY below actually does all the usual unary
599 conversions, which includes converting values of type `function'
600 to `pointer to function'. This is the challenging conversion
601 discussed above. Then, `unpack_long' will convert that pointer
602 back into an address.
603
604 So, suppose the user types `disassemble foo' on an architecture
605 with a strange function pointer representation, on which GDB
606 cannot build its own descriptors, and suppose further that `foo'
607 has no linker-built descriptor. The address->pointer conversion
608 will signal an error and prevent the command from running, even
609 though the next step would have been to convert the pointer
610 directly back into the same address.
611
612 The following shortcut avoids this whole mess. If VAL is a
613 function, just return its address directly. */
614 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC
615 || TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_METHOD)
616 return VALUE_ADDRESS (val);
617
618 COERCE_ARRAY (val);
619
620 /* Some architectures (e.g. Harvard), map instruction and data
621 addresses onto a single large unified address space. For
622 instance: An architecture may consider a large integer in the
623 range 0x10000000 .. 0x1000ffff to already represent a data
624 addresses (hence not need a pointer to address conversion) while
625 a small integer would still need to be converted integer to
626 pointer to address. Just assume such architectures handle all
627 integer conversions in a single function. */
628
629 /* JimB writes:
630
631 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
632 must admonish GDB hackers to make sure its behavior matches the
633 compiler's, whenever possible.
634
635 In general, I think GDB should evaluate expressions the same way
636 the compiler does. When the user copies an expression out of
637 their source code and hands it to a `print' command, they should
638 get the same value the compiler would have computed. Any
639 deviation from this rule can cause major confusion and annoyance,
640 and needs to be justified carefully. In other words, GDB doesn't
641 really have the freedom to do these conversions in clever and
642 useful ways.
643
644 AndrewC pointed out that users aren't complaining about how GDB
645 casts integers to pointers; they are complaining that they can't
646 take an address from a disassembly listing and give it to `x/i'.
647 This is certainly important.
648
649 Adding an architecture method like INTEGER_TO_ADDRESS certainly
650 makes it possible for GDB to "get it right" in all circumstances
651 --- the target has complete control over how things get done, so
652 people can Do The Right Thing for their target without breaking
653 anyone else. The standard doesn't specify how integers get
654 converted to pointers; usually, the ABI doesn't either, but
655 ABI-specific code is a more reasonable place to handle it. */
656
657 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_PTR
658 && TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_REF
659 && INTEGER_TO_ADDRESS_P ())
660 return INTEGER_TO_ADDRESS (VALUE_TYPE (val), VALUE_CONTENTS (val));
661
662 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
663 #endif
664 }
665 \f
666 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
667 as a long, or as a double, assuming the raw data is described
668 by type TYPE. Knows how to convert different sizes of values
669 and can convert between fixed and floating point. We don't assume
670 any alignment for the raw data. Return value is in host byte order.
671
672 If you want functions and arrays to be coerced to pointers, and
673 references to be dereferenced, call value_as_long() instead.
674
675 C++: It is assumed that the front-end has taken care of
676 all matters concerning pointers to members. A pointer
677 to member which reaches here is considered to be equivalent
678 to an INT (or some size). After all, it is only an offset. */
679
680 LONGEST
681 unpack_long (struct type *type, char *valaddr)
682 {
683 register enum type_code code = TYPE_CODE (type);
684 register int len = TYPE_LENGTH (type);
685 register int nosign = TYPE_UNSIGNED (type);
686
687 if (current_language->la_language == language_scm
688 && is_scmvalue_type (type))
689 return scm_unpack (type, valaddr, TYPE_CODE_INT);
690
691 switch (code)
692 {
693 case TYPE_CODE_TYPEDEF:
694 return unpack_long (check_typedef (type), valaddr);
695 case TYPE_CODE_ENUM:
696 case TYPE_CODE_BOOL:
697 case TYPE_CODE_INT:
698 case TYPE_CODE_CHAR:
699 case TYPE_CODE_RANGE:
700 if (nosign)
701 return extract_unsigned_integer (valaddr, len);
702 else
703 return extract_signed_integer (valaddr, len);
704
705 case TYPE_CODE_FLT:
706 return extract_typed_floating (valaddr, type);
707
708 case TYPE_CODE_PTR:
709 case TYPE_CODE_REF:
710 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
711 whether we want this to be true eventually. */
712 return extract_typed_address (valaddr, type);
713
714 case TYPE_CODE_MEMBER:
715 error ("not implemented: member types in unpack_long");
716
717 default:
718 error ("Value can't be converted to integer.");
719 }
720 return 0; /* Placate lint. */
721 }
722
723 /* Return a double value from the specified type and address.
724 INVP points to an int which is set to 0 for valid value,
725 1 for invalid value (bad float format). In either case,
726 the returned double is OK to use. Argument is in target
727 format, result is in host format. */
728
729 DOUBLEST
730 unpack_double (struct type *type, char *valaddr, int *invp)
731 {
732 enum type_code code;
733 int len;
734 int nosign;
735
736 *invp = 0; /* Assume valid. */
737 CHECK_TYPEDEF (type);
738 code = TYPE_CODE (type);
739 len = TYPE_LENGTH (type);
740 nosign = TYPE_UNSIGNED (type);
741 if (code == TYPE_CODE_FLT)
742 {
743 /* NOTE: cagney/2002-02-19: There was a test here to see if the
744 floating-point value was valid (using the macro
745 INVALID_FLOAT). That test/macro have been removed.
746
747 It turns out that only the VAX defined this macro and then
748 only in a non-portable way. Fixing the portability problem
749 wouldn't help since the VAX floating-point code is also badly
750 bit-rotten. The target needs to add definitions for the
751 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
752 exactly describe the target floating-point format. The
753 problem here is that the corresponding floatformat_vax_f and
754 floatformat_vax_d values these methods should be set to are
755 also not defined either. Oops!
756
757 Hopefully someone will add both the missing floatformat
758 definitions and floatformat_is_invalid() function. */
759 return extract_typed_floating (valaddr, type);
760 }
761 else if (nosign)
762 {
763 /* Unsigned -- be sure we compensate for signed LONGEST. */
764 return (ULONGEST) unpack_long (type, valaddr);
765 }
766 else
767 {
768 /* Signed -- we are OK with unpack_long. */
769 return unpack_long (type, valaddr);
770 }
771 }
772
773 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
774 as a CORE_ADDR, assuming the raw data is described by type TYPE.
775 We don't assume any alignment for the raw data. Return value is in
776 host byte order.
777
778 If you want functions and arrays to be coerced to pointers, and
779 references to be dereferenced, call value_as_address() instead.
780
781 C++: It is assumed that the front-end has taken care of
782 all matters concerning pointers to members. A pointer
783 to member which reaches here is considered to be equivalent
784 to an INT (or some size). After all, it is only an offset. */
785
786 CORE_ADDR
787 unpack_pointer (struct type *type, char *valaddr)
788 {
789 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
790 whether we want this to be true eventually. */
791 return unpack_long (type, valaddr);
792 }
793
794 \f
795 /* Get the value of the FIELDN'th field (which must be static) of TYPE. */
796
797 struct value *
798 value_static_field (struct type *type, int fieldno)
799 {
800 CORE_ADDR addr;
801 asection *sect;
802 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
803 {
804 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
805 sect = NULL;
806 }
807 else
808 {
809 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
810 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
811 if (sym == NULL)
812 {
813 /* With some compilers, e.g. HP aCC, static data members are reported
814 as non-debuggable symbols */
815 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
816 if (!msym)
817 return NULL;
818 else
819 {
820 addr = SYMBOL_VALUE_ADDRESS (msym);
821 sect = SYMBOL_BFD_SECTION (msym);
822 }
823 }
824 else
825 {
826 /* Anything static that isn't a constant, has an address */
827 if (SYMBOL_CLASS (sym) != LOC_CONST)
828 {
829 addr = SYMBOL_VALUE_ADDRESS (sym);
830 sect = SYMBOL_BFD_SECTION (sym);
831 }
832 /* However, static const's do not, the value is already known. */
833 else
834 {
835 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
836 }
837 }
838 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
839 }
840 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
841 }
842
843 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
844 You have to be careful here, since the size of the data area for the value
845 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
846 than the old enclosing type, you have to allocate more space for the data.
847 The return value is a pointer to the new version of this value structure. */
848
849 struct value *
850 value_change_enclosing_type (struct value *val, struct type *new_encl_type)
851 {
852 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
853 {
854 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
855 return val;
856 }
857 else
858 {
859 struct value *new_val;
860 struct value *prev;
861
862 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
863
864 /* We have to make sure this ends up in the same place in the value
865 chain as the original copy, so it's clean-up behavior is the same.
866 If the value has been released, this is a waste of time, but there
867 is no way to tell that in advance, so... */
868
869 if (val != all_values)
870 {
871 for (prev = all_values; prev != NULL; prev = prev->next)
872 {
873 if (prev->next == val)
874 {
875 prev->next = new_val;
876 break;
877 }
878 }
879 }
880
881 return new_val;
882 }
883 }
884
885 /* Given a value ARG1 (offset by OFFSET bytes)
886 of a struct or union type ARG_TYPE,
887 extract and return the value of one of its (non-static) fields.
888 FIELDNO says which field. */
889
890 struct value *
891 value_primitive_field (struct value *arg1, int offset,
892 register int fieldno, register struct type *arg_type)
893 {
894 struct value *v;
895 register struct type *type;
896
897 CHECK_TYPEDEF (arg_type);
898 type = TYPE_FIELD_TYPE (arg_type, fieldno);
899
900 /* Handle packed fields */
901
902 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
903 {
904 v = value_from_longest (type,
905 unpack_field_as_long (arg_type,
906 VALUE_CONTENTS (arg1)
907 + offset,
908 fieldno));
909 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
910 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
911 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
912 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
913 }
914 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
915 {
916 /* This field is actually a base subobject, so preserve the
917 entire object's contents for later references to virtual
918 bases, etc. */
919 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
920 VALUE_TYPE (v) = type;
921 if (VALUE_LAZY (arg1))
922 VALUE_LAZY (v) = 1;
923 else
924 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
925 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
926 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
927 VALUE_EMBEDDED_OFFSET (v)
928 = offset +
929 VALUE_EMBEDDED_OFFSET (arg1) +
930 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
931 }
932 else
933 {
934 /* Plain old data member */
935 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
936 v = allocate_value (type);
937 if (VALUE_LAZY (arg1))
938 VALUE_LAZY (v) = 1;
939 else
940 memcpy (VALUE_CONTENTS_RAW (v),
941 VALUE_CONTENTS_RAW (arg1) + offset,
942 TYPE_LENGTH (type));
943 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
944 + VALUE_EMBEDDED_OFFSET (arg1);
945 }
946 VALUE_LVAL (v) = VALUE_LVAL (arg1);
947 if (VALUE_LVAL (arg1) == lval_internalvar)
948 VALUE_LVAL (v) = lval_internalvar_component;
949 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
950 VALUE_REGNO (v) = VALUE_REGNO (arg1);
951 /* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
952 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
953 return v;
954 }
955
956 /* Given a value ARG1 of a struct or union type,
957 extract and return the value of one of its (non-static) fields.
958 FIELDNO says which field. */
959
960 struct value *
961 value_field (struct value *arg1, register int fieldno)
962 {
963 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
964 }
965
966 /* Return a non-virtual function as a value.
967 F is the list of member functions which contains the desired method.
968 J is an index into F which provides the desired method.
969
970 We only use the symbol for its address, so be happy with either a
971 full symbol or a minimal symbol.
972 */
973
974 struct value *
975 value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
976 int offset)
977 {
978 struct value *v;
979 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
980 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
981 struct symbol *sym;
982 struct minimal_symbol *msym;
983
984 sym = lookup_symbol (physname, 0, VAR_NAMESPACE, 0, NULL);
985 if (sym != NULL)
986 {
987 msym = NULL;
988 }
989 else
990 {
991 gdb_assert (sym == NULL);
992 msym = lookup_minimal_symbol (physname, NULL, NULL);
993 if (msym == NULL)
994 return NULL;
995 }
996
997 v = allocate_value (ftype);
998 if (sym)
999 {
1000 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1001 }
1002 else
1003 {
1004 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1005 }
1006
1007 if (arg1p)
1008 {
1009 if (type != VALUE_TYPE (*arg1p))
1010 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1011 value_addr (*arg1p)));
1012
1013 /* Move the `this' pointer according to the offset.
1014 VALUE_OFFSET (*arg1p) += offset;
1015 */
1016 }
1017
1018 return v;
1019 }
1020
1021 \f
1022 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1023 VALADDR.
1024
1025 Extracting bits depends on endianness of the machine. Compute the
1026 number of least significant bits to discard. For big endian machines,
1027 we compute the total number of bits in the anonymous object, subtract
1028 off the bit count from the MSB of the object to the MSB of the
1029 bitfield, then the size of the bitfield, which leaves the LSB discard
1030 count. For little endian machines, the discard count is simply the
1031 number of bits from the LSB of the anonymous object to the LSB of the
1032 bitfield.
1033
1034 If the field is signed, we also do sign extension. */
1035
1036 LONGEST
1037 unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
1038 {
1039 ULONGEST val;
1040 ULONGEST valmask;
1041 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1042 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1043 int lsbcount;
1044 struct type *field_type;
1045
1046 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1047 field_type = TYPE_FIELD_TYPE (type, fieldno);
1048 CHECK_TYPEDEF (field_type);
1049
1050 /* Extract bits. See comment above. */
1051
1052 if (BITS_BIG_ENDIAN)
1053 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1054 else
1055 lsbcount = (bitpos % 8);
1056 val >>= lsbcount;
1057
1058 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1059 If the field is signed, and is negative, then sign extend. */
1060
1061 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1062 {
1063 valmask = (((ULONGEST) 1) << bitsize) - 1;
1064 val &= valmask;
1065 if (!TYPE_UNSIGNED (field_type))
1066 {
1067 if (val & (valmask ^ (valmask >> 1)))
1068 {
1069 val |= ~valmask;
1070 }
1071 }
1072 }
1073 return (val);
1074 }
1075
1076 /* Modify the value of a bitfield. ADDR points to a block of memory in
1077 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1078 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1079 indicate which bits (in target bit order) comprise the bitfield. */
1080
1081 void
1082 modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
1083 {
1084 LONGEST oword;
1085
1086 /* If a negative fieldval fits in the field in question, chop
1087 off the sign extension bits. */
1088 if (bitsize < (8 * (int) sizeof (fieldval))
1089 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1090 fieldval = fieldval & ((1 << bitsize) - 1);
1091
1092 /* Warn if value is too big to fit in the field in question. */
1093 if (bitsize < (8 * (int) sizeof (fieldval))
1094 && 0 != (fieldval & ~((1 << bitsize) - 1)))
1095 {
1096 /* FIXME: would like to include fieldval in the message, but
1097 we don't have a sprintf_longest. */
1098 warning ("Value does not fit in %d bits.", bitsize);
1099
1100 /* Truncate it, otherwise adjoining fields may be corrupted. */
1101 fieldval = fieldval & ((1 << bitsize) - 1);
1102 }
1103
1104 oword = extract_signed_integer (addr, sizeof oword);
1105
1106 /* Shifting for bit field depends on endianness of the target machine. */
1107 if (BITS_BIG_ENDIAN)
1108 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1109
1110 /* Mask out old value, while avoiding shifts >= size of oword */
1111 if (bitsize < 8 * (int) sizeof (oword))
1112 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
1113 else
1114 oword &= ~((~(ULONGEST) 0) << bitpos);
1115 oword |= fieldval << bitpos;
1116
1117 store_signed_integer (addr, sizeof oword, oword);
1118 }
1119 \f
1120 /* Convert C numbers into newly allocated values */
1121
1122 struct value *
1123 value_from_longest (struct type *type, register LONGEST num)
1124 {
1125 struct value *val = allocate_value (type);
1126 register enum type_code code;
1127 register int len;
1128 retry:
1129 code = TYPE_CODE (type);
1130 len = TYPE_LENGTH (type);
1131
1132 switch (code)
1133 {
1134 case TYPE_CODE_TYPEDEF:
1135 type = check_typedef (type);
1136 goto retry;
1137 case TYPE_CODE_INT:
1138 case TYPE_CODE_CHAR:
1139 case TYPE_CODE_ENUM:
1140 case TYPE_CODE_BOOL:
1141 case TYPE_CODE_RANGE:
1142 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1143 break;
1144
1145 case TYPE_CODE_REF:
1146 case TYPE_CODE_PTR:
1147 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
1148 break;
1149
1150 default:
1151 error ("Unexpected type (%d) encountered for integer constant.", code);
1152 }
1153 return val;
1154 }
1155
1156
1157 /* Create a value representing a pointer of type TYPE to the address
1158 ADDR. */
1159 struct value *
1160 value_from_pointer (struct type *type, CORE_ADDR addr)
1161 {
1162 struct value *val = allocate_value (type);
1163 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1164 return val;
1165 }
1166
1167
1168 /* Create a value for a string constant to be stored locally
1169 (not in the inferior's memory space, but in GDB memory).
1170 This is analogous to value_from_longest, which also does not
1171 use inferior memory. String shall NOT contain embedded nulls. */
1172
1173 struct value *
1174 value_from_string (char *ptr)
1175 {
1176 struct value *val;
1177 int len = strlen (ptr);
1178 int lowbound = current_language->string_lower_bound;
1179 struct type *rangetype =
1180 create_range_type ((struct type *) NULL,
1181 builtin_type_int,
1182 lowbound, len + lowbound - 1);
1183 struct type *stringtype =
1184 create_array_type ((struct type *) NULL,
1185 *current_language->string_char_type,
1186 rangetype);
1187
1188 val = allocate_value (stringtype);
1189 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1190 return val;
1191 }
1192
1193 struct value *
1194 value_from_double (struct type *type, DOUBLEST num)
1195 {
1196 struct value *val = allocate_value (type);
1197 struct type *base_type = check_typedef (type);
1198 register enum type_code code = TYPE_CODE (base_type);
1199 register int len = TYPE_LENGTH (base_type);
1200
1201 if (code == TYPE_CODE_FLT)
1202 {
1203 store_typed_floating (VALUE_CONTENTS_RAW (val), base_type, num);
1204 }
1205 else
1206 error ("Unexpected type encountered for floating constant.");
1207
1208 return val;
1209 }
1210 \f
1211 /* Deal with the value that is "about to be returned". */
1212
1213 /* Return the value that a function returning now
1214 would be returning to its caller, assuming its type is VALTYPE.
1215 RETBUF is where we look for what ought to be the contents
1216 of the registers (in raw form). This is because it is often
1217 desirable to restore old values to those registers
1218 after saving the contents of interest, and then call
1219 this function using the saved values.
1220 struct_return is non-zero when the function in question is
1221 using the structure return conventions on the machine in question;
1222 0 when it is using the value returning conventions (this often
1223 means returning pointer to where structure is vs. returning value). */
1224
1225 /* ARGSUSED */
1226 struct value *
1227 value_being_returned (struct type *valtype, char *retbuf, int struct_return)
1228 {
1229 struct value *val;
1230 CORE_ADDR addr;
1231
1232 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1233 if (EXTRACT_STRUCT_VALUE_ADDRESS_P ())
1234 if (struct_return)
1235 {
1236 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1237 if (!addr)
1238 error ("Function return value unknown.");
1239 return value_at (valtype, addr, NULL);
1240 }
1241
1242 val = allocate_value (valtype);
1243 CHECK_TYPEDEF (valtype);
1244 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1245
1246 return val;
1247 }
1248
1249 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1250 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1251 and TYPE is the type (which is known to be struct, union or array).
1252
1253 On most machines, the struct convention is used unless we are
1254 using gcc and the type is of a special size. */
1255 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1256 native compiler. GCC 2.3.3 was the last release that did it the
1257 old way. Since gcc2_compiled was not changed, we have no
1258 way to correctly win in all cases, so we just do the right thing
1259 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1260 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1261 would cause more chaos than dealing with some struct returns being
1262 handled wrong. */
1263
1264 int
1265 generic_use_struct_convention (int gcc_p, struct type *value_type)
1266 {
1267 return !((gcc_p == 1)
1268 && (TYPE_LENGTH (value_type) == 1
1269 || TYPE_LENGTH (value_type) == 2
1270 || TYPE_LENGTH (value_type) == 4
1271 || TYPE_LENGTH (value_type) == 8));
1272 }
1273
1274 /* Return true if the function specified is using the structure returning
1275 convention on this machine to return arguments, or 0 if it is using
1276 the value returning convention. FUNCTION is the value representing
1277 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1278 is the type returned by the function. GCC_P is nonzero if compiled
1279 with GCC. */
1280
1281 /* ARGSUSED */
1282 int
1283 using_struct_return (struct value *function, CORE_ADDR funcaddr,
1284 struct type *value_type, int gcc_p)
1285 {
1286 register enum type_code code = TYPE_CODE (value_type);
1287
1288 if (code == TYPE_CODE_ERROR)
1289 error ("Function return type unknown.");
1290
1291 if (code == TYPE_CODE_STRUCT
1292 || code == TYPE_CODE_UNION
1293 || code == TYPE_CODE_ARRAY
1294 || RETURN_VALUE_ON_STACK (value_type))
1295 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1296
1297 return 0;
1298 }
1299
1300 /* Store VAL so it will be returned if a function returns now.
1301 Does not verify that VAL's type matches what the current
1302 function wants to return. */
1303
1304 void
1305 set_return_value (struct value *val)
1306 {
1307 struct type *type = check_typedef (VALUE_TYPE (val));
1308 register enum type_code code = TYPE_CODE (type);
1309
1310 if (code == TYPE_CODE_ERROR)
1311 error ("Function return type unknown.");
1312
1313 if (code == TYPE_CODE_STRUCT
1314 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1315 error ("GDB does not support specifying a struct or union return value.");
1316
1317 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1318 }
1319 \f
1320 void
1321 _initialize_values (void)
1322 {
1323 add_cmd ("convenience", no_class, show_convenience,
1324 "Debugger convenience (\"$foo\") variables.\n\
1325 These variables are created when you assign them values;\n\
1326 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1327 A few convenience variables are given values automatically:\n\
1328 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1329 \"$__\" holds the contents of the last address examined with \"x\".",
1330 &showlist);
1331
1332 add_cmd ("values", no_class, show_values,
1333 "Elements of value history around item number IDX (or last ten).",
1334 &showlist);
1335 }
This page took 0.066238 seconds and 4 git commands to generate.