Fix some infrastructure to be able to cope with host and target
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include <string.h>
22 #include "defs.h"
23 #include "param.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30
31 extern char *cplus_demangle ();
32 extern char *cplus_mangle_opname ();
33
34 /* The value-history records all the values printed
35 by print commands during this session. Each chunk
36 records 60 consecutive values. The first chunk on
37 the chain records the most recent values.
38 The total number of values is in value_history_count. */
39
40 #define VALUE_HISTORY_CHUNK 60
41
42 struct value_history_chunk
43 {
44 struct value_history_chunk *next;
45 value values[VALUE_HISTORY_CHUNK];
46 };
47
48 /* Chain of chunks now in use. */
49
50 static struct value_history_chunk *value_history_chain;
51
52 static int value_history_count; /* Abs number of last entry stored */
53 \f
54 /* List of all value objects currently allocated
55 (except for those released by calls to release_value)
56 This is so they can be freed after each command. */
57
58 static value all_values;
59
60 /* Allocate a value that has the correct length for type TYPE. */
61
62 value
63 allocate_value (type)
64 struct type *type;
65 {
66 register value val;
67
68 check_stub_type (type);
69
70 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
71 VALUE_NEXT (val) = all_values;
72 all_values = val;
73 VALUE_TYPE (val) = type;
74 VALUE_LVAL (val) = not_lval;
75 VALUE_ADDRESS (val) = 0;
76 VALUE_FRAME (val) = 0;
77 VALUE_OFFSET (val) = 0;
78 VALUE_BITPOS (val) = 0;
79 VALUE_BITSIZE (val) = 0;
80 VALUE_REPEATED (val) = 0;
81 VALUE_REPETITIONS (val) = 0;
82 VALUE_REGNO (val) = -1;
83 VALUE_LAZY (val) = 0;
84 VALUE_OPTIMIZED_OUT (val) = 0;
85 return val;
86 }
87
88 /* Allocate a value that has the correct length
89 for COUNT repetitions type TYPE. */
90
91 value
92 allocate_repeat_value (type, count)
93 struct type *type;
94 int count;
95 {
96 register value val;
97
98 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
99 VALUE_NEXT (val) = all_values;
100 all_values = val;
101 VALUE_TYPE (val) = type;
102 VALUE_LVAL (val) = not_lval;
103 VALUE_ADDRESS (val) = 0;
104 VALUE_FRAME (val) = 0;
105 VALUE_OFFSET (val) = 0;
106 VALUE_BITPOS (val) = 0;
107 VALUE_BITSIZE (val) = 0;
108 VALUE_REPEATED (val) = 1;
109 VALUE_REPETITIONS (val) = count;
110 VALUE_REGNO (val) = -1;
111 VALUE_LAZY (val) = 0;
112 VALUE_OPTIMIZED_OUT (val) = 0;
113 return val;
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value mark;
130 {
131 value val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value val;
164 {
165 register value v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Return a copy of the value ARG.
184 It contains the same contents, for same memory address,
185 but it's a different block of storage. */
186
187 static value
188 value_copy (arg)
189 value arg;
190 {
191 register value val;
192 register struct type *type = VALUE_TYPE (arg);
193 if (VALUE_REPEATED (arg))
194 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
195 else
196 val = allocate_value (type);
197 VALUE_LVAL (val) = VALUE_LVAL (arg);
198 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
199 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
200 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
201 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
202 VALUE_REGNO (val) = VALUE_REGNO (arg);
203 VALUE_LAZY (val) = VALUE_LAZY (arg);
204 if (!VALUE_LAZY (val))
205 {
206 bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val),
207 TYPE_LENGTH (VALUE_TYPE (arg))
208 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
209 }
210 return val;
211 }
212 \f
213 /* Access to the value history. */
214
215 /* Record a new value in the value history.
216 Returns the absolute history index of the entry.
217 Result of -1 indicates the value was not saved; otherwise it is the
218 value history index of this new item. */
219
220 int
221 record_latest_value (val)
222 value val;
223 {
224 int i;
225
226 /* Check error now if about to store an invalid float. We return -1
227 to the caller, but allow them to continue, e.g. to print it as "Nan". */
228 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) {
229 (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
230 if (i) return -1; /* Indicate value not saved in history */
231 }
232
233 /* Here we treat value_history_count as origin-zero
234 and applying to the value being stored now. */
235
236 i = value_history_count % VALUE_HISTORY_CHUNK;
237 if (i == 0)
238 {
239 register struct value_history_chunk *new
240 = (struct value_history_chunk *)
241 xmalloc (sizeof (struct value_history_chunk));
242 bzero (new->values, sizeof new->values);
243 new->next = value_history_chain;
244 value_history_chain = new;
245 }
246
247 value_history_chain->values[i] = val;
248 release_value (val);
249
250 /* Now we regard value_history_count as origin-one
251 and applying to the value just stored. */
252
253 return ++value_history_count;
254 }
255
256 /* Return a copy of the value in the history with sequence number NUM. */
257
258 value
259 access_value_history (num)
260 int num;
261 {
262 register struct value_history_chunk *chunk;
263 register int i;
264 register int absnum = num;
265
266 if (absnum <= 0)
267 absnum += value_history_count;
268
269 if (absnum <= 0)
270 {
271 if (num == 0)
272 error ("The history is empty.");
273 else if (num == 1)
274 error ("There is only one value in the history.");
275 else
276 error ("History does not go back to $$%d.", -num);
277 }
278 if (absnum > value_history_count)
279 error ("History has not yet reached $%d.", absnum);
280
281 absnum--;
282
283 /* Now absnum is always absolute and origin zero. */
284
285 chunk = value_history_chain;
286 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
287 i > 0; i--)
288 chunk = chunk->next;
289
290 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
291 }
292
293 /* Clear the value history entirely.
294 Must be done when new symbol tables are loaded,
295 because the type pointers become invalid. */
296
297 void
298 clear_value_history ()
299 {
300 register struct value_history_chunk *next;
301 register int i;
302 register value val;
303
304 while (value_history_chain)
305 {
306 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
307 if (val = value_history_chain->values[i])
308 free (val);
309 next = value_history_chain->next;
310 free (value_history_chain);
311 value_history_chain = next;
312 }
313 value_history_count = 0;
314 }
315
316 static void
317 show_values (num_exp, from_tty)
318 char *num_exp;
319 int from_tty;
320 {
321 register int i;
322 register value val;
323 static int num = 1;
324
325 if (num_exp)
326 {
327 if (num_exp[0] == '+' && num_exp[1] == '\0')
328 /* "info history +" should print from the stored position. */
329 ;
330 else
331 /* "info history <exp>" should print around value number <exp>. */
332 num = parse_and_eval_address (num_exp) - 5;
333 }
334 else
335 {
336 /* "info history" means print the last 10 values. */
337 num = value_history_count - 9;
338 }
339
340 if (num <= 0)
341 num = 1;
342
343 for (i = num; i < num + 10 && i <= value_history_count; i++)
344 {
345 val = access_value_history (i);
346 printf_filtered ("$%d = ", i);
347 value_print (val, stdout, 0, Val_pretty_default);
348 printf_filtered ("\n");
349 }
350
351 /* The next "info history +" should start after what we just printed. */
352 num += 10;
353
354 /* Hitting just return after this command should do the same thing as
355 "info history +". If num_exp is null, this is unnecessary, since
356 "info history +" is not useful after "info history". */
357 if (from_tty && num_exp)
358 {
359 num_exp[0] = '+';
360 num_exp[1] = '\0';
361 }
362 }
363 \f
364 /* Internal variables. These are variables within the debugger
365 that hold values assigned by debugger commands.
366 The user refers to them with a '$' prefix
367 that does not appear in the variable names stored internally. */
368
369 static struct internalvar *internalvars;
370
371 /* Look up an internal variable with name NAME. NAME should not
372 normally include a dollar sign.
373
374 If the specified internal variable does not exist,
375 one is created, with a void value. */
376
377 struct internalvar *
378 lookup_internalvar (name)
379 char *name;
380 {
381 register struct internalvar *var;
382
383 for (var = internalvars; var; var = var->next)
384 if (!strcmp (var->name, name))
385 return var;
386
387 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
388 var->name = concat (name, "", "");
389 var->value = allocate_value (builtin_type_void);
390 release_value (var->value);
391 var->next = internalvars;
392 internalvars = var;
393 return var;
394 }
395
396 value
397 value_of_internalvar (var)
398 struct internalvar *var;
399 {
400 register value val;
401
402 #ifdef IS_TRAPPED_INTERNALVAR
403 if (IS_TRAPPED_INTERNALVAR (var->name))
404 return VALUE_OF_TRAPPED_INTERNALVAR (var);
405 #endif
406
407 val = value_copy (var->value);
408 if (VALUE_LAZY (val))
409 value_fetch_lazy (val);
410 VALUE_LVAL (val) = lval_internalvar;
411 VALUE_INTERNALVAR (val) = var;
412 return val;
413 }
414
415 void
416 set_internalvar_component (var, offset, bitpos, bitsize, newval)
417 struct internalvar *var;
418 int offset, bitpos, bitsize;
419 value newval;
420 {
421 register char *addr = VALUE_CONTENTS (var->value) + offset;
422
423 #ifdef IS_TRAPPED_INTERNALVAR
424 if (IS_TRAPPED_INTERNALVAR (var->name))
425 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
426 #endif
427
428 if (bitsize)
429 modify_field (addr, (int) value_as_long (newval),
430 bitpos, bitsize);
431 else
432 bcopy (VALUE_CONTENTS (newval), addr,
433 TYPE_LENGTH (VALUE_TYPE (newval)));
434 }
435
436 void
437 set_internalvar (var, val)
438 struct internalvar *var;
439 value val;
440 {
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
444 #endif
445
446 free (var->value);
447 var->value = value_copy (val);
448 release_value (var->value);
449 }
450
451 char *
452 internalvar_name (var)
453 struct internalvar *var;
454 {
455 return var->name;
456 }
457
458 /* Free all internalvars. Done when new symtabs are loaded,
459 because that makes the values invalid. */
460
461 void
462 clear_internalvars ()
463 {
464 register struct internalvar *var;
465
466 while (internalvars)
467 {
468 var = internalvars;
469 internalvars = var->next;
470 free (var->name);
471 free (var->value);
472 free (var);
473 }
474 }
475
476 static void
477 show_convenience ()
478 {
479 register struct internalvar *var;
480 int varseen = 0;
481
482 for (var = internalvars; var; var = var->next)
483 {
484 #ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 continue;
487 #endif
488 if (!varseen)
489 {
490 #if 0
491 /* Useless noise. */
492 printf ("Debugger convenience variables:\n\n");
493 #endif
494 varseen = 1;
495 }
496 printf ("$%s = ", var->name);
497 value_print (var->value, stdout, 0, Val_pretty_default);
498 printf ("\n");
499 }
500 if (!varseen)
501 printf ("No debugger convenience variables now defined.\n\
502 Convenience variables have names starting with \"$\";\n\
503 use \"set\" as in \"set $foo = 5\" to define them.\n");
504 }
505 \f
506 /* Extract a value as a C number (either long or double).
507 Knows how to convert fixed values to double, or
508 floating values to long.
509 Does not deallocate the value. */
510
511 LONGEST
512 value_as_long (val)
513 register value val;
514 {
515 /* This coerces arrays and functions, which is necessary (e.g.
516 in disassemble_command). It also dereferences references, which
517 I suspect is the most logical thing to do. */
518 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
519 COERCE_ARRAY (val);
520 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
521 }
522
523 double
524 value_as_double (val)
525 register value val;
526 {
527 double foo;
528 int inv;
529
530 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
531 if (inv)
532 error ("Invalid floating value found in program.");
533 return foo;
534 }
535 /* Extract a value as a C pointer.
536 Does not deallocate the value. */
537 CORE_ADDR
538 value_as_pointer (val)
539 value val;
540 {
541 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
542 whether we want this to be true eventually. */
543 return value_as_long (val);
544 }
545 \f
546 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
547 as a long, or as a double, assuming the raw data is described
548 by type TYPE. Knows how to convert different sizes of values
549 and can convert between fixed and floating point. We don't assume
550 any alignment for the raw data. Return value is in host byte order.
551
552 If you want functions and arrays to be coerced to pointers, and
553 references to be dereferenced, call value_as_long() instead.
554
555 C++: It is assumed that the front-end has taken care of
556 all matters concerning pointers to members. A pointer
557 to member which reaches here is considered to be equivalent
558 to an INT (or some size). After all, it is only an offset. */
559
560 LONGEST
561 unpack_long (type, valaddr)
562 struct type *type;
563 char *valaddr;
564 {
565 register enum type_code code = TYPE_CODE (type);
566 register int len = TYPE_LENGTH (type);
567 register int nosign = TYPE_UNSIGNED (type);
568
569 if (code == TYPE_CODE_ENUM)
570 code = TYPE_CODE_INT;
571 if (code == TYPE_CODE_FLT)
572 {
573 if (len == sizeof (float))
574 {
575 float retval;
576 bcopy (valaddr, &retval, sizeof (retval));
577 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
578 return retval;
579 }
580
581 if (len == sizeof (double))
582 {
583 double retval;
584 bcopy (valaddr, &retval, sizeof (retval));
585 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
586 return retval;
587 }
588 else
589 {
590 error ("Unexpected type of floating point number.");
591 }
592 }
593 else if (code == TYPE_CODE_INT && nosign)
594 {
595 if (len == sizeof (char))
596 {
597 unsigned char retval = * (unsigned char *) valaddr;
598 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
599 return retval;
600 }
601
602 if (len == sizeof (short))
603 {
604 unsigned short retval;
605 bcopy (valaddr, &retval, sizeof (retval));
606 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
607 return retval;
608 }
609
610 if (len == sizeof (int))
611 {
612 unsigned int retval;
613 bcopy (valaddr, &retval, sizeof (retval));
614 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
615 return retval;
616 }
617
618 if (len == sizeof (long))
619 {
620 unsigned long retval;
621 bcopy (valaddr, &retval, sizeof (retval));
622 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
623 return retval;
624 }
625 #ifdef LONG_LONG
626 if (len == sizeof (long long))
627 {
628 unsigned long long retval;
629 bcopy (valaddr, &retval, sizeof (retval));
630 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
631 return retval;
632 }
633 #endif
634 else
635 {
636 error ("That operation is not possible on an integer of that size.");
637 }
638 }
639 else if (code == TYPE_CODE_INT)
640 {
641 if (len == sizeof (char))
642 {
643 char retval;
644 bcopy (valaddr, &retval, sizeof (retval));
645 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
646 return retval;
647 }
648
649 if (len == sizeof (short))
650 {
651 short retval;
652 bcopy (valaddr, &retval, sizeof (retval));
653 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
654 return retval;
655 }
656
657 if (len == sizeof (int))
658 {
659 int retval;
660 bcopy (valaddr, &retval, sizeof (retval));
661 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
662 return retval;
663 }
664
665 if (len == sizeof (long))
666 {
667 long retval;
668 bcopy (valaddr, &retval, sizeof (retval));
669 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
670 return retval;
671 }
672
673 #ifdef LONG_LONG
674 if (len == sizeof (long long))
675 {
676 long long retval;
677 bcopy (valaddr, &retval, sizeof (retval));
678 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
679 return retval;
680 }
681 #endif
682 else
683 {
684 error ("That operation is not possible on an integer of that size.");
685 }
686 }
687 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
688 whether we want this to be true eventually. */
689 else if (code == TYPE_CODE_PTR
690 || code == TYPE_CODE_REF)
691 {
692 if (len == sizeof (CORE_ADDR))
693 {
694 CORE_ADDR retval;
695 bcopy (valaddr, &retval, sizeof (retval));
696 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
697 return retval;
698 }
699 }
700 else if (code == TYPE_CODE_MEMBER)
701 error ("not implemented: member types in unpack_long");
702
703 error ("Value not integer or pointer.");
704 return 0; /* For lint -- never reached */
705 }
706
707 /* Return a double value from the specified type and address.
708 INVP points to an int which is set to 0 for valid value,
709 1 for invalid value (bad float format). In either case,
710 the returned double is OK to use. Argument is in target
711 format, result is in host format. */
712
713 double
714 unpack_double (type, valaddr, invp)
715 struct type *type;
716 char *valaddr;
717 int *invp;
718 {
719 register enum type_code code = TYPE_CODE (type);
720 register int len = TYPE_LENGTH (type);
721 register int nosign = TYPE_UNSIGNED (type);
722
723 *invp = 0; /* Assume valid. */
724 if (code == TYPE_CODE_FLT)
725 {
726 if (INVALID_FLOAT (valaddr, len))
727 {
728 *invp = 1;
729 return 1.234567891011121314;
730 }
731
732 if (len == sizeof (float))
733 {
734 float retval;
735 bcopy (valaddr, &retval, sizeof (retval));
736 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
737 return retval;
738 }
739
740 if (len == sizeof (double))
741 {
742 double retval;
743 bcopy (valaddr, &retval, sizeof (retval));
744 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
745 return retval;
746 }
747 else
748 {
749 error ("Unexpected type of floating point number.");
750 return 0; /* Placate lint. */
751 }
752 }
753 else if (nosign) {
754 /* Unsigned -- be sure we compensate for signed LONGEST. */
755 #ifdef LONG_LONG
756 return (unsigned long long) unpack_long (type, valaddr);
757 #else
758 return (unsigned long ) unpack_long (type, valaddr);
759 #endif
760 } else {
761 /* Signed -- we are OK with unpack_long. */
762 return unpack_long (type, valaddr);
763 }
764 }
765
766 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
767 as a CORE_ADDR, assuming the raw data is described by type TYPE.
768 We don't assume any alignment for the raw data. Return value is in
769 host byte order.
770
771 If you want functions and arrays to be coerced to pointers, and
772 references to be dereferenced, call value_as_pointer() instead.
773
774 C++: It is assumed that the front-end has taken care of
775 all matters concerning pointers to members. A pointer
776 to member which reaches here is considered to be equivalent
777 to an INT (or some size). After all, it is only an offset. */
778
779 CORE_ADDR
780 unpack_pointer (type, valaddr)
781 struct type *type;
782 char *valaddr;
783 {
784 #if 0
785 /* The user should be able to use an int (e.g. 0x7892) in contexts
786 where a pointer is expected. So this doesn't do enough. */
787 register enum type_code code = TYPE_CODE (type);
788 register int len = TYPE_LENGTH (type);
789
790 if (code == TYPE_CODE_PTR
791 || code == TYPE_CODE_REF)
792 {
793 if (len == sizeof (CORE_ADDR))
794 {
795 CORE_ADDR retval;
796 bcopy (valaddr, &retval, sizeof (retval));
797 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
798 return retval;
799 }
800 error ("Unrecognized pointer size.");
801 }
802 else if (code == TYPE_CODE_MEMBER)
803 error ("not implemented: member types in unpack_pointer");
804
805 error ("Value is not a pointer.");
806 return 0; /* For lint -- never reached */
807 #else
808 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
809 whether we want this to be true eventually. */
810 return unpack_long (type, valaddr);
811 #endif
812 }
813 \f
814 /* Given a value ARG1 (offset by OFFSET bytes)
815 of a struct or union type ARG_TYPE,
816 extract and return the value of one of its fields.
817 FIELDNO says which field.
818
819 For C++, must also be able to return values from static fields */
820
821 value
822 value_primitive_field (arg1, offset, fieldno, arg_type)
823 register value arg1;
824 int offset;
825 register int fieldno;
826 register struct type *arg_type;
827 {
828 register value v;
829 register struct type *type;
830
831 check_stub_type (arg_type);
832 type = TYPE_FIELD_TYPE (arg_type, fieldno);
833
834 /* Handle packed fields */
835
836 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
837 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
838 {
839 v = value_from_longest (type,
840 unpack_field_as_long (arg_type,
841 VALUE_CONTENTS (arg1),
842 fieldno));
843 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
844 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
845 }
846 else
847 {
848 v = allocate_value (type);
849 if (VALUE_LAZY (arg1))
850 VALUE_LAZY (v) = 1;
851 else
852 bcopy (VALUE_CONTENTS_RAW (arg1) + offset,
853 VALUE_CONTENTS_RAW (v),
854 TYPE_LENGTH (type));
855 }
856 VALUE_LVAL (v) = VALUE_LVAL (arg1);
857 if (VALUE_LVAL (arg1) == lval_internalvar)
858 VALUE_LVAL (v) = lval_internalvar_component;
859 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
860 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
861 return v;
862 }
863
864 /* Given a value ARG1 of a struct or union type,
865 extract and return the value of one of its fields.
866 FIELDNO says which field.
867
868 For C++, must also be able to return values from static fields */
869
870 value
871 value_field (arg1, fieldno)
872 register value arg1;
873 register int fieldno;
874 {
875 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
876 }
877
878 value
879 value_fn_field (arg1, fieldno, subfieldno)
880 register value arg1;
881 register int fieldno;
882 int subfieldno;
883 {
884 register value v;
885 struct fn_field *f = TYPE_FN_FIELDLIST1 (VALUE_TYPE (arg1), fieldno);
886 register struct type *type = TYPE_FN_FIELD_TYPE (f, subfieldno);
887 struct symbol *sym;
888
889 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, subfieldno),
890 0, VAR_NAMESPACE, 0, NULL);
891 if (! sym) error ("Internal error: could not find physical method named %s",
892 TYPE_FN_FIELD_PHYSNAME (f, subfieldno));
893
894 v = allocate_value (type);
895 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
896 VALUE_TYPE (v) = type;
897 return v;
898 }
899
900 /* Return a virtual function as a value.
901 ARG1 is the object which provides the virtual function
902 table pointer. ARG1 is side-effected in calling this function.
903 F is the list of member functions which contains the desired virtual
904 function.
905 J is an index into F which provides the desired virtual function.
906
907 TYPE is the type in which F is located. */
908 value
909 value_virtual_fn_field (arg1, f, j, type)
910 value arg1;
911 struct fn_field *f;
912 int j;
913 struct type *type;
914 {
915 /* First, get the virtual function table pointer. That comes
916 with a strange type, so cast it to type `pointer to long' (which
917 should serve just fine as a function type). Then, index into
918 the table, and convert final value to appropriate function type. */
919 value entry, vfn, vtbl;
920 value vi = value_from_longest (builtin_type_int,
921 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
922 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
923 struct type *context;
924 if (fcontext == NULL)
925 /* We don't have an fcontext (e.g. the program was compiled with
926 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
927 This won't work right for multiple inheritance, but at least we
928 should do as well as GDB 3.x did. */
929 fcontext = TYPE_VPTR_BASETYPE (type);
930 context = lookup_pointer_type (fcontext);
931 /* Now context is a pointer to the basetype containing the vtbl. */
932 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
933 arg1 = value_ind (value_cast (context, value_addr (arg1)));
934
935 context = VALUE_TYPE (arg1);
936 /* Now context is the basetype containing the vtbl. */
937
938 /* This type may have been defined before its virtual function table
939 was. If so, fill in the virtual function table entry for the
940 type now. */
941 if (TYPE_VPTR_FIELDNO (context) < 0)
942 fill_in_vptr_fieldno (context);
943
944 /* The virtual function table is now an array of structures
945 which have the form { int16 offset, delta; void *pfn; }. */
946 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
947
948 /* Index into the virtual function table. This is hard-coded because
949 looking up a field is not cheap, and it may be important to save
950 time, e.g. if the user has set a conditional breakpoint calling
951 a virtual function. */
952 entry = value_subscript (vtbl, vi);
953
954 /* Move the `this' pointer according to the virtual function table. */
955 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
956 if (! VALUE_LAZY (arg1))
957 {
958 VALUE_LAZY (arg1) = 1;
959 value_fetch_lazy (arg1);
960 }
961
962 vfn = value_field (entry, 2);
963 /* Reinstantiate the function pointer with the correct type. */
964 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
965
966 return vfn;
967 }
968
969 /* ARG is a pointer to an object we know to be at least
970 a DTYPE. BTYPE is the most derived basetype that has
971 already been searched (and need not be searched again).
972 After looking at the vtables between BTYPE and DTYPE,
973 return the most derived type we find. The caller must
974 be satisfied when the return value == DTYPE.
975
976 FIXME-tiemann: should work with dossier entries as well. */
977
978 static value
979 value_headof (arg, btype, dtype)
980 value arg;
981 struct type *btype, *dtype;
982 {
983 /* First collect the vtables we must look at for this object. */
984 /* FIXME-tiemann: right now, just look at top-most vtable. */
985 value vtbl, entry, best_entry = 0;
986 /* FIXME: entry_type is never used. */
987 struct type *entry_type;
988 int i, nelems;
989 int offset, best_offset = 0;
990 struct symbol *sym;
991 CORE_ADDR pc_for_sym;
992 char *demangled_name;
993
994 btype = TYPE_VPTR_BASETYPE (dtype);
995 check_stub_type (btype);
996 if (btype != dtype)
997 vtbl = value_cast (lookup_pointer_type (btype), arg);
998 else
999 vtbl = arg;
1000 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1001
1002 /* Check that VTBL looks like it points to a virtual function table. */
1003 i = find_pc_misc_function (VALUE_ADDRESS (vtbl));
1004 if (i < 0 || ! VTBL_PREFIX_P (misc_function_vector[i].name))
1005 {
1006 /* If we expected to find a vtable, but did not, let the user
1007 know that we aren't happy, but don't throw an error.
1008 FIXME: there has to be a better way to do this. */
1009 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1010 bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type));
1011 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1012 VALUE_TYPE (arg) = error_type;
1013 return arg;
1014 }
1015
1016 /* Now search through the virtual function table. */
1017 entry = value_ind (vtbl);
1018 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1019 for (i = 1; i <= nelems; i++)
1020 {
1021 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1022 (LONGEST) i));
1023 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1024 if (offset < best_offset)
1025 {
1026 best_offset = offset;
1027 best_entry = entry;
1028 }
1029 }
1030 if (best_entry == 0)
1031 return arg;
1032
1033 /* Move the pointer according to BEST_ENTRY's offset, and figure
1034 out what type we should return as the new pointer. */
1035 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1036 sym = find_pc_function (pc_for_sym);
1037 demangled_name = cplus_demangle (SYMBOL_NAME (sym), -1);
1038 *(strchr (demangled_name, ':')) = '\0';
1039 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1040 if (sym == 0)
1041 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1042 free (demangled_name);
1043 arg = value_add (value_cast (builtin_type_int, arg),
1044 value_field (best_entry, 0));
1045 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1046 return arg;
1047 }
1048
1049 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1050 function tables, probe ARG's tables (including the vtables
1051 of its baseclasses) to figure out the most derived type that ARG
1052 could actually be a pointer to. */
1053
1054 value
1055 value_from_vtable_info (arg, type)
1056 value arg;
1057 struct type *type;
1058 {
1059 /* Take care of preliminaries. */
1060 if (TYPE_VPTR_FIELDNO (type) < 0)
1061 fill_in_vptr_fieldno (type);
1062 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1063 return 0;
1064
1065 return value_headof (arg, 0, type);
1066 }
1067
1068 /* The value of a static class member does not depend
1069 on its instance, only on its type. If FIELDNO >= 0,
1070 then fieldno is a valid field number and is used directly.
1071 Otherwise, FIELDNAME is the name of the field we are
1072 searching for. If it is not a static field name, an
1073 error is signaled. TYPE is the type in which we look for the
1074 static field member.
1075
1076 Return zero if we couldn't find anything; the caller may signal
1077 an error in that case. */
1078
1079 value
1080 value_static_field (type, fieldname, fieldno)
1081 register struct type *type;
1082 char *fieldname;
1083 register int fieldno;
1084 {
1085 register value v;
1086 struct symbol *sym;
1087 char *phys_name;
1088
1089 if (fieldno < 0)
1090 {
1091 /* Look for static field. */
1092 int i;
1093 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1094 if (! strcmp (TYPE_FIELD_NAME (type, i), fieldname))
1095 {
1096 if (TYPE_FIELD_STATIC (type, i))
1097 {
1098 fieldno = i;
1099 goto found;
1100 }
1101 else
1102 error ("field `%s' is not static", fieldname);
1103 }
1104 for (; i > 0; i--)
1105 {
1106 v = value_static_field (TYPE_BASECLASS (type, i), fieldname, -1);
1107 if (v != 0)
1108 return v;
1109 }
1110
1111 if (destructor_name_p (fieldname, type))
1112 error ("Cannot get value of destructor");
1113
1114 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1115 {
1116 if (! strcmp (TYPE_FN_FIELDLIST_NAME (type, i), fieldname))
1117 error ("Cannot get value of method \"%s\"", fieldname);
1118 }
1119 error("there is no field named %s", fieldname);
1120 }
1121
1122 found:
1123 phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1124 sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1125 if (! sym) error ("Internal error: could not find physical static variable named %s", phys_name);
1126
1127 type = TYPE_FIELD_TYPE (type, fieldno);
1128 v = value_at (type, (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1129 return v;
1130 }
1131
1132 /* Compute the address of the baseclass which is
1133 the INDEXth baseclass of TYPE. The TYPE base
1134 of the object is at VALADDR.
1135
1136 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1137 or 0 if no error. In that case the return value is not the address
1138 of the baseclasss, but the address which could not be read
1139 successfully. */
1140
1141 char *
1142 baseclass_addr (type, index, valaddr, valuep, errp)
1143 struct type *type;
1144 int index;
1145 char *valaddr;
1146 value *valuep;
1147 int *errp;
1148 {
1149 struct type *basetype = TYPE_BASECLASS (type, index);
1150
1151 if (errp)
1152 *errp = 0;
1153
1154 if (BASETYPE_VIA_VIRTUAL (type, index))
1155 {
1156 /* Must hunt for the pointer to this virtual baseclass. */
1157 register int i, len = TYPE_NFIELDS (type);
1158 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1159 char *vbase_name, *type_name = type_name_no_tag (basetype);
1160
1161 if (TYPE_MAIN_VARIANT (basetype))
1162 basetype = TYPE_MAIN_VARIANT (basetype);
1163
1164 vbase_name = (char *)alloca (strlen (type_name) + 8);
1165 sprintf (vbase_name, "_vb$%s", type_name);
1166 /* First look for the virtual baseclass pointer
1167 in the fields. */
1168 for (i = n_baseclasses; i < len; i++)
1169 {
1170 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1171 {
1172 value val = allocate_value (basetype);
1173 CORE_ADDR addr;
1174 int status;
1175
1176 addr
1177 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1178 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1179
1180 status = target_read_memory (addr,
1181 VALUE_CONTENTS_RAW (val),
1182 TYPE_LENGTH (basetype));
1183 VALUE_LVAL (val) = lval_memory;
1184 VALUE_ADDRESS (val) = addr;
1185
1186 if (status != 0)
1187 {
1188 if (valuep)
1189 *valuep = NULL;
1190 release_value (val);
1191 value_free (val);
1192 if (errp)
1193 *errp = status;
1194 return (char *)addr;
1195 }
1196 else
1197 {
1198 if (valuep)
1199 *valuep = val;
1200 return (char *) VALUE_CONTENTS (val);
1201 }
1202 }
1203 }
1204 /* Not in the fields, so try looking through the baseclasses. */
1205 for (i = index+1; i < n_baseclasses; i++)
1206 {
1207 char *baddr;
1208
1209 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1210 if (baddr)
1211 return baddr;
1212 }
1213 /* Not found. */
1214 if (valuep)
1215 *valuep = 0;
1216 return 0;
1217 }
1218
1219 /* Baseclass is easily computed. */
1220 if (valuep)
1221 *valuep = 0;
1222 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1223 }
1224
1225 /* Ugly hack to convert method stubs into method types.
1226
1227 He ain't kiddin'. This demangles the name of the method into a string
1228 including argument types, parses out each argument type, generates
1229 a string casting a zero to that type, evaluates the string, and stuffs
1230 the resulting type into an argtype vector!!! Then it knows the type
1231 of the whole function (including argument types for overloading),
1232 which info used to be in the stab's but was removed to hack back
1233 the space required for them. */
1234 void
1235 check_stub_method (type, i, j)
1236 struct type *type;
1237 int i, j;
1238 {
1239 extern char *gdb_mangle_typename (), *strchr ();
1240 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1241 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1242 char *inner_name = gdb_mangle_typename (type);
1243 int mangled_name_len = (strlen (field_name)
1244 + strlen (inner_name)
1245 + strlen (TYPE_FN_FIELD_PHYSNAME (f, j))
1246 + 1);
1247 char *mangled_name;
1248 char *demangled_name;
1249 char *argtypetext, *p;
1250 int depth = 0, argcount = 1;
1251 struct type **argtypes;
1252
1253 if (OPNAME_PREFIX_P (field_name))
1254 {
1255 char *opname = cplus_mangle_opname (field_name + 3);
1256 if (opname == NULL)
1257 error ("No mangling for \"%s\"", field_name);
1258 mangled_name_len += strlen (opname);
1259 mangled_name = (char *)xmalloc (mangled_name_len);
1260
1261 strncpy (mangled_name, field_name, 3);
1262 mangled_name[3] = '\0';
1263 strcat (mangled_name, opname);
1264 }
1265 else
1266 {
1267 mangled_name = (char *)xmalloc (mangled_name_len);
1268 strcpy (mangled_name, TYPE_FN_FIELDLIST_NAME (type, i));
1269 }
1270 strcat (mangled_name, inner_name);
1271 strcat (mangled_name, TYPE_FN_FIELD_PHYSNAME (f, j));
1272 demangled_name = cplus_demangle (mangled_name, 0);
1273
1274 /* Now, read in the parameters that define this type. */
1275 argtypetext = strchr (demangled_name, '(') + 1;
1276 p = argtypetext;
1277 while (*p)
1278 {
1279 if (*p == '(')
1280 depth += 1;
1281 else if (*p == ')')
1282 depth -= 1;
1283 else if (*p == ',' && depth == 0)
1284 argcount += 1;
1285
1286 p += 1;
1287 }
1288 /* We need one more slot for the void [...] or NULL [end of arglist] */
1289 argtypes = (struct type **)xmalloc ((argcount+1) * sizeof (struct type *));
1290 p = argtypetext;
1291 argtypes[0] = lookup_pointer_type (type);
1292 argcount = 1;
1293
1294 if (*p != ')') /* () means no args, skip while */
1295 {
1296 while (*p)
1297 {
1298 if (*p == '(')
1299 depth += 1;
1300 else if (*p == ')')
1301 depth -= 1;
1302
1303 if (depth <= 0 && (*p == ',' || *p == ')'))
1304 {
1305 char *tmp = (char *)alloca (p - argtypetext + 4);
1306 value val;
1307 tmp[0] = '(';
1308 bcopy (argtypetext, tmp+1, p - argtypetext);
1309 tmp[p-argtypetext+1] = ')';
1310 tmp[p-argtypetext+2] = '0';
1311 tmp[p-argtypetext+3] = '\0';
1312 val = parse_and_eval (tmp);
1313 argtypes[argcount] = VALUE_TYPE (val);
1314 argcount += 1;
1315 argtypetext = p + 1;
1316 }
1317 p += 1;
1318 }
1319 }
1320
1321 if (p[-2] != '.') /* ... */
1322 argtypes[argcount] = builtin_type_void; /* Ellist terminator */
1323 else
1324 argtypes[argcount] = NULL; /* List terminator */
1325
1326 free (demangled_name);
1327
1328 type = lookup_method_type (type, TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)), argtypes);
1329 /* Free the stub type...it's no longer needed. */
1330 free (TYPE_FN_FIELD_TYPE (f, j));
1331 TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name;
1332 TYPE_FN_FIELD_TYPE (f, j) = type;
1333 }
1334 \f
1335 long
1336 unpack_field_as_long (type, valaddr, fieldno)
1337 struct type *type;
1338 char *valaddr;
1339 int fieldno;
1340 {
1341 long val;
1342 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1343 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1344
1345 bcopy (valaddr + bitpos / 8, &val, sizeof val);
1346 SWAP_TARGET_AND_HOST (&val, sizeof val);
1347
1348 /* Extracting bits depends on endianness of the machine. */
1349 #if BITS_BIG_ENDIAN
1350 val = val >> (sizeof val * 8 - bitpos % 8 - bitsize);
1351 #else
1352 val = val >> (bitpos % 8);
1353 #endif
1354
1355 if (bitsize < 8 * sizeof (val))
1356 val &= (((unsigned long)1) << bitsize) - 1;
1357 return val;
1358 }
1359
1360 /* Modify the value of a bitfield. ADDR points to a block of memory in
1361 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1362 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1363 indicate which bits (in target bit order) comprise the bitfield. */
1364
1365 void
1366 modify_field (addr, fieldval, bitpos, bitsize)
1367 char *addr;
1368 int fieldval;
1369 int bitpos, bitsize;
1370 {
1371 long oword;
1372
1373 /* Reject values too big to fit in the field in question,
1374 otherwise adjoining fields may be corrupted. */
1375 if (bitsize < (8 * sizeof (fieldval))
1376 && 0 != (fieldval & ~((1<<bitsize)-1)))
1377 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1378
1379 bcopy (addr, &oword, sizeof oword);
1380 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1381
1382 /* Shifting for bit field depends on endianness of the target machine. */
1383 #if BITS_BIG_ENDIAN
1384 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1385 #endif
1386
1387 /* Mask out old value, while avoiding shifts >= longword size */
1388 if (bitsize < 8 * sizeof (oword))
1389 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1390 else
1391 oword &= ~((-1) << bitpos);
1392 oword |= fieldval << bitpos;
1393
1394 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1395 bcopy (&oword, addr, sizeof oword);
1396 }
1397 \f
1398 /* Convert C numbers into newly allocated values */
1399
1400 value
1401 value_from_longest (type, num)
1402 struct type *type;
1403 register LONGEST num;
1404 {
1405 register value val = allocate_value (type);
1406 register enum type_code code = TYPE_CODE (type);
1407 register int len = TYPE_LENGTH (type);
1408
1409 /* FIXME, we assume that pointers have the same form and byte order as
1410 integers, and that all pointers have the same form. */
1411 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM || code == TYPE_CODE_PTR)
1412 {
1413 if (len == sizeof (char))
1414 * (char *) VALUE_CONTENTS_RAW (val) = num;
1415 else if (len == sizeof (short))
1416 * (short *) VALUE_CONTENTS_RAW (val) = num;
1417 else if (len == sizeof (int))
1418 * (int *) VALUE_CONTENTS_RAW (val) = num;
1419 else if (len == sizeof (long))
1420 * (long *) VALUE_CONTENTS_RAW (val) = num;
1421 #ifdef LONG_LONG
1422 else if (len == sizeof (long long))
1423 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1424 #endif
1425 else
1426 error ("Integer type encountered with unexpected data length.");
1427 }
1428 else
1429 error ("Unexpected type encountered for integer constant.");
1430
1431 /* num was in host byte order. So now put the value's contents
1432 into target byte order. */
1433 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1434
1435 return val;
1436 }
1437
1438 value
1439 value_from_double (type, num)
1440 struct type *type;
1441 double num;
1442 {
1443 register value val = allocate_value (type);
1444 register enum type_code code = TYPE_CODE (type);
1445 register int len = TYPE_LENGTH (type);
1446
1447 if (code == TYPE_CODE_FLT)
1448 {
1449 if (len == sizeof (float))
1450 * (float *) VALUE_CONTENTS_RAW (val) = num;
1451 else if (len == sizeof (double))
1452 * (double *) VALUE_CONTENTS_RAW (val) = num;
1453 else
1454 error ("Floating type encountered with unexpected data length.");
1455 }
1456 else
1457 error ("Unexpected type encountered for floating constant.");
1458
1459 /* num was in host byte order. So now put the value's contents
1460 into target byte order. */
1461 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1462
1463 return val;
1464 }
1465 \f
1466 /* Deal with the value that is "about to be returned". */
1467
1468 /* Return the value that a function returning now
1469 would be returning to its caller, assuming its type is VALTYPE.
1470 RETBUF is where we look for what ought to be the contents
1471 of the registers (in raw form). This is because it is often
1472 desirable to restore old values to those registers
1473 after saving the contents of interest, and then call
1474 this function using the saved values.
1475 struct_return is non-zero when the function in question is
1476 using the structure return conventions on the machine in question;
1477 0 when it is using the value returning conventions (this often
1478 means returning pointer to where structure is vs. returning value). */
1479
1480 value
1481 value_being_returned (valtype, retbuf, struct_return)
1482 register struct type *valtype;
1483 char retbuf[REGISTER_BYTES];
1484 int struct_return;
1485 /*ARGSUSED*/
1486 {
1487 register value val;
1488 CORE_ADDR addr;
1489
1490 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1491 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1492 if (struct_return) {
1493 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1494 if (!addr)
1495 error ("Function return value unknown");
1496 return value_at (valtype, addr);
1497 }
1498 #endif
1499
1500 val = allocate_value (valtype);
1501 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1502
1503 return val;
1504 }
1505
1506 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1507 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1508 and TYPE is the type (which is known to be struct, union or array).
1509
1510 On most machines, the struct convention is used unless we are
1511 using gcc and the type is of a special size. */
1512 #if !defined (USE_STRUCT_CONVENTION)
1513 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1514 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1515 || TYPE_LENGTH (value_type) == 2 \
1516 || TYPE_LENGTH (value_type) == 4 \
1517 || TYPE_LENGTH (value_type) == 8 \
1518 ) \
1519 ))
1520 #endif
1521
1522 /* Return true if the function specified is using the structure returning
1523 convention on this machine to return arguments, or 0 if it is using
1524 the value returning convention. FUNCTION is the value representing
1525 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1526 is the type returned by the function. GCC_P is nonzero if compiled
1527 with GCC. */
1528
1529 int
1530 using_struct_return (function, funcaddr, value_type, gcc_p)
1531 value function;
1532 CORE_ADDR funcaddr;
1533 struct type *value_type;
1534 int gcc_p;
1535 /*ARGSUSED*/
1536 {
1537 register enum type_code code = TYPE_CODE (value_type);
1538
1539 if (code == TYPE_CODE_ERROR)
1540 error ("Function return type unknown.");
1541
1542 if (code == TYPE_CODE_STRUCT ||
1543 code == TYPE_CODE_UNION ||
1544 code == TYPE_CODE_ARRAY)
1545 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1546
1547 return 0;
1548 }
1549
1550 /* Store VAL so it will be returned if a function returns now.
1551 Does not verify that VAL's type matches what the current
1552 function wants to return. */
1553
1554 void
1555 set_return_value (val)
1556 value val;
1557 {
1558 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1559 double dbuf;
1560 LONGEST lbuf;
1561
1562 if (code == TYPE_CODE_ERROR)
1563 error ("Function return type unknown.");
1564
1565 if (code == TYPE_CODE_STRUCT
1566 || code == TYPE_CODE_UNION)
1567 error ("Specifying a struct or union return value is not supported.");
1568
1569 /* FIXME, this is bogus. We don't know what the return conventions
1570 are, or how values should be promoted.... */
1571 if (code == TYPE_CODE_FLT)
1572 {
1573 dbuf = value_as_double (val);
1574
1575 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1576 }
1577 else
1578 {
1579 lbuf = value_as_long (val);
1580 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1581 }
1582 }
1583 \f
1584 void
1585 _initialize_values ()
1586 {
1587 add_cmd ("convenience", no_class, show_convenience,
1588 "Debugger convenience (\"$foo\") variables.\n\
1589 These variables are created when you assign them values;\n\
1590 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1591 A few convenience variables are given values automatically:\n\
1592 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1593 \"$__\" holds the contents of the last address examined with \"x\".",
1594 &showlist);
1595
1596 add_cmd ("values", no_class, show_values,
1597 "Elements of value history around item number IDX (or last ten).",
1598 &showlist);
1599 }
This page took 0.067935 seconds and 5 git commands to generate.