* inftarg.c (child_thread_alive): New function to see if a
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76
77 check_stub_type (type);
78
79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 register value_ptr val;
107
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125 }
126
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130 value_ptr
131 value_mark ()
132 {
133 return all_values;
134 }
135
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138 void
139 value_free_to_mark (mark)
140 value_ptr mark;
141 {
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150 }
151
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155 void
156 free_all_values ()
157 {
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167 }
168
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172 void
173 release_value (val)
174 register value_ptr val;
175 {
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192 }
193
194 /* Release all values up to mark */
195 value_ptr
196 value_release_to_mark (mark)
197 value_ptr mark;
198 {
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210 }
211
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216 value_ptr
217 value_copy (arg)
218 value_ptr arg;
219 {
220 register value_ptr val;
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
231 VALUE_REGNO (val) = VALUE_REGNO (arg);
232 VALUE_LAZY (val) = VALUE_LAZY (arg);
233 val->modifiable = arg->modifiable;
234 if (!VALUE_LAZY (val))
235 {
236 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
237 TYPE_LENGTH (VALUE_TYPE (arg))
238 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
239 }
240 return val;
241 }
242 \f
243 /* Access to the value history. */
244
245 /* Record a new value in the value history.
246 Returns the absolute history index of the entry.
247 Result of -1 indicates the value was not saved; otherwise it is the
248 value history index of this new item. */
249
250 int
251 record_latest_value (val)
252 value_ptr val;
253 {
254 int i;
255
256 /* Check error now if about to store an invalid float. We return -1
257 to the caller, but allow them to continue, e.g. to print it as "Nan". */
258 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
259 {
260 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
261 if (i) return -1; /* Indicate value not saved in history */
262 }
263
264 /* We don't want this value to have anything to do with the inferior anymore.
265 In particular, "set $1 = 50" should not affect the variable from which
266 the value was taken, and fast watchpoints should be able to assume that
267 a value on the value history never changes. */
268 if (VALUE_LAZY (val))
269 value_fetch_lazy (val);
270 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
271 from. This is a bit dubious, because then *&$1 does not just return $1
272 but the current contents of that location. c'est la vie... */
273 val->modifiable = 0;
274 release_value (val);
275
276 /* Here we treat value_history_count as origin-zero
277 and applying to the value being stored now. */
278
279 i = value_history_count % VALUE_HISTORY_CHUNK;
280 if (i == 0)
281 {
282 register struct value_history_chunk *new
283 = (struct value_history_chunk *)
284 xmalloc (sizeof (struct value_history_chunk));
285 memset (new->values, 0, sizeof new->values);
286 new->next = value_history_chain;
287 value_history_chain = new;
288 }
289
290 value_history_chain->values[i] = val;
291
292 /* Now we regard value_history_count as origin-one
293 and applying to the value just stored. */
294
295 return ++value_history_count;
296 }
297
298 /* Return a copy of the value in the history with sequence number NUM. */
299
300 value_ptr
301 access_value_history (num)
302 int num;
303 {
304 register struct value_history_chunk *chunk;
305 register int i;
306 register int absnum = num;
307
308 if (absnum <= 0)
309 absnum += value_history_count;
310
311 if (absnum <= 0)
312 {
313 if (num == 0)
314 error ("The history is empty.");
315 else if (num == 1)
316 error ("There is only one value in the history.");
317 else
318 error ("History does not go back to $$%d.", -num);
319 }
320 if (absnum > value_history_count)
321 error ("History has not yet reached $%d.", absnum);
322
323 absnum--;
324
325 /* Now absnum is always absolute and origin zero. */
326
327 chunk = value_history_chain;
328 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
329 i > 0; i--)
330 chunk = chunk->next;
331
332 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
333 }
334
335 /* Clear the value history entirely.
336 Must be done when new symbol tables are loaded,
337 because the type pointers become invalid. */
338
339 void
340 clear_value_history ()
341 {
342 register struct value_history_chunk *next;
343 register int i;
344 register value_ptr val;
345
346 while (value_history_chain)
347 {
348 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
349 if ((val = value_history_chain->values[i]) != NULL)
350 free ((PTR)val);
351 next = value_history_chain->next;
352 free ((PTR)value_history_chain);
353 value_history_chain = next;
354 }
355 value_history_count = 0;
356 }
357
358 static void
359 show_values (num_exp, from_tty)
360 char *num_exp;
361 int from_tty;
362 {
363 register int i;
364 register value_ptr val;
365 static int num = 1;
366
367 if (num_exp)
368 {
369 /* "info history +" should print from the stored position.
370 "info history <exp>" should print around value number <exp>. */
371 if (num_exp[0] != '+' || num_exp[1] != '\0')
372 num = parse_and_eval_address (num_exp) - 5;
373 }
374 else
375 {
376 /* "info history" means print the last 10 values. */
377 num = value_history_count - 9;
378 }
379
380 if (num <= 0)
381 num = 1;
382
383 for (i = num; i < num + 10 && i <= value_history_count; i++)
384 {
385 val = access_value_history (i);
386 printf_filtered ("$%d = ", i);
387 value_print (val, gdb_stdout, 0, Val_pretty_default);
388 printf_filtered ("\n");
389 }
390
391 /* The next "info history +" should start after what we just printed. */
392 num += 10;
393
394 /* Hitting just return after this command should do the same thing as
395 "info history +". If num_exp is null, this is unnecessary, since
396 "info history +" is not useful after "info history". */
397 if (from_tty && num_exp)
398 {
399 num_exp[0] = '+';
400 num_exp[1] = '\0';
401 }
402 }
403 \f
404 /* Internal variables. These are variables within the debugger
405 that hold values assigned by debugger commands.
406 The user refers to them with a '$' prefix
407 that does not appear in the variable names stored internally. */
408
409 static struct internalvar *internalvars;
410
411 /* Look up an internal variable with name NAME. NAME should not
412 normally include a dollar sign.
413
414 If the specified internal variable does not exist,
415 one is created, with a void value. */
416
417 struct internalvar *
418 lookup_internalvar (name)
419 char *name;
420 {
421 register struct internalvar *var;
422
423 for (var = internalvars; var; var = var->next)
424 if (STREQ (var->name, name))
425 return var;
426
427 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
428 var->name = concat (name, NULL);
429 var->value = allocate_value (builtin_type_void);
430 release_value (var->value);
431 var->next = internalvars;
432 internalvars = var;
433 return var;
434 }
435
436 value_ptr
437 value_of_internalvar (var)
438 struct internalvar *var;
439 {
440 register value_ptr val;
441
442 #ifdef IS_TRAPPED_INTERNALVAR
443 if (IS_TRAPPED_INTERNALVAR (var->name))
444 return VALUE_OF_TRAPPED_INTERNALVAR (var);
445 #endif
446
447 val = value_copy (var->value);
448 if (VALUE_LAZY (val))
449 value_fetch_lazy (val);
450 VALUE_LVAL (val) = lval_internalvar;
451 VALUE_INTERNALVAR (val) = var;
452 return val;
453 }
454
455 void
456 set_internalvar_component (var, offset, bitpos, bitsize, newval)
457 struct internalvar *var;
458 int offset, bitpos, bitsize;
459 value_ptr newval;
460 {
461 register char *addr = VALUE_CONTENTS (var->value) + offset;
462
463 #ifdef IS_TRAPPED_INTERNALVAR
464 if (IS_TRAPPED_INTERNALVAR (var->name))
465 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
466 #endif
467
468 if (bitsize)
469 modify_field (addr, value_as_long (newval),
470 bitpos, bitsize);
471 else
472 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
473 }
474
475 void
476 set_internalvar (var, val)
477 struct internalvar *var;
478 value_ptr val;
479 {
480 value_ptr newval;
481
482 #ifdef IS_TRAPPED_INTERNALVAR
483 if (IS_TRAPPED_INTERNALVAR (var->name))
484 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
485 #endif
486
487 newval = value_copy (val);
488 newval->modifiable = 1;
489
490 /* Force the value to be fetched from the target now, to avoid problems
491 later when this internalvar is referenced and the target is gone or
492 has changed. */
493 if (VALUE_LAZY (newval))
494 value_fetch_lazy (newval);
495
496 /* Begin code which must not call error(). If var->value points to
497 something free'd, an error() obviously leaves a dangling pointer.
498 But we also get a danling pointer if var->value points to
499 something in the value chain (i.e., before release_value is
500 called), because after the error free_all_values will get called before
501 long. */
502 free ((PTR)var->value);
503 var->value = newval;
504 release_value (newval);
505 /* End code which must not call error(). */
506 }
507
508 char *
509 internalvar_name (var)
510 struct internalvar *var;
511 {
512 return var->name;
513 }
514
515 /* Free all internalvars. Done when new symtabs are loaded,
516 because that makes the values invalid. */
517
518 void
519 clear_internalvars ()
520 {
521 register struct internalvar *var;
522
523 while (internalvars)
524 {
525 var = internalvars;
526 internalvars = var->next;
527 free ((PTR)var->name);
528 free ((PTR)var->value);
529 free ((PTR)var);
530 }
531 }
532
533 static void
534 show_convenience (ignore, from_tty)
535 char *ignore;
536 int from_tty;
537 {
538 register struct internalvar *var;
539 int varseen = 0;
540
541 for (var = internalvars; var; var = var->next)
542 {
543 #ifdef IS_TRAPPED_INTERNALVAR
544 if (IS_TRAPPED_INTERNALVAR (var->name))
545 continue;
546 #endif
547 if (!varseen)
548 {
549 varseen = 1;
550 }
551 printf_filtered ("$%s = ", var->name);
552 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
553 printf_filtered ("\n");
554 }
555 if (!varseen)
556 printf_unfiltered ("No debugger convenience variables now defined.\n\
557 Convenience variables have names starting with \"$\";\n\
558 use \"set\" as in \"set $foo = 5\" to define them.\n");
559 }
560 \f
561 /* Extract a value as a C number (either long or double).
562 Knows how to convert fixed values to double, or
563 floating values to long.
564 Does not deallocate the value. */
565
566 LONGEST
567 value_as_long (val)
568 register value_ptr val;
569 {
570 /* This coerces arrays and functions, which is necessary (e.g.
571 in disassemble_command). It also dereferences references, which
572 I suspect is the most logical thing to do. */
573 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
574 COERCE_ARRAY (val);
575 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
576 }
577
578 double
579 value_as_double (val)
580 register value_ptr val;
581 {
582 double foo;
583 int inv;
584
585 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
586 if (inv)
587 error ("Invalid floating value found in program.");
588 return foo;
589 }
590 /* Extract a value as a C pointer.
591 Does not deallocate the value. */
592 CORE_ADDR
593 value_as_pointer (val)
594 value_ptr val;
595 {
596 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
597 whether we want this to be true eventually. */
598 #if 0
599 /* ADDR_BITS_REMOVE is wrong if we are being called for a
600 non-address (e.g. argument to "signal", "info break", etc.), or
601 for pointers to char, in which the low bits *are* significant. */
602 return ADDR_BITS_REMOVE(value_as_long (val));
603 #else
604 return value_as_long (val);
605 #endif
606 }
607 \f
608 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
609 as a long, or as a double, assuming the raw data is described
610 by type TYPE. Knows how to convert different sizes of values
611 and can convert between fixed and floating point. We don't assume
612 any alignment for the raw data. Return value is in host byte order.
613
614 If you want functions and arrays to be coerced to pointers, and
615 references to be dereferenced, call value_as_long() instead.
616
617 C++: It is assumed that the front-end has taken care of
618 all matters concerning pointers to members. A pointer
619 to member which reaches here is considered to be equivalent
620 to an INT (or some size). After all, it is only an offset. */
621
622 LONGEST
623 unpack_long (type, valaddr)
624 struct type *type;
625 char *valaddr;
626 {
627 register enum type_code code = TYPE_CODE (type);
628 register int len = TYPE_LENGTH (type);
629 register int nosign = TYPE_UNSIGNED (type);
630
631 switch (code)
632 {
633 case TYPE_CODE_ENUM:
634 case TYPE_CODE_BOOL:
635 case TYPE_CODE_INT:
636 case TYPE_CODE_CHAR:
637 case TYPE_CODE_RANGE:
638 if (nosign)
639 return extract_unsigned_integer (valaddr, len);
640 else
641 return extract_signed_integer (valaddr, len);
642
643 case TYPE_CODE_FLT:
644 return extract_floating (valaddr, len);
645
646 case TYPE_CODE_PTR:
647 case TYPE_CODE_REF:
648 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
649 whether we want this to be true eventually. */
650 return extract_address (valaddr, len);
651
652 case TYPE_CODE_MEMBER:
653 error ("not implemented: member types in unpack_long");
654
655 default:
656 error ("Value can't be converted to integer.");
657 }
658 return 0; /* Placate lint. */
659 }
660
661 /* Return a double value from the specified type and address.
662 INVP points to an int which is set to 0 for valid value,
663 1 for invalid value (bad float format). In either case,
664 the returned double is OK to use. Argument is in target
665 format, result is in host format. */
666
667 double
668 unpack_double (type, valaddr, invp)
669 struct type *type;
670 char *valaddr;
671 int *invp;
672 {
673 register enum type_code code = TYPE_CODE (type);
674 register int len = TYPE_LENGTH (type);
675 register int nosign = TYPE_UNSIGNED (type);
676
677 *invp = 0; /* Assume valid. */
678 if (code == TYPE_CODE_FLT)
679 {
680 #ifdef INVALID_FLOAT
681 if (INVALID_FLOAT (valaddr, len))
682 {
683 *invp = 1;
684 return 1.234567891011121314;
685 }
686 #endif
687 return extract_floating (valaddr, len);
688 }
689 else if (nosign)
690 {
691 /* Unsigned -- be sure we compensate for signed LONGEST. */
692 return (unsigned LONGEST) unpack_long (type, valaddr);
693 }
694 else
695 {
696 /* Signed -- we are OK with unpack_long. */
697 return unpack_long (type, valaddr);
698 }
699 }
700
701 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
702 as a CORE_ADDR, assuming the raw data is described by type TYPE.
703 We don't assume any alignment for the raw data. Return value is in
704 host byte order.
705
706 If you want functions and arrays to be coerced to pointers, and
707 references to be dereferenced, call value_as_pointer() instead.
708
709 C++: It is assumed that the front-end has taken care of
710 all matters concerning pointers to members. A pointer
711 to member which reaches here is considered to be equivalent
712 to an INT (or some size). After all, it is only an offset. */
713
714 CORE_ADDR
715 unpack_pointer (type, valaddr)
716 struct type *type;
717 char *valaddr;
718 {
719 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
720 whether we want this to be true eventually. */
721 return unpack_long (type, valaddr);
722 }
723 \f
724 /* Given a value ARG1 (offset by OFFSET bytes)
725 of a struct or union type ARG_TYPE,
726 extract and return the value of one of its fields.
727 FIELDNO says which field.
728
729 For C++, must also be able to return values from static fields */
730
731 value_ptr
732 value_primitive_field (arg1, offset, fieldno, arg_type)
733 register value_ptr arg1;
734 int offset;
735 register int fieldno;
736 register struct type *arg_type;
737 {
738 register value_ptr v;
739 register struct type *type;
740
741 check_stub_type (arg_type);
742 type = TYPE_FIELD_TYPE (arg_type, fieldno);
743
744 /* Handle packed fields */
745
746 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
747 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
748 {
749 v = value_from_longest (type,
750 unpack_field_as_long (arg_type,
751 VALUE_CONTENTS (arg1),
752 fieldno));
753 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
754 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
755 }
756 else
757 {
758 v = allocate_value (type);
759 if (VALUE_LAZY (arg1))
760 VALUE_LAZY (v) = 1;
761 else
762 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
763 TYPE_LENGTH (type));
764 }
765 VALUE_LVAL (v) = VALUE_LVAL (arg1);
766 if (VALUE_LVAL (arg1) == lval_internalvar)
767 VALUE_LVAL (v) = lval_internalvar_component;
768 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
769 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
770 return v;
771 }
772
773 /* Given a value ARG1 of a struct or union type,
774 extract and return the value of one of its fields.
775 FIELDNO says which field.
776
777 For C++, must also be able to return values from static fields */
778
779 value_ptr
780 value_field (arg1, fieldno)
781 register value_ptr arg1;
782 register int fieldno;
783 {
784 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
785 }
786
787 /* Return a non-virtual function as a value.
788 F is the list of member functions which contains the desired method.
789 J is an index into F which provides the desired method. */
790
791 value_ptr
792 value_fn_field (arg1p, f, j, type, offset)
793 value_ptr *arg1p;
794 struct fn_field *f;
795 int j;
796 struct type *type;
797 int offset;
798 {
799 register value_ptr v;
800 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
801 struct symbol *sym;
802
803 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
804 0, VAR_NAMESPACE, 0, NULL);
805 if (! sym)
806 return NULL;
807 /*
808 error ("Internal error: could not find physical method named %s",
809 TYPE_FN_FIELD_PHYSNAME (f, j));
810 */
811
812 v = allocate_value (ftype);
813 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
814 VALUE_TYPE (v) = ftype;
815
816 if (arg1p)
817 {
818 if (type != VALUE_TYPE (*arg1p))
819 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
820 value_addr (*arg1p)));
821
822 /* Move the `this' pointer according to the offset.
823 VALUE_OFFSET (*arg1p) += offset;
824 */
825 }
826
827 return v;
828 }
829
830 /* Return a virtual function as a value.
831 ARG1 is the object which provides the virtual function
832 table pointer. *ARG1P is side-effected in calling this function.
833 F is the list of member functions which contains the desired virtual
834 function.
835 J is an index into F which provides the desired virtual function.
836
837 TYPE is the type in which F is located. */
838 value_ptr
839 value_virtual_fn_field (arg1p, f, j, type, offset)
840 value_ptr *arg1p;
841 struct fn_field *f;
842 int j;
843 struct type *type;
844 int offset;
845 {
846 value_ptr arg1 = *arg1p;
847 /* First, get the virtual function table pointer. That comes
848 with a strange type, so cast it to type `pointer to long' (which
849 should serve just fine as a function type). Then, index into
850 the table, and convert final value to appropriate function type. */
851 value_ptr entry, vfn, vtbl;
852 value_ptr vi = value_from_longest (builtin_type_int,
853 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
854 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
855 struct type *context;
856 if (fcontext == NULL)
857 /* We don't have an fcontext (e.g. the program was compiled with
858 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
859 This won't work right for multiple inheritance, but at least we
860 should do as well as GDB 3.x did. */
861 fcontext = TYPE_VPTR_BASETYPE (type);
862 context = lookup_pointer_type (fcontext);
863 /* Now context is a pointer to the basetype containing the vtbl. */
864 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
865 arg1 = value_ind (value_cast (context, value_addr (arg1)));
866
867 context = VALUE_TYPE (arg1);
868 /* Now context is the basetype containing the vtbl. */
869
870 /* This type may have been defined before its virtual function table
871 was. If so, fill in the virtual function table entry for the
872 type now. */
873 if (TYPE_VPTR_FIELDNO (context) < 0)
874 fill_in_vptr_fieldno (context);
875
876 /* The virtual function table is now an array of structures
877 which have the form { int16 offset, delta; void *pfn; }. */
878 vtbl = value_ind (value_primitive_field (arg1, 0,
879 TYPE_VPTR_FIELDNO (context),
880 TYPE_VPTR_BASETYPE (context)));
881
882 /* Index into the virtual function table. This is hard-coded because
883 looking up a field is not cheap, and it may be important to save
884 time, e.g. if the user has set a conditional breakpoint calling
885 a virtual function. */
886 entry = value_subscript (vtbl, vi);
887
888 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
889 {
890 /* Move the `this' pointer according to the virtual function table. */
891 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
892
893 if (! VALUE_LAZY (arg1))
894 {
895 VALUE_LAZY (arg1) = 1;
896 value_fetch_lazy (arg1);
897 }
898
899 vfn = value_field (entry, 2);
900 }
901 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
902 vfn = entry;
903 else
904 error ("I'm confused: virtual function table has bad type");
905 /* Reinstantiate the function pointer with the correct type. */
906 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
907
908 *arg1p = arg1;
909 return vfn;
910 }
911
912 /* ARG is a pointer to an object we know to be at least
913 a DTYPE. BTYPE is the most derived basetype that has
914 already been searched (and need not be searched again).
915 After looking at the vtables between BTYPE and DTYPE,
916 return the most derived type we find. The caller must
917 be satisfied when the return value == DTYPE.
918
919 FIXME-tiemann: should work with dossier entries as well. */
920
921 static value_ptr
922 value_headof (in_arg, btype, dtype)
923 value_ptr in_arg;
924 struct type *btype, *dtype;
925 {
926 /* First collect the vtables we must look at for this object. */
927 /* FIXME-tiemann: right now, just look at top-most vtable. */
928 value_ptr arg, vtbl, entry, best_entry = 0;
929 int i, nelems;
930 int offset, best_offset = 0;
931 struct symbol *sym;
932 CORE_ADDR pc_for_sym;
933 char *demangled_name;
934 struct minimal_symbol *msymbol;
935
936 btype = TYPE_VPTR_BASETYPE (dtype);
937 check_stub_type (btype);
938 arg = in_arg;
939 if (btype != dtype)
940 arg = value_cast (lookup_pointer_type (btype), arg);
941 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
942
943 /* Check that VTBL looks like it points to a virtual function table. */
944 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
945 if (msymbol == NULL
946 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
947 || !VTBL_PREFIX_P (demangled_name))
948 {
949 /* If we expected to find a vtable, but did not, let the user
950 know that we aren't happy, but don't throw an error.
951 FIXME: there has to be a better way to do this. */
952 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
953 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
954 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
955 VALUE_TYPE (in_arg) = error_type;
956 return in_arg;
957 }
958
959 /* Now search through the virtual function table. */
960 entry = value_ind (vtbl);
961 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
962 for (i = 1; i <= nelems; i++)
963 {
964 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
965 (LONGEST) i));
966 /* This won't work if we're using thunks. */
967 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
968 break;
969 offset = longest_to_int (value_as_long (value_field (entry, 0)));
970 /* If we use '<=' we can handle single inheritance
971 * where all offsets are zero - just use the first entry found. */
972 if (offset <= best_offset)
973 {
974 best_offset = offset;
975 best_entry = entry;
976 }
977 }
978 /* Move the pointer according to BEST_ENTRY's offset, and figure
979 out what type we should return as the new pointer. */
980 if (best_entry == 0)
981 {
982 /* An alternative method (which should no longer be necessary).
983 * But we leave it in for future use, when we will hopefully
984 * have optimizes the vtable to use thunks instead of offsets. */
985 /* Use the name of vtable itself to extract a base type. */
986 demangled_name += 4; /* Skip _vt$ prefix. */
987 }
988 else
989 {
990 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
991 sym = find_pc_function (pc_for_sym);
992 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
993 *(strchr (demangled_name, ':')) = '\0';
994 }
995 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
996 if (sym == NULL)
997 error ("could not find type declaration for `%s'", demangled_name);
998 if (best_entry)
999 {
1000 free (demangled_name);
1001 arg = value_add (value_cast (builtin_type_int, arg),
1002 value_field (best_entry, 0));
1003 }
1004 else arg = in_arg;
1005 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1006 return arg;
1007 }
1008
1009 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1010 function tables, probe ARG's tables (including the vtables
1011 of its baseclasses) to figure out the most derived type that ARG
1012 could actually be a pointer to. */
1013
1014 value_ptr
1015 value_from_vtable_info (arg, type)
1016 value_ptr arg;
1017 struct type *type;
1018 {
1019 /* Take care of preliminaries. */
1020 if (TYPE_VPTR_FIELDNO (type) < 0)
1021 fill_in_vptr_fieldno (type);
1022 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1023 return 0;
1024
1025 return value_headof (arg, 0, type);
1026 }
1027
1028 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1029 pointer which is for the base class whose type is BASECLASS. */
1030
1031 static int
1032 vb_match (type, index, basetype)
1033 struct type *type;
1034 int index;
1035 struct type *basetype;
1036 {
1037 struct type *fieldtype;
1038 char *name = TYPE_FIELD_NAME (type, index);
1039 char *field_class_name = NULL;
1040
1041 if (*name != '_')
1042 return 0;
1043 /* gcc 2.4 uses _vb$. */
1044 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1045 field_class_name = name + 4;
1046 /* gcc 2.5 will use __vb_. */
1047 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1048 field_class_name = name + 5;
1049
1050 if (field_class_name == NULL)
1051 /* This field is not a virtual base class pointer. */
1052 return 0;
1053
1054 /* It's a virtual baseclass pointer, now we just need to find out whether
1055 it is for this baseclass. */
1056 fieldtype = TYPE_FIELD_TYPE (type, index);
1057 if (fieldtype == NULL
1058 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1059 /* "Can't happen". */
1060 return 0;
1061
1062 /* What we check for is that either the types are equal (needed for
1063 nameless types) or have the same name. This is ugly, and a more
1064 elegant solution should be devised (which would probably just push
1065 the ugliness into symbol reading unless we change the stabs format). */
1066 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1067 return 1;
1068
1069 if (TYPE_NAME (basetype) != NULL
1070 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1071 && STREQ (TYPE_NAME (basetype),
1072 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1073 return 1;
1074 return 0;
1075 }
1076
1077 /* Compute the offset of the baseclass which is
1078 the INDEXth baseclass of class TYPE, for a value ARG,
1079 wih extra offset of OFFSET.
1080 The result is the offste of the baseclass value relative
1081 to (the address of)(ARG) + OFFSET.
1082
1083 -1 is returned on error. */
1084
1085 int
1086 baseclass_offset (type, index, arg, offset)
1087 struct type *type;
1088 int index;
1089 value_ptr arg;
1090 int offset;
1091 {
1092 struct type *basetype = TYPE_BASECLASS (type, index);
1093
1094 if (BASETYPE_VIA_VIRTUAL (type, index))
1095 {
1096 /* Must hunt for the pointer to this virtual baseclass. */
1097 register int i, len = TYPE_NFIELDS (type);
1098 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1099
1100 /* First look for the virtual baseclass pointer
1101 in the fields. */
1102 for (i = n_baseclasses; i < len; i++)
1103 {
1104 if (vb_match (type, i, basetype))
1105 {
1106 CORE_ADDR addr
1107 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1108 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1109 + offset
1110 + (TYPE_FIELD_BITPOS (type, i) / 8));
1111
1112 if (VALUE_LVAL (arg) != lval_memory)
1113 return -1;
1114
1115 return addr -
1116 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1117 }
1118 }
1119 /* Not in the fields, so try looking through the baseclasses. */
1120 for (i = index+1; i < n_baseclasses; i++)
1121 {
1122 int boffset =
1123 baseclass_offset (type, i, arg, offset);
1124 if (boffset)
1125 return boffset;
1126 }
1127 /* Not found. */
1128 return -1;
1129 }
1130
1131 /* Baseclass is easily computed. */
1132 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1133 }
1134
1135 /* Compute the address of the baseclass which is
1136 the INDEXth baseclass of class TYPE. The TYPE base
1137 of the object is at VALADDR.
1138
1139 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1140 or 0 if no error. In that case the return value is not the address
1141 of the baseclasss, but the address which could not be read
1142 successfully. */
1143
1144 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1145
1146 char *
1147 baseclass_addr (type, index, valaddr, valuep, errp)
1148 struct type *type;
1149 int index;
1150 char *valaddr;
1151 value_ptr *valuep;
1152 int *errp;
1153 {
1154 struct type *basetype = TYPE_BASECLASS (type, index);
1155
1156 if (errp)
1157 *errp = 0;
1158
1159 if (BASETYPE_VIA_VIRTUAL (type, index))
1160 {
1161 /* Must hunt for the pointer to this virtual baseclass. */
1162 register int i, len = TYPE_NFIELDS (type);
1163 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1164
1165 /* First look for the virtual baseclass pointer
1166 in the fields. */
1167 for (i = n_baseclasses; i < len; i++)
1168 {
1169 if (vb_match (type, i, basetype))
1170 {
1171 value_ptr val = allocate_value (basetype);
1172 CORE_ADDR addr;
1173 int status;
1174
1175 addr
1176 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1177 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1178
1179 status = target_read_memory (addr,
1180 VALUE_CONTENTS_RAW (val),
1181 TYPE_LENGTH (basetype));
1182 VALUE_LVAL (val) = lval_memory;
1183 VALUE_ADDRESS (val) = addr;
1184
1185 if (status != 0)
1186 {
1187 if (valuep)
1188 *valuep = NULL;
1189 release_value (val);
1190 value_free (val);
1191 if (errp)
1192 *errp = status;
1193 return (char *)addr;
1194 }
1195 else
1196 {
1197 if (valuep)
1198 *valuep = val;
1199 return (char *) VALUE_CONTENTS (val);
1200 }
1201 }
1202 }
1203 /* Not in the fields, so try looking through the baseclasses. */
1204 for (i = index+1; i < n_baseclasses; i++)
1205 {
1206 char *baddr;
1207
1208 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1209 if (baddr)
1210 return baddr;
1211 }
1212 /* Not found. */
1213 if (valuep)
1214 *valuep = 0;
1215 return 0;
1216 }
1217
1218 /* Baseclass is easily computed. */
1219 if (valuep)
1220 *valuep = 0;
1221 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1222 }
1223 \f
1224 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1225 VALADDR.
1226
1227 Extracting bits depends on endianness of the machine. Compute the
1228 number of least significant bits to discard. For big endian machines,
1229 we compute the total number of bits in the anonymous object, subtract
1230 off the bit count from the MSB of the object to the MSB of the
1231 bitfield, then the size of the bitfield, which leaves the LSB discard
1232 count. For little endian machines, the discard count is simply the
1233 number of bits from the LSB of the anonymous object to the LSB of the
1234 bitfield.
1235
1236 If the field is signed, we also do sign extension. */
1237
1238 LONGEST
1239 unpack_field_as_long (type, valaddr, fieldno)
1240 struct type *type;
1241 char *valaddr;
1242 int fieldno;
1243 {
1244 unsigned LONGEST val;
1245 unsigned LONGEST valmask;
1246 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1247 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1248 int lsbcount;
1249
1250 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1251
1252 /* Extract bits. See comment above. */
1253
1254 if (BITS_BIG_ENDIAN)
1255 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1256 else
1257 lsbcount = (bitpos % 8);
1258 val >>= lsbcount;
1259
1260 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1261 If the field is signed, and is negative, then sign extend. */
1262
1263 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1264 {
1265 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1266 val &= valmask;
1267 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1268 {
1269 if (val & (valmask ^ (valmask >> 1)))
1270 {
1271 val |= ~valmask;
1272 }
1273 }
1274 }
1275 return (val);
1276 }
1277
1278 /* Modify the value of a bitfield. ADDR points to a block of memory in
1279 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1280 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1281 indicate which bits (in target bit order) comprise the bitfield. */
1282
1283 void
1284 modify_field (addr, fieldval, bitpos, bitsize)
1285 char *addr;
1286 LONGEST fieldval;
1287 int bitpos, bitsize;
1288 {
1289 LONGEST oword;
1290
1291 /* Reject values too big to fit in the field in question,
1292 otherwise adjoining fields may be corrupted. */
1293 if (bitsize < (8 * sizeof (fieldval))
1294 && 0 != (fieldval & ~((1<<bitsize)-1)))
1295 {
1296 /* FIXME: would like to include fieldval in the message, but
1297 we don't have a sprintf_longest. */
1298 error ("Value does not fit in %d bits.", bitsize);
1299 }
1300
1301 oword = extract_signed_integer (addr, sizeof oword);
1302
1303 /* Shifting for bit field depends on endianness of the target machine. */
1304 if (BITS_BIG_ENDIAN)
1305 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1306
1307 /* Mask out old value, while avoiding shifts >= size of oword */
1308 if (bitsize < 8 * sizeof (oword))
1309 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1310 else
1311 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1312 oword |= fieldval << bitpos;
1313
1314 store_signed_integer (addr, sizeof oword, oword);
1315 }
1316 \f
1317 /* Convert C numbers into newly allocated values */
1318
1319 value_ptr
1320 value_from_longest (type, num)
1321 struct type *type;
1322 register LONGEST num;
1323 {
1324 register value_ptr val = allocate_value (type);
1325 register enum type_code code = TYPE_CODE (type);
1326 register int len = TYPE_LENGTH (type);
1327
1328 switch (code)
1329 {
1330 case TYPE_CODE_INT:
1331 case TYPE_CODE_CHAR:
1332 case TYPE_CODE_ENUM:
1333 case TYPE_CODE_BOOL:
1334 case TYPE_CODE_RANGE:
1335 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1336 break;
1337
1338 case TYPE_CODE_REF:
1339 case TYPE_CODE_PTR:
1340 /* This assumes that all pointers of a given length
1341 have the same form. */
1342 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1343 break;
1344
1345 default:
1346 error ("Unexpected type encountered for integer constant.");
1347 }
1348 return val;
1349 }
1350
1351 value_ptr
1352 value_from_double (type, num)
1353 struct type *type;
1354 double num;
1355 {
1356 register value_ptr val = allocate_value (type);
1357 register enum type_code code = TYPE_CODE (type);
1358 register int len = TYPE_LENGTH (type);
1359
1360 if (code == TYPE_CODE_FLT)
1361 {
1362 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1363 }
1364 else
1365 error ("Unexpected type encountered for floating constant.");
1366
1367 return val;
1368 }
1369 \f
1370 /* Deal with the value that is "about to be returned". */
1371
1372 /* Return the value that a function returning now
1373 would be returning to its caller, assuming its type is VALTYPE.
1374 RETBUF is where we look for what ought to be the contents
1375 of the registers (in raw form). This is because it is often
1376 desirable to restore old values to those registers
1377 after saving the contents of interest, and then call
1378 this function using the saved values.
1379 struct_return is non-zero when the function in question is
1380 using the structure return conventions on the machine in question;
1381 0 when it is using the value returning conventions (this often
1382 means returning pointer to where structure is vs. returning value). */
1383
1384 value_ptr
1385 value_being_returned (valtype, retbuf, struct_return)
1386 register struct type *valtype;
1387 char retbuf[REGISTER_BYTES];
1388 int struct_return;
1389 /*ARGSUSED*/
1390 {
1391 register value_ptr val;
1392 CORE_ADDR addr;
1393
1394 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1395 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1396 if (struct_return) {
1397 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1398 if (!addr)
1399 error ("Function return value unknown");
1400 return value_at (valtype, addr);
1401 }
1402 #endif
1403
1404 val = allocate_value (valtype);
1405 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1406
1407 return val;
1408 }
1409
1410 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1411 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1412 and TYPE is the type (which is known to be struct, union or array).
1413
1414 On most machines, the struct convention is used unless we are
1415 using gcc and the type is of a special size. */
1416 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1417 native compiler. GCC 2.3.3 was the last release that did it the
1418 old way. Since gcc2_compiled was not changed, we have no
1419 way to correctly win in all cases, so we just do the right thing
1420 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1421 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1422 would cause more chaos than dealing with some struct returns being
1423 handled wrong. */
1424 #if !defined (USE_STRUCT_CONVENTION)
1425 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1426 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1427 || TYPE_LENGTH (value_type) == 2 \
1428 || TYPE_LENGTH (value_type) == 4 \
1429 || TYPE_LENGTH (value_type) == 8 \
1430 ) \
1431 ))
1432 #endif
1433
1434 /* Return true if the function specified is using the structure returning
1435 convention on this machine to return arguments, or 0 if it is using
1436 the value returning convention. FUNCTION is the value representing
1437 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1438 is the type returned by the function. GCC_P is nonzero if compiled
1439 with GCC. */
1440
1441 int
1442 using_struct_return (function, funcaddr, value_type, gcc_p)
1443 value_ptr function;
1444 CORE_ADDR funcaddr;
1445 struct type *value_type;
1446 int gcc_p;
1447 /*ARGSUSED*/
1448 {
1449 register enum type_code code = TYPE_CODE (value_type);
1450
1451 if (code == TYPE_CODE_ERROR)
1452 error ("Function return type unknown.");
1453
1454 if (code == TYPE_CODE_STRUCT ||
1455 code == TYPE_CODE_UNION ||
1456 code == TYPE_CODE_ARRAY)
1457 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1458
1459 return 0;
1460 }
1461
1462 /* Store VAL so it will be returned if a function returns now.
1463 Does not verify that VAL's type matches what the current
1464 function wants to return. */
1465
1466 void
1467 set_return_value (val)
1468 value_ptr val;
1469 {
1470 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1471
1472 if (code == TYPE_CODE_ERROR)
1473 error ("Function return type unknown.");
1474
1475 if ( code == TYPE_CODE_STRUCT
1476 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1477 error ("GDB does not support specifying a struct or union return value.");
1478
1479 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
1480 }
1481 \f
1482 void
1483 _initialize_values ()
1484 {
1485 add_cmd ("convenience", no_class, show_convenience,
1486 "Debugger convenience (\"$foo\") variables.\n\
1487 These variables are created when you assign them values;\n\
1488 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1489 A few convenience variables are given values automatically:\n\
1490 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1491 \"$__\" holds the contents of the last address examined with \"x\".",
1492 &showlist);
1493
1494 add_cmd ("values", no_class, show_values,
1495 "Elements of value history around item number IDX (or last ten).",
1496 &showlist);
1497 }
This page took 0.061553 seconds and 4 git commands to generate.