* ChangeLog, Makefile.in, configure, configure.in, v850_sim.h,
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "scm-lang.h"
33 #include "demangle.h"
34
35 /* Local function prototypes. */
36
37 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
38 struct type *));
39
40 static void show_values PARAMS ((char *, int));
41
42 static void show_convenience PARAMS ((char *, int));
43
44 static int vb_match PARAMS ((struct type *, int, struct type *));
45
46 /* The value-history records all the values printed
47 by print commands during this session. Each chunk
48 records 60 consecutive values. The first chunk on
49 the chain records the most recent values.
50 The total number of values is in value_history_count. */
51
52 #define VALUE_HISTORY_CHUNK 60
53
54 struct value_history_chunk
55 {
56 struct value_history_chunk *next;
57 value_ptr values[VALUE_HISTORY_CHUNK];
58 };
59
60 /* Chain of chunks now in use. */
61
62 static struct value_history_chunk *value_history_chain;
63
64 static int value_history_count; /* Abs number of last entry stored */
65 \f
66 /* List of all value objects currently allocated
67 (except for those released by calls to release_value)
68 This is so they can be freed after each command. */
69
70 static value_ptr all_values;
71
72 /* Allocate a value that has the correct length for type TYPE. */
73
74 value_ptr
75 allocate_value (type)
76 struct type *type;
77 {
78 register value_ptr val;
79 struct type *atype = check_typedef (type);
80
81 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
82 VALUE_NEXT (val) = all_values;
83 all_values = val;
84 VALUE_TYPE (val) = type;
85 VALUE_LVAL (val) = not_lval;
86 VALUE_ADDRESS (val) = 0;
87 VALUE_FRAME (val) = 0;
88 VALUE_OFFSET (val) = 0;
89 VALUE_BITPOS (val) = 0;
90 VALUE_BITSIZE (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 int low_bound = current_language->string_lower_bound; /* ??? */
107 /* FIXME-type-allocation: need a way to free this type when we are
108 done with it. */
109 struct type *range_type
110 = create_range_type ((struct type *) NULL, builtin_type_int,
111 low_bound, count + low_bound - 1);
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 return allocate_value (create_array_type ((struct type *) NULL,
115 type, range_type));
116 }
117
118 /* Return a mark in the value chain. All values allocated after the
119 mark is obtained (except for those released) are subject to being freed
120 if a subsequent value_free_to_mark is passed the mark. */
121 value_ptr
122 value_mark ()
123 {
124 return all_values;
125 }
126
127 /* Free all values allocated since MARK was obtained by value_mark
128 (except for those released). */
129 void
130 value_free_to_mark (mark)
131 value_ptr mark;
132 {
133 value_ptr val, next;
134
135 for (val = all_values; val && val != mark; val = next)
136 {
137 next = VALUE_NEXT (val);
138 value_free (val);
139 }
140 all_values = val;
141 }
142
143 /* Free all the values that have been allocated (except for those released).
144 Called after each command, successful or not. */
145
146 void
147 free_all_values ()
148 {
149 register value_ptr val, next;
150
151 for (val = all_values; val; val = next)
152 {
153 next = VALUE_NEXT (val);
154 value_free (val);
155 }
156
157 all_values = 0;
158 }
159
160 /* Remove VAL from the chain all_values
161 so it will not be freed automatically. */
162
163 void
164 release_value (val)
165 register value_ptr val;
166 {
167 register value_ptr v;
168
169 if (all_values == val)
170 {
171 all_values = val->next;
172 return;
173 }
174
175 for (v = all_values; v; v = v->next)
176 {
177 if (v->next == val)
178 {
179 v->next = val->next;
180 break;
181 }
182 }
183 }
184
185 /* Release all values up to mark */
186 value_ptr
187 value_release_to_mark (mark)
188 value_ptr mark;
189 {
190 value_ptr val, next;
191
192 for (val = next = all_values; next; next = VALUE_NEXT (next))
193 if (VALUE_NEXT (next) == mark)
194 {
195 all_values = VALUE_NEXT (next);
196 VALUE_NEXT (next) = 0;
197 return val;
198 }
199 all_values = 0;
200 return val;
201 }
202
203 /* Return a copy of the value ARG.
204 It contains the same contents, for same memory address,
205 but it's a different block of storage. */
206
207 value_ptr
208 value_copy (arg)
209 value_ptr arg;
210 {
211 register struct type *type = VALUE_TYPE (arg);
212 register value_ptr val = allocate_value (type);
213 VALUE_LVAL (val) = VALUE_LVAL (arg);
214 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
215 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
216 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
217 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
218 VALUE_FRAME (val) = VALUE_FRAME (arg);
219 VALUE_REGNO (val) = VALUE_REGNO (arg);
220 VALUE_LAZY (val) = VALUE_LAZY (arg);
221 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
222 val->modifiable = arg->modifiable;
223 if (!VALUE_LAZY (val))
224 {
225 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
226 TYPE_LENGTH (VALUE_TYPE (arg)));
227 }
228 return val;
229 }
230 \f
231 /* Access to the value history. */
232
233 /* Record a new value in the value history.
234 Returns the absolute history index of the entry.
235 Result of -1 indicates the value was not saved; otherwise it is the
236 value history index of this new item. */
237
238 int
239 record_latest_value (val)
240 value_ptr val;
241 {
242 int i;
243
244 /* We don't want this value to have anything to do with the inferior anymore.
245 In particular, "set $1 = 50" should not affect the variable from which
246 the value was taken, and fast watchpoints should be able to assume that
247 a value on the value history never changes. */
248 if (VALUE_LAZY (val))
249 value_fetch_lazy (val);
250 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
251 from. This is a bit dubious, because then *&$1 does not just return $1
252 but the current contents of that location. c'est la vie... */
253 val->modifiable = 0;
254 release_value (val);
255
256 /* Here we treat value_history_count as origin-zero
257 and applying to the value being stored now. */
258
259 i = value_history_count % VALUE_HISTORY_CHUNK;
260 if (i == 0)
261 {
262 register struct value_history_chunk *new
263 = (struct value_history_chunk *)
264 xmalloc (sizeof (struct value_history_chunk));
265 memset (new->values, 0, sizeof new->values);
266 new->next = value_history_chain;
267 value_history_chain = new;
268 }
269
270 value_history_chain->values[i] = val;
271
272 /* Now we regard value_history_count as origin-one
273 and applying to the value just stored. */
274
275 return ++value_history_count;
276 }
277
278 /* Return a copy of the value in the history with sequence number NUM. */
279
280 value_ptr
281 access_value_history (num)
282 int num;
283 {
284 register struct value_history_chunk *chunk;
285 register int i;
286 register int absnum = num;
287
288 if (absnum <= 0)
289 absnum += value_history_count;
290
291 if (absnum <= 0)
292 {
293 if (num == 0)
294 error ("The history is empty.");
295 else if (num == 1)
296 error ("There is only one value in the history.");
297 else
298 error ("History does not go back to $$%d.", -num);
299 }
300 if (absnum > value_history_count)
301 error ("History has not yet reached $%d.", absnum);
302
303 absnum--;
304
305 /* Now absnum is always absolute and origin zero. */
306
307 chunk = value_history_chain;
308 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
309 i > 0; i--)
310 chunk = chunk->next;
311
312 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
313 }
314
315 /* Clear the value history entirely.
316 Must be done when new symbol tables are loaded,
317 because the type pointers become invalid. */
318
319 void
320 clear_value_history ()
321 {
322 register struct value_history_chunk *next;
323 register int i;
324 register value_ptr val;
325
326 while (value_history_chain)
327 {
328 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
329 if ((val = value_history_chain->values[i]) != NULL)
330 free ((PTR)val);
331 next = value_history_chain->next;
332 free ((PTR)value_history_chain);
333 value_history_chain = next;
334 }
335 value_history_count = 0;
336 }
337
338 static void
339 show_values (num_exp, from_tty)
340 char *num_exp;
341 int from_tty;
342 {
343 register int i;
344 register value_ptr val;
345 static int num = 1;
346
347 if (num_exp)
348 {
349 /* "info history +" should print from the stored position.
350 "info history <exp>" should print around value number <exp>. */
351 if (num_exp[0] != '+' || num_exp[1] != '\0')
352 num = parse_and_eval_address (num_exp) - 5;
353 }
354 else
355 {
356 /* "info history" means print the last 10 values. */
357 num = value_history_count - 9;
358 }
359
360 if (num <= 0)
361 num = 1;
362
363 for (i = num; i < num + 10 && i <= value_history_count; i++)
364 {
365 val = access_value_history (i);
366 printf_filtered ("$%d = ", i);
367 value_print (val, gdb_stdout, 0, Val_pretty_default);
368 printf_filtered ("\n");
369 }
370
371 /* The next "info history +" should start after what we just printed. */
372 num += 10;
373
374 /* Hitting just return after this command should do the same thing as
375 "info history +". If num_exp is null, this is unnecessary, since
376 "info history +" is not useful after "info history". */
377 if (from_tty && num_exp)
378 {
379 num_exp[0] = '+';
380 num_exp[1] = '\0';
381 }
382 }
383 \f
384 /* Internal variables. These are variables within the debugger
385 that hold values assigned by debugger commands.
386 The user refers to them with a '$' prefix
387 that does not appear in the variable names stored internally. */
388
389 static struct internalvar *internalvars;
390
391 /* Look up an internal variable with name NAME. NAME should not
392 normally include a dollar sign.
393
394 If the specified internal variable does not exist,
395 one is created, with a void value. */
396
397 struct internalvar *
398 lookup_internalvar (name)
399 char *name;
400 {
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414 }
415
416 value_ptr
417 value_of_internalvar (var)
418 struct internalvar *var;
419 {
420 register value_ptr val;
421
422 #ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
425 #endif
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433 }
434
435 void
436 set_internalvar_component (var, offset, bitpos, bitsize, newval)
437 struct internalvar *var;
438 int offset, bitpos, bitsize;
439 value_ptr newval;
440 {
441 register char *addr = VALUE_CONTENTS (var->value) + offset;
442
443 #ifdef IS_TRAPPED_INTERNALVAR
444 if (IS_TRAPPED_INTERNALVAR (var->name))
445 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
446 #endif
447
448 if (bitsize)
449 modify_field (addr, value_as_long (newval),
450 bitpos, bitsize);
451 else
452 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
453 }
454
455 void
456 set_internalvar (var, val)
457 struct internalvar *var;
458 value_ptr val;
459 {
460 value_ptr newval;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
465 #endif
466
467 newval = value_copy (val);
468 newval->modifiable = 1;
469
470 /* Force the value to be fetched from the target now, to avoid problems
471 later when this internalvar is referenced and the target is gone or
472 has changed. */
473 if (VALUE_LAZY (newval))
474 value_fetch_lazy (newval);
475
476 /* Begin code which must not call error(). If var->value points to
477 something free'd, an error() obviously leaves a dangling pointer.
478 But we also get a danling pointer if var->value points to
479 something in the value chain (i.e., before release_value is
480 called), because after the error free_all_values will get called before
481 long. */
482 free ((PTR)var->value);
483 var->value = newval;
484 release_value (newval);
485 /* End code which must not call error(). */
486 }
487
488 char *
489 internalvar_name (var)
490 struct internalvar *var;
491 {
492 return var->name;
493 }
494
495 /* Free all internalvars. Done when new symtabs are loaded,
496 because that makes the values invalid. */
497
498 void
499 clear_internalvars ()
500 {
501 register struct internalvar *var;
502
503 while (internalvars)
504 {
505 var = internalvars;
506 internalvars = var->next;
507 free ((PTR)var->name);
508 free ((PTR)var->value);
509 free ((PTR)var);
510 }
511 }
512
513 static void
514 show_convenience (ignore, from_tty)
515 char *ignore;
516 int from_tty;
517 {
518 register struct internalvar *var;
519 int varseen = 0;
520
521 for (var = internalvars; var; var = var->next)
522 {
523 #ifdef IS_TRAPPED_INTERNALVAR
524 if (IS_TRAPPED_INTERNALVAR (var->name))
525 continue;
526 #endif
527 if (!varseen)
528 {
529 varseen = 1;
530 }
531 printf_filtered ("$%s = ", var->name);
532 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
533 printf_filtered ("\n");
534 }
535 if (!varseen)
536 printf_unfiltered ("No debugger convenience variables now defined.\n\
537 Convenience variables have names starting with \"$\";\n\
538 use \"set\" as in \"set $foo = 5\" to define them.\n");
539 }
540 \f
541 /* Extract a value as a C number (either long or double).
542 Knows how to convert fixed values to double, or
543 floating values to long.
544 Does not deallocate the value. */
545
546 LONGEST
547 value_as_long (val)
548 register value_ptr val;
549 {
550 /* This coerces arrays and functions, which is necessary (e.g.
551 in disassemble_command). It also dereferences references, which
552 I suspect is the most logical thing to do. */
553 COERCE_ARRAY (val);
554 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
555 }
556
557 DOUBLEST
558 value_as_double (val)
559 register value_ptr val;
560 {
561 DOUBLEST foo;
562 int inv;
563
564 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
565 if (inv)
566 error ("Invalid floating value found in program.");
567 return foo;
568 }
569 /* Extract a value as a C pointer.
570 Does not deallocate the value. */
571 CORE_ADDR
572 value_as_pointer (val)
573 value_ptr val;
574 {
575 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
576 whether we want this to be true eventually. */
577 #if 0
578 /* ADDR_BITS_REMOVE is wrong if we are being called for a
579 non-address (e.g. argument to "signal", "info break", etc.), or
580 for pointers to char, in which the low bits *are* significant. */
581 return ADDR_BITS_REMOVE(value_as_long (val));
582 #else
583 return value_as_long (val);
584 #endif
585 }
586 \f
587 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
588 as a long, or as a double, assuming the raw data is described
589 by type TYPE. Knows how to convert different sizes of values
590 and can convert between fixed and floating point. We don't assume
591 any alignment for the raw data. Return value is in host byte order.
592
593 If you want functions and arrays to be coerced to pointers, and
594 references to be dereferenced, call value_as_long() instead.
595
596 C++: It is assumed that the front-end has taken care of
597 all matters concerning pointers to members. A pointer
598 to member which reaches here is considered to be equivalent
599 to an INT (or some size). After all, it is only an offset. */
600
601 LONGEST
602 unpack_long (type, valaddr)
603 struct type *type;
604 char *valaddr;
605 {
606 register enum type_code code = TYPE_CODE (type);
607 register int len = TYPE_LENGTH (type);
608 register int nosign = TYPE_UNSIGNED (type);
609
610 if (current_language->la_language == language_scm
611 && is_scmvalue_type (type))
612 return scm_unpack (type, valaddr, TYPE_CODE_INT);
613
614 switch (code)
615 {
616 case TYPE_CODE_TYPEDEF:
617 return unpack_long (check_typedef (type), valaddr);
618 case TYPE_CODE_ENUM:
619 case TYPE_CODE_BOOL:
620 case TYPE_CODE_INT:
621 case TYPE_CODE_CHAR:
622 case TYPE_CODE_RANGE:
623 if (nosign)
624 return extract_unsigned_integer (valaddr, len);
625 else
626 return extract_signed_integer (valaddr, len);
627
628 case TYPE_CODE_FLT:
629 return extract_floating (valaddr, len);
630
631 case TYPE_CODE_PTR:
632 case TYPE_CODE_REF:
633 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
634 whether we want this to be true eventually. */
635 return extract_address (valaddr, len);
636
637 case TYPE_CODE_MEMBER:
638 error ("not implemented: member types in unpack_long");
639
640 default:
641 error ("Value can't be converted to integer.");
642 }
643 return 0; /* Placate lint. */
644 }
645
646 /* Return a double value from the specified type and address.
647 INVP points to an int which is set to 0 for valid value,
648 1 for invalid value (bad float format). In either case,
649 the returned double is OK to use. Argument is in target
650 format, result is in host format. */
651
652 DOUBLEST
653 unpack_double (type, valaddr, invp)
654 struct type *type;
655 char *valaddr;
656 int *invp;
657 {
658 register enum type_code code = TYPE_CODE (type);
659 register int len = TYPE_LENGTH (type);
660 register int nosign = TYPE_UNSIGNED (type);
661
662 *invp = 0; /* Assume valid. */
663 CHECK_TYPEDEF (type);
664 if (code == TYPE_CODE_FLT)
665 {
666 #ifdef INVALID_FLOAT
667 if (INVALID_FLOAT (valaddr, len))
668 {
669 *invp = 1;
670 return 1.234567891011121314;
671 }
672 #endif
673 return extract_floating (valaddr, len);
674 }
675 else if (nosign)
676 {
677 /* Unsigned -- be sure we compensate for signed LONGEST. */
678 return (unsigned LONGEST) unpack_long (type, valaddr);
679 }
680 else
681 {
682 /* Signed -- we are OK with unpack_long. */
683 return unpack_long (type, valaddr);
684 }
685 }
686
687 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
688 as a CORE_ADDR, assuming the raw data is described by type TYPE.
689 We don't assume any alignment for the raw data. Return value is in
690 host byte order.
691
692 If you want functions and arrays to be coerced to pointers, and
693 references to be dereferenced, call value_as_pointer() instead.
694
695 C++: It is assumed that the front-end has taken care of
696 all matters concerning pointers to members. A pointer
697 to member which reaches here is considered to be equivalent
698 to an INT (or some size). After all, it is only an offset. */
699
700 CORE_ADDR
701 unpack_pointer (type, valaddr)
702 struct type *type;
703 char *valaddr;
704 {
705 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
706 whether we want this to be true eventually. */
707 return unpack_long (type, valaddr);
708 }
709 \f
710 /* Given a value ARG1 (offset by OFFSET bytes)
711 of a struct or union type ARG_TYPE,
712 extract and return the value of one of its fields.
713 FIELDNO says which field.
714
715 For C++, must also be able to return values from static fields */
716
717 value_ptr
718 value_primitive_field (arg1, offset, fieldno, arg_type)
719 register value_ptr arg1;
720 int offset;
721 register int fieldno;
722 register struct type *arg_type;
723 {
724 register value_ptr v;
725 register struct type *type;
726
727 CHECK_TYPEDEF (arg_type);
728 type = TYPE_FIELD_TYPE (arg_type, fieldno);
729
730 /* Handle packed fields */
731
732 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
733 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
734 {
735 v = value_from_longest (type,
736 unpack_field_as_long (arg_type,
737 VALUE_CONTENTS (arg1),
738 fieldno));
739 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
740 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
741 }
742 else
743 {
744 v = allocate_value (type);
745 if (VALUE_LAZY (arg1))
746 VALUE_LAZY (v) = 1;
747 else
748 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
749 TYPE_LENGTH (type));
750 }
751 VALUE_LVAL (v) = VALUE_LVAL (arg1);
752 if (VALUE_LVAL (arg1) == lval_internalvar)
753 VALUE_LVAL (v) = lval_internalvar_component;
754 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
755 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
756 return v;
757 }
758
759 /* Given a value ARG1 of a struct or union type,
760 extract and return the value of one of its fields.
761 FIELDNO says which field.
762
763 For C++, must also be able to return values from static fields */
764
765 value_ptr
766 value_field (arg1, fieldno)
767 register value_ptr arg1;
768 register int fieldno;
769 {
770 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
771 }
772
773 /* Return a non-virtual function as a value.
774 F is the list of member functions which contains the desired method.
775 J is an index into F which provides the desired method. */
776
777 value_ptr
778 value_fn_field (arg1p, f, j, type, offset)
779 value_ptr *arg1p;
780 struct fn_field *f;
781 int j;
782 struct type *type;
783 int offset;
784 {
785 register value_ptr v;
786 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
787 struct symbol *sym;
788
789 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
790 0, VAR_NAMESPACE, 0, NULL);
791 if (! sym)
792 return NULL;
793 /*
794 error ("Internal error: could not find physical method named %s",
795 TYPE_FN_FIELD_PHYSNAME (f, j));
796 */
797
798 v = allocate_value (ftype);
799 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
800 VALUE_TYPE (v) = ftype;
801
802 if (arg1p)
803 {
804 if (type != VALUE_TYPE (*arg1p))
805 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
806 value_addr (*arg1p)));
807
808 /* Move the `this' pointer according to the offset.
809 VALUE_OFFSET (*arg1p) += offset;
810 */
811 }
812
813 return v;
814 }
815
816 /* Return a virtual function as a value.
817 ARG1 is the object which provides the virtual function
818 table pointer. *ARG1P is side-effected in calling this function.
819 F is the list of member functions which contains the desired virtual
820 function.
821 J is an index into F which provides the desired virtual function.
822
823 TYPE is the type in which F is located. */
824 value_ptr
825 value_virtual_fn_field (arg1p, f, j, type, offset)
826 value_ptr *arg1p;
827 struct fn_field *f;
828 int j;
829 struct type *type;
830 int offset;
831 {
832 value_ptr arg1 = *arg1p;
833 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
834 struct type *entry_type;
835 /* First, get the virtual function table pointer. That comes
836 with a strange type, so cast it to type `pointer to long' (which
837 should serve just fine as a function type). Then, index into
838 the table, and convert final value to appropriate function type. */
839 value_ptr entry, vfn, vtbl;
840 value_ptr vi = value_from_longest (builtin_type_int,
841 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
842 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
843 struct type *context;
844 if (fcontext == NULL)
845 /* We don't have an fcontext (e.g. the program was compiled with
846 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
847 This won't work right for multiple inheritance, but at least we
848 should do as well as GDB 3.x did. */
849 fcontext = TYPE_VPTR_BASETYPE (type);
850 context = lookup_pointer_type (fcontext);
851 /* Now context is a pointer to the basetype containing the vtbl. */
852 if (TYPE_TARGET_TYPE (context) != type1)
853 {
854 arg1 = value_ind (value_cast (context, value_addr (arg1)));
855 type1 = check_typedef (VALUE_TYPE (arg1));
856 }
857
858 context = type1;
859 /* Now context is the basetype containing the vtbl. */
860
861 /* This type may have been defined before its virtual function table
862 was. If so, fill in the virtual function table entry for the
863 type now. */
864 if (TYPE_VPTR_FIELDNO (context) < 0)
865 fill_in_vptr_fieldno (context);
866
867 /* The virtual function table is now an array of structures
868 which have the form { int16 offset, delta; void *pfn; }. */
869 vtbl = value_ind (value_primitive_field (arg1, 0,
870 TYPE_VPTR_FIELDNO (context),
871 TYPE_VPTR_BASETYPE (context)));
872
873 /* Index into the virtual function table. This is hard-coded because
874 looking up a field is not cheap, and it may be important to save
875 time, e.g. if the user has set a conditional breakpoint calling
876 a virtual function. */
877 entry = value_subscript (vtbl, vi);
878 entry_type = check_typedef (VALUE_TYPE (entry));
879
880 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
881 {
882 /* Move the `this' pointer according to the virtual function table. */
883 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
884
885 if (! VALUE_LAZY (arg1))
886 {
887 VALUE_LAZY (arg1) = 1;
888 value_fetch_lazy (arg1);
889 }
890
891 vfn = value_field (entry, 2);
892 }
893 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
894 vfn = entry;
895 else
896 error ("I'm confused: virtual function table has bad type");
897 /* Reinstantiate the function pointer with the correct type. */
898 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
899
900 *arg1p = arg1;
901 return vfn;
902 }
903
904 /* ARG is a pointer to an object we know to be at least
905 a DTYPE. BTYPE is the most derived basetype that has
906 already been searched (and need not be searched again).
907 After looking at the vtables between BTYPE and DTYPE,
908 return the most derived type we find. The caller must
909 be satisfied when the return value == DTYPE.
910
911 FIXME-tiemann: should work with dossier entries as well. */
912
913 static value_ptr
914 value_headof (in_arg, btype, dtype)
915 value_ptr in_arg;
916 struct type *btype, *dtype;
917 {
918 /* First collect the vtables we must look at for this object. */
919 /* FIXME-tiemann: right now, just look at top-most vtable. */
920 value_ptr arg, vtbl, entry, best_entry = 0;
921 int i, nelems;
922 int offset, best_offset = 0;
923 struct symbol *sym;
924 CORE_ADDR pc_for_sym;
925 char *demangled_name;
926 struct minimal_symbol *msymbol;
927
928 btype = TYPE_VPTR_BASETYPE (dtype);
929 CHECK_TYPEDEF (btype);
930 arg = in_arg;
931 if (btype != dtype)
932 arg = value_cast (lookup_pointer_type (btype), arg);
933 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
934
935 /* Check that VTBL looks like it points to a virtual function table. */
936 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
937 if (msymbol == NULL
938 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
939 || !VTBL_PREFIX_P (demangled_name))
940 {
941 /* If we expected to find a vtable, but did not, let the user
942 know that we aren't happy, but don't throw an error.
943 FIXME: there has to be a better way to do this. */
944 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
945 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
946 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
947 VALUE_TYPE (in_arg) = error_type;
948 return in_arg;
949 }
950
951 /* Now search through the virtual function table. */
952 entry = value_ind (vtbl);
953 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
954 for (i = 1; i <= nelems; i++)
955 {
956 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
957 (LONGEST) i));
958 /* This won't work if we're using thunks. */
959 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
960 break;
961 offset = longest_to_int (value_as_long (value_field (entry, 0)));
962 /* If we use '<=' we can handle single inheritance
963 * where all offsets are zero - just use the first entry found. */
964 if (offset <= best_offset)
965 {
966 best_offset = offset;
967 best_entry = entry;
968 }
969 }
970 /* Move the pointer according to BEST_ENTRY's offset, and figure
971 out what type we should return as the new pointer. */
972 if (best_entry == 0)
973 {
974 /* An alternative method (which should no longer be necessary).
975 * But we leave it in for future use, when we will hopefully
976 * have optimizes the vtable to use thunks instead of offsets. */
977 /* Use the name of vtable itself to extract a base type. */
978 demangled_name += 4; /* Skip _vt$ prefix. */
979 }
980 else
981 {
982 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
983 sym = find_pc_function (pc_for_sym);
984 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
985 *(strchr (demangled_name, ':')) = '\0';
986 }
987 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
988 if (sym == NULL)
989 error ("could not find type declaration for `%s'", demangled_name);
990 if (best_entry)
991 {
992 free (demangled_name);
993 arg = value_add (value_cast (builtin_type_int, arg),
994 value_field (best_entry, 0));
995 }
996 else arg = in_arg;
997 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
998 return arg;
999 }
1000
1001 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1002 function tables, probe ARG's tables (including the vtables
1003 of its baseclasses) to figure out the most derived type that ARG
1004 could actually be a pointer to. */
1005
1006 value_ptr
1007 value_from_vtable_info (arg, type)
1008 value_ptr arg;
1009 struct type *type;
1010 {
1011 /* Take care of preliminaries. */
1012 if (TYPE_VPTR_FIELDNO (type) < 0)
1013 fill_in_vptr_fieldno (type);
1014 if (TYPE_VPTR_FIELDNO (type) < 0)
1015 return 0;
1016
1017 return value_headof (arg, 0, type);
1018 }
1019
1020 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1021 pointer which is for the base class whose type is BASECLASS. */
1022
1023 static int
1024 vb_match (type, index, basetype)
1025 struct type *type;
1026 int index;
1027 struct type *basetype;
1028 {
1029 struct type *fieldtype;
1030 char *name = TYPE_FIELD_NAME (type, index);
1031 char *field_class_name = NULL;
1032
1033 if (*name != '_')
1034 return 0;
1035 /* gcc 2.4 uses _vb$. */
1036 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1037 field_class_name = name + 4;
1038 /* gcc 2.5 will use __vb_. */
1039 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1040 field_class_name = name + 5;
1041
1042 if (field_class_name == NULL)
1043 /* This field is not a virtual base class pointer. */
1044 return 0;
1045
1046 /* It's a virtual baseclass pointer, now we just need to find out whether
1047 it is for this baseclass. */
1048 fieldtype = TYPE_FIELD_TYPE (type, index);
1049 if (fieldtype == NULL
1050 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1051 /* "Can't happen". */
1052 return 0;
1053
1054 /* What we check for is that either the types are equal (needed for
1055 nameless types) or have the same name. This is ugly, and a more
1056 elegant solution should be devised (which would probably just push
1057 the ugliness into symbol reading unless we change the stabs format). */
1058 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1059 return 1;
1060
1061 if (TYPE_NAME (basetype) != NULL
1062 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1063 && STREQ (TYPE_NAME (basetype),
1064 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1065 return 1;
1066 return 0;
1067 }
1068
1069 /* Compute the offset of the baseclass which is
1070 the INDEXth baseclass of class TYPE,
1071 for value at VALADDR (in host) at ADDRESS (in target).
1072 The result is the offset of the baseclass value relative
1073 to (the address of)(ARG) + OFFSET.
1074
1075 -1 is returned on error. */
1076
1077 int
1078 baseclass_offset (type, index, valaddr, address)
1079 struct type *type;
1080 int index;
1081 char *valaddr;
1082 CORE_ADDR address;
1083 {
1084 struct type *basetype = TYPE_BASECLASS (type, index);
1085
1086 if (BASETYPE_VIA_VIRTUAL (type, index))
1087 {
1088 /* Must hunt for the pointer to this virtual baseclass. */
1089 register int i, len = TYPE_NFIELDS (type);
1090 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1091
1092 /* First look for the virtual baseclass pointer
1093 in the fields. */
1094 for (i = n_baseclasses; i < len; i++)
1095 {
1096 if (vb_match (type, i, basetype))
1097 {
1098 CORE_ADDR addr
1099 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1100 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1101
1102 return addr - (LONGEST) address;
1103 }
1104 }
1105 /* Not in the fields, so try looking through the baseclasses. */
1106 for (i = index+1; i < n_baseclasses; i++)
1107 {
1108 int boffset =
1109 baseclass_offset (type, i, valaddr, address);
1110 if (boffset)
1111 return boffset;
1112 }
1113 /* Not found. */
1114 return -1;
1115 }
1116
1117 /* Baseclass is easily computed. */
1118 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1119 }
1120 \f
1121 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1122 VALADDR.
1123
1124 Extracting bits depends on endianness of the machine. Compute the
1125 number of least significant bits to discard. For big endian machines,
1126 we compute the total number of bits in the anonymous object, subtract
1127 off the bit count from the MSB of the object to the MSB of the
1128 bitfield, then the size of the bitfield, which leaves the LSB discard
1129 count. For little endian machines, the discard count is simply the
1130 number of bits from the LSB of the anonymous object to the LSB of the
1131 bitfield.
1132
1133 If the field is signed, we also do sign extension. */
1134
1135 LONGEST
1136 unpack_field_as_long (type, valaddr, fieldno)
1137 struct type *type;
1138 char *valaddr;
1139 int fieldno;
1140 {
1141 unsigned LONGEST val;
1142 unsigned LONGEST valmask;
1143 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1144 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1145 int lsbcount;
1146
1147 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1148
1149 /* Extract bits. See comment above. */
1150
1151 if (BITS_BIG_ENDIAN)
1152 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1153 else
1154 lsbcount = (bitpos % 8);
1155 val >>= lsbcount;
1156
1157 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1158 If the field is signed, and is negative, then sign extend. */
1159
1160 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1161 {
1162 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1163 val &= valmask;
1164 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1165 {
1166 if (val & (valmask ^ (valmask >> 1)))
1167 {
1168 val |= ~valmask;
1169 }
1170 }
1171 }
1172 return (val);
1173 }
1174
1175 /* Modify the value of a bitfield. ADDR points to a block of memory in
1176 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1177 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1178 indicate which bits (in target bit order) comprise the bitfield. */
1179
1180 void
1181 modify_field (addr, fieldval, bitpos, bitsize)
1182 char *addr;
1183 LONGEST fieldval;
1184 int bitpos, bitsize;
1185 {
1186 LONGEST oword;
1187
1188 /* If a negative fieldval fits in the field in question, chop
1189 off the sign extension bits. */
1190 if (bitsize < (8 * (int) sizeof (fieldval))
1191 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1192 fieldval = fieldval & ((1 << bitsize) - 1);
1193
1194 /* Warn if value is too big to fit in the field in question. */
1195 if (bitsize < (8 * (int) sizeof (fieldval))
1196 && 0 != (fieldval & ~((1<<bitsize)-1)))
1197 {
1198 /* FIXME: would like to include fieldval in the message, but
1199 we don't have a sprintf_longest. */
1200 warning ("Value does not fit in %d bits.", bitsize);
1201
1202 /* Truncate it, otherwise adjoining fields may be corrupted. */
1203 fieldval = fieldval & ((1 << bitsize) - 1);
1204 }
1205
1206 oword = extract_signed_integer (addr, sizeof oword);
1207
1208 /* Shifting for bit field depends on endianness of the target machine. */
1209 if (BITS_BIG_ENDIAN)
1210 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1211
1212 /* Mask out old value, while avoiding shifts >= size of oword */
1213 if (bitsize < 8 * (int) sizeof (oword))
1214 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1215 else
1216 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1217 oword |= fieldval << bitpos;
1218
1219 store_signed_integer (addr, sizeof oword, oword);
1220 }
1221 \f
1222 /* Convert C numbers into newly allocated values */
1223
1224 value_ptr
1225 value_from_longest (type, num)
1226 struct type *type;
1227 register LONGEST num;
1228 {
1229 register value_ptr val = allocate_value (type);
1230 register enum type_code code;
1231 register int len;
1232 retry:
1233 code = TYPE_CODE (type);
1234 len = TYPE_LENGTH (type);
1235
1236 switch (code)
1237 {
1238 case TYPE_CODE_TYPEDEF:
1239 type = check_typedef (type);
1240 goto retry;
1241 case TYPE_CODE_INT:
1242 case TYPE_CODE_CHAR:
1243 case TYPE_CODE_ENUM:
1244 case TYPE_CODE_BOOL:
1245 case TYPE_CODE_RANGE:
1246 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1247 break;
1248
1249 case TYPE_CODE_REF:
1250 case TYPE_CODE_PTR:
1251 /* This assumes that all pointers of a given length
1252 have the same form. */
1253 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1254 break;
1255
1256 default:
1257 error ("Unexpected type encountered for integer constant.");
1258 }
1259 return val;
1260 }
1261
1262 value_ptr
1263 value_from_double (type, num)
1264 struct type *type;
1265 DOUBLEST num;
1266 {
1267 register value_ptr val = allocate_value (type);
1268 struct type *base_type = check_typedef (type);
1269 register enum type_code code = TYPE_CODE (base_type);
1270 register int len = TYPE_LENGTH (base_type);
1271
1272 if (code == TYPE_CODE_FLT)
1273 {
1274 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1275 }
1276 else
1277 error ("Unexpected type encountered for floating constant.");
1278
1279 return val;
1280 }
1281 \f
1282 /* Deal with the value that is "about to be returned". */
1283
1284 /* Return the value that a function returning now
1285 would be returning to its caller, assuming its type is VALTYPE.
1286 RETBUF is where we look for what ought to be the contents
1287 of the registers (in raw form). This is because it is often
1288 desirable to restore old values to those registers
1289 after saving the contents of interest, and then call
1290 this function using the saved values.
1291 struct_return is non-zero when the function in question is
1292 using the structure return conventions on the machine in question;
1293 0 when it is using the value returning conventions (this often
1294 means returning pointer to where structure is vs. returning value). */
1295
1296 value_ptr
1297 value_being_returned (valtype, retbuf, struct_return)
1298 register struct type *valtype;
1299 char retbuf[REGISTER_BYTES];
1300 int struct_return;
1301 /*ARGSUSED*/
1302 {
1303 register value_ptr val;
1304 CORE_ADDR addr;
1305
1306 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1307 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1308 if (struct_return) {
1309 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1310 if (!addr)
1311 error ("Function return value unknown");
1312 return value_at (valtype, addr);
1313 }
1314 #endif
1315
1316 val = allocate_value (valtype);
1317 CHECK_TYPEDEF (valtype);
1318 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1319
1320 return val;
1321 }
1322
1323 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1324 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1325 and TYPE is the type (which is known to be struct, union or array).
1326
1327 On most machines, the struct convention is used unless we are
1328 using gcc and the type is of a special size. */
1329 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1330 native compiler. GCC 2.3.3 was the last release that did it the
1331 old way. Since gcc2_compiled was not changed, we have no
1332 way to correctly win in all cases, so we just do the right thing
1333 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1334 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1335 would cause more chaos than dealing with some struct returns being
1336 handled wrong. */
1337 #if !defined (USE_STRUCT_CONVENTION)
1338 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1339 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1340 || TYPE_LENGTH (value_type) == 2 \
1341 || TYPE_LENGTH (value_type) == 4 \
1342 || TYPE_LENGTH (value_type) == 8 \
1343 ) \
1344 ))
1345 #endif
1346
1347 /* Some fundamental types (such as long double) are returned on the stack for
1348 certain architectures. This macro should return true for any type besides
1349 struct, union or array that gets returned on the stack. */
1350
1351 #ifndef RETURN_VALUE_ON_STACK
1352 #define RETURN_VALUE_ON_STACK(TYPE) 0
1353 #endif
1354
1355 /* Return true if the function specified is using the structure returning
1356 convention on this machine to return arguments, or 0 if it is using
1357 the value returning convention. FUNCTION is the value representing
1358 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1359 is the type returned by the function. GCC_P is nonzero if compiled
1360 with GCC. */
1361
1362 int
1363 using_struct_return (function, funcaddr, value_type, gcc_p)
1364 value_ptr function;
1365 CORE_ADDR funcaddr;
1366 struct type *value_type;
1367 int gcc_p;
1368 /*ARGSUSED*/
1369 {
1370 register enum type_code code = TYPE_CODE (value_type);
1371
1372 if (code == TYPE_CODE_ERROR)
1373 error ("Function return type unknown.");
1374
1375 if (code == TYPE_CODE_STRUCT
1376 || code == TYPE_CODE_UNION
1377 || code == TYPE_CODE_ARRAY
1378 || RETURN_VALUE_ON_STACK (value_type))
1379 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1380
1381 return 0;
1382 }
1383
1384 /* Store VAL so it will be returned if a function returns now.
1385 Does not verify that VAL's type matches what the current
1386 function wants to return. */
1387
1388 void
1389 set_return_value (val)
1390 value_ptr val;
1391 {
1392 struct type *type = check_typedef (VALUE_TYPE (val));
1393 register enum type_code code = TYPE_CODE (type);
1394
1395 if (code == TYPE_CODE_ERROR)
1396 error ("Function return type unknown.");
1397
1398 if ( code == TYPE_CODE_STRUCT
1399 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1400 error ("GDB does not support specifying a struct or union return value.");
1401
1402 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1403 }
1404 \f
1405 void
1406 _initialize_values ()
1407 {
1408 add_cmd ("convenience", no_class, show_convenience,
1409 "Debugger convenience (\"$foo\") variables.\n\
1410 These variables are created when you assign them values;\n\
1411 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1412 A few convenience variables are given values automatically:\n\
1413 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1414 \"$__\" holds the contents of the last address examined with \"x\".",
1415 &showlist);
1416
1417 add_cmd ("values", no_class, show_values,
1418 "Elements of value history around item number IDX (or last ten).",
1419 &showlist);
1420 }
This page took 0.060234 seconds and 4 git commands to generate.