* infcmd.c (do_registers_info) [INVALID_FLOAT]: Only use if
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 1987, 1989, 1991, 1993, 1994
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include <string.h>
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "demangle.h"
32
33 /* Local function prototypes. */
34
35 static value_ptr value_headof PARAMS ((value_ptr, struct type *,
36 struct type *));
37
38 static void show_values PARAMS ((char *, int));
39
40 static void show_convenience PARAMS ((char *, int));
41
42 /* The value-history records all the values printed
43 by print commands during this session. Each chunk
44 records 60 consecutive values. The first chunk on
45 the chain records the most recent values.
46 The total number of values is in value_history_count. */
47
48 #define VALUE_HISTORY_CHUNK 60
49
50 struct value_history_chunk
51 {
52 struct value_history_chunk *next;
53 value_ptr values[VALUE_HISTORY_CHUNK];
54 };
55
56 /* Chain of chunks now in use. */
57
58 static struct value_history_chunk *value_history_chain;
59
60 static int value_history_count; /* Abs number of last entry stored */
61 \f
62 /* List of all value objects currently allocated
63 (except for those released by calls to release_value)
64 This is so they can be freed after each command. */
65
66 static value_ptr all_values;
67
68 /* Allocate a value that has the correct length for type TYPE. */
69
70 value_ptr
71 allocate_value (type)
72 struct type *type;
73 {
74 register value_ptr val;
75
76 check_stub_type (type);
77
78 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
79 VALUE_NEXT (val) = all_values;
80 all_values = val;
81 VALUE_TYPE (val) = type;
82 VALUE_LVAL (val) = not_lval;
83 VALUE_ADDRESS (val) = 0;
84 VALUE_FRAME (val) = 0;
85 VALUE_OFFSET (val) = 0;
86 VALUE_BITPOS (val) = 0;
87 VALUE_BITSIZE (val) = 0;
88 VALUE_REPEATED (val) = 0;
89 VALUE_REPETITIONS (val) = 0;
90 VALUE_REGNO (val) = -1;
91 VALUE_LAZY (val) = 0;
92 VALUE_OPTIMIZED_OUT (val) = 0;
93 val->modifiable = 1;
94 return val;
95 }
96
97 /* Allocate a value that has the correct length
98 for COUNT repetitions type TYPE. */
99
100 value_ptr
101 allocate_repeat_value (type, count)
102 struct type *type;
103 int count;
104 {
105 register value_ptr val;
106
107 val =
108 (value_ptr) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
109 VALUE_NEXT (val) = all_values;
110 all_values = val;
111 VALUE_TYPE (val) = type;
112 VALUE_LVAL (val) = not_lval;
113 VALUE_ADDRESS (val) = 0;
114 VALUE_FRAME (val) = 0;
115 VALUE_OFFSET (val) = 0;
116 VALUE_BITPOS (val) = 0;
117 VALUE_BITSIZE (val) = 0;
118 VALUE_REPEATED (val) = 1;
119 VALUE_REPETITIONS (val) = count;
120 VALUE_REGNO (val) = -1;
121 VALUE_LAZY (val) = 0;
122 VALUE_OPTIMIZED_OUT (val) = 0;
123 return val;
124 }
125
126 /* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129 value_ptr
130 value_mark ()
131 {
132 return all_values;
133 }
134
135 /* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137 void
138 value_free_to_mark (mark)
139 value_ptr mark;
140 {
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149 }
150
151 /* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154 void
155 free_all_values ()
156 {
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166 }
167
168 /* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171 void
172 release_value (val)
173 register value_ptr val;
174 {
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191 }
192
193 /* Release all values up to mark */
194 value_ptr
195 value_release_to_mark (mark)
196 value_ptr mark;
197 {
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209 }
210
211 /* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215 value_ptr
216 value_copy (arg)
217 value_ptr arg;
218 {
219 register value_ptr val;
220 register struct type *type = VALUE_TYPE (arg);
221 if (VALUE_REPEATED (arg))
222 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
223 else
224 val = allocate_value (type);
225 VALUE_LVAL (val) = VALUE_LVAL (arg);
226 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
227 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
228 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
229 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
230 VALUE_REGNO (val) = VALUE_REGNO (arg);
231 VALUE_LAZY (val) = VALUE_LAZY (arg);
232 val->modifiable = arg->modifiable;
233 if (!VALUE_LAZY (val))
234 {
235 memcpy (VALUE_CONTENTS_RAW (val), VALUE_CONTENTS_RAW (arg),
236 TYPE_LENGTH (VALUE_TYPE (arg))
237 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
238 }
239 return val;
240 }
241 \f
242 /* Access to the value history. */
243
244 /* Record a new value in the value history.
245 Returns the absolute history index of the entry.
246 Result of -1 indicates the value was not saved; otherwise it is the
247 value history index of this new item. */
248
249 int
250 record_latest_value (val)
251 value_ptr val;
252 {
253 int i;
254
255 /* Check error now if about to store an invalid float. We return -1
256 to the caller, but allow them to continue, e.g. to print it as "Nan". */
257 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT)
258 {
259 unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
260 if (i) return -1; /* Indicate value not saved in history */
261 }
262
263 /* We don't want this value to have anything to do with the inferior anymore.
264 In particular, "set $1 = 50" should not affect the variable from which
265 the value was taken, and fast watchpoints should be able to assume that
266 a value on the value history never changes. */
267 if (VALUE_LAZY (val))
268 value_fetch_lazy (val);
269 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
270 from. This is a bit dubious, because then *&$1 does not just return $1
271 but the current contents of that location. c'est la vie... */
272 val->modifiable = 0;
273 release_value (val);
274
275 /* Here we treat value_history_count as origin-zero
276 and applying to the value being stored now. */
277
278 i = value_history_count % VALUE_HISTORY_CHUNK;
279 if (i == 0)
280 {
281 register struct value_history_chunk *new
282 = (struct value_history_chunk *)
283 xmalloc (sizeof (struct value_history_chunk));
284 memset (new->values, 0, sizeof new->values);
285 new->next = value_history_chain;
286 value_history_chain = new;
287 }
288
289 value_history_chain->values[i] = val;
290
291 /* Now we regard value_history_count as origin-one
292 and applying to the value just stored. */
293
294 return ++value_history_count;
295 }
296
297 /* Return a copy of the value in the history with sequence number NUM. */
298
299 value_ptr
300 access_value_history (num)
301 int num;
302 {
303 register struct value_history_chunk *chunk;
304 register int i;
305 register int absnum = num;
306
307 if (absnum <= 0)
308 absnum += value_history_count;
309
310 if (absnum <= 0)
311 {
312 if (num == 0)
313 error ("The history is empty.");
314 else if (num == 1)
315 error ("There is only one value in the history.");
316 else
317 error ("History does not go back to $$%d.", -num);
318 }
319 if (absnum > value_history_count)
320 error ("History has not yet reached $%d.", absnum);
321
322 absnum--;
323
324 /* Now absnum is always absolute and origin zero. */
325
326 chunk = value_history_chain;
327 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
328 i > 0; i--)
329 chunk = chunk->next;
330
331 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
332 }
333
334 /* Clear the value history entirely.
335 Must be done when new symbol tables are loaded,
336 because the type pointers become invalid. */
337
338 void
339 clear_value_history ()
340 {
341 register struct value_history_chunk *next;
342 register int i;
343 register value_ptr val;
344
345 while (value_history_chain)
346 {
347 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
348 if ((val = value_history_chain->values[i]) != NULL)
349 free ((PTR)val);
350 next = value_history_chain->next;
351 free ((PTR)value_history_chain);
352 value_history_chain = next;
353 }
354 value_history_count = 0;
355 }
356
357 static void
358 show_values (num_exp, from_tty)
359 char *num_exp;
360 int from_tty;
361 {
362 register int i;
363 register value_ptr val;
364 static int num = 1;
365
366 if (num_exp)
367 {
368 /* "info history +" should print from the stored position.
369 "info history <exp>" should print around value number <exp>. */
370 if (num_exp[0] != '+' || num_exp[1] != '\0')
371 num = parse_and_eval_address (num_exp) - 5;
372 }
373 else
374 {
375 /* "info history" means print the last 10 values. */
376 num = value_history_count - 9;
377 }
378
379 if (num <= 0)
380 num = 1;
381
382 for (i = num; i < num + 10 && i <= value_history_count; i++)
383 {
384 val = access_value_history (i);
385 printf_filtered ("$%d = ", i);
386 value_print (val, gdb_stdout, 0, Val_pretty_default);
387 printf_filtered ("\n");
388 }
389
390 /* The next "info history +" should start after what we just printed. */
391 num += 10;
392
393 /* Hitting just return after this command should do the same thing as
394 "info history +". If num_exp is null, this is unnecessary, since
395 "info history +" is not useful after "info history". */
396 if (from_tty && num_exp)
397 {
398 num_exp[0] = '+';
399 num_exp[1] = '\0';
400 }
401 }
402 \f
403 /* Internal variables. These are variables within the debugger
404 that hold values assigned by debugger commands.
405 The user refers to them with a '$' prefix
406 that does not appear in the variable names stored internally. */
407
408 static struct internalvar *internalvars;
409
410 /* Look up an internal variable with name NAME. NAME should not
411 normally include a dollar sign.
412
413 If the specified internal variable does not exist,
414 one is created, with a void value. */
415
416 struct internalvar *
417 lookup_internalvar (name)
418 char *name;
419 {
420 register struct internalvar *var;
421
422 for (var = internalvars; var; var = var->next)
423 if (STREQ (var->name, name))
424 return var;
425
426 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
427 var->name = concat (name, NULL);
428 var->value = allocate_value (builtin_type_void);
429 release_value (var->value);
430 var->next = internalvars;
431 internalvars = var;
432 return var;
433 }
434
435 value_ptr
436 value_of_internalvar (var)
437 struct internalvar *var;
438 {
439 register value_ptr val;
440
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 return VALUE_OF_TRAPPED_INTERNALVAR (var);
444 #endif
445
446 val = value_copy (var->value);
447 if (VALUE_LAZY (val))
448 value_fetch_lazy (val);
449 VALUE_LVAL (val) = lval_internalvar;
450 VALUE_INTERNALVAR (val) = var;
451 return val;
452 }
453
454 void
455 set_internalvar_component (var, offset, bitpos, bitsize, newval)
456 struct internalvar *var;
457 int offset, bitpos, bitsize;
458 value_ptr newval;
459 {
460 register char *addr = VALUE_CONTENTS (var->value) + offset;
461
462 #ifdef IS_TRAPPED_INTERNALVAR
463 if (IS_TRAPPED_INTERNALVAR (var->name))
464 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
465 #endif
466
467 if (bitsize)
468 modify_field (addr, value_as_long (newval),
469 bitpos, bitsize);
470 else
471 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
472 }
473
474 void
475 set_internalvar (var, val)
476 struct internalvar *var;
477 value_ptr val;
478 {
479 value_ptr newval;
480
481 #ifdef IS_TRAPPED_INTERNALVAR
482 if (IS_TRAPPED_INTERNALVAR (var->name))
483 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
484 #endif
485
486 newval = value_copy (val);
487
488 /* Force the value to be fetched from the target now, to avoid problems
489 later when this internalvar is referenced and the target is gone or
490 has changed. */
491 if (VALUE_LAZY (newval))
492 value_fetch_lazy (newval);
493
494 /* Begin code which must not call error(). If var->value points to
495 something free'd, an error() obviously leaves a dangling pointer.
496 But we also get a danling pointer if var->value points to
497 something in the value chain (i.e., before release_value is
498 called), because after the error free_all_values will get called before
499 long. */
500 free ((PTR)var->value);
501 var->value = newval;
502 release_value (newval);
503 /* End code which must not call error(). */
504 }
505
506 char *
507 internalvar_name (var)
508 struct internalvar *var;
509 {
510 return var->name;
511 }
512
513 /* Free all internalvars. Done when new symtabs are loaded,
514 because that makes the values invalid. */
515
516 void
517 clear_internalvars ()
518 {
519 register struct internalvar *var;
520
521 while (internalvars)
522 {
523 var = internalvars;
524 internalvars = var->next;
525 free ((PTR)var->name);
526 free ((PTR)var->value);
527 free ((PTR)var);
528 }
529 }
530
531 static void
532 show_convenience (ignore, from_tty)
533 char *ignore;
534 int from_tty;
535 {
536 register struct internalvar *var;
537 int varseen = 0;
538
539 for (var = internalvars; var; var = var->next)
540 {
541 #ifdef IS_TRAPPED_INTERNALVAR
542 if (IS_TRAPPED_INTERNALVAR (var->name))
543 continue;
544 #endif
545 if (!varseen)
546 {
547 varseen = 1;
548 }
549 printf_filtered ("$%s = ", var->name);
550 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
551 printf_filtered ("\n");
552 }
553 if (!varseen)
554 printf_unfiltered ("No debugger convenience variables now defined.\n\
555 Convenience variables have names starting with \"$\";\n\
556 use \"set\" as in \"set $foo = 5\" to define them.\n");
557 }
558 \f
559 /* Extract a value as a C number (either long or double).
560 Knows how to convert fixed values to double, or
561 floating values to long.
562 Does not deallocate the value. */
563
564 LONGEST
565 value_as_long (val)
566 register value_ptr val;
567 {
568 /* This coerces arrays and functions, which is necessary (e.g.
569 in disassemble_command). It also dereferences references, which
570 I suspect is the most logical thing to do. */
571 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
572 COERCE_ARRAY (val);
573 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
574 }
575
576 double
577 value_as_double (val)
578 register value_ptr val;
579 {
580 double foo;
581 int inv;
582
583 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
584 if (inv)
585 error ("Invalid floating value found in program.");
586 return foo;
587 }
588 /* Extract a value as a C pointer.
589 Does not deallocate the value. */
590 CORE_ADDR
591 value_as_pointer (val)
592 value_ptr val;
593 {
594 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
595 whether we want this to be true eventually. */
596 #if 0
597 /* ADDR_BITS_REMOVE is wrong if we are being called for a
598 non-address (e.g. argument to "signal", "info break", etc.), or
599 for pointers to char, in which the low bits *are* significant. */
600 return ADDR_BITS_REMOVE(value_as_long (val));
601 #else
602 return value_as_long (val);
603 #endif
604 }
605 \f
606 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
607 as a long, or as a double, assuming the raw data is described
608 by type TYPE. Knows how to convert different sizes of values
609 and can convert between fixed and floating point. We don't assume
610 any alignment for the raw data. Return value is in host byte order.
611
612 If you want functions and arrays to be coerced to pointers, and
613 references to be dereferenced, call value_as_long() instead.
614
615 C++: It is assumed that the front-end has taken care of
616 all matters concerning pointers to members. A pointer
617 to member which reaches here is considered to be equivalent
618 to an INT (or some size). After all, it is only an offset. */
619
620 LONGEST
621 unpack_long (type, valaddr)
622 struct type *type;
623 char *valaddr;
624 {
625 register enum type_code code = TYPE_CODE (type);
626 register int len = TYPE_LENGTH (type);
627 register int nosign = TYPE_UNSIGNED (type);
628
629 switch (code)
630 {
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
635 case TYPE_CODE_RANGE:
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
638 else
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
648 return extract_address (valaddr, len);
649
650 case TYPE_CODE_MEMBER:
651 error ("not implemented: member types in unpack_long");
652
653 default:
654 error ("Value can't be converted to integer.");
655 }
656 return 0; /* Placate lint. */
657 }
658
659 /* Return a double value from the specified type and address.
660 INVP points to an int which is set to 0 for valid value,
661 1 for invalid value (bad float format). In either case,
662 the returned double is OK to use. Argument is in target
663 format, result is in host format. */
664
665 double
666 unpack_double (type, valaddr, invp)
667 struct type *type;
668 char *valaddr;
669 int *invp;
670 {
671 register enum type_code code = TYPE_CODE (type);
672 register int len = TYPE_LENGTH (type);
673 register int nosign = TYPE_UNSIGNED (type);
674
675 *invp = 0; /* Assume valid. */
676 if (code == TYPE_CODE_FLT)
677 {
678 #ifdef INVALID_FLOAT
679 if (INVALID_FLOAT (valaddr, len))
680 {
681 *invp = 1;
682 return 1.234567891011121314;
683 }
684 #endif
685 return extract_floating (valaddr, len);
686 }
687 else if (nosign)
688 {
689 /* Unsigned -- be sure we compensate for signed LONGEST. */
690 return (unsigned LONGEST) unpack_long (type, valaddr);
691 }
692 else
693 {
694 /* Signed -- we are OK with unpack_long. */
695 return unpack_long (type, valaddr);
696 }
697 }
698
699 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
700 as a CORE_ADDR, assuming the raw data is described by type TYPE.
701 We don't assume any alignment for the raw data. Return value is in
702 host byte order.
703
704 If you want functions and arrays to be coerced to pointers, and
705 references to be dereferenced, call value_as_pointer() instead.
706
707 C++: It is assumed that the front-end has taken care of
708 all matters concerning pointers to members. A pointer
709 to member which reaches here is considered to be equivalent
710 to an INT (or some size). After all, it is only an offset. */
711
712 CORE_ADDR
713 unpack_pointer (type, valaddr)
714 struct type *type;
715 char *valaddr;
716 {
717 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
718 whether we want this to be true eventually. */
719 return unpack_long (type, valaddr);
720 }
721 \f
722 /* Given a value ARG1 (offset by OFFSET bytes)
723 of a struct or union type ARG_TYPE,
724 extract and return the value of one of its fields.
725 FIELDNO says which field.
726
727 For C++, must also be able to return values from static fields */
728
729 value_ptr
730 value_primitive_field (arg1, offset, fieldno, arg_type)
731 register value_ptr arg1;
732 int offset;
733 register int fieldno;
734 register struct type *arg_type;
735 {
736 register value_ptr v;
737 register struct type *type;
738
739 check_stub_type (arg_type);
740 type = TYPE_FIELD_TYPE (arg_type, fieldno);
741
742 /* Handle packed fields */
743
744 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
745 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
746 {
747 v = value_from_longest (type,
748 unpack_field_as_long (arg_type,
749 VALUE_CONTENTS (arg1),
750 fieldno));
751 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
752 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
753 }
754 else
755 {
756 v = allocate_value (type);
757 if (VALUE_LAZY (arg1))
758 VALUE_LAZY (v) = 1;
759 else
760 memcpy (VALUE_CONTENTS_RAW (v), VALUE_CONTENTS_RAW (arg1) + offset,
761 TYPE_LENGTH (type));
762 }
763 VALUE_LVAL (v) = VALUE_LVAL (arg1);
764 if (VALUE_LVAL (arg1) == lval_internalvar)
765 VALUE_LVAL (v) = lval_internalvar_component;
766 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
767 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
768 return v;
769 }
770
771 /* Given a value ARG1 of a struct or union type,
772 extract and return the value of one of its fields.
773 FIELDNO says which field.
774
775 For C++, must also be able to return values from static fields */
776
777 value_ptr
778 value_field (arg1, fieldno)
779 register value_ptr arg1;
780 register int fieldno;
781 {
782 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
783 }
784
785 /* Return a non-virtual function as a value.
786 F is the list of member functions which contains the desired method.
787 J is an index into F which provides the desired method. */
788
789 value_ptr
790 value_fn_field (arg1p, f, j, type, offset)
791 value_ptr *arg1p;
792 struct fn_field *f;
793 int j;
794 struct type *type;
795 int offset;
796 {
797 register value_ptr v;
798 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
799 struct symbol *sym;
800
801 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
802 0, VAR_NAMESPACE, 0, NULL);
803 if (! sym)
804 return NULL;
805 /*
806 error ("Internal error: could not find physical method named %s",
807 TYPE_FN_FIELD_PHYSNAME (f, j));
808 */
809
810 v = allocate_value (ftype);
811 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
812 VALUE_TYPE (v) = ftype;
813
814 if (arg1p)
815 {
816 if (type != VALUE_TYPE (*arg1p))
817 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
818 value_addr (*arg1p)));
819
820 /* Move the `this' pointer according to the offset.
821 VALUE_OFFSET (*arg1p) += offset;
822 */
823 }
824
825 return v;
826 }
827
828 /* Return a virtual function as a value.
829 ARG1 is the object which provides the virtual function
830 table pointer. *ARG1P is side-effected in calling this function.
831 F is the list of member functions which contains the desired virtual
832 function.
833 J is an index into F which provides the desired virtual function.
834
835 TYPE is the type in which F is located. */
836 value_ptr
837 value_virtual_fn_field (arg1p, f, j, type, offset)
838 value_ptr *arg1p;
839 struct fn_field *f;
840 int j;
841 struct type *type;
842 int offset;
843 {
844 value_ptr arg1 = *arg1p;
845 /* First, get the virtual function table pointer. That comes
846 with a strange type, so cast it to type `pointer to long' (which
847 should serve just fine as a function type). Then, index into
848 the table, and convert final value to appropriate function type. */
849 value_ptr entry, vfn, vtbl;
850 value_ptr vi = value_from_longest (builtin_type_int,
851 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
852 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
853 struct type *context;
854 if (fcontext == NULL)
855 /* We don't have an fcontext (e.g. the program was compiled with
856 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
857 This won't work right for multiple inheritance, but at least we
858 should do as well as GDB 3.x did. */
859 fcontext = TYPE_VPTR_BASETYPE (type);
860 context = lookup_pointer_type (fcontext);
861 /* Now context is a pointer to the basetype containing the vtbl. */
862 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
863 arg1 = value_ind (value_cast (context, value_addr (arg1)));
864
865 context = VALUE_TYPE (arg1);
866 /* Now context is the basetype containing the vtbl. */
867
868 /* This type may have been defined before its virtual function table
869 was. If so, fill in the virtual function table entry for the
870 type now. */
871 if (TYPE_VPTR_FIELDNO (context) < 0)
872 fill_in_vptr_fieldno (context);
873
874 /* The virtual function table is now an array of structures
875 which have the form { int16 offset, delta; void *pfn; }. */
876 vtbl = value_ind (value_primitive_field (arg1, 0,
877 TYPE_VPTR_FIELDNO (context),
878 TYPE_VPTR_BASETYPE (context)));
879
880 /* Index into the virtual function table. This is hard-coded because
881 looking up a field is not cheap, and it may be important to save
882 time, e.g. if the user has set a conditional breakpoint calling
883 a virtual function. */
884 entry = value_subscript (vtbl, vi);
885
886 if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_STRUCT)
887 {
888 /* Move the `this' pointer according to the virtual function table. */
889 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
890
891 if (! VALUE_LAZY (arg1))
892 {
893 VALUE_LAZY (arg1) = 1;
894 value_fetch_lazy (arg1);
895 }
896
897 vfn = value_field (entry, 2);
898 }
899 else if (TYPE_CODE (VALUE_TYPE (entry)) == TYPE_CODE_PTR)
900 vfn = entry;
901 else
902 error ("I'm confused: virtual function table has bad type");
903 /* Reinstantiate the function pointer with the correct type. */
904 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
905
906 *arg1p = arg1;
907 return vfn;
908 }
909
910 /* ARG is a pointer to an object we know to be at least
911 a DTYPE. BTYPE is the most derived basetype that has
912 already been searched (and need not be searched again).
913 After looking at the vtables between BTYPE and DTYPE,
914 return the most derived type we find. The caller must
915 be satisfied when the return value == DTYPE.
916
917 FIXME-tiemann: should work with dossier entries as well. */
918
919 static value_ptr
920 value_headof (in_arg, btype, dtype)
921 value_ptr in_arg;
922 struct type *btype, *dtype;
923 {
924 /* First collect the vtables we must look at for this object. */
925 /* FIXME-tiemann: right now, just look at top-most vtable. */
926 value_ptr arg, vtbl, entry, best_entry = 0;
927 int i, nelems;
928 int offset, best_offset = 0;
929 struct symbol *sym;
930 CORE_ADDR pc_for_sym;
931 char *demangled_name;
932 struct minimal_symbol *msymbol;
933
934 btype = TYPE_VPTR_BASETYPE (dtype);
935 check_stub_type (btype);
936 arg = in_arg;
937 if (btype != dtype)
938 arg = value_cast (lookup_pointer_type (btype), arg);
939 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
940
941 /* Check that VTBL looks like it points to a virtual function table. */
942 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
943 if (msymbol == NULL
944 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
945 || !VTBL_PREFIX_P (demangled_name))
946 {
947 /* If we expected to find a vtable, but did not, let the user
948 know that we aren't happy, but don't throw an error.
949 FIXME: there has to be a better way to do this. */
950 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
951 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
952 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
953 VALUE_TYPE (in_arg) = error_type;
954 return in_arg;
955 }
956
957 /* Now search through the virtual function table. */
958 entry = value_ind (vtbl);
959 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
960 for (i = 1; i <= nelems; i++)
961 {
962 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
963 (LONGEST) i));
964 /* This won't work if we're using thunks. */
965 if (TYPE_CODE (VALUE_TYPE (entry)) != TYPE_CODE_STRUCT)
966 break;
967 offset = longest_to_int (value_as_long (value_field (entry, 0)));
968 /* If we use '<=' we can handle single inheritance
969 * where all offsets are zero - just use the first entry found. */
970 if (offset <= best_offset)
971 {
972 best_offset = offset;
973 best_entry = entry;
974 }
975 }
976 /* Move the pointer according to BEST_ENTRY's offset, and figure
977 out what type we should return as the new pointer. */
978 if (best_entry == 0)
979 {
980 /* An alternative method (which should no longer be necessary).
981 * But we leave it in for future use, when we will hopefully
982 * have optimizes the vtable to use thunks instead of offsets. */
983 /* Use the name of vtable itself to extract a base type. */
984 demangled_name += 4; /* Skip _vt$ prefix. */
985 }
986 else
987 {
988 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
989 sym = find_pc_function (pc_for_sym);
990 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
991 *(strchr (demangled_name, ':')) = '\0';
992 }
993 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
994 if (sym == NULL)
995 error ("could not find type declaration for `%s'", demangled_name);
996 if (best_entry)
997 {
998 free (demangled_name);
999 arg = value_add (value_cast (builtin_type_int, arg),
1000 value_field (best_entry, 0));
1001 }
1002 else arg = in_arg;
1003 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1004 return arg;
1005 }
1006
1007 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1008 function tables, probe ARG's tables (including the vtables
1009 of its baseclasses) to figure out the most derived type that ARG
1010 could actually be a pointer to. */
1011
1012 value_ptr
1013 value_from_vtable_info (arg, type)
1014 value_ptr arg;
1015 struct type *type;
1016 {
1017 /* Take care of preliminaries. */
1018 if (TYPE_VPTR_FIELDNO (type) < 0)
1019 fill_in_vptr_fieldno (type);
1020 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1021 return 0;
1022
1023 return value_headof (arg, 0, type);
1024 }
1025
1026 /* Return true if the INDEXth field of TYPE is a virtual baseclass
1027 pointer which is for the base class whose type is BASECLASS. */
1028
1029 static int
1030 vb_match (type, index, basetype)
1031 struct type *type;
1032 int index;
1033 struct type *basetype;
1034 {
1035 struct type *fieldtype;
1036 char *name = TYPE_FIELD_NAME (type, index);
1037 char *field_class_name = NULL;
1038
1039 if (*name != '_')
1040 return 0;
1041 /* gcc 2.4 uses _vb$. */
1042 if (name[1] == 'v' && name[2] == 'b' && name[3] == CPLUS_MARKER)
1043 field_class_name = name + 4;
1044 /* gcc 2.5 will use __vb_. */
1045 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1046 field_class_name = name + 5;
1047
1048 if (field_class_name == NULL)
1049 /* This field is not a virtual base class pointer. */
1050 return 0;
1051
1052 /* It's a virtual baseclass pointer, now we just need to find out whether
1053 it is for this baseclass. */
1054 fieldtype = TYPE_FIELD_TYPE (type, index);
1055 if (fieldtype == NULL
1056 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1057 /* "Can't happen". */
1058 return 0;
1059
1060 /* What we check for is that either the types are equal (needed for
1061 nameless types) or have the same name. This is ugly, and a more
1062 elegant solution should be devised (which would probably just push
1063 the ugliness into symbol reading unless we change the stabs format). */
1064 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1065 return 1;
1066
1067 if (TYPE_NAME (basetype) != NULL
1068 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1069 && STREQ (TYPE_NAME (basetype),
1070 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1071 return 1;
1072 return 0;
1073 }
1074
1075 /* Compute the offset of the baseclass which is
1076 the INDEXth baseclass of class TYPE, for a value ARG,
1077 wih extra offset of OFFSET.
1078 The result is the offste of the baseclass value relative
1079 to (the address of)(ARG) + OFFSET.
1080
1081 -1 is returned on error. */
1082
1083 int
1084 baseclass_offset (type, index, arg, offset)
1085 struct type *type;
1086 int index;
1087 value_ptr arg;
1088 int offset;
1089 {
1090 struct type *basetype = TYPE_BASECLASS (type, index);
1091
1092 if (BASETYPE_VIA_VIRTUAL (type, index))
1093 {
1094 /* Must hunt for the pointer to this virtual baseclass. */
1095 register int i, len = TYPE_NFIELDS (type);
1096 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1097
1098 /* First look for the virtual baseclass pointer
1099 in the fields. */
1100 for (i = n_baseclasses; i < len; i++)
1101 {
1102 if (vb_match (type, i, basetype))
1103 {
1104 CORE_ADDR addr
1105 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1106 VALUE_CONTENTS (arg) + VALUE_OFFSET (arg)
1107 + offset
1108 + (TYPE_FIELD_BITPOS (type, i) / 8));
1109
1110 if (VALUE_LVAL (arg) != lval_memory)
1111 return -1;
1112
1113 return addr -
1114 (LONGEST) (VALUE_ADDRESS (arg) + VALUE_OFFSET (arg) + offset);
1115 }
1116 }
1117 /* Not in the fields, so try looking through the baseclasses. */
1118 for (i = index+1; i < n_baseclasses; i++)
1119 {
1120 int boffset =
1121 baseclass_offset (type, i, arg, offset);
1122 if (boffset)
1123 return boffset;
1124 }
1125 /* Not found. */
1126 return -1;
1127 }
1128
1129 /* Baseclass is easily computed. */
1130 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1131 }
1132
1133 /* Compute the address of the baseclass which is
1134 the INDEXth baseclass of class TYPE. The TYPE base
1135 of the object is at VALADDR.
1136
1137 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1138 or 0 if no error. In that case the return value is not the address
1139 of the baseclasss, but the address which could not be read
1140 successfully. */
1141
1142 /* FIXME Fix remaining uses of baseclass_addr to use baseclass_offset */
1143
1144 char *
1145 baseclass_addr (type, index, valaddr, valuep, errp)
1146 struct type *type;
1147 int index;
1148 char *valaddr;
1149 value_ptr *valuep;
1150 int *errp;
1151 {
1152 struct type *basetype = TYPE_BASECLASS (type, index);
1153
1154 if (errp)
1155 *errp = 0;
1156
1157 if (BASETYPE_VIA_VIRTUAL (type, index))
1158 {
1159 /* Must hunt for the pointer to this virtual baseclass. */
1160 register int i, len = TYPE_NFIELDS (type);
1161 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1162
1163 /* First look for the virtual baseclass pointer
1164 in the fields. */
1165 for (i = n_baseclasses; i < len; i++)
1166 {
1167 if (vb_match (type, i, basetype))
1168 {
1169 value_ptr val = allocate_value (basetype);
1170 CORE_ADDR addr;
1171 int status;
1172
1173 addr
1174 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1175 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1176
1177 status = target_read_memory (addr,
1178 VALUE_CONTENTS_RAW (val),
1179 TYPE_LENGTH (basetype));
1180 VALUE_LVAL (val) = lval_memory;
1181 VALUE_ADDRESS (val) = addr;
1182
1183 if (status != 0)
1184 {
1185 if (valuep)
1186 *valuep = NULL;
1187 release_value (val);
1188 value_free (val);
1189 if (errp)
1190 *errp = status;
1191 return (char *)addr;
1192 }
1193 else
1194 {
1195 if (valuep)
1196 *valuep = val;
1197 return (char *) VALUE_CONTENTS (val);
1198 }
1199 }
1200 }
1201 /* Not in the fields, so try looking through the baseclasses. */
1202 for (i = index+1; i < n_baseclasses; i++)
1203 {
1204 char *baddr;
1205
1206 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1207 if (baddr)
1208 return baddr;
1209 }
1210 /* Not found. */
1211 if (valuep)
1212 *valuep = 0;
1213 return 0;
1214 }
1215
1216 /* Baseclass is easily computed. */
1217 if (valuep)
1218 *valuep = 0;
1219 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1220 }
1221 \f
1222 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1223 VALADDR.
1224
1225 Extracting bits depends on endianness of the machine. Compute the
1226 number of least significant bits to discard. For big endian machines,
1227 we compute the total number of bits in the anonymous object, subtract
1228 off the bit count from the MSB of the object to the MSB of the
1229 bitfield, then the size of the bitfield, which leaves the LSB discard
1230 count. For little endian machines, the discard count is simply the
1231 number of bits from the LSB of the anonymous object to the LSB of the
1232 bitfield.
1233
1234 If the field is signed, we also do sign extension. */
1235
1236 LONGEST
1237 unpack_field_as_long (type, valaddr, fieldno)
1238 struct type *type;
1239 char *valaddr;
1240 int fieldno;
1241 {
1242 unsigned LONGEST val;
1243 unsigned LONGEST valmask;
1244 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1245 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1246 int lsbcount;
1247
1248 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1249
1250 /* Extract bits. See comment above. */
1251
1252 #if BITS_BIG_ENDIAN
1253 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1254 #else
1255 lsbcount = (bitpos % 8);
1256 #endif
1257 val >>= lsbcount;
1258
1259 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1260 If the field is signed, and is negative, then sign extend. */
1261
1262 if ((bitsize > 0) && (bitsize < 8 * sizeof (val)))
1263 {
1264 valmask = (((unsigned LONGEST) 1) << bitsize) - 1;
1265 val &= valmask;
1266 if (!TYPE_UNSIGNED (TYPE_FIELD_TYPE (type, fieldno)))
1267 {
1268 if (val & (valmask ^ (valmask >> 1)))
1269 {
1270 val |= ~valmask;
1271 }
1272 }
1273 }
1274 return (val);
1275 }
1276
1277 /* Modify the value of a bitfield. ADDR points to a block of memory in
1278 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1279 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1280 indicate which bits (in target bit order) comprise the bitfield. */
1281
1282 void
1283 modify_field (addr, fieldval, bitpos, bitsize)
1284 char *addr;
1285 LONGEST fieldval;
1286 int bitpos, bitsize;
1287 {
1288 LONGEST oword;
1289
1290 /* Reject values too big to fit in the field in question,
1291 otherwise adjoining fields may be corrupted. */
1292 if (bitsize < (8 * sizeof (fieldval))
1293 && 0 != (fieldval & ~((1<<bitsize)-1)))
1294 {
1295 /* FIXME: would like to include fieldval in the message, but
1296 we don't have a sprintf_longest. */
1297 error ("Value does not fit in %d bits.", bitsize);
1298 }
1299
1300 oword = extract_signed_integer (addr, sizeof oword);
1301
1302 /* Shifting for bit field depends on endianness of the target machine. */
1303 #if BITS_BIG_ENDIAN
1304 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1305 #endif
1306
1307 /* Mask out old value, while avoiding shifts >= size of oword */
1308 if (bitsize < 8 * sizeof (oword))
1309 oword &= ~(((((unsigned LONGEST)1) << bitsize) - 1) << bitpos);
1310 else
1311 oword &= ~((~(unsigned LONGEST)0) << bitpos);
1312 oword |= fieldval << bitpos;
1313
1314 store_signed_integer (addr, sizeof oword, oword);
1315 }
1316 \f
1317 /* Convert C numbers into newly allocated values */
1318
1319 value_ptr
1320 value_from_longest (type, num)
1321 struct type *type;
1322 register LONGEST num;
1323 {
1324 register value_ptr val = allocate_value (type);
1325 register enum type_code code = TYPE_CODE (type);
1326 register int len = TYPE_LENGTH (type);
1327
1328 switch (code)
1329 {
1330 case TYPE_CODE_INT:
1331 case TYPE_CODE_CHAR:
1332 case TYPE_CODE_ENUM:
1333 case TYPE_CODE_BOOL:
1334 case TYPE_CODE_RANGE:
1335 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1336 break;
1337
1338 case TYPE_CODE_REF:
1339 case TYPE_CODE_PTR:
1340 /* This assumes that all pointers of a given length
1341 have the same form. */
1342 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1343 break;
1344
1345 default:
1346 error ("Unexpected type encountered for integer constant.");
1347 }
1348 return val;
1349 }
1350
1351 value_ptr
1352 value_from_double (type, num)
1353 struct type *type;
1354 double num;
1355 {
1356 register value_ptr val = allocate_value (type);
1357 register enum type_code code = TYPE_CODE (type);
1358 register int len = TYPE_LENGTH (type);
1359
1360 if (code == TYPE_CODE_FLT)
1361 {
1362 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1363 }
1364 else
1365 error ("Unexpected type encountered for floating constant.");
1366
1367 return val;
1368 }
1369 \f
1370 /* Deal with the value that is "about to be returned". */
1371
1372 /* Return the value that a function returning now
1373 would be returning to its caller, assuming its type is VALTYPE.
1374 RETBUF is where we look for what ought to be the contents
1375 of the registers (in raw form). This is because it is often
1376 desirable to restore old values to those registers
1377 after saving the contents of interest, and then call
1378 this function using the saved values.
1379 struct_return is non-zero when the function in question is
1380 using the structure return conventions on the machine in question;
1381 0 when it is using the value returning conventions (this often
1382 means returning pointer to where structure is vs. returning value). */
1383
1384 value_ptr
1385 value_being_returned (valtype, retbuf, struct_return)
1386 register struct type *valtype;
1387 char retbuf[REGISTER_BYTES];
1388 int struct_return;
1389 /*ARGSUSED*/
1390 {
1391 register value_ptr val;
1392 CORE_ADDR addr;
1393
1394 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1395 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1396 if (struct_return) {
1397 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1398 if (!addr)
1399 error ("Function return value unknown");
1400 return value_at (valtype, addr);
1401 }
1402 #endif
1403
1404 val = allocate_value (valtype);
1405 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1406
1407 return val;
1408 }
1409
1410 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1411 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1412 and TYPE is the type (which is known to be struct, union or array).
1413
1414 On most machines, the struct convention is used unless we are
1415 using gcc and the type is of a special size. */
1416 /* As of about 31 Mar 93, GCC was changed to be compatible with the
1417 native compiler. GCC 2.3.3 was the last release that did it the
1418 old way. Since gcc2_compiled was not changed, we have no
1419 way to correctly win in all cases, so we just do the right thing
1420 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1421 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1422 would cause more chaos than dealing with some struct returns being
1423 handled wrong. */
1424 #if !defined (USE_STRUCT_CONVENTION)
1425 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1426 (!((gcc_p == 1) && (TYPE_LENGTH (value_type) == 1 \
1427 || TYPE_LENGTH (value_type) == 2 \
1428 || TYPE_LENGTH (value_type) == 4 \
1429 || TYPE_LENGTH (value_type) == 8 \
1430 ) \
1431 ))
1432 #endif
1433
1434 /* Return true if the function specified is using the structure returning
1435 convention on this machine to return arguments, or 0 if it is using
1436 the value returning convention. FUNCTION is the value representing
1437 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1438 is the type returned by the function. GCC_P is nonzero if compiled
1439 with GCC. */
1440
1441 int
1442 using_struct_return (function, funcaddr, value_type, gcc_p)
1443 value_ptr function;
1444 CORE_ADDR funcaddr;
1445 struct type *value_type;
1446 int gcc_p;
1447 /*ARGSUSED*/
1448 {
1449 register enum type_code code = TYPE_CODE (value_type);
1450
1451 if (code == TYPE_CODE_ERROR)
1452 error ("Function return type unknown.");
1453
1454 if (code == TYPE_CODE_STRUCT ||
1455 code == TYPE_CODE_UNION ||
1456 code == TYPE_CODE_ARRAY)
1457 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1458
1459 return 0;
1460 }
1461
1462 /* Store VAL so it will be returned if a function returns now.
1463 Does not verify that VAL's type matches what the current
1464 function wants to return. */
1465
1466 void
1467 set_return_value (val)
1468 value_ptr val;
1469 {
1470 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1471 double dbuf;
1472 LONGEST lbuf;
1473
1474 if (code == TYPE_CODE_ERROR)
1475 error ("Function return type unknown.");
1476
1477 if ( code == TYPE_CODE_STRUCT
1478 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1479 error ("GDB does not support specifying a struct or union return value.");
1480
1481 /* FIXME, this is bogus. We don't know what the return conventions
1482 are, or how values should be promoted.... */
1483 if (code == TYPE_CODE_FLT)
1484 {
1485 dbuf = value_as_double (val);
1486
1487 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1488 }
1489 else
1490 {
1491 lbuf = value_as_long (val);
1492 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1493 }
1494 }
1495 \f
1496 void
1497 _initialize_values ()
1498 {
1499 add_cmd ("convenience", no_class, show_convenience,
1500 "Debugger convenience (\"$foo\") variables.\n\
1501 These variables are created when you assign them values;\n\
1502 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1503 A few convenience variables are given values automatically:\n\
1504 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1505 \"$__\" holds the contents of the last address examined with \"x\".",
1506 &showlist);
1507
1508 add_cmd ("values", no_class, show_values,
1509 "Elements of value history around item number IDX (or last ten).",
1510 &showlist);
1511 }
This page took 0.085489 seconds and 5 git commands to generate.