Changes from Fred Fish:
[deliverable/binutils-gdb.git] / gdb / values.c
1 /* Low level packing and unpacking of values for GDB.
2 Copyright (C) 1986, 1987, 1989 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 #include <stdio.h>
21 #include <string.h>
22 #include "defs.h"
23 #include "param.h"
24 #include "symtab.h"
25 #include "value.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "command.h"
29 #include "gdbcmd.h"
30
31 extern char *cplus_demangle ();
32 extern char *cplus_mangle_opname ();
33
34 /* The value-history records all the values printed
35 by print commands during this session. Each chunk
36 records 60 consecutive values. The first chunk on
37 the chain records the most recent values.
38 The total number of values is in value_history_count. */
39
40 #define VALUE_HISTORY_CHUNK 60
41
42 struct value_history_chunk
43 {
44 struct value_history_chunk *next;
45 value values[VALUE_HISTORY_CHUNK];
46 };
47
48 /* Chain of chunks now in use. */
49
50 static struct value_history_chunk *value_history_chain;
51
52 static int value_history_count; /* Abs number of last entry stored */
53 \f
54 /* List of all value objects currently allocated
55 (except for those released by calls to release_value)
56 This is so they can be freed after each command. */
57
58 static value all_values;
59
60 /* Allocate a value that has the correct length for type TYPE. */
61
62 value
63 allocate_value (type)
64 struct type *type;
65 {
66 register value val;
67
68 check_stub_type (type);
69
70 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type));
71 VALUE_NEXT (val) = all_values;
72 all_values = val;
73 VALUE_TYPE (val) = type;
74 VALUE_LVAL (val) = not_lval;
75 VALUE_ADDRESS (val) = 0;
76 VALUE_FRAME (val) = 0;
77 VALUE_OFFSET (val) = 0;
78 VALUE_BITPOS (val) = 0;
79 VALUE_BITSIZE (val) = 0;
80 VALUE_REPEATED (val) = 0;
81 VALUE_REPETITIONS (val) = 0;
82 VALUE_REGNO (val) = -1;
83 VALUE_LAZY (val) = 0;
84 VALUE_OPTIMIZED_OUT (val) = 0;
85 return val;
86 }
87
88 /* Allocate a value that has the correct length
89 for COUNT repetitions type TYPE. */
90
91 value
92 allocate_repeat_value (type, count)
93 struct type *type;
94 int count;
95 {
96 register value val;
97
98 val = (value) xmalloc (sizeof (struct value) + TYPE_LENGTH (type) * count);
99 VALUE_NEXT (val) = all_values;
100 all_values = val;
101 VALUE_TYPE (val) = type;
102 VALUE_LVAL (val) = not_lval;
103 VALUE_ADDRESS (val) = 0;
104 VALUE_FRAME (val) = 0;
105 VALUE_OFFSET (val) = 0;
106 VALUE_BITPOS (val) = 0;
107 VALUE_BITSIZE (val) = 0;
108 VALUE_REPEATED (val) = 1;
109 VALUE_REPETITIONS (val) = count;
110 VALUE_REGNO (val) = -1;
111 VALUE_LAZY (val) = 0;
112 VALUE_OPTIMIZED_OUT (val) = 0;
113 return val;
114 }
115
116 /* Return a mark in the value chain. All values allocated after the
117 mark is obtained (except for those released) are subject to being freed
118 if a subsequent value_free_to_mark is passed the mark. */
119 value
120 value_mark ()
121 {
122 return all_values;
123 }
124
125 /* Free all values allocated since MARK was obtained by value_mark
126 (except for those released). */
127 void
128 value_free_to_mark (mark)
129 value mark;
130 {
131 value val, next;
132
133 for (val = all_values; val && val != mark; val = next)
134 {
135 next = VALUE_NEXT (val);
136 value_free (val);
137 }
138 all_values = val;
139 }
140
141 /* Free all the values that have been allocated (except for those released).
142 Called after each command, successful or not. */
143
144 void
145 free_all_values ()
146 {
147 register value val, next;
148
149 for (val = all_values; val; val = next)
150 {
151 next = VALUE_NEXT (val);
152 value_free (val);
153 }
154
155 all_values = 0;
156 }
157
158 /* Remove VAL from the chain all_values
159 so it will not be freed automatically. */
160
161 void
162 release_value (val)
163 register value val;
164 {
165 register value v;
166
167 if (all_values == val)
168 {
169 all_values = val->next;
170 return;
171 }
172
173 for (v = all_values; v; v = v->next)
174 {
175 if (v->next == val)
176 {
177 v->next = val->next;
178 break;
179 }
180 }
181 }
182
183 /* Return a copy of the value ARG.
184 It contains the same contents, for same memory address,
185 but it's a different block of storage. */
186
187 static value
188 value_copy (arg)
189 value arg;
190 {
191 register value val;
192 register struct type *type = VALUE_TYPE (arg);
193 if (VALUE_REPEATED (arg))
194 val = allocate_repeat_value (type, VALUE_REPETITIONS (arg));
195 else
196 val = allocate_value (type);
197 VALUE_LVAL (val) = VALUE_LVAL (arg);
198 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
199 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
200 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
201 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
202 VALUE_REGNO (val) = VALUE_REGNO (arg);
203 VALUE_LAZY (val) = VALUE_LAZY (arg);
204 if (!VALUE_LAZY (val))
205 {
206 bcopy (VALUE_CONTENTS_RAW (arg), VALUE_CONTENTS_RAW (val),
207 TYPE_LENGTH (VALUE_TYPE (arg))
208 * (VALUE_REPEATED (arg) ? VALUE_REPETITIONS (arg) : 1));
209 }
210 return val;
211 }
212 \f
213 /* Access to the value history. */
214
215 /* Record a new value in the value history.
216 Returns the absolute history index of the entry.
217 Result of -1 indicates the value was not saved; otherwise it is the
218 value history index of this new item. */
219
220 int
221 record_latest_value (val)
222 value val;
223 {
224 int i;
225
226 /* Check error now if about to store an invalid float. We return -1
227 to the caller, but allow them to continue, e.g. to print it as "Nan". */
228 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FLT) {
229 (void) unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &i);
230 if (i) return -1; /* Indicate value not saved in history */
231 }
232
233 /* Here we treat value_history_count as origin-zero
234 and applying to the value being stored now. */
235
236 i = value_history_count % VALUE_HISTORY_CHUNK;
237 if (i == 0)
238 {
239 register struct value_history_chunk *new
240 = (struct value_history_chunk *)
241 xmalloc (sizeof (struct value_history_chunk));
242 bzero (new->values, sizeof new->values);
243 new->next = value_history_chain;
244 value_history_chain = new;
245 }
246
247 value_history_chain->values[i] = val;
248 release_value (val);
249
250 /* Now we regard value_history_count as origin-one
251 and applying to the value just stored. */
252
253 return ++value_history_count;
254 }
255
256 /* Return a copy of the value in the history with sequence number NUM. */
257
258 value
259 access_value_history (num)
260 int num;
261 {
262 register struct value_history_chunk *chunk;
263 register int i;
264 register int absnum = num;
265
266 if (absnum <= 0)
267 absnum += value_history_count;
268
269 if (absnum <= 0)
270 {
271 if (num == 0)
272 error ("The history is empty.");
273 else if (num == 1)
274 error ("There is only one value in the history.");
275 else
276 error ("History does not go back to $$%d.", -num);
277 }
278 if (absnum > value_history_count)
279 error ("History has not yet reached $%d.", absnum);
280
281 absnum--;
282
283 /* Now absnum is always absolute and origin zero. */
284
285 chunk = value_history_chain;
286 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
287 i > 0; i--)
288 chunk = chunk->next;
289
290 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
291 }
292
293 /* Clear the value history entirely.
294 Must be done when new symbol tables are loaded,
295 because the type pointers become invalid. */
296
297 void
298 clear_value_history ()
299 {
300 register struct value_history_chunk *next;
301 register int i;
302 register value val;
303
304 while (value_history_chain)
305 {
306 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
307 if (val = value_history_chain->values[i])
308 free (val);
309 next = value_history_chain->next;
310 free (value_history_chain);
311 value_history_chain = next;
312 }
313 value_history_count = 0;
314 }
315
316 static void
317 show_values (num_exp, from_tty)
318 char *num_exp;
319 int from_tty;
320 {
321 register int i;
322 register value val;
323 static int num = 1;
324
325 if (num_exp)
326 {
327 if (num_exp[0] == '+' && num_exp[1] == '\0')
328 /* "info history +" should print from the stored position. */
329 ;
330 else
331 /* "info history <exp>" should print around value number <exp>. */
332 num = parse_and_eval_address (num_exp) - 5;
333 }
334 else
335 {
336 /* "info history" means print the last 10 values. */
337 num = value_history_count - 9;
338 }
339
340 if (num <= 0)
341 num = 1;
342
343 for (i = num; i < num + 10 && i <= value_history_count; i++)
344 {
345 val = access_value_history (i);
346 printf_filtered ("$%d = ", i);
347 value_print (val, stdout, 0, Val_pretty_default);
348 printf_filtered ("\n");
349 }
350
351 /* The next "info history +" should start after what we just printed. */
352 num += 10;
353
354 /* Hitting just return after this command should do the same thing as
355 "info history +". If num_exp is null, this is unnecessary, since
356 "info history +" is not useful after "info history". */
357 if (from_tty && num_exp)
358 {
359 num_exp[0] = '+';
360 num_exp[1] = '\0';
361 }
362 }
363 \f
364 /* Internal variables. These are variables within the debugger
365 that hold values assigned by debugger commands.
366 The user refers to them with a '$' prefix
367 that does not appear in the variable names stored internally. */
368
369 static struct internalvar *internalvars;
370
371 /* Look up an internal variable with name NAME. NAME should not
372 normally include a dollar sign.
373
374 If the specified internal variable does not exist,
375 one is created, with a void value. */
376
377 struct internalvar *
378 lookup_internalvar (name)
379 char *name;
380 {
381 register struct internalvar *var;
382
383 for (var = internalvars; var; var = var->next)
384 if (!strcmp (var->name, name))
385 return var;
386
387 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
388 var->name = concat (name, "", "");
389 var->value = allocate_value (builtin_type_void);
390 release_value (var->value);
391 var->next = internalvars;
392 internalvars = var;
393 return var;
394 }
395
396 value
397 value_of_internalvar (var)
398 struct internalvar *var;
399 {
400 register value val;
401
402 #ifdef IS_TRAPPED_INTERNALVAR
403 if (IS_TRAPPED_INTERNALVAR (var->name))
404 return VALUE_OF_TRAPPED_INTERNALVAR (var);
405 #endif
406
407 val = value_copy (var->value);
408 if (VALUE_LAZY (val))
409 value_fetch_lazy (val);
410 VALUE_LVAL (val) = lval_internalvar;
411 VALUE_INTERNALVAR (val) = var;
412 return val;
413 }
414
415 void
416 set_internalvar_component (var, offset, bitpos, bitsize, newval)
417 struct internalvar *var;
418 int offset, bitpos, bitsize;
419 value newval;
420 {
421 register char *addr = VALUE_CONTENTS (var->value) + offset;
422
423 #ifdef IS_TRAPPED_INTERNALVAR
424 if (IS_TRAPPED_INTERNALVAR (var->name))
425 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
426 #endif
427
428 if (bitsize)
429 modify_field (addr, (int) value_as_long (newval),
430 bitpos, bitsize);
431 else
432 bcopy (VALUE_CONTENTS (newval), addr,
433 TYPE_LENGTH (VALUE_TYPE (newval)));
434 }
435
436 void
437 set_internalvar (var, val)
438 struct internalvar *var;
439 value val;
440 {
441 #ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
444 #endif
445
446 free (var->value);
447 var->value = value_copy (val);
448 release_value (var->value);
449 }
450
451 char *
452 internalvar_name (var)
453 struct internalvar *var;
454 {
455 return var->name;
456 }
457
458 /* Free all internalvars. Done when new symtabs are loaded,
459 because that makes the values invalid. */
460
461 void
462 clear_internalvars ()
463 {
464 register struct internalvar *var;
465
466 while (internalvars)
467 {
468 var = internalvars;
469 internalvars = var->next;
470 free (var->name);
471 free (var->value);
472 free (var);
473 }
474 }
475
476 static void
477 show_convenience ()
478 {
479 register struct internalvar *var;
480 int varseen = 0;
481
482 for (var = internalvars; var; var = var->next)
483 {
484 #ifdef IS_TRAPPED_INTERNALVAR
485 if (IS_TRAPPED_INTERNALVAR (var->name))
486 continue;
487 #endif
488 if (!varseen)
489 {
490 #if 0
491 /* Useless noise. */
492 printf ("Debugger convenience variables:\n\n");
493 #endif
494 varseen = 1;
495 }
496 printf_filtered ("$%s = ", var->name);
497 value_print (var->value, stdout, 0, Val_pretty_default);
498 printf_filtered ("\n");
499 }
500 if (!varseen)
501 printf ("No debugger convenience variables now defined.\n\
502 Convenience variables have names starting with \"$\";\n\
503 use \"set\" as in \"set $foo = 5\" to define them.\n");
504 }
505 \f
506 /* Extract a value as a C number (either long or double).
507 Knows how to convert fixed values to double, or
508 floating values to long.
509 Does not deallocate the value. */
510
511 LONGEST
512 value_as_long (val)
513 register value val;
514 {
515 /* This coerces arrays and functions, which is necessary (e.g.
516 in disassemble_command). It also dereferences references, which
517 I suspect is the most logical thing to do. */
518 if (TYPE_CODE (VALUE_TYPE (val)) != TYPE_CODE_ENUM)
519 COERCE_ARRAY (val);
520 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
521 }
522
523 double
524 value_as_double (val)
525 register value val;
526 {
527 double foo;
528 int inv;
529
530 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
531 if (inv)
532 error ("Invalid floating value found in program.");
533 return foo;
534 }
535 /* Extract a value as a C pointer.
536 Does not deallocate the value. */
537 CORE_ADDR
538 value_as_pointer (val)
539 value val;
540 {
541 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
542 whether we want this to be true eventually. */
543 return value_as_long (val);
544 }
545 \f
546 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
547 as a long, or as a double, assuming the raw data is described
548 by type TYPE. Knows how to convert different sizes of values
549 and can convert between fixed and floating point. We don't assume
550 any alignment for the raw data. Return value is in host byte order.
551
552 If you want functions and arrays to be coerced to pointers, and
553 references to be dereferenced, call value_as_long() instead.
554
555 C++: It is assumed that the front-end has taken care of
556 all matters concerning pointers to members. A pointer
557 to member which reaches here is considered to be equivalent
558 to an INT (or some size). After all, it is only an offset. */
559
560 /* FIXME: This should be rewritten as a switch statement for speed and
561 ease of comprehension. */
562
563 LONGEST
564 unpack_long (type, valaddr)
565 struct type *type;
566 char *valaddr;
567 {
568 register enum type_code code = TYPE_CODE (type);
569 register int len = TYPE_LENGTH (type);
570 register int nosign = TYPE_UNSIGNED (type);
571
572 if (code == TYPE_CODE_ENUM || code == TYPE_CODE_BOOL)
573 code = TYPE_CODE_INT;
574 if (code == TYPE_CODE_FLT)
575 {
576 if (len == sizeof (float))
577 {
578 float retval;
579 bcopy (valaddr, &retval, sizeof (retval));
580 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
581 return retval;
582 }
583
584 if (len == sizeof (double))
585 {
586 double retval;
587 bcopy (valaddr, &retval, sizeof (retval));
588 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
589 return retval;
590 }
591 else
592 {
593 error ("Unexpected type of floating point number.");
594 }
595 }
596 else if (code == TYPE_CODE_INT && nosign)
597 {
598 if (len == sizeof (char))
599 {
600 unsigned char retval = * (unsigned char *) valaddr;
601 /* SWAP_TARGET_AND_HOST (&retval, sizeof (unsigned char)); */
602 return retval;
603 }
604
605 if (len == sizeof (short))
606 {
607 unsigned short retval;
608 bcopy (valaddr, &retval, sizeof (retval));
609 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
610 return retval;
611 }
612
613 if (len == sizeof (int))
614 {
615 unsigned int retval;
616 bcopy (valaddr, &retval, sizeof (retval));
617 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
618 return retval;
619 }
620
621 if (len == sizeof (long))
622 {
623 unsigned long retval;
624 bcopy (valaddr, &retval, sizeof (retval));
625 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
626 return retval;
627 }
628 #ifdef LONG_LONG
629 if (len == sizeof (long long))
630 {
631 unsigned long long retval;
632 bcopy (valaddr, &retval, sizeof (retval));
633 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
634 return retval;
635 }
636 #endif
637 else
638 {
639 error ("That operation is not possible on an integer of that size.");
640 }
641 }
642 else if (code == TYPE_CODE_INT)
643 {
644 if (len == sizeof (char))
645 {
646 char retval;
647 bcopy (valaddr, &retval, sizeof (retval));
648 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
649 return retval;
650 }
651
652 if (len == sizeof (short))
653 {
654 short retval;
655 bcopy (valaddr, &retval, sizeof (retval));
656 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
657 return retval;
658 }
659
660 if (len == sizeof (int))
661 {
662 int retval;
663 bcopy (valaddr, &retval, sizeof (retval));
664 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
665 return retval;
666 }
667
668 if (len == sizeof (long))
669 {
670 long retval;
671 bcopy (valaddr, &retval, sizeof (retval));
672 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
673 return retval;
674 }
675
676 #ifdef LONG_LONG
677 if (len == sizeof (long long))
678 {
679 long long retval;
680 bcopy (valaddr, &retval, sizeof (retval));
681 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
682 return retval;
683 }
684 #endif
685 else
686 {
687 error ("That operation is not possible on an integer of that size.");
688 }
689 }
690 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
691 whether we want this to be true eventually. */
692 else if (code == TYPE_CODE_PTR
693 || code == TYPE_CODE_REF)
694 {
695 if (len == sizeof (CORE_ADDR))
696 {
697 CORE_ADDR retval;
698 bcopy (valaddr, &retval, sizeof (retval));
699 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
700 return retval;
701 }
702 }
703 else if (code == TYPE_CODE_MEMBER)
704 error ("not implemented: member types in unpack_long");
705 else if (code == TYPE_CODE_CHAR)
706 return *(unsigned char *)valaddr;
707
708 error ("Value not integer or pointer.");
709 return 0; /* For lint -- never reached */
710 }
711
712 /* Return a double value from the specified type and address.
713 INVP points to an int which is set to 0 for valid value,
714 1 for invalid value (bad float format). In either case,
715 the returned double is OK to use. Argument is in target
716 format, result is in host format. */
717
718 double
719 unpack_double (type, valaddr, invp)
720 struct type *type;
721 char *valaddr;
722 int *invp;
723 {
724 register enum type_code code = TYPE_CODE (type);
725 register int len = TYPE_LENGTH (type);
726 register int nosign = TYPE_UNSIGNED (type);
727
728 *invp = 0; /* Assume valid. */
729 if (code == TYPE_CODE_FLT)
730 {
731 if (INVALID_FLOAT (valaddr, len))
732 {
733 *invp = 1;
734 return 1.234567891011121314;
735 }
736
737 if (len == sizeof (float))
738 {
739 float retval;
740 bcopy (valaddr, &retval, sizeof (retval));
741 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
742 return retval;
743 }
744
745 if (len == sizeof (double))
746 {
747 double retval;
748 bcopy (valaddr, &retval, sizeof (retval));
749 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
750 return retval;
751 }
752 else
753 {
754 error ("Unexpected type of floating point number.");
755 return 0; /* Placate lint. */
756 }
757 }
758 else if (nosign) {
759 /* Unsigned -- be sure we compensate for signed LONGEST. */
760 #ifdef LONG_LONG
761 return (unsigned long long) unpack_long (type, valaddr);
762 #else
763 return (unsigned long ) unpack_long (type, valaddr);
764 #endif
765 } else {
766 /* Signed -- we are OK with unpack_long. */
767 return unpack_long (type, valaddr);
768 }
769 }
770
771 /* Unpack raw data (copied from debugee, target byte order) at VALADDR
772 as a CORE_ADDR, assuming the raw data is described by type TYPE.
773 We don't assume any alignment for the raw data. Return value is in
774 host byte order.
775
776 If you want functions and arrays to be coerced to pointers, and
777 references to be dereferenced, call value_as_pointer() instead.
778
779 C++: It is assumed that the front-end has taken care of
780 all matters concerning pointers to members. A pointer
781 to member which reaches here is considered to be equivalent
782 to an INT (or some size). After all, it is only an offset. */
783
784 CORE_ADDR
785 unpack_pointer (type, valaddr)
786 struct type *type;
787 char *valaddr;
788 {
789 #if 0
790 /* The user should be able to use an int (e.g. 0x7892) in contexts
791 where a pointer is expected. So this doesn't do enough. */
792 register enum type_code code = TYPE_CODE (type);
793 register int len = TYPE_LENGTH (type);
794
795 if (code == TYPE_CODE_PTR
796 || code == TYPE_CODE_REF)
797 {
798 if (len == sizeof (CORE_ADDR))
799 {
800 CORE_ADDR retval;
801 bcopy (valaddr, &retval, sizeof (retval));
802 SWAP_TARGET_AND_HOST (&retval, sizeof (retval));
803 return retval;
804 }
805 error ("Unrecognized pointer size.");
806 }
807 else if (code == TYPE_CODE_MEMBER)
808 error ("not implemented: member types in unpack_pointer");
809
810 error ("Value is not a pointer.");
811 return 0; /* For lint -- never reached */
812 #else
813 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
814 whether we want this to be true eventually. */
815 return unpack_long (type, valaddr);
816 #endif
817 }
818 \f
819 /* Given a value ARG1 (offset by OFFSET bytes)
820 of a struct or union type ARG_TYPE,
821 extract and return the value of one of its fields.
822 FIELDNO says which field.
823
824 For C++, must also be able to return values from static fields */
825
826 value
827 value_primitive_field (arg1, offset, fieldno, arg_type)
828 register value arg1;
829 int offset;
830 register int fieldno;
831 register struct type *arg_type;
832 {
833 register value v;
834 register struct type *type;
835
836 check_stub_type (arg_type);
837 type = TYPE_FIELD_TYPE (arg_type, fieldno);
838
839 /* Handle packed fields */
840
841 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
842 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
843 {
844 v = value_from_longest (type,
845 unpack_field_as_long (arg_type,
846 VALUE_CONTENTS (arg1),
847 fieldno));
848 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
849 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
850 }
851 else
852 {
853 v = allocate_value (type);
854 if (VALUE_LAZY (arg1))
855 VALUE_LAZY (v) = 1;
856 else
857 bcopy (VALUE_CONTENTS_RAW (arg1) + offset,
858 VALUE_CONTENTS_RAW (v),
859 TYPE_LENGTH (type));
860 }
861 VALUE_LVAL (v) = VALUE_LVAL (arg1);
862 if (VALUE_LVAL (arg1) == lval_internalvar)
863 VALUE_LVAL (v) = lval_internalvar_component;
864 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
865 VALUE_OFFSET (v) = offset + VALUE_OFFSET (arg1);
866 return v;
867 }
868
869 /* Given a value ARG1 of a struct or union type,
870 extract and return the value of one of its fields.
871 FIELDNO says which field.
872
873 For C++, must also be able to return values from static fields */
874
875 value
876 value_field (arg1, fieldno)
877 register value arg1;
878 register int fieldno;
879 {
880 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
881 }
882
883 value
884 value_fn_field (arg1, fieldno, subfieldno)
885 register value arg1;
886 register int fieldno;
887 int subfieldno;
888 {
889 register value v;
890 struct fn_field *f = TYPE_FN_FIELDLIST1 (VALUE_TYPE (arg1), fieldno);
891 register struct type *type = TYPE_FN_FIELD_TYPE (f, subfieldno);
892 struct symbol *sym;
893
894 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, subfieldno),
895 0, VAR_NAMESPACE, 0, NULL);
896 if (! sym) error ("Internal error: could not find physical method named %s",
897 TYPE_FN_FIELD_PHYSNAME (f, subfieldno));
898
899 v = allocate_value (type);
900 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
901 VALUE_TYPE (v) = type;
902 return v;
903 }
904
905 /* Return a virtual function as a value.
906 ARG1 is the object which provides the virtual function
907 table pointer. ARG1 is side-effected in calling this function.
908 F is the list of member functions which contains the desired virtual
909 function.
910 J is an index into F which provides the desired virtual function.
911
912 TYPE is the type in which F is located. */
913 value
914 value_virtual_fn_field (arg1, f, j, type)
915 value arg1;
916 struct fn_field *f;
917 int j;
918 struct type *type;
919 {
920 /* First, get the virtual function table pointer. That comes
921 with a strange type, so cast it to type `pointer to long' (which
922 should serve just fine as a function type). Then, index into
923 the table, and convert final value to appropriate function type. */
924 value entry, vfn, vtbl;
925 value vi = value_from_longest (builtin_type_int,
926 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
927 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
928 struct type *context;
929 if (fcontext == NULL)
930 /* We don't have an fcontext (e.g. the program was compiled with
931 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
932 This won't work right for multiple inheritance, but at least we
933 should do as well as GDB 3.x did. */
934 fcontext = TYPE_VPTR_BASETYPE (type);
935 context = lookup_pointer_type (fcontext);
936 /* Now context is a pointer to the basetype containing the vtbl. */
937 if (TYPE_TARGET_TYPE (context) != VALUE_TYPE (arg1))
938 arg1 = value_ind (value_cast (context, value_addr (arg1)));
939
940 context = VALUE_TYPE (arg1);
941 /* Now context is the basetype containing the vtbl. */
942
943 /* This type may have been defined before its virtual function table
944 was. If so, fill in the virtual function table entry for the
945 type now. */
946 if (TYPE_VPTR_FIELDNO (context) < 0)
947 fill_in_vptr_fieldno (context);
948
949 /* The virtual function table is now an array of structures
950 which have the form { int16 offset, delta; void *pfn; }. */
951 vtbl = value_ind (value_field (arg1, TYPE_VPTR_FIELDNO (context)));
952
953 /* Index into the virtual function table. This is hard-coded because
954 looking up a field is not cheap, and it may be important to save
955 time, e.g. if the user has set a conditional breakpoint calling
956 a virtual function. */
957 entry = value_subscript (vtbl, vi);
958
959 /* Move the `this' pointer according to the virtual function table. */
960 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
961 if (! VALUE_LAZY (arg1))
962 {
963 VALUE_LAZY (arg1) = 1;
964 value_fetch_lazy (arg1);
965 }
966
967 vfn = value_field (entry, 2);
968 /* Reinstantiate the function pointer with the correct type. */
969 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
970
971 return vfn;
972 }
973
974 /* ARG is a pointer to an object we know to be at least
975 a DTYPE. BTYPE is the most derived basetype that has
976 already been searched (and need not be searched again).
977 After looking at the vtables between BTYPE and DTYPE,
978 return the most derived type we find. The caller must
979 be satisfied when the return value == DTYPE.
980
981 FIXME-tiemann: should work with dossier entries as well. */
982
983 static value
984 value_headof (arg, btype, dtype)
985 value arg;
986 struct type *btype, *dtype;
987 {
988 /* First collect the vtables we must look at for this object. */
989 /* FIXME-tiemann: right now, just look at top-most vtable. */
990 value vtbl, entry, best_entry = 0;
991 /* FIXME: entry_type is never used. */
992 struct type *entry_type;
993 int i, nelems;
994 int offset, best_offset = 0;
995 struct symbol *sym;
996 CORE_ADDR pc_for_sym;
997 char *demangled_name;
998
999 btype = TYPE_VPTR_BASETYPE (dtype);
1000 check_stub_type (btype);
1001 if (btype != dtype)
1002 vtbl = value_cast (lookup_pointer_type (btype), arg);
1003 else
1004 vtbl = arg;
1005 vtbl = value_ind (value_field (value_ind (vtbl), TYPE_VPTR_FIELDNO (btype)));
1006
1007 /* Check that VTBL looks like it points to a virtual function table. */
1008 i = find_pc_misc_function (VALUE_ADDRESS (vtbl));
1009 if (i < 0 || ! VTBL_PREFIX_P (misc_function_vector[i].name))
1010 {
1011 /* If we expected to find a vtable, but did not, let the user
1012 know that we aren't happy, but don't throw an error.
1013 FIXME: there has to be a better way to do this. */
1014 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
1015 bcopy (VALUE_TYPE (arg), error_type, sizeof (struct type));
1016 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1017 VALUE_TYPE (arg) = error_type;
1018 return arg;
1019 }
1020
1021 /* Now search through the virtual function table. */
1022 entry = value_ind (vtbl);
1023 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
1024 for (i = 1; i <= nelems; i++)
1025 {
1026 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1027 (LONGEST) i));
1028 offset = longest_to_int (value_as_long (value_field (entry, 0)));
1029 if (offset < best_offset)
1030 {
1031 best_offset = offset;
1032 best_entry = entry;
1033 }
1034 }
1035 if (best_entry == 0)
1036 return arg;
1037
1038 /* Move the pointer according to BEST_ENTRY's offset, and figure
1039 out what type we should return as the new pointer. */
1040 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1041 sym = find_pc_function (pc_for_sym);
1042 demangled_name = cplus_demangle (SYMBOL_NAME (sym), -1);
1043 *(strchr (demangled_name, ':')) = '\0';
1044 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1045 if (sym == 0)
1046 error ("could not find type declaration for `%s'", SYMBOL_NAME (sym));
1047 free (demangled_name);
1048 arg = value_add (value_cast (builtin_type_int, arg),
1049 value_field (best_entry, 0));
1050 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1051 return arg;
1052 }
1053
1054 /* ARG is a pointer object of type TYPE. If TYPE has virtual
1055 function tables, probe ARG's tables (including the vtables
1056 of its baseclasses) to figure out the most derived type that ARG
1057 could actually be a pointer to. */
1058
1059 value
1060 value_from_vtable_info (arg, type)
1061 value arg;
1062 struct type *type;
1063 {
1064 /* Take care of preliminaries. */
1065 if (TYPE_VPTR_FIELDNO (type) < 0)
1066 fill_in_vptr_fieldno (type);
1067 if (TYPE_VPTR_FIELDNO (type) < 0 || VALUE_REPEATED (arg))
1068 return 0;
1069
1070 return value_headof (arg, 0, type);
1071 }
1072
1073 /* The value of a static class member does not depend
1074 on its instance, only on its type. If FIELDNO >= 0,
1075 then fieldno is a valid field number and is used directly.
1076 Otherwise, FIELDNAME is the name of the field we are
1077 searching for. If it is not a static field name, an
1078 error is signaled. TYPE is the type in which we look for the
1079 static field member.
1080
1081 Return zero if we couldn't find anything; the caller may signal
1082 an error in that case. */
1083
1084 value
1085 value_static_field (type, fieldname, fieldno)
1086 register struct type *type;
1087 char *fieldname;
1088 register int fieldno;
1089 {
1090 register value v;
1091 struct symbol *sym;
1092 char *phys_name;
1093
1094 if (fieldno < 0)
1095 {
1096 /* Look for static field. */
1097 int i;
1098 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1099 if (! strcmp (TYPE_FIELD_NAME (type, i), fieldname))
1100 {
1101 if (TYPE_FIELD_STATIC (type, i))
1102 {
1103 fieldno = i;
1104 goto found;
1105 }
1106 else
1107 error ("field `%s' is not static", fieldname);
1108 }
1109 for (; i > 0; i--)
1110 {
1111 v = value_static_field (TYPE_BASECLASS (type, i), fieldname, -1);
1112 if (v != 0)
1113 return v;
1114 }
1115
1116 if (destructor_name_p (fieldname, type))
1117 error ("Cannot get value of destructor");
1118
1119 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1120 {
1121 if (! strcmp (TYPE_FN_FIELDLIST_NAME (type, i), fieldname))
1122 error ("Cannot get value of method \"%s\"", fieldname);
1123 }
1124 error("there is no field named %s", fieldname);
1125 }
1126
1127 found:
1128 phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
1129 sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
1130 if (! sym) error ("Internal error: could not find physical static variable named %s", phys_name);
1131
1132 type = TYPE_FIELD_TYPE (type, fieldno);
1133 v = value_at (type, (CORE_ADDR)SYMBOL_BLOCK_VALUE (sym));
1134 return v;
1135 }
1136
1137 /* Compute the address of the baseclass which is
1138 the INDEXth baseclass of TYPE. The TYPE base
1139 of the object is at VALADDR.
1140
1141 If ERRP is non-NULL, set *ERRP to be the errno code of any error,
1142 or 0 if no error. In that case the return value is not the address
1143 of the baseclasss, but the address which could not be read
1144 successfully. */
1145
1146 char *
1147 baseclass_addr (type, index, valaddr, valuep, errp)
1148 struct type *type;
1149 int index;
1150 char *valaddr;
1151 value *valuep;
1152 int *errp;
1153 {
1154 struct type *basetype = TYPE_BASECLASS (type, index);
1155
1156 if (errp)
1157 *errp = 0;
1158
1159 if (BASETYPE_VIA_VIRTUAL (type, index))
1160 {
1161 /* Must hunt for the pointer to this virtual baseclass. */
1162 register int i, len = TYPE_NFIELDS (type);
1163 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1164 char *vbase_name, *type_name = type_name_no_tag (basetype);
1165
1166 if (TYPE_MAIN_VARIANT (basetype))
1167 basetype = TYPE_MAIN_VARIANT (basetype);
1168
1169 vbase_name = (char *)alloca (strlen (type_name) + 8);
1170 sprintf (vbase_name, "_vb$%s", type_name);
1171 /* First look for the virtual baseclass pointer
1172 in the fields. */
1173 for (i = n_baseclasses; i < len; i++)
1174 {
1175 if (! strcmp (vbase_name, TYPE_FIELD_NAME (type, i)))
1176 {
1177 value val = allocate_value (basetype);
1178 CORE_ADDR addr;
1179 int status;
1180
1181 addr
1182 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1183 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
1184
1185 status = target_read_memory (addr,
1186 VALUE_CONTENTS_RAW (val),
1187 TYPE_LENGTH (basetype));
1188 VALUE_LVAL (val) = lval_memory;
1189 VALUE_ADDRESS (val) = addr;
1190
1191 if (status != 0)
1192 {
1193 if (valuep)
1194 *valuep = NULL;
1195 release_value (val);
1196 value_free (val);
1197 if (errp)
1198 *errp = status;
1199 return (char *)addr;
1200 }
1201 else
1202 {
1203 if (valuep)
1204 *valuep = val;
1205 return (char *) VALUE_CONTENTS (val);
1206 }
1207 }
1208 }
1209 /* Not in the fields, so try looking through the baseclasses. */
1210 for (i = index+1; i < n_baseclasses; i++)
1211 {
1212 char *baddr;
1213
1214 baddr = baseclass_addr (type, i, valaddr, valuep, errp);
1215 if (baddr)
1216 return baddr;
1217 }
1218 /* Not found. */
1219 if (valuep)
1220 *valuep = 0;
1221 return 0;
1222 }
1223
1224 /* Baseclass is easily computed. */
1225 if (valuep)
1226 *valuep = 0;
1227 return valaddr + TYPE_BASECLASS_BITPOS (type, index) / 8;
1228 }
1229
1230 /* Ugly hack to convert method stubs into method types.
1231
1232 He ain't kiddin'. This demangles the name of the method into a string
1233 including argument types, parses out each argument type, generates
1234 a string casting a zero to that type, evaluates the string, and stuffs
1235 the resulting type into an argtype vector!!! Then it knows the type
1236 of the whole function (including argument types for overloading),
1237 which info used to be in the stab's but was removed to hack back
1238 the space required for them. */
1239 void
1240 check_stub_method (type, i, j)
1241 struct type *type;
1242 int i, j;
1243 {
1244 extern char *gdb_mangle_typename (), *strchr ();
1245 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1246 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1247 char *inner_name = gdb_mangle_typename (type);
1248 int mangled_name_len = (strlen (field_name)
1249 + strlen (inner_name)
1250 + strlen (TYPE_FN_FIELD_PHYSNAME (f, j))
1251 + 1);
1252 char *mangled_name;
1253 char *demangled_name;
1254 char *argtypetext, *p;
1255 int depth = 0, argcount = 1;
1256 struct type **argtypes;
1257
1258 if (OPNAME_PREFIX_P (field_name))
1259 {
1260 char *opname = cplus_mangle_opname (field_name + 3);
1261 if (opname == NULL)
1262 error ("No mangling for \"%s\"", field_name);
1263 mangled_name_len += strlen (opname);
1264 mangled_name = (char *)xmalloc (mangled_name_len);
1265
1266 strncpy (mangled_name, field_name, 3);
1267 mangled_name[3] = '\0';
1268 strcat (mangled_name, opname);
1269 }
1270 else
1271 {
1272 mangled_name = (char *)xmalloc (mangled_name_len);
1273 strcpy (mangled_name, TYPE_FN_FIELDLIST_NAME (type, i));
1274 }
1275 strcat (mangled_name, inner_name);
1276 strcat (mangled_name, TYPE_FN_FIELD_PHYSNAME (f, j));
1277 demangled_name = cplus_demangle (mangled_name, 0);
1278
1279 /* Now, read in the parameters that define this type. */
1280 argtypetext = strchr (demangled_name, '(') + 1;
1281 p = argtypetext;
1282 while (*p)
1283 {
1284 if (*p == '(')
1285 depth += 1;
1286 else if (*p == ')')
1287 depth -= 1;
1288 else if (*p == ',' && depth == 0)
1289 argcount += 1;
1290
1291 p += 1;
1292 }
1293 /* We need one more slot for the void [...] or NULL [end of arglist] */
1294 argtypes = (struct type **)xmalloc ((argcount+1) * sizeof (struct type *));
1295 p = argtypetext;
1296 argtypes[0] = lookup_pointer_type (type);
1297 argcount = 1;
1298
1299 if (*p != ')') /* () means no args, skip while */
1300 {
1301 while (*p)
1302 {
1303 if (*p == '(')
1304 depth += 1;
1305 else if (*p == ')')
1306 depth -= 1;
1307
1308 if (depth <= 0 && (*p == ',' || *p == ')'))
1309 {
1310 char *tmp = (char *)alloca (p - argtypetext + 4);
1311 value val;
1312 tmp[0] = '(';
1313 bcopy (argtypetext, tmp+1, p - argtypetext);
1314 tmp[p-argtypetext+1] = ')';
1315 tmp[p-argtypetext+2] = '0';
1316 tmp[p-argtypetext+3] = '\0';
1317 val = parse_and_eval (tmp);
1318 argtypes[argcount] = VALUE_TYPE (val);
1319 argcount += 1;
1320 argtypetext = p + 1;
1321 }
1322 p += 1;
1323 }
1324 }
1325
1326 if (p[-2] != '.') /* ... */
1327 argtypes[argcount] = builtin_type_void; /* Ellist terminator */
1328 else
1329 argtypes[argcount] = NULL; /* List terminator */
1330
1331 free (demangled_name);
1332
1333 type = lookup_method_type (type, TYPE_TARGET_TYPE (TYPE_FN_FIELD_TYPE (f, j)), argtypes);
1334 /* Free the stub type...it's no longer needed. */
1335 free (TYPE_FN_FIELD_TYPE (f, j));
1336 TYPE_FN_FIELD_PHYSNAME (f, j) = mangled_name;
1337 TYPE_FN_FIELD_TYPE (f, j) = type;
1338 }
1339 \f
1340 long
1341 unpack_field_as_long (type, valaddr, fieldno)
1342 struct type *type;
1343 char *valaddr;
1344 int fieldno;
1345 {
1346 long val;
1347 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1348 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1349
1350 bcopy (valaddr + bitpos / 8, &val, sizeof val);
1351 SWAP_TARGET_AND_HOST (&val, sizeof val);
1352
1353 /* Extracting bits depends on endianness of the machine. */
1354 #if BITS_BIG_ENDIAN
1355 val = val >> (sizeof val * 8 - bitpos % 8 - bitsize);
1356 #else
1357 val = val >> (bitpos % 8);
1358 #endif
1359
1360 if (bitsize < 8 * sizeof (val))
1361 val &= (((unsigned long)1) << bitsize) - 1;
1362 return val;
1363 }
1364
1365 /* Modify the value of a bitfield. ADDR points to a block of memory in
1366 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1367 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1368 indicate which bits (in target bit order) comprise the bitfield. */
1369
1370 void
1371 modify_field (addr, fieldval, bitpos, bitsize)
1372 char *addr;
1373 int fieldval;
1374 int bitpos, bitsize;
1375 {
1376 long oword;
1377
1378 /* Reject values too big to fit in the field in question,
1379 otherwise adjoining fields may be corrupted. */
1380 if (bitsize < (8 * sizeof (fieldval))
1381 && 0 != (fieldval & ~((1<<bitsize)-1)))
1382 error ("Value %d does not fit in %d bits.", fieldval, bitsize);
1383
1384 bcopy (addr, &oword, sizeof oword);
1385 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To host format */
1386
1387 /* Shifting for bit field depends on endianness of the target machine. */
1388 #if BITS_BIG_ENDIAN
1389 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1390 #endif
1391
1392 /* Mask out old value, while avoiding shifts >= longword size */
1393 if (bitsize < 8 * sizeof (oword))
1394 oword &= ~(((((unsigned long)1) << bitsize) - 1) << bitpos);
1395 else
1396 oword &= ~((-1) << bitpos);
1397 oword |= fieldval << bitpos;
1398
1399 SWAP_TARGET_AND_HOST (&oword, sizeof oword); /* To target format */
1400 bcopy (&oword, addr, sizeof oword);
1401 }
1402 \f
1403 /* Convert C numbers into newly allocated values */
1404
1405 value
1406 value_from_longest (type, num)
1407 struct type *type;
1408 register LONGEST num;
1409 {
1410 register value val = allocate_value (type);
1411 register enum type_code code = TYPE_CODE (type);
1412 register int len = TYPE_LENGTH (type);
1413
1414 /* FIXME, we assume that pointers have the same form and byte order as
1415 integers, and that all pointers have the same form. */
1416 if (code == TYPE_CODE_INT || code == TYPE_CODE_ENUM ||
1417 code == TYPE_CODE_CHAR || code == TYPE_CODE_PTR)
1418 {
1419 if (len == sizeof (char))
1420 * (char *) VALUE_CONTENTS_RAW (val) = num;
1421 else if (len == sizeof (short))
1422 * (short *) VALUE_CONTENTS_RAW (val) = num;
1423 else if (len == sizeof (int))
1424 * (int *) VALUE_CONTENTS_RAW (val) = num;
1425 else if (len == sizeof (long))
1426 * (long *) VALUE_CONTENTS_RAW (val) = num;
1427 #ifdef LONG_LONG
1428 else if (len == sizeof (long long))
1429 * (long long *) VALUE_CONTENTS_RAW (val) = num;
1430 #endif
1431 else
1432 error ("Integer type encountered with unexpected data length.");
1433 }
1434 else
1435 error ("Unexpected type encountered for integer constant.");
1436
1437 /* num was in host byte order. So now put the value's contents
1438 into target byte order. */
1439 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1440
1441 return val;
1442 }
1443
1444 value
1445 value_from_double (type, num)
1446 struct type *type;
1447 double num;
1448 {
1449 register value val = allocate_value (type);
1450 register enum type_code code = TYPE_CODE (type);
1451 register int len = TYPE_LENGTH (type);
1452
1453 if (code == TYPE_CODE_FLT)
1454 {
1455 if (len == sizeof (float))
1456 * (float *) VALUE_CONTENTS_RAW (val) = num;
1457 else if (len == sizeof (double))
1458 * (double *) VALUE_CONTENTS_RAW (val) = num;
1459 else
1460 error ("Floating type encountered with unexpected data length.");
1461 }
1462 else
1463 error ("Unexpected type encountered for floating constant.");
1464
1465 /* num was in host byte order. So now put the value's contents
1466 into target byte order. */
1467 SWAP_TARGET_AND_HOST (VALUE_CONTENTS_RAW (val), len);
1468
1469 return val;
1470 }
1471 \f
1472 /* Deal with the value that is "about to be returned". */
1473
1474 /* Return the value that a function returning now
1475 would be returning to its caller, assuming its type is VALTYPE.
1476 RETBUF is where we look for what ought to be the contents
1477 of the registers (in raw form). This is because it is often
1478 desirable to restore old values to those registers
1479 after saving the contents of interest, and then call
1480 this function using the saved values.
1481 struct_return is non-zero when the function in question is
1482 using the structure return conventions on the machine in question;
1483 0 when it is using the value returning conventions (this often
1484 means returning pointer to where structure is vs. returning value). */
1485
1486 value
1487 value_being_returned (valtype, retbuf, struct_return)
1488 register struct type *valtype;
1489 char retbuf[REGISTER_BYTES];
1490 int struct_return;
1491 /*ARGSUSED*/
1492 {
1493 register value val;
1494 CORE_ADDR addr;
1495
1496 #if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1497 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1498 if (struct_return) {
1499 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1500 if (!addr)
1501 error ("Function return value unknown");
1502 return value_at (valtype, addr);
1503 }
1504 #endif
1505
1506 val = allocate_value (valtype);
1507 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1508
1509 return val;
1510 }
1511
1512 /* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1513 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1514 and TYPE is the type (which is known to be struct, union or array).
1515
1516 On most machines, the struct convention is used unless we are
1517 using gcc and the type is of a special size. */
1518 #if !defined (USE_STRUCT_CONVENTION)
1519 #define USE_STRUCT_CONVENTION(gcc_p, type)\
1520 (!((gcc_p) && (TYPE_LENGTH (value_type) == 1 \
1521 || TYPE_LENGTH (value_type) == 2 \
1522 || TYPE_LENGTH (value_type) == 4 \
1523 || TYPE_LENGTH (value_type) == 8 \
1524 ) \
1525 ))
1526 #endif
1527
1528 /* Return true if the function specified is using the structure returning
1529 convention on this machine to return arguments, or 0 if it is using
1530 the value returning convention. FUNCTION is the value representing
1531 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1532 is the type returned by the function. GCC_P is nonzero if compiled
1533 with GCC. */
1534
1535 int
1536 using_struct_return (function, funcaddr, value_type, gcc_p)
1537 value function;
1538 CORE_ADDR funcaddr;
1539 struct type *value_type;
1540 int gcc_p;
1541 /*ARGSUSED*/
1542 {
1543 register enum type_code code = TYPE_CODE (value_type);
1544
1545 if (code == TYPE_CODE_ERROR)
1546 error ("Function return type unknown.");
1547
1548 if (code == TYPE_CODE_STRUCT ||
1549 code == TYPE_CODE_UNION ||
1550 code == TYPE_CODE_ARRAY)
1551 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1552
1553 return 0;
1554 }
1555
1556 /* Store VAL so it will be returned if a function returns now.
1557 Does not verify that VAL's type matches what the current
1558 function wants to return. */
1559
1560 void
1561 set_return_value (val)
1562 value val;
1563 {
1564 register enum type_code code = TYPE_CODE (VALUE_TYPE (val));
1565 double dbuf;
1566 LONGEST lbuf;
1567
1568 if (code == TYPE_CODE_ERROR)
1569 error ("Function return type unknown.");
1570
1571 if (code == TYPE_CODE_STRUCT
1572 || code == TYPE_CODE_UNION)
1573 error ("Specifying a struct or union return value is not supported.");
1574
1575 /* FIXME, this is bogus. We don't know what the return conventions
1576 are, or how values should be promoted.... */
1577 if (code == TYPE_CODE_FLT)
1578 {
1579 dbuf = value_as_double (val);
1580
1581 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&dbuf);
1582 }
1583 else
1584 {
1585 lbuf = value_as_long (val);
1586 STORE_RETURN_VALUE (VALUE_TYPE (val), (char *)&lbuf);
1587 }
1588 }
1589 \f
1590 void
1591 _initialize_values ()
1592 {
1593 add_cmd ("convenience", no_class, show_convenience,
1594 "Debugger convenience (\"$foo\") variables.\n\
1595 These variables are created when you assign them values;\n\
1596 thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1597 A few convenience variables are given values automatically:\n\
1598 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1599 \"$__\" holds the contents of the last address examined with \"x\".",
1600 &showlist);
1601
1602 add_cmd ("values", no_class, show_values,
1603 "Elements of value history around item number IDX (or last ten).",
1604 &showlist);
1605 }
This page took 0.060941 seconds and 5 git commands to generate.