2002-06-21 Michal Ludvig <mludvig@suse.cz>
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
8
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
13
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 59 Temple Place - Suite 330,
17 Boston, MA 02111-1307, USA. */
18
19 #include "defs.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "wrapper.h"
25 #include "gdbcmd.h"
26 #include <math.h>
27
28 #include "varobj.h"
29
30 /* Non-zero if we want to see trace of varobj level stuff. */
31
32 int varobjdebug = 0;
33
34 /* String representations of gdb's format codes */
35 char *varobj_format_string[] =
36 { "natural", "binary", "decimal", "hexadecimal", "octal" };
37
38 /* String representations of gdb's known languages */
39 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
40
41 /* Data structures */
42
43 /* Every root variable has one of these structures saved in its
44 varobj. Members which must be free'd are noted. */
45 struct varobj_root
46 {
47
48 /* Alloc'd expression for this parent. */
49 struct expression *exp;
50
51 /* Block for which this expression is valid */
52 struct block *valid_block;
53
54 /* The frame for this expression */
55 CORE_ADDR frame;
56
57 /* If 1, "update" always recomputes the frame & valid block
58 using the currently selected frame. */
59 int use_selected_frame;
60
61 /* Language info for this variable and its children */
62 struct language_specific *lang;
63
64 /* The varobj for this root node. */
65 struct varobj *rootvar;
66
67 /* Next root variable */
68 struct varobj_root *next;
69 };
70
71 /* Every variable in the system has a structure of this type defined
72 for it. This structure holds all information necessary to manipulate
73 a particular object variable. Members which must be freed are noted. */
74 struct varobj
75 {
76
77 /* Alloc'd name of the variable for this object.. If this variable is a
78 child, then this name will be the child's source name.
79 (bar, not foo.bar) */
80 /* NOTE: This is the "expression" */
81 char *name;
82
83 /* The alloc'd name for this variable's object. This is here for
84 convenience when constructing this object's children. */
85 char *obj_name;
86
87 /* Index of this variable in its parent or -1 */
88 int index;
89
90 /* The type of this variable. This may NEVER be NULL. */
91 struct type *type;
92
93 /* The value of this expression or subexpression. This may be NULL. */
94 struct value *value;
95
96 /* Did an error occur evaluating the expression or getting its value? */
97 int error;
98
99 /* The number of (immediate) children this variable has */
100 int num_children;
101
102 /* If this object is a child, this points to its immediate parent. */
103 struct varobj *parent;
104
105 /* A list of this object's children */
106 struct varobj_child *children;
107
108 /* Description of the root variable. Points to root variable for children. */
109 struct varobj_root *root;
110
111 /* The format of the output for this object */
112 enum varobj_display_formats format;
113 };
114
115 /* Every variable keeps a linked list of its children, described
116 by the following structure. */
117 /* FIXME: Deprecated. All should use vlist instead */
118
119 struct varobj_child
120 {
121
122 /* Pointer to the child's data */
123 struct varobj *child;
124
125 /* Pointer to the next child */
126 struct varobj_child *next;
127 };
128
129 /* A stack of varobjs */
130 /* FIXME: Deprecated. All should use vlist instead */
131
132 struct vstack
133 {
134 struct varobj *var;
135 struct vstack *next;
136 };
137
138 struct cpstack
139 {
140 char *name;
141 struct cpstack *next;
142 };
143
144 /* A list of varobjs */
145
146 struct vlist
147 {
148 struct varobj *var;
149 struct vlist *next;
150 };
151
152 /* Private function prototypes */
153
154 /* Helper functions for the above subcommands. */
155
156 static int delete_variable (struct cpstack **, struct varobj *, int);
157
158 static void delete_variable_1 (struct cpstack **, int *,
159 struct varobj *, int, int);
160
161 static int install_variable (struct varobj *);
162
163 static void uninstall_variable (struct varobj *);
164
165 static struct varobj *child_exists (struct varobj *, char *);
166
167 static struct varobj *create_child (struct varobj *, int, char *);
168
169 static void save_child_in_parent (struct varobj *, struct varobj *);
170
171 static void remove_child_from_parent (struct varobj *, struct varobj *);
172
173 /* Utility routines */
174
175 static struct varobj *new_variable (void);
176
177 static struct varobj *new_root_variable (void);
178
179 static void free_variable (struct varobj *var);
180
181 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182
183 static struct type *get_type (struct varobj *var);
184
185 static struct type *get_type_deref (struct varobj *var);
186
187 static struct type *get_target_type (struct type *);
188
189 static enum varobj_display_formats variable_default_display (struct varobj *);
190
191 static int my_value_equal (struct value *, struct value *, int *);
192
193 static void vpush (struct vstack **pstack, struct varobj *var);
194
195 static struct varobj *vpop (struct vstack **pstack);
196
197 static void cppush (struct cpstack **pstack, char *name);
198
199 static char *cppop (struct cpstack **pstack);
200
201 /* Language-specific routines. */
202
203 static enum varobj_languages variable_language (struct varobj *var);
204
205 static int number_of_children (struct varobj *);
206
207 static char *name_of_variable (struct varobj *);
208
209 static char *name_of_child (struct varobj *, int);
210
211 static struct value *value_of_root (struct varobj **var_handle, int *);
212
213 static struct value *value_of_child (struct varobj *parent, int index);
214
215 static struct type *type_of_child (struct varobj *var);
216
217 static int variable_editable (struct varobj *var);
218
219 static char *my_value_of_variable (struct varobj *var);
220
221 static int type_changeable (struct varobj *var);
222
223 /* C implementation */
224
225 static int c_number_of_children (struct varobj *var);
226
227 static char *c_name_of_variable (struct varobj *parent);
228
229 static char *c_name_of_child (struct varobj *parent, int index);
230
231 static struct value *c_value_of_root (struct varobj **var_handle);
232
233 static struct value *c_value_of_child (struct varobj *parent, int index);
234
235 static struct type *c_type_of_child (struct varobj *parent, int index);
236
237 static int c_variable_editable (struct varobj *var);
238
239 static char *c_value_of_variable (struct varobj *var);
240
241 /* C++ implementation */
242
243 static int cplus_number_of_children (struct varobj *var);
244
245 static void cplus_class_num_children (struct type *type, int children[3]);
246
247 static char *cplus_name_of_variable (struct varobj *parent);
248
249 static char *cplus_name_of_child (struct varobj *parent, int index);
250
251 static struct value *cplus_value_of_root (struct varobj **var_handle);
252
253 static struct value *cplus_value_of_child (struct varobj *parent, int index);
254
255 static struct type *cplus_type_of_child (struct varobj *parent, int index);
256
257 static int cplus_variable_editable (struct varobj *var);
258
259 static char *cplus_value_of_variable (struct varobj *var);
260
261 /* Java implementation */
262
263 static int java_number_of_children (struct varobj *var);
264
265 static char *java_name_of_variable (struct varobj *parent);
266
267 static char *java_name_of_child (struct varobj *parent, int index);
268
269 static struct value *java_value_of_root (struct varobj **var_handle);
270
271 static struct value *java_value_of_child (struct varobj *parent, int index);
272
273 static struct type *java_type_of_child (struct varobj *parent, int index);
274
275 static int java_variable_editable (struct varobj *var);
276
277 static char *java_value_of_variable (struct varobj *var);
278
279 /* The language specific vector */
280
281 struct language_specific
282 {
283
284 /* The language of this variable */
285 enum varobj_languages language;
286
287 /* The number of children of PARENT. */
288 int (*number_of_children) (struct varobj * parent);
289
290 /* The name (expression) of a root varobj. */
291 char *(*name_of_variable) (struct varobj * parent);
292
293 /* The name of the INDEX'th child of PARENT. */
294 char *(*name_of_child) (struct varobj * parent, int index);
295
296 /* The ``struct value *'' of the root variable ROOT. */
297 struct value *(*value_of_root) (struct varobj ** root_handle);
298
299 /* The ``struct value *'' of the INDEX'th child of PARENT. */
300 struct value *(*value_of_child) (struct varobj * parent, int index);
301
302 /* The type of the INDEX'th child of PARENT. */
303 struct type *(*type_of_child) (struct varobj * parent, int index);
304
305 /* Is VAR editable? */
306 int (*variable_editable) (struct varobj * var);
307
308 /* The current value of VAR. */
309 char *(*value_of_variable) (struct varobj * var);
310 };
311
312 /* Array of known source language routines. */
313 static struct language_specific
314 languages[vlang_end][sizeof (struct language_specific)] = {
315 /* Unknown (try treating as C */
316 {
317 vlang_unknown,
318 c_number_of_children,
319 c_name_of_variable,
320 c_name_of_child,
321 c_value_of_root,
322 c_value_of_child,
323 c_type_of_child,
324 c_variable_editable,
325 c_value_of_variable}
326 ,
327 /* C */
328 {
329 vlang_c,
330 c_number_of_children,
331 c_name_of_variable,
332 c_name_of_child,
333 c_value_of_root,
334 c_value_of_child,
335 c_type_of_child,
336 c_variable_editable,
337 c_value_of_variable}
338 ,
339 /* C++ */
340 {
341 vlang_cplus,
342 cplus_number_of_children,
343 cplus_name_of_variable,
344 cplus_name_of_child,
345 cplus_value_of_root,
346 cplus_value_of_child,
347 cplus_type_of_child,
348 cplus_variable_editable,
349 cplus_value_of_variable}
350 ,
351 /* Java */
352 {
353 vlang_java,
354 java_number_of_children,
355 java_name_of_variable,
356 java_name_of_child,
357 java_value_of_root,
358 java_value_of_child,
359 java_type_of_child,
360 java_variable_editable,
361 java_value_of_variable}
362 };
363
364 /* A little convenience enum for dealing with C++/Java */
365 enum vsections
366 {
367 v_public = 0, v_private, v_protected
368 };
369
370 /* Private data */
371
372 /* Mappings of varobj_display_formats enums to gdb's format codes */
373 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
374
375 /* Header of the list of root variable objects */
376 static struct varobj_root *rootlist;
377 static int rootcount = 0; /* number of root varobjs in the list */
378
379 /* Prime number indicating the number of buckets in the hash table */
380 /* A prime large enough to avoid too many colisions */
381 #define VAROBJ_TABLE_SIZE 227
382
383 /* Pointer to the varobj hash table (built at run time) */
384 static struct vlist **varobj_table;
385
386 /* Is the variable X one of our "fake" children? */
387 #define CPLUS_FAKE_CHILD(x) \
388 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
389 \f
390
391 /* API Implementation */
392
393 /* Creates a varobj (not its children) */
394
395 struct varobj *
396 varobj_create (char *objname,
397 char *expression, CORE_ADDR frame, enum varobj_type type)
398 {
399 struct varobj *var;
400 struct frame_info *fi;
401 struct frame_info *old_fi = NULL;
402 struct block *block;
403 struct cleanup *old_chain;
404
405 /* Fill out a varobj structure for the (root) variable being constructed. */
406 var = new_root_variable ();
407 old_chain = make_cleanup_free_variable (var);
408
409 if (expression != NULL)
410 {
411 char *p;
412 enum varobj_languages lang;
413
414 /* Parse and evaluate the expression, filling in as much
415 of the variable's data as possible */
416
417 /* Allow creator to specify context of variable */
418 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
419 fi = selected_frame;
420 else
421 fi = find_frame_addr_in_frame_chain (frame);
422
423 /* frame = -2 means always use selected frame */
424 if (type == USE_SELECTED_FRAME)
425 var->root->use_selected_frame = 1;
426
427 block = NULL;
428 if (fi != NULL)
429 block = get_frame_block (fi, 0);
430
431 p = expression;
432 innermost_block = NULL;
433 /* Wrap the call to parse expression, so we can
434 return a sensible error. */
435 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
436 {
437 return NULL;
438 }
439
440 /* Don't allow variables to be created for types. */
441 if (var->root->exp->elts[0].opcode == OP_TYPE)
442 {
443 do_cleanups (old_chain);
444 fprintf_unfiltered (gdb_stderr,
445 "Attempt to use a type name as an expression.");
446 return NULL;
447 }
448
449 var->format = variable_default_display (var);
450 var->root->valid_block = innermost_block;
451 var->name = savestring (expression, strlen (expression));
452
453 /* When the frame is different from the current frame,
454 we must select the appropriate frame before parsing
455 the expression, otherwise the value will not be current.
456 Since select_frame is so benign, just call it for all cases. */
457 if (fi != NULL)
458 {
459 var->root->frame = FRAME_FP (fi);
460 old_fi = selected_frame;
461 select_frame (fi);
462 }
463
464 /* We definitively need to catch errors here.
465 If evaluate_expression succeeds we got the value we wanted.
466 But if it fails, we still go on with a call to evaluate_type() */
467 if (gdb_evaluate_expression (var->root->exp, &var->value))
468 {
469 /* no error */
470 release_value (var->value);
471 if (VALUE_LAZY (var->value))
472 gdb_value_fetch_lazy (var->value);
473 }
474 else
475 var->value = evaluate_type (var->root->exp);
476
477 var->type = VALUE_TYPE (var->value);
478
479 /* Set language info */
480 lang = variable_language (var);
481 var->root->lang = languages[lang];
482
483 /* Set ourselves as our root */
484 var->root->rootvar = var;
485
486 /* Reset the selected frame */
487 if (fi != NULL)
488 select_frame (old_fi);
489 }
490
491 /* If the variable object name is null, that means this
492 is a temporary variable, so don't install it. */
493
494 if ((var != NULL) && (objname != NULL))
495 {
496 var->obj_name = savestring (objname, strlen (objname));
497
498 /* If a varobj name is duplicated, the install will fail so
499 we must clenup */
500 if (!install_variable (var))
501 {
502 do_cleanups (old_chain);
503 return NULL;
504 }
505 }
506
507 discard_cleanups (old_chain);
508 return var;
509 }
510
511 /* Generates an unique name that can be used for a varobj */
512
513 char *
514 varobj_gen_name (void)
515 {
516 static int id = 0;
517 char obj_name[31];
518
519 /* generate a name for this object */
520 id++;
521 sprintf (obj_name, "var%d", id);
522
523 return xstrdup (obj_name);
524 }
525
526 /* Given an "objname", returns the pointer to the corresponding varobj
527 or NULL if not found */
528
529 struct varobj *
530 varobj_get_handle (char *objname)
531 {
532 struct vlist *cv;
533 const char *chp;
534 unsigned int index = 0;
535 unsigned int i = 1;
536
537 for (chp = objname; *chp; chp++)
538 {
539 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
540 }
541
542 cv = *(varobj_table + index);
543 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
544 cv = cv->next;
545
546 if (cv == NULL)
547 error ("Variable object not found");
548
549 return cv->var;
550 }
551
552 /* Given the handle, return the name of the object */
553
554 char *
555 varobj_get_objname (struct varobj *var)
556 {
557 return var->obj_name;
558 }
559
560 /* Given the handle, return the expression represented by the object */
561
562 char *
563 varobj_get_expression (struct varobj *var)
564 {
565 return name_of_variable (var);
566 }
567
568 /* Deletes a varobj and all its children if only_children == 0,
569 otherwise deletes only the children; returns a malloc'ed list of all the
570 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
571
572 int
573 varobj_delete (struct varobj *var, char ***dellist, int only_children)
574 {
575 int delcount;
576 int mycount;
577 struct cpstack *result = NULL;
578 char **cp;
579
580 /* Initialize a stack for temporary results */
581 cppush (&result, NULL);
582
583 if (only_children)
584 /* Delete only the variable children */
585 delcount = delete_variable (&result, var, 1 /* only the children */ );
586 else
587 /* Delete the variable and all its children */
588 delcount = delete_variable (&result, var, 0 /* parent+children */ );
589
590 /* We may have been asked to return a list of what has been deleted */
591 if (dellist != NULL)
592 {
593 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
594
595 cp = *dellist;
596 mycount = delcount;
597 *cp = cppop (&result);
598 while ((*cp != NULL) && (mycount > 0))
599 {
600 mycount--;
601 cp++;
602 *cp = cppop (&result);
603 }
604
605 if (mycount || (*cp != NULL))
606 warning ("varobj_delete: assertion failed - mycount(=%d) <> 0",
607 mycount);
608 }
609
610 return delcount;
611 }
612
613 /* Set/Get variable object display format */
614
615 enum varobj_display_formats
616 varobj_set_display_format (struct varobj *var,
617 enum varobj_display_formats format)
618 {
619 switch (format)
620 {
621 case FORMAT_NATURAL:
622 case FORMAT_BINARY:
623 case FORMAT_DECIMAL:
624 case FORMAT_HEXADECIMAL:
625 case FORMAT_OCTAL:
626 var->format = format;
627 break;
628
629 default:
630 var->format = variable_default_display (var);
631 }
632
633 return var->format;
634 }
635
636 enum varobj_display_formats
637 varobj_get_display_format (struct varobj *var)
638 {
639 return var->format;
640 }
641
642 int
643 varobj_get_num_children (struct varobj *var)
644 {
645 if (var->num_children == -1)
646 var->num_children = number_of_children (var);
647
648 return var->num_children;
649 }
650
651 /* Creates a list of the immediate children of a variable object;
652 the return code is the number of such children or -1 on error */
653
654 int
655 varobj_list_children (struct varobj *var, struct varobj ***childlist)
656 {
657 struct varobj *child;
658 char *name;
659 int i;
660
661 /* sanity check: have we been passed a pointer? */
662 if (childlist == NULL)
663 return -1;
664
665 *childlist = NULL;
666
667 if (var->num_children == -1)
668 var->num_children = number_of_children (var);
669
670 /* List of children */
671 *childlist = xmalloc ((var->num_children + 1) * sizeof (struct varobj *));
672
673 for (i = 0; i < var->num_children; i++)
674 {
675 /* Mark as the end in case we bail out */
676 *((*childlist) + i) = NULL;
677
678 /* check if child exists, if not create */
679 name = name_of_child (var, i);
680 child = child_exists (var, name);
681 if (child == NULL)
682 child = create_child (var, i, name);
683
684 *((*childlist) + i) = child;
685 }
686
687 /* End of list is marked by a NULL pointer */
688 *((*childlist) + i) = NULL;
689
690 return var->num_children;
691 }
692
693 /* Obtain the type of an object Variable as a string similar to the one gdb
694 prints on the console */
695
696 char *
697 varobj_get_type (struct varobj *var)
698 {
699 struct value *val;
700 struct cleanup *old_chain;
701 struct ui_file *stb;
702 char *thetype;
703 long length;
704
705 /* For the "fake" variables, do not return a type. (It's type is
706 NULL, too.) */
707 if (CPLUS_FAKE_CHILD (var))
708 return NULL;
709
710 stb = mem_fileopen ();
711 old_chain = make_cleanup_ui_file_delete (stb);
712
713 /* To print the type, we simply create a zero ``struct value *'' and
714 cast it to our type. We then typeprint this variable. */
715 val = value_zero (var->type, not_lval);
716 type_print (VALUE_TYPE (val), "", stb, -1);
717
718 thetype = ui_file_xstrdup (stb, &length);
719 do_cleanups (old_chain);
720 return thetype;
721 }
722
723 enum varobj_languages
724 varobj_get_language (struct varobj *var)
725 {
726 return variable_language (var);
727 }
728
729 int
730 varobj_get_attributes (struct varobj *var)
731 {
732 int attributes = 0;
733
734 if (variable_editable (var))
735 /* FIXME: define masks for attributes */
736 attributes |= 0x00000001; /* Editable */
737
738 return attributes;
739 }
740
741 char *
742 varobj_get_value (struct varobj *var)
743 {
744 return my_value_of_variable (var);
745 }
746
747 /* Set the value of an object variable (if it is editable) to the
748 value of the given expression */
749 /* Note: Invokes functions that can call error() */
750
751 int
752 varobj_set_value (struct varobj *var, char *expression)
753 {
754 struct value *val;
755 int offset = 0;
756
757 /* The argument "expression" contains the variable's new value.
758 We need to first construct a legal expression for this -- ugh! */
759 /* Does this cover all the bases? */
760 struct expression *exp;
761 struct value *value;
762 int saved_input_radix = input_radix;
763
764 if (var->value != NULL && variable_editable (var) && !var->error)
765 {
766 char *s = expression;
767 int i;
768
769 input_radix = 10; /* ALWAYS reset to decimal temporarily */
770 if (!gdb_parse_exp_1 (&s, 0, 0, &exp))
771 /* We cannot proceed without a well-formed expression. */
772 return 0;
773 if (!gdb_evaluate_expression (exp, &value))
774 {
775 /* We cannot proceed without a valid expression. */
776 xfree (exp);
777 return 0;
778 }
779
780 if (!gdb_value_assign (var->value, value, &val))
781 return 0;
782 value_free (var->value);
783 release_value (val);
784 var->value = val;
785 input_radix = saved_input_radix;
786 return 1;
787 }
788
789 return 0;
790 }
791
792 /* Returns a malloc'ed list with all root variable objects */
793 int
794 varobj_list (struct varobj ***varlist)
795 {
796 struct varobj **cv;
797 struct varobj_root *croot;
798 int mycount = rootcount;
799
800 /* Alloc (rootcount + 1) entries for the result */
801 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
802
803 cv = *varlist;
804 croot = rootlist;
805 while ((croot != NULL) && (mycount > 0))
806 {
807 *cv = croot->rootvar;
808 mycount--;
809 cv++;
810 croot = croot->next;
811 }
812 /* Mark the end of the list */
813 *cv = NULL;
814
815 if (mycount || (croot != NULL))
816 warning
817 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
818 rootcount, mycount);
819
820 return rootcount;
821 }
822
823 /* Update the values for a variable and its children. This is a
824 two-pronged attack. First, re-parse the value for the root's
825 expression to see if it's changed. Then go all the way
826 through its children, reconstructing them and noting if they've
827 changed.
828 Return value:
829 -1 if there was an error updating the varobj
830 -2 if the type changed
831 Otherwise it is the number of children + parent changed
832
833 Only root variables can be updated...
834
835 NOTE: This function may delete the caller's varobj. If it
836 returns -2, then it has done this and VARP will be modified
837 to point to the new varobj. */
838
839 int
840 varobj_update (struct varobj **varp, struct varobj ***changelist)
841 {
842 int changed = 0;
843 int type_changed;
844 int i;
845 int vleft;
846 int error2;
847 struct varobj *v;
848 struct varobj **cv;
849 struct varobj **templist = NULL;
850 struct value *new;
851 struct vstack *stack = NULL;
852 struct vstack *result = NULL;
853 struct frame_info *old_fi;
854
855 /* sanity check: have we been passed a pointer? */
856 if (changelist == NULL)
857 return -1;
858
859 /* Only root variables can be updated... */
860 if ((*varp)->root->rootvar != *varp)
861 /* Not a root var */
862 return -1;
863
864 /* Save the selected stack frame, since we will need to change it
865 in order to evaluate expressions. */
866 old_fi = selected_frame;
867
868 /* Update the root variable. value_of_root can return NULL
869 if the variable is no longer around, i.e. we stepped out of
870 the frame in which a local existed. We are letting the
871 value_of_root variable dispose of the varobj if the type
872 has changed. */
873 type_changed = 1;
874 new = value_of_root (varp, &type_changed);
875 if (new == NULL)
876 {
877 (*varp)->error = 1;
878 return -1;
879 }
880
881 /* Initialize a stack for temporary results */
882 vpush (&result, NULL);
883
884 /* If this is a "use_selected_frame" varobj, and its type has changed,
885 them note that it's changed. */
886 if (type_changed)
887 {
888 vpush (&result, *varp);
889 changed++;
890 }
891 /* If values are not equal, note that it's changed.
892 There a couple of exceptions here, though.
893 We don't want some types to be reported as "changed". */
894 else if (type_changeable (*varp)
895 && !my_value_equal ((*varp)->value, new, &error2))
896 {
897 vpush (&result, *varp);
898 changed++;
899 /* error2 replaces var->error since this new value
900 WILL replace the old one. */
901 (*varp)->error = error2;
902 }
903
904 /* We must always keep around the new value for this root
905 variable expression, or we lose the updated children! */
906 value_free ((*varp)->value);
907 (*varp)->value = new;
908
909 /* Initialize a stack */
910 vpush (&stack, NULL);
911
912 /* Push the root's children */
913 if ((*varp)->children != NULL)
914 {
915 struct varobj_child *c;
916 for (c = (*varp)->children; c != NULL; c = c->next)
917 vpush (&stack, c->child);
918 }
919
920 /* Walk through the children, reconstructing them all. */
921 v = vpop (&stack);
922 while (v != NULL)
923 {
924 /* Push any children */
925 if (v->children != NULL)
926 {
927 struct varobj_child *c;
928 for (c = v->children; c != NULL; c = c->next)
929 vpush (&stack, c->child);
930 }
931
932 /* Update this variable */
933 new = value_of_child (v->parent, v->index);
934 if (type_changeable (v) && !my_value_equal (v->value, new, &error2))
935 {
936 /* Note that it's changed */
937 vpush (&result, v);
938 changed++;
939 }
940 /* error2 replaces v->error since this new value
941 WILL replace the old one. */
942 v->error = error2;
943
944 /* We must always keep new values, since children depend on it. */
945 if (v->value != NULL)
946 value_free (v->value);
947 v->value = new;
948
949 /* Get next child */
950 v = vpop (&stack);
951 }
952
953 /* Alloc (changed + 1) list entries */
954 /* FIXME: add a cleanup for the allocated list(s)
955 because one day the select_frame called below can longjump */
956 *changelist = xmalloc ((changed + 1) * sizeof (struct varobj *));
957 if (changed > 1)
958 {
959 templist = xmalloc ((changed + 1) * sizeof (struct varobj *));
960 cv = templist;
961 }
962 else
963 cv = *changelist;
964
965 /* Copy from result stack to list */
966 vleft = changed;
967 *cv = vpop (&result);
968 while ((*cv != NULL) && (vleft > 0))
969 {
970 vleft--;
971 cv++;
972 *cv = vpop (&result);
973 }
974 if (vleft)
975 warning ("varobj_update: assertion failed - vleft <> 0");
976
977 if (changed > 1)
978 {
979 /* Now we revert the order. */
980 for (i = 0; i < changed; i++)
981 *(*changelist + i) = *(templist + changed - 1 - i);
982 *(*changelist + changed) = NULL;
983 }
984
985 /* Restore selected frame */
986 select_frame (old_fi);
987
988 if (type_changed)
989 return -2;
990 else
991 return changed;
992 }
993 \f
994
995 /* Helper functions */
996
997 /*
998 * Variable object construction/destruction
999 */
1000
1001 static int
1002 delete_variable (struct cpstack **resultp, struct varobj *var,
1003 int only_children_p)
1004 {
1005 int delcount = 0;
1006
1007 delete_variable_1 (resultp, &delcount, var,
1008 only_children_p, 1 /* remove_from_parent_p */ );
1009
1010 return delcount;
1011 }
1012
1013 /* Delete the variable object VAR and its children */
1014 /* IMPORTANT NOTE: If we delete a variable which is a child
1015 and the parent is not removed we dump core. It must be always
1016 initially called with remove_from_parent_p set */
1017 static void
1018 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1019 struct varobj *var, int only_children_p,
1020 int remove_from_parent_p)
1021 {
1022 struct varobj_child *vc;
1023 struct varobj_child *next;
1024
1025 /* Delete any children of this variable, too. */
1026 for (vc = var->children; vc != NULL; vc = next)
1027 {
1028 if (!remove_from_parent_p)
1029 vc->child->parent = NULL;
1030 delete_variable_1 (resultp, delcountp, vc->child, 0, only_children_p);
1031 next = vc->next;
1032 xfree (vc);
1033 }
1034
1035 /* if we were called to delete only the children we are done here */
1036 if (only_children_p)
1037 return;
1038
1039 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1040 /* If the name is null, this is a temporary variable, that has not
1041 yet been installed, don't report it, it belongs to the caller... */
1042 if (var->obj_name != NULL)
1043 {
1044 cppush (resultp, xstrdup (var->obj_name));
1045 *delcountp = *delcountp + 1;
1046 }
1047
1048 /* If this variable has a parent, remove it from its parent's list */
1049 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1050 (as indicated by remove_from_parent_p) we don't bother doing an
1051 expensive list search to find the element to remove when we are
1052 discarding the list afterwards */
1053 if ((remove_from_parent_p) && (var->parent != NULL))
1054 {
1055 remove_child_from_parent (var->parent, var);
1056 }
1057
1058 if (var->obj_name != NULL)
1059 uninstall_variable (var);
1060
1061 /* Free memory associated with this variable */
1062 free_variable (var);
1063 }
1064
1065 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1066 static int
1067 install_variable (struct varobj *var)
1068 {
1069 struct vlist *cv;
1070 struct vlist *newvl;
1071 const char *chp;
1072 unsigned int index = 0;
1073 unsigned int i = 1;
1074
1075 for (chp = var->obj_name; *chp; chp++)
1076 {
1077 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1078 }
1079
1080 cv = *(varobj_table + index);
1081 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1082 cv = cv->next;
1083
1084 if (cv != NULL)
1085 error ("Duplicate variable object name");
1086
1087 /* Add varobj to hash table */
1088 newvl = xmalloc (sizeof (struct vlist));
1089 newvl->next = *(varobj_table + index);
1090 newvl->var = var;
1091 *(varobj_table + index) = newvl;
1092
1093 /* If root, add varobj to root list */
1094 if (var->root->rootvar == var)
1095 {
1096 /* Add to list of root variables */
1097 if (rootlist == NULL)
1098 var->root->next = NULL;
1099 else
1100 var->root->next = rootlist;
1101 rootlist = var->root;
1102 rootcount++;
1103 }
1104
1105 return 1; /* OK */
1106 }
1107
1108 /* Unistall the object VAR. */
1109 static void
1110 uninstall_variable (struct varobj *var)
1111 {
1112 struct vlist *cv;
1113 struct vlist *prev;
1114 struct varobj_root *cr;
1115 struct varobj_root *prer;
1116 const char *chp;
1117 unsigned int index = 0;
1118 unsigned int i = 1;
1119
1120 /* Remove varobj from hash table */
1121 for (chp = var->obj_name; *chp; chp++)
1122 {
1123 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1124 }
1125
1126 cv = *(varobj_table + index);
1127 prev = NULL;
1128 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1129 {
1130 prev = cv;
1131 cv = cv->next;
1132 }
1133
1134 if (varobjdebug)
1135 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1136
1137 if (cv == NULL)
1138 {
1139 warning
1140 ("Assertion failed: Could not find variable object \"%s\" to delete",
1141 var->obj_name);
1142 return;
1143 }
1144
1145 if (prev == NULL)
1146 *(varobj_table + index) = cv->next;
1147 else
1148 prev->next = cv->next;
1149
1150 xfree (cv);
1151
1152 /* If root, remove varobj from root list */
1153 if (var->root->rootvar == var)
1154 {
1155 /* Remove from list of root variables */
1156 if (rootlist == var->root)
1157 rootlist = var->root->next;
1158 else
1159 {
1160 prer = NULL;
1161 cr = rootlist;
1162 while ((cr != NULL) && (cr->rootvar != var))
1163 {
1164 prer = cr;
1165 cr = cr->next;
1166 }
1167 if (cr == NULL)
1168 {
1169 warning
1170 ("Assertion failed: Could not find varobj \"%s\" in root list",
1171 var->obj_name);
1172 return;
1173 }
1174 if (prer == NULL)
1175 rootlist = NULL;
1176 else
1177 prer->next = cr->next;
1178 }
1179 rootcount--;
1180 }
1181
1182 }
1183
1184 /* Does a child with the name NAME exist in VAR? If so, return its data.
1185 If not, return NULL. */
1186 static struct varobj *
1187 child_exists (struct varobj *var, char *name)
1188 {
1189 struct varobj_child *vc;
1190
1191 for (vc = var->children; vc != NULL; vc = vc->next)
1192 {
1193 if (STREQ (vc->child->name, name))
1194 return vc->child;
1195 }
1196
1197 return NULL;
1198 }
1199
1200 /* Create and install a child of the parent of the given name */
1201 static struct varobj *
1202 create_child (struct varobj *parent, int index, char *name)
1203 {
1204 struct varobj *child;
1205 char *childs_name;
1206
1207 child = new_variable ();
1208
1209 /* name is allocated by name_of_child */
1210 child->name = name;
1211 child->index = index;
1212 child->value = value_of_child (parent, index);
1213 if ((!CPLUS_FAKE_CHILD (child) && child->value == NULL) || parent->error)
1214 child->error = 1;
1215 child->parent = parent;
1216 child->root = parent->root;
1217 childs_name =
1218 (char *) xmalloc ((strlen (parent->obj_name) + strlen (name) + 2) *
1219 sizeof (char));
1220 sprintf (childs_name, "%s.%s", parent->obj_name, name);
1221 child->obj_name = childs_name;
1222 install_variable (child);
1223
1224 /* Save a pointer to this child in the parent */
1225 save_child_in_parent (parent, child);
1226
1227 /* Note the type of this child */
1228 child->type = type_of_child (child);
1229
1230 return child;
1231 }
1232
1233 /* FIXME: This should be a generic add to list */
1234 /* Save CHILD in the PARENT's data. */
1235 static void
1236 save_child_in_parent (struct varobj *parent, struct varobj *child)
1237 {
1238 struct varobj_child *vc;
1239
1240 /* Insert the child at the top */
1241 vc = parent->children;
1242 parent->children =
1243 (struct varobj_child *) xmalloc (sizeof (struct varobj_child));
1244
1245 parent->children->next = vc;
1246 parent->children->child = child;
1247 }
1248
1249 /* FIXME: This should be a generic remove from list */
1250 /* Remove the CHILD from the PARENT's list of children. */
1251 static void
1252 remove_child_from_parent (struct varobj *parent, struct varobj *child)
1253 {
1254 struct varobj_child *vc, *prev;
1255
1256 /* Find the child in the parent's list */
1257 prev = NULL;
1258 for (vc = parent->children; vc != NULL;)
1259 {
1260 if (vc->child == child)
1261 break;
1262 prev = vc;
1263 vc = vc->next;
1264 }
1265
1266 if (prev == NULL)
1267 parent->children = vc->next;
1268 else
1269 prev->next = vc->next;
1270
1271 }
1272 \f
1273
1274 /*
1275 * Miscellaneous utility functions.
1276 */
1277
1278 /* Allocate memory and initialize a new variable */
1279 static struct varobj *
1280 new_variable (void)
1281 {
1282 struct varobj *var;
1283
1284 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1285 var->name = NULL;
1286 var->obj_name = NULL;
1287 var->index = -1;
1288 var->type = NULL;
1289 var->value = NULL;
1290 var->error = 0;
1291 var->num_children = -1;
1292 var->parent = NULL;
1293 var->children = NULL;
1294 var->format = 0;
1295 var->root = NULL;
1296
1297 return var;
1298 }
1299
1300 /* Allocate memory and initialize a new root variable */
1301 static struct varobj *
1302 new_root_variable (void)
1303 {
1304 struct varobj *var = new_variable ();
1305 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1306 var->root->lang = NULL;
1307 var->root->exp = NULL;
1308 var->root->valid_block = NULL;
1309 var->root->frame = (CORE_ADDR) -1;
1310 var->root->use_selected_frame = 0;
1311 var->root->rootvar = NULL;
1312
1313 return var;
1314 }
1315
1316 /* Free any allocated memory associated with VAR. */
1317 static void
1318 free_variable (struct varobj *var)
1319 {
1320 /* Free the expression if this is a root variable. */
1321 if (var->root->rootvar == var)
1322 {
1323 free_current_contents ((char **) &var->root->exp);
1324 xfree (var->root);
1325 }
1326
1327 xfree (var->name);
1328 xfree (var->obj_name);
1329 xfree (var);
1330 }
1331
1332 static void
1333 do_free_variable_cleanup (void *var)
1334 {
1335 free_variable (var);
1336 }
1337
1338 static struct cleanup *
1339 make_cleanup_free_variable (struct varobj *var)
1340 {
1341 return make_cleanup (do_free_variable_cleanup, var);
1342 }
1343
1344 /* This returns the type of the variable. This skips past typedefs
1345 and returns the real type of the variable. It also dereferences
1346 pointers and references. */
1347 static struct type *
1348 get_type (struct varobj *var)
1349 {
1350 struct type *type;
1351 type = var->type;
1352
1353 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1354 type = TYPE_TARGET_TYPE (type);
1355
1356 return type;
1357 }
1358
1359 /* This returns the type of the variable, dereferencing pointers, too. */
1360 static struct type *
1361 get_type_deref (struct varobj *var)
1362 {
1363 struct type *type;
1364
1365 type = get_type (var);
1366
1367 if (type != NULL && (TYPE_CODE (type) == TYPE_CODE_PTR
1368 || TYPE_CODE (type) == TYPE_CODE_REF))
1369 type = get_target_type (type);
1370
1371 return type;
1372 }
1373
1374 /* This returns the target type (or NULL) of TYPE, also skipping
1375 past typedefs, just like get_type (). */
1376 static struct type *
1377 get_target_type (struct type *type)
1378 {
1379 if (type != NULL)
1380 {
1381 type = TYPE_TARGET_TYPE (type);
1382 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1383 type = TYPE_TARGET_TYPE (type);
1384 }
1385
1386 return type;
1387 }
1388
1389 /* What is the default display for this variable? We assume that
1390 everything is "natural". Any exceptions? */
1391 static enum varobj_display_formats
1392 variable_default_display (struct varobj *var)
1393 {
1394 return FORMAT_NATURAL;
1395 }
1396
1397 /* This function is similar to gdb's value_equal, except that this
1398 one is "safe" -- it NEVER longjmps. It determines if the VAR's
1399 value is the same as VAL2. */
1400 static int
1401 my_value_equal (struct value *val1, struct value *val2, int *error2)
1402 {
1403 int r, err1, err2;
1404
1405 *error2 = 0;
1406 /* Special case: NULL values. If both are null, say
1407 they're equal. */
1408 if (val1 == NULL && val2 == NULL)
1409 return 1;
1410 else if (val1 == NULL || val2 == NULL)
1411 return 0;
1412
1413 /* This is bogus, but unfortunately necessary. We must know
1414 exactly what caused an error -- reading val1 or val2 -- so
1415 that we can really determine if we think that something has changed. */
1416 err1 = 0;
1417 err2 = 0;
1418 /* We do need to catch errors here because the whole purpose
1419 is to test if value_equal() has errored */
1420 if (!gdb_value_equal (val1, val1, &r))
1421 err1 = 1;
1422
1423 if (!gdb_value_equal (val2, val2, &r))
1424 *error2 = err2 = 1;
1425
1426 if (err1 != err2)
1427 return 0;
1428
1429 if (!gdb_value_equal (val1, val2, &r))
1430 {
1431 /* An error occurred, this could have happened if
1432 either val1 or val2 errored. ERR1 and ERR2 tell
1433 us which of these it is. If both errored, then
1434 we assume nothing has changed. If one of them is
1435 valid, though, then something has changed. */
1436 if (err1 == err2)
1437 {
1438 /* both the old and new values caused errors, so
1439 we say the value did not change */
1440 /* This is indeterminate, though. Perhaps we should
1441 be safe and say, yes, it changed anyway?? */
1442 return 1;
1443 }
1444 else
1445 {
1446 return 0;
1447 }
1448 }
1449
1450 return r;
1451 }
1452
1453 /* FIXME: The following should be generic for any pointer */
1454 static void
1455 vpush (struct vstack **pstack, struct varobj *var)
1456 {
1457 struct vstack *s;
1458
1459 s = (struct vstack *) xmalloc (sizeof (struct vstack));
1460 s->var = var;
1461 s->next = *pstack;
1462 *pstack = s;
1463 }
1464
1465 /* FIXME: The following should be generic for any pointer */
1466 static struct varobj *
1467 vpop (struct vstack **pstack)
1468 {
1469 struct vstack *s;
1470 struct varobj *v;
1471
1472 if ((*pstack)->var == NULL && (*pstack)->next == NULL)
1473 return NULL;
1474
1475 s = *pstack;
1476 v = s->var;
1477 *pstack = (*pstack)->next;
1478 xfree (s);
1479
1480 return v;
1481 }
1482
1483 /* FIXME: The following should be generic for any pointer */
1484 static void
1485 cppush (struct cpstack **pstack, char *name)
1486 {
1487 struct cpstack *s;
1488
1489 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1490 s->name = name;
1491 s->next = *pstack;
1492 *pstack = s;
1493 }
1494
1495 /* FIXME: The following should be generic for any pointer */
1496 static char *
1497 cppop (struct cpstack **pstack)
1498 {
1499 struct cpstack *s;
1500 char *v;
1501
1502 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1503 return NULL;
1504
1505 s = *pstack;
1506 v = s->name;
1507 *pstack = (*pstack)->next;
1508 xfree (s);
1509
1510 return v;
1511 }
1512 \f
1513 /*
1514 * Language-dependencies
1515 */
1516
1517 /* Common entry points */
1518
1519 /* Get the language of variable VAR. */
1520 static enum varobj_languages
1521 variable_language (struct varobj *var)
1522 {
1523 enum varobj_languages lang;
1524
1525 switch (var->root->exp->language_defn->la_language)
1526 {
1527 default:
1528 case language_c:
1529 lang = vlang_c;
1530 break;
1531 case language_cplus:
1532 lang = vlang_cplus;
1533 break;
1534 case language_java:
1535 lang = vlang_java;
1536 break;
1537 }
1538
1539 return lang;
1540 }
1541
1542 /* Return the number of children for a given variable.
1543 The result of this function is defined by the language
1544 implementation. The number of children returned by this function
1545 is the number of children that the user will see in the variable
1546 display. */
1547 static int
1548 number_of_children (struct varobj *var)
1549 {
1550 return (*var->root->lang->number_of_children) (var);;
1551 }
1552
1553 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1554 static char *
1555 name_of_variable (struct varobj *var)
1556 {
1557 return (*var->root->lang->name_of_variable) (var);
1558 }
1559
1560 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1561 static char *
1562 name_of_child (struct varobj *var, int index)
1563 {
1564 return (*var->root->lang->name_of_child) (var, index);
1565 }
1566
1567 /* What is the ``struct value *'' of the root variable VAR?
1568 TYPE_CHANGED controls what to do if the type of a
1569 use_selected_frame = 1 variable changes. On input,
1570 TYPE_CHANGED = 1 means discard the old varobj, and replace
1571 it with this one. TYPE_CHANGED = 0 means leave it around.
1572 NB: In both cases, var_handle will point to the new varobj,
1573 so if you use TYPE_CHANGED = 0, you will have to stash the
1574 old varobj pointer away somewhere before calling this.
1575 On return, TYPE_CHANGED will be 1 if the type has changed, and
1576 0 otherwise. */
1577 static struct value *
1578 value_of_root (struct varobj **var_handle, int *type_changed)
1579 {
1580 struct varobj *var;
1581
1582 if (var_handle == NULL)
1583 return NULL;
1584
1585 var = *var_handle;
1586
1587 /* This should really be an exception, since this should
1588 only get called with a root variable. */
1589
1590 if (var->root->rootvar != var)
1591 return NULL;
1592
1593 if (var->root->use_selected_frame)
1594 {
1595 struct varobj *tmp_var;
1596 char *old_type, *new_type;
1597 old_type = varobj_get_type (var);
1598 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1599 USE_SELECTED_FRAME);
1600 if (tmp_var == NULL)
1601 {
1602 return NULL;
1603 }
1604 new_type = varobj_get_type (tmp_var);
1605 if (strcmp (old_type, new_type) == 0)
1606 {
1607 varobj_delete (tmp_var, NULL, 0);
1608 *type_changed = 0;
1609 }
1610 else
1611 {
1612 if (*type_changed)
1613 {
1614 tmp_var->obj_name =
1615 savestring (var->obj_name, strlen (var->obj_name));
1616 varobj_delete (var, NULL, 0);
1617 }
1618 else
1619 {
1620 tmp_var->obj_name = varobj_gen_name ();
1621 }
1622 install_variable (tmp_var);
1623 *var_handle = tmp_var;
1624 var = *var_handle;
1625 *type_changed = 1;
1626 }
1627 }
1628 else
1629 {
1630 *type_changed = 0;
1631 }
1632
1633 return (*var->root->lang->value_of_root) (var_handle);
1634 }
1635
1636 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1637 static struct value *
1638 value_of_child (struct varobj *parent, int index)
1639 {
1640 struct value *value;
1641
1642 value = (*parent->root->lang->value_of_child) (parent, index);
1643
1644 /* If we're being lazy, fetch the real value of the variable. */
1645 if (value != NULL && VALUE_LAZY (value))
1646 {
1647 /* If we fail to fetch the value of the child, return
1648 NULL so that callers notice that we're leaving an
1649 error message. */
1650 if (!gdb_value_fetch_lazy (value))
1651 value = NULL;
1652 }
1653
1654 return value;
1655 }
1656
1657 /* What is the type of VAR? */
1658 static struct type *
1659 type_of_child (struct varobj *var)
1660 {
1661
1662 /* If the child had no evaluation errors, var->value
1663 will be non-NULL and contain a valid type. */
1664 if (var->value != NULL)
1665 return VALUE_TYPE (var->value);
1666
1667 /* Otherwise, we must compute the type. */
1668 return (*var->root->lang->type_of_child) (var->parent, var->index);
1669 }
1670
1671 /* Is this variable editable? Use the variable's type to make
1672 this determination. */
1673 static int
1674 variable_editable (struct varobj *var)
1675 {
1676 return (*var->root->lang->variable_editable) (var);
1677 }
1678
1679 /* GDB already has a command called "value_of_variable". Sigh. */
1680 static char *
1681 my_value_of_variable (struct varobj *var)
1682 {
1683 return (*var->root->lang->value_of_variable) (var);
1684 }
1685
1686 /* Is VAR something that can change? Depending on language,
1687 some variable's values never change. For example,
1688 struct and unions never change values. */
1689 static int
1690 type_changeable (struct varobj *var)
1691 {
1692 int r;
1693 struct type *type;
1694
1695 if (CPLUS_FAKE_CHILD (var))
1696 return 0;
1697
1698 type = get_type (var);
1699
1700 switch (TYPE_CODE (type))
1701 {
1702 case TYPE_CODE_STRUCT:
1703 case TYPE_CODE_UNION:
1704 case TYPE_CODE_ARRAY:
1705 r = 0;
1706 break;
1707
1708 default:
1709 r = 1;
1710 }
1711
1712 return r;
1713 }
1714
1715 /* C */
1716 static int
1717 c_number_of_children (struct varobj *var)
1718 {
1719 struct type *type;
1720 struct type *target;
1721 int children;
1722
1723 type = get_type (var);
1724 target = get_target_type (type);
1725 children = 0;
1726
1727 switch (TYPE_CODE (type))
1728 {
1729 case TYPE_CODE_ARRAY:
1730 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
1731 && TYPE_ARRAY_UPPER_BOUND_TYPE (type) != BOUND_CANNOT_BE_DETERMINED)
1732 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1733 else
1734 children = -1;
1735 break;
1736
1737 case TYPE_CODE_STRUCT:
1738 case TYPE_CODE_UNION:
1739 children = TYPE_NFIELDS (type);
1740 break;
1741
1742 case TYPE_CODE_PTR:
1743 /* This is where things get compilcated. All pointers have one child.
1744 Except, of course, for struct and union ptr, which we automagically
1745 dereference for the user and function ptrs, which have no children.
1746 We also don't dereference void* as we don't know what to show.
1747 We can show char* so we allow it to be dereferenced. If you decide
1748 to test for it, please mind that a little magic is necessary to
1749 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1750 TYPE_NAME == "char" */
1751
1752 switch (TYPE_CODE (target))
1753 {
1754 case TYPE_CODE_STRUCT:
1755 case TYPE_CODE_UNION:
1756 children = TYPE_NFIELDS (target);
1757 break;
1758
1759 case TYPE_CODE_FUNC:
1760 case TYPE_CODE_VOID:
1761 children = 0;
1762 break;
1763
1764 default:
1765 children = 1;
1766 }
1767 break;
1768
1769 default:
1770 /* Other types have no children */
1771 break;
1772 }
1773
1774 return children;
1775 }
1776
1777 static char *
1778 c_name_of_variable (struct varobj *parent)
1779 {
1780 return savestring (parent->name, strlen (parent->name));
1781 }
1782
1783 static char *
1784 c_name_of_child (struct varobj *parent, int index)
1785 {
1786 struct type *type;
1787 struct type *target;
1788 char *name;
1789 char *string;
1790
1791 type = get_type (parent);
1792 target = get_target_type (type);
1793
1794 switch (TYPE_CODE (type))
1795 {
1796 case TYPE_CODE_ARRAY:
1797 {
1798 /* We never get here unless parent->num_children is greater than 0... */
1799 int len = 1;
1800 while ((int) pow ((double) 10, (double) len) < index)
1801 len++;
1802 name = (char *) xmalloc (1 + len * sizeof (char));
1803 sprintf (name, "%d", index);
1804 }
1805 break;
1806
1807 case TYPE_CODE_STRUCT:
1808 case TYPE_CODE_UNION:
1809 string = TYPE_FIELD_NAME (type, index);
1810 name = savestring (string, strlen (string));
1811 break;
1812
1813 case TYPE_CODE_PTR:
1814 switch (TYPE_CODE (target))
1815 {
1816 case TYPE_CODE_STRUCT:
1817 case TYPE_CODE_UNION:
1818 string = TYPE_FIELD_NAME (target, index);
1819 name = savestring (string, strlen (string));
1820 break;
1821
1822 default:
1823 name =
1824 (char *) xmalloc ((strlen (parent->name) + 2) * sizeof (char));
1825 sprintf (name, "*%s", parent->name);
1826 break;
1827 }
1828 break;
1829
1830 default:
1831 /* This should not happen */
1832 name = xstrdup ("???");
1833 }
1834
1835 return name;
1836 }
1837
1838 static struct value *
1839 c_value_of_root (struct varobj **var_handle)
1840 {
1841 struct value *new_val;
1842 struct varobj *var = *var_handle;
1843 struct frame_info *fi;
1844 int within_scope;
1845
1846 /* Only root variables can be updated... */
1847 if (var->root->rootvar != var)
1848 /* Not a root var */
1849 return NULL;
1850
1851
1852 /* Determine whether the variable is still around. */
1853 if (var->root->valid_block == NULL)
1854 within_scope = 1;
1855 else
1856 {
1857 reinit_frame_cache ();
1858
1859
1860 fi = find_frame_addr_in_frame_chain (var->root->frame);
1861
1862 within_scope = fi != NULL;
1863 /* FIXME: select_frame could fail */
1864 if (within_scope)
1865 select_frame (fi);
1866 }
1867
1868 if (within_scope)
1869 {
1870 /* We need to catch errors here, because if evaluate
1871 expression fails we just want to make val->error = 1 and
1872 go on */
1873 if (gdb_evaluate_expression (var->root->exp, &new_val))
1874 {
1875 if (VALUE_LAZY (new_val))
1876 {
1877 /* We need to catch errors because if
1878 value_fetch_lazy fails we still want to continue
1879 (after making val->error = 1) */
1880 /* FIXME: Shouldn't be using VALUE_CONTENTS? The
1881 comment on value_fetch_lazy() says it is only
1882 called from the macro... */
1883 if (!gdb_value_fetch_lazy (new_val))
1884 var->error = 1;
1885 else
1886 var->error = 0;
1887 }
1888 }
1889 else
1890 var->error = 1;
1891
1892 release_value (new_val);
1893 return new_val;
1894 }
1895
1896 return NULL;
1897 }
1898
1899 static struct value *
1900 c_value_of_child (struct varobj *parent, int index)
1901 {
1902 struct value *value;
1903 struct value *temp;
1904 struct value *indval;
1905 struct type *type, *target;
1906 char *name;
1907
1908 type = get_type (parent);
1909 target = get_target_type (type);
1910 name = name_of_child (parent, index);
1911 temp = parent->value;
1912 value = NULL;
1913
1914 if (temp != NULL)
1915 {
1916 switch (TYPE_CODE (type))
1917 {
1918 case TYPE_CODE_ARRAY:
1919 #if 0
1920 /* This breaks if the array lives in a (vector) register. */
1921 value = value_slice (temp, index, 1);
1922 temp = value_coerce_array (value);
1923 gdb_value_ind (temp, &value);
1924 #else
1925 indval = value_from_longest (builtin_type_int, (LONGEST) index);
1926 gdb_value_subscript (temp, indval, &value);
1927 #endif
1928 break;
1929
1930 case TYPE_CODE_STRUCT:
1931 case TYPE_CODE_UNION:
1932 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1933 "vstructure");
1934 break;
1935
1936 case TYPE_CODE_PTR:
1937 switch (TYPE_CODE (target))
1938 {
1939 case TYPE_CODE_STRUCT:
1940 case TYPE_CODE_UNION:
1941 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
1942 "vstructure");
1943 break;
1944
1945 default:
1946 gdb_value_ind (temp, &value);
1947 break;
1948 }
1949 break;
1950
1951 default:
1952 break;
1953 }
1954 }
1955
1956 if (value != NULL)
1957 release_value (value);
1958
1959 xfree (name);
1960 return value;
1961 }
1962
1963 static struct type *
1964 c_type_of_child (struct varobj *parent, int index)
1965 {
1966 struct type *type;
1967 char *name = name_of_child (parent, index);
1968
1969 switch (TYPE_CODE (parent->type))
1970 {
1971 case TYPE_CODE_ARRAY:
1972 type = TYPE_TARGET_TYPE (parent->type);
1973 break;
1974
1975 case TYPE_CODE_STRUCT:
1976 case TYPE_CODE_UNION:
1977 type = lookup_struct_elt_type (parent->type, name, 0);
1978 break;
1979
1980 case TYPE_CODE_PTR:
1981 switch (TYPE_CODE (TYPE_TARGET_TYPE (parent->type)))
1982 {
1983 case TYPE_CODE_STRUCT:
1984 case TYPE_CODE_UNION:
1985 type = lookup_struct_elt_type (parent->type, name, 0);
1986 break;
1987
1988 default:
1989 type = TYPE_TARGET_TYPE (parent->type);
1990 break;
1991 }
1992 break;
1993
1994 default:
1995 /* This should not happen as only the above types have children */
1996 warning ("Child of parent whose type does not allow children");
1997 /* FIXME: Can we still go on? */
1998 type = NULL;
1999 break;
2000 }
2001
2002 xfree (name);
2003 return type;
2004 }
2005
2006 static int
2007 c_variable_editable (struct varobj *var)
2008 {
2009 switch (TYPE_CODE (get_type (var)))
2010 {
2011 case TYPE_CODE_STRUCT:
2012 case TYPE_CODE_UNION:
2013 case TYPE_CODE_ARRAY:
2014 case TYPE_CODE_FUNC:
2015 case TYPE_CODE_MEMBER:
2016 case TYPE_CODE_METHOD:
2017 return 0;
2018 break;
2019
2020 default:
2021 return 1;
2022 break;
2023 }
2024 }
2025
2026 static char *
2027 c_value_of_variable (struct varobj *var)
2028 {
2029 struct type *type;
2030
2031 /* BOGUS: if val_print sees a struct/class, it will print out its
2032 children instead of "{...}" */
2033 type = get_type (var);
2034 switch (TYPE_CODE (type))
2035 {
2036 case TYPE_CODE_STRUCT:
2037 case TYPE_CODE_UNION:
2038 return xstrdup ("{...}");
2039 /* break; */
2040
2041 case TYPE_CODE_ARRAY:
2042 {
2043 char number[18];
2044 sprintf (number, "[%d]", var->num_children);
2045 return xstrdup (number);
2046 }
2047 /* break; */
2048
2049 default:
2050 {
2051 long dummy;
2052 struct ui_file *stb = mem_fileopen ();
2053 struct cleanup *old_chain = make_cleanup_ui_file_delete (stb);
2054 char *thevalue;
2055
2056 if (var->value == NULL)
2057 {
2058 /* This can happen if we attempt to get the value of a struct
2059 member when the parent is an invalid pointer. This is an
2060 error condition, so we should tell the caller. */
2061 return NULL;
2062 }
2063 else
2064 {
2065 if (VALUE_LAZY (var->value))
2066 gdb_value_fetch_lazy (var->value);
2067 val_print (VALUE_TYPE (var->value),
2068 VALUE_CONTENTS_RAW (var->value), 0,
2069 VALUE_ADDRESS (var->value), stb,
2070 format_code[(int) var->format], 1, 0, 0);
2071 thevalue = ui_file_xstrdup (stb, &dummy);
2072 do_cleanups (old_chain);
2073 }
2074
2075 return thevalue;
2076 }
2077 /* break; */
2078 }
2079 }
2080 \f
2081
2082 /* C++ */
2083
2084 static int
2085 cplus_number_of_children (struct varobj *var)
2086 {
2087 struct type *type;
2088 int children, dont_know;
2089
2090 dont_know = 1;
2091 children = 0;
2092
2093 if (!CPLUS_FAKE_CHILD (var))
2094 {
2095 type = get_type_deref (var);
2096
2097 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2098 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2099 {
2100 int kids[3];
2101
2102 cplus_class_num_children (type, kids);
2103 if (kids[v_public] != 0)
2104 children++;
2105 if (kids[v_private] != 0)
2106 children++;
2107 if (kids[v_protected] != 0)
2108 children++;
2109
2110 /* Add any baseclasses */
2111 children += TYPE_N_BASECLASSES (type);
2112 dont_know = 0;
2113
2114 /* FIXME: save children in var */
2115 }
2116 }
2117 else
2118 {
2119 int kids[3];
2120
2121 type = get_type_deref (var->parent);
2122
2123 cplus_class_num_children (type, kids);
2124 if (STREQ (var->name, "public"))
2125 children = kids[v_public];
2126 else if (STREQ (var->name, "private"))
2127 children = kids[v_private];
2128 else
2129 children = kids[v_protected];
2130 dont_know = 0;
2131 }
2132
2133 if (dont_know)
2134 children = c_number_of_children (var);
2135
2136 return children;
2137 }
2138
2139 /* Compute # of public, private, and protected variables in this class.
2140 That means we need to descend into all baseclasses and find out
2141 how many are there, too. */
2142 static void
2143 cplus_class_num_children (struct type *type, int children[3])
2144 {
2145 int i;
2146
2147 children[v_public] = 0;
2148 children[v_private] = 0;
2149 children[v_protected] = 0;
2150
2151 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2152 {
2153 /* If we have a virtual table pointer, omit it. */
2154 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2155 continue;
2156
2157 if (TYPE_FIELD_PROTECTED (type, i))
2158 children[v_protected]++;
2159 else if (TYPE_FIELD_PRIVATE (type, i))
2160 children[v_private]++;
2161 else
2162 children[v_public]++;
2163 }
2164 }
2165
2166 static char *
2167 cplus_name_of_variable (struct varobj *parent)
2168 {
2169 return c_name_of_variable (parent);
2170 }
2171
2172 static char *
2173 cplus_name_of_child (struct varobj *parent, int index)
2174 {
2175 char *name;
2176 struct type *type;
2177 int children[3];
2178
2179 if (CPLUS_FAKE_CHILD (parent))
2180 {
2181 /* Looking for children of public, private, or protected. */
2182 type = get_type_deref (parent->parent);
2183 }
2184 else
2185 type = get_type_deref (parent);
2186
2187 name = NULL;
2188 switch (TYPE_CODE (type))
2189 {
2190 case TYPE_CODE_STRUCT:
2191 case TYPE_CODE_UNION:
2192 cplus_class_num_children (type, children);
2193
2194 if (CPLUS_FAKE_CHILD (parent))
2195 {
2196 int i;
2197
2198 /* Skip over vptr, if it exists. */
2199 if (TYPE_VPTR_BASETYPE (type) == type
2200 && index >= TYPE_VPTR_FIELDNO (type))
2201 index++;
2202
2203 /* FIXME: This assumes that type orders
2204 inherited, public, private, protected */
2205 i = index + TYPE_N_BASECLASSES (type);
2206 if (STREQ (parent->name, "private")
2207 || STREQ (parent->name, "protected"))
2208 i += children[v_public];
2209 if (STREQ (parent->name, "protected"))
2210 i += children[v_private];
2211
2212 name = TYPE_FIELD_NAME (type, i);
2213 }
2214 else if (index < TYPE_N_BASECLASSES (type))
2215 name = TYPE_FIELD_NAME (type, index);
2216 else
2217 {
2218 /* Everything beyond the baseclasses can
2219 only be "public", "private", or "protected" */
2220 index -= TYPE_N_BASECLASSES (type);
2221 switch (index)
2222 {
2223 case 0:
2224 if (children[v_public] != 0)
2225 {
2226 name = "public";
2227 break;
2228 }
2229 case 1:
2230 if (children[v_private] != 0)
2231 {
2232 name = "private";
2233 break;
2234 }
2235 case 2:
2236 if (children[v_protected] != 0)
2237 {
2238 name = "protected";
2239 break;
2240 }
2241 default:
2242 /* error! */
2243 break;
2244 }
2245 }
2246 break;
2247
2248 default:
2249 break;
2250 }
2251
2252 if (name == NULL)
2253 return c_name_of_child (parent, index);
2254 else
2255 {
2256 if (name != NULL)
2257 name = savestring (name, strlen (name));
2258 }
2259
2260 return name;
2261 }
2262
2263 static struct value *
2264 cplus_value_of_root (struct varobj **var_handle)
2265 {
2266 return c_value_of_root (var_handle);
2267 }
2268
2269 static struct value *
2270 cplus_value_of_child (struct varobj *parent, int index)
2271 {
2272 struct type *type;
2273 struct value *value;
2274
2275 if (CPLUS_FAKE_CHILD (parent))
2276 type = get_type_deref (parent->parent);
2277 else
2278 type = get_type_deref (parent);
2279
2280 value = NULL;
2281
2282 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2283 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2284 {
2285 if (CPLUS_FAKE_CHILD (parent))
2286 {
2287 char *name;
2288 struct value *temp = parent->parent->value;
2289
2290 if (temp == NULL)
2291 return NULL;
2292
2293 name = name_of_child (parent, index);
2294 gdb_value_struct_elt (NULL, &value, &temp, NULL, name, NULL,
2295 "cplus_structure");
2296 if (value != NULL)
2297 release_value (value);
2298
2299 xfree (name);
2300 }
2301 else if (index >= TYPE_N_BASECLASSES (type))
2302 {
2303 /* public, private, or protected */
2304 return NULL;
2305 }
2306 else
2307 {
2308 /* Baseclass */
2309 if (parent->value != NULL)
2310 {
2311 struct value *temp = NULL;
2312
2313 if (TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_PTR
2314 || TYPE_CODE (VALUE_TYPE (parent->value)) == TYPE_CODE_REF)
2315 {
2316 if (!gdb_value_ind (parent->value, &temp))
2317 return NULL;
2318 }
2319 else
2320 temp = parent->value;
2321
2322 if (temp != NULL)
2323 {
2324 value = value_cast (TYPE_FIELD_TYPE (type, index), temp);
2325 release_value (value);
2326 }
2327 else
2328 {
2329 /* We failed to evaluate the parent's value, so don't even
2330 bother trying to evaluate this child. */
2331 return NULL;
2332 }
2333 }
2334 }
2335 }
2336
2337 if (value == NULL)
2338 return c_value_of_child (parent, index);
2339
2340 return value;
2341 }
2342
2343 static struct type *
2344 cplus_type_of_child (struct varobj *parent, int index)
2345 {
2346 struct type *type, *t;
2347
2348 if (CPLUS_FAKE_CHILD (parent))
2349 {
2350 /* Looking for the type of a child of public, private, or protected. */
2351 t = get_type_deref (parent->parent);
2352 }
2353 else
2354 t = get_type_deref (parent);
2355
2356 type = NULL;
2357 switch (TYPE_CODE (t))
2358 {
2359 case TYPE_CODE_STRUCT:
2360 case TYPE_CODE_UNION:
2361 if (CPLUS_FAKE_CHILD (parent))
2362 {
2363 char *name = cplus_name_of_child (parent, index);
2364 type = lookup_struct_elt_type (t, name, 0);
2365 xfree (name);
2366 }
2367 else if (index < TYPE_N_BASECLASSES (t))
2368 type = TYPE_FIELD_TYPE (t, index);
2369 else
2370 {
2371 /* special */
2372 return NULL;
2373 }
2374 break;
2375
2376 default:
2377 break;
2378 }
2379
2380 if (type == NULL)
2381 return c_type_of_child (parent, index);
2382
2383 return type;
2384 }
2385
2386 static int
2387 cplus_variable_editable (struct varobj *var)
2388 {
2389 if (CPLUS_FAKE_CHILD (var))
2390 return 0;
2391
2392 return c_variable_editable (var);
2393 }
2394
2395 static char *
2396 cplus_value_of_variable (struct varobj *var)
2397 {
2398
2399 /* If we have one of our special types, don't print out
2400 any value. */
2401 if (CPLUS_FAKE_CHILD (var))
2402 return xstrdup ("");
2403
2404 return c_value_of_variable (var);
2405 }
2406 \f
2407 /* Java */
2408
2409 static int
2410 java_number_of_children (struct varobj *var)
2411 {
2412 return cplus_number_of_children (var);
2413 }
2414
2415 static char *
2416 java_name_of_variable (struct varobj *parent)
2417 {
2418 char *p, *name;
2419
2420 name = cplus_name_of_variable (parent);
2421 /* If the name has "-" in it, it is because we
2422 needed to escape periods in the name... */
2423 p = name;
2424
2425 while (*p != '\000')
2426 {
2427 if (*p == '-')
2428 *p = '.';
2429 p++;
2430 }
2431
2432 return name;
2433 }
2434
2435 static char *
2436 java_name_of_child (struct varobj *parent, int index)
2437 {
2438 char *name, *p;
2439
2440 name = cplus_name_of_child (parent, index);
2441 /* Escape any periods in the name... */
2442 p = name;
2443
2444 while (*p != '\000')
2445 {
2446 if (*p == '.')
2447 *p = '-';
2448 p++;
2449 }
2450
2451 return name;
2452 }
2453
2454 static struct value *
2455 java_value_of_root (struct varobj **var_handle)
2456 {
2457 return cplus_value_of_root (var_handle);
2458 }
2459
2460 static struct value *
2461 java_value_of_child (struct varobj *parent, int index)
2462 {
2463 return cplus_value_of_child (parent, index);
2464 }
2465
2466 static struct type *
2467 java_type_of_child (struct varobj *parent, int index)
2468 {
2469 return cplus_type_of_child (parent, index);
2470 }
2471
2472 static int
2473 java_variable_editable (struct varobj *var)
2474 {
2475 return cplus_variable_editable (var);
2476 }
2477
2478 static char *
2479 java_value_of_variable (struct varobj *var)
2480 {
2481 return cplus_value_of_variable (var);
2482 }
2483 \f
2484 extern void _initialize_varobj (void);
2485 void
2486 _initialize_varobj (void)
2487 {
2488 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2489
2490 varobj_table = xmalloc (sizeof_table);
2491 memset (varobj_table, 0, sizeof_table);
2492
2493 add_show_from_set (add_set_cmd ("debugvarobj", class_maintenance, var_zinteger, (char *) &varobjdebug, "Set varobj debugging.\n\
2494 When non-zero, varobj debugging is enabled.", &setlist),
2495 &showlist);
2496 }
This page took 0.079362 seconds and 4 git commands to generate.