* configure.in: Explicitly `exit 0' for broken shells.
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "language.h"
32 #include "demangle.h"
33
34 /* Local function prototypes. */
35
36 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
37 struct type *));
38
39 static void show_values PARAMS ((char *, int));
40
41 static void show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value_ptr values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value_ptr all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value_ptr
72 allocate_value (type)
73 struct type *type;
74 {
75 register value_ptr val;
76
77 check_stub_type (type);
78
79 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 val->modifiable = 1;
95 return val;
96 }
97
98 /* Allocate a value that has the correct length
99 for COUNT repetitions type TYPE. */
100
101 value_ptr
102 allocate_repeat_value (type, count)
103 struct type *type;
104 int count;
105 {
106 register value_ptr val;
107
108 val =
109 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
110 VALUE_NEXT (val) = all_values;
111 all_values = val;
112 VALUE_TYPE (val) = type;
113 VALUE_LVAL (val) = not_lval;
114 VALUE_ADDRESS (val) = 0;
115 VALUE_FRAME (val) = 0;
116 VALUE_OFFSET (val) = 0;
117 VALUE_BITPOS (val) = 0;
118 VALUE_BITSIZE (val) = 0;
119 VALUE_REPEATED (val) = 1;
120 VALUE_REPETITIONS (val) = count;
121 VALUE_REGNO (val) = -1;
122 VALUE_LAZY (val) = 0;
123 VALUE_OPTIMIZED_OUT (val) = 0;
124 return val;
125 }
126
127 /* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130 value_ptr
131 value_mark ()
132 {
133 return all_values;
134 }
135
136 /* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138 void
139 value_free_to_mark (mark)
140 value_ptr mark;
141 {
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150 }
151
152 /* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155 void
156 free_all_values ()
157 {
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167 }
168
169 /* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172 void
173 release_value (val)
174 register value_ptr val;
175 {
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192 }
193
194 /* Release all values up to mark */
195 value_ptr
196 value_release_to_mark (mark)
197 value_ptr mark;
198 {
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210 }
211
212 /* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216 value_ptr
217 value_copy (arg)
218 value_ptr arg;
219 {
220 register value_ptr val;
221 register struct type *type = VALUE_TYPE (arg);
222 if (VALUE_REPEATED (arg))
223 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
224 else
225 val = allocate_value (type);
226 VALUE_LVAL (val) = VALUE_LVAL (arg);
227 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
228 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
229 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
230 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
231 VALUE_FRAME (val) = VALUE_FRAME (arg);
232 VALUE_REGNO (val) = VALUE_REGNO (arg);
233 VALUE_LAZY (val) = VALUE_LAZY (arg);
234 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
239 TYPE_LENGTH (VALUE_TYPE (arg))
240 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
241 }
242 return val;
243 }
244 \f
245 /* Access to the value history. */
246
247 /* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252 int
253 record_latest_value (val)
254 value_ptr val;
255 {
256 int i;
257
258 /* Check error now if about to store an invalid float. We return -1
259 to the caller, but allow them to continue, e.g. to print it as "Nan". */
260 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
261 {
262 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
263 if (i) return -1; /* Indicate value not saved in history */
264 }
265
266 /* We don't want this value to have anything to do with the inferior anymore.
267 In particular, "set $1 = 50" should not affect the variable from which
268 the value was taken, and fast watchpoints should be able to assume that
269 a value on the value history never changes. */
270 if (VALUE_LAZY (val))
271 value_fetch_lazy (val);
272 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
273 from. This is a bit dubious, because then *&$1 does not just return $1
274 but the current contents of that location. c'est la vie... */
275 val->modifiable = 0;
276 release_value (val);
277
278 /* Here we treat value_history_count as origin-zero
279 and applying to the value being stored now. */
280
281 i = value_history_count % VALUE_HISTORY_CHUNK;
282 if (i == 0)
283 {
284 register struct value_history_chunk *new
285 = (struct value_history_chunk *)
286 xmalloc (sizeof (struct value_history_chunk));
287 memset (new->values, 0, sizeof new->values);
288 new->next = value_history_chain;
289 value_history_chain = new;
290 }
291
292 value_history_chain->values[i] = val;
293
294 /* Now we regard value_history_count as origin-one
295 and applying to the value just stored. */
296
297 return ++value_history_count;
298 }
299
300 /* Return a copy of the value in the history with sequence number NUM. */
301
302 value_ptr
303 access_value_history (num)
304 int num;
305 {
306 register struct value_history_chunk *chunk;
307 register int i;
308 register int absnum = num;
309
310 if (absnum <= 0)
311 absnum += value_history_count;
312
313 if (absnum <= 0)
314 {
315 if (num == 0)
316 error ("The history is empty.");
317 else if (num == 1)
318 error ("There is only one value in the history.");
319 else
320 error ("History does not go back to $$%d.", -num);
321 }
322 if (absnum > value_history_count)
323 error ("History has not yet reached $%d.", absnum);
324
325 absnum--;
326
327 /* Now absnum is always absolute and origin zero. */
328
329 chunk = value_history_chain;
330 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
331 i > 0; i--)
332 chunk = chunk->next;
333
334 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
335 }
336
337 /* Clear the value history entirely.
338 Must be done when new symbol tables are loaded,
339 because the type pointers become invalid. */
340
341 void
342 clear_value_history ()
343 {
344 register struct value_history_chunk *next;
345 register int i;
346 register value_ptr val;
347
348 while (value_history_chain)
349 {
350 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
351 if ((val = value_history_chain->values[i]) != NULL)
352 free ((PTR)val);
353 next = value_history_chain->next;
354 free ((PTR)value_history_chain);
355 value_history_chain = next;
356 }
357 value_history_count = 0;
358 }
359
360 static void
361 show_values (num_exp, from_tty)
362 char *num_exp;
363 int from_tty;
364 {
365 register int i;
366 register value_ptr val;
367 static int num = 1;
368
369 if (num_exp)
370 {
371 /* "info history +" should print from the stored position.
372 "info history <exp>" should print around value number <exp>. */
373 if (num_exp[0] != '+' || num_exp[1] != '\0')
374 num = parse_and_eval_address (num_exp) - 5;
375 }
376 else
377 {
378 /* "info history" means print the last 10 values. */
379 num = value_history_count - 9;
380 }
381
382 if (num <= 0)
383 num = 1;
384
385 for (i = num; i < num + 10 && i <= value_history_count; i++)
386 {
387 val = access_value_history (i);
388 printf_filtered ("$%d = ", i);
389 value_print (val, gdb_stdout, 0, Val_pretty_default);
390 printf_filtered ("\n");
391 }
392
393 /* The next "info history +" should start after what we just printed. */
394 num += 10;
395
396 /* Hitting just return after this command should do the same thing as
397 "info history +". If num_exp is null, this is unnecessary, since
398 "info history +" is not useful after "info history". */
399 if (from_tty && num_exp)
400 {
401 num_exp[0] = '+';
402 num_exp[1] = '\0';
403 }
404 }
405 \f
406 /* Internal variables. These are variables within the debugger
407 that hold values assigned by debugger commands.
408 The user refers to them with a '$' prefix
409 that does not appear in the variable names stored internally. */
410
411 static struct internalvar *internalvars;
412
413 /* Look up an internal variable with name NAME. NAME should not
414 normally include a dollar sign.
415
416 If the specified internal variable does not exist,
417 one is created, with a void value. */
418
419 struct internalvar *
420 lookup_internalvar (name)
421 char *name;
422 {
423 register struct internalvar *var;
424
425 for (var = internalvars; var; var = var->next)
426 if (STREQ (var->name, name))
427 return var;
428
429 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
430 var->name = concat (name, NULL);
431 var->value = allocate_value (builtin_type_void);
432 release_value (var->value);
433 var->next = internalvars;
434 internalvars = var;
435 return var;
436 }
437
438 value_ptr
439 value_of_internalvar (var)
440 struct internalvar *var;
441 {
442 register value_ptr val;
443
444 #ifdef IS_TRAPPED_INTERNALVAR
445 if (IS_TRAPPED_INTERNALVAR (var->name))
446 return VALUE_OF_TRAPPED_INTERNALVAR (var);
447 #endif
448
449 val = value_copy (var->value);
450 if (VALUE_LAZY (val))
451 value_fetch_lazy (val);
452 VALUE_LVAL (val) = lval_internalvar;
453 VALUE_INTERNALVAR (val) = var;
454 return val;
455 }
456
457 void
458 set_internalvar_component (var, offset, bitpos, bitsize, newval)
459 struct internalvar *var;
460 int offset, bitpos, bitsize;
461 value_ptr newval;
462 {
463 register char *addr = VALUE_CONTENTS (var->value) + offset;
464
465 #ifdef IS_TRAPPED_INTERNALVAR
466 if (IS_TRAPPED_INTERNALVAR (var->name))
467 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
468 #endif
469
470 if (bitsize)
471 modify_field (addr, value_as_long (newval),
472 bitpos, bitsize);
473 else
474 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
475 }
476
477 void
478 set_internalvar (var, val)
479 struct internalvar *var;
480 value_ptr val;
481 {
482 value_ptr newval;
483
484 #ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
487 #endif
488
489 newval = value_copy (val);
490 newval->modifiable = 1;
491
492 /* Force the value to be fetched from the target now, to avoid problems
493 later when this internalvar is referenced and the target is gone or
494 has changed. */
495 if (VALUE_LAZY (newval))
496 value_fetch_lazy (newval);
497
498 /* Begin code which must not call error(). If var->value points to
499 something free'd, an error() obviously leaves a dangling pointer.
500 But we also get a danling pointer if var->value points to
501 something in the value chain (i.e., before release_value is
502 called), because after the error free_all_values will get called before
503 long. */
504 free ((PTR)var->value);
505 var->value = newval;
506 release_value (newval);
507 /* End code which must not call error(). */
508 }
509
510 char *
511 internalvar_name (var)
512 struct internalvar *var;
513 {
514 return var->name;
515 }
516
517 /* Free all internalvars. Done when new symtabs are loaded,
518 because that makes the values invalid. */
519
520 void
521 clear_internalvars ()
522 {
523 register struct internalvar *var;
524
525 while (internalvars)
526 {
527 var = internalvars;
528 internalvars = var->next;
529 free ((PTR)var->name);
530 free ((PTR)var->value);
531 free ((PTR)var);
532 }
533 }
534
535 static void
536 show_convenience (ignore, from_tty)
537 char *ignore;
538 int from_tty;
539 {
540 register struct internalvar *var;
541 int varseen = 0;
542
543 for (var = internalvars; var; var = var->next)
544 {
545 #ifdef IS_TRAPPED_INTERNALVAR
546 if (IS_TRAPPED_INTERNALVAR (var->name))
547 continue;
548 #endif
549 if (!varseen)
550 {
551 varseen = 1;
552 }
553 printf_filtered ("$%s = ", var->name);
554 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
555 printf_filtered ("\n");
556 }
557 if (!varseen)
558 printf_unfiltered ("No debugger convenience variables now defined.\n\
559 Convenience variables have names starting with \"$\";\n\
560 use \"set\" as in \"set $foo = 5\" to define them.\n");
561 }
562 \f
563 /* Extract a value as a C number (either long or double).
564 Knows how to convert fixed values to double, or
565 floating values to long.
566 Does not deallocate the value. */
567
568 LONGEST
569 value_as_long (val)
570 register value_ptr val;
571 {
572 /* This coerces arrays and functions, which is necessary (e.g.
573 in disassemble_command). It also dereferences references, which
574 I suspect is the most logical thing to do. */
575 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
576 COERCE_ARRAY (val);
577 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
578 }
579
580 double
581 value_as_double (val)
582 register value_ptr val;
583 {
584 double foo;
585 int inv;
586
587 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
588 if (inv)
589 error ("Invalid floating value found in program.");
590 return foo;
591 }
592 /* Extract a value as a C pointer.
593 Does not deallocate the value. */
594 CORE_ADDR
595 value_as_pointer (val)
596 value_ptr val;
597 {
598 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
599 whether we want this to be true eventually. */
600 #if 0
601 /* ADDR_BITS_REMOVE is wrong if we are being called for a
602 non-address (e.g. argument to "signal", "info break", etc.), or
603 for pointers to char, in which the low bits *are* significant. */
604 return ADDR_BITS_REMOVE(value_as_long (val));
605 #else
606 return value_as_long (val);
607 #endif
608 }
609 \f
610 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
611 as a long, or as a double, assuming the raw data is described
612 by type TYPE. Knows how to convert different sizes of values
613 and can convert between fixed and floating point. We don't assume
614 any alignment for the raw data. Return value is in host byte order.
615
616 If you want functions and arrays to be coerced to pointers, and
617 references to be dereferenced, call value_as_long() instead.
618
619 C++: It is assumed that the front-end has taken care of
620 all matters concerning pointers to members. A pointer
621 to member which reaches here is considered to be equivalent
622 to an INT (or some size). After all, it is only an offset. */
623
624 LONGEST
625 unpack_long (type, valaddr)
626 struct type *type;
627 char *valaddr;
628 {
629 register enum type_code code = TYPE_CODE (type);
630 register int len = TYPE_LENGTH (type);
631 register int nosign = TYPE_UNSIGNED (type);
632
633 switch (code)
634 {
635 case TYPE_CODE_ENUM:
636 case TYPE_CODE_BOOL:
637 case TYPE_CODE_INT:
638 case TYPE_CODE_CHAR:
639 case TYPE_CODE_RANGE:
640 if (nosign)
641 return extract_unsigned_integer (valaddr, len);
642 else
643 return extract_signed_integer (valaddr, len);
644
645 case TYPE_CODE_FLT:
646 return extract_floating (valaddr, len);
647
648 case TYPE_CODE_PTR:
649 case TYPE_CODE_REF:
650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
651 whether we want this to be true eventually. */
652 return extract_address (valaddr, len);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
660 return 0; /* Placate lint. */
661 }
662
663 /* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669 double
670 unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674 {
675 register enum type_code code = TYPE_CODE (type);
676 register int len = TYPE_LENGTH (type);
677 register int nosign = TYPE_UNSIGNED (type);
678
679 *invp = 0; /* Assume valid. */
680 if (code == TYPE_CODE_FLT)
681 {
682 #ifdef INVALID_FLOAT
683 if (INVALID_FLOAT (valaddr, len))
684 {
685 *invp = 1;
686 return 1.234567891011121314;
687 }
688 #endif
689 return extract_floating (valaddr, len);
690 }
691 else if (nosign)
692 {
693 /* Unsigned -- be sure we compensate for signed LONGEST. */
694 return (unsigned LONGEST) unpack_long (type, valaddr);
695 }
696 else
697 {
698 /* Signed -- we are OK with unpack_long. */
699 return unpack_long (type, valaddr);
700 }
701 }
702
703 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
704 as a CORE_ADDR, assuming the raw data is described by type TYPE.
705 We don't assume any alignment for the raw data. Return value is in
706 host byte order.
707
708 If you want functions and arrays to be coerced to pointers, and
709 references to be dereferenced, call value_as_pointer() instead.
710
711 C++: It is assumed that the front-end has taken care of
712 all matters concerning pointers to members. A pointer
713 to member which reaches here is considered to be equivalent
714 to an INT (or some size). After all, it is only an offset. */
715
716 CORE_ADDR
717 unpack_pointer (type, valaddr)
718 struct type *type;
719 char *valaddr;
720 {
721 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
722 whether we want this to be true eventually. */
723 return unpack_long (type, valaddr);
724 }
725 \f
726 /* Given a value ARG1 (offset by OFFSET bytes)
727 of a struct or union type ARG_TYPE,
728 extract and return the value of one of its fields.
729 FIELDNO says which field.
730
731 For C++, must also be able to return values from static fields */
732
733 value_ptr
734 value_primitive_field (arg1, offset, fieldno, arg_type)
735 register value_ptr arg1;
736 int offset;
737 register int fieldno;
738 register struct type *arg_type;
739 {
740 register value_ptr v;
741 register struct type *type;
742
743 check_stub_type (arg_type);
744 type = TYPE_FIELD_TYPE (arg_type, fieldno);
745
746 /* Handle packed fields */
747
748 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
749 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
750 {
751 v = value_from_longest (type,
752 unpack_field_as_long (arg_type,
753 VALUE_CONTENTS (arg1),
754 fieldno));
755 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
756 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
757 }
758 else
759 {
760 v = allocate_value (type);
761 if (VALUE_LAZY (arg1))
762 VALUE_LAZY (v) = 1;
763 else
764 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
765 TYPE_LENGTH (type));
766 }
767 VALUE_LVAL (v) = VALUE_LVAL (arg1);
768 if (VALUE_LVAL (arg1) == lval_internalvar)
769 VALUE_LVAL (v) = lval_internalvar_component;
770 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
771 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
772 return v;
773 }
774
775 /* Given a value ARG1 of a struct or union type,
776 extract and return the value of one of its fields.
777 FIELDNO says which field.
778
779 For C++, must also be able to return values from static fields */
780
781 value_ptr
782 value_field (arg1, fieldno)
783 register value_ptr arg1;
784 register int fieldno;
785 {
786 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
787 }
788
789 /* Return a non-virtual function as a value.
790 F is the list of member functions which contains the desired method.
791 J is an index into F which provides the desired method. */
792
793 value_ptr
794 value_fn_field (arg1p, f, j, type, offset)
795 value_ptr *arg1p;
796 struct fn_field *f;
797 int j;
798 struct type *type;
799 int offset;
800 {
801 register value_ptr v;
802 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
803 struct symbol *sym;
804
805 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
806 0, VAR_NAMESPACE, 0, NULL);
807 if (! sym)
808 return NULL;
809 /*
810 error ("Internal error: could not find physical method named %s",
811 TYPE_FN_FIELD_PHYSNAME (f, j));
812 */
813
814 v = allocate_value (ftype);
815 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
816 VALUE_TYPE (v) = ftype;
817
818 if (arg1p)
819 {
820 if (type != VALUE_TYPE (*arg1p))
821 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
822 value_addr (*arg1p)));
823
824 /* Move the `this' pointer according to the offset.
825 VALUE_OFFSET (*arg1p) += offset;
826 */
827 }
828
829 return v;
830 }
831
832 /* Return a virtual function as a value.
833 ARG1 is the object which provides the virtual function
834 table pointer. *ARG1P is side-effected in calling this function.
835 F is the list of member functions which contains the desired virtual
836 function.
837 J is an index into F which provides the desired virtual function.
838
839 TYPE is the type in which F is located. */
840 value_ptr
841 value_virtual_fn_field (arg1p, f, j, type, offset)
842 value_ptr *arg1p;
843 struct fn_field *f;
844 int j;
845 struct type *type;
846 int offset;
847 {
848 value_ptr arg1 = *arg1p;
849 /* First, get the virtual function table pointer. That comes
850 with a strange type, so cast it to type `pointer to long' (which
851 should serve just fine as a function type). Then, index into
852 the table, and convert final value to appropriate function type. */
853 value_ptr entry, vfn, vtbl;
854 value_ptr vi = value_from_longest (builtin_type_int,
855 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
856 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
857 struct type *context;
858 if (fcontext == NULL)
859 /* We don't have an fcontext (e.g. the program was compiled with
860 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
861 This won't work right for multiple inheritance, but at least we
862 should do as well as GDB 3.x did. */
863 fcontext = TYPE_VPTR_BASETYPE (type);
864 context = lookup_pointer_type (fcontext);
865 /* Now context is a pointer to the basetype containing the vtbl. */
866 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
867 arg1 = value_ind (value_cast (context, value_addr (arg1)));
868
869 context = VALUE_TYPE (arg1);
870 /* Now context is the basetype containing the vtbl. */
871
872 /* This type may have been defined before its virtual function table
873 was. If so, fill in the virtual function table entry for the
874 type now. */
875 if (TYPE_VPTR_FIELDNO (context) < 0)
876 fill_in_vptr_fieldno (context);
877
878 /* The virtual function table is now an array of structures
879 which have the form { int16 offset, delta; void *pfn; }. */
880 vtbl = value_ind (value_primitive_field (arg1, 0,
881 TYPE_VPTR_FIELDNO (context),
882 TYPE_VPTR_BASETYPE (context)));
883
884 /* Index into the virtual function table. This is hard-coded because
885 looking up a field is not cheap, and it may be important to save
886 time, e.g. if the user has set a conditional breakpoint calling
887 a virtual function. */
888 entry = value_subscript (vtbl, vi);
889
890 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
891 {
892 /* Move the `this' pointer according to the virtual function table. */
893 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
894
895 if (! VALUE_LAZY (arg1))
896 {
897 VALUE_LAZY (arg1) = 1;
898 value_fetch_lazy (arg1);
899 }
900
901 vfn = value_field (entry, 2);
902 }
903 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
904 vfn = entry;
905 else
906 error ("I'm confused: virtual function table has bad type");
907 /* Reinstantiate the function pointer with the correct type. */
908 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
909
910 *arg1p = arg1;
911 return vfn;
912 }
913
914 /* ARG is a pointer to an object we know to be at least
915 a DTYPE. BTYPE is the most derived basetype that has
916 already been searched (and need not be searched again).
917 After looking at the vtables between BTYPE and DTYPE,
918 return the most derived type we find. The caller must
919 be satisfied when the return value == DTYPE.
920
921 FIXME-tiemann: should work with dossier entries as well. */
922
923 static value_ptr
924 value_headof (in_arg, btype, dtype)
925 value_ptr in_arg;
926 struct type *btype, *dtype;
927 {
928 /* First collect the vtables we must look at for this object. */
929 /* FIXME-tiemann: right now, just look at top-most vtable. */
930 value_ptr arg, vtbl, entry, best_entry = 0;
931 int i, nelems;
932 int offset, best_offset = 0;
933 struct symbol *sym;
934 CORE_ADDR pc_for_sym;
935 char *demangled_name;
936 struct minimal_symbol *msymbol;
937
938 btype = TYPE_VPTR_BASETYPE (dtype);
939 check_stub_type (btype);
940 arg = in_arg;
941 if (btype != dtype)
942 arg = value_cast (lookup_pointer_type (btype), arg);
943 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
944
945 /* Check that VTBL looks like it points to a virtual function table. */
946 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
947 if (msymbol == NULL
948 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
949 || !VTBL_PREFIX_P (demangled_name))
950 {
951 /* If we expected to find a vtable, but did not, let the user
952 know that we aren't happy, but don't throw an error.
953 FIXME: there has to be a better way to do this. */
954 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
955 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
956 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
957 VALUE_TYPE (in_arg) = error_type;
958 return in_arg;
959 }
960
961 /* Now search through the virtual function table. */
962 entry = value_ind (vtbl);
963 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
964 for (i = 1; i <= nelems; i++)
965 {
966 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
967 (LONGEST) i));
968 /* This won't work if we're using thunks. */
969 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
970 break;
971 offset = longest_to_int (value_as_long (value_field (entry, 0)));
972 /* If we use '<=' we can handle single inheritance
973 * where all offsets are zero - just use the first entry found. */
974 if (offset <= best_offset)
975 {
976 best_offset = offset;
977 best_entry = entry;
978 }
979 }
980 /* Move the pointer according to BEST_ENTRY's offset, and figure
981 out what type we should return as the new pointer. */
982 if (best_entry == 0)
983 {
984 /* An alternative method (which should no longer be necessary).
985 * But we leave it in for future use, when we will hopefully
986 * have optimizes the vtable to use thunks instead of offsets. */
987 /* Use the name of vtable itself to extract a base type. */
988 demangled_name += 4; /* Skip _vt$ prefix. */
989 }
990 else
991 {
992 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
993 sym = find_pc_function (pc_for_sym);
994 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
995 *(strchr (demangled_name, ':')) = '\0';
996 }
997 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
998 if (sym == NULL)
999 error ("could not find type declaration for `%s'", demangled_name);
1000 if (best_entry)
1001 {
1002 free (demangled_name);
1003 arg = value_add (value_cast (builtin_type_int, arg),
1004 value_field (best_entry, 0));
1005 }
1006 else arg = in_arg;
1007 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1008 return arg;
1009 }
1010
1011 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1012 function tables, probe ARG's tables (including the vtables
1013 of its baseclasses) to figure out the most derived type that ARG
1014 could actually be a pointer to. */
1015
1016 value_ptr
1017 value_from_vtable_info (arg, type)
1018 value_ptr arg;
1019 struct type *type;
1020 {
1021 /* Take care of preliminaries. */
1022 if (TYPE_VPTR_FIELDNO (type) < 0)
1023 fill_in_vptr_fieldno (type);
1024 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1025 return 0;
1026
1027 return value_headof (arg, 0, type);
1028 }
1029
1030 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1031 pointer which is for the base class whose type is BASECLASS. */
1032
1033 static int
1034 vb_match (type, index, basetype)
1035 struct type *type;
1036 int index;
1037 struct type *basetype;
1038 {
1039 struct type *fieldtype;
1040 char *name = TYPE_FIELD_NAME (type, index);
1041 char *field_class_name = NULL;
1042
1043 if (*name != '_')
1044 return 0;
1045 /* gcc 2.4 uses _vb$. */
1046 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1047 field_class_name = name + 4;
1048 /* gcc 2.5 will use __vb_. */
1049 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1050 field_class_name = name + 5;
1051
1052 if (field_class_name == NULL)
1053 /* This field is not a virtual base class pointer. */
1054 return 0;
1055
1056 /* It's a virtual baseclass pointer, now we just need to find out whether
1057 it is for this baseclass. */
1058 fieldtype = TYPE_FIELD_TYPE (type, index);
1059 if (fieldtype == NULL
1060 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1061 /* "Can't happen". */
1062 return 0;
1063
1064 /* What we check for is that either the types are equal (needed for
1065 nameless types) or have the same name. This is ugly, and a more
1066 elegant solution should be devised (which would probably just push
1067 the ugliness into symbol reading unless we change the stabs format). */
1068 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1069 return 1;
1070
1071 if (TYPE_NAME (basetype) != NULL
1072 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1073 && STREQ (TYPE_NAME (basetype),
1074 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1075 return 1;
1076 return 0;
1077 }
1078
1079 /* Compute the offset of the baseclass which is
1080 the INDEXth baseclass of class TYPE, for a value ARG,
1081 wih extra offset of OFFSET.
1082 The result is the offste of the baseclass value relative
1083 to (the address of)(ARG) + OFFSET.
1084
1085 -1 is returned on error. */
1086
1087 int
1088 baseclass_offset (type, index, arg, offset)
1089 struct type *type;
1090 int index;
1091 value_ptr arg;
1092 int offset;
1093 {
1094 struct type *basetype = TYPE_BASECLASS (type, index);
1095
1096 if (BASETYPE_VIA_VIRTUAL (type, index))
1097 {
1098 /* Must hunt for the pointer to this virtual baseclass. */
1099 register int i, len = TYPE_NFIELDS (type);
1100 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1101
1102 /* First look for the virtual baseclass pointer
1103 in the fields. */
1104 for (i = n_baseclasses; i < len; i++)
1105 {
1106 if (vb_match (type, i, basetype))
1107 {
1108 CORE_ADDR addr
1109 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1110 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1111 + offset
1112 + (TYPE_FIELD_BITPOS (type, i) / 8));
1113
1114 if (VALUE_LVAL (arg) != lval_memory)
1115 return -1;
1116
1117 return addr -
1118 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1119 }
1120 }
1121 /* Not in the fields, so try looking through the baseclasses. */
1122 for (i = index+1; i < n_baseclasses; i++)
1123 {
1124 int boffset =
1125 baseclass_offset (type, i, arg, offset);
1126 if (boffset)
1127 return boffset;
1128 }
1129 /* Not found. */
1130 return -1;
1131 }
1132
1133 /* Baseclass is easily computed. */
1134 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1135 }
1136
1137 /* Compute the address of the baseclass which is
1138 the INDEXth baseclass of class TYPE. The TYPE base
1139 of the object is at VALADDR.
1140
1141 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1142 or 0 if no error. In that case the return value is not the address
1143 of the baseclasss, but the address which could not be read
1144 successfully. */
1145
1146 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1147
1148 char *
1149 baseclass_addr (type, index, valaddr, valuep, errp)
1150 struct type *type;
1151 int index;
1152 char *valaddr;
1153 value_ptr *valuep;
1154 int *errp;
1155 {
1156 struct type *basetype = TYPE_BASECLASS (type, index);
1157
1158 if (errp)
1159 *errp = 0;
1160
1161 if (BASETYPE_VIA_VIRTUAL (type, index))
1162 {
1163 /* Must hunt for the pointer to this virtual baseclass. */
1164 register int i, len = TYPE_NFIELDS (type);
1165 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1166
1167 /* First look for the virtual baseclass pointer
1168 in the fields. */
1169 for (i = n_baseclasses; i < len; i++)
1170 {
1171 if (vb_match (type, i, basetype))
1172 {
1173 value_ptr val = allocate_value (basetype);
1174 CORE_ADDR addr;
1175 int status;
1176
1177 addr
1178 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1179 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1180
1181 status = target_read_memory (addr,
1182 VALUE_CONTENTS_RAW (val),
1183 TYPE_LENGTH (basetype));
1184 VALUE_LVAL (val) = lval_memory;
1185 VALUE_ADDRESS (val) = addr;
1186
1187 if (status != 0)
1188 {
1189 if (valuep)
1190 *valuep = NULL;
1191 release_value (val);
1192 value_free (val);
1193 if (errp)
1194 *errp = status;
1195 return (char *)addr;
1196 }
1197 else
1198 {
1199 if (valuep)
1200 *valuep = val;
1201 return (char *) VALUE_CONTENTS (val);
1202 }
1203 }
1204 }
1205 /* Not in the fields, so try looking through the baseclasses. */
1206 for (i = index+1; i < n_baseclasses; i++)
1207 {
1208 char *baddr;
1209
1210 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1211 if (baddr)
1212 return baddr;
1213 }
1214 /* Not found. */
1215 if (valuep)
1216 *valuep = 0;
1217 return 0;
1218 }
1219
1220 /* Baseclass is easily computed. */
1221 if (valuep)
1222 *valuep = 0;
1223 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1224 }
1225 \f
1226 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1227 VALADDR.
1228
1229 Extracting bits depends on endianness of the machine. Compute the
1230 number of least significant bits to discard. For big endian machines,
1231 we compute the total number of bits in the anonymous object, subtract
1232 off the bit count from the MSB of the object to the MSB of the
1233 bitfield, then the size of the bitfield, which leaves the LSB discard
1234 count. For little endian machines, the discard count is simply the
1235 number of bits from the LSB of the anonymous object to the LSB of the
1236 bitfield.
1237
1238 If the field is signed, we also do sign extension. */
1239
1240 LONGEST
1241 unpack_field_as_long (type, valaddr, fieldno)
1242 struct type *type;
1243 char *valaddr;
1244 int fieldno;
1245 {
1246 unsigned LONGEST val;
1247 unsigned LONGEST valmask;
1248 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1249 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1250 int lsbcount;
1251
1252 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1253
1254 /* Extract bits. See comment above. */
1255
1256 if (BITS_BIG_ENDIAN)
1257 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1258 else
1259 lsbcount = (bitpos % 8);
1260 val >>= lsbcount;
1261
1262 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1263 If the field is signed, and is negative, then sign extend. */
1264
1265 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1266 {
1267 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1268 val &= valmask;
1269 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1270 {
1271 if (val & (valmask ^ (valmask >> 1)))
1272 {
1273 val |= ~valmask;
1274 }
1275 }
1276 }
1277 return (val);
1278 }
1279
1280 /* Modify the value of a bitfield. ADDR points to a block of memory in
1281 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1282 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1283 indicate which bits (in target bit order) comprise the bitfield. */
1284
1285 void
1286 modify_field (addr, fieldval, bitpos, bitsize)
1287 char *addr;
1288 LONGEST fieldval;
1289 int bitpos, bitsize;
1290 {
1291 LONGEST oword;
1292
1293 /* If a negative fieldval fits in the field in question, chop
1294 off the sign extension bits. */
1295 if (bitsize < (8 * sizeof (fieldval))
1296 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1297 fieldval = fieldval & ((1 << bitsize) - 1);
1298
1299 /* Warn if value is too big to fit in the field in question. */
1300 if (bitsize < (8 * sizeof (fieldval))
1301 && 0 != (fieldval & ~((1<<bitsize)-1)))
1302 {
1303 /* FIXME: would like to include fieldval in the message, but
1304 we don't have a sprintf_longest. */
1305 warning ("Value does not fit in %d bits.", bitsize);
1306
1307 /* Truncate it, otherwise adjoining fields may be corrupted. */
1308 fieldval = fieldval & ((1 << bitsize) - 1);
1309 }
1310
1311 oword = extract_signed_integer (addr, sizeof oword);
1312
1313 /* Shifting for bit field depends on endianness of the target machine. */
1314 if (BITS_BIG_ENDIAN)
1315 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1316
1317 /* Mask out old value, while avoiding shifts >= size of oword */
1318 if (bitsize < 8 * sizeof (oword))
1319 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1320 else
1321 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1322 oword |= fieldval << bitpos;
1323
1324 store_signed_integer (addr, sizeof oword, oword);
1325 }
1326 \f
1327 /* Convert C numbers into newly allocated values */
1328
1329 value_ptr
1330 value_from_longest (type, num)
1331 struct type *type;
1332 register LONGEST num;
1333 {
1334 register value_ptr val = allocate_value (type);
1335 register enum type_code code = TYPE_CODE (type);
1336 register int len = TYPE_LENGTH (type);
1337
1338 switch (code)
1339 {
1340 case TYPE_CODE_INT:
1341 case TYPE_CODE_CHAR:
1342 case TYPE_CODE_ENUM:
1343 case TYPE_CODE_BOOL:
1344 case TYPE_CODE_RANGE:
1345 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1346 break;
1347
1348 case TYPE_CODE_REF:
1349 case TYPE_CODE_PTR:
1350 /* This assumes that all pointers of a given length
1351 have the same form. */
1352 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1353 break;
1354
1355 default:
1356 error ("Unexpected type encountered for integer constant.");
1357 }
1358 return val;
1359 }
1360
1361 value_ptr
1362 value_from_double (type, num)
1363 struct type *type;
1364 double num;
1365 {
1366 register value_ptr val = allocate_value (type);
1367 register enum type_code code = TYPE_CODE (type);
1368 register int len = TYPE_LENGTH (type);
1369
1370 if (code == TYPE_CODE_FLT)
1371 {
1372 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1373 }
1374 else
1375 error ("Unexpected type encountered for floating constant.");
1376
1377 return val;
1378 }
1379 \f
1380 /* Deal with the value that is "about to be returned". */
1381
1382 /* Return the value that a function returning now
1383 would be returning to its caller, assuming its type is VALTYPE.
1384 RETBUF is where we look for what ought to be the contents
1385 of the registers (in raw form). This is because it is often
1386 desirable to restore old values to those registers
1387 after saving the contents of interest, and then call
1388 this function using the saved values.
1389 struct_return is non-zero when the function in question is
1390 using the structure return conventions on the machine in question;
1391 0 when it is using the value returning conventions (this often
1392 means returning pointer to where structure is vs. returning value). */
1393
1394 value_ptr
1395 value_being_returned (valtype, retbuf, struct_return)
1396 register struct type *valtype;
1397 char retbuf[REGISTER_BYTES];
1398 int struct_return;
1399 /*ARGSUSED*/
1400 {
1401 register value_ptr val;
1402 CORE_ADDR addr;
1403
1404 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1405 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1406 if (struct_return) {
1407 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1408 if (!addr)
1409 error ("Function return value unknown");
1410 return value_at (valtype, addr);
1411 }
1412 #endif
1413
1414 val = allocate_value (valtype);
1415 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1416
1417 return val;
1418 }
1419
1420 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1421 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1422 and TYPE is the type (which is known to be struct, union or array).
1423
1424 On most machines, the struct convention is used unless we are
1425 using gcc and the type is of a special size. */
1426 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1427 native compiler. GCC 2.3.3 was the last release that did it the
1428 old way. Since gcc2_compiled was not changed, we have no
1429 way to correctly win in all cases, so we just do the right thing
1430 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1431 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1432 would cause more chaos than dealing with some struct returns being
1433 handled wrong. */
1434 #if !defined (USE_STRUCT_CONVENTION)
1435 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1436 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1437 || TYPE_LENGTH (value_type) == 2 \
1438 || TYPE_LENGTH (value_type) == 4 \
1439 || TYPE_LENGTH (value_type) == 8 \
1440 ) \
1441 ))
1442 #endif
1443
1444 /* Return true if the function specified is using the structure returning
1445 convention on this machine to return arguments, or 0 if it is using
1446 the value returning convention. FUNCTION is the value representing
1447 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1448 is the type returned by the function. GCC_P is nonzero if compiled
1449 with GCC. */
1450
1451 int
1452 using_struct_return (function, funcaddr, value_type, gcc_p)
1453 value_ptr function;
1454 CORE_ADDR funcaddr;
1455 struct type *value_type;
1456 int gcc_p;
1457 /*ARGSUSED*/
1458 {
1459 register enum type_code code = TYPE_CODE (value_type);
1460
1461 if (code == TYPE_CODE_ERROR)
1462 error ("Function return type unknown.");
1463
1464 if (code == TYPE_CODE_STRUCT ||
1465 code == TYPE_CODE_UNION ||
1466 code == TYPE_CODE_ARRAY)
1467 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1468
1469 return 0;
1470 }
1471
1472 /* Store VAL so it will be returned if a function returns now.
1473 Does not verify that VAL's type matches what the current
1474 function wants to return. */
1475
1476 void
1477 set_return_value (val)
1478 value_ptr val;
1479 {
1480 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1481
1482 if (code == TYPE_CODE_ERROR)
1483 error ("Function return type unknown.");
1484
1485 if ( code == TYPE_CODE_STRUCT
1486 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1487 error ("GDB does not support specifying a struct or union return value.");
1488
1489 STORE_RETURN_VALUE (VALUE_TYPE (val), VALUE_CONTENTS (val));
1490 }
1491 \f
1492 void
1493 _initialize_values ()
1494 {
1495 add_cmd ("convenience", no_class, show_convenience,
1496 "Debugger convenience (\"$foo\") variables.\n\
1497 These variables are created when you assign them values;\n\
1498 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1499 A few convenience variables are given values automatically:\n\
1500 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1501 \"$__\" holds the contents of the last address examined with \"x\".",
1502 &showlist);
1503
1504 add_cmd ("values", no_class, show_values,
1505 "Elements of value history around item number IDX (or last ten).",
1506 &showlist);
1507 }
This page took 0.059441 seconds and 5 git commands to generate.