* gdbserver/{remote-gutils.c remote-server.c Makefile.in
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258 release_value (val);
259
260 /* Now we regard value_history_count as origin-one
261 and applying to the value just stored. */
262
263 return ++value_history_count;
264 }
265
266 /* Return a copy of the value in the history with sequence number NUM. */
267
268 value
269 access_value_history (num)
270 int num;
271 {
272 register struct value_history_chunk *chunk;
273 register int i;
274 register int absnum = num;
275
276 if (absnum <= 0)
277 absnum += value_history_count;
278
279 if (absnum <= 0)
280 {
281 if (num == 0)
282 error ("The history is empty.");
283 else if (num == 1)
284 error ("There is only one value in the history.");
285 else
286 error ("History does not go back to $$%d.", -num);
287 }
288 if (absnum > value_history_count)
289 error ("History has not yet reached $%d.", absnum);
290
291 absnum--;
292
293 /* Now absnum is always absolute and origin zero. */
294
295 chunk = value_history_chain;
296 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
297 i > 0; i--)
298 chunk = chunk->next;
299
300 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
301 }
302
303 /* Clear the value history entirely.
304 Must be done when new symbol tables are loaded,
305 because the type pointers become invalid. */
306
307 void
308 clear_value_history ()
309 {
310 register struct value_history_chunk *next;
311 register int i;
312 register value val;
313
314 while (value_history_chain)
315 {
316 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
317 if ((val = value_history_chain->values[i]) != NULL)
318 free ((PTR)val);
319 next = value_history_chain->next;
320 free ((PTR)value_history_chain);
321 value_history_chain = next;
322 }
323 value_history_count = 0;
324 }
325
326 static void
327 show_values (num_exp, from_tty)
328 char *num_exp;
329 int from_tty;
330 {
331 register int i;
332 register value val;
333 static int num = 1;
334
335 if (num_exp)
336 {
337 if (num_exp[0] == '+' && num_exp[1] == '\0')
338 /* "info history +" should print from the stored position. */
339 ;
340 else
341 /* "info history <exp>" should print around value number <exp>. */
342 num = parse_and_eval_address (num_exp) - 5;
343 }
344 else
345 {
346 /* "info history" means print the last 10 values. */
347 num = value_history_count - 9;
348 }
349
350 if (num <= 0)
351 num = 1;
352
353 for (i = num; i < num + 10 && i <= value_history_count; i++)
354 {
355 val = access_value_history (i);
356 printf_filtered ("$%d = ", i);
357 value_print (val, stdout, 0, Val_pretty_default);
358 printf_filtered ("\n");
359 }
360
361 /* The next "info history +" should start after what we just printed. */
362 num += 10;
363
364 /* Hitting just return after this command should do the same thing as
365 "info history +". If num_exp is null, this is unnecessary, since
366 "info history +" is not useful after "info history". */
367 if (from_tty && num_exp)
368 {
369 num_exp[0] = '+';
370 num_exp[1] = '\0';
371 }
372 }
373 \f
374 /* Internal variables. These are variables within the debugger
375 that hold values assigned by debugger commands.
376 The user refers to them with a '$' prefix
377 that does not appear in the variable names stored internally. */
378
379 static struct internalvar *internalvars;
380
381 /* Look up an internal variable with name NAME. NAME should not
382 normally include a dollar sign.
383
384 If the specified internal variable does not exist,
385 one is created, with a void value. */
386
387 struct internalvar *
388 lookup_internalvar (name)
389 char *name;
390 {
391 register struct internalvar *var;
392
393 for (var = internalvars; var; var = var->next)
394 if (STREQ (var->name, name))
395 return var;
396
397 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
398 var->name = concat (name, NULL);
399 var->value = allocate_value (builtin_type_void);
400 release_value (var->value);
401 var->next = internalvars;
402 internalvars = var;
403 return var;
404 }
405
406 value
407 value_of_internalvar (var)
408 struct internalvar *var;
409 {
410 register value val;
411
412 #ifdef IS_TRAPPED_INTERNALVAR
413 if (IS_TRAPPED_INTERNALVAR (var->name))
414 return VALUE_OF_TRAPPED_INTERNALVAR (var);
415 #endif
416
417 val = value_copy (var->value);
418 if (VALUE_LAZY (val))
419 value_fetch_lazy (val);
420 VALUE_LVAL (val) = lval_internalvar;
421 VALUE_INTERNALVAR (val) = var;
422 return val;
423 }
424
425 void
426 set_internalvar_component (var, offset, bitpos, bitsize, newval)
427 struct internalvar *var;
428 int offset, bitpos, bitsize;
429 value newval;
430 {
431 register char *addr = VALUE_CONTENTS (var->value) + offset;
432
433 #ifdef IS_TRAPPED_INTERNALVAR
434 if (IS_TRAPPED_INTERNALVAR (var->name))
435 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
436 #endif
437
438 if (bitsize)
439 modify_field (addr, (int) value_as_long (newval),
440 bitpos, bitsize);
441 else
442 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
443 }
444
445 void
446 set_internalvar (var, val)
447 struct internalvar *var;
448 value val;
449 {
450 #ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
453 #endif
454
455 free ((PTR)var->value);
456 var->value = value_copy (val);
457 /* Force the value to be fetched from the target now, to avoid problems
458 later when this internalvar is referenced and the target is gone or
459 has changed. */
460 if (VALUE_LAZY (var->value))
461 value_fetch_lazy (var->value);
462 release_value (var->value);
463 }
464
465 char *
466 internalvar_name (var)
467 struct internalvar *var;
468 {
469 return var->name;
470 }
471
472 /* Free all internalvars. Done when new symtabs are loaded,
473 because that makes the values invalid. */
474
475 void
476 clear_internalvars ()
477 {
478 register struct internalvar *var;
479
480 while (internalvars)
481 {
482 var = internalvars;
483 internalvars = var->next;
484 free ((PTR)var->name);
485 free ((PTR)var->value);
486 free ((PTR)var);
487 }
488 }
489
490 static void
491 show_convenience (ignore, from_tty)
492 char *ignore;
493 int from_tty;
494 {
495 register struct internalvar *var;
496 int varseen = 0;
497
498 for (var = internalvars; var; var = var->next)
499 {
500 #ifdef IS_TRAPPED_INTERNALVAR
501 if (IS_TRAPPED_INTERNALVAR (var->name))
502 continue;
503 #endif
504 if (!varseen)
505 {
506 varseen = 1;
507 }
508 printf_filtered ("$%s = ", var->name);
509 value_print (var->value, stdout, 0, Val_pretty_default);
510 printf_filtered ("\n");
511 }
512 if (!varseen)
513 printf ("No debugger convenience variables now defined.\n\
514 Convenience variables have names starting with \"$\";\n\
515 use \"set\" as in \"set $foo = 5\" to define them.\n");
516 }
517 \f
518 /* Extract a value as a C number (either long or double).
519 Knows how to convert fixed values to double, or
520 floating values to long.
521 Does not deallocate the value. */
522
523 LONGEST
524 value_as_long (val)
525 register value val;
526 {
527 /* This coerces arrays and functions, which is necessary (e.g.
528 in disassemble_command). It also dereferences references, which
529 I suspect is the most logical thing to do. */
530 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
531 COERCE_ARRAY (val);
532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534
535 double
536 value_as_double (val)
537 register value val;
538 {
539 double foo;
540 int inv;
541
542 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
543 if (inv)
544 error ("Invalid floating value found in program.");
545 return foo;
546 }
547 /* Extract a value as a C pointer.
548 Does not deallocate the value. */
549 CORE_ADDR
550 value_as_pointer (val)
551 value val;
552 {
553 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
554 whether we want this to be true eventually. */
555 return ADDR_BITS_REMOVE(value_as_long (val));
556 }
557 \f
558 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
559 as a long, or as a double, assuming the raw data is described
560 by type TYPE. Knows how to convert different sizes of values
561 and can convert between fixed and floating point. We don't assume
562 any alignment for the raw data. Return value is in host byte order.
563
564 If you want functions and arrays to be coerced to pointers, and
565 references to be dereferenced, call value_as_long() instead.
566
567 C++: It is assumed that the front-end has taken care of
568 all matters concerning pointers to members. A pointer
569 to member which reaches here is considered to be equivalent
570 to an INT (or some size). After all, it is only an offset. */
571
572 /* FIXME: This should be rewritten as a switch statement for speed and
573 ease of comprehension. */
574
575 LONGEST
576 unpack_long (type, valaddr)
577 struct type *type;
578 char *valaddr;
579 {
580 register enum type_code code = TYPE_CODE (type);
581 register int len = TYPE_LENGTH (type);
582 register int nosign = TYPE_UNSIGNED (type);
583
584 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
585 code = TYPE_CODE_INT;
586 if (code == TYPE_CODE_FLT)
587 {
588 if (len == sizeof (float))
589 {
590 float retval;
591 memcpy (&retval, valaddr, sizeof (retval));
592 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
593 return retval;
594 }
595
596 if (len == sizeof (double))
597 {
598 double retval;
599 memcpy (&retval, valaddr, sizeof (retval));
600 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
601 return retval;
602 }
603 else
604 {
605 error ("Unexpected type of floating point number.");
606 }
607 }
608 else if (code == TYPE_CODE_INT && nosign)
609 {
610 if (len == sizeof (char))
611 {
612 unsigned char retval = * (unsigned char *) valaddr;
613 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
614 return retval;
615 }
616
617 if (len == sizeof (short))
618 {
619 unsigned short retval;
620 memcpy (&retval, valaddr, sizeof (retval));
621 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
622 return retval;
623 }
624
625 if (len == sizeof (int))
626 {
627 unsigned int retval;
628 memcpy (&retval, valaddr, sizeof (retval));
629 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
630 return retval;
631 }
632
633 if (len == sizeof (long))
634 {
635 unsigned long retval;
636 memcpy (&retval, valaddr, sizeof (retval));
637 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
638 return retval;
639 }
640 #ifdef CC_HAS_LONG_LONG
641 if (len == sizeof (long long))
642 {
643 unsigned long long retval;
644 memcpy (&retval, valaddr, sizeof (retval));
645 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
646 return retval;
647 }
648 #endif
649 else
650 {
651 error ("That operation is not possible on an integer of that size.");
652 }
653 }
654 else if (code == TYPE_CODE_INT)
655 {
656 if (len == sizeof (char))
657 {
658 SIGNED char retval; /* plain chars might be unsigned on host */
659 memcpy (&retval, valaddr, sizeof (retval));
660 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
661 return retval;
662 }
663
664 if (len == sizeof (short))
665 {
666 short retval;
667 memcpy (&retval, valaddr, sizeof (retval));
668 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
669 return retval;
670 }
671
672 if (len == sizeof (int))
673 {
674 int retval;
675 memcpy (&retval, valaddr, sizeof (retval));
676 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
677 return retval;
678 }
679
680 if (len == sizeof (long))
681 {
682 long retval;
683 memcpy (&retval, valaddr, sizeof (retval));
684 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
685 return retval;
686 }
687
688 #ifdef CC_HAS_LONG_LONG
689 if (len == sizeof (long long))
690 {
691 long long retval;
692 memcpy (&retval, valaddr, sizeof (retval));
693 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
694 return retval;
695 }
696 #endif
697 else
698 {
699 error ("That operation is not possible on an integer of that size.");
700 }
701 }
702 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
703 whether we want this to be true eventually. */
704 else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
705 {
706 if (len == sizeof(long))
707 {
708 unsigned long retval;
709 memcpy (&retval, valaddr, sizeof(retval));
710 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
711 return retval;
712 }
713 else if (len == sizeof(short))
714 {
715 unsigned short retval;
716 memcpy (&retval, valaddr, len);
717 SWAP_TARGET_AND_HOST (&retval, len);
718 return retval;
719 }
720 #ifdef CC_HAS_LONG_LONG
721 else if (len == sizeof(long long))
722 {
723 unsigned long long retval;
724 memcpy (&retval, valaddr, len);
725 SWAP_TARGET_AND_HOST (&retval, len);
726 return retval;
727 }
728 #endif
729 }
730 else if (code == TYPE_CODE_MEMBER)
731 error ("not implemented: member types in unpack_long");
732 else if (code == TYPE_CODE_CHAR)
733 return *(unsigned char *)valaddr;
734
735 error ("Value not integer or pointer.");
736 return 0; /* For lint -- never reached */
737 }
738
739 /* Return a double value from the specified type and address.
740 INVP points to an int which is set to 0 for valid value,
741 1 for invalid value (bad float format). In either case,
742 the returned double is OK to use. Argument is in target
743 format, result is in host format. */
744
745 double
746 unpack_double (type, valaddr, invp)
747 struct type *type;
748 char *valaddr;
749 int *invp;
750 {
751 register enum type_code code = TYPE_CODE (type);
752 register int len = TYPE_LENGTH (type);
753 register int nosign = TYPE_UNSIGNED (type);
754
755 *invp = 0; /* Assume valid. */
756 if (code == TYPE_CODE_FLT)
757 {
758 if (INVALID_FLOAT (valaddr, len))
759 {
760 *invp = 1;
761 return 1.234567891011121314;
762 }
763
764 if (len == sizeof (float))
765 {
766 float retval;
767 memcpy (&retval, valaddr, sizeof (retval));
768 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
769 return retval;
770 }
771
772 if (len == sizeof (double))
773 {
774 double retval;
775 memcpy (&retval, valaddr, sizeof (retval));
776 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
777 return retval;
778 }
779 else
780 {
781 error ("Unexpected type of floating point number.");
782 return 0; /* Placate lint. */
783 }
784 }
785 else if (nosign) {
786 /* Unsigned -- be sure we compensate for signed LONGEST. */
787 return (unsigned LONGEST) unpack_long (type, valaddr);
788 } else {
789 /* Signed -- we are OK with unpack_long. */
790 return unpack_long (type, valaddr);
791 }
792 }
793
794 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
795 as a CORE_ADDR, assuming the raw data is described by type TYPE.
796 We don't assume any alignment for the raw data. Return value is in
797 host byte order.
798
799 If you want functions and arrays to be coerced to pointers, and
800 references to be dereferenced, call value_as_pointer() instead.
801
802 C++: It is assumed that the front-end has taken care of
803 all matters concerning pointers to members. A pointer
804 to member which reaches here is considered to be equivalent
805 to an INT (or some size). After all, it is only an offset. */
806
807 CORE_ADDR
808 unpack_pointer (type, valaddr)
809 struct type *type;
810 char *valaddr;
811 {
812 #if 0
813 /* The user should be able to use an int (e.g. 0x7892) in contexts
814 where a pointer is expected. So this doesn't do enough. */
815 register enum type_code code = TYPE_CODE (type);
816 register int len = TYPE_LENGTH (type);
817
818 if (code == TYPE_CODE_PTR
819 || code == TYPE_CODE_REF)
820 {
821 if (len == sizeof (CORE_ADDR))
822 {
823 CORE_ADDR retval;
824 memcpy (&retval, valaddr, sizeof (retval));
825 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
826 return retval;
827 }
828 error ("Unrecognized pointer size.");
829 }
830 else if (code == TYPE_CODE_MEMBER)
831 error ("not implemented: member types in unpack_pointer");
832
833 error ("Value is not a pointer.");
834 return 0; /* For lint -- never reached */
835 #else
836 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
837 whether we want this to be true eventually. */
838 return unpack_long (type, valaddr);
839 #endif
840 }
841 \f
842 /* Given a value ARG1 (offset by OFFSET bytes)
843 of a struct or union type ARG_TYPE,
844 extract and return the value of one of its fields.
845 FIELDNO says which field.
846
847 For C++, must also be able to return values from static fields */
848
849 value
850 value_primitive_field (arg1, offset, fieldno, arg_type)
851 register value arg1;
852 int offset;
853 register int fieldno;
854 register struct type *arg_type;
855 {
856 register value v;
857 register struct type *type;
858
859 check_stub_type (arg_type);
860 type = TYPE_FIELD_TYPE (arg_type, fieldno);
861
862 /* Handle packed fields */
863
864 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
865 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
866 {
867 v = value_from_longest (type,
868 unpack_field_as_long (arg_type,
869 VALUE_CONTENTS (arg1),
870 fieldno));
871 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
872 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
873 }
874 else
875 {
876 v = allocate_value (type);
877 if (VALUE_LAZY (arg1))
878 VALUE_LAZY (v) = 1;
879 else
880 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
881 TYPE_LENGTH (type));
882 }
883 VALUE_LVAL (v) = VALUE_LVAL (arg1);
884 if (VALUE_LVAL (arg1) == lval_internalvar)
885 VALUE_LVAL (v) = lval_internalvar_component;
886 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
887 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
888 return v;
889 }
890
891 /* Given a value ARG1 of a struct or union type,
892 extract and return the value of one of its fields.
893 FIELDNO says which field.
894
895 For C++, must also be able to return values from static fields */
896
897 value
898 value_field (arg1, fieldno)
899 register value arg1;
900 register int fieldno;
901 {
902 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
903 }
904
905 /* Return a non-virtual function as a value.
906 F is the list of member functions which contains the desired method.
907 J is an index into F which provides the desired method. */
908
909 value
910 value_fn_field (arg1p, f, j, type, offset)
911 value *arg1p;
912 struct fn_field *f;
913 int j;
914 struct type *type;
915 int offset;
916 {
917 register value v;
918 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
919 struct symbol *sym;
920
921 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
922 0, VAR_NAMESPACE, 0, NULL);
923 if (! sym) error ("Internal error: could not find physical method named %s",
924 TYPE_FN_FIELD_PHYSNAME (f, j));
925
926 v = allocate_value (ftype);
927 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
928 VALUE_TYPE (v) = ftype;
929
930 if (arg1p)
931 {
932 if (type != VALUE_TYPE (*arg1p))
933 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
934 value_addr (*arg1p)));
935
936 /* Move the `this' pointer according to the offset. */
937 VALUE_OFFSET (*arg1p) += offset;
938 }
939
940 return v;
941 }
942
943 /* Return a virtual function as a value.
944 ARG1 is the object which provides the virtual function
945 table pointer. *ARG1P is side-effected in calling this function.
946 F is the list of member functions which contains the desired virtual
947 function.
948 J is an index into F which provides the desired virtual function.
949
950 TYPE is the type in which F is located. */
951 value
952 value_virtual_fn_field (arg1p, f, j, type, offset)
953 value *arg1p;
954 struct fn_field *f;
955 int j;
956 struct type *type;
957 int offset;
958 {
959 value arg1 = *arg1p;
960 /* First, get the virtual function table pointer. That comes
961 with a strange type, so cast it to type `pointer to long' (which
962 should serve just fine as a function type). Then, index into
963 the table, and convert final value to appropriate function type. */
964 value entry, vfn, vtbl;
965 value vi = value_from_longest (builtin_type_int,
966 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
967 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
968 struct type *context;
969 if (fcontext == NULL)
970 /* We don't have an fcontext (e.g. the program was compiled with
971 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
972 This won't work right for multiple inheritance, but at least we
973 should do as well as GDB 3.x did. */
974 fcontext = TYPE_VPTR_BASETYPE (type);
975 context = lookup_pointer_type (fcontext);
976 /* Now context is a pointer to the basetype containing the vtbl. */
977 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
978 arg1 = value_ind (value_cast (context, value_addr (arg1)));
979
980 context = VALUE_TYPE (arg1);
981 /* Now context is the basetype containing the vtbl. */
982
983 /* This type may have been defined before its virtual function table
984 was. If so, fill in the virtual function table entry for the
985 type now. */
986 if (TYPE_VPTR_FIELDNO (context) < 0)
987 fill_in_vptr_fieldno (context);
988
989 /* The virtual function table is now an array of structures
990 which have the form { int16 offset, delta; void *pfn; }. */
991 vtbl = value_ind (value_primitive_field (arg1, 0,
992 TYPE_VPTR_FIELDNO (context),
993 TYPE_VPTR_BASETYPE (context)));
994
995 /* Index into the virtual function table. This is hard-coded because
996 looking up a field is not cheap, and it may be important to save
997 time, e.g. if the user has set a conditional breakpoint calling
998 a virtual function. */
999 entry = value_subscript (vtbl, vi);
1000
1001 /* Move the `this' pointer according to the virtual function table. */
1002 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset;
1003 if (! VALUE_LAZY (arg1))
1004 {
1005 VALUE_LAZY (arg1) = 1;
1006 value_fetch_lazy (arg1);
1007 }
1008
1009 vfn = value_field (entry, 2);
1010 /* Reinstantiate the function pointer with the correct type. */
1011 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1012
1013 *arg1p = arg1;
1014 return vfn;
1015 }
1016
1017 /* ARG is a pointer to an object we know to be at least
1018 a DTYPE. BTYPE is the most derived basetype that has
1019 already been searched (and need not be searched again).
1020 After looking at the vtables between BTYPE and DTYPE,
1021 return the most derived type we find. The caller must
1022 be satisfied when the return value == DTYPE.
1023
1024 FIXME-tiemann: should work with dossier entries as well. */
1025
1026 static value
1027 value_headof (in_arg, btype, dtype)
1028 value in_arg;
1029 struct type *btype, *dtype;
1030 {
1031 /* First collect the vtables we must look at for this object. */
1032 /* FIXME-tiemann: right now, just look at top-most vtable. */
1033 value arg, vtbl, entry, best_entry = 0;
1034 int i, nelems;
1035 int offset, best_offset = 0;
1036 struct symbol *sym;
1037 CORE_ADDR pc_for_sym;
1038 char *demangled_name;
1039 struct minimal_symbol *msymbol;
1040
1041 btype = TYPE_VPTR_BASETYPE (dtype);
1042 check_stub_type (btype);
1043 arg = in_arg;
1044 if (btype != dtype)
1045 arg = value_cast (lookup_pointer_type (btype), arg);
1046 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1047
1048 /* Check that VTBL looks like it points to a virtual function table. */
1049 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1050 if (msymbol == NULL
1051 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
1052 {
1053 /* If we expected to find a vtable, but did not, let the user
1054 know that we aren't happy, but don't throw an error.
1055 FIXME: there has to be a better way to do this. */
1056 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1057 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1058 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1059 VALUE_TYPE (in_arg) = error_type;
1060 return in_arg;
1061 }
1062
1063 /* Now search through the virtual function table. */
1064 entry = value_ind (vtbl);
1065 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1066 for (i = 1; i <= nelems; i++)
1067 {
1068 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1069 (LONGEST) i));
1070 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1071 /* If we use '<=' we can handle single inheritance
1072 * where all offsets are zero - just use the first entry found. */
1073 if (offset <= best_offset)
1074 {
1075 best_offset = offset;
1076 best_entry = entry;
1077 }
1078 }
1079 /* Move the pointer according to BEST_ENTRY's offset, and figure
1080 out what type we should return as the new pointer. */
1081 if (best_entry == 0)
1082 {
1083 /* An alternative method (which should no longer be necessary).
1084 * But we leave it in for future use, when we will hopefully
1085 * have optimizes the vtable to use thunks instead of offsets. */
1086 /* Use the name of vtable itself to extract a base type. */
1087 demangled_name += 4; /* Skip _vt$ prefix. */
1088 }
1089 else
1090 {
1091 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1092 sym = find_pc_function (pc_for_sym);
1093 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1094 *(strchr (demangled_name, ':')) = '\0';
1095 }
1096 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1097 if (sym == NULL)
1098 error ("could not find type declaration for `%s'", demangled_name);
1099 if (best_entry)
1100 {
1101 free (demangled_name);
1102 arg = value_add (value_cast (builtin_type_int, arg),
1103 value_field (best_entry, 0));
1104 }
1105 else arg = in_arg;
1106 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1107 return arg;
1108 }
1109
1110 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1111 function tables, probe ARG's tables (including the vtables
1112 of its baseclasses) to figure out the most derived type that ARG
1113 could actually be a pointer to. */
1114
1115 value
1116 value_from_vtable_info (arg, type)
1117 value arg;
1118 struct type *type;
1119 {
1120 /* Take care of preliminaries. */
1121 if (TYPE_VPTR_FIELDNO (type) < 0)
1122 fill_in_vptr_fieldno (type);
1123 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1124 return 0;
1125
1126 return value_headof (arg, 0, type);
1127 }
1128
1129 /* Compute the offset of the baseclass which is
1130 the INDEXth baseclass of class TYPE, for a value ARG,
1131 wih extra offset of OFFSET.
1132 The result is the offste of the baseclass value relative
1133 to (the address of)(ARG) + OFFSET.
1134
1135 -1 is returned on error. */
1136
1137 int
1138 baseclass_offset (type, index, arg, offset)
1139 struct type *type;
1140 int index;
1141 value arg;
1142 int offset;
1143 {
1144 struct type *basetype = TYPE_BASECLASS (type, index);
1145
1146 if (BASETYPE_VIA_VIRTUAL (type, index))
1147 {
1148 /* Must hunt for the pointer to this virtual baseclass. */
1149 register int i, len = TYPE_NFIELDS (type);
1150 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1151 char *vbase_name, *type_name = type_name_no_tag (basetype);
1152
1153 vbase_name = (char *)alloca (strlen (type_name) + 8);
1154 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1155 /* First look for the virtual baseclass pointer
1156 in the fields. */
1157 for (i = n_baseclasses; i < len; i++)
1158 {
1159 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1160 {
1161 CORE_ADDR addr
1162 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1163 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1164 + offset
1165 + (TYPE_FIELD_BITPOS (type, i) / 8));
1166
1167 if (VALUE_LVAL (arg) != lval_memory)
1168 return -1;
1169
1170 return addr -
1171 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1172 }
1173 }
1174 /* Not in the fields, so try looking through the baseclasses. */
1175 for (i = index+1; i < n_baseclasses; i++)
1176 {
1177 int boffset =
1178 baseclass_offset (type, i, arg, offset);
1179 if (boffset)
1180 return boffset;
1181 }
1182 /* Not found. */
1183 return -1;
1184 }
1185
1186 /* Baseclass is easily computed. */
1187 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1188 }
1189
1190 /* Compute the address of the baseclass which is
1191 the INDEXth baseclass of class TYPE. The TYPE base
1192 of the object is at VALADDR.
1193
1194 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1195 or 0 if no error. In that case the return value is not the address
1196 of the baseclasss, but the address which could not be read
1197 successfully. */
1198
1199 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1200
1201 char *
1202 baseclass_addr (type, index, valaddr, valuep, errp)
1203 struct type *type;
1204 int index;
1205 char *valaddr;
1206 value *valuep;
1207 int *errp;
1208 {
1209 struct type *basetype = TYPE_BASECLASS (type, index);
1210
1211 if (errp)
1212 *errp = 0;
1213
1214 if (BASETYPE_VIA_VIRTUAL (type, index))
1215 {
1216 /* Must hunt for the pointer to this virtual baseclass. */
1217 register int i, len = TYPE_NFIELDS (type);
1218 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1219 char *vbase_name, *type_name = type_name_no_tag (basetype);
1220
1221 vbase_name = (char *)alloca (strlen (type_name) + 8);
1222 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1223 /* First look for the virtual baseclass pointer
1224 in the fields. */
1225 for (i = n_baseclasses; i < len; i++)
1226 {
1227 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1228 {
1229 value val = allocate_value (basetype);
1230 CORE_ADDR addr;
1231 int status;
1232
1233 addr
1234 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1235 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1236
1237 status = target_read_memory (addr,
1238 VALUE_CONTENTS_RAW (val),
1239 TYPE_LENGTH (basetype));
1240 VALUE_LVAL (val) = lval_memory;
1241 VALUE_ADDRESS (val) = addr;
1242
1243 if (status != 0)
1244 {
1245 if (valuep)
1246 *valuep = NULL;
1247 release_value (val);
1248 value_free (val);
1249 if (errp)
1250 *errp = status;
1251 return (char *)addr;
1252 }
1253 else
1254 {
1255 if (valuep)
1256 *valuep = val;
1257 return (char *) VALUE_CONTENTS (val);
1258 }
1259 }
1260 }
1261 /* Not in the fields, so try looking through the baseclasses. */
1262 for (i = index+1; i < n_baseclasses; i++)
1263 {
1264 char *baddr;
1265
1266 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1267 if (baddr)
1268 return baddr;
1269 }
1270 /* Not found. */
1271 if (valuep)
1272 *valuep = 0;
1273 return 0;
1274 }
1275
1276 /* Baseclass is easily computed. */
1277 if (valuep)
1278 *valuep = 0;
1279 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1280 }
1281 \f
1282 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1283 VALADDR.
1284
1285 Extracting bits depends on endianness of the machine. Compute the
1286 number of least significant bits to discard. For big endian machines,
1287 we compute the total number of bits in the anonymous object, subtract
1288 off the bit count from the MSB of the object to the MSB of the
1289 bitfield, then the size of the bitfield, which leaves the LSB discard
1290 count. For little endian machines, the discard count is simply the
1291 number of bits from the LSB of the anonymous object to the LSB of the
1292 bitfield.
1293
1294 If the field is signed, we also do sign extension. */
1295
1296 LONGEST
1297 unpack_field_as_long (type, valaddr, fieldno)
1298 struct type *type;
1299 char *valaddr;
1300 int fieldno;
1301 {
1302 unsigned LONGEST val;
1303 unsigned LONGEST valmask;
1304 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1305 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1306 int lsbcount;
1307
1308 memcpy (&val, valaddr + bitpos / 8, sizeof (val));
1309 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1310
1311 /* Extract bits. See comment above. */
1312
1313 #if BITS_BIG_ENDIAN
1314 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1315 #else
1316 lsbcount = (bitpos % 8);
1317 #endif
1318 val >>= lsbcount;
1319
1320 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1321 If the field is signed, and is negative, then sign extend. */
1322
1323 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1324 {
1325 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1326 val &= valmask;
1327 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1328 {
1329 if (val & (valmask ^ (valmask >> 1)))
1330 {
1331 val |= ~valmask;
1332 }
1333 }
1334 }
1335 return (val);
1336 }
1337
1338 /* Modify the value of a bitfield. ADDR points to a block of memory in
1339 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1340 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1341 indicate which bits (in target bit order) comprise the bitfield. */
1342
1343 void
1344 modify_field (addr, fieldval, bitpos, bitsize)
1345 char *addr;
1346 int fieldval;
1347 int bitpos, bitsize;
1348 {
1349 long oword;
1350
1351 /* Reject values too big to fit in the field in question,
1352 otherwise adjoining fields may be corrupted. */
1353 if (bitsize < (8 * sizeof (fieldval))
1354 && 0 != (fieldval & ~((1<<bitsize)-1)))
1355 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1356
1357 memcpy (&oword, addr, sizeof oword);
1358 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1359
1360 /* Shifting for bit field depends on endianness of the target machine. */
1361 #if BITS_BIG_ENDIAN
1362 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1363 #endif
1364
1365 /* Mask out old value, while avoiding shifts >= longword size */
1366 if (bitsize < 8 * sizeof (oword))
1367 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1368 else
1369 oword &= ~((-1) << bitpos);
1370 oword |= fieldval << bitpos;
1371
1372 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1373 memcpy (addr, &oword, sizeof oword);
1374 }
1375 \f
1376 /* Convert C numbers into newly allocated values */
1377
1378 value
1379 value_from_longest (type, num)
1380 struct type *type;
1381 register LONGEST num;
1382 {
1383 register value val = allocate_value (type);
1384 register enum type_code code = TYPE_CODE (type);
1385 register int len = TYPE_LENGTH (type);
1386
1387 /* FIXME, we assume that pointers have the same form and byte order as
1388 integers, and that all pointers have the same form. */
1389 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1390 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1391 code == TYPE_CODE_REF || code == TYPE_CODE_BOOL)
1392 {
1393 if (len == sizeof (char))
1394 * (char *) VALUE_CONTENTS_RAW (val) = num;
1395 else if (len == sizeof (short))
1396 * (short *) VALUE_CONTENTS_RAW (val) = num;
1397 else if (len == sizeof (int))
1398 * (int *) VALUE_CONTENTS_RAW (val) = num;
1399 else if (len == sizeof (long))
1400 * (long *) VALUE_CONTENTS_RAW (val) = num;
1401 else if (len == sizeof (LONGEST))
1402 * (LONGEST *) VALUE_CONTENTS_RAW (val) = num;
1403 else
1404 error ("Integer type encountered with unexpected data length.");
1405 }
1406 else
1407 error ("Unexpected type encountered for integer constant.");
1408
1409 /* num was in host byte order. So now put the value's contents
1410 into target byte order. */
1411 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1412
1413 return val;
1414 }
1415
1416 value
1417 value_from_double (type, num)
1418 struct type *type;
1419 double num;
1420 {
1421 register value val = allocate_value (type);
1422 register enum type_code code = TYPE_CODE (type);
1423 register int len = TYPE_LENGTH (type);
1424
1425 if (code == TYPE_CODE_FLT)
1426 {
1427 if (len == sizeof (float))
1428 * (float *) VALUE_CONTENTS_RAW (val) = num;
1429 else if (len == sizeof (double))
1430 * (double *) VALUE_CONTENTS_RAW (val) = num;
1431 else
1432 error ("Floating type encountered with unexpected data length.");
1433 }
1434 else
1435 error ("Unexpected type encountered for floating constant.");
1436
1437 /* num was in host byte order. So now put the value's contents
1438 into target byte order. */
1439 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1440
1441 return val;
1442 }
1443 \f
1444 /* Deal with the value that is "about to be returned". */
1445
1446 /* Return the value that a function returning now
1447 would be returning to its caller, assuming its type is VALTYPE.
1448 RETBUF is where we look for what ought to be the contents
1449 of the registers (in raw form). This is because it is often
1450 desirable to restore old values to those registers
1451 after saving the contents of interest, and then call
1452 this function using the saved values.
1453 struct_return is non-zero when the function in question is
1454 using the structure return conventions on the machine in question;
1455 0 when it is using the value returning conventions (this often
1456 means returning pointer to where structure is vs. returning value). */
1457
1458 value
1459 value_being_returned (valtype, retbuf, struct_return)
1460 register struct type *valtype;
1461 char retbuf[REGISTER_BYTES];
1462 int struct_return;
1463 /*ARGSUSED*/
1464 {
1465 register value val;
1466 CORE_ADDR addr;
1467
1468 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1469 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1470 if (struct_return) {
1471 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1472 if (!addr)
1473 error ("Function return value unknown");
1474 return value_at (valtype, addr);
1475 }
1476 #endif
1477
1478 val = allocate_value (valtype);
1479 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1480
1481 return val;
1482 }
1483
1484 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1485 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1486 and TYPE is the type (which is known to be struct, union or array).
1487
1488 On most machines, the struct convention is used unless we are
1489 using gcc and the type is of a special size. */
1490 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1491 native compiler. GCC 2.3.3 was the last release that did it the
1492 old way. Since gcc2_compiled was not changed, we have no
1493 way to correctly win in all cases, so we just do the right thing
1494 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1495 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1496 would cause more chaos than dealing with some struct returns being
1497 handled wrong. */
1498 #if !defined (USE_STRUCT_CONVENTION)
1499 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1500 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1501 || TYPE_LENGTH (value_type) == 2 \
1502 || TYPE_LENGTH (value_type) == 4 \
1503 || TYPE_LENGTH (value_type) == 8 \
1504 ) \
1505 ))
1506 #endif
1507
1508 /* Return true if the function specified is using the structure returning
1509 convention on this machine to return arguments, or 0 if it is using
1510 the value returning convention. FUNCTION is the value representing
1511 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1512 is the type returned by the function. GCC_P is nonzero if compiled
1513 with GCC. */
1514
1515 int
1516 using_struct_return (function, funcaddr, value_type, gcc_p)
1517 value function;
1518 CORE_ADDR funcaddr;
1519 struct type *value_type;
1520 int gcc_p;
1521 /*ARGSUSED*/
1522 {
1523 register enum type_code code = TYPE_CODE (value_type);
1524
1525 if (code == TYPE_CODE_ERROR)
1526 error ("Function return type unknown.");
1527
1528 if (code == TYPE_CODE_STRUCT ||
1529 code == TYPE_CODE_UNION ||
1530 code == TYPE_CODE_ARRAY)
1531 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1532
1533 return 0;
1534 }
1535
1536 /* Store VAL so it will be returned if a function returns now.
1537 Does not verify that VAL's type matches what the current
1538 function wants to return. */
1539
1540 void
1541 set_return_value (val)
1542 value val;
1543 {
1544 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1545 double dbuf;
1546 LONGEST lbuf;
1547
1548 if (code == TYPE_CODE_ERROR)
1549 error ("Function return type unknown.");
1550
1551 if ( code == TYPE_CODE_STRUCT
1552 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1553 error ("GDB does not support specifying a struct or union return value.");
1554
1555 /* FIXME, this is bogus. We don't know what the return conventions
1556 are, or how values should be promoted.... */
1557 if (code == TYPE_CODE_FLT)
1558 {
1559 dbuf = value_as_double (val);
1560
1561 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1562 }
1563 else
1564 {
1565 lbuf = value_as_long (val);
1566 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1567 }
1568 }
1569 \f
1570 void
1571 _initialize_values ()
1572 {
1573 add_cmd ("convenience", no_class, show_convenience,
1574 "Debugger convenience (\"$foo\") variables.\n\
1575 These variables are created when you assign them values;\n\
1576 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1577 A few convenience variables are given values automatically:\n\
1578 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1579 \"$__\" holds the contents of the last address examined with \"x\".",
1580 &showlist);
1581
1582 add_cmd ("values", no_class, show_values,
1583 "Elements of value history around item number IDX (or last ten).",
1584 &showlist);
1585 }
This page took 0.060471 seconds and 4 git commands to generate.