* values.c (value_headof): Fix typo in which VTBL and ARG were
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258 release_value (val);
259
260 /* Now we regard value_history_count as origin-one
261 and applying to the value just stored. */
262
263 return ++value_history_count;
264 }
265
266 /* Return a copy of the value in the history with sequence number NUM. */
267
268 value
269 access_value_history (num)
270 int num;
271 {
272 register struct value_history_chunk *chunk;
273 register int i;
274 register int absnum = num;
275
276 if (absnum <= 0)
277 absnum += value_history_count;
278
279 if (absnum <= 0)
280 {
281 if (num == 0)
282 error ("The history is empty.");
283 else if (num == 1)
284 error ("There is only one value in the history.");
285 else
286 error ("History does not go back to $$%d.", -num);
287 }
288 if (absnum > value_history_count)
289 error ("History has not yet reached $%d.", absnum);
290
291 absnum--;
292
293 /* Now absnum is always absolute and origin zero. */
294
295 chunk = value_history_chain;
296 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
297 i > 0; i--)
298 chunk = chunk->next;
299
300 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
301 }
302
303 /* Clear the value history entirely.
304 Must be done when new symbol tables are loaded,
305 because the type pointers become invalid. */
306
307 void
308 clear_value_history ()
309 {
310 register struct value_history_chunk *next;
311 register int i;
312 register value val;
313
314 while (value_history_chain)
315 {
316 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
317 if ((val = value_history_chain->values[i]) != NULL)
318 free ((PTR)val);
319 next = value_history_chain->next;
320 free ((PTR)value_history_chain);
321 value_history_chain = next;
322 }
323 value_history_count = 0;
324 }
325
326 static void
327 show_values (num_exp, from_tty)
328 char *num_exp;
329 int from_tty;
330 {
331 register int i;
332 register value val;
333 static int num = 1;
334
335 if (num_exp)
336 {
337 if (num_exp[0] == '+' && num_exp[1] == '\0')
338 /* "info history +" should print from the stored position. */
339 ;
340 else
341 /* "info history <exp>" should print around value number <exp>. */
342 num = parse_and_eval_address (num_exp) - 5;
343 }
344 else
345 {
346 /* "info history" means print the last 10 values. */
347 num = value_history_count - 9;
348 }
349
350 if (num <= 0)
351 num = 1;
352
353 for (i = num; i < num + 10 && i <= value_history_count; i++)
354 {
355 val = access_value_history (i);
356 printf_filtered ("$%d = ", i);
357 value_print (val, stdout, 0, Val_pretty_default);
358 printf_filtered ("\n");
359 }
360
361 /* The next "info history +" should start after what we just printed. */
362 num += 10;
363
364 /* Hitting just return after this command should do the same thing as
365 "info history +". If num_exp is null, this is unnecessary, since
366 "info history +" is not useful after "info history". */
367 if (from_tty && num_exp)
368 {
369 num_exp[0] = '+';
370 num_exp[1] = '\0';
371 }
372 }
373 \f
374 /* Internal variables. These are variables within the debugger
375 that hold values assigned by debugger commands.
376 The user refers to them with a '$' prefix
377 that does not appear in the variable names stored internally. */
378
379 static struct internalvar *internalvars;
380
381 /* Look up an internal variable with name NAME. NAME should not
382 normally include a dollar sign.
383
384 If the specified internal variable does not exist,
385 one is created, with a void value. */
386
387 struct internalvar *
388 lookup_internalvar (name)
389 char *name;
390 {
391 register struct internalvar *var;
392
393 for (var = internalvars; var; var = var->next)
394 if (STREQ (var->name, name))
395 return var;
396
397 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
398 var->name = concat (name, NULL);
399 var->value = allocate_value (builtin_type_void);
400 release_value (var->value);
401 var->next = internalvars;
402 internalvars = var;
403 return var;
404 }
405
406 value
407 value_of_internalvar (var)
408 struct internalvar *var;
409 {
410 register value val;
411
412 #ifdef IS_TRAPPED_INTERNALVAR
413 if (IS_TRAPPED_INTERNALVAR (var->name))
414 return VALUE_OF_TRAPPED_INTERNALVAR (var);
415 #endif
416
417 val = value_copy (var->value);
418 if (VALUE_LAZY (val))
419 value_fetch_lazy (val);
420 VALUE_LVAL (val) = lval_internalvar;
421 VALUE_INTERNALVAR (val) = var;
422 return val;
423 }
424
425 void
426 set_internalvar_component (var, offset, bitpos, bitsize, newval)
427 struct internalvar *var;
428 int offset, bitpos, bitsize;
429 value newval;
430 {
431 register char *addr = VALUE_CONTENTS (var->value) + offset;
432
433 #ifdef IS_TRAPPED_INTERNALVAR
434 if (IS_TRAPPED_INTERNALVAR (var->name))
435 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
436 #endif
437
438 if (bitsize)
439 modify_field (addr, (int) value_as_long (newval),
440 bitpos, bitsize);
441 else
442 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
443 }
444
445 void
446 set_internalvar (var, val)
447 struct internalvar *var;
448 value val;
449 {
450 #ifdef IS_TRAPPED_INTERNALVAR
451 if (IS_TRAPPED_INTERNALVAR (var->name))
452 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
453 #endif
454
455 free ((PTR)var->value);
456 var->value = value_copy (val);
457 /* Force the value to be fetched from the target now, to avoid problems
458 later when this internalvar is referenced and the target is gone or
459 has changed. */
460 if (VALUE_LAZY (var->value))
461 value_fetch_lazy (var->value);
462 release_value (var->value);
463 }
464
465 char *
466 internalvar_name (var)
467 struct internalvar *var;
468 {
469 return var->name;
470 }
471
472 /* Free all internalvars. Done when new symtabs are loaded,
473 because that makes the values invalid. */
474
475 void
476 clear_internalvars ()
477 {
478 register struct internalvar *var;
479
480 while (internalvars)
481 {
482 var = internalvars;
483 internalvars = var->next;
484 free ((PTR)var->name);
485 free ((PTR)var->value);
486 free ((PTR)var);
487 }
488 }
489
490 static void
491 show_convenience (ignore, from_tty)
492 char *ignore;
493 int from_tty;
494 {
495 register struct internalvar *var;
496 int varseen = 0;
497
498 for (var = internalvars; var; var = var->next)
499 {
500 #ifdef IS_TRAPPED_INTERNALVAR
501 if (IS_TRAPPED_INTERNALVAR (var->name))
502 continue;
503 #endif
504 if (!varseen)
505 {
506 varseen = 1;
507 }
508 printf_filtered ("$%s = ", var->name);
509 value_print (var->value, stdout, 0, Val_pretty_default);
510 printf_filtered ("\n");
511 }
512 if (!varseen)
513 printf ("No debugger convenience variables now defined.\n\
514 Convenience variables have names starting with \"$\";\n\
515 use \"set\" as in \"set $foo = 5\" to define them.\n");
516 }
517 \f
518 /* Extract a value as a C number (either long or double).
519 Knows how to convert fixed values to double, or
520 floating values to long.
521 Does not deallocate the value. */
522
523 LONGEST
524 value_as_long (val)
525 register value val;
526 {
527 /* This coerces arrays and functions, which is necessary (e.g.
528 in disassemble_command). It also dereferences references, which
529 I suspect is the most logical thing to do. */
530 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
531 COERCE_ARRAY (val);
532 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
533 }
534
535 double
536 value_as_double (val)
537 register value val;
538 {
539 double foo;
540 int inv;
541
542 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
543 if (inv)
544 error ("Invalid floating value found in program.");
545 return foo;
546 }
547 /* Extract a value as a C pointer.
548 Does not deallocate the value. */
549 CORE_ADDR
550 value_as_pointer (val)
551 value val;
552 {
553 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
554 whether we want this to be true eventually. */
555 return ADDR_BITS_REMOVE(value_as_long (val));
556 }
557 \f
558 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
559 as a long, or as a double, assuming the raw data is described
560 by type TYPE. Knows how to convert different sizes of values
561 and can convert between fixed and floating point. We don't assume
562 any alignment for the raw data. Return value is in host byte order.
563
564 If you want functions and arrays to be coerced to pointers, and
565 references to be dereferenced, call value_as_long() instead.
566
567 C++: It is assumed that the front-end has taken care of
568 all matters concerning pointers to members. A pointer
569 to member which reaches here is considered to be equivalent
570 to an INT (or some size). After all, it is only an offset. */
571
572 /* FIXME: This should be rewritten as a switch statement for speed and
573 ease of comprehension. */
574
575 LONGEST
576 unpack_long (type, valaddr)
577 struct type *type;
578 char *valaddr;
579 {
580 register enum type_code code = TYPE_CODE (type);
581 register int len = TYPE_LENGTH (type);
582 register int nosign = TYPE_UNSIGNED (type);
583
584 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
585 code = TYPE_CODE_INT;
586 if (code == TYPE_CODE_FLT)
587 {
588 if (len == sizeof (float))
589 {
590 float retval;
591 memcpy (&retval, valaddr, sizeof (retval));
592 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
593 return retval;
594 }
595
596 if (len == sizeof (double))
597 {
598 double retval;
599 memcpy (&retval, valaddr, sizeof (retval));
600 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
601 return retval;
602 }
603 else
604 {
605 error ("Unexpected type of floating point number.");
606 }
607 }
608 else if (code == TYPE_CODE_INT && nosign)
609 {
610 if (len == sizeof (char))
611 {
612 unsigned char retval = * (unsigned char *) valaddr;
613 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
614 return retval;
615 }
616
617 if (len == sizeof (short))
618 {
619 unsigned short retval;
620 memcpy (&retval, valaddr, sizeof (retval));
621 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
622 return retval;
623 }
624
625 if (len == sizeof (int))
626 {
627 unsigned int retval;
628 memcpy (&retval, valaddr, sizeof (retval));
629 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
630 return retval;
631 }
632
633 if (len == sizeof (long))
634 {
635 unsigned long retval;
636 memcpy (&retval, valaddr, sizeof (retval));
637 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
638 return retval;
639 }
640 #ifdef LONG_LONG
641 if (len == sizeof (long long))
642 {
643 unsigned long long retval;
644 memcpy (&retval, valaddr, sizeof (retval));
645 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
646 return retval;
647 }
648 #endif
649 else
650 {
651 error ("That operation is not possible on an integer of that size.");
652 }
653 }
654 else if (code == TYPE_CODE_INT)
655 {
656 if (len == sizeof (char))
657 {
658 SIGNED char retval; /* plain chars might be unsigned on host */
659 memcpy (&retval, valaddr, sizeof (retval));
660 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
661 return retval;
662 }
663
664 if (len == sizeof (short))
665 {
666 short retval;
667 memcpy (&retval, valaddr, sizeof (retval));
668 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
669 return retval;
670 }
671
672 if (len == sizeof (int))
673 {
674 int retval;
675 memcpy (&retval, valaddr, sizeof (retval));
676 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
677 return retval;
678 }
679
680 if (len == sizeof (long))
681 {
682 long retval;
683 memcpy (&retval, valaddr, sizeof (retval));
684 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
685 return retval;
686 }
687
688 #ifdef LONG_LONG
689 if (len == sizeof (long long))
690 {
691 long long retval;
692 memcpy (&retval, valaddr, sizeof (retval));
693 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
694 return retval;
695 }
696 #endif
697 else
698 {
699 error ("That operation is not possible on an integer of that size.");
700 }
701 }
702 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
703 whether we want this to be true eventually. */
704 else if (code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
705 {
706 if (len == sizeof(long))
707 {
708 unsigned long retval;
709 memcpy (&retval, valaddr, sizeof(retval));
710 SWAP_TARGET_AND_HOST (&retval, sizeof(retval));
711 return retval;
712 }
713 else if (len == sizeof(short))
714 {
715 unsigned short retval;
716 memcpy (&retval, valaddr, len);
717 SWAP_TARGET_AND_HOST (&retval, len);
718 return retval;
719 }
720 }
721 else if (code == TYPE_CODE_MEMBER)
722 error ("not implemented: member types in unpack_long");
723 else if (code == TYPE_CODE_CHAR)
724 return *(unsigned char *)valaddr;
725
726 error ("Value not integer or pointer.");
727 return 0; /* For lint -- never reached */
728 }
729
730 /* Return a double value from the specified type and address.
731 INVP points to an int which is set to 0 for valid value,
732 1 for invalid value (bad float format). In either case,
733 the returned double is OK to use. Argument is in target
734 format, result is in host format. */
735
736 double
737 unpack_double (type, valaddr, invp)
738 struct type *type;
739 char *valaddr;
740 int *invp;
741 {
742 register enum type_code code = TYPE_CODE (type);
743 register int len = TYPE_LENGTH (type);
744 register int nosign = TYPE_UNSIGNED (type);
745
746 *invp = 0; /* Assume valid. */
747 if (code == TYPE_CODE_FLT)
748 {
749 if (INVALID_FLOAT (valaddr, len))
750 {
751 *invp = 1;
752 return 1.234567891011121314;
753 }
754
755 if (len == sizeof (float))
756 {
757 float retval;
758 memcpy (&retval, valaddr, sizeof (retval));
759 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
760 return retval;
761 }
762
763 if (len == sizeof (double))
764 {
765 double retval;
766 memcpy (&retval, valaddr, sizeof (retval));
767 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
768 return retval;
769 }
770 else
771 {
772 error ("Unexpected type of floating point number.");
773 return 0; /* Placate lint. */
774 }
775 }
776 else if (nosign) {
777 /* Unsigned -- be sure we compensate for signed LONGEST. */
778 #ifdef LONG_LONG
779 return (unsigned long long) unpack_long (type, valaddr);
780 #else
781 return (unsigned long ) unpack_long (type, valaddr);
782 #endif
783 } else {
784 /* Signed -- we are OK with unpack_long. */
785 return unpack_long (type, valaddr);
786 }
787 }
788
789 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
790 as a CORE_ADDR, assuming the raw data is described by type TYPE.
791 We don't assume any alignment for the raw data. Return value is in
792 host byte order.
793
794 If you want functions and arrays to be coerced to pointers, and
795 references to be dereferenced, call value_as_pointer() instead.
796
797 C++: It is assumed that the front-end has taken care of
798 all matters concerning pointers to members. A pointer
799 to member which reaches here is considered to be equivalent
800 to an INT (or some size). After all, it is only an offset. */
801
802 CORE_ADDR
803 unpack_pointer (type, valaddr)
804 struct type *type;
805 char *valaddr;
806 {
807 #if 0
808 /* The user should be able to use an int (e.g. 0x7892) in contexts
809 where a pointer is expected. So this doesn't do enough. */
810 register enum type_code code = TYPE_CODE (type);
811 register int len = TYPE_LENGTH (type);
812
813 if (code == TYPE_CODE_PTR
814 || code == TYPE_CODE_REF)
815 {
816 if (len == sizeof (CORE_ADDR))
817 {
818 CORE_ADDR retval;
819 memcpy (&retval, valaddr, sizeof (retval));
820 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
821 return retval;
822 }
823 error ("Unrecognized pointer size.");
824 }
825 else if (code == TYPE_CODE_MEMBER)
826 error ("not implemented: member types in unpack_pointer");
827
828 error ("Value is not a pointer.");
829 return 0; /* For lint -- never reached */
830 #else
831 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
832 whether we want this to be true eventually. */
833 return unpack_long (type, valaddr);
834 #endif
835 }
836 \f
837 /* Given a value ARG1 (offset by OFFSET bytes)
838 of a struct or union type ARG_TYPE,
839 extract and return the value of one of its fields.
840 FIELDNO says which field.
841
842 For C++, must also be able to return values from static fields */
843
844 value
845 value_primitive_field (arg1, offset, fieldno, arg_type)
846 register value arg1;
847 int offset;
848 register int fieldno;
849 register struct type *arg_type;
850 {
851 register value v;
852 register struct type *type;
853
854 check_stub_type (arg_type);
855 type = TYPE_FIELD_TYPE (arg_type, fieldno);
856
857 /* Handle packed fields */
858
859 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
860 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
861 {
862 v = value_from_longest (type,
863 unpack_field_as_long (arg_type,
864 VALUE_CONTENTS (arg1),
865 fieldno));
866 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
867 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
868 }
869 else
870 {
871 v = allocate_value (type);
872 if (VALUE_LAZY (arg1))
873 VALUE_LAZY (v) = 1;
874 else
875 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
876 TYPE_LENGTH (type));
877 }
878 VALUE_LVAL (v) = VALUE_LVAL (arg1);
879 if (VALUE_LVAL (arg1) == lval_internalvar)
880 VALUE_LVAL (v) = lval_internalvar_component;
881 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
882 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
883 return v;
884 }
885
886 /* Given a value ARG1 of a struct or union type,
887 extract and return the value of one of its fields.
888 FIELDNO says which field.
889
890 For C++, must also be able to return values from static fields */
891
892 value
893 value_field (arg1, fieldno)
894 register value arg1;
895 register int fieldno;
896 {
897 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
898 }
899
900 /* Return a non-virtual function as a value.
901 F is the list of member functions which contains the desired method.
902 J is an index into F which provides the desired method. */
903
904 value
905 value_fn_field (arg1p, f, j, type, offset)
906 value *arg1p;
907 struct fn_field *f;
908 int j;
909 struct type *type;
910 int offset;
911 {
912 register value v;
913 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
914 struct symbol *sym;
915
916 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
917 0, VAR_NAMESPACE, 0, NULL);
918 if (! sym) error ("Internal error: could not find physical method named %s",
919 TYPE_FN_FIELD_PHYSNAME (f, j));
920
921 v = allocate_value (ftype);
922 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
923 VALUE_TYPE (v) = ftype;
924
925 if (arg1p)
926 {
927 if (type != VALUE_TYPE (*arg1p))
928 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
929 value_addr (*arg1p)));
930
931 /* Move the `this' pointer according to the offset. */
932 VALUE_OFFSET (*arg1p) += offset;
933 }
934
935 return v;
936 }
937
938 /* Return a virtual function as a value.
939 ARG1 is the object which provides the virtual function
940 table pointer. *ARG1P is side-effected in calling this function.
941 F is the list of member functions which contains the desired virtual
942 function.
943 J is an index into F which provides the desired virtual function.
944
945 TYPE is the type in which F is located. */
946 value
947 value_virtual_fn_field (arg1p, f, j, type, offset)
948 value *arg1p;
949 struct fn_field *f;
950 int j;
951 struct type *type;
952 int offset;
953 {
954 value arg1 = *arg1p;
955 /* First, get the virtual function table pointer. That comes
956 with a strange type, so cast it to type `pointer to long' (which
957 should serve just fine as a function type). Then, index into
958 the table, and convert final value to appropriate function type. */
959 value entry, vfn, vtbl;
960 value vi = value_from_longest (builtin_type_int,
961 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
962 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
963 struct type *context;
964 if (fcontext == NULL)
965 /* We don't have an fcontext (e.g. the program was compiled with
966 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
967 This won't work right for multiple inheritance, but at least we
968 should do as well as GDB 3.x did. */
969 fcontext = TYPE_VPTR_BASETYPE (type);
970 context = lookup_pointer_type (fcontext);
971 /* Now context is a pointer to the basetype containing the vtbl. */
972 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
973 arg1 = value_ind (value_cast (context, value_addr (arg1)));
974
975 context = VALUE_TYPE (arg1);
976 /* Now context is the basetype containing the vtbl. */
977
978 /* This type may have been defined before its virtual function table
979 was. If so, fill in the virtual function table entry for the
980 type now. */
981 if (TYPE_VPTR_FIELDNO (context) < 0)
982 fill_in_vptr_fieldno (context);
983
984 /* The virtual function table is now an array of structures
985 which have the form { int16 offset, delta; void *pfn; }. */
986 vtbl = value_ind (value_primitive_field (arg1, 0,
987 TYPE_VPTR_FIELDNO (context),
988 TYPE_VPTR_BASETYPE (context)));
989
990 /* Index into the virtual function table. This is hard-coded because
991 looking up a field is not cheap, and it may be important to save
992 time, e.g. if the user has set a conditional breakpoint calling
993 a virtual function. */
994 entry = value_subscript (vtbl, vi);
995
996 /* Move the `this' pointer according to the virtual function table. */
997 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0)) + offset;
998 if (! VALUE_LAZY (arg1))
999 {
1000 VALUE_LAZY (arg1) = 1;
1001 value_fetch_lazy (arg1);
1002 }
1003
1004 vfn = value_field (entry, 2);
1005 /* Reinstantiate the function pointer with the correct type. */
1006 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1007
1008 *arg1p = arg1;
1009 return vfn;
1010 }
1011
1012 /* ARG is a pointer to an object we know to be at least
1013 a DTYPE. BTYPE is the most derived basetype that has
1014 already been searched (and need not be searched again).
1015 After looking at the vtables between BTYPE and DTYPE,
1016 return the most derived type we find. The caller must
1017 be satisfied when the return value == DTYPE.
1018
1019 FIXME-tiemann: should work with dossier entries as well. */
1020
1021 static value
1022 value_headof (in_arg, btype, dtype)
1023 value in_arg;
1024 struct type *btype, *dtype;
1025 {
1026 /* First collect the vtables we must look at for this object. */
1027 /* FIXME-tiemann: right now, just look at top-most vtable. */
1028 value arg, vtbl, entry, best_entry = 0;
1029 int i, nelems;
1030 int offset, best_offset = 0;
1031 struct symbol *sym;
1032 CORE_ADDR pc_for_sym;
1033 char *demangled_name;
1034 struct minimal_symbol *msymbol;
1035
1036 btype = TYPE_VPTR_BASETYPE (dtype);
1037 check_stub_type (btype);
1038 arg = in_arg;
1039 if (btype != dtype)
1040 arg = value_cast (lookup_pointer_type (btype), arg);
1041 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
1042
1043 /* Check that VTBL looks like it points to a virtual function table. */
1044 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1045 if (msymbol == NULL
1046 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
1047 {
1048 /* If we expected to find a vtable, but did not, let the user
1049 know that we aren't happy, but don't throw an error.
1050 FIXME: there has to be a better way to do this. */
1051 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1052 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1053 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1054 VALUE_TYPE (in_arg) = error_type;
1055 return in_arg;
1056 }
1057
1058 /* Now search through the virtual function table. */
1059 entry = value_ind (vtbl);
1060 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1061 for (i = 1; i <= nelems; i++)
1062 {
1063 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1064 (LONGEST) i));
1065 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1066 /* If we use '<=' we can handle single inheritance
1067 * where all offsets are zero - just use the first entry found. */
1068 if (offset <= best_offset)
1069 {
1070 best_offset = offset;
1071 best_entry = entry;
1072 }
1073 }
1074 /* Move the pointer according to BEST_ENTRY's offset, and figure
1075 out what type we should return as the new pointer. */
1076 if (best_entry == 0)
1077 {
1078 /* An alternative method (which should no longer be necessary).
1079 * But we leave it in for future use, when we will hopefully
1080 * have optimizes the vtable to use thunks instead of offsets. */
1081 /* Use the name of vtable itself to extract a base type. */
1082 demangled_name += 4; /* Skip _vt$ prefix. */
1083 }
1084 else
1085 {
1086 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1087 sym = find_pc_function (pc_for_sym);
1088 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
1089 *(strchr (demangled_name, ':')) = '\0';
1090 }
1091 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1092 if (sym == NULL)
1093 error ("could not find type declaration for `%s'", demangled_name);
1094 if (best_entry)
1095 {
1096 free (demangled_name);
1097 arg = value_add (value_cast (builtin_type_int, arg),
1098 value_field (best_entry, 0));
1099 }
1100 else arg = in_arg;
1101 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1102 return arg;
1103 }
1104
1105 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1106 function tables, probe ARG's tables (including the vtables
1107 of its baseclasses) to figure out the most derived type that ARG
1108 could actually be a pointer to. */
1109
1110 value
1111 value_from_vtable_info (arg, type)
1112 value arg;
1113 struct type *type;
1114 {
1115 /* Take care of preliminaries. */
1116 if (TYPE_VPTR_FIELDNO (type) < 0)
1117 fill_in_vptr_fieldno (type);
1118 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1119 return 0;
1120
1121 return value_headof (arg, 0, type);
1122 }
1123
1124 /* Compute the offset of the baseclass which is
1125 the INDEXth baseclass of class TYPE, for a value ARG,
1126 wih extra offset of OFFSET.
1127 The result is the offste of the baseclass value relative
1128 to (the address of)(ARG) + OFFSET.
1129
1130 -1 is returned on error. */
1131
1132 int
1133 baseclass_offset (type, index, arg, offset)
1134 struct type *type;
1135 int index;
1136 value arg;
1137 int offset;
1138 {
1139 struct type *basetype = TYPE_BASECLASS (type, index);
1140
1141 if (BASETYPE_VIA_VIRTUAL (type, index))
1142 {
1143 /* Must hunt for the pointer to this virtual baseclass. */
1144 register int i, len = TYPE_NFIELDS (type);
1145 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1146 char *vbase_name, *type_name = type_name_no_tag (basetype);
1147
1148 vbase_name = (char *)alloca (strlen (type_name) + 8);
1149 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1150 /* First look for the virtual baseclass pointer
1151 in the fields. */
1152 for (i = n_baseclasses; i < len; i++)
1153 {
1154 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1155 {
1156 CORE_ADDR addr
1157 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1158 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1159 + offset
1160 + (TYPE_FIELD_BITPOS (type, i) / 8));
1161
1162 if (VALUE_LVAL (arg) != lval_memory)
1163 return -1;
1164
1165 return addr -
1166 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1167 }
1168 }
1169 /* Not in the fields, so try looking through the baseclasses. */
1170 for (i = index+1; i < n_baseclasses; i++)
1171 {
1172 int boffset =
1173 baseclass_offset (type, i, arg, offset);
1174 if (boffset)
1175 return boffset;
1176 }
1177 /* Not found. */
1178 return -1;
1179 }
1180
1181 /* Baseclass is easily computed. */
1182 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1183 }
1184
1185 /* Compute the address of the baseclass which is
1186 the INDEXth baseclass of class TYPE. The TYPE base
1187 of the object is at VALADDR.
1188
1189 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1190 or 0 if no error. In that case the return value is not the address
1191 of the baseclasss, but the address which could not be read
1192 successfully. */
1193
1194 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1195
1196 char *
1197 baseclass_addr (type, index, valaddr, valuep, errp)
1198 struct type *type;
1199 int index;
1200 char *valaddr;
1201 value *valuep;
1202 int *errp;
1203 {
1204 struct type *basetype = TYPE_BASECLASS (type, index);
1205
1206 if (errp)
1207 *errp = 0;
1208
1209 if (BASETYPE_VIA_VIRTUAL (type, index))
1210 {
1211 /* Must hunt for the pointer to this virtual baseclass. */
1212 register int i, len = TYPE_NFIELDS (type);
1213 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1214 char *vbase_name, *type_name = type_name_no_tag (basetype);
1215
1216 vbase_name = (char *)alloca (strlen (type_name) + 8);
1217 sprintf (vbase_name, "_vb%c%s", CPLUS_MARKER, type_name);
1218 /* First look for the virtual baseclass pointer
1219 in the fields. */
1220 for (i = n_baseclasses; i < len; i++)
1221 {
1222 if (STREQ (vbase_name, TYPE_FIELD_NAME (type, i)))
1223 {
1224 value val = allocate_value (basetype);
1225 CORE_ADDR addr;
1226 int status;
1227
1228 addr
1229 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1230 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1231
1232 status = target_read_memory (addr,
1233 VALUE_CONTENTS_RAW (val),
1234 TYPE_LENGTH (basetype));
1235 VALUE_LVAL (val) = lval_memory;
1236 VALUE_ADDRESS (val) = addr;
1237
1238 if (status != 0)
1239 {
1240 if (valuep)
1241 *valuep = NULL;
1242 release_value (val);
1243 value_free (val);
1244 if (errp)
1245 *errp = status;
1246 return (char *)addr;
1247 }
1248 else
1249 {
1250 if (valuep)
1251 *valuep = val;
1252 return (char *) VALUE_CONTENTS (val);
1253 }
1254 }
1255 }
1256 /* Not in the fields, so try looking through the baseclasses. */
1257 for (i = index+1; i < n_baseclasses; i++)
1258 {
1259 char *baddr;
1260
1261 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1262 if (baddr)
1263 return baddr;
1264 }
1265 /* Not found. */
1266 if (valuep)
1267 *valuep = 0;
1268 return 0;
1269 }
1270
1271 /* Baseclass is easily computed. */
1272 if (valuep)
1273 *valuep = 0;
1274 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1275 }
1276 \f
1277 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1278 VALADDR.
1279
1280 Extracting bits depends on endianness of the machine. Compute the
1281 number of least significant bits to discard. For big endian machines,
1282 we compute the total number of bits in the anonymous object, subtract
1283 off the bit count from the MSB of the object to the MSB of the
1284 bitfield, then the size of the bitfield, which leaves the LSB discard
1285 count. For little endian machines, the discard count is simply the
1286 number of bits from the LSB of the anonymous object to the LSB of the
1287 bitfield.
1288
1289 If the field is signed, we also do sign extension. */
1290
1291 LONGEST
1292 unpack_field_as_long (type, valaddr, fieldno)
1293 struct type *type;
1294 char *valaddr;
1295 int fieldno;
1296 {
1297 unsigned LONGEST val;
1298 unsigned LONGEST valmask;
1299 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1300 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1301 int lsbcount;
1302
1303 memcpy (&val, valaddr + bitpos / 8, sizeof (val));
1304 SWAP_TARGET_AND_HOST (&val, sizeof (val));
1305
1306 /* Extract bits. See comment above. */
1307
1308 #if BITS_BIG_ENDIAN
1309 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1310 #else
1311 lsbcount = (bitpos % 8);
1312 #endif
1313 val >>= lsbcount;
1314
1315 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1316 If the field is signed, and is negative, then sign extend. */
1317
1318 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1319 {
1320 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1321 val &= valmask;
1322 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1323 {
1324 if (val & (valmask ^ (valmask >> 1)))
1325 {
1326 val |= ~valmask;
1327 }
1328 }
1329 }
1330 return (val);
1331 }
1332
1333 /* Modify the value of a bitfield. ADDR points to a block of memory in
1334 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1335 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1336 indicate which bits (in target bit order) comprise the bitfield. */
1337
1338 void
1339 modify_field (addr, fieldval, bitpos, bitsize)
1340 char *addr;
1341 int fieldval;
1342 int bitpos, bitsize;
1343 {
1344 long oword;
1345
1346 /* Reject values too big to fit in the field in question,
1347 otherwise adjoining fields may be corrupted. */
1348 if (bitsize < (8 * sizeof (fieldval))
1349 && 0 != (fieldval & ~((1<<bitsize)-1)))
1350 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1351
1352 memcpy (&oword, addr, sizeof oword);
1353 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1354
1355 /* Shifting for bit field depends on endianness of the target machine. */
1356 #if BITS_BIG_ENDIAN
1357 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1358 #endif
1359
1360 /* Mask out old value, while avoiding shifts >= longword size */
1361 if (bitsize < 8 * sizeof (oword))
1362 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1363 else
1364 oword &= ~((-1) << bitpos);
1365 oword |= fieldval << bitpos;
1366
1367 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1368 memcpy (addr, &oword, sizeof oword);
1369 }
1370 \f
1371 /* Convert C numbers into newly allocated values */
1372
1373 value
1374 value_from_longest (type, num)
1375 struct type *type;
1376 register LONGEST num;
1377 {
1378 register value val = allocate_value (type);
1379 register enum type_code code = TYPE_CODE (type);
1380 register int len = TYPE_LENGTH (type);
1381
1382 /* FIXME, we assume that pointers have the same form and byte order as
1383 integers, and that all pointers have the same form. */
1384 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1385 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR ||
1386 code == TYPE_CODE_REF || code == TYPE_CODE_BOOL)
1387 {
1388 if (len == sizeof (char))
1389 * (char *) VALUE_CONTENTS_RAW (val) = num;
1390 else if (len == sizeof (short))
1391 * (short *) VALUE_CONTENTS_RAW (val) = num;
1392 else if (len == sizeof (int))
1393 * (int *) VALUE_CONTENTS_RAW (val) = num;
1394 else if (len == sizeof (long))
1395 * (long *) VALUE_CONTENTS_RAW (val) = num;
1396 #ifdef LONG_LONG
1397 else if (len == sizeof (long long))
1398 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1399 #endif
1400 else
1401 error ("Integer type encountered with unexpected data length.");
1402 }
1403 else
1404 error ("Unexpected type encountered for integer constant.");
1405
1406 /* num was in host byte order. So now put the value's contents
1407 into target byte order. */
1408 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1409
1410 return val;
1411 }
1412
1413 value
1414 value_from_double (type, num)
1415 struct type *type;
1416 double num;
1417 {
1418 register value val = allocate_value (type);
1419 register enum type_code code = TYPE_CODE (type);
1420 register int len = TYPE_LENGTH (type);
1421
1422 if (code == TYPE_CODE_FLT)
1423 {
1424 if (len == sizeof (float))
1425 * (float *) VALUE_CONTENTS_RAW (val) = num;
1426 else if (len == sizeof (double))
1427 * (double *) VALUE_CONTENTS_RAW (val) = num;
1428 else
1429 error ("Floating type encountered with unexpected data length.");
1430 }
1431 else
1432 error ("Unexpected type encountered for floating constant.");
1433
1434 /* num was in host byte order. So now put the value's contents
1435 into target byte order. */
1436 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1437
1438 return val;
1439 }
1440 \f
1441 /* Deal with the value that is "about to be returned". */
1442
1443 /* Return the value that a function returning now
1444 would be returning to its caller, assuming its type is VALTYPE.
1445 RETBUF is where we look for what ought to be the contents
1446 of the registers (in raw form). This is because it is often
1447 desirable to restore old values to those registers
1448 after saving the contents of interest, and then call
1449 this function using the saved values.
1450 struct_return is non-zero when the function in question is
1451 using the structure return conventions on the machine in question;
1452 0 when it is using the value returning conventions (this often
1453 means returning pointer to where structure is vs. returning value). */
1454
1455 value
1456 value_being_returned (valtype, retbuf, struct_return)
1457 register struct type *valtype;
1458 char retbuf[REGISTER_BYTES];
1459 int struct_return;
1460 /*ARGSUSED*/
1461 {
1462 register value val;
1463 CORE_ADDR addr;
1464
1465 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1466 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1467 if (struct_return) {
1468 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1469 if (!addr)
1470 error ("Function return value unknown");
1471 return value_at (valtype, addr);
1472 }
1473 #endif
1474
1475 val = allocate_value (valtype);
1476 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1477
1478 return val;
1479 }
1480
1481 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1482 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1483 and TYPE is the type (which is known to be struct, union or array).
1484
1485 On most machines, the struct convention is used unless we are
1486 using gcc and the type is of a special size. */
1487 #if !defined (USE_STRUCT_CONVENTION)
1488 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1489 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1490 || TYPE_LENGTH (value_type) == 2 \
1491 || TYPE_LENGTH (value_type) == 4 \
1492 || TYPE_LENGTH (value_type) == 8 \
1493 ) \
1494 ))
1495 #endif
1496
1497 /* Return true if the function specified is using the structure returning
1498 convention on this machine to return arguments, or 0 if it is using
1499 the value returning convention. FUNCTION is the value representing
1500 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1501 is the type returned by the function. GCC_P is nonzero if compiled
1502 with GCC. */
1503
1504 int
1505 using_struct_return (function, funcaddr, value_type, gcc_p)
1506 value function;
1507 CORE_ADDR funcaddr;
1508 struct type *value_type;
1509 int gcc_p;
1510 /*ARGSUSED*/
1511 {
1512 register enum type_code code = TYPE_CODE (value_type);
1513
1514 if (code == TYPE_CODE_ERROR)
1515 error ("Function return type unknown.");
1516
1517 if (code == TYPE_CODE_STRUCT ||
1518 code == TYPE_CODE_UNION ||
1519 code == TYPE_CODE_ARRAY)
1520 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1521
1522 return 0;
1523 }
1524
1525 /* Store VAL so it will be returned if a function returns now.
1526 Does not verify that VAL's type matches what the current
1527 function wants to return. */
1528
1529 void
1530 set_return_value (val)
1531 value val;
1532 {
1533 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1534 double dbuf;
1535 LONGEST lbuf;
1536
1537 if (code == TYPE_CODE_ERROR)
1538 error ("Function return type unknown.");
1539
1540 if ( code == TYPE_CODE_STRUCT
1541 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1542 error ("GDB does not support specifying a struct or union return value.");
1543
1544 /* FIXME, this is bogus. We don't know what the return conventions
1545 are, or how values should be promoted.... */
1546 if (code == TYPE_CODE_FLT)
1547 {
1548 dbuf = value_as_double (val);
1549
1550 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1551 }
1552 else
1553 {
1554 lbuf = value_as_long (val);
1555 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1556 }
1557 }
1558 \f
1559 void
1560 _initialize_values ()
1561 {
1562 add_cmd ("convenience", no_class, show_convenience,
1563 "Debugger convenience (\"$foo\") variables.\n\
1564 These variables are created when you assign them values;\n\
1565 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1566 A few convenience variables are given values automatically:\n\
1567 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1568 \"$__\" holds the contents of the last address examined with \"x\".",
1569 &showlist);
1570
1571 add_cmd ("values", no_class, show_values,
1572 "Elements of value history around item number IDX (or last ten).",
1573 &showlist);
1574 }
This page took 0.093242 seconds and 5 git commands to generate.