* Makefile.in (LIBCOMMON): Define.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Local function prototypes. */
36
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 struct type *));
39
40 static void show_values PARAMS ((char *, int));
41
42 static void show_convenience PARAMS ((char *, int));
43
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
51
52 #define VALUE_HISTORY_CHUNK 60
53
54 struct value_history_chunk
55 {
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59
60 /* Chain of chunks now in use. */
61
62 static struct value_history_chunk *value_history_chain;
63
64 static int value_history_count; /* Abs number of last entry stored */
65 \f
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
69
70 static value_ptr all_values;
71
72 /* Allocate a value that has the correct length for type TYPE. */
73
74 value_ptr
75 allocate_value (type)
76 struct type *type;
77 {
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
80
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
83 all_values = val;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 int low_bound = current_language->string_lower_bound; /* ??? */
107 /* FIXME-type-allocation: need a way to free this type when we are
108 done with it. */
109 struct type *range_type
110 = create_range_type ((struct type *) NULL, builtin_type_int,
111 low_bound, count + low_bound - 1);
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 return allocate_value (create_array_type ((struct type *) NULL,
115 type, range_type));
116 }
117
118 /* Return a mark in the value chain. All values allocated after the
119 mark is obtained (except for those released) are subject to being freed
120 if a subsequent value_free_to_mark is passed the mark. */
121 value_ptr
122 value_mark ()
123 {
124 return all_values;
125 }
126
127 /* Free all values allocated since MARK was obtained by value_mark
128 (except for those released). */
129 void
130 value_free_to_mark (mark)
131 value_ptr mark;
132 {
133 value_ptr val, next;
134
135 for (val = all_values; val && val != mark; val = next)
136 {
137 next = VALUE_NEXT (val);
138 value_free (val);
139 }
140 all_values = val;
141 }
142
143 /* Free all the values that have been allocated (except for those released).
144 Called after each command, successful or not. */
145
146 void
147 free_all_values ()
148 {
149 register value_ptr val, next;
150
151 for (val = all_values; val; val = next)
152 {
153 next = VALUE_NEXT (val);
154 value_free (val);
155 }
156
157 all_values = 0;
158 }
159
160 /* Remove VAL from the chain all_values
161 so it will not be freed automatically. */
162
163 void
164 release_value (val)
165 register value_ptr val;
166 {
167 register value_ptr v;
168
169 if (all_values == val)
170 {
171 all_values = val->next;
172 return;
173 }
174
175 for (v = all_values; v; v = v->next)
176 {
177 if (v->next == val)
178 {
179 v->next = val->next;
180 break;
181 }
182 }
183 }
184
185 /* Release all values up to mark */
186 value_ptr
187 value_release_to_mark (mark)
188 value_ptr mark;
189 {
190 value_ptr val, next;
191
192 for (val = next = all_values; next; next = VALUE_NEXT (next))
193 if (VALUE_NEXT (next) == mark)
194 {
195 all_values = VALUE_NEXT (next);
196 VALUE_NEXT (next) = 0;
197 return val;
198 }
199 all_values = 0;
200 return val;
201 }
202
203 /* Return a copy of the value ARG.
204 It contains the same contents, for same memory address,
205 but it's a different block of storage. */
206
207 value_ptr
208 value_copy (arg)
209 value_ptr arg;
210 {
211 register struct type *type = VALUE_TYPE (arg);
212 register value_ptr val = allocate_value (type);
213 VALUE_LVAL (val) = VALUE_LVAL (arg);
214 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
215 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
216 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
217 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
218 VALUE_FRAME (val) = VALUE_FRAME (arg);
219 VALUE_REGNO (val) = VALUE_REGNO (arg);
220 VALUE_LAZY (val) = VALUE_LAZY (arg);
221 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
222 val->modifiable = arg->modifiable;
223 if (!VALUE_LAZY (val))
224 {
225 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
226 TYPE_LENGTH (VALUE_TYPE (arg)));
227 }
228 return val;
229 }
230 \f
231 /* Access to the value history. */
232
233 /* Record a new value in the value history.
234 Returns the absolute history index of the entry.
235 Result of -1 indicates the value was not saved; otherwise it is the
236 value history index of this new item. */
237
238 int
239 record_latest_value (val)
240 value_ptr val;
241 {
242 int i;
243
244 /* We don't want this value to have anything to do with the inferior anymore.
245 In particular, "set $1 = 50" should not affect the variable from which
246 the value was taken, and fast watchpoints should be able to assume that
247 a value on the value history never changes. */
248 if (VALUE_LAZY (val))
249 value_fetch_lazy (val);
250 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
251 from. This is a bit dubious, because then *&$1 does not just return $1
252 but the current contents of that location. c'est la vie... */
253 val->modifiable = 0;
254 release_value (val);
255
256 /* Here we treat value_history_count as origin-zero
257 and applying to the value being stored now. */
258
259 i = value_history_count % VALUE_HISTORY_CHUNK;
260 if (i == 0)
261 {
262 register struct value_history_chunk *new
263 = (struct value_history_chunk *)
264 xmalloc (sizeof (struct value_history_chunk));
265 memset (new->values, 0, sizeof new->values);
266 new->next = value_history_chain;
267 value_history_chain = new;
268 }
269
270 value_history_chain->values[i] = val;
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276 }
277
278 /* Return a copy of the value in the history with sequence number NUM. */
279
280 value_ptr
281 access_value_history (num)
282 int num;
283 {
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319 void
320 clear_value_history ()
321 {
322 register struct value_history_chunk *next;
323 register int i;
324 register value_ptr val;
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
330 free ((PTR)val);
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336 }
337
338 static void
339 show_values (num_exp, from_tty)
340 char *num_exp;
341 int from_tty;
342 {
343 register int i;
344 register value_ptr val;
345 static int num = 1;
346
347 if (num_exp)
348 {
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382 }
383 \f
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389 static struct internalvar *internalvars;
390
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397 struct internalvar *
398 lookup_internalvar (name)
399 char *name;
400 {
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414 }
415
416 value_ptr
417 value_of_internalvar (var)
418 struct internalvar *var;
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
439 value_ptr newval;
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (var, val)
457 struct internalvar *var;
458 value_ptr val;
459 {
460 value_ptr newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468 newval->modifiable = 1;
469
470 /* Force the value to be fetched from the target now, to avoid problems
471 later when this internalvar is referenced and the target is gone or
472 has changed. */
473 if (VALUE_LAZY (newval))
474 value_fetch_lazy (newval);
475
476 /* Begin code which must not call error(). If var->value points to
477 something free'd, an error() obviously leaves a dangling pointer.
478 But we also get a danling pointer if var->value points to
479 something in the value chain (i.e., before release_value is
480 called), because after the error free_all_values will get called before
481 long. */
482 free ((PTR)var->value);
483 var->value = newval;
484 release_value (newval);
485 /* End code which must not call error(). */
486 }
487
488 char *
489 internalvar_name (var)
490 struct internalvar *var;
491 {
492 return var->name;
493 }
494
495 /* Free all internalvars. Done when new symtabs are loaded,
496 because that makes the values invalid. */
497
498 void
499 clear_internalvars ()
500 {
501 register struct internalvar *var;
502
503 while (internalvars)
504 {
505 var = internalvars;
506 internalvars = var->next;
507 free ((PTR)var->name);
508 free ((PTR)var->value);
509 free ((PTR)var);
510 }
511 }
512
513 static void
514 show_convenience (ignore, from_tty)
515 char *ignore;
516 int from_tty;
517 {
518 register struct internalvar *var;
519 int varseen = 0;
520
521 for (var = internalvars; var; var = var->next)
522 {
523 #ifdef IS_TRAPPED_INTERNALVAR
524 if (IS_TRAPPED_INTERNALVAR (var->name))
525 continue;
526 #endif
527 if (!varseen)
528 {
529 varseen = 1;
530 }
531 printf_filtered ("$%s = ", var->name);
532 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
533 printf_filtered ("\n");
534 }
535 if (!varseen)
536 printf_unfiltered ("No debugger convenience variables now defined.\n\
537 Convenience variables have names starting with \"$\";\n\
538 use \"set\" as in \"set $foo = 5\" to define them.\n");
539 }
540 \f
541 /* Extract a value as a C number (either long or double).
542 Knows how to convert fixed values to double, or
543 floating values to long.
544 Does not deallocate the value. */
545
546 LONGEST
547 value_as_long (val)
548 register value_ptr val;
549 {
550 /* This coerces arrays and functions, which is necessary (e.g.
551 in disassemble_command). It also dereferences references, which
552 I suspect is the most logical thing to do. */
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556
557 DOUBLEST
558 value_as_double (val)
559 register value_ptr val;
560 {
561 DOUBLEST foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568 }
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
571 CORE_ADDR
572 value_as_pointer (val)
573 value_ptr val;
574 {
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
577 #if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583 return value_as_long (val);
584 #endif
585 }
586 \f
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
601 LONGEST
602 unpack_long (type, valaddr)
603 struct type *type;
604 char *valaddr;
605 {
606 register enum type_code code = TYPE_CODE (type);
607 register int len = TYPE_LENGTH (type);
608 register int nosign = TYPE_UNSIGNED (type);
609
610 if (current_language->la_language == language_scm
611 && is_scmvalue_type (type))
612 return scm_unpack (type, valaddr, TYPE_CODE_INT);
613
614 switch (code)
615 {
616 case TYPE_CODE_TYPEDEF:
617 return unpack_long (check_typedef (type), valaddr);
618 case TYPE_CODE_ENUM:
619 case TYPE_CODE_BOOL:
620 case TYPE_CODE_INT:
621 case TYPE_CODE_CHAR:
622 case TYPE_CODE_RANGE:
623 if (nosign)
624 return extract_unsigned_integer (valaddr, len);
625 else
626 return extract_signed_integer (valaddr, len);
627
628 case TYPE_CODE_FLT:
629 return extract_floating (valaddr, len);
630
631 case TYPE_CODE_PTR:
632 case TYPE_CODE_REF:
633 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
634 whether we want this to be true eventually. */
635 return extract_address (valaddr, len);
636
637 case TYPE_CODE_MEMBER:
638 error ("not implemented: member types in unpack_long");
639
640 default:
641 error ("Value can't be converted to integer.");
642 }
643 return 0; /* Placate lint. */
644 }
645
646 /* Return a double value from the specified type and address.
647 INVP points to an int which is set to 0 for valid value,
648 1 for invalid value (bad float format). In either case,
649 the returned double is OK to use. Argument is in target
650 format, result is in host format. */
651
652 DOUBLEST
653 unpack_double (type, valaddr, invp)
654 struct type *type;
655 char *valaddr;
656 int *invp;
657 {
658 register enum type_code code = TYPE_CODE (type);
659 register int len = TYPE_LENGTH (type);
660 register int nosign = TYPE_UNSIGNED (type);
661
662 *invp = 0; /* Assume valid. */
663 CHECK_TYPEDEF (type);
664 if (code == TYPE_CODE_FLT)
665 {
666 #ifdef INVALID_FLOAT
667 if (INVALID_FLOAT (valaddr, len))
668 {
669 *invp = 1;
670 return 1.234567891011121314;
671 }
672 #endif
673 return extract_floating (valaddr, len);
674 }
675 else if (nosign)
676 {
677 /* Unsigned -- be sure we compensate for signed LONGEST. */
678 #ifndef _MSC_VER
679 return (ULONGEST) unpack_long (type, valaddr);
680 #else
681 #if (_MSC_VER > 800)
682 return (ULONGEST) unpack_long (type, valaddr);
683 #else
684 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
685 return (LONGEST) unpack_long (type, valaddr);
686 #endif
687 #endif /* _MSC_VER */
688 }
689 else
690 {
691 /* Signed -- we are OK with unpack_long. */
692 return unpack_long (type, valaddr);
693 }
694 }
695
696 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
697 as a CORE_ADDR, assuming the raw data is described by type TYPE.
698 We don't assume any alignment for the raw data. Return value is in
699 host byte order.
700
701 If you want functions and arrays to be coerced to pointers, and
702 references to be dereferenced, call value_as_pointer() instead.
703
704 C++: It is assumed that the front-end has taken care of
705 all matters concerning pointers to members. A pointer
706 to member which reaches here is considered to be equivalent
707 to an INT (or some size). After all, it is only an offset. */
708
709 CORE_ADDR
710 unpack_pointer (type, valaddr)
711 struct type *type;
712 char *valaddr;
713 {
714 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
715 whether we want this to be true eventually. */
716 return unpack_long (type, valaddr);
717 }
718 \f
719 /* Given a value ARG1 (offset by OFFSET bytes)
720 of a struct or union type ARG_TYPE,
721 extract and return the value of one of its fields.
722 FIELDNO says which field.
723
724 For C++, must also be able to return values from static fields */
725
726 value_ptr
727 value_primitive_field (arg1, offset, fieldno, arg_type)
728 register value_ptr arg1;
729 int offset;
730 register int fieldno;
731 register struct type *arg_type;
732 {
733 register value_ptr v;
734 register struct type *type;
735
736 CHECK_TYPEDEF (arg_type);
737 type = TYPE_FIELD_TYPE (arg_type, fieldno);
738
739 /* Handle packed fields */
740
741 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
742 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
743 {
744 v = value_from_longest (type,
745 unpack_field_as_long (arg_type,
746 VALUE_CONTENTS (arg1),
747 fieldno));
748 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
749 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
750 }
751 else
752 {
753 v = allocate_value (type);
754 if (VALUE_LAZY (arg1))
755 VALUE_LAZY (v) = 1;
756 else
757 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
758 TYPE_LENGTH (type));
759 }
760 VALUE_LVAL (v) = VALUE_LVAL (arg1);
761 if (VALUE_LVAL (arg1) == lval_internalvar)
762 VALUE_LVAL (v) = lval_internalvar_component;
763 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
764 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
765 return v;
766 }
767
768 /* Given a value ARG1 of a struct or union type,
769 extract and return the value of one of its fields.
770 FIELDNO says which field.
771
772 For C++, must also be able to return values from static fields */
773
774 value_ptr
775 value_field (arg1, fieldno)
776 register value_ptr arg1;
777 register int fieldno;
778 {
779 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
780 }
781
782 /* Return a non-virtual function as a value.
783 F is the list of member functions which contains the desired method.
784 J is an index into F which provides the desired method. */
785
786 value_ptr
787 value_fn_field (arg1p, f, j, type, offset)
788 value_ptr *arg1p;
789 struct fn_field *f;
790 int j;
791 struct type *type;
792 int offset;
793 {
794 register value_ptr v;
795 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
796 struct symbol *sym;
797
798 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
799 0, VAR_NAMESPACE, 0, NULL);
800 if (! sym)
801 return NULL;
802 /*
803 error ("Internal error: could not find physical method named %s",
804 TYPE_FN_FIELD_PHYSNAME (f, j));
805 */
806
807 v = allocate_value (ftype);
808 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
809 VALUE_TYPE (v) = ftype;
810
811 if (arg1p)
812 {
813 if (type != VALUE_TYPE (*arg1p))
814 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
815 value_addr (*arg1p)));
816
817 /* Move the `this' pointer according to the offset.
818 VALUE_OFFSET (*arg1p) += offset;
819 */
820 }
821
822 return v;
823 }
824
825 /* Return a virtual function as a value.
826 ARG1 is the object which provides the virtual function
827 table pointer. *ARG1P is side-effected in calling this function.
828 F is the list of member functions which contains the desired virtual
829 function.
830 J is an index into F which provides the desired virtual function.
831
832 TYPE is the type in which F is located. */
833 value_ptr
834 value_virtual_fn_field (arg1p, f, j, type, offset)
835 value_ptr *arg1p;
836 struct fn_field *f;
837 int j;
838 struct type *type;
839 int offset;
840 {
841 value_ptr arg1 = *arg1p;
842 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
843 struct type *entry_type;
844 /* First, get the virtual function table pointer. That comes
845 with a strange type, so cast it to type `pointer to long' (which
846 should serve just fine as a function type). Then, index into
847 the table, and convert final value to appropriate function type. */
848 value_ptr entry, vfn, vtbl;
849 value_ptr vi = value_from_longest (builtin_type_int,
850 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
851 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
852 struct type *context;
853 if (fcontext == NULL)
854 /* We don't have an fcontext (e.g. the program was compiled with
855 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
856 This won't work right for multiple inheritance, but at least we
857 should do as well as GDB 3.x did. */
858 fcontext = TYPE_VPTR_BASETYPE (type);
859 context = lookup_pointer_type (fcontext);
860 /* Now context is a pointer to the basetype containing the vtbl. */
861 if (TYPE_TARGET_TYPE (context) != type1)
862 {
863 arg1 = value_ind (value_cast (context, value_addr (arg1)));
864 type1 = check_typedef (VALUE_TYPE (arg1));
865 }
866
867 context = type1;
868 /* Now context is the basetype containing the vtbl. */
869
870 /* This type may have been defined before its virtual function table
871 was. If so, fill in the virtual function table entry for the
872 type now. */
873 if (TYPE_VPTR_FIELDNO (context) < 0)
874 fill_in_vptr_fieldno (context);
875
876 /* The virtual function table is now an array of structures
877 which have the form { int16 offset, delta; void *pfn; }. */
878 vtbl = value_ind (value_primitive_field (arg1, 0,
879 TYPE_VPTR_FIELDNO (context),
880 TYPE_VPTR_BASETYPE (context)));
881
882 /* Index into the virtual function table. This is hard-coded because
883 looking up a field is not cheap, and it may be important to save
884 time, e.g. if the user has set a conditional breakpoint calling
885 a virtual function. */
886 entry = value_subscript (vtbl, vi);
887 entry_type = check_typedef (VALUE_TYPE (entry));
888
889 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
890 {
891 /* Move the `this' pointer according to the virtual function table. */
892 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
893
894 if (! VALUE_LAZY (arg1))
895 {
896 VALUE_LAZY (arg1) = 1;
897 value_fetch_lazy (arg1);
898 }
899
900 vfn = value_field (entry, 2);
901 }
902 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
903 vfn = entry;
904 else
905 error ("I'm confused: virtual function table has bad type");
906 /* Reinstantiate the function pointer with the correct type. */
907 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
908
909 *arg1p = arg1;
910 return vfn;
911 }
912
913 /* ARG is a pointer to an object we know to be at least
914 a DTYPE. BTYPE is the most derived basetype that has
915 already been searched (and need not be searched again).
916 After looking at the vtables between BTYPE and DTYPE,
917 return the most derived type we find. The caller must
918 be satisfied when the return value == DTYPE.
919
920 FIXME-tiemann: should work with dossier entries as well. */
921
922 static value_ptr
923 value_headof (in_arg, btype, dtype)
924 value_ptr in_arg;
925 struct type *btype, *dtype;
926 {
927 /* First collect the vtables we must look at for this object. */
928 /* FIXME-tiemann: right now, just look at top-most vtable. */
929 value_ptr arg, vtbl, entry, best_entry = 0;
930 int i, nelems;
931 int offset, best_offset = 0;
932 struct symbol *sym;
933 CORE_ADDR pc_for_sym;
934 char *demangled_name;
935 struct minimal_symbol *msymbol;
936
937 btype = TYPE_VPTR_BASETYPE (dtype);
938 CHECK_TYPEDEF (btype);
939 arg = in_arg;
940 if (btype != dtype)
941 arg = value_cast (lookup_pointer_type (btype), arg);
942 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
943
944 /* Check that VTBL looks like it points to a virtual function table. */
945 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
946 if (msymbol == NULL
947 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
948 || !VTBL_PREFIX_P (demangled_name))
949 {
950 /* If we expected to find a vtable, but did not, let the user
951 know that we aren't happy, but don't throw an error.
952 FIXME: there has to be a better way to do this. */
953 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
954 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
955 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
956 VALUE_TYPE (in_arg) = error_type;
957 return in_arg;
958 }
959
960 /* Now search through the virtual function table. */
961 entry = value_ind (vtbl);
962 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
963 for (i = 1; i <= nelems; i++)
964 {
965 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
966 (LONGEST) i));
967 /* This won't work if we're using thunks. */
968 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
969 break;
970 offset = longest_to_int (value_as_long (value_field (entry, 0)));
971 /* If we use '<=' we can handle single inheritance
972 * where all offsets are zero - just use the first entry found. */
973 if (offset <= best_offset)
974 {
975 best_offset = offset;
976 best_entry = entry;
977 }
978 }
979 /* Move the pointer according to BEST_ENTRY's offset, and figure
980 out what type we should return as the new pointer. */
981 if (best_entry == 0)
982 {
983 /* An alternative method (which should no longer be necessary).
984 * But we leave it in for future use, when we will hopefully
985 * have optimizes the vtable to use thunks instead of offsets. */
986 /* Use the name of vtable itself to extract a base type. */
987 demangled_name += 4; /* Skip _vt$ prefix. */
988 }
989 else
990 {
991 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
992 sym = find_pc_function (pc_for_sym);
993 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
994 *(strchr (demangled_name, ':')) = '\0';
995 }
996 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
997 if (sym == NULL)
998 error ("could not find type declaration for `%s'", demangled_name);
999 if (best_entry)
1000 {
1001 free (demangled_name);
1002 arg = value_add (value_cast (builtin_type_int, arg),
1003 value_field (best_entry, 0));
1004 }
1005 else arg = in_arg;
1006 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1007 return arg;
1008 }
1009
1010 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1011 function tables, probe ARG's tables (including the vtables
1012 of its baseclasses) to figure out the most derived type that ARG
1013 could actually be a pointer to. */
1014
1015 value_ptr
1016 value_from_vtable_info (arg, type)
1017 value_ptr arg;
1018 struct type *type;
1019 {
1020 /* Take care of preliminaries. */
1021 if (TYPE_VPTR_FIELDNO (type) < 0)
1022 fill_in_vptr_fieldno (type);
1023 if (TYPE_VPTR_FIELDNO (type) < 0)
1024 return 0;
1025
1026 return value_headof (arg, 0, type);
1027 }
1028
1029 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1030 pointer which is for the base class whose type is BASECLASS. */
1031
1032 static int
1033 vb_match (type, index, basetype)
1034 struct type *type;
1035 int index;
1036 struct type *basetype;
1037 {
1038 struct type *fieldtype;
1039 char *name = TYPE_FIELD_NAME (type, index);
1040 char *field_class_name = NULL;
1041
1042 if (*name != '_')
1043 return 0;
1044 /* gcc 2.4 uses _vb$. */
1045 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1046 field_class_name = name + 4;
1047 /* gcc 2.5 will use __vb_. */
1048 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1049 field_class_name = name + 5;
1050
1051 if (field_class_name == NULL)
1052 /* This field is not a virtual base class pointer. */
1053 return 0;
1054
1055 /* It's a virtual baseclass pointer, now we just need to find out whether
1056 it is for this baseclass. */
1057 fieldtype = TYPE_FIELD_TYPE (type, index);
1058 if (fieldtype == NULL
1059 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1060 /* "Can't happen". */
1061 return 0;
1062
1063 /* What we check for is that either the types are equal (needed for
1064 nameless types) or have the same name. This is ugly, and a more
1065 elegant solution should be devised (which would probably just push
1066 the ugliness into symbol reading unless we change the stabs format). */
1067 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1068 return 1;
1069
1070 if (TYPE_NAME (basetype) != NULL
1071 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1072 && STREQ (TYPE_NAME (basetype),
1073 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1074 return 1;
1075 return 0;
1076 }
1077
1078 /* Compute the offset of the baseclass which is
1079 the INDEXth baseclass of class TYPE,
1080 for value at VALADDR (in host) at ADDRESS (in target).
1081 The result is the offset of the baseclass value relative
1082 to (the address of)(ARG) + OFFSET.
1083
1084 -1 is returned on error. */
1085
1086 int
1087 baseclass_offset (type, index, valaddr, address)
1088 struct type *type;
1089 int index;
1090 char *valaddr;
1091 CORE_ADDR address;
1092 {
1093 struct type *basetype = TYPE_BASECLASS (type, index);
1094
1095 if (BASETYPE_VIA_VIRTUAL (type, index))
1096 {
1097 /* Must hunt for the pointer to this virtual baseclass. */
1098 register int i, len = TYPE_NFIELDS (type);
1099 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1100
1101 /* First look for the virtual baseclass pointer
1102 in the fields. */
1103 for (i = n_baseclasses; i < len; i++)
1104 {
1105 if (vb_match (type, i, basetype))
1106 {
1107 CORE_ADDR addr
1108 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1109 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1110
1111 return addr - (LONGEST) address;
1112 }
1113 }
1114 /* Not in the fields, so try looking through the baseclasses. */
1115 for (i = index+1; i < n_baseclasses; i++)
1116 {
1117 int boffset =
1118 baseclass_offset (type, i, valaddr, address);
1119 if (boffset)
1120 return boffset;
1121 }
1122 /* Not found. */
1123 return -1;
1124 }
1125
1126 /* Baseclass is easily computed. */
1127 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1128 }
1129 \f
1130 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1131 VALADDR.
1132
1133 Extracting bits depends on endianness of the machine. Compute the
1134 number of least significant bits to discard. For big endian machines,
1135 we compute the total number of bits in the anonymous object, subtract
1136 off the bit count from the MSB of the object to the MSB of the
1137 bitfield, then the size of the bitfield, which leaves the LSB discard
1138 count. For little endian machines, the discard count is simply the
1139 number of bits from the LSB of the anonymous object to the LSB of the
1140 bitfield.
1141
1142 If the field is signed, we also do sign extension. */
1143
1144 LONGEST
1145 unpack_field_as_long (type, valaddr, fieldno)
1146 struct type *type;
1147 char *valaddr;
1148 int fieldno;
1149 {
1150 ULONGEST val;
1151 ULONGEST valmask;
1152 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1153 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1154 int lsbcount;
1155
1156 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1157
1158 /* Extract bits. See comment above. */
1159
1160 if (BITS_BIG_ENDIAN)
1161 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1162 else
1163 lsbcount = (bitpos % 8);
1164 val >>= lsbcount;
1165
1166 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1167 If the field is signed, and is negative, then sign extend. */
1168
1169 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1170 {
1171 valmask = (((ULONGEST) 1) << bitsize) - 1;
1172 val &= valmask;
1173 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1174 {
1175 if (val & (valmask ^ (valmask >> 1)))
1176 {
1177 val |= ~valmask;
1178 }
1179 }
1180 }
1181 return (val);
1182 }
1183
1184 /* Modify the value of a bitfield. ADDR points to a block of memory in
1185 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1186 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1187 indicate which bits (in target bit order) comprise the bitfield. */
1188
1189 void
1190 modify_field (addr, fieldval, bitpos, bitsize)
1191 char *addr;
1192 LONGEST fieldval;
1193 int bitpos, bitsize;
1194 {
1195 LONGEST oword;
1196
1197 /* If a negative fieldval fits in the field in question, chop
1198 off the sign extension bits. */
1199 if (bitsize < (8 * (int) sizeof (fieldval))
1200 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1201 fieldval = fieldval & ((1 << bitsize) - 1);
1202
1203 /* Warn if value is too big to fit in the field in question. */
1204 if (bitsize < (8 * (int) sizeof (fieldval))
1205 && 0 != (fieldval & ~((1<<bitsize)-1)))
1206 {
1207 /* FIXME: would like to include fieldval in the message, but
1208 we don't have a sprintf_longest. */
1209 warning ("Value does not fit in %d bits.", bitsize);
1210
1211 /* Truncate it, otherwise adjoining fields may be corrupted. */
1212 fieldval = fieldval & ((1 << bitsize) - 1);
1213 }
1214
1215 oword = extract_signed_integer (addr, sizeof oword);
1216
1217 /* Shifting for bit field depends on endianness of the target machine. */
1218 if (BITS_BIG_ENDIAN)
1219 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1220
1221 /* Mask out old value, while avoiding shifts >= size of oword */
1222 if (bitsize < 8 * (int) sizeof (oword))
1223 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
1224 else
1225 oword &= ~((~(ULONGEST)0) << bitpos);
1226 oword |= fieldval << bitpos;
1227
1228 store_signed_integer (addr, sizeof oword, oword);
1229 }
1230 \f
1231 /* Convert C numbers into newly allocated values */
1232
1233 value_ptr
1234 value_from_longest (type, num)
1235 struct type *type;
1236 register LONGEST num;
1237 {
1238 register value_ptr val = allocate_value (type);
1239 register enum type_code code;
1240 register int len;
1241 retry:
1242 code = TYPE_CODE (type);
1243 len = TYPE_LENGTH (type);
1244
1245 switch (code)
1246 {
1247 case TYPE_CODE_TYPEDEF:
1248 type = check_typedef (type);
1249 goto retry;
1250 case TYPE_CODE_INT:
1251 case TYPE_CODE_CHAR:
1252 case TYPE_CODE_ENUM:
1253 case TYPE_CODE_BOOL:
1254 case TYPE_CODE_RANGE:
1255 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1256 break;
1257
1258 case TYPE_CODE_REF:
1259 case TYPE_CODE_PTR:
1260 /* This assumes that all pointers of a given length
1261 have the same form. */
1262 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1263 break;
1264
1265 default:
1266 error ("Unexpected type encountered for integer constant.");
1267 }
1268 return val;
1269 }
1270
1271 value_ptr
1272 value_from_double (type, num)
1273 struct type *type;
1274 DOUBLEST num;
1275 {
1276 register value_ptr val = allocate_value (type);
1277 struct type *base_type = check_typedef (type);
1278 register enum type_code code = TYPE_CODE (base_type);
1279 register int len = TYPE_LENGTH (base_type);
1280
1281 if (code == TYPE_CODE_FLT)
1282 {
1283 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1284 }
1285 else
1286 error ("Unexpected type encountered for floating constant.");
1287
1288 return val;
1289 }
1290 \f
1291 /* Deal with the value that is "about to be returned". */
1292
1293 /* Return the value that a function returning now
1294 would be returning to its caller, assuming its type is VALTYPE.
1295 RETBUF is where we look for what ought to be the contents
1296 of the registers (in raw form). This is because it is often
1297 desirable to restore old values to those registers
1298 after saving the contents of interest, and then call
1299 this function using the saved values.
1300 struct_return is non-zero when the function in question is
1301 using the structure return conventions on the machine in question;
1302 0 when it is using the value returning conventions (this often
1303 means returning pointer to where structure is vs. returning value). */
1304
1305 value_ptr
1306 value_being_returned (valtype, retbuf, struct_return)
1307 register struct type *valtype;
1308 char retbuf[REGISTER_BYTES];
1309 int struct_return;
1310 /*ARGSUSED*/
1311 {
1312 register value_ptr val;
1313 CORE_ADDR addr;
1314
1315 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1316 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1317 if (struct_return) {
1318 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1319 if (!addr)
1320 error ("Function return value unknown");
1321 return value_at (valtype, addr);
1322 }
1323 #endif
1324
1325 val = allocate_value (valtype);
1326 CHECK_TYPEDEF (valtype);
1327 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1328
1329 return val;
1330 }
1331
1332 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1333 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1334 and TYPE is the type (which is known to be struct, union or array).
1335
1336 On most machines, the struct convention is used unless we are
1337 using gcc and the type is of a special size. */
1338 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1339 native compiler. GCC 2.3.3 was the last release that did it the
1340 old way. Since gcc2_compiled was not changed, we have no
1341 way to correctly win in all cases, so we just do the right thing
1342 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1343 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1344 would cause more chaos than dealing with some struct returns being
1345 handled wrong. */
1346 #if !defined (USE_STRUCT_CONVENTION)
1347 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1348 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1349 || TYPE_LENGTH (value_type) == 2 \
1350 || TYPE_LENGTH (value_type) == 4 \
1351 || TYPE_LENGTH (value_type) == 8 \
1352 ) \
1353 ))
1354 #endif
1355
1356 /* Some fundamental types (such as long double) are returned on the stack for
1357 certain architectures. This macro should return true for any type besides
1358 struct, union or array that gets returned on the stack. */
1359
1360 #ifndef RETURN_VALUE_ON_STACK
1361 #define RETURN_VALUE_ON_STACK(TYPE) 0
1362 #endif
1363
1364 /* Return true if the function specified is using the structure returning
1365 convention on this machine to return arguments, or 0 if it is using
1366 the value returning convention. FUNCTION is the value representing
1367 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1368 is the type returned by the function. GCC_P is nonzero if compiled
1369 with GCC. */
1370
1371 int
1372 using_struct_return (function, funcaddr, value_type, gcc_p)
1373 value_ptr function;
1374 CORE_ADDR funcaddr;
1375 struct type *value_type;
1376 int gcc_p;
1377 /*ARGSUSED*/
1378 {
1379 register enum type_code code = TYPE_CODE (value_type);
1380
1381 if (code == TYPE_CODE_ERROR)
1382 error ("Function return type unknown.");
1383
1384 if (code == TYPE_CODE_STRUCT
1385 || code == TYPE_CODE_UNION
1386 || code == TYPE_CODE_ARRAY
1387 || RETURN_VALUE_ON_STACK (value_type))
1388 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1389
1390 return 0;
1391 }
1392
1393 /* Store VAL so it will be returned if a function returns now.
1394 Does not verify that VAL's type matches what the current
1395 function wants to return. */
1396
1397 void
1398 set_return_value (val)
1399 value_ptr val;
1400 {
1401 struct type *type = check_typedef (VALUE_TYPE (val));
1402 register enum type_code code = TYPE_CODE (type);
1403
1404 if (code == TYPE_CODE_ERROR)
1405 error ("Function return type unknown.");
1406
1407 if ( code == TYPE_CODE_STRUCT
1408 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1409 error ("GDB does not support specifying a struct or union return value.");
1410
1411 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1412 }
1413 \f
1414 void
1415 _initialize_values ()
1416 {
1417 add_cmd ("convenience", no_class, show_convenience,
1418 "Debugger convenience (\"$foo\") variables.\n\
1419 These variables are created when you assign them values;\n\
1420 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1421 A few convenience variables are given values automatically:\n\
1422 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1423 \"$__\" holds the contents of the last address examined with \"x\".",
1424 &showlist);
1425
1426 add_cmd ("values", no_class, show_values,
1427 "Elements of value history around item number IDX (or last ten).",
1428 &showlist);
1429 }
This page took 0.05826 seconds and 4 git commands to generate.