* m68k-tdep.c (m68k_saved_pc_after_call): Use 'GDB_TARGET_IS_SUN3'
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258 release_value (val);
259
260 /* Now we regard value_history_count as origin-one
261 and applying to the value just stored. */
262
263 return ++value_history_count;
264 }
265
266 /* Return a copy of the value in the history with sequence number NUM. */
267
268 value
269 access_value_history (num)
270 int num;
271 {
272 register struct value_history_chunk *chunk;
273 register int i;
274 register int absnum = num;
275
276 if (absnum <= 0)
277 absnum += value_history_count;
278
279 if (absnum <= 0)
280 {
281 if (num == 0)
282 error ("The history is empty.");
283 else if (num == 1)
284 error ("There is only one value in the history.");
285 else
286 error ("History does not go back to $$%d.", -num);
287 }
288 if (absnum > value_history_count)
289 error ("History has not yet reached $%d.", absnum);
290
291 absnum--;
292
293 /* Now absnum is always absolute and origin zero. */
294
295 chunk = value_history_chain;
296 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
297 i > 0; i--)
298 chunk = chunk->next;
299
300 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
301 }
302
303 /* Clear the value history entirely.
304 Must be done when new symbol tables are loaded,
305 because the type pointers become invalid. */
306
307 void
308 clear_value_history ()
309 {
310 register struct value_history_chunk *next;
311 register int i;
312 register value val;
313
314 while (value_history_chain)
315 {
316 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
317 if (val = value_history_chain->values[i])
318 free ((PTR)val);
319 next = value_history_chain->next;
320 free ((PTR)value_history_chain);
321 value_history_chain = next;
322 }
323 value_history_count = 0;
324 }
325
326 static void
327 show_values (num_exp, from_tty)
328 char *num_exp;
329 int from_tty;
330 {
331 register int i;
332 register value val;
333 static int num = 1;
334
335 if (num_exp)
336 {
337 if (num_exp[0] == '+' && num_exp[1] == '\0')
338 /* "info history +" should print from the stored position. */
339 ;
340 else
341 /* "info history <exp>" should print around value number <exp>. */
342 num = parse_and_eval_address (num_exp) - 5;
343 }
344 else
345 {
346 /* "info history" means print the last 10 values. */
347 num = value_history_count - 9;
348 }
349
350 if (num <= 0)
351 num = 1;
352
353 for (i = num; i < num + 10 && i <= value_history_count; i++)
354 {
355 val = access_value_history (i);
356 printf_filtered ("$%d = ", i);
357 value_print (val, stdout, 0, Val_pretty_default);
358 printf_filtered ("\n");
359 }
360
361 /* The next "info history +" should start after what we just printed. */
362 num += 10;
363
364 /* Hitting just return after this command should do the same thing as
365 "info history +". If num_exp is null, this is unnecessary, since
366 "info history +" is not useful after "info history". */
367 if (from_tty && num_exp)
368 {
369 num_exp[0] = '+';
370 num_exp[1] = '\0';
371 }
372 }
373 \f
374 /* Internal variables. These are variables within the debugger
375 that hold values assigned by debugger commands.
376 The user refers to them with a '$' prefix
377 that does not appear in the variable names stored internally. */
378
379 static struct internalvar *internalvars;
380
381 /* Look up an internal variable with name NAME. NAME should not
382 normally include a dollar sign.
383
384 If the specified internal variable does not exist,
385 one is created, with a void value. */
386
387 struct internalvar *
388 lookup_internalvar (name)
389 char *name;
390 {
391 register struct internalvar *var;
392
393 for (var = internalvars; var; var = var->next)
394 if (!strcmp (var->name, name))
395 return var;
396
397 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
398 var->name = concat (name, NULL);
399 var->value = allocate_value (builtin_type_void);
400 release_value (var->value);
401 var->next = internalvars;
402 internalvars = var;
403 return var;
404 }
405
406 value
407 value_of_internalvar (var)
408 struct internalvar *var;
409 {
410 register value val;
411
412 #ifdef IS_TRAPPED_INTERNALVAR
413 if (IS_TRAPPED_INTERNALVAR (var->name))
414 return VALUE_OF_TRAPPED_INTERNALVAR (var);
415 #endif
416
417 val = value_copy (var->value);
418 if (VALUE_LAZY (val))
419 value_fetch_lazy (val);
420 VALUE_LVAL (val) = lval_internalvar;
421 VALUE_INTERNALVAR (val) = var;
422 return val;
423 }
424
425 void
426 set_internalvar_component (var, offset, bitpos, bitsize, newval)
427 struct internalvar *var;
428 int offset, bitpos, bitsize;
429 value newval;
430 {
431 register char *addr = VALUE_CONTENTS (var->value) + offset;
432
433 #ifdef IS_TRAPPED_INTERNALVAR
434 if (IS_TRAPPED_INTERNALVAR (var->name))
435 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
436 #endif
437
438 if (bitsize)
439 modify_field (addr, (int) value_as_long (newval),
440 bitpos, bitsize);
441 else
442 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
443 }
444
445 void
446 set_internalvar (var, val)
447 struct internalvar *var;
448 value val;
449 {
450 #ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
453 #endif
454
455 free ((PTR)var->value);
456 var->value = value_copy (val);
457 /* Force the value to be fetched from the target now, to avoid problems
458 later when this internalvar is referenced and the target is gone or
459 has changed. */
460 if (VALUE_LAZY (var->value))
461 value_fetch_lazy (var->value);
462 release_value (var->value);
463 }
464
465 char *
466 internalvar_name (var)
467 struct internalvar *var;
468 {
469 return var->name;
470 }
471
472 /* Free all internalvars. Done when new symtabs are loaded,
473 because that makes the values invalid. */
474
475 void
476 clear_internalvars ()
477 {
478 register struct internalvar *var;
479
480 while (internalvars)
481 {
482 var = internalvars;
483 internalvars = var->next;
484 free ((PTR)var->name);
485 free ((PTR)var->value);
486 free ((PTR)var);
487 }
488 }
489
490 static void
491 show_convenience (ignore, from_tty)
492 char *ignore;
493 int from_tty;
494 {
495 register struct internalvar *var;
496 int varseen = 0;
497
498 for (var = internalvars; var; var = var->next)
499 {
500 #ifdef IS_TRAPPED_INTERNALVAR
501 if (IS_TRAPPED_INTERNALVAR (var->name))
502 continue;
503 #endif
504 if (!varseen)
505 {
506 varseen = 1;
507 }
508 printf_filtered ("$%s = ", var->name);
509 value_print (var->value, stdout, 0, Val_pretty_default);
510 printf_filtered ("\n");
511 }
512 if (!varseen)
513 printf ("No debugger convenience variables now defined.\n\
514 Convenience variables have names starting with \"$\";\n\
515 use \"set\" as in \"set $foo = 5\" to define them.\n");
516 }
517 \f
518 /* Extract a value as a C number (either long or double).
519 Knows how to convert fixed values to double, or
520 floating values to long.
521 Does not deallocate the value. */
522
523 LONGEST
524 value_as_long (val)
525 register value val;
526 {
527 /* This coerces arrays and functions, which is necessary (e.g.
528 in disassemble_command). It also dereferences references, which
529 I suspect is the most logical thing to do. */
530 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
531 COERCE_ARRAY (val);
532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534
535 double
536 value_as_double (val)
537 register value val;
538 {
539 double foo;
540 int inv;
541
542 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
543 if (inv)
544 error ("Invalid floating value found in program.");
545 return foo;
546 }
547 /* Extract a value as a C pointer.
548 Does not deallocate the value. */
549 CORE_ADDR
550 value_as_pointer (val)
551 value val;
552 {
553 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
554 whether we want this to be true eventually. */
555 return ADDR_BITS_REMOVE(value_as_long (val));
556 }
557 \f
558 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
559 as a long, or as a double, assuming the raw data is described
560 by type TYPE. Knows how to convert different sizes of values
561 and can convert between fixed and floating point. We don't assume
562 any alignment for the raw data. Return value is in host byte order.
563
564 If you want functions and arrays to be coerced to pointers, and
565 references to be dereferenced, call value_as_long() instead.
566
567 C++: It is assumed that the front-end has taken care of
568 all matters concerning pointers to members. A pointer
569 to member which reaches here is considered to be equivalent
570 to an INT (or some size). After all, it is only an offset. */
571
572 /* FIXME: This should be rewritten as a switch statement for speed and
573 ease of comprehension. */
574
575 LONGEST
576 unpack_long (type, valaddr)
577 struct type *type;
578 char *valaddr;
579 {
580 register enum type_code code = TYPE_CODE (type);
581 register int len = TYPE_LENGTH (type);
582 register int nosign = TYPE_UNSIGNED (type);
583
584 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
585 code = TYPE_CODE_INT;
586 if (code == TYPE_CODE_FLT)
587 {
588 if (len == sizeof (float))
589 {
590 float retval;
591 memcpy (&retval, valaddr, sizeof (retval));
592 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
593 return retval;
594 }
595
596 if (len == sizeof (double))
597 {
598 double retval;
599 memcpy (&retval, valaddr, sizeof (retval));
600 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
601 return retval;
602 }
603 else
604 {
605 error ("Unexpected type of floating point number.");
606 }
607 }
608 else if (code == TYPE_CODE_INT && nosign)
609 {
610 if (len == sizeof (char))
611 {
612 unsigned char retval = * (unsigned char *) valaddr;
613 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
614 return retval;
615 }
616
617 if (len == sizeof (short))
618 {
619 unsigned short retval;
620 memcpy (&retval, valaddr, sizeof (retval));
621 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
622 return retval;
623 }
624
625 if (len == sizeof (int))
626 {
627 unsigned int retval;
628 memcpy (&retval, valaddr, sizeof (retval));
629 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
630 return retval;
631 }
632
633 if (len == sizeof (long))
634 {
635 unsigned long retval;
636 memcpy (&retval, valaddr, sizeof (retval));
637 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
638 return retval;
639 }
640 #ifdef LONG_LONG
641 if (len == sizeof (long long))
642 {
643 unsigned long long retval;
644 memcpy (&retval, valaddr, sizeof (retval));
645 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
646 return retval;
647 }
648 #endif
649 else
650 {
651 error ("That operation is not possible on an integer of that size.");
652 }
653 }
654 else if (code == TYPE_CODE_INT)
655 {
656 if (len == sizeof (char))
657 {
658 SIGNED char retval; /* plain chars might be unsigned on host */
659 memcpy (&retval, valaddr, sizeof (retval));
660 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
661 return retval;
662 }
663
664 if (len == sizeof (short))
665 {
666 short retval;
667 memcpy (&retval, valaddr, sizeof (retval));
668 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
669 return retval;
670 }
671
672 if (len == sizeof (int))
673 {
674 int retval;
675 memcpy (&retval, valaddr, sizeof (retval));
676 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
677 return retval;
678 }
679
680 if (len == sizeof (long))
681 {
682 long retval;
683 memcpy (&retval, valaddr, sizeof (retval));
684 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
685 return retval;
686 }
687
688 #ifdef LONG_LONG
689 if (len == sizeof (long long))
690 {
691 long long retval;
692 memcpy (&retval, valaddr, sizeof (retval));
693 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
694 return retval;
695 }
696 #endif
697 else
698 {
699 error ("That operation is not possible on an integer of that size.");
700 }
701 }
702 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
703 whether we want this to be true eventually. */
704 else if (code == TYPE_CODE_PTR
705 || code == TYPE_CODE_REF)
706 {
707 if (len == sizeof(long))
708 {
709 unsigned long retval;
710 memcpy (&retval, valaddr, sizeof(retval));
711 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
712 return retval;
713 }
714 else if (len == sizeof(short))
715 {
716 unsigned short retval;
717 memcpy (&retval, valaddr, len);
718 SWAP_TARGET_AND_HOST (&retval, len);
719 return retval;
720 }
721 }
722 else if (code == TYPE_CODE_MEMBER)
723 error ("not implemented: member types in unpack_long");
724 else if (code == TYPE_CODE_CHAR)
725 return *(unsigned char *)valaddr;
726
727 error ("Value not integer or pointer.");
728 return 0; /* For lint -- never reached */
729 }
730
731 /* Return a double value from the specified type and address.
732 INVP points to an int which is set to 0 for valid value,
733 1 for invalid value (bad float format). In either case,
734 the returned double is OK to use. Argument is in target
735 format, result is in host format. */
736
737 double
738 unpack_double (type, valaddr, invp)
739 struct type *type;
740 char *valaddr;
741 int *invp;
742 {
743 register enum type_code code = TYPE_CODE (type);
744 register int len = TYPE_LENGTH (type);
745 register int nosign = TYPE_UNSIGNED (type);
746
747 *invp = 0; /* Assume valid. */
748 if (code == TYPE_CODE_FLT)
749 {
750 if (INVALID_FLOAT (valaddr, len))
751 {
752 *invp = 1;
753 return 1.234567891011121314;
754 }
755
756 if (len == sizeof (float))
757 {
758 float retval;
759 memcpy (&retval, valaddr, sizeof (retval));
760 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
761 return retval;
762 }
763
764 if (len == sizeof (double))
765 {
766 double retval;
767 memcpy (&retval, valaddr, sizeof (retval));
768 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
769 return retval;
770 }
771 else
772 {
773 error ("Unexpected type of floating point number.");
774 return 0; /* Placate lint. */
775 }
776 }
777 else if (nosign) {
778 /* Unsigned -- be sure we compensate for signed LONGEST. */
779 #ifdef LONG_LONG
780 return (unsigned long long) unpack_long (type, valaddr);
781 #else
782 return (unsigned long ) unpack_long (type, valaddr);
783 #endif
784 } else {
785 /* Signed -- we are OK with unpack_long. */
786 return unpack_long (type, valaddr);
787 }
788 }
789
790 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
791 as a CORE_ADDR, assuming the raw data is described by type TYPE.
792 We don't assume any alignment for the raw data. Return value is in
793 host byte order.
794
795 If you want functions and arrays to be coerced to pointers, and
796 references to be dereferenced, call value_as_pointer() instead.
797
798 C++: It is assumed that the front-end has taken care of
799 all matters concerning pointers to members. A pointer
800 to member which reaches here is considered to be equivalent
801 to an INT (or some size). After all, it is only an offset. */
802
803 CORE_ADDR
804 unpack_pointer (type, valaddr)
805 struct type *type;
806 char *valaddr;
807 {
808 #if 0
809 /* The user should be able to use an int (e.g. 0x7892) in contexts
810 where a pointer is expected. So this doesn't do enough. */
811 register enum type_code code = TYPE_CODE (type);
812 register int len = TYPE_LENGTH (type);
813
814 if (code == TYPE_CODE_PTR
815 || code == TYPE_CODE_REF)
816 {
817 if (len == sizeof (CORE_ADDR))
818 {
819 CORE_ADDR retval;
820 memcpy (&retval, valaddr, sizeof (retval));
821 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
822 return retval;
823 }
824 error ("Unrecognized pointer size.");
825 }
826 else if (code == TYPE_CODE_MEMBER)
827 error ("not implemented: member types in unpack_pointer");
828
829 error ("Value is not a pointer.");
830 return 0; /* For lint -- never reached */
831 #else
832 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
833 whether we want this to be true eventually. */
834 return unpack_long (type, valaddr);
835 #endif
836 }
837 \f
838 /* Given a value ARG1 (offset by OFFSET bytes)
839 of a struct or union type ARG_TYPE,
840 extract and return the value of one of its fields.
841 FIELDNO says which field.
842
843 For C++, must also be able to return values from static fields */
844
845 value
846 value_primitive_field (arg1, offset, fieldno, arg_type)
847 register value arg1;
848 int offset;
849 register int fieldno;
850 register struct type *arg_type;
851 {
852 register value v;
853 register struct type *type;
854
855 check_stub_type (arg_type);
856 type = TYPE_FIELD_TYPE (arg_type, fieldno);
857
858 /* Handle packed fields */
859
860 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
861 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
862 {
863 v = value_from_longest (type,
864 unpack_field_as_long (arg_type,
865 VALUE_CONTENTS (arg1),
866 fieldno));
867 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
868 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
869 }
870 else
871 {
872 v = allocate_value (type);
873 if (VALUE_LAZY (arg1))
874 VALUE_LAZY (v) = 1;
875 else
876 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
877 TYPE_LENGTH (type));
878 }
879 VALUE_LVAL (v) = VALUE_LVAL (arg1);
880 if (VALUE_LVAL (arg1) == lval_internalvar)
881 VALUE_LVAL (v) = lval_internalvar_component;
882 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
883 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
884 return v;
885 }
886
887 /* Given a value ARG1 of a struct or union type,
888 extract and return the value of one of its fields.
889 FIELDNO says which field.
890
891 For C++, must also be able to return values from static fields */
892
893 value
894 value_field (arg1, fieldno)
895 register value arg1;
896 register int fieldno;
897 {
898 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
899 }
900
901 /* Return a non-virtual function as a value.
902 F is the list of member functions which contains the desired method.
903 J is an index into F which provides the desired method. */
904
905 value
906 value_fn_field (f, j)
907 struct fn_field *f;
908 int j;
909 {
910 register value v;
911 register struct type *type = TYPE_FN_FIELD_TYPE (f, j);
912 struct symbol *sym;
913
914 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
915 0, VAR_NAMESPACE, 0, NULL);
916 if (! sym) error ("Internal error: could not find physical method named %s",
917 TYPE_FN_FIELD_PHYSNAME (f, j));
918
919 v = allocate_value (type);
920 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
921 VALUE_TYPE (v) = type;
922 return v;
923 }
924
925 /* Return a virtual function as a value.
926 ARG1 is the object which provides the virtual function
927 table pointer. ARG1 is side-effected in calling this function.
928 F is the list of member functions which contains the desired virtual
929 function.
930 J is an index into F which provides the desired virtual function.
931
932 TYPE is the type in which F is located. */
933 value
934 value_virtual_fn_field (arg1, f, j, type)
935 value arg1;
936 struct fn_field *f;
937 int j;
938 struct type *type;
939 {
940 /* First, get the virtual function table pointer. That comes
941 with a strange type, so cast it to type `pointer to long' (which
942 should serve just fine as a function type). Then, index into
943 the table, and convert final value to appropriate function type. */
944 value entry, vfn, vtbl;
945 value vi = value_from_longest (builtin_type_int,
946 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
947 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
948 struct type *context;
949 if (fcontext == NULL)
950 /* We don't have an fcontext (e.g. the program was compiled with
951 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
952 This won't work right for multiple inheritance, but at least we
953 should do as well as GDB 3.x did. */
954 fcontext = TYPE_VPTR_BASETYPE (type);
955 context = lookup_pointer_type (fcontext);
956 /* Now context is a pointer to the basetype containing the vtbl. */
957 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
958 arg1 = value_ind (value_cast (context, value_addr (arg1)));
959
960 context = VALUE_TYPE (arg1);
961 /* Now context is the basetype containing the vtbl. */
962
963 /* This type may have been defined before its virtual function table
964 was. If so, fill in the virtual function table entry for the
965 type now. */
966 if (TYPE_VPTR_FIELDNO (context) < 0)
967 fill_in_vptr_fieldno (context);
968
969 /* The virtual function table is now an array of structures
970 which have the form { int16 offset, delta; void *pfn; }. */
971 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
972
973 /* Index into the virtual function table. This is hard-coded because
974 looking up a field is not cheap, and it may be important to save
975 time, e.g. if the user has set a conditional breakpoint calling
976 a virtual function. */
977 entry = value_subscript (vtbl, vi);
978
979 /* Move the `this' pointer according to the virtual function table. */
980 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
981 if (! VALUE_LAZY (arg1))
982 {
983 VALUE_LAZY (arg1) = 1;
984 value_fetch_lazy (arg1);
985 }
986
987 vfn = value_field (entry, 2);
988 /* Reinstantiate the function pointer with the correct type. */
989 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
990
991 return vfn;
992 }
993
994 /* ARG is a pointer to an object we know to be at least
995 a DTYPE. BTYPE is the most derived basetype that has
996 already been searched (and need not be searched again).
997 After looking at the vtables between BTYPE and DTYPE,
998 return the most derived type we find. The caller must
999 be satisfied when the return value == DTYPE.
1000
1001 FIXME-tiemann: should work with dossier entries as well. */
1002
1003 static value
1004 value_headof (arg, btype, dtype)
1005 value arg;
1006 struct type *btype, *dtype;
1007 {
1008 /* First collect the vtables we must look at for this object. */
1009 /* FIXME-tiemann: right now, just look at top-most vtable. */
1010 value vtbl, entry, best_entry = 0;
1011 int i, nelems;
1012 int offset, best_offset = 0;
1013 struct symbol *sym;
1014 CORE_ADDR pc_for_sym;
1015 char *demangled_name;
1016 struct minimal_symbol *msymbol;
1017
1018 btype = TYPE_VPTR_BASETYPE (dtype);
1019 check_stub_type (btype);
1020 if (btype != dtype)
1021 vtbl = value_cast (lookup_pointer_type (btype), arg);
1022 else
1023 vtbl = arg;
1024 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1025
1026 /* Check that VTBL looks like it points to a virtual function table. */
1027 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1028 if (msymbol == NULL
1029 || !VTBL_PREFIX_P (demangled_name = msymbol -> name))
1030 {
1031 /* If we expected to find a vtable, but did not, let the user
1032 know that we aren't happy, but don't throw an error.
1033 FIXME: there has to be a better way to do this. */
1034 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1035 memcpy (error_type, VALUE_TYPE (arg), sizeof (struct type));
1036 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1037 VALUE_TYPE (arg) = error_type;
1038 return arg;
1039 }
1040
1041 /* Now search through the virtual function table. */
1042 entry = value_ind (vtbl);
1043 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1044 for (i = 1; i <= nelems; i++)
1045 {
1046 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1047 (LONGEST) i));
1048 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1049 /* If we use '<=' we can handle single inheritance
1050 * where all offsets are zero - just use the first entry found. */
1051 if (offset <= best_offset)
1052 {
1053 best_offset = offset;
1054 best_entry = entry;
1055 }
1056 }
1057 /* Move the pointer according to BEST_ENTRY's offset, and figure
1058 out what type we should return as the new pointer. */
1059 if (best_entry == 0)
1060 {
1061 /* An alternative method (which should no longer be necessary).
1062 * But we leave it in for future use, when we will hopefully
1063 * have optimizes the vtable to use thunks instead of offsets. */
1064 /* Use the name of vtable itself to extract a base type. */
1065 demangled_name += 4; /* Skip _vt$ prefix. */
1066 }
1067 else
1068 {
1069 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1070 sym = find_pc_function (pc_for_sym);
1071 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1072 *(strchr (demangled_name, ':')) = '\0';
1073 }
1074 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1075 if (sym == 0)
1076 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1077 if (best_entry)
1078 {
1079 free (demangled_name);
1080 arg = value_add (value_cast (builtin_type_int, arg),
1081 value_field (best_entry, 0));
1082 }
1083 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1084 return arg;
1085 }
1086
1087 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1088 function tables, probe ARG's tables (including the vtables
1089 of its baseclasses) to figure out the most derived type that ARG
1090 could actually be a pointer to. */
1091
1092 value
1093 value_from_vtable_info (arg, type)
1094 value arg;
1095 struct type *type;
1096 {
1097 /* Take care of preliminaries. */
1098 if (TYPE_VPTR_FIELDNO (type) < 0)
1099 fill_in_vptr_fieldno (type);
1100 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1101 return 0;
1102
1103 return value_headof (arg, 0, type);
1104 }
1105
1106 /* Compute the address of the baseclass which is
1107 the INDEXth baseclass of class TYPE. The TYPE base
1108 of the object is at VALADDR.
1109
1110 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1111 or 0 if no error. In that case the return value is not the address
1112 of the baseclasss, but the address which could not be read
1113 successfully. */
1114
1115 char *
1116 baseclass_addr (type, index, valaddr, valuep, errp)
1117 struct type *type;
1118 int index;
1119 char *valaddr;
1120 value *valuep;
1121 int *errp;
1122 {
1123 struct type *basetype = TYPE_BASECLASS (type, index);
1124
1125 if (errp)
1126 *errp = 0;
1127
1128 if (BASETYPE_VIA_VIRTUAL (type, index))
1129 {
1130 /* Must hunt for the pointer to this virtual baseclass. */
1131 register int i, len = TYPE_NFIELDS (type);
1132 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1133 char *vbase_name, *type_name = type_name_no_tag (basetype);
1134
1135 vbase_name = (char *)alloca (strlen (type_name) + 8);
1136 sprintf (vbase_name, "_vb$%s", type_name);
1137 /* First look for the virtual baseclass pointer
1138 in the fields. */
1139 for (i = n_baseclasses; i < len; i++)
1140 {
1141 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1142 {
1143 value val = allocate_value (basetype);
1144 CORE_ADDR addr;
1145 int status;
1146
1147 addr
1148 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1149 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1150
1151 status = target_read_memory (addr,
1152 VALUE_CONTENTS_RAW (val),
1153 TYPE_LENGTH (basetype));
1154 VALUE_LVAL (val) = lval_memory;
1155 VALUE_ADDRESS (val) = addr;
1156
1157 if (status != 0)
1158 {
1159 if (valuep)
1160 *valuep = NULL;
1161 release_value (val);
1162 value_free (val);
1163 if (errp)
1164 *errp = status;
1165 return (char *)addr;
1166 }
1167 else
1168 {
1169 if (valuep)
1170 *valuep = val;
1171 return (char *) VALUE_CONTENTS (val);
1172 }
1173 }
1174 }
1175 /* Not in the fields, so try looking through the baseclasses. */
1176 for (i = index+1; i < n_baseclasses; i++)
1177 {
1178 char *baddr;
1179
1180 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1181 if (baddr)
1182 return baddr;
1183 }
1184 /* Not found. */
1185 if (valuep)
1186 *valuep = 0;
1187 return 0;
1188 }
1189
1190 /* Baseclass is easily computed. */
1191 if (valuep)
1192 *valuep = 0;
1193 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1194 }
1195 \f
1196 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1197 VALADDR.
1198
1199 Extracting bits depends on endianness of the machine. Compute the
1200 number of least significant bits to discard. For big endian machines,
1201 we compute the total number of bits in the anonymous object, subtract
1202 off the bit count from the MSB of the object to the MSB of the
1203 bitfield, then the size of the bitfield, which leaves the LSB discard
1204 count. For little endian machines, the discard count is simply the
1205 number of bits from the LSB of the anonymous object to the LSB of the
1206 bitfield.
1207
1208 If the field is signed, we also do sign extension. */
1209
1210 LONGEST
1211 unpack_field_as_long (type, valaddr, fieldno)
1212 struct type *type;
1213 char *valaddr;
1214 int fieldno;
1215 {
1216 unsigned LONGEST val;
1217 unsigned LONGEST valmask;
1218 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1219 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1220 int lsbcount;
1221
1222 memcpy (&val, valaddr + bitpos / 8, sizeof (val));
1223 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1224
1225 /* Extract bits. See comment above. */
1226
1227 #if BITS_BIG_ENDIAN
1228 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1229 #else
1230 lsbcount = (bitpos % 8);
1231 #endif
1232 val >>= lsbcount;
1233
1234 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1235 If the field is signed, and is negative, then sign extend. */
1236
1237 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1238 {
1239 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1240 val &= valmask;
1241 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1242 {
1243 if (val & (valmask ^ (valmask >> 1)))
1244 {
1245 val |= ~valmask;
1246 }
1247 }
1248 }
1249 return (val);
1250 }
1251
1252 /* Modify the value of a bitfield. ADDR points to a block of memory in
1253 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1254 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1255 indicate which bits (in target bit order) comprise the bitfield. */
1256
1257 void
1258 modify_field (addr, fieldval, bitpos, bitsize)
1259 char *addr;
1260 int fieldval;
1261 int bitpos, bitsize;
1262 {
1263 long oword;
1264
1265 /* Reject values too big to fit in the field in question,
1266 otherwise adjoining fields may be corrupted. */
1267 if (bitsize < (8 * sizeof (fieldval))
1268 && 0 != (fieldval & ~((1<<bitsize)-1)))
1269 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1270
1271 memcpy (&oword, addr, sizeof oword);
1272 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1273
1274 /* Shifting for bit field depends on endianness of the target machine. */
1275 #if BITS_BIG_ENDIAN
1276 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1277 #endif
1278
1279 /* Mask out old value, while avoiding shifts >= longword size */
1280 if (bitsize < 8 * sizeof (oword))
1281 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1282 else
1283 oword &= ~((-1) << bitpos);
1284 oword |= fieldval << bitpos;
1285
1286 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1287 memcpy (addr, &oword, sizeof oword);
1288 }
1289 \f
1290 /* Convert C numbers into newly allocated values */
1291
1292 value
1293 value_from_longest (type, num)
1294 struct type *type;
1295 register LONGEST num;
1296 {
1297 register value val = allocate_value (type);
1298 register enum type_code code = TYPE_CODE (type);
1299 register int len = TYPE_LENGTH (type);
1300
1301 /* FIXME, we assume that pointers have the same form and byte order as
1302 integers, and that all pointers have the same form. */
1303 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1304 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1305 code == TYPE_CODE_REF)
1306 {
1307 if (len == sizeof (char))
1308 * (char *) VALUE_CONTENTS_RAW (val) = num;
1309 else if (len == sizeof (short))
1310 * (short *) VALUE_CONTENTS_RAW (val) = num;
1311 else if (len == sizeof (int))
1312 * (int *) VALUE_CONTENTS_RAW (val) = num;
1313 else if (len == sizeof (long))
1314 * (long *) VALUE_CONTENTS_RAW (val) = num;
1315 #ifdef LONG_LONG
1316 else if (len == sizeof (long long))
1317 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1318 #endif
1319 else
1320 error ("Integer type encountered with unexpected data length.");
1321 }
1322 else
1323 error ("Unexpected type encountered for integer constant.");
1324
1325 /* num was in host byte order. So now put the value's contents
1326 into target byte order. */
1327 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1328
1329 return val;
1330 }
1331
1332 value
1333 value_from_double (type, num)
1334 struct type *type;
1335 double num;
1336 {
1337 register value val = allocate_value (type);
1338 register enum type_code code = TYPE_CODE (type);
1339 register int len = TYPE_LENGTH (type);
1340
1341 if (code == TYPE_CODE_FLT)
1342 {
1343 if (len == sizeof (float))
1344 * (float *) VALUE_CONTENTS_RAW (val) = num;
1345 else if (len == sizeof (double))
1346 * (double *) VALUE_CONTENTS_RAW (val) = num;
1347 else
1348 error ("Floating type encountered with unexpected data length.");
1349 }
1350 else
1351 error ("Unexpected type encountered for floating constant.");
1352
1353 /* num was in host byte order. So now put the value's contents
1354 into target byte order. */
1355 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1356
1357 return val;
1358 }
1359 \f
1360 /* Deal with the value that is "about to be returned". */
1361
1362 /* Return the value that a function returning now
1363 would be returning to its caller, assuming its type is VALTYPE.
1364 RETBUF is where we look for what ought to be the contents
1365 of the registers (in raw form). This is because it is often
1366 desirable to restore old values to those registers
1367 after saving the contents of interest, and then call
1368 this function using the saved values.
1369 struct_return is non-zero when the function in question is
1370 using the structure return conventions on the machine in question;
1371 0 when it is using the value returning conventions (this often
1372 means returning pointer to where structure is vs. returning value). */
1373
1374 value
1375 value_being_returned (valtype, retbuf, struct_return)
1376 register struct type *valtype;
1377 char retbuf[REGISTER_BYTES];
1378 int struct_return;
1379 /*ARGSUSED*/
1380 {
1381 register value val;
1382 CORE_ADDR addr;
1383
1384 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1385 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1386 if (struct_return) {
1387 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1388 if (!addr)
1389 error ("Function return value unknown");
1390 return value_at (valtype, addr);
1391 }
1392 #endif
1393
1394 val = allocate_value (valtype);
1395 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1396
1397 return val;
1398 }
1399
1400 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1401 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1402 and TYPE is the type (which is known to be struct, union or array).
1403
1404 On most machines, the struct convention is used unless we are
1405 using gcc and the type is of a special size. */
1406 #if !defined (USE_STRUCT_CONVENTION)
1407 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1408 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1409 || TYPE_LENGTH (value_type) == 2 \
1410 || TYPE_LENGTH (value_type) == 4 \
1411 || TYPE_LENGTH (value_type) == 8 \
1412 ) \
1413 ))
1414 #endif
1415
1416 /* Return true if the function specified is using the structure returning
1417 convention on this machine to return arguments, or 0 if it is using
1418 the value returning convention. FUNCTION is the value representing
1419 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1420 is the type returned by the function. GCC_P is nonzero if compiled
1421 with GCC. */
1422
1423 int
1424 using_struct_return (function, funcaddr, value_type, gcc_p)
1425 value function;
1426 CORE_ADDR funcaddr;
1427 struct type *value_type;
1428 int gcc_p;
1429 /*ARGSUSED*/
1430 {
1431 register enum type_code code = TYPE_CODE (value_type);
1432
1433 if (code == TYPE_CODE_ERROR)
1434 error ("Function return type unknown.");
1435
1436 if (code == TYPE_CODE_STRUCT ||
1437 code == TYPE_CODE_UNION ||
1438 code == TYPE_CODE_ARRAY)
1439 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1440
1441 return 0;
1442 }
1443
1444 /* Store VAL so it will be returned if a function returns now.
1445 Does not verify that VAL's type matches what the current
1446 function wants to return. */
1447
1448 void
1449 set_return_value (val)
1450 value val;
1451 {
1452 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1453 double dbuf;
1454 LONGEST lbuf;
1455
1456 if (code == TYPE_CODE_ERROR)
1457 error ("Function return type unknown.");
1458
1459 if ( code == TYPE_CODE_STRUCT
1460 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1461 error ("GDB does not support specifying a struct or union return value.");
1462
1463 /* FIXME, this is bogus. We don't know what the return conventions
1464 are, or how values should be promoted.... */
1465 if (code == TYPE_CODE_FLT)
1466 {
1467 dbuf = value_as_double (val);
1468
1469 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1470 }
1471 else
1472 {
1473 lbuf = value_as_long (val);
1474 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1475 }
1476 }
1477 \f
1478 void
1479 _initialize_values ()
1480 {
1481 add_cmd ("convenience", no_class, show_convenience,
1482 "Debugger convenience (\"$foo\") variables.\n\
1483 These variables are created when you assign them values;\n\
1484 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1485 A few convenience variables are given values automatically:\n\
1486 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1487 \"$__\" holds the contents of the last address examined with \"x\".",
1488 &showlist);
1489
1490 add_cmd ("values", no_class, show_values,
1491 "Elements of value history around item number IDX (or last ten).",
1492 &showlist);
1493 }
This page took 0.058368 seconds and 4 git commands to generate.