* Add native support for long double data type.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76 struct type *atype = check_typedef (type);
77
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REGNO (val) = -1;
89 VALUE_LAZY (val) = 0;
90 VALUE_OPTIMIZED_OUT (val) = 0;
91 val->modifiable = 1;
92 return val;
93 }
94
95 /* Allocate a value that has the correct length
96 for COUNT repetitions type TYPE. */
97
98 value_ptr
99 allocate_repeat_value (type, count)
100 struct type *type;
101 int count;
102 {
103 struct type *element_type = type;
104 int low_bound = current_language->string_lower_bound; /* ??? */
105 /* FIXME-type-allocation: need a way to free this type when we are
106 done with it. */
107 struct type *range_type
108 = create_range_type ((struct type *) NULL, builtin_type_int,
109 low_bound, count + low_bound - 1);
110 /* FIXME-type-allocation: need a way to free this type when we are
111 done with it. */
112 return allocate_value (create_array_type ((struct type *) NULL,
113 type, range_type));
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value_ptr
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value_ptr mark;
130 {
131 value_ptr val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value_ptr val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value_ptr val;
164 {
165 register value_ptr v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Release all values up to mark */
184 value_ptr
185 value_release_to_mark (mark)
186 value_ptr mark;
187 {
188 value_ptr val, next;
189
190 for (val = next = all_values; next; next = VALUE_NEXT (next))
191 if (VALUE_NEXT (next) == mark)
192 {
193 all_values = VALUE_NEXT (next);
194 VALUE_NEXT (next) = 0;
195 return val;
196 }
197 all_values = 0;
198 return val;
199 }
200
201 /* Return a copy of the value ARG.
202 It contains the same contents, for same memory address,
203 but it's a different block of storage. */
204
205 value_ptr
206 value_copy (arg)
207 value_ptr arg;
208 {
209 register struct type *type = VALUE_TYPE (arg);
210 register value_ptr val = allocate_value (type);
211 VALUE_LVAL (val) = VALUE_LVAL (arg);
212 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
213 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
214 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
215 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
216 VALUE_FRAME (val) = VALUE_FRAME (arg);
217 VALUE_REGNO (val) = VALUE_REGNO (arg);
218 VALUE_LAZY (val) = VALUE_LAZY (arg);
219 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
220 val->modifiable = arg->modifiable;
221 if (!VALUE_LAZY (val))
222 {
223 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
224 TYPE_LENGTH (VALUE_TYPE (arg)));
225 }
226 return val;
227 }
228 \f
229 /* Access to the value history. */
230
231 /* Record a new value in the value history.
232 Returns the absolute history index of the entry.
233 Result of -1 indicates the value was not saved; otherwise it is the
234 value history index of this new item. */
235
236 int
237 record_latest_value (val)
238 value_ptr val;
239 {
240 int i;
241
242 /* We don't want this value to have anything to do with the inferior anymore.
243 In particular, "set $1 = 50" should not affect the variable from which
244 the value was taken, and fast watchpoints should be able to assume that
245 a value on the value history never changes. */
246 if (VALUE_LAZY (val))
247 value_fetch_lazy (val);
248 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
249 from. This is a bit dubious, because then *&$1 does not just return $1
250 but the current contents of that location. c'est la vie... */
251 val->modifiable = 0;
252 release_value (val);
253
254 /* Here we treat value_history_count as origin-zero
255 and applying to the value being stored now. */
256
257 i = value_history_count % VALUE_HISTORY_CHUNK;
258 if (i == 0)
259 {
260 register struct value_history_chunk *new
261 = (struct value_history_chunk *)
262 xmalloc (sizeof (struct value_history_chunk));
263 memset (new->values, 0, sizeof new->values);
264 new->next = value_history_chain;
265 value_history_chain = new;
266 }
267
268 value_history_chain->values[i] = val;
269
270 /* Now we regard value_history_count as origin-one
271 and applying to the value just stored. */
272
273 return ++value_history_count;
274 }
275
276 /* Return a copy of the value in the history with sequence number NUM. */
277
278 value_ptr
279 access_value_history (num)
280 int num;
281 {
282 register struct value_history_chunk *chunk;
283 register int i;
284 register int absnum = num;
285
286 if (absnum <= 0)
287 absnum += value_history_count;
288
289 if (absnum <= 0)
290 {
291 if (num == 0)
292 error ("The history is empty.");
293 else if (num == 1)
294 error ("There is only one value in the history.");
295 else
296 error ("History does not go back to $$%d.", -num);
297 }
298 if (absnum > value_history_count)
299 error ("History has not yet reached $%d.", absnum);
300
301 absnum--;
302
303 /* Now absnum is always absolute and origin zero. */
304
305 chunk = value_history_chain;
306 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
307 i > 0; i--)
308 chunk = chunk->next;
309
310 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
311 }
312
313 /* Clear the value history entirely.
314 Must be done when new symbol tables are loaded,
315 because the type pointers become invalid. */
316
317 void
318 clear_value_history ()
319 {
320 register struct value_history_chunk *next;
321 register int i;
322 register value_ptr val;
323
324 while (value_history_chain)
325 {
326 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
327 if ((val = value_history_chain->values[i]) != NULL)
328 free ((PTR)val);
329 next = value_history_chain->next;
330 free ((PTR)value_history_chain);
331 value_history_chain = next;
332 }
333 value_history_count = 0;
334 }
335
336 static void
337 show_values (num_exp, from_tty)
338 char *num_exp;
339 int from_tty;
340 {
341 register int i;
342 register value_ptr val;
343 static int num = 1;
344
345 if (num_exp)
346 {
347 /* "info history +" should print from the stored position.
348 "info history <exp>" should print around value number <exp>. */
349 if (num_exp[0] != '+' || num_exp[1] != '\0')
350 num = parse_and_eval_address (num_exp) - 5;
351 }
352 else
353 {
354 /* "info history" means print the last 10 values. */
355 num = value_history_count - 9;
356 }
357
358 if (num <= 0)
359 num = 1;
360
361 for (i = num; i < num + 10 && i <= value_history_count; i++)
362 {
363 val = access_value_history (i);
364 printf_filtered ("$%d = ", i);
365 value_print (val, gdb_stdout, 0, Val_pretty_default);
366 printf_filtered ("\n");
367 }
368
369 /* The next "info history +" should start after what we just printed. */
370 num += 10;
371
372 /* Hitting just return after this command should do the same thing as
373 "info history +". If num_exp is null, this is unnecessary, since
374 "info history +" is not useful after "info history". */
375 if (from_tty && num_exp)
376 {
377 num_exp[0] = '+';
378 num_exp[1] = '\0';
379 }
380 }
381 \f
382 /* Internal variables. These are variables within the debugger
383 that hold values assigned by debugger commands.
384 The user refers to them with a '$' prefix
385 that does not appear in the variable names stored internally. */
386
387 static struct internalvar *internalvars;
388
389 /* Look up an internal variable with name NAME. NAME should not
390 normally include a dollar sign.
391
392 If the specified internal variable does not exist,
393 one is created, with a void value. */
394
395 struct internalvar *
396 lookup_internalvar (name)
397 char *name;
398 {
399 register struct internalvar *var;
400
401 for (var = internalvars; var; var = var->next)
402 if (STREQ (var->name, name))
403 return var;
404
405 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
406 var->name = concat (name, NULL);
407 var->value = allocate_value (builtin_type_void);
408 release_value (var->value);
409 var->next = internalvars;
410 internalvars = var;
411 return var;
412 }
413
414 value_ptr
415 value_of_internalvar (var)
416 struct internalvar *var;
417 {
418 register value_ptr val;
419
420 #ifdef IS_TRAPPED_INTERNALVAR
421 if (IS_TRAPPED_INTERNALVAR (var->name))
422 return VALUE_OF_TRAPPED_INTERNALVAR (var);
423 #endif
424
425 val = value_copy (var->value);
426 if (VALUE_LAZY (val))
427 value_fetch_lazy (val);
428 VALUE_LVAL (val) = lval_internalvar;
429 VALUE_INTERNALVAR (val) = var;
430 return val;
431 }
432
433 void
434 set_internalvar_component (var, offset, bitpos, bitsize, newval)
435 struct internalvar *var;
436 int offset, bitpos, bitsize;
437 value_ptr newval;
438 {
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
444 #endif
445
446 if (bitsize)
447 modify_field (addr, value_as_long (newval),
448 bitpos, bitsize);
449 else
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
451 }
452
453 void
454 set_internalvar (var, val)
455 struct internalvar *var;
456 value_ptr val;
457 {
458 value_ptr newval;
459
460 #ifdef IS_TRAPPED_INTERNALVAR
461 if (IS_TRAPPED_INTERNALVAR (var->name))
462 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
463 #endif
464
465 newval = value_copy (val);
466 newval->modifiable = 1;
467
468 /* Force the value to be fetched from the target now, to avoid problems
469 later when this internalvar is referenced and the target is gone or
470 has changed. */
471 if (VALUE_LAZY (newval))
472 value_fetch_lazy (newval);
473
474 /* Begin code which must not call error(). If var->value points to
475 something free'd, an error() obviously leaves a dangling pointer.
476 But we also get a danling pointer if var->value points to
477 something in the value chain (i.e., before release_value is
478 called), because after the error free_all_values will get called before
479 long. */
480 free ((PTR)var->value);
481 var->value = newval;
482 release_value (newval);
483 /* End code which must not call error(). */
484 }
485
486 char *
487 internalvar_name (var)
488 struct internalvar *var;
489 {
490 return var->name;
491 }
492
493 /* Free all internalvars. Done when new symtabs are loaded,
494 because that makes the values invalid. */
495
496 void
497 clear_internalvars ()
498 {
499 register struct internalvar *var;
500
501 while (internalvars)
502 {
503 var = internalvars;
504 internalvars = var->next;
505 free ((PTR)var->name);
506 free ((PTR)var->value);
507 free ((PTR)var);
508 }
509 }
510
511 static void
512 show_convenience (ignore, from_tty)
513 char *ignore;
514 int from_tty;
515 {
516 register struct internalvar *var;
517 int varseen = 0;
518
519 for (var = internalvars; var; var = var->next)
520 {
521 #ifdef IS_TRAPPED_INTERNALVAR
522 if (IS_TRAPPED_INTERNALVAR (var->name))
523 continue;
524 #endif
525 if (!varseen)
526 {
527 varseen = 1;
528 }
529 printf_filtered ("$%s = ", var->name);
530 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
531 printf_filtered ("\n");
532 }
533 if (!varseen)
534 printf_unfiltered ("No debugger convenience variables now defined.\n\
535 Convenience variables have names starting with \"$\";\n\
536 use \"set\" as in \"set $foo = 5\" to define them.\n");
537 }
538 \f
539 /* Extract a value as a C number (either long or double).
540 Knows how to convert fixed values to double, or
541 floating values to long.
542 Does not deallocate the value. */
543
544 LONGEST
545 value_as_long (val)
546 register value_ptr val;
547 {
548 /* This coerces arrays and functions, which is necessary (e.g.
549 in disassemble_command). It also dereferences references, which
550 I suspect is the most logical thing to do. */
551 COERCE_ARRAY (val);
552 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
553 }
554
555 DOUBLEST
556 value_as_double (val)
557 register value_ptr val;
558 {
559 DOUBLEST foo;
560 int inv;
561
562 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
563 if (inv)
564 error ("Invalid floating value found in program.");
565 return foo;
566 }
567 /* Extract a value as a C pointer.
568 Does not deallocate the value. */
569 CORE_ADDR
570 value_as_pointer (val)
571 value_ptr val;
572 {
573 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
574 whether we want this to be true eventually. */
575 #if 0
576 /* ADDR_BITS_REMOVE is wrong if we are being called for a
577 non-address (e.g. argument to "signal", "info break", etc.), or
578 for pointers to char, in which the low bits *are* significant. */
579 return ADDR_BITS_REMOVE(value_as_long (val));
580 #else
581 return value_as_long (val);
582 #endif
583 }
584 \f
585 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
586 as a long, or as a double, assuming the raw data is described
587 by type TYPE. Knows how to convert different sizes of values
588 and can convert between fixed and floating point. We don't assume
589 any alignment for the raw data. Return value is in host byte order.
590
591 If you want functions and arrays to be coerced to pointers, and
592 references to be dereferenced, call value_as_long() instead.
593
594 C++: It is assumed that the front-end has taken care of
595 all matters concerning pointers to members. A pointer
596 to member which reaches here is considered to be equivalent
597 to an INT (or some size). After all, it is only an offset. */
598
599 LONGEST
600 unpack_long (type, valaddr)
601 struct type *type;
602 char *valaddr;
603 {
604 register enum type_code code = TYPE_CODE (type);
605 register int len = TYPE_LENGTH (type);
606 register int nosign = TYPE_UNSIGNED (type);
607
608 if (current_language->la_language == language_scm
609 && is_scmvalue_type (type))
610 return scm_unpack (type, valaddr, TYPE_CODE_INT);
611
612 switch (code)
613 {
614 case TYPE_CODE_TYPEDEF:
615 return unpack_long (check_typedef (type), valaddr);
616 case TYPE_CODE_ENUM:
617 case TYPE_CODE_BOOL:
618 case TYPE_CODE_INT:
619 case TYPE_CODE_CHAR:
620 case TYPE_CODE_RANGE:
621 if (nosign)
622 return extract_unsigned_integer (valaddr, len);
623 else
624 return extract_signed_integer (valaddr, len);
625
626 case TYPE_CODE_FLT:
627 return extract_floating (valaddr, len);
628
629 case TYPE_CODE_PTR:
630 case TYPE_CODE_REF:
631 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
632 whether we want this to be true eventually. */
633 return extract_address (valaddr, len);
634
635 case TYPE_CODE_MEMBER:
636 error ("not implemented: member types in unpack_long");
637
638 default:
639 error ("Value can't be converted to integer.");
640 }
641 return 0; /* Placate lint. */
642 }
643
644 /* Return a double value from the specified type and address.
645 INVP points to an int which is set to 0 for valid value,
646 1 for invalid value (bad float format). In either case,
647 the returned double is OK to use. Argument is in target
648 format, result is in host format. */
649
650 DOUBLEST
651 unpack_double (type, valaddr, invp)
652 struct type *type;
653 char *valaddr;
654 int *invp;
655 {
656 register enum type_code code = TYPE_CODE (type);
657 register int len = TYPE_LENGTH (type);
658 register int nosign = TYPE_UNSIGNED (type);
659
660 *invp = 0; /* Assume valid. */
661 CHECK_TYPEDEF (type);
662 if (code == TYPE_CODE_FLT)
663 {
664 #ifdef INVALID_FLOAT
665 if (INVALID_FLOAT (valaddr, len))
666 {
667 *invp = 1;
668 return 1.234567891011121314;
669 }
670 #endif
671 return extract_floating (valaddr, len);
672 }
673 else if (nosign)
674 {
675 /* Unsigned -- be sure we compensate for signed LONGEST. */
676 return (unsigned LONGEST) unpack_long (type, valaddr);
677 }
678 else
679 {
680 /* Signed -- we are OK with unpack_long. */
681 return unpack_long (type, valaddr);
682 }
683 }
684
685 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
686 as a CORE_ADDR, assuming the raw data is described by type TYPE.
687 We don't assume any alignment for the raw data. Return value is in
688 host byte order.
689
690 If you want functions and arrays to be coerced to pointers, and
691 references to be dereferenced, call value_as_pointer() instead.
692
693 C++: It is assumed that the front-end has taken care of
694 all matters concerning pointers to members. A pointer
695 to member which reaches here is considered to be equivalent
696 to an INT (or some size). After all, it is only an offset. */
697
698 CORE_ADDR
699 unpack_pointer (type, valaddr)
700 struct type *type;
701 char *valaddr;
702 {
703 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
704 whether we want this to be true eventually. */
705 return unpack_long (type, valaddr);
706 }
707 \f
708 /* Given a value ARG1 (offset by OFFSET bytes)
709 of a struct or union type ARG_TYPE,
710 extract and return the value of one of its fields.
711 FIELDNO says which field.
712
713 For C++, must also be able to return values from static fields */
714
715 value_ptr
716 value_primitive_field (arg1, offset, fieldno, arg_type)
717 register value_ptr arg1;
718 int offset;
719 register int fieldno;
720 register struct type *arg_type;
721 {
722 register value_ptr v;
723 register struct type *type;
724
725 CHECK_TYPEDEF (arg_type);
726 type = TYPE_FIELD_TYPE (arg_type, fieldno);
727
728 /* Handle packed fields */
729
730 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
731 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
732 {
733 v = value_from_longest (type,
734 unpack_field_as_long (arg_type,
735 VALUE_CONTENTS (arg1),
736 fieldno));
737 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
738 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
739 }
740 else
741 {
742 v = allocate_value (type);
743 if (VALUE_LAZY (arg1))
744 VALUE_LAZY (v) = 1;
745 else
746 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
747 TYPE_LENGTH (type));
748 }
749 VALUE_LVAL (v) = VALUE_LVAL (arg1);
750 if (VALUE_LVAL (arg1) == lval_internalvar)
751 VALUE_LVAL (v) = lval_internalvar_component;
752 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
753 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
754 return v;
755 }
756
757 /* Given a value ARG1 of a struct or union type,
758 extract and return the value of one of its fields.
759 FIELDNO says which field.
760
761 For C++, must also be able to return values from static fields */
762
763 value_ptr
764 value_field (arg1, fieldno)
765 register value_ptr arg1;
766 register int fieldno;
767 {
768 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
769 }
770
771 /* Return a non-virtual function as a value.
772 F is the list of member functions which contains the desired method.
773 J is an index into F which provides the desired method. */
774
775 value_ptr
776 value_fn_field (arg1p, f, j, type, offset)
777 value_ptr *arg1p;
778 struct fn_field *f;
779 int j;
780 struct type *type;
781 int offset;
782 {
783 register value_ptr v;
784 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
785 struct symbol *sym;
786
787 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
788 0, VAR_NAMESPACE, 0, NULL);
789 if (! sym)
790 return NULL;
791 /*
792 error ("Internal error: could not find physical method named %s",
793 TYPE_FN_FIELD_PHYSNAME (f, j));
794 */
795
796 v = allocate_value (ftype);
797 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
798 VALUE_TYPE (v) = ftype;
799
800 if (arg1p)
801 {
802 if (type != VALUE_TYPE (*arg1p))
803 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
804 value_addr (*arg1p)));
805
806 /* Move the `this' pointer according to the offset.
807 VALUE_OFFSET (*arg1p) += offset;
808 */
809 }
810
811 return v;
812 }
813
814 /* Return a virtual function as a value.
815 ARG1 is the object which provides the virtual function
816 table pointer. *ARG1P is side-effected in calling this function.
817 F is the list of member functions which contains the desired virtual
818 function.
819 J is an index into F which provides the desired virtual function.
820
821 TYPE is the type in which F is located. */
822 value_ptr
823 value_virtual_fn_field (arg1p, f, j, type, offset)
824 value_ptr *arg1p;
825 struct fn_field *f;
826 int j;
827 struct type *type;
828 int offset;
829 {
830 value_ptr arg1 = *arg1p;
831 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
832 struct type *entry_type;
833 /* First, get the virtual function table pointer. That comes
834 with a strange type, so cast it to type `pointer to long' (which
835 should serve just fine as a function type). Then, index into
836 the table, and convert final value to appropriate function type. */
837 value_ptr entry, vfn, vtbl;
838 value_ptr vi = value_from_longest (builtin_type_int,
839 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
840 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
841 struct type *context;
842 if (fcontext == NULL)
843 /* We don't have an fcontext (e.g. the program was compiled with
844 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
845 This won't work right for multiple inheritance, but at least we
846 should do as well as GDB 3.x did. */
847 fcontext = TYPE_VPTR_BASETYPE (type);
848 context = lookup_pointer_type (fcontext);
849 /* Now context is a pointer to the basetype containing the vtbl. */
850 if (TYPE_TARGET_TYPE (context) != type1)
851 {
852 arg1 = value_ind (value_cast (context, value_addr (arg1)));
853 type1 = check_typedef (VALUE_TYPE (arg1));
854 }
855
856 context = type1;
857 /* Now context is the basetype containing the vtbl. */
858
859 /* This type may have been defined before its virtual function table
860 was. If so, fill in the virtual function table entry for the
861 type now. */
862 if (TYPE_VPTR_FIELDNO (context) < 0)
863 fill_in_vptr_fieldno (context);
864
865 /* The virtual function table is now an array of structures
866 which have the form { int16 offset, delta; void *pfn; }. */
867 vtbl = value_ind (value_primitive_field (arg1, 0,
868 TYPE_VPTR_FIELDNO (context),
869 TYPE_VPTR_BASETYPE (context)));
870
871 /* Index into the virtual function table. This is hard-coded because
872 looking up a field is not cheap, and it may be important to save
873 time, e.g. if the user has set a conditional breakpoint calling
874 a virtual function. */
875 entry = value_subscript (vtbl, vi);
876 entry_type = check_typedef (VALUE_TYPE (entry));
877
878 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
879 {
880 /* Move the `this' pointer according to the virtual function table. */
881 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
882
883 if (! VALUE_LAZY (arg1))
884 {
885 VALUE_LAZY (arg1) = 1;
886 value_fetch_lazy (arg1);
887 }
888
889 vfn = value_field (entry, 2);
890 }
891 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
892 vfn = entry;
893 else
894 error ("I'm confused: virtual function table has bad type");
895 /* Reinstantiate the function pointer with the correct type. */
896 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
897
898 *arg1p = arg1;
899 return vfn;
900 }
901
902 /* ARG is a pointer to an object we know to be at least
903 a DTYPE. BTYPE is the most derived basetype that has
904 already been searched (and need not be searched again).
905 After looking at the vtables between BTYPE and DTYPE,
906 return the most derived type we find. The caller must
907 be satisfied when the return value == DTYPE.
908
909 FIXME-tiemann: should work with dossier entries as well. */
910
911 static value_ptr
912 value_headof (in_arg, btype, dtype)
913 value_ptr in_arg;
914 struct type *btype, *dtype;
915 {
916 /* First collect the vtables we must look at for this object. */
917 /* FIXME-tiemann: right now, just look at top-most vtable. */
918 value_ptr arg, vtbl, entry, best_entry = 0;
919 int i, nelems;
920 int offset, best_offset = 0;
921 struct symbol *sym;
922 CORE_ADDR pc_for_sym;
923 char *demangled_name;
924 struct minimal_symbol *msymbol;
925
926 btype = TYPE_VPTR_BASETYPE (dtype);
927 CHECK_TYPEDEF (btype);
928 arg = in_arg;
929 if (btype != dtype)
930 arg = value_cast (lookup_pointer_type (btype), arg);
931 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
932
933 /* Check that VTBL looks like it points to a virtual function table. */
934 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
935 if (msymbol == NULL
936 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
937 || !VTBL_PREFIX_P (demangled_name))
938 {
939 /* If we expected to find a vtable, but did not, let the user
940 know that we aren't happy, but don't throw an error.
941 FIXME: there has to be a better way to do this. */
942 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
943 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
944 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
945 VALUE_TYPE (in_arg) = error_type;
946 return in_arg;
947 }
948
949 /* Now search through the virtual function table. */
950 entry = value_ind (vtbl);
951 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
952 for (i = 1; i <= nelems; i++)
953 {
954 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
955 (LONGEST) i));
956 /* This won't work if we're using thunks. */
957 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
958 break;
959 offset = longest_to_int (value_as_long (value_field (entry, 0)));
960 /* If we use '<=' we can handle single inheritance
961 * where all offsets are zero - just use the first entry found. */
962 if (offset <= best_offset)
963 {
964 best_offset = offset;
965 best_entry = entry;
966 }
967 }
968 /* Move the pointer according to BEST_ENTRY's offset, and figure
969 out what type we should return as the new pointer. */
970 if (best_entry == 0)
971 {
972 /* An alternative method (which should no longer be necessary).
973 * But we leave it in for future use, when we will hopefully
974 * have optimizes the vtable to use thunks instead of offsets. */
975 /* Use the name of vtable itself to extract a base type. */
976 demangled_name += 4; /* Skip _vt$ prefix. */
977 }
978 else
979 {
980 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
981 sym = find_pc_function (pc_for_sym);
982 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
983 *(strchr (demangled_name, ':')) = '\0';
984 }
985 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
986 if (sym == NULL)
987 error ("could not find type declaration for `%s'", demangled_name);
988 if (best_entry)
989 {
990 free (demangled_name);
991 arg = value_add (value_cast (builtin_type_int, arg),
992 value_field (best_entry, 0));
993 }
994 else arg = in_arg;
995 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
996 return arg;
997 }
998
999 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1000 function tables, probe ARG's tables (including the vtables
1001 of its baseclasses) to figure out the most derived type that ARG
1002 could actually be a pointer to. */
1003
1004 value_ptr
1005 value_from_vtable_info (arg, type)
1006 value_ptr arg;
1007 struct type *type;
1008 {
1009 /* Take care of preliminaries. */
1010 if (TYPE_VPTR_FIELDNO (type) < 0)
1011 fill_in_vptr_fieldno (type);
1012 if (TYPE_VPTR_FIELDNO (type) < 0)
1013 return 0;
1014
1015 return value_headof (arg, 0, type);
1016 }
1017
1018 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1019 pointer which is for the base class whose type is BASECLASS. */
1020
1021 static int
1022 vb_match (type, index, basetype)
1023 struct type *type;
1024 int index;
1025 struct type *basetype;
1026 {
1027 struct type *fieldtype;
1028 char *name = TYPE_FIELD_NAME (type, index);
1029 char *field_class_name = NULL;
1030
1031 if (*name != '_')
1032 return 0;
1033 /* gcc 2.4 uses _vb$. */
1034 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1035 field_class_name = name + 4;
1036 /* gcc 2.5 will use __vb_. */
1037 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1038 field_class_name = name + 5;
1039
1040 if (field_class_name == NULL)
1041 /* This field is not a virtual base class pointer. */
1042 return 0;
1043
1044 /* It's a virtual baseclass pointer, now we just need to find out whether
1045 it is for this baseclass. */
1046 fieldtype = TYPE_FIELD_TYPE (type, index);
1047 if (fieldtype == NULL
1048 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1049 /* "Can't happen". */
1050 return 0;
1051
1052 /* What we check for is that either the types are equal (needed for
1053 nameless types) or have the same name. This is ugly, and a more
1054 elegant solution should be devised (which would probably just push
1055 the ugliness into symbol reading unless we change the stabs format). */
1056 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1057 return 1;
1058
1059 if (TYPE_NAME (basetype) != NULL
1060 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1061 && STREQ (TYPE_NAME (basetype),
1062 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1063 return 1;
1064 return 0;
1065 }
1066
1067 /* Compute the offset of the baseclass which is
1068 the INDEXth baseclass of class TYPE,
1069 for value at VALADDR (in host) at ADDRESS (in target).
1070 The result is the offset of the baseclass value relative
1071 to (the address of)(ARG) + OFFSET.
1072
1073 -1 is returned on error. */
1074
1075 int
1076 baseclass_offset (type, index, valaddr, address)
1077 struct type *type;
1078 int index;
1079 char *valaddr;
1080 CORE_ADDR address;
1081 {
1082 struct type *basetype = TYPE_BASECLASS (type, index);
1083
1084 if (BASETYPE_VIA_VIRTUAL (type, index))
1085 {
1086 /* Must hunt for the pointer to this virtual baseclass. */
1087 register int i, len = TYPE_NFIELDS (type);
1088 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1089
1090 /* First look for the virtual baseclass pointer
1091 in the fields. */
1092 for (i = n_baseclasses; i < len; i++)
1093 {
1094 if (vb_match (type, i, basetype))
1095 {
1096 CORE_ADDR addr
1097 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1098 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1099
1100 return addr - (LONGEST) address;
1101 }
1102 }
1103 /* Not in the fields, so try looking through the baseclasses. */
1104 for (i = index+1; i < n_baseclasses; i++)
1105 {
1106 int boffset =
1107 baseclass_offset (type, i, valaddr, address);
1108 if (boffset)
1109 return boffset;
1110 }
1111 /* Not found. */
1112 return -1;
1113 }
1114
1115 /* Baseclass is easily computed. */
1116 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1117 }
1118 \f
1119 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1120 VALADDR.
1121
1122 Extracting bits depends on endianness of the machine. Compute the
1123 number of least significant bits to discard. For big endian machines,
1124 we compute the total number of bits in the anonymous object, subtract
1125 off the bit count from the MSB of the object to the MSB of the
1126 bitfield, then the size of the bitfield, which leaves the LSB discard
1127 count. For little endian machines, the discard count is simply the
1128 number of bits from the LSB of the anonymous object to the LSB of the
1129 bitfield.
1130
1131 If the field is signed, we also do sign extension. */
1132
1133 LONGEST
1134 unpack_field_as_long (type, valaddr, fieldno)
1135 struct type *type;
1136 char *valaddr;
1137 int fieldno;
1138 {
1139 unsigned LONGEST val;
1140 unsigned LONGEST valmask;
1141 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1142 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1143 int lsbcount;
1144
1145 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1146
1147 /* Extract bits. See comment above. */
1148
1149 if (BITS_BIG_ENDIAN)
1150 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1151 else
1152 lsbcount = (bitpos % 8);
1153 val >>= lsbcount;
1154
1155 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1156 If the field is signed, and is negative, then sign extend. */
1157
1158 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1159 {
1160 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1161 val &= valmask;
1162 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1163 {
1164 if (val & (valmask ^ (valmask >> 1)))
1165 {
1166 val |= ~valmask;
1167 }
1168 }
1169 }
1170 return (val);
1171 }
1172
1173 /* Modify the value of a bitfield. ADDR points to a block of memory in
1174 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1175 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1176 indicate which bits (in target bit order) comprise the bitfield. */
1177
1178 void
1179 modify_field (addr, fieldval, bitpos, bitsize)
1180 char *addr;
1181 LONGEST fieldval;
1182 int bitpos, bitsize;
1183 {
1184 LONGEST oword;
1185
1186 /* If a negative fieldval fits in the field in question, chop
1187 off the sign extension bits. */
1188 if (bitsize < (8 * sizeof (fieldval))
1189 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1190 fieldval = fieldval & ((1 << bitsize) - 1);
1191
1192 /* Warn if value is too big to fit in the field in question. */
1193 if (bitsize < (8 * sizeof (fieldval))
1194 && 0 != (fieldval & ~((1<<bitsize)-1)))
1195 {
1196 /* FIXME: would like to include fieldval in the message, but
1197 we don't have a sprintf_longest. */
1198 warning ("Value does not fit in %d bits.", bitsize);
1199
1200 /* Truncate it, otherwise adjoining fields may be corrupted. */
1201 fieldval = fieldval & ((1 << bitsize) - 1);
1202 }
1203
1204 oword = extract_signed_integer (addr, sizeof oword);
1205
1206 /* Shifting for bit field depends on endianness of the target machine. */
1207 if (BITS_BIG_ENDIAN)
1208 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1209
1210 /* Mask out old value, while avoiding shifts >= size of oword */
1211 if (bitsize < 8 * sizeof (oword))
1212 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1213 else
1214 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1215 oword |= fieldval << bitpos;
1216
1217 store_signed_integer (addr, sizeof oword, oword);
1218 }
1219 \f
1220 /* Convert C numbers into newly allocated values */
1221
1222 value_ptr
1223 value_from_longest (type, num)
1224 struct type *type;
1225 register LONGEST num;
1226 {
1227 register value_ptr val = allocate_value (type);
1228 register enum type_code code;
1229 register int len;
1230 retry:
1231 code = TYPE_CODE (type);
1232 len = TYPE_LENGTH (type);
1233
1234 switch (code)
1235 {
1236 case TYPE_CODE_TYPEDEF:
1237 type = check_typedef (type);
1238 goto retry;
1239 case TYPE_CODE_INT:
1240 case TYPE_CODE_CHAR:
1241 case TYPE_CODE_ENUM:
1242 case TYPE_CODE_BOOL:
1243 case TYPE_CODE_RANGE:
1244 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1245 break;
1246
1247 case TYPE_CODE_REF:
1248 case TYPE_CODE_PTR:
1249 /* This assumes that all pointers of a given length
1250 have the same form. */
1251 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1252 break;
1253
1254 default:
1255 error ("Unexpected type encountered for integer constant.");
1256 }
1257 return val;
1258 }
1259
1260 value_ptr
1261 value_from_double (type, num)
1262 struct type *type;
1263 DOUBLEST num;
1264 {
1265 register value_ptr val = allocate_value (type);
1266 struct type *base_type = check_typedef (type);
1267 register enum type_code code = TYPE_CODE (base_type);
1268 register int len = TYPE_LENGTH (base_type);
1269
1270 if (code == TYPE_CODE_FLT)
1271 {
1272 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1273 }
1274 else
1275 error ("Unexpected type encountered for floating constant.");
1276
1277 return val;
1278 }
1279 \f
1280 /* Deal with the value that is "about to be returned". */
1281
1282 /* Return the value that a function returning now
1283 would be returning to its caller, assuming its type is VALTYPE.
1284 RETBUF is where we look for what ought to be the contents
1285 of the registers (in raw form). This is because it is often
1286 desirable to restore old values to those registers
1287 after saving the contents of interest, and then call
1288 this function using the saved values.
1289 struct_return is non-zero when the function in question is
1290 using the structure return conventions on the machine in question;
1291 0 when it is using the value returning conventions (this often
1292 means returning pointer to where structure is vs. returning value). */
1293
1294 value_ptr
1295 value_being_returned (valtype, retbuf, struct_return)
1296 register struct type *valtype;
1297 char retbuf[REGISTER_BYTES];
1298 int struct_return;
1299 /*ARGSUSED*/
1300 {
1301 register value_ptr val;
1302 CORE_ADDR addr;
1303
1304 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1305 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1306 if (struct_return) {
1307 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1308 if (!addr)
1309 error ("Function return value unknown");
1310 return value_at (valtype, addr);
1311 }
1312 #endif
1313
1314 val = allocate_value (valtype);
1315 CHECK_TYPEDEF (valtype);
1316 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1317
1318 return val;
1319 }
1320
1321 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1322 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1323 and TYPE is the type (which is known to be struct, union or array).
1324
1325 On most machines, the struct convention is used unless we are
1326 using gcc and the type is of a special size. */
1327 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1328 native compiler. GCC 2.3.3 was the last release that did it the
1329 old way. Since gcc2_compiled was not changed, we have no
1330 way to correctly win in all cases, so we just do the right thing
1331 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1332 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1333 would cause more chaos than dealing with some struct returns being
1334 handled wrong. */
1335 #if !defined (USE_STRUCT_CONVENTION)
1336 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1337 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1338 || TYPE_LENGTH (value_type) == 2 \
1339 || TYPE_LENGTH (value_type) == 4 \
1340 || TYPE_LENGTH (value_type) == 8 \
1341 ) \
1342 ))
1343 #endif
1344
1345 /* Some fundamental types (such as long double) are returned on the stack for
1346 certain architectures. This macro should return true for any type besides
1347 struct, union or array that gets returned on the stack. */
1348
1349 #ifndef RETURN_VALUE_ON_STACK
1350 #define RETURN_VALUE_ON_STACK(TYPE) 0
1351 #endif
1352
1353 /* Return true if the function specified is using the structure returning
1354 convention on this machine to return arguments, or 0 if it is using
1355 the value returning convention. FUNCTION is the value representing
1356 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1357 is the type returned by the function. GCC_P is nonzero if compiled
1358 with GCC. */
1359
1360 int
1361 using_struct_return (function, funcaddr, value_type, gcc_p)
1362 value_ptr function;
1363 CORE_ADDR funcaddr;
1364 struct type *value_type;
1365 int gcc_p;
1366 /*ARGSUSED*/
1367 {
1368 register enum type_code code = TYPE_CODE (value_type);
1369
1370 if (code == TYPE_CODE_ERROR)
1371 error ("Function return type unknown.");
1372
1373 if (code == TYPE_CODE_STRUCT
1374 || code == TYPE_CODE_UNION
1375 || code == TYPE_CODE_ARRAY
1376 || RETURN_VALUE_ON_STACK (value_type))
1377 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1378
1379 return 0;
1380 }
1381
1382 /* Store VAL so it will be returned if a function returns now.
1383 Does not verify that VAL's type matches what the current
1384 function wants to return. */
1385
1386 void
1387 set_return_value (val)
1388 value_ptr val;
1389 {
1390 struct type *type = check_typedef (VALUE_TYPE (val));
1391 register enum type_code code = TYPE_CODE (type);
1392
1393 if (code == TYPE_CODE_ERROR)
1394 error ("Function return type unknown.");
1395
1396 if ( code == TYPE_CODE_STRUCT
1397 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1398 error ("GDB does not support specifying a struct or union return value.");
1399
1400 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1401 }
1402 \f
1403 void
1404 _initialize_values ()
1405 {
1406 add_cmd ("convenience", no_class, show_convenience,
1407 "Debugger convenience (\"$foo\") variables.\n\
1408 These variables are created when you assign them values;\n\
1409 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1410 A few convenience variables are given values automatically:\n\
1411 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1412 \"$__\" holds the contents of the last address examined with \"x\".",
1413 &showlist);
1414
1415 add_cmd ("values", no_class, show_values,
1416 "Elements of value history around item number IDX (or last ten).",
1417 &showlist);
1418 }
This page took 0.058059 seconds and 4 git commands to generate.