use remote-utils facilities for baud_rate
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258 release_value (val);
259
260 /* Now we regard value_history_count as origin-one
261 and applying to the value just stored. */
262
263 return ++value_history_count;
264 }
265
266 /* Return a copy of the value in the history with sequence number NUM. */
267
268 value
269 access_value_history (num)
270 int num;
271 {
272 register struct value_history_chunk *chunk;
273 register int i;
274 register int absnum = num;
275
276 if (absnum <= 0)
277 absnum += value_history_count;
278
279 if (absnum <= 0)
280 {
281 if (num == 0)
282 error ("The history is empty.");
283 else if (num == 1)
284 error ("There is only one value in the history.");
285 else
286 error ("History does not go back to $$%d.", -num);
287 }
288 if (absnum > value_history_count)
289 error ("History has not yet reached $%d.", absnum);
290
291 absnum--;
292
293 /* Now absnum is always absolute and origin zero. */
294
295 chunk = value_history_chain;
296 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
297 i > 0; i--)
298 chunk = chunk->next;
299
300 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
301 }
302
303 /* Clear the value history entirely.
304 Must be done when new symbol tables are loaded,
305 because the type pointers become invalid. */
306
307 void
308 clear_value_history ()
309 {
310 register struct value_history_chunk *next;
311 register int i;
312 register value val;
313
314 while (value_history_chain)
315 {
316 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
317 if ((val = value_history_chain->values[i]) != NULL)
318 free ((PTR)val);
319 next = value_history_chain->next;
320 free ((PTR)value_history_chain);
321 value_history_chain = next;
322 }
323 value_history_count = 0;
324 }
325
326 static void
327 show_values (num_exp, from_tty)
328 char *num_exp;
329 int from_tty;
330 {
331 register int i;
332 register value val;
333 static int num = 1;
334
335 if (num_exp)
336 {
337 /* "info history +" should print from the stored position.
338 "info history <exp>" should print around value number <exp>. */
339 if (num_exp[0] != '+' || num_exp[1] != '\0')
340 num = parse_and_eval_address (num_exp) - 5;
341 }
342 else
343 {
344 /* "info history" means print the last 10 values. */
345 num = value_history_count - 9;
346 }
347
348 if (num <= 0)
349 num = 1;
350
351 for (i = num; i < num + 10 && i <= value_history_count; i++)
352 {
353 val = access_value_history (i);
354 printf_filtered ("$%d = ", i);
355 value_print (val, stdout, 0, Val_pretty_default);
356 printf_filtered ("\n");
357 }
358
359 /* The next "info history +" should start after what we just printed. */
360 num += 10;
361
362 /* Hitting just return after this command should do the same thing as
363 "info history +". If num_exp is null, this is unnecessary, since
364 "info history +" is not useful after "info history". */
365 if (from_tty && num_exp)
366 {
367 num_exp[0] = '+';
368 num_exp[1] = '\0';
369 }
370 }
371 \f
372 /* Internal variables. These are variables within the debugger
373 that hold values assigned by debugger commands.
374 The user refers to them with a '$' prefix
375 that does not appear in the variable names stored internally. */
376
377 static struct internalvar *internalvars;
378
379 /* Look up an internal variable with name NAME. NAME should not
380 normally include a dollar sign.
381
382 If the specified internal variable does not exist,
383 one is created, with a void value. */
384
385 struct internalvar *
386 lookup_internalvar (name)
387 char *name;
388 {
389 register struct internalvar *var;
390
391 for (var = internalvars; var; var = var->next)
392 if (STREQ (var->name, name))
393 return var;
394
395 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
396 var->name = concat (name, NULL);
397 var->value = allocate_value (builtin_type_void);
398 release_value (var->value);
399 var->next = internalvars;
400 internalvars = var;
401 return var;
402 }
403
404 value
405 value_of_internalvar (var)
406 struct internalvar *var;
407 {
408 register value val;
409
410 #ifdef IS_TRAPPED_INTERNALVAR
411 if (IS_TRAPPED_INTERNALVAR (var->name))
412 return VALUE_OF_TRAPPED_INTERNALVAR (var);
413 #endif
414
415 val = value_copy (var->value);
416 if (VALUE_LAZY (val))
417 value_fetch_lazy (val);
418 VALUE_LVAL (val) = lval_internalvar;
419 VALUE_INTERNALVAR (val) = var;
420 return val;
421 }
422
423 void
424 set_internalvar_component (var, offset, bitpos, bitsize, newval)
425 struct internalvar *var;
426 int offset, bitpos, bitsize;
427 value newval;
428 {
429 register char *addr = VALUE_CONTENTS (var->value) + offset;
430
431 #ifdef IS_TRAPPED_INTERNALVAR
432 if (IS_TRAPPED_INTERNALVAR (var->name))
433 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
434 #endif
435
436 if (bitsize)
437 modify_field (addr, value_as_long (newval),
438 bitpos, bitsize);
439 else
440 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
441 }
442
443 void
444 set_internalvar (var, val)
445 struct internalvar *var;
446 value val;
447 {
448 #ifdef IS_TRAPPED_INTERNALVAR
449 if (IS_TRAPPED_INTERNALVAR (var->name))
450 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
451 #endif
452
453 free ((PTR)var->value);
454 var->value = value_copy (val);
455 /* Force the value to be fetched from the target now, to avoid problems
456 later when this internalvar is referenced and the target is gone or
457 has changed. */
458 if (VALUE_LAZY (var->value))
459 value_fetch_lazy (var->value);
460 release_value (var->value);
461 }
462
463 char *
464 internalvar_name (var)
465 struct internalvar *var;
466 {
467 return var->name;
468 }
469
470 /* Free all internalvars. Done when new symtabs are loaded,
471 because that makes the values invalid. */
472
473 void
474 clear_internalvars ()
475 {
476 register struct internalvar *var;
477
478 while (internalvars)
479 {
480 var = internalvars;
481 internalvars = var->next;
482 free ((PTR)var->name);
483 free ((PTR)var->value);
484 free ((PTR)var);
485 }
486 }
487
488 static void
489 show_convenience (ignore, from_tty)
490 char *ignore;
491 int from_tty;
492 {
493 register struct internalvar *var;
494 int varseen = 0;
495
496 for (var = internalvars; var; var = var->next)
497 {
498 #ifdef IS_TRAPPED_INTERNALVAR
499 if (IS_TRAPPED_INTERNALVAR (var->name))
500 continue;
501 #endif
502 if (!varseen)
503 {
504 varseen = 1;
505 }
506 printf_filtered ("$%s = ", var->name);
507 value_print (var->value, stdout, 0, Val_pretty_default);
508 printf_filtered ("\n");
509 }
510 if (!varseen)
511 printf ("No debugger convenience variables now defined.\n\
512 Convenience variables have names starting with \"$\";\n\
513 use \"set\" as in \"set $foo = 5\" to define them.\n");
514 }
515 \f
516 /* Extract a value as a C number (either long or double).
517 Knows how to convert fixed values to double, or
518 floating values to long.
519 Does not deallocate the value. */
520
521 LONGEST
522 value_as_long (val)
523 register value val;
524 {
525 /* This coerces arrays and functions, which is necessary (e.g.
526 in disassemble_command). It also dereferences references, which
527 I suspect is the most logical thing to do. */
528 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
529 COERCE_ARRAY (val);
530 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
531 }
532
533 double
534 value_as_double (val)
535 register value val;
536 {
537 double foo;
538 int inv;
539
540 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
541 if (inv)
542 error ("Invalid floating value found in program.");
543 return foo;
544 }
545 /* Extract a value as a C pointer.
546 Does not deallocate the value. */
547 CORE_ADDR
548 value_as_pointer (val)
549 value val;
550 {
551 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
552 whether we want this to be true eventually. */
553 #if 0
554 /* ADDR_BITS_REMOVE is wrong if we are being called for a
555 non-address (e.g. argument to "signal", "info break", etc.), or
556 for pointers to char, in which the low bits *are* significant. */
557 return ADDR_BITS_REMOVE(value_as_long (val));
558 #else
559 return value_as_long (val);
560 #endif
561 }
562 \f
563 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
564 as a long, or as a double, assuming the raw data is described
565 by type TYPE. Knows how to convert different sizes of values
566 and can convert between fixed and floating point. We don't assume
567 any alignment for the raw data. Return value is in host byte order.
568
569 If you want functions and arrays to be coerced to pointers, and
570 references to be dereferenced, call value_as_long() instead.
571
572 C++: It is assumed that the front-end has taken care of
573 all matters concerning pointers to members. A pointer
574 to member which reaches here is considered to be equivalent
575 to an INT (or some size). After all, it is only an offset. */
576
577 /* FIXME: This should be rewritten as a switch statement for speed and
578 ease of comprehension. */
579
580 LONGEST
581 unpack_long (type, valaddr)
582 struct type *type;
583 char *valaddr;
584 {
585 register enum type_code code = TYPE_CODE (type);
586 register int len = TYPE_LENGTH (type);
587 register int nosign = TYPE_UNSIGNED (type);
588
589 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
590 code = TYPE_CODE_INT;
591 if (code == TYPE_CODE_FLT)
592 {
593 if (len == sizeof (float))
594 {
595 float retval;
596 memcpy (&retval, valaddr, sizeof (retval));
597 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
598 return retval;
599 }
600
601 if (len == sizeof (double))
602 {
603 double retval;
604 memcpy (&retval, valaddr, sizeof (retval));
605 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
606 return retval;
607 }
608 else
609 {
610 error ("Unexpected type of floating point number.");
611 }
612 }
613 else if ((code == TYPE_CODE_INT || code == TYPE_CODE_CHAR) && nosign)
614 {
615 return extract_unsigned_integer (valaddr, len);
616 }
617 else if (code == TYPE_CODE_INT || code == TYPE_CODE_CHAR)
618 {
619 return extract_signed_integer (valaddr, len);
620 }
621 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
622 whether we want this to be true eventually. */
623 else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
624 {
625 return extract_address (valaddr, len);
626 }
627 else if (code == TYPE_CODE_MEMBER)
628 error ("not implemented: member types in unpack_long");
629
630 error ("Value not integer or pointer.");
631 return 0; /* For lint -- never reached */
632 }
633
634 /* Return a double value from the specified type and address.
635 INVP points to an int which is set to 0 for valid value,
636 1 for invalid value (bad float format). In either case,
637 the returned double is OK to use. Argument is in target
638 format, result is in host format. */
639
640 double
641 unpack_double (type, valaddr, invp)
642 struct type *type;
643 char *valaddr;
644 int *invp;
645 {
646 register enum type_code code = TYPE_CODE (type);
647 register int len = TYPE_LENGTH (type);
648 register int nosign = TYPE_UNSIGNED (type);
649
650 *invp = 0; /* Assume valid. */
651 if (code == TYPE_CODE_FLT)
652 {
653 if (INVALID_FLOAT (valaddr, len))
654 {
655 *invp = 1;
656 return 1.234567891011121314;
657 }
658
659 if (len == sizeof (float))
660 {
661 float retval;
662 memcpy (&retval, valaddr, sizeof (retval));
663 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
664 return retval;
665 }
666
667 if (len == sizeof (double))
668 {
669 double retval;
670 memcpy (&retval, valaddr, sizeof (retval));
671 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
672 return retval;
673 }
674 else
675 {
676 error ("Unexpected type of floating point number.");
677 return 0; /* Placate lint. */
678 }
679 }
680 else if (nosign) {
681 /* Unsigned -- be sure we compensate for signed LONGEST. */
682 return (unsigned LONGEST) unpack_long (type, valaddr);
683 } else {
684 /* Signed -- we are OK with unpack_long. */
685 return unpack_long (type, valaddr);
686 }
687 }
688
689 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
690 as a CORE_ADDR, assuming the raw data is described by type TYPE.
691 We don't assume any alignment for the raw data. Return value is in
692 host byte order.
693
694 If you want functions and arrays to be coerced to pointers, and
695 references to be dereferenced, call value_as_pointer() instead.
696
697 C++: It is assumed that the front-end has taken care of
698 all matters concerning pointers to members. A pointer
699 to member which reaches here is considered to be equivalent
700 to an INT (or some size). After all, it is only an offset. */
701
702 CORE_ADDR
703 unpack_pointer (type, valaddr)
704 struct type *type;
705 char *valaddr;
706 {
707 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
708 whether we want this to be true eventually. */
709 return unpack_long (type, valaddr);
710 }
711 \f
712 /* Given a value ARG1 (offset by OFFSET bytes)
713 of a struct or union type ARG_TYPE,
714 extract and return the value of one of its fields.
715 FIELDNO says which field.
716
717 For C++, must also be able to return values from static fields */
718
719 value
720 value_primitive_field (arg1, offset, fieldno, arg_type)
721 register value arg1;
722 int offset;
723 register int fieldno;
724 register struct type *arg_type;
725 {
726 register value v;
727 register struct type *type;
728
729 check_stub_type (arg_type);
730 type = TYPE_FIELD_TYPE (arg_type, fieldno);
731
732 /* Handle packed fields */
733
734 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
735 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
736 {
737 v = value_from_longest (type,
738 unpack_field_as_long (arg_type,
739 VALUE_CONTENTS (arg1),
740 fieldno));
741 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
742 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
743 }
744 else
745 {
746 v = allocate_value (type);
747 if (VALUE_LAZY (arg1))
748 VALUE_LAZY (v) = 1;
749 else
750 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
751 TYPE_LENGTH (type));
752 }
753 VALUE_LVAL (v) = VALUE_LVAL (arg1);
754 if (VALUE_LVAL (arg1) == lval_internalvar)
755 VALUE_LVAL (v) = lval_internalvar_component;
756 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
757 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
758 return v;
759 }
760
761 /* Given a value ARG1 of a struct or union type,
762 extract and return the value of one of its fields.
763 FIELDNO says which field.
764
765 For C++, must also be able to return values from static fields */
766
767 value
768 value_field (arg1, fieldno)
769 register value arg1;
770 register int fieldno;
771 {
772 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
773 }
774
775 /* Return a non-virtual function as a value.
776 F is the list of member functions which contains the desired method.
777 J is an index into F which provides the desired method. */
778
779 value
780 value_fn_field (arg1p, f, j, type, offset)
781 value *arg1p;
782 struct fn_field *f;
783 int j;
784 struct type *type;
785 int offset;
786 {
787 register value v;
788 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
789 struct symbol *sym;
790
791 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
792 0, VAR_NAMESPACE, 0, NULL);
793 if (! sym) error ("Internal error: could not find physical method named %s",
794 TYPE_FN_FIELD_PHYSNAME (f, j));
795
796 v = allocate_value (ftype);
797 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
798 VALUE_TYPE (v) = ftype;
799
800 if (arg1p)
801 {
802 if (type != VALUE_TYPE (*arg1p))
803 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
804 value_addr (*arg1p)));
805
806 /* Move the `this' pointer according to the offset. */
807 VALUE_OFFSET (*arg1p) += offset;
808 }
809
810 return v;
811 }
812
813 /* Return a virtual function as a value.
814 ARG1 is the object which provides the virtual function
815 table pointer. *ARG1P is side-effected in calling this function.
816 F is the list of member functions which contains the desired virtual
817 function.
818 J is an index into F which provides the desired virtual function.
819
820 TYPE is the type in which F is located. */
821 value
822 value_virtual_fn_field (arg1p, f, j, type, offset)
823 value *arg1p;
824 struct fn_field *f;
825 int j;
826 struct type *type;
827 int offset;
828 {
829 value arg1 = *arg1p;
830 /* First, get the virtual function table pointer. That comes
831 with a strange type, so cast it to type `pointer to long' (which
832 should serve just fine as a function type). Then, index into
833 the table, and convert final value to appropriate function type. */
834 value entry, vfn, vtbl;
835 value vi = value_from_longest (builtin_type_int,
836 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
837 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
838 struct type *context;
839 if (fcontext == NULL)
840 /* We don't have an fcontext (e.g. the program was compiled with
841 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
842 This won't work right for multiple inheritance, but at least we
843 should do as well as GDB 3.x did. */
844 fcontext = TYPE_VPTR_BASETYPE (type);
845 context = lookup_pointer_type (fcontext);
846 /* Now context is a pointer to the basetype containing the vtbl. */
847 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
848 arg1 = value_ind (value_cast (context, value_addr (arg1)));
849
850 context = VALUE_TYPE (arg1);
851 /* Now context is the basetype containing the vtbl. */
852
853 /* This type may have been defined before its virtual function table
854 was. If so, fill in the virtual function table entry for the
855 type now. */
856 if (TYPE_VPTR_FIELDNO (context) < 0)
857 fill_in_vptr_fieldno (context);
858
859 /* The virtual function table is now an array of structures
860 which have the form { int16 offset, delta; void *pfn; }. */
861 vtbl = value_ind (value_primitive_field (arg1, 0,
862 TYPE_VPTR_FIELDNO (context),
863 TYPE_VPTR_BASETYPE (context)));
864
865 /* Index into the virtual function table. This is hard-coded because
866 looking up a field is not cheap, and it may be important to save
867 time, e.g. if the user has set a conditional breakpoint calling
868 a virtual function. */
869 entry = value_subscript (vtbl, vi);
870
871 /* Move the `this' pointer according to the virtual function table. */
872 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset;
873 if (! VALUE_LAZY (arg1))
874 {
875 VALUE_LAZY (arg1) = 1;
876 value_fetch_lazy (arg1);
877 }
878
879 vfn = value_field (entry, 2);
880 /* Reinstantiate the function pointer with the correct type. */
881 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
882
883 *arg1p = arg1;
884 return vfn;
885 }
886
887 /* ARG is a pointer to an object we know to be at least
888 a DTYPE. BTYPE is the most derived basetype that has
889 already been searched (and need not be searched again).
890 After looking at the vtables between BTYPE and DTYPE,
891 return the most derived type we find. The caller must
892 be satisfied when the return value == DTYPE.
893
894 FIXME-tiemann: should work with dossier entries as well. */
895
896 static value
897 value_headof (in_arg, btype, dtype)
898 value in_arg;
899 struct type *btype, *dtype;
900 {
901 /* First collect the vtables we must look at for this object. */
902 /* FIXME-tiemann: right now, just look at top-most vtable. */
903 value arg, vtbl, entry, best_entry = 0;
904 int i, nelems;
905 int offset, best_offset = 0;
906 struct symbol *sym;
907 CORE_ADDR pc_for_sym;
908 char *demangled_name;
909 struct minimal_symbol *msymbol;
910
911 btype = TYPE_VPTR_BASETYPE (dtype);
912 check_stub_type (btype);
913 arg = in_arg;
914 if (btype != dtype)
915 arg = value_cast (lookup_pointer_type (btype), arg);
916 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
917
918 /* Check that VTBL looks like it points to a virtual function table. */
919 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
920 if (msymbol == NULL
921 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
922 {
923 /* If we expected to find a vtable, but did not, let the user
924 know that we aren't happy, but don't throw an error.
925 FIXME: there has to be a better way to do this. */
926 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
927 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
928 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
929 VALUE_TYPE (in_arg) = error_type;
930 return in_arg;
931 }
932
933 /* Now search through the virtual function table. */
934 entry = value_ind (vtbl);
935 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
936 for (i = 1; i <= nelems; i++)
937 {
938 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
939 (LONGEST) i));
940 offset = longest_to_int (value_as_long (value_field (entry, 0)));
941 /* If we use '<=' we can handle single inheritance
942 * where all offsets are zero - just use the first entry found. */
943 if (offset <= best_offset)
944 {
945 best_offset = offset;
946 best_entry = entry;
947 }
948 }
949 /* Move the pointer according to BEST_ENTRY's offset, and figure
950 out what type we should return as the new pointer. */
951 if (best_entry == 0)
952 {
953 /* An alternative method (which should no longer be necessary).
954 * But we leave it in for future use, when we will hopefully
955 * have optimizes the vtable to use thunks instead of offsets. */
956 /* Use the name of vtable itself to extract a base type. */
957 demangled_name += 4; /* Skip _vt$ prefix. */
958 }
959 else
960 {
961 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
962 sym = find_pc_function (pc_for_sym);
963 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
964 *(strchr (demangled_name, ':')) = '\0';
965 }
966 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
967 if (sym == NULL)
968 error ("could not find type declaration for `%s'", demangled_name);
969 if (best_entry)
970 {
971 free (demangled_name);
972 arg = value_add (value_cast (builtin_type_int, arg),
973 value_field (best_entry, 0));
974 }
975 else arg = in_arg;
976 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
977 return arg;
978 }
979
980 /* ARG is a pointer object of type TYPE. If TYPE has virtual
981 function tables, probe ARG's tables (including the vtables
982 of its baseclasses) to figure out the most derived type that ARG
983 could actually be a pointer to. */
984
985 value
986 value_from_vtable_info (arg, type)
987 value arg;
988 struct type *type;
989 {
990 /* Take care of preliminaries. */
991 if (TYPE_VPTR_FIELDNO (type) < 0)
992 fill_in_vptr_fieldno (type);
993 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
994 return 0;
995
996 return value_headof (arg, 0, type);
997 }
998
999 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1000 pointer which is for the base class whose type is BASECLASS. */
1001
1002 static int
1003 vb_match (type, index, basetype)
1004 struct type *type;
1005 int index;
1006 struct type *basetype;
1007 {
1008 struct type *fieldtype;
1009 char *name = TYPE_FIELD_NAME (type, index);
1010 char *field_class_name = NULL;
1011
1012 if (*name != '_')
1013 return 0;
1014 /* gcc 2.4 uses _vb$. */
1015 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1016 field_class_name = name + 4;
1017 /* gcc 2.5 will use __vb_. */
1018 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1019 field_class_name = name + 5;
1020
1021 if (field_class_name == NULL)
1022 /* This field is not a virtual base class pointer. */
1023 return 0;
1024
1025 /* It's a virtual baseclass pointer, now we just need to find out whether
1026 it is for this baseclass. */
1027 fieldtype = TYPE_FIELD_TYPE (type, index);
1028 if (fieldtype == NULL
1029 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1030 /* "Can't happen". */
1031 return 0;
1032
1033 /* What we check for is that either the types are equal (needed for
1034 nameless types) or have the same name. This is ugly, and a more
1035 elegant solution should be devised (which would probably just push
1036 the ugliness into symbol reading unless we change the stabs format). */
1037 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1038 return 1;
1039
1040 if (TYPE_NAME (basetype) != NULL
1041 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1042 && STREQ (TYPE_NAME (basetype),
1043 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1044 return 1;
1045 return 0;
1046 }
1047
1048 /* Compute the offset of the baseclass which is
1049 the INDEXth baseclass of class TYPE, for a value ARG,
1050 wih extra offset of OFFSET.
1051 The result is the offste of the baseclass value relative
1052 to (the address of)(ARG) + OFFSET.
1053
1054 -1 is returned on error. */
1055
1056 int
1057 baseclass_offset (type, index, arg, offset)
1058 struct type *type;
1059 int index;
1060 value arg;
1061 int offset;
1062 {
1063 struct type *basetype = TYPE_BASECLASS (type, index);
1064
1065 if (BASETYPE_VIA_VIRTUAL (type, index))
1066 {
1067 /* Must hunt for the pointer to this virtual baseclass. */
1068 register int i, len = TYPE_NFIELDS (type);
1069 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1070
1071 /* First look for the virtual baseclass pointer
1072 in the fields. */
1073 for (i = n_baseclasses; i < len; i++)
1074 {
1075 if (vb_match (type, i, basetype))
1076 {
1077 CORE_ADDR addr
1078 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1079 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1080 + offset
1081 + (TYPE_FIELD_BITPOS (type, i) / 8));
1082
1083 if (VALUE_LVAL (arg) != lval_memory)
1084 return -1;
1085
1086 return addr -
1087 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1088 }
1089 }
1090 /* Not in the fields, so try looking through the baseclasses. */
1091 for (i = index+1; i < n_baseclasses; i++)
1092 {
1093 int boffset =
1094 baseclass_offset (type, i, arg, offset);
1095 if (boffset)
1096 return boffset;
1097 }
1098 /* Not found. */
1099 return -1;
1100 }
1101
1102 /* Baseclass is easily computed. */
1103 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1104 }
1105
1106 /* Compute the address of the baseclass which is
1107 the INDEXth baseclass of class TYPE. The TYPE base
1108 of the object is at VALADDR.
1109
1110 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1111 or 0 if no error. In that case the return value is not the address
1112 of the baseclasss, but the address which could not be read
1113 successfully. */
1114
1115 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1116
1117 char *
1118 baseclass_addr (type, index, valaddr, valuep, errp)
1119 struct type *type;
1120 int index;
1121 char *valaddr;
1122 value *valuep;
1123 int *errp;
1124 {
1125 struct type *basetype = TYPE_BASECLASS (type, index);
1126
1127 if (errp)
1128 *errp = 0;
1129
1130 if (BASETYPE_VIA_VIRTUAL (type, index))
1131 {
1132 /* Must hunt for the pointer to this virtual baseclass. */
1133 register int i, len = TYPE_NFIELDS (type);
1134 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1135
1136 /* First look for the virtual baseclass pointer
1137 in the fields. */
1138 for (i = n_baseclasses; i < len; i++)
1139 {
1140 if (vb_match (type, i, basetype))
1141 {
1142 value val = allocate_value (basetype);
1143 CORE_ADDR addr;
1144 int status;
1145
1146 addr
1147 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1148 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1149
1150 status = target_read_memory (addr,
1151 VALUE_CONTENTS_RAW (val),
1152 TYPE_LENGTH (basetype));
1153 VALUE_LVAL (val) = lval_memory;
1154 VALUE_ADDRESS (val) = addr;
1155
1156 if (status != 0)
1157 {
1158 if (valuep)
1159 *valuep = NULL;
1160 release_value (val);
1161 value_free (val);
1162 if (errp)
1163 *errp = status;
1164 return (char *)addr;
1165 }
1166 else
1167 {
1168 if (valuep)
1169 *valuep = val;
1170 return (char *) VALUE_CONTENTS (val);
1171 }
1172 }
1173 }
1174 /* Not in the fields, so try looking through the baseclasses. */
1175 for (i = index+1; i < n_baseclasses; i++)
1176 {
1177 char *baddr;
1178
1179 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1180 if (baddr)
1181 return baddr;
1182 }
1183 /* Not found. */
1184 if (valuep)
1185 *valuep = 0;
1186 return 0;
1187 }
1188
1189 /* Baseclass is easily computed. */
1190 if (valuep)
1191 *valuep = 0;
1192 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1193 }
1194 \f
1195 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1196 VALADDR.
1197
1198 Extracting bits depends on endianness of the machine. Compute the
1199 number of least significant bits to discard. For big endian machines,
1200 we compute the total number of bits in the anonymous object, subtract
1201 off the bit count from the MSB of the object to the MSB of the
1202 bitfield, then the size of the bitfield, which leaves the LSB discard
1203 count. For little endian machines, the discard count is simply the
1204 number of bits from the LSB of the anonymous object to the LSB of the
1205 bitfield.
1206
1207 If the field is signed, we also do sign extension. */
1208
1209 LONGEST
1210 unpack_field_as_long (type, valaddr, fieldno)
1211 struct type *type;
1212 char *valaddr;
1213 int fieldno;
1214 {
1215 unsigned LONGEST val;
1216 unsigned LONGEST valmask;
1217 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1218 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1219 int lsbcount;
1220
1221 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1222
1223 /* Extract bits. See comment above. */
1224
1225 #if BITS_BIG_ENDIAN
1226 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1227 #else
1228 lsbcount = (bitpos % 8);
1229 #endif
1230 val >>= lsbcount;
1231
1232 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1233 If the field is signed, and is negative, then sign extend. */
1234
1235 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1236 {
1237 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1238 val &= valmask;
1239 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1240 {
1241 if (val & (valmask ^ (valmask >> 1)))
1242 {
1243 val |= ~valmask;
1244 }
1245 }
1246 }
1247 return (val);
1248 }
1249
1250 /* Modify the value of a bitfield. ADDR points to a block of memory in
1251 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1252 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1253 indicate which bits (in target bit order) comprise the bitfield. */
1254
1255 void
1256 modify_field (addr, fieldval, bitpos, bitsize)
1257 char *addr;
1258 LONGEST fieldval;
1259 int bitpos, bitsize;
1260 {
1261 LONGEST oword;
1262
1263 /* Reject values too big to fit in the field in question,
1264 otherwise adjoining fields may be corrupted. */
1265 if (bitsize < (8 * sizeof (fieldval))
1266 && 0 != (fieldval & ~((1<<bitsize)-1)))
1267 {
1268 /* FIXME: would like to include fieldval in the message, but
1269 we don't have a sprintf_longest. */
1270 error ("Value does not fit in %d bits.", bitsize);
1271 }
1272
1273 oword = extract_signed_integer (addr, sizeof oword);
1274
1275 /* Shifting for bit field depends on endianness of the target machine. */
1276 #if BITS_BIG_ENDIAN
1277 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1278 #endif
1279
1280 /* Mask out old value, while avoiding shifts >= size of oword */
1281 if (bitsize < 8 * sizeof (oword))
1282 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1283 else
1284 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1285 oword |= fieldval << bitpos;
1286
1287 store_signed_integer (addr, sizeof oword, oword);
1288 }
1289 \f
1290 /* Convert C numbers into newly allocated values */
1291
1292 value
1293 value_from_longest (type, num)
1294 struct type *type;
1295 register LONGEST num;
1296 {
1297 register value val = allocate_value (type);
1298 register enum type_code code = TYPE_CODE (type);
1299 register int len = TYPE_LENGTH (type);
1300
1301 switch (code)
1302 {
1303 case TYPE_CODE_INT:
1304 case TYPE_CODE_CHAR:
1305 case TYPE_CODE_ENUM:
1306 case TYPE_CODE_BOOL:
1307 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1308 break;
1309
1310 case TYPE_CODE_REF:
1311 case TYPE_CODE_PTR:
1312 /* This assumes that all pointers of a given length
1313 have the same form. */
1314 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1315 break;
1316
1317 default:
1318 error ("Unexpected type encountered for integer constant.");
1319 }
1320 return val;
1321 }
1322
1323 value
1324 value_from_double (type, num)
1325 struct type *type;
1326 double num;
1327 {
1328 register value val = allocate_value (type);
1329 register enum type_code code = TYPE_CODE (type);
1330 register int len = TYPE_LENGTH (type);
1331
1332 if (code == TYPE_CODE_FLT)
1333 {
1334 if (len == sizeof (float))
1335 * (float *) VALUE_CONTENTS_RAW (val) = num;
1336 else if (len == sizeof (double))
1337 * (double *) VALUE_CONTENTS_RAW (val) = num;
1338 else
1339 error ("Floating type encountered with unexpected data length.");
1340 }
1341 else
1342 error ("Unexpected type encountered for floating constant.");
1343
1344 /* num was in host byte order. So now put the value's contents
1345 into target byte order. */
1346 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1347
1348 return val;
1349 }
1350 \f
1351 /* Deal with the value that is "about to be returned". */
1352
1353 /* Return the value that a function returning now
1354 would be returning to its caller, assuming its type is VALTYPE.
1355 RETBUF is where we look for what ought to be the contents
1356 of the registers (in raw form). This is because it is often
1357 desirable to restore old values to those registers
1358 after saving the contents of interest, and then call
1359 this function using the saved values.
1360 struct_return is non-zero when the function in question is
1361 using the structure return conventions on the machine in question;
1362 0 when it is using the value returning conventions (this often
1363 means returning pointer to where structure is vs. returning value). */
1364
1365 value
1366 value_being_returned (valtype, retbuf, struct_return)
1367 register struct type *valtype;
1368 char retbuf[REGISTER_BYTES];
1369 int struct_return;
1370 /*ARGSUSED*/
1371 {
1372 register value val;
1373 CORE_ADDR addr;
1374
1375 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1376 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1377 if (struct_return) {
1378 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1379 if (!addr)
1380 error ("Function return value unknown");
1381 return value_at (valtype, addr);
1382 }
1383 #endif
1384
1385 val = allocate_value (valtype);
1386 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1387
1388 return val;
1389 }
1390
1391 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1392 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1393 and TYPE is the type (which is known to be struct, union or array).
1394
1395 On most machines, the struct convention is used unless we are
1396 using gcc and the type is of a special size. */
1397 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1398 native compiler. GCC 2.3.3 was the last release that did it the
1399 old way. Since gcc2_compiled was not changed, we have no
1400 way to correctly win in all cases, so we just do the right thing
1401 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1402 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1403 would cause more chaos than dealing with some struct returns being
1404 handled wrong. */
1405 #if !defined (USE_STRUCT_CONVENTION)
1406 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1407 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1408 || TYPE_LENGTH (value_type) == 2 \
1409 || TYPE_LENGTH (value_type) == 4 \
1410 || TYPE_LENGTH (value_type) == 8 \
1411 ) \
1412 ))
1413 #endif
1414
1415 /* Return true if the function specified is using the structure returning
1416 convention on this machine to return arguments, or 0 if it is using
1417 the value returning convention. FUNCTION is the value representing
1418 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1419 is the type returned by the function. GCC_P is nonzero if compiled
1420 with GCC. */
1421
1422 int
1423 using_struct_return (function, funcaddr, value_type, gcc_p)
1424 value function;
1425 CORE_ADDR funcaddr;
1426 struct type *value_type;
1427 int gcc_p;
1428 /*ARGSUSED*/
1429 {
1430 register enum type_code code = TYPE_CODE (value_type);
1431
1432 if (code == TYPE_CODE_ERROR)
1433 error ("Function return type unknown.");
1434
1435 if (code == TYPE_CODE_STRUCT ||
1436 code == TYPE_CODE_UNION ||
1437 code == TYPE_CODE_ARRAY)
1438 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1439
1440 return 0;
1441 }
1442
1443 /* Store VAL so it will be returned if a function returns now.
1444 Does not verify that VAL's type matches what the current
1445 function wants to return. */
1446
1447 void
1448 set_return_value (val)
1449 value val;
1450 {
1451 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1452 double dbuf;
1453 LONGEST lbuf;
1454
1455 if (code == TYPE_CODE_ERROR)
1456 error ("Function return type unknown.");
1457
1458 if ( code == TYPE_CODE_STRUCT
1459 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1460 error ("GDB does not support specifying a struct or union return value.");
1461
1462 /* FIXME, this is bogus. We don't know what the return conventions
1463 are, or how values should be promoted.... */
1464 if (code == TYPE_CODE_FLT)
1465 {
1466 dbuf = value_as_double (val);
1467
1468 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1469 }
1470 else
1471 {
1472 lbuf = value_as_long (val);
1473 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1474 }
1475 }
1476 \f
1477 void
1478 _initialize_values ()
1479 {
1480 add_cmd ("convenience", no_class, show_convenience,
1481 "Debugger convenience (\"$foo\") variables.\n\
1482 These variables are created when you assign them values;\n\
1483 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1484 A few convenience variables are given values automatically:\n\
1485 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1486 \"$__\" holds the contents of the last address examined with \"x\".",
1487 &showlist);
1488
1489 add_cmd ("values", no_class, show_values,
1490 "Elements of value history around item number IDX (or last ten).",
1491 &showlist);
1492 }
This page took 0.098948 seconds and 4 git commands to generate.