* gdb.stabs/configure (alpha-*-*,mips-*-*): Add missing
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76 struct type *atype = check_typedef (type);
77
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REGNO (val) = -1;
89 VALUE_LAZY (val) = 0;
90 VALUE_OPTIMIZED_OUT (val) = 0;
91 val->modifiable = 1;
92 return val;
93 }
94
95 /* Allocate a value that has the correct length
96 for COUNT repetitions type TYPE. */
97
98 value_ptr
99 allocate_repeat_value (type, count)
100 struct type *type;
101 int count;
102 {
103 struct type *element_type = type;
104 int low_bound = current_language->string_lower_bound; /* ??? */
105 /* FIXME-type-allocation: need a way to free this type when we are
106 done with it. */
107 struct type *range_type
108 = create_range_type ((struct type *) NULL, builtin_type_int,
109 low_bound, count + low_bound - 1);
110 /* FIXME-type-allocation: need a way to free this type when we are
111 done with it. */
112 return allocate_value (create_array_type ((struct type *) NULL,
113 type, range_type));
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value_ptr
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value_ptr mark;
130 {
131 value_ptr val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value_ptr val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value_ptr val;
164 {
165 register value_ptr v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Release all values up to mark */
184 value_ptr
185 value_release_to_mark (mark)
186 value_ptr mark;
187 {
188 value_ptr val, next;
189
190 for (val = next = all_values; next; next = VALUE_NEXT (next))
191 if (VALUE_NEXT (next) == mark)
192 {
193 all_values = VALUE_NEXT (next);
194 VALUE_NEXT (next) = 0;
195 return val;
196 }
197 all_values = 0;
198 return val;
199 }
200
201 /* Return a copy of the value ARG.
202 It contains the same contents, for same memory address,
203 but it's a different block of storage. */
204
205 value_ptr
206 value_copy (arg)
207 value_ptr arg;
208 {
209 register struct type *type = VALUE_TYPE (arg);
210 register value_ptr val = allocate_value (type);
211 VALUE_LVAL (val) = VALUE_LVAL (arg);
212 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
213 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
214 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
215 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
216 VALUE_FRAME (val) = VALUE_FRAME (arg);
217 VALUE_REGNO (val) = VALUE_REGNO (arg);
218 VALUE_LAZY (val) = VALUE_LAZY (arg);
219 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
220 val->modifiable = arg->modifiable;
221 if (!VALUE_LAZY (val))
222 {
223 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
224 TYPE_LENGTH (VALUE_TYPE (arg)));
225 }
226 return val;
227 }
228 \f
229 /* Access to the value history. */
230
231 /* Record a new value in the value history.
232 Returns the absolute history index of the entry.
233 Result of -1 indicates the value was not saved; otherwise it is the
234 value history index of this new item. */
235
236 int
237 record_latest_value (val)
238 value_ptr val;
239 {
240 int i;
241
242 /* Check error now if about to store an invalid float. We return -1
243 to the caller, but allow them to continue, e.g. to print it as "Nan". */
244 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
245 {
246 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
247 if (i) return -1; /* Indicate value not saved in history */
248 }
249
250 /* We don't want this value to have anything to do with the inferior anymore.
251 In particular, "set $1 = 50" should not affect the variable from which
252 the value was taken, and fast watchpoints should be able to assume that
253 a value on the value history never changes. */
254 if (VALUE_LAZY (val))
255 value_fetch_lazy (val);
256 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
257 from. This is a bit dubious, because then *&$1 does not just return $1
258 but the current contents of that location. c'est la vie... */
259 val->modifiable = 0;
260 release_value (val);
261
262 /* Here we treat value_history_count as origin-zero
263 and applying to the value being stored now. */
264
265 i = value_history_count % VALUE_HISTORY_CHUNK;
266 if (i == 0)
267 {
268 register struct value_history_chunk *new
269 = (struct value_history_chunk *)
270 xmalloc (sizeof (struct value_history_chunk));
271 memset (new->values, 0, sizeof new->values);
272 new->next = value_history_chain;
273 value_history_chain = new;
274 }
275
276 value_history_chain->values[i] = val;
277
278 /* Now we regard value_history_count as origin-one
279 and applying to the value just stored. */
280
281 return ++value_history_count;
282 }
283
284 /* Return a copy of the value in the history with sequence number NUM. */
285
286 value_ptr
287 access_value_history (num)
288 int num;
289 {
290 register struct value_history_chunk *chunk;
291 register int i;
292 register int absnum = num;
293
294 if (absnum <= 0)
295 absnum += value_history_count;
296
297 if (absnum <= 0)
298 {
299 if (num == 0)
300 error ("The history is empty.");
301 else if (num == 1)
302 error ("There is only one value in the history.");
303 else
304 error ("History does not go back to $$%d.", -num);
305 }
306 if (absnum > value_history_count)
307 error ("History has not yet reached $%d.", absnum);
308
309 absnum--;
310
311 /* Now absnum is always absolute and origin zero. */
312
313 chunk = value_history_chain;
314 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
315 i > 0; i--)
316 chunk = chunk->next;
317
318 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
319 }
320
321 /* Clear the value history entirely.
322 Must be done when new symbol tables are loaded,
323 because the type pointers become invalid. */
324
325 void
326 clear_value_history ()
327 {
328 register struct value_history_chunk *next;
329 register int i;
330 register value_ptr val;
331
332 while (value_history_chain)
333 {
334 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
335 if ((val = value_history_chain->values[i]) != NULL)
336 free ((PTR)val);
337 next = value_history_chain->next;
338 free ((PTR)value_history_chain);
339 value_history_chain = next;
340 }
341 value_history_count = 0;
342 }
343
344 static void
345 show_values (num_exp, from_tty)
346 char *num_exp;
347 int from_tty;
348 {
349 register int i;
350 register value_ptr val;
351 static int num = 1;
352
353 if (num_exp)
354 {
355 /* "info history +" should print from the stored position.
356 "info history <exp>" should print around value number <exp>. */
357 if (num_exp[0] != '+' || num_exp[1] != '\0')
358 num = parse_and_eval_address (num_exp) - 5;
359 }
360 else
361 {
362 /* "info history" means print the last 10 values. */
363 num = value_history_count - 9;
364 }
365
366 if (num <= 0)
367 num = 1;
368
369 for (i = num; i < num + 10 && i <= value_history_count; i++)
370 {
371 val = access_value_history (i);
372 printf_filtered ("$%d = ", i);
373 value_print (val, gdb_stdout, 0, Val_pretty_default);
374 printf_filtered ("\n");
375 }
376
377 /* The next "info history +" should start after what we just printed. */
378 num += 10;
379
380 /* Hitting just return after this command should do the same thing as
381 "info history +". If num_exp is null, this is unnecessary, since
382 "info history +" is not useful after "info history". */
383 if (from_tty && num_exp)
384 {
385 num_exp[0] = '+';
386 num_exp[1] = '\0';
387 }
388 }
389 \f
390 /* Internal variables. These are variables within the debugger
391 that hold values assigned by debugger commands.
392 The user refers to them with a '$' prefix
393 that does not appear in the variable names stored internally. */
394
395 static struct internalvar *internalvars;
396
397 /* Look up an internal variable with name NAME. NAME should not
398 normally include a dollar sign.
399
400 If the specified internal variable does not exist,
401 one is created, with a void value. */
402
403 struct internalvar *
404 lookup_internalvar (name)
405 char *name;
406 {
407 register struct internalvar *var;
408
409 for (var = internalvars; var; var = var->next)
410 if (STREQ (var->name, name))
411 return var;
412
413 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
414 var->name = concat (name, NULL);
415 var->value = allocate_value (builtin_type_void);
416 release_value (var->value);
417 var->next = internalvars;
418 internalvars = var;
419 return var;
420 }
421
422 value_ptr
423 value_of_internalvar (var)
424 struct internalvar *var;
425 {
426 register value_ptr val;
427
428 #ifdef IS_TRAPPED_INTERNALVAR
429 if (IS_TRAPPED_INTERNALVAR (var->name))
430 return VALUE_OF_TRAPPED_INTERNALVAR (var);
431 #endif
432
433 val = value_copy (var->value);
434 if (VALUE_LAZY (val))
435 value_fetch_lazy (val);
436 VALUE_LVAL (val) = lval_internalvar;
437 VALUE_INTERNALVAR (val) = var;
438 return val;
439 }
440
441 void
442 set_internalvar_component (var, offset, bitpos, bitsize, newval)
443 struct internalvar *var;
444 int offset, bitpos, bitsize;
445 value_ptr newval;
446 {
447 register char *addr = VALUE_CONTENTS (var->value) + offset;
448
449 #ifdef IS_TRAPPED_INTERNALVAR
450 if (IS_TRAPPED_INTERNALVAR (var->name))
451 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
452 #endif
453
454 if (bitsize)
455 modify_field (addr, value_as_long (newval),
456 bitpos, bitsize);
457 else
458 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
459 }
460
461 void
462 set_internalvar (var, val)
463 struct internalvar *var;
464 value_ptr val;
465 {
466 value_ptr newval;
467
468 #ifdef IS_TRAPPED_INTERNALVAR
469 if (IS_TRAPPED_INTERNALVAR (var->name))
470 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
471 #endif
472
473 newval = value_copy (val);
474 newval->modifiable = 1;
475
476 /* Force the value to be fetched from the target now, to avoid problems
477 later when this internalvar is referenced and the target is gone or
478 has changed. */
479 if (VALUE_LAZY (newval))
480 value_fetch_lazy (newval);
481
482 /* Begin code which must not call error(). If var->value points to
483 something free'd, an error() obviously leaves a dangling pointer.
484 But we also get a danling pointer if var->value points to
485 something in the value chain (i.e., before release_value is
486 called), because after the error free_all_values will get called before
487 long. */
488 free ((PTR)var->value);
489 var->value = newval;
490 release_value (newval);
491 /* End code which must not call error(). */
492 }
493
494 char *
495 internalvar_name (var)
496 struct internalvar *var;
497 {
498 return var->name;
499 }
500
501 /* Free all internalvars. Done when new symtabs are loaded,
502 because that makes the values invalid. */
503
504 void
505 clear_internalvars ()
506 {
507 register struct internalvar *var;
508
509 while (internalvars)
510 {
511 var = internalvars;
512 internalvars = var->next;
513 free ((PTR)var->name);
514 free ((PTR)var->value);
515 free ((PTR)var);
516 }
517 }
518
519 static void
520 show_convenience (ignore, from_tty)
521 char *ignore;
522 int from_tty;
523 {
524 register struct internalvar *var;
525 int varseen = 0;
526
527 for (var = internalvars; var; var = var->next)
528 {
529 #ifdef IS_TRAPPED_INTERNALVAR
530 if (IS_TRAPPED_INTERNALVAR (var->name))
531 continue;
532 #endif
533 if (!varseen)
534 {
535 varseen = 1;
536 }
537 printf_filtered ("$%s = ", var->name);
538 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
539 printf_filtered ("\n");
540 }
541 if (!varseen)
542 printf_unfiltered ("No debugger convenience variables now defined.\n\
543 Convenience variables have names starting with \"$\";\n\
544 use \"set\" as in \"set $foo = 5\" to define them.\n");
545 }
546 \f
547 /* Extract a value as a C number (either long or double).
548 Knows how to convert fixed values to double, or
549 floating values to long.
550 Does not deallocate the value. */
551
552 LONGEST
553 value_as_long (val)
554 register value_ptr val;
555 {
556 /* This coerces arrays and functions, which is necessary (e.g.
557 in disassemble_command). It also dereferences references, which
558 I suspect is the most logical thing to do. */
559 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
560 COERCE_ARRAY (val);
561 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
562 }
563
564 double
565 value_as_double (val)
566 register value_ptr val;
567 {
568 double foo;
569 int inv;
570
571 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
572 if (inv)
573 error ("Invalid floating value found in program.");
574 return foo;
575 }
576 /* Extract a value as a C pointer.
577 Does not deallocate the value. */
578 CORE_ADDR
579 value_as_pointer (val)
580 value_ptr val;
581 {
582 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
583 whether we want this to be true eventually. */
584 #if 0
585 /* ADDR_BITS_REMOVE is wrong if we are being called for a
586 non-address (e.g. argument to "signal", "info break", etc.), or
587 for pointers to char, in which the low bits *are* significant. */
588 return ADDR_BITS_REMOVE(value_as_long (val));
589 #else
590 return value_as_long (val);
591 #endif
592 }
593 \f
594 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
595 as a long, or as a double, assuming the raw data is described
596 by type TYPE. Knows how to convert different sizes of values
597 and can convert between fixed and floating point. We don't assume
598 any alignment for the raw data. Return value is in host byte order.
599
600 If you want functions and arrays to be coerced to pointers, and
601 references to be dereferenced, call value_as_long() instead.
602
603 C++: It is assumed that the front-end has taken care of
604 all matters concerning pointers to members. A pointer
605 to member which reaches here is considered to be equivalent
606 to an INT (or some size). After all, it is only an offset. */
607
608 LONGEST
609 unpack_long (type, valaddr)
610 struct type *type;
611 char *valaddr;
612 {
613 register enum type_code code = TYPE_CODE (type);
614 register int len = TYPE_LENGTH (type);
615 register int nosign = TYPE_UNSIGNED (type);
616
617 if (current_language->la_language == language_scm
618 && is_scmvalue_type (type))
619 return scm_unpack (type, valaddr, TYPE_CODE_INT);
620
621 switch (code)
622 {
623 case TYPE_CODE_TYPEDEF:
624 return unpack_long (check_typedef (type), valaddr);
625 case TYPE_CODE_ENUM:
626 case TYPE_CODE_BOOL:
627 case TYPE_CODE_INT:
628 case TYPE_CODE_CHAR:
629 case TYPE_CODE_RANGE:
630 if (nosign)
631 return extract_unsigned_integer (valaddr, len);
632 else
633 return extract_signed_integer (valaddr, len);
634
635 case TYPE_CODE_FLT:
636 return extract_floating (valaddr, len);
637
638 case TYPE_CODE_PTR:
639 case TYPE_CODE_REF:
640 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
641 whether we want this to be true eventually. */
642 return extract_address (valaddr, len);
643
644 case TYPE_CODE_MEMBER:
645 error ("not implemented: member types in unpack_long");
646
647 default:
648 error ("Value can't be converted to integer.");
649 }
650 return 0; /* Placate lint. */
651 }
652
653 /* Return a double value from the specified type and address.
654 INVP points to an int which is set to 0 for valid value,
655 1 for invalid value (bad float format). In either case,
656 the returned double is OK to use. Argument is in target
657 format, result is in host format. */
658
659 double
660 unpack_double (type, valaddr, invp)
661 struct type *type;
662 char *valaddr;
663 int *invp;
664 {
665 register enum type_code code = TYPE_CODE (type);
666 register int len = TYPE_LENGTH (type);
667 register int nosign = TYPE_UNSIGNED (type);
668
669 *invp = 0; /* Assume valid. */
670 CHECK_TYPEDEF (type);
671 if (code == TYPE_CODE_FLT)
672 {
673 #ifdef INVALID_FLOAT
674 if (INVALID_FLOAT (valaddr, len))
675 {
676 *invp = 1;
677 return 1.234567891011121314;
678 }
679 #endif
680 return extract_floating (valaddr, len);
681 }
682 else if (nosign)
683 {
684 /* Unsigned -- be sure we compensate for signed LONGEST. */
685 return (unsigned LONGEST) unpack_long (type, valaddr);
686 }
687 else
688 {
689 /* Signed -- we are OK with unpack_long. */
690 return unpack_long (type, valaddr);
691 }
692 }
693
694 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
695 as a CORE_ADDR, assuming the raw data is described by type TYPE.
696 We don't assume any alignment for the raw data. Return value is in
697 host byte order.
698
699 If you want functions and arrays to be coerced to pointers, and
700 references to be dereferenced, call value_as_pointer() instead.
701
702 C++: It is assumed that the front-end has taken care of
703 all matters concerning pointers to members. A pointer
704 to member which reaches here is considered to be equivalent
705 to an INT (or some size). After all, it is only an offset. */
706
707 CORE_ADDR
708 unpack_pointer (type, valaddr)
709 struct type *type;
710 char *valaddr;
711 {
712 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
713 whether we want this to be true eventually. */
714 return unpack_long (type, valaddr);
715 }
716 \f
717 /* Given a value ARG1 (offset by OFFSET bytes)
718 of a struct or union type ARG_TYPE,
719 extract and return the value of one of its fields.
720 FIELDNO says which field.
721
722 For C++, must also be able to return values from static fields */
723
724 value_ptr
725 value_primitive_field (arg1, offset, fieldno, arg_type)
726 register value_ptr arg1;
727 int offset;
728 register int fieldno;
729 register struct type *arg_type;
730 {
731 register value_ptr v;
732 register struct type *type;
733
734 CHECK_TYPEDEF (arg_type);
735 type = TYPE_FIELD_TYPE (arg_type, fieldno);
736
737 /* Handle packed fields */
738
739 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
740 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
741 {
742 v = value_from_longest (type,
743 unpack_field_as_long (arg_type,
744 VALUE_CONTENTS (arg1),
745 fieldno));
746 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
747 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
748 }
749 else
750 {
751 v = allocate_value (type);
752 if (VALUE_LAZY (arg1))
753 VALUE_LAZY (v) = 1;
754 else
755 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
756 TYPE_LENGTH (type));
757 }
758 VALUE_LVAL (v) = VALUE_LVAL (arg1);
759 if (VALUE_LVAL (arg1) == lval_internalvar)
760 VALUE_LVAL (v) = lval_internalvar_component;
761 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
762 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
763 return v;
764 }
765
766 /* Given a value ARG1 of a struct or union type,
767 extract and return the value of one of its fields.
768 FIELDNO says which field.
769
770 For C++, must also be able to return values from static fields */
771
772 value_ptr
773 value_field (arg1, fieldno)
774 register value_ptr arg1;
775 register int fieldno;
776 {
777 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
778 }
779
780 /* Return a non-virtual function as a value.
781 F is the list of member functions which contains the desired method.
782 J is an index into F which provides the desired method. */
783
784 value_ptr
785 value_fn_field (arg1p, f, j, type, offset)
786 value_ptr *arg1p;
787 struct fn_field *f;
788 int j;
789 struct type *type;
790 int offset;
791 {
792 register value_ptr v;
793 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
794 struct symbol *sym;
795
796 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
797 0, VAR_NAMESPACE, 0, NULL);
798 if (! sym)
799 return NULL;
800 /*
801 error ("Internal error: could not find physical method named %s",
802 TYPE_FN_FIELD_PHYSNAME (f, j));
803 */
804
805 v = allocate_value (ftype);
806 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
807 VALUE_TYPE (v) = ftype;
808
809 if (arg1p)
810 {
811 if (type != VALUE_TYPE (*arg1p))
812 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
813 value_addr (*arg1p)));
814
815 /* Move the `this' pointer according to the offset.
816 VALUE_OFFSET (*arg1p) += offset;
817 */
818 }
819
820 return v;
821 }
822
823 /* Return a virtual function as a value.
824 ARG1 is the object which provides the virtual function
825 table pointer. *ARG1P is side-effected in calling this function.
826 F is the list of member functions which contains the desired virtual
827 function.
828 J is an index into F which provides the desired virtual function.
829
830 TYPE is the type in which F is located. */
831 value_ptr
832 value_virtual_fn_field (arg1p, f, j, type, offset)
833 value_ptr *arg1p;
834 struct fn_field *f;
835 int j;
836 struct type *type;
837 int offset;
838 {
839 value_ptr arg1 = *arg1p;
840 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
841 struct type *entry_type;
842 /* First, get the virtual function table pointer. That comes
843 with a strange type, so cast it to type `pointer to long' (which
844 should serve just fine as a function type). Then, index into
845 the table, and convert final value to appropriate function type. */
846 value_ptr entry, vfn, vtbl;
847 value_ptr vi = value_from_longest (builtin_type_int,
848 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
849 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
850 struct type *context;
851 if (fcontext == NULL)
852 /* We don't have an fcontext (e.g. the program was compiled with
853 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
854 This won't work right for multiple inheritance, but at least we
855 should do as well as GDB 3.x did. */
856 fcontext = TYPE_VPTR_BASETYPE (type);
857 context = lookup_pointer_type (fcontext);
858 /* Now context is a pointer to the basetype containing the vtbl. */
859 if (TYPE_TARGET_TYPE (context) != type1)
860 {
861 arg1 = value_ind (value_cast (context, value_addr (arg1)));
862 type1 = check_typedef (VALUE_TYPE (arg1));
863 }
864
865 context = type1;
866 /* Now context is the basetype containing the vtbl. */
867
868 /* This type may have been defined before its virtual function table
869 was. If so, fill in the virtual function table entry for the
870 type now. */
871 if (TYPE_VPTR_FIELDNO (context) < 0)
872 fill_in_vptr_fieldno (context);
873
874 /* The virtual function table is now an array of structures
875 which have the form { int16 offset, delta; void *pfn; }. */
876 vtbl = value_ind (value_primitive_field (arg1, 0,
877 TYPE_VPTR_FIELDNO (context),
878 TYPE_VPTR_BASETYPE (context)));
879
880 /* Index into the virtual function table. This is hard-coded because
881 looking up a field is not cheap, and it may be important to save
882 time, e.g. if the user has set a conditional breakpoint calling
883 a virtual function. */
884 entry = value_subscript (vtbl, vi);
885 entry_type = check_typedef (VALUE_TYPE (entry));
886
887 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
888 {
889 /* Move the `this' pointer according to the virtual function table. */
890 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
891
892 if (! VALUE_LAZY (arg1))
893 {
894 VALUE_LAZY (arg1) = 1;
895 value_fetch_lazy (arg1);
896 }
897
898 vfn = value_field (entry, 2);
899 }
900 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
901 vfn = entry;
902 else
903 error ("I'm confused: virtual function table has bad type");
904 /* Reinstantiate the function pointer with the correct type. */
905 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
906
907 *arg1p = arg1;
908 return vfn;
909 }
910
911 /* ARG is a pointer to an object we know to be at least
912 a DTYPE. BTYPE is the most derived basetype that has
913 already been searched (and need not be searched again).
914 After looking at the vtables between BTYPE and DTYPE,
915 return the most derived type we find. The caller must
916 be satisfied when the return value == DTYPE.
917
918 FIXME-tiemann: should work with dossier entries as well. */
919
920 static value_ptr
921 value_headof (in_arg, btype, dtype)
922 value_ptr in_arg;
923 struct type *btype, *dtype;
924 {
925 /* First collect the vtables we must look at for this object. */
926 /* FIXME-tiemann: right now, just look at top-most vtable. */
927 value_ptr arg, vtbl, entry, best_entry = 0;
928 int i, nelems;
929 int offset, best_offset = 0;
930 struct symbol *sym;
931 CORE_ADDR pc_for_sym;
932 char *demangled_name;
933 struct minimal_symbol *msymbol;
934
935 btype = TYPE_VPTR_BASETYPE (dtype);
936 CHECK_TYPEDEF (btype);
937 arg = in_arg;
938 if (btype != dtype)
939 arg = value_cast (lookup_pointer_type (btype), arg);
940 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
941
942 /* Check that VTBL looks like it points to a virtual function table. */
943 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
944 if (msymbol == NULL
945 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
946 || !VTBL_PREFIX_P (demangled_name))
947 {
948 /* If we expected to find a vtable, but did not, let the user
949 know that we aren't happy, but don't throw an error.
950 FIXME: there has to be a better way to do this. */
951 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
952 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
953 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
954 VALUE_TYPE (in_arg) = error_type;
955 return in_arg;
956 }
957
958 /* Now search through the virtual function table. */
959 entry = value_ind (vtbl);
960 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
961 for (i = 1; i <= nelems; i++)
962 {
963 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
964 (LONGEST) i));
965 /* This won't work if we're using thunks. */
966 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
967 break;
968 offset = longest_to_int (value_as_long (value_field (entry, 0)));
969 /* If we use '<=' we can handle single inheritance
970 * where all offsets are zero - just use the first entry found. */
971 if (offset <= best_offset)
972 {
973 best_offset = offset;
974 best_entry = entry;
975 }
976 }
977 /* Move the pointer according to BEST_ENTRY's offset, and figure
978 out what type we should return as the new pointer. */
979 if (best_entry == 0)
980 {
981 /* An alternative method (which should no longer be necessary).
982 * But we leave it in for future use, when we will hopefully
983 * have optimizes the vtable to use thunks instead of offsets. */
984 /* Use the name of vtable itself to extract a base type. */
985 demangled_name += 4; /* Skip _vt$ prefix. */
986 }
987 else
988 {
989 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
990 sym = find_pc_function (pc_for_sym);
991 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
992 *(strchr (demangled_name, ':')) = '\0';
993 }
994 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
995 if (sym == NULL)
996 error ("could not find type declaration for `%s'", demangled_name);
997 if (best_entry)
998 {
999 free (demangled_name);
1000 arg = value_add (value_cast (builtin_type_int, arg),
1001 value_field (best_entry, 0));
1002 }
1003 else arg = in_arg;
1004 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1005 return arg;
1006 }
1007
1008 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1009 function tables, probe ARG's tables (including the vtables
1010 of its baseclasses) to figure out the most derived type that ARG
1011 could actually be a pointer to. */
1012
1013 value_ptr
1014 value_from_vtable_info (arg, type)
1015 value_ptr arg;
1016 struct type *type;
1017 {
1018 /* Take care of preliminaries. */
1019 if (TYPE_VPTR_FIELDNO (type) < 0)
1020 fill_in_vptr_fieldno (type);
1021 if (TYPE_VPTR_FIELDNO (type) < 0)
1022 return 0;
1023
1024 return value_headof (arg, 0, type);
1025 }
1026
1027 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1028 pointer which is for the base class whose type is BASECLASS. */
1029
1030 static int
1031 vb_match (type, index, basetype)
1032 struct type *type;
1033 int index;
1034 struct type *basetype;
1035 {
1036 struct type *fieldtype;
1037 char *name = TYPE_FIELD_NAME (type, index);
1038 char *field_class_name = NULL;
1039
1040 if (*name != '_')
1041 return 0;
1042 /* gcc 2.4 uses _vb$. */
1043 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1044 field_class_name = name + 4;
1045 /* gcc 2.5 will use __vb_. */
1046 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1047 field_class_name = name + 5;
1048
1049 if (field_class_name == NULL)
1050 /* This field is not a virtual base class pointer. */
1051 return 0;
1052
1053 /* It's a virtual baseclass pointer, now we just need to find out whether
1054 it is for this baseclass. */
1055 fieldtype = TYPE_FIELD_TYPE (type, index);
1056 if (fieldtype == NULL
1057 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1058 /* "Can't happen". */
1059 return 0;
1060
1061 /* What we check for is that either the types are equal (needed for
1062 nameless types) or have the same name. This is ugly, and a more
1063 elegant solution should be devised (which would probably just push
1064 the ugliness into symbol reading unless we change the stabs format). */
1065 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1066 return 1;
1067
1068 if (TYPE_NAME (basetype) != NULL
1069 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1070 && STREQ (TYPE_NAME (basetype),
1071 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 return 1;
1073 return 0;
1074 }
1075
1076 /* Compute the offset of the baseclass which is
1077 the INDEXth baseclass of class TYPE,
1078 for value at VALADDR (in host) at ADDRESS (in target).
1079 The result is the offset of the baseclass value relative
1080 to (the address of)(ARG) + OFFSET.
1081
1082 -1 is returned on error. */
1083
1084 int
1085 baseclass_offset (type, index, valaddr, address)
1086 struct type *type;
1087 int index;
1088 char *valaddr;
1089 CORE_ADDR address;
1090 {
1091 struct type *basetype = TYPE_BASECLASS (type, index);
1092
1093 if (BASETYPE_VIA_VIRTUAL (type, index))
1094 {
1095 /* Must hunt for the pointer to this virtual baseclass. */
1096 register int i, len = TYPE_NFIELDS (type);
1097 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1098
1099 /* First look for the virtual baseclass pointer
1100 in the fields. */
1101 for (i = n_baseclasses; i < len; i++)
1102 {
1103 if (vb_match (type, i, basetype))
1104 {
1105 CORE_ADDR addr
1106 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1107 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1108
1109 return addr - (LONGEST) address;
1110 }
1111 }
1112 /* Not in the fields, so try looking through the baseclasses. */
1113 for (i = index+1; i < n_baseclasses; i++)
1114 {
1115 int boffset =
1116 baseclass_offset (type, i, valaddr, address);
1117 if (boffset)
1118 return boffset;
1119 }
1120 /* Not found. */
1121 return -1;
1122 }
1123
1124 /* Baseclass is easily computed. */
1125 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1126 }
1127 \f
1128 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1129 VALADDR.
1130
1131 Extracting bits depends on endianness of the machine. Compute the
1132 number of least significant bits to discard. For big endian machines,
1133 we compute the total number of bits in the anonymous object, subtract
1134 off the bit count from the MSB of the object to the MSB of the
1135 bitfield, then the size of the bitfield, which leaves the LSB discard
1136 count. For little endian machines, the discard count is simply the
1137 number of bits from the LSB of the anonymous object to the LSB of the
1138 bitfield.
1139
1140 If the field is signed, we also do sign extension. */
1141
1142 LONGEST
1143 unpack_field_as_long (type, valaddr, fieldno)
1144 struct type *type;
1145 char *valaddr;
1146 int fieldno;
1147 {
1148 unsigned LONGEST val;
1149 unsigned LONGEST valmask;
1150 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1151 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1152 int lsbcount;
1153
1154 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1155
1156 /* Extract bits. See comment above. */
1157
1158 if (BITS_BIG_ENDIAN)
1159 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1160 else
1161 lsbcount = (bitpos % 8);
1162 val >>= lsbcount;
1163
1164 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1165 If the field is signed, and is negative, then sign extend. */
1166
1167 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1168 {
1169 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1170 val &= valmask;
1171 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1172 {
1173 if (val & (valmask ^ (valmask >> 1)))
1174 {
1175 val |= ~valmask;
1176 }
1177 }
1178 }
1179 return (val);
1180 }
1181
1182 /* Modify the value of a bitfield. ADDR points to a block of memory in
1183 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1184 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1185 indicate which bits (in target bit order) comprise the bitfield. */
1186
1187 void
1188 modify_field (addr, fieldval, bitpos, bitsize)
1189 char *addr;
1190 LONGEST fieldval;
1191 int bitpos, bitsize;
1192 {
1193 LONGEST oword;
1194
1195 /* If a negative fieldval fits in the field in question, chop
1196 off the sign extension bits. */
1197 if (bitsize < (8 * sizeof (fieldval))
1198 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1199 fieldval = fieldval & ((1 << bitsize) - 1);
1200
1201 /* Warn if value is too big to fit in the field in question. */
1202 if (bitsize < (8 * sizeof (fieldval))
1203 && 0 != (fieldval & ~((1<<bitsize)-1)))
1204 {
1205 /* FIXME: would like to include fieldval in the message, but
1206 we don't have a sprintf_longest. */
1207 warning ("Value does not fit in %d bits.", bitsize);
1208
1209 /* Truncate it, otherwise adjoining fields may be corrupted. */
1210 fieldval = fieldval & ((1 << bitsize) - 1);
1211 }
1212
1213 oword = extract_signed_integer (addr, sizeof oword);
1214
1215 /* Shifting for bit field depends on endianness of the target machine. */
1216 if (BITS_BIG_ENDIAN)
1217 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1218
1219 /* Mask out old value, while avoiding shifts >= size of oword */
1220 if (bitsize < 8 * sizeof (oword))
1221 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1222 else
1223 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1224 oword |= fieldval << bitpos;
1225
1226 store_signed_integer (addr, sizeof oword, oword);
1227 }
1228 \f
1229 /* Convert C numbers into newly allocated values */
1230
1231 value_ptr
1232 value_from_longest (type, num)
1233 struct type *type;
1234 register LONGEST num;
1235 {
1236 register value_ptr val = allocate_value (type);
1237 register enum type_code code;
1238 register int len;
1239 retry:
1240 code = TYPE_CODE (type);
1241 len = TYPE_LENGTH (type);
1242
1243 switch (code)
1244 {
1245 case TYPE_CODE_TYPEDEF:
1246 type = check_typedef (type);
1247 goto retry;
1248 case TYPE_CODE_INT:
1249 case TYPE_CODE_CHAR:
1250 case TYPE_CODE_ENUM:
1251 case TYPE_CODE_BOOL:
1252 case TYPE_CODE_RANGE:
1253 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1254 break;
1255
1256 case TYPE_CODE_REF:
1257 case TYPE_CODE_PTR:
1258 /* This assumes that all pointers of a given length
1259 have the same form. */
1260 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1261 break;
1262
1263 default:
1264 error ("Unexpected type encountered for integer constant.");
1265 }
1266 return val;
1267 }
1268
1269 value_ptr
1270 value_from_double (type, num)
1271 struct type *type;
1272 double num;
1273 {
1274 register value_ptr val = allocate_value (type);
1275 struct type *base_type = check_typedef (type);
1276 register enum type_code code = TYPE_CODE (base_type);
1277 register int len = TYPE_LENGTH (base_type);
1278
1279 if (code == TYPE_CODE_FLT)
1280 {
1281 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1282 }
1283 else
1284 error ("Unexpected type encountered for floating constant.");
1285
1286 return val;
1287 }
1288 \f
1289 /* Deal with the value that is "about to be returned". */
1290
1291 /* Return the value that a function returning now
1292 would be returning to its caller, assuming its type is VALTYPE.
1293 RETBUF is where we look for what ought to be the contents
1294 of the registers (in raw form). This is because it is often
1295 desirable to restore old values to those registers
1296 after saving the contents of interest, and then call
1297 this function using the saved values.
1298 struct_return is non-zero when the function in question is
1299 using the structure return conventions on the machine in question;
1300 0 when it is using the value returning conventions (this often
1301 means returning pointer to where structure is vs. returning value). */
1302
1303 value_ptr
1304 value_being_returned (valtype, retbuf, struct_return)
1305 register struct type *valtype;
1306 char retbuf[REGISTER_BYTES];
1307 int struct_return;
1308 /*ARGSUSED*/
1309 {
1310 register value_ptr val;
1311 CORE_ADDR addr;
1312
1313 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1314 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1315 if (struct_return) {
1316 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1317 if (!addr)
1318 error ("Function return value unknown");
1319 return value_at (valtype, addr);
1320 }
1321 #endif
1322
1323 val = allocate_value (valtype);
1324 CHECK_TYPEDEF (valtype);
1325 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1326
1327 return val;
1328 }
1329
1330 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1331 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1332 and TYPE is the type (which is known to be struct, union or array).
1333
1334 On most machines, the struct convention is used unless we are
1335 using gcc and the type is of a special size. */
1336 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1337 native compiler. GCC 2.3.3 was the last release that did it the
1338 old way. Since gcc2_compiled was not changed, we have no
1339 way to correctly win in all cases, so we just do the right thing
1340 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1341 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1342 would cause more chaos than dealing with some struct returns being
1343 handled wrong. */
1344 #if !defined (USE_STRUCT_CONVENTION)
1345 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1346 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1347 || TYPE_LENGTH (value_type) == 2 \
1348 || TYPE_LENGTH (value_type) == 4 \
1349 || TYPE_LENGTH (value_type) == 8 \
1350 ) \
1351 ))
1352 #endif
1353
1354 /* Return true if the function specified is using the structure returning
1355 convention on this machine to return arguments, or 0 if it is using
1356 the value returning convention. FUNCTION is the value representing
1357 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1358 is the type returned by the function. GCC_P is nonzero if compiled
1359 with GCC. */
1360
1361 int
1362 using_struct_return (function, funcaddr, value_type, gcc_p)
1363 value_ptr function;
1364 CORE_ADDR funcaddr;
1365 struct type *value_type;
1366 int gcc_p;
1367 /*ARGSUSED*/
1368 {
1369 register enum type_code code = TYPE_CODE (value_type);
1370
1371 if (code == TYPE_CODE_ERROR)
1372 error ("Function return type unknown.");
1373
1374 if (code == TYPE_CODE_STRUCT ||
1375 code == TYPE_CODE_UNION ||
1376 code == TYPE_CODE_ARRAY)
1377 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1378
1379 return 0;
1380 }
1381
1382 /* Store VAL so it will be returned if a function returns now.
1383 Does not verify that VAL's type matches what the current
1384 function wants to return. */
1385
1386 void
1387 set_return_value (val)
1388 value_ptr val;
1389 {
1390 struct type *type = check_typedef (VALUE_TYPE (val));
1391 register enum type_code code = TYPE_CODE (type);
1392
1393 if (code == TYPE_CODE_ERROR)
1394 error ("Function return type unknown.");
1395
1396 if ( code == TYPE_CODE_STRUCT
1397 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1398 error ("GDB does not support specifying a struct or union return value.");
1399
1400 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1401 }
1402 \f
1403 void
1404 _initialize_values ()
1405 {
1406 add_cmd ("convenience", no_class, show_convenience,
1407 "Debugger convenience (\"$foo\") variables.\n\
1408 These variables are created when you assign them values;\n\
1409 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1410 A few convenience variables are given values automatically:\n\
1411 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1412 \"$__\" holds the contents of the last address examined with \"x\".",
1413 &showlist);
1414
1415 add_cmd ("values", no_class, show_values,
1416 "Elements of value history around item number IDX (or last ten).",
1417 &showlist);
1418 }
This page took 0.056829 seconds and 4 git commands to generate.