gcc -Wall lint:
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include "defs.h"
21 #include <string.h>
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "value.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "target.h"
30 #include "demangle.h"
31
32 /* Local function prototypes. */
33
34 static value
35 value_headof PARAMS ((value, struct type *, struct type *));
36
37 static void
38 show_values PARAMS ((char *, int));
39
40 static void
41 show_convenience PARAMS ((char *, int));
42
43 /* The value-history records all the values printed
44 by print commands during this session. Each chunk
45 records 60 consecutive values. The first chunk on
46 the chain records the most recent values.
47 The total number of values is in value_history_count. */
48
49 #define VALUE_HISTORY_CHUNK 60
50
51 struct value_history_chunk
52 {
53 struct value_history_chunk *next;
54 value values[VALUE_HISTORY_CHUNK];
55 };
56
57 /* Chain of chunks now in use. */
58
59 static struct value_history_chunk *value_history_chain;
60
61 static int value_history_count; /* Abs number of last entry stored */
62 \f
63 /* List of all value objects currently allocated
64 (except for those released by calls to release_value)
65 This is so they can be freed after each command. */
66
67 static value all_values;
68
69 /* Allocate a value that has the correct length for type TYPE. */
70
71 value
72 allocate_value (type)
73 struct type *type;
74 {
75 register value val;
76
77 check_stub_type (type);
78
79 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
80 VALUE_NEXT (val) = all_values;
81 all_values = val;
82 VALUE_TYPE (val) = type;
83 VALUE_LVAL (val) = not_lval;
84 VALUE_ADDRESS (val) = 0;
85 VALUE_FRAME (val) = 0;
86 VALUE_OFFSET (val) = 0;
87 VALUE_BITPOS (val) = 0;
88 VALUE_BITSIZE (val) = 0;
89 VALUE_REPEATED (val) = 0;
90 VALUE_REPETITIONS (val) = 0;
91 VALUE_REGNO (val) = -1;
92 VALUE_LAZY (val) = 0;
93 VALUE_OPTIMIZED_OUT (val) = 0;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value val;
106
107 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
108 VALUE_NEXT (val) = all_values;
109 all_values = val;
110 VALUE_TYPE (val) = type;
111 VALUE_LVAL (val) = not_lval;
112 VALUE_ADDRESS (val) = 0;
113 VALUE_FRAME (val) = 0;
114 VALUE_OFFSET (val) = 0;
115 VALUE_BITPOS (val) = 0;
116 VALUE_BITSIZE (val) = 0;
117 VALUE_REPEATED (val) = 1;
118 VALUE_REPETITIONS (val) = count;
119 VALUE_REGNO (val) = -1;
120 VALUE_LAZY (val) = 0;
121 VALUE_OPTIMIZED_OUT (val) = 0;
122 return val;
123 }
124
125 /* Return a mark in the value chain. All values allocated after the
126 mark is obtained (except for those released) are subject to being freed
127 if a subsequent value_free_to_mark is passed the mark. */
128 value
129 value_mark ()
130 {
131 return all_values;
132 }
133
134 /* Free all values allocated since MARK was obtained by value_mark
135 (except for those released). */
136 void
137 value_free_to_mark (mark)
138 value mark;
139 {
140 value val, next;
141
142 for (val = all_values; val && val != mark; val = next)
143 {
144 next = VALUE_NEXT (val);
145 value_free (val);
146 }
147 all_values = val;
148 }
149
150 /* Free all the values that have been allocated (except for those released).
151 Called after each command, successful or not. */
152
153 void
154 free_all_values ()
155 {
156 register value val, next;
157
158 for (val = all_values; val; val = next)
159 {
160 next = VALUE_NEXT (val);
161 value_free (val);
162 }
163
164 all_values = 0;
165 }
166
167 /* Remove VAL from the chain all_values
168 so it will not be freed automatically. */
169
170 void
171 release_value (val)
172 register value val;
173 {
174 register value v;
175
176 if (all_values == val)
177 {
178 all_values = val->next;
179 return;
180 }
181
182 for (v = all_values; v; v = v->next)
183 {
184 if (v->next == val)
185 {
186 v->next = val->next;
187 break;
188 }
189 }
190 }
191
192 /* Return a copy of the value ARG.
193 It contains the same contents, for same memory address,
194 but it's a different block of storage. */
195
196 value
197 value_copy (arg)
198 value arg;
199 {
200 register value val;
201 register struct type *type = VALUE_TYPE (arg);
202 if (VALUE_REPEATED (arg))
203 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
204 else
205 val = allocate_value (type);
206 VALUE_LVAL (val) = VALUE_LVAL (arg);
207 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
208 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
209 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
210 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
211 VALUE_REGNO (val) = VALUE_REGNO (arg);
212 VALUE_LAZY (val) = VALUE_LAZY (arg);
213 if (!VALUE_LAZY (val))
214 {
215 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
216 TYPE_LENGTH (VALUE_TYPE (arg))
217 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
218 }
219 return val;
220 }
221 \f
222 /* Access to the value history. */
223
224 /* Record a new value in the value history.
225 Returns the absolute history index of the entry.
226 Result of -1 indicates the value was not saved; otherwise it is the
227 value history index of this new item. */
228
229 int
230 record_latest_value (val)
231 value val;
232 {
233 int i;
234
235 /* Check error now if about to store an invalid float. We return -1
236 to the caller, but allow them to continue, e.g. to print it as "Nan". */
237 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
238 {
239 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
240 if (i) return -1; /* Indicate value not saved in history */
241 }
242
243 /* Here we treat value_history_count as origin-zero
244 and applying to the value being stored now. */
245
246 i = value_history_count % VALUE_HISTORY_CHUNK;
247 if (i == 0)
248 {
249 register struct value_history_chunk *new
250 = (struct value_history_chunk *)
251 xmalloc (sizeof (struct value_history_chunk));
252 memset (new->values, 0, sizeof new->values);
253 new->next = value_history_chain;
254 value_history_chain = new;
255 }
256
257 value_history_chain->values[i] = val;
258
259 /* We don't want this value to have anything to do with the inferior anymore.
260 In particular, "set $1 = 50" should not affect the variable from which
261 the value was taken, and fast watchpoints should be able to assume that
262 a value on the value history never changes. */
263 if (VALUE_LAZY (val))
264 value_fetch_lazy (val);
265 VALUE_LVAL (val) = not_lval;
266 release_value (val);
267
268 /* Now we regard value_history_count as origin-one
269 and applying to the value just stored. */
270
271 return ++value_history_count;
272 }
273
274 /* Return a copy of the value in the history with sequence number NUM. */
275
276 value
277 access_value_history (num)
278 int num;
279 {
280 register struct value_history_chunk *chunk;
281 register int i;
282 register int absnum = num;
283
284 if (absnum <= 0)
285 absnum += value_history_count;
286
287 if (absnum <= 0)
288 {
289 if (num == 0)
290 error ("The history is empty.");
291 else if (num == 1)
292 error ("There is only one value in the history.");
293 else
294 error ("History does not go back to $$%d.", -num);
295 }
296 if (absnum > value_history_count)
297 error ("History has not yet reached $%d.", absnum);
298
299 absnum--;
300
301 /* Now absnum is always absolute and origin zero. */
302
303 chunk = value_history_chain;
304 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
305 i > 0; i--)
306 chunk = chunk->next;
307
308 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
309 }
310
311 /* Clear the value history entirely.
312 Must be done when new symbol tables are loaded,
313 because the type pointers become invalid. */
314
315 void
316 clear_value_history ()
317 {
318 register struct value_history_chunk *next;
319 register int i;
320 register value val;
321
322 while (value_history_chain)
323 {
324 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
325 if ((val = value_history_chain->values[i]) != NULL)
326 free ((PTR)val);
327 next = value_history_chain->next;
328 free ((PTR)value_history_chain);
329 value_history_chain = next;
330 }
331 value_history_count = 0;
332 }
333
334 static void
335 show_values (num_exp, from_tty)
336 char *num_exp;
337 int from_tty;
338 {
339 register int i;
340 register value val;
341 static int num = 1;
342
343 if (num_exp)
344 {
345 /* "info history +" should print from the stored position.
346 "info history <exp>" should print around value number <exp>. */
347 if (num_exp[0] != '+' || num_exp[1] != '\0')
348 num = parse_and_eval_address (num_exp) - 5;
349 }
350 else
351 {
352 /* "info history" means print the last 10 values. */
353 num = value_history_count - 9;
354 }
355
356 if (num <= 0)
357 num = 1;
358
359 for (i = num; i < num + 10 && i <= value_history_count; i++)
360 {
361 val = access_value_history (i);
362 printf_filtered ("$%d = ", i);
363 value_print (val, gdb_stdout, 0, Val_pretty_default);
364 printf_filtered ("\n");
365 }
366
367 /* The next "info history +" should start after what we just printed. */
368 num += 10;
369
370 /* Hitting just return after this command should do the same thing as
371 "info history +". If num_exp is null, this is unnecessary, since
372 "info history +" is not useful after "info history". */
373 if (from_tty && num_exp)
374 {
375 num_exp[0] = '+';
376 num_exp[1] = '\0';
377 }
378 }
379 \f
380 /* Internal variables. These are variables within the debugger
381 that hold values assigned by debugger commands.
382 The user refers to them with a '$' prefix
383 that does not appear in the variable names stored internally. */
384
385 static struct internalvar *internalvars;
386
387 /* Look up an internal variable with name NAME. NAME should not
388 normally include a dollar sign.
389
390 If the specified internal variable does not exist,
391 one is created, with a void value. */
392
393 struct internalvar *
394 lookup_internalvar (name)
395 char *name;
396 {
397 register struct internalvar *var;
398
399 for (var = internalvars; var; var = var->next)
400 if (STREQ (var->name, name))
401 return var;
402
403 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
404 var->name = concat (name, NULL);
405 var->value = allocate_value (builtin_type_void);
406 release_value (var->value);
407 var->next = internalvars;
408 internalvars = var;
409 return var;
410 }
411
412 value
413 value_of_internalvar (var)
414 struct internalvar *var;
415 {
416 register value val;
417
418 #ifdef IS_TRAPPED_INTERNALVAR
419 if (IS_TRAPPED_INTERNALVAR (var->name))
420 return VALUE_OF_TRAPPED_INTERNALVAR (var);
421 #endif
422
423 val = value_copy (var->value);
424 if (VALUE_LAZY (val))
425 value_fetch_lazy (val);
426 VALUE_LVAL (val) = lval_internalvar;
427 VALUE_INTERNALVAR (val) = var;
428 return val;
429 }
430
431 void
432 set_internalvar_component (var, offset, bitpos, bitsize, newval)
433 struct internalvar *var;
434 int offset, bitpos, bitsize;
435 value newval;
436 {
437 register char *addr = VALUE_CONTENTS (var->value) + offset;
438
439 #ifdef IS_TRAPPED_INTERNALVAR
440 if (IS_TRAPPED_INTERNALVAR (var->name))
441 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
442 #endif
443
444 if (bitsize)
445 modify_field (addr, value_as_long (newval),
446 bitpos, bitsize);
447 else
448 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
449 }
450
451 void
452 set_internalvar (var, val)
453 struct internalvar *var;
454 value val;
455 {
456 #ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
459 #endif
460
461 free ((PTR)var->value);
462 var->value = value_copy (val);
463 /* Force the value to be fetched from the target now, to avoid problems
464 later when this internalvar is referenced and the target is gone or
465 has changed. */
466 if (VALUE_LAZY (var->value))
467 value_fetch_lazy (var->value);
468 release_value (var->value);
469 }
470
471 char *
472 internalvar_name (var)
473 struct internalvar *var;
474 {
475 return var->name;
476 }
477
478 /* Free all internalvars. Done when new symtabs are loaded,
479 because that makes the values invalid. */
480
481 void
482 clear_internalvars ()
483 {
484 register struct internalvar *var;
485
486 while (internalvars)
487 {
488 var = internalvars;
489 internalvars = var->next;
490 free ((PTR)var->name);
491 free ((PTR)var->value);
492 free ((PTR)var);
493 }
494 }
495
496 static void
497 show_convenience (ignore, from_tty)
498 char *ignore;
499 int from_tty;
500 {
501 register struct internalvar *var;
502 int varseen = 0;
503
504 for (var = internalvars; var; var = var->next)
505 {
506 #ifdef IS_TRAPPED_INTERNALVAR
507 if (IS_TRAPPED_INTERNALVAR (var->name))
508 continue;
509 #endif
510 if (!varseen)
511 {
512 varseen = 1;
513 }
514 printf_filtered ("$%s = ", var->name);
515 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
516 printf_filtered ("\n");
517 }
518 if (!varseen)
519 printf_unfiltered ("No debugger convenience variables now defined.\n\
520 Convenience variables have names starting with \"$\";\n\
521 use \"set\" as in \"set $foo = 5\" to define them.\n");
522 }
523 \f
524 /* Extract a value as a C number (either long or double).
525 Knows how to convert fixed values to double, or
526 floating values to long.
527 Does not deallocate the value. */
528
529 LONGEST
530 value_as_long (val)
531 register value val;
532 {
533 /* This coerces arrays and functions, which is necessary (e.g.
534 in disassemble_command). It also dereferences references, which
535 I suspect is the most logical thing to do. */
536 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
537 COERCE_ARRAY (val);
538 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
539 }
540
541 double
542 value_as_double (val)
543 register value val;
544 {
545 double foo;
546 int inv;
547
548 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
549 if (inv)
550 error ("Invalid floating value found in program.");
551 return foo;
552 }
553 /* Extract a value as a C pointer.
554 Does not deallocate the value. */
555 CORE_ADDR
556 value_as_pointer (val)
557 value val;
558 {
559 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
560 whether we want this to be true eventually. */
561 #if 0
562 /* ADDR_BITS_REMOVE is wrong if we are being called for a
563 non-address (e.g. argument to "signal", "info break", etc.), or
564 for pointers to char, in which the low bits *are* significant. */
565 return ADDR_BITS_REMOVE(value_as_long (val));
566 #else
567 return value_as_long (val);
568 #endif
569 }
570 \f
571 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
572 as a long, or as a double, assuming the raw data is described
573 by type TYPE. Knows how to convert different sizes of values
574 and can convert between fixed and floating point. We don't assume
575 any alignment for the raw data. Return value is in host byte order.
576
577 If you want functions and arrays to be coerced to pointers, and
578 references to be dereferenced, call value_as_long() instead.
579
580 C++: It is assumed that the front-end has taken care of
581 all matters concerning pointers to members. A pointer
582 to member which reaches here is considered to be equivalent
583 to an INT (or some size). After all, it is only an offset. */
584
585 /* FIXME: This should be rewritten as a switch statement for speed and
586 ease of comprehension. */
587
588 LONGEST
589 unpack_long (type, valaddr)
590 struct type *type;
591 char *valaddr;
592 {
593 register enum type_code code = TYPE_CODE (type);
594 register int len = TYPE_LENGTH (type);
595 register int nosign = TYPE_UNSIGNED (type);
596
597 switch (code)
598 {
599 case TYPE_CODE_ENUM:
600 case TYPE_CODE_BOOL:
601 case TYPE_CODE_INT:
602 case TYPE_CODE_CHAR:
603 if (nosign)
604 return extract_unsigned_integer (valaddr, len);
605 else
606 return extract_signed_integer (valaddr, len);
607
608 case TYPE_CODE_FLT:
609 return extract_floating (valaddr, len);
610
611 case TYPE_CODE_PTR:
612 case TYPE_CODE_REF:
613 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
614 whether we want this to be true eventually. */
615 return extract_address (valaddr, len);
616
617 case TYPE_CODE_MEMBER:
618 error ("not implemented: member types in unpack_long");
619
620 default:
621 error ("Value can't be converted to intenot integer or pointer.");
622 }
623 return 0; /* Placate lint. */
624 }
625
626 /* Return a double value from the specified type and address.
627 INVP points to an int which is set to 0 for valid value,
628 1 for invalid value (bad float format). In either case,
629 the returned double is OK to use. Argument is in target
630 format, result is in host format. */
631
632 double
633 unpack_double (type, valaddr, invp)
634 struct type *type;
635 char *valaddr;
636 int *invp;
637 {
638 register enum type_code code = TYPE_CODE (type);
639 register int len = TYPE_LENGTH (type);
640 register int nosign = TYPE_UNSIGNED (type);
641
642 *invp = 0; /* Assume valid. */
643 if (code == TYPE_CODE_FLT)
644 {
645 if (INVALID_FLOAT (valaddr, len))
646 {
647 *invp = 1;
648 return 1.234567891011121314;
649 }
650 return extract_floating (valaddr, len);
651 }
652 else if (nosign)
653 {
654 /* Unsigned -- be sure we compensate for signed LONGEST. */
655 return (unsigned LONGEST) unpack_long (type, valaddr);
656 }
657 else
658 {
659 /* Signed -- we are OK with unpack_long. */
660 return unpack_long (type, valaddr);
661 }
662 }
663
664 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
665 as a CORE_ADDR, assuming the raw data is described by type TYPE.
666 We don't assume any alignment for the raw data. Return value is in
667 host byte order.
668
669 If you want functions and arrays to be coerced to pointers, and
670 references to be dereferenced, call value_as_pointer() instead.
671
672 C++: It is assumed that the front-end has taken care of
673 all matters concerning pointers to members. A pointer
674 to member which reaches here is considered to be equivalent
675 to an INT (or some size). After all, it is only an offset. */
676
677 CORE_ADDR
678 unpack_pointer (type, valaddr)
679 struct type *type;
680 char *valaddr;
681 {
682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
683 whether we want this to be true eventually. */
684 return unpack_long (type, valaddr);
685 }
686 \f
687 /* Given a value ARG1 (offset by OFFSET bytes)
688 of a struct or union type ARG_TYPE,
689 extract and return the value of one of its fields.
690 FIELDNO says which field.
691
692 For C++, must also be able to return values from static fields */
693
694 value
695 value_primitive_field (arg1, offset, fieldno, arg_type)
696 register value arg1;
697 int offset;
698 register int fieldno;
699 register struct type *arg_type;
700 {
701 register value v;
702 register struct type *type;
703
704 check_stub_type (arg_type);
705 type = TYPE_FIELD_TYPE (arg_type, fieldno);
706
707 /* Handle packed fields */
708
709 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
710 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
711 {
712 v = value_from_longest (type,
713 unpack_field_as_long (arg_type,
714 VALUE_CONTENTS (arg1),
715 fieldno));
716 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
717 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
718 }
719 else
720 {
721 v = allocate_value (type);
722 if (VALUE_LAZY (arg1))
723 VALUE_LAZY (v) = 1;
724 else
725 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
726 TYPE_LENGTH (type));
727 }
728 VALUE_LVAL (v) = VALUE_LVAL (arg1);
729 if (VALUE_LVAL (arg1) == lval_internalvar)
730 VALUE_LVAL (v) = lval_internalvar_component;
731 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
732 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
733 return v;
734 }
735
736 /* Given a value ARG1 of a struct or union type,
737 extract and return the value of one of its fields.
738 FIELDNO says which field.
739
740 For C++, must also be able to return values from static fields */
741
742 value
743 value_field (arg1, fieldno)
744 register value arg1;
745 register int fieldno;
746 {
747 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
748 }
749
750 /* Return a non-virtual function as a value.
751 F is the list of member functions which contains the desired method.
752 J is an index into F which provides the desired method. */
753
754 value
755 value_fn_field (arg1p, f, j, type, offset)
756 value *arg1p;
757 struct fn_field *f;
758 int j;
759 struct type *type;
760 int offset;
761 {
762 register value v;
763 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
764 struct symbol *sym;
765
766 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
767 0, VAR_NAMESPACE, 0, NULL);
768 if (! sym)
769 return (value)NULL;
770 /*
771 error ("Internal error: could not find physical method named %s",
772 TYPE_FN_FIELD_PHYSNAME (f, j));
773 */
774
775 v = allocate_value (ftype);
776 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
777 VALUE_TYPE (v) = ftype;
778
779 if (arg1p)
780 {
781 if (type != VALUE_TYPE (*arg1p))
782 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
783 value_addr (*arg1p)));
784
785 /* Move the `this' pointer according to the offset.
786 VALUE_OFFSET (*arg1p) += offset;
787 */
788 }
789
790 return v;
791 }
792
793 /* Return a virtual function as a value.
794 ARG1 is the object which provides the virtual function
795 table pointer. *ARG1P is side-effected in calling this function.
796 F is the list of member functions which contains the desired virtual
797 function.
798 J is an index into F which provides the desired virtual function.
799
800 TYPE is the type in which F is located. */
801 value
802 value_virtual_fn_field (arg1p, f, j, type, offset)
803 value *arg1p;
804 struct fn_field *f;
805 int j;
806 struct type *type;
807 int offset;
808 {
809 value arg1 = *arg1p;
810 /* First, get the virtual function table pointer. That comes
811 with a strange type, so cast it to type `pointer to long' (which
812 should serve just fine as a function type). Then, index into
813 the table, and convert final value to appropriate function type. */
814 value entry, vfn, vtbl;
815 value vi = value_from_longest (builtin_type_int,
816 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
817 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
818 struct type *context;
819 if (fcontext == NULL)
820 /* We don't have an fcontext (e.g. the program was compiled with
821 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
822 This won't work right for multiple inheritance, but at least we
823 should do as well as GDB 3.x did. */
824 fcontext = TYPE_VPTR_BASETYPE (type);
825 context = lookup_pointer_type (fcontext);
826 /* Now context is a pointer to the basetype containing the vtbl. */
827 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
828 arg1 = value_ind (value_cast (context, value_addr (arg1)));
829
830 context = VALUE_TYPE (arg1);
831 /* Now context is the basetype containing the vtbl. */
832
833 /* This type may have been defined before its virtual function table
834 was. If so, fill in the virtual function table entry for the
835 type now. */
836 if (TYPE_VPTR_FIELDNO (context) < 0)
837 fill_in_vptr_fieldno (context);
838
839 /* The virtual function table is now an array of structures
840 which have the form { int16 offset, delta; void *pfn; }. */
841 vtbl = value_ind (value_primitive_field (arg1, 0,
842 TYPE_VPTR_FIELDNO (context),
843 TYPE_VPTR_BASETYPE (context)));
844
845 /* Index into the virtual function table. This is hard-coded because
846 looking up a field is not cheap, and it may be important to save
847 time, e.g. if the user has set a conditional breakpoint calling
848 a virtual function. */
849 entry = value_subscript (vtbl, vi);
850
851 /* Move the `this' pointer according to the virtual function table. */
852 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0))/* + offset*/;
853
854 if (! VALUE_LAZY (arg1))
855 {
856 VALUE_LAZY (arg1) = 1;
857 value_fetch_lazy (arg1);
858 }
859
860 vfn = value_field (entry, 2);
861 /* Reinstantiate the function pointer with the correct type. */
862 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
863
864 *arg1p = arg1;
865 return vfn;
866 }
867
868 /* ARG is a pointer to an object we know to be at least
869 a DTYPE. BTYPE is the most derived basetype that has
870 already been searched (and need not be searched again).
871 After looking at the vtables between BTYPE and DTYPE,
872 return the most derived type we find. The caller must
873 be satisfied when the return value == DTYPE.
874
875 FIXME-tiemann: should work with dossier entries as well. */
876
877 static value
878 value_headof (in_arg, btype, dtype)
879 value in_arg;
880 struct type *btype, *dtype;
881 {
882 /* First collect the vtables we must look at for this object. */
883 /* FIXME-tiemann: right now, just look at top-most vtable. */
884 value arg, vtbl, entry, best_entry = 0;
885 int i, nelems;
886 int offset, best_offset = 0;
887 struct symbol *sym;
888 CORE_ADDR pc_for_sym;
889 char *demangled_name;
890 struct minimal_symbol *msymbol;
891
892 btype = TYPE_VPTR_BASETYPE (dtype);
893 check_stub_type (btype);
894 arg = in_arg;
895 if (btype != dtype)
896 arg = value_cast (lookup_pointer_type (btype), arg);
897 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
898
899 /* Check that VTBL looks like it points to a virtual function table. */
900 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
901 if (msymbol == NULL
902 || !VTBL_PREFIX_P (demangled_name = SYMBOL_NAME (msymbol)))
903 {
904 /* If we expected to find a vtable, but did not, let the user
905 know that we aren't happy, but don't throw an error.
906 FIXME: there has to be a better way to do this. */
907 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
908 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
909 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
910 VALUE_TYPE (in_arg) = error_type;
911 return in_arg;
912 }
913
914 /* Now search through the virtual function table. */
915 entry = value_ind (vtbl);
916 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
917 for (i = 1; i <= nelems; i++)
918 {
919 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
920 (LONGEST) i));
921 offset = longest_to_int (value_as_long (value_field (entry, 0)));
922 /* If we use '<=' we can handle single inheritance
923 * where all offsets are zero - just use the first entry found. */
924 if (offset <= best_offset)
925 {
926 best_offset = offset;
927 best_entry = entry;
928 }
929 }
930 /* Move the pointer according to BEST_ENTRY's offset, and figure
931 out what type we should return as the new pointer. */
932 if (best_entry == 0)
933 {
934 /* An alternative method (which should no longer be necessary).
935 * But we leave it in for future use, when we will hopefully
936 * have optimizes the vtable to use thunks instead of offsets. */
937 /* Use the name of vtable itself to extract a base type. */
938 demangled_name += 4; /* Skip _vt$ prefix. */
939 }
940 else
941 {
942 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
943 sym = find_pc_function (pc_for_sym);
944 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
945 *(strchr (demangled_name, ':')) = '\0';
946 }
947 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
948 if (sym == NULL)
949 error ("could not find type declaration for `%s'", demangled_name);
950 if (best_entry)
951 {
952 free (demangled_name);
953 arg = value_add (value_cast (builtin_type_int, arg),
954 value_field (best_entry, 0));
955 }
956 else arg = in_arg;
957 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
958 return arg;
959 }
960
961 /* ARG is a pointer object of type TYPE. If TYPE has virtual
962 function tables, probe ARG's tables (including the vtables
963 of its baseclasses) to figure out the most derived type that ARG
964 could actually be a pointer to. */
965
966 value
967 value_from_vtable_info (arg, type)
968 value arg;
969 struct type *type;
970 {
971 /* Take care of preliminaries. */
972 if (TYPE_VPTR_FIELDNO (type) < 0)
973 fill_in_vptr_fieldno (type);
974 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
975 return 0;
976
977 return value_headof (arg, 0, type);
978 }
979
980 /* Return true if the INDEXth field of TYPE is a virtual baseclass
981 pointer which is for the base class whose type is BASECLASS. */
982
983 static int
984 vb_match (type, index, basetype)
985 struct type *type;
986 int index;
987 struct type *basetype;
988 {
989 struct type *fieldtype;
990 char *name = TYPE_FIELD_NAME (type, index);
991 char *field_class_name = NULL;
992
993 if (*name != '_')
994 return 0;
995 /* gcc 2.4 uses _vb$. */
996 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
997 field_class_name = name + 4;
998 /* gcc 2.5 will use __vb_. */
999 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1000 field_class_name = name + 5;
1001
1002 if (field_class_name == NULL)
1003 /* This field is not a virtual base class pointer. */
1004 return 0;
1005
1006 /* It's a virtual baseclass pointer, now we just need to find out whether
1007 it is for this baseclass. */
1008 fieldtype = TYPE_FIELD_TYPE (type, index);
1009 if (fieldtype == NULL
1010 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1011 /* "Can't happen". */
1012 return 0;
1013
1014 /* What we check for is that either the types are equal (needed for
1015 nameless types) or have the same name. This is ugly, and a more
1016 elegant solution should be devised (which would probably just push
1017 the ugliness into symbol reading unless we change the stabs format). */
1018 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1019 return 1;
1020
1021 if (TYPE_NAME (basetype) != NULL
1022 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1023 && STREQ (TYPE_NAME (basetype),
1024 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1025 return 1;
1026 return 0;
1027 }
1028
1029 /* Compute the offset of the baseclass which is
1030 the INDEXth baseclass of class TYPE, for a value ARG,
1031 wih extra offset of OFFSET.
1032 The result is the offste of the baseclass value relative
1033 to (the address of)(ARG) + OFFSET.
1034
1035 -1 is returned on error. */
1036
1037 int
1038 baseclass_offset (type, index, arg, offset)
1039 struct type *type;
1040 int index;
1041 value arg;
1042 int offset;
1043 {
1044 struct type *basetype = TYPE_BASECLASS (type, index);
1045
1046 if (BASETYPE_VIA_VIRTUAL (type, index))
1047 {
1048 /* Must hunt for the pointer to this virtual baseclass. */
1049 register int i, len = TYPE_NFIELDS (type);
1050 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1051
1052 /* First look for the virtual baseclass pointer
1053 in the fields. */
1054 for (i = n_baseclasses; i < len; i++)
1055 {
1056 if (vb_match (type, i, basetype))
1057 {
1058 CORE_ADDR addr
1059 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1060 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1061 + offset
1062 + (TYPE_FIELD_BITPOS (type, i) / 8));
1063
1064 if (VALUE_LVAL (arg) != lval_memory)
1065 return -1;
1066
1067 return addr -
1068 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1069 }
1070 }
1071 /* Not in the fields, so try looking through the baseclasses. */
1072 for (i = index+1; i < n_baseclasses; i++)
1073 {
1074 int boffset =
1075 baseclass_offset (type, i, arg, offset);
1076 if (boffset)
1077 return boffset;
1078 }
1079 /* Not found. */
1080 return -1;
1081 }
1082
1083 /* Baseclass is easily computed. */
1084 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1085 }
1086
1087 /* Compute the address of the baseclass which is
1088 the INDEXth baseclass of class TYPE. The TYPE base
1089 of the object is at VALADDR.
1090
1091 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1092 or 0 if no error. In that case the return value is not the address
1093 of the baseclasss, but the address which could not be read
1094 successfully. */
1095
1096 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1097
1098 char *
1099 baseclass_addr (type, index, valaddr, valuep, errp)
1100 struct type *type;
1101 int index;
1102 char *valaddr;
1103 value *valuep;
1104 int *errp;
1105 {
1106 struct type *basetype = TYPE_BASECLASS (type, index);
1107
1108 if (errp)
1109 *errp = 0;
1110
1111 if (BASETYPE_VIA_VIRTUAL (type, index))
1112 {
1113 /* Must hunt for the pointer to this virtual baseclass. */
1114 register int i, len = TYPE_NFIELDS (type);
1115 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1116
1117 /* First look for the virtual baseclass pointer
1118 in the fields. */
1119 for (i = n_baseclasses; i < len; i++)
1120 {
1121 if (vb_match (type, i, basetype))
1122 {
1123 value val = allocate_value (basetype);
1124 CORE_ADDR addr;
1125 int status;
1126
1127 addr
1128 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1129 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1130
1131 status = target_read_memory (addr,
1132 VALUE_CONTENTS_RAW (val),
1133 TYPE_LENGTH (basetype));
1134 VALUE_LVAL (val) = lval_memory;
1135 VALUE_ADDRESS (val) = addr;
1136
1137 if (status != 0)
1138 {
1139 if (valuep)
1140 *valuep = NULL;
1141 release_value (val);
1142 value_free (val);
1143 if (errp)
1144 *errp = status;
1145 return (char *)addr;
1146 }
1147 else
1148 {
1149 if (valuep)
1150 *valuep = val;
1151 return (char *) VALUE_CONTENTS (val);
1152 }
1153 }
1154 }
1155 /* Not in the fields, so try looking through the baseclasses. */
1156 for (i = index+1; i < n_baseclasses; i++)
1157 {
1158 char *baddr;
1159
1160 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1161 if (baddr)
1162 return baddr;
1163 }
1164 /* Not found. */
1165 if (valuep)
1166 *valuep = 0;
1167 return 0;
1168 }
1169
1170 /* Baseclass is easily computed. */
1171 if (valuep)
1172 *valuep = 0;
1173 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1174 }
1175 \f
1176 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1177 VALADDR.
1178
1179 Extracting bits depends on endianness of the machine. Compute the
1180 number of least significant bits to discard. For big endian machines,
1181 we compute the total number of bits in the anonymous object, subtract
1182 off the bit count from the MSB of the object to the MSB of the
1183 bitfield, then the size of the bitfield, which leaves the LSB discard
1184 count. For little endian machines, the discard count is simply the
1185 number of bits from the LSB of the anonymous object to the LSB of the
1186 bitfield.
1187
1188 If the field is signed, we also do sign extension. */
1189
1190 LONGEST
1191 unpack_field_as_long (type, valaddr, fieldno)
1192 struct type *type;
1193 char *valaddr;
1194 int fieldno;
1195 {
1196 unsigned LONGEST val;
1197 unsigned LONGEST valmask;
1198 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1199 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1200 int lsbcount;
1201
1202 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1203
1204 /* Extract bits. See comment above. */
1205
1206 #if BITS_BIG_ENDIAN
1207 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1208 #else
1209 lsbcount = (bitpos % 8);
1210 #endif
1211 val >>= lsbcount;
1212
1213 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1214 If the field is signed, and is negative, then sign extend. */
1215
1216 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1217 {
1218 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1219 val &= valmask;
1220 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1221 {
1222 if (val & (valmask ^ (valmask >> 1)))
1223 {
1224 val |= ~valmask;
1225 }
1226 }
1227 }
1228 return (val);
1229 }
1230
1231 /* Modify the value of a bitfield. ADDR points to a block of memory in
1232 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1233 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1234 indicate which bits (in target bit order) comprise the bitfield. */
1235
1236 void
1237 modify_field (addr, fieldval, bitpos, bitsize)
1238 char *addr;
1239 LONGEST fieldval;
1240 int bitpos, bitsize;
1241 {
1242 LONGEST oword;
1243
1244 /* Reject values too big to fit in the field in question,
1245 otherwise adjoining fields may be corrupted. */
1246 if (bitsize < (8 * sizeof (fieldval))
1247 && 0 != (fieldval & ~((1<<bitsize)-1)))
1248 {
1249 /* FIXME: would like to include fieldval in the message, but
1250 we don't have a sprintf_longest. */
1251 error ("Value does not fit in %d bits.", bitsize);
1252 }
1253
1254 oword = extract_signed_integer (addr, sizeof oword);
1255
1256 /* Shifting for bit field depends on endianness of the target machine. */
1257 #if BITS_BIG_ENDIAN
1258 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1259 #endif
1260
1261 /* Mask out old value, while avoiding shifts >= size of oword */
1262 if (bitsize < 8 * sizeof (oword))
1263 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1264 else
1265 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1266 oword |= fieldval << bitpos;
1267
1268 store_signed_integer (addr, sizeof oword, oword);
1269 }
1270 \f
1271 /* Convert C numbers into newly allocated values */
1272
1273 value
1274 value_from_longest (type, num)
1275 struct type *type;
1276 register LONGEST num;
1277 {
1278 register value val = allocate_value (type);
1279 register enum type_code code = TYPE_CODE (type);
1280 register int len = TYPE_LENGTH (type);
1281
1282 switch (code)
1283 {
1284 case TYPE_CODE_INT:
1285 case TYPE_CODE_CHAR:
1286 case TYPE_CODE_ENUM:
1287 case TYPE_CODE_BOOL:
1288 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1289 break;
1290
1291 case TYPE_CODE_REF:
1292 case TYPE_CODE_PTR:
1293 /* This assumes that all pointers of a given length
1294 have the same form. */
1295 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1296 break;
1297
1298 default:
1299 error ("Unexpected type encountered for integer constant.");
1300 }
1301 return val;
1302 }
1303
1304 value
1305 value_from_double (type, num)
1306 struct type *type;
1307 double num;
1308 {
1309 register value val = allocate_value (type);
1310 register enum type_code code = TYPE_CODE (type);
1311 register int len = TYPE_LENGTH (type);
1312
1313 if (code == TYPE_CODE_FLT)
1314 {
1315 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1316 }
1317 else
1318 error ("Unexpected type encountered for floating constant.");
1319
1320 return val;
1321 }
1322 \f
1323 /* Deal with the value that is "about to be returned". */
1324
1325 /* Return the value that a function returning now
1326 would be returning to its caller, assuming its type is VALTYPE.
1327 RETBUF is where we look for what ought to be the contents
1328 of the registers (in raw form). This is because it is often
1329 desirable to restore old values to those registers
1330 after saving the contents of interest, and then call
1331 this function using the saved values.
1332 struct_return is non-zero when the function in question is
1333 using the structure return conventions on the machine in question;
1334 0 when it is using the value returning conventions (this often
1335 means returning pointer to where structure is vs. returning value). */
1336
1337 value
1338 value_being_returned (valtype, retbuf, struct_return)
1339 register struct type *valtype;
1340 char retbuf[REGISTER_BYTES];
1341 int struct_return;
1342 /*ARGSUSED*/
1343 {
1344 register value val;
1345 CORE_ADDR addr;
1346
1347 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1348 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1349 if (struct_return) {
1350 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1351 if (!addr)
1352 error ("Function return value unknown");
1353 return value_at (valtype, addr);
1354 }
1355 #endif
1356
1357 val = allocate_value (valtype);
1358 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1359
1360 return val;
1361 }
1362
1363 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1364 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1365 and TYPE is the type (which is known to be struct, union or array).
1366
1367 On most machines, the struct convention is used unless we are
1368 using gcc and the type is of a special size. */
1369 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1370 native compiler. GCC 2.3.3 was the last release that did it the
1371 old way. Since gcc2_compiled was not changed, we have no
1372 way to correctly win in all cases, so we just do the right thing
1373 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1374 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1375 would cause more chaos than dealing with some struct returns being
1376 handled wrong. */
1377 #if !defined (USE_STRUCT_CONVENTION)
1378 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1379 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1380 || TYPE_LENGTH (value_type) == 2 \
1381 || TYPE_LENGTH (value_type) == 4 \
1382 || TYPE_LENGTH (value_type) == 8 \
1383 ) \
1384 ))
1385 #endif
1386
1387 /* Return true if the function specified is using the structure returning
1388 convention on this machine to return arguments, or 0 if it is using
1389 the value returning convention. FUNCTION is the value representing
1390 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1391 is the type returned by the function. GCC_P is nonzero if compiled
1392 with GCC. */
1393
1394 int
1395 using_struct_return (function, funcaddr, value_type, gcc_p)
1396 value function;
1397 CORE_ADDR funcaddr;
1398 struct type *value_type;
1399 int gcc_p;
1400 /*ARGSUSED*/
1401 {
1402 register enum type_code code = TYPE_CODE (value_type);
1403
1404 if (code == TYPE_CODE_ERROR)
1405 error ("Function return type unknown.");
1406
1407 if (code == TYPE_CODE_STRUCT ||
1408 code == TYPE_CODE_UNION ||
1409 code == TYPE_CODE_ARRAY)
1410 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1411
1412 return 0;
1413 }
1414
1415 /* Store VAL so it will be returned if a function returns now.
1416 Does not verify that VAL's type matches what the current
1417 function wants to return. */
1418
1419 void
1420 set_return_value (val)
1421 value val;
1422 {
1423 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1424 double dbuf;
1425 LONGEST lbuf;
1426
1427 if (code == TYPE_CODE_ERROR)
1428 error ("Function return type unknown.");
1429
1430 if ( code == TYPE_CODE_STRUCT
1431 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1432 error ("GDB does not support specifying a struct or union return value.");
1433
1434 /* FIXME, this is bogus. We don't know what the return conventions
1435 are, or how values should be promoted.... */
1436 if (code == TYPE_CODE_FLT)
1437 {
1438 dbuf = value_as_double (val);
1439
1440 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1441 }
1442 else
1443 {
1444 lbuf = value_as_long (val);
1445 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1446 }
1447 }
1448 \f
1449 void
1450 _initialize_values ()
1451 {
1452 add_cmd ("convenience", no_class, show_convenience,
1453 "Debugger convenience (\"$foo\") variables.\n\
1454 These variables are created when you assign them values;\n\
1455 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1456 A few convenience variables are given values automatically:\n\
1457 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1458 \"$__\" holds the contents of the last address examined with \"x\".",
1459 &showlist);
1460
1461 add_cmd ("values", no_class, show_values,
1462 "Elements of value history around item number IDX (or last ten).",
1463 &showlist);
1464 }
This page took 0.068281 seconds and 5 git commands to generate.