*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61
62 /* Data structures */
63
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66 struct varobj_root
67 {
68
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
71
72 /* Block for which this expression is valid */
73 struct block *valid_block;
74
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
77 struct frame_id frame;
78
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
90
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
97
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
100
101 /* Next root variable */
102 struct varobj_root *next;
103 };
104
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108 struct varobj
109 {
110
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
116
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
124
125 /* Index of this variable in its parent or -1 */
126 int index;
127
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
131 struct type *type;
132
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
137 struct value *value;
138
139 /* The number of (immediate) children this variable has */
140 int num_children;
141
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
144
145 /* Children of this object. */
146 VEC (varobj_p) *children;
147
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
156
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
162
163 /* Last print value. */
164 char *print_value;
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
179 };
180
181 struct cpstack
182 {
183 char *name;
184 struct cpstack *next;
185 };
186
187 /* A list of varobjs */
188
189 struct vlist
190 {
191 struct varobj *var;
192 struct vlist *next;
193 };
194
195 /* Private function prototypes */
196
197 /* Helper functions for the above subcommands. */
198
199 static int delete_variable (struct cpstack **, struct varobj *, int);
200
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
203
204 static int install_variable (struct varobj *);
205
206 static void uninstall_variable (struct varobj *);
207
208 static struct varobj *create_child (struct varobj *, int, char *);
209
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
214 /* Utility routines */
215
216 static struct varobj *new_variable (void);
217
218 static struct varobj *new_root_variable (void);
219
220 static void free_variable (struct varobj *var);
221
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
224 static struct type *get_type (struct varobj *var);
225
226 static struct type *get_value_type (struct varobj *var);
227
228 static struct type *get_target_type (struct type *);
229
230 static enum varobj_display_formats variable_default_display (struct varobj *);
231
232 static void cppush (struct cpstack **pstack, char *name);
233
234 static char *cppop (struct cpstack **pstack);
235
236 static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
239 static void install_default_visualizer (struct varobj *var);
240
241 /* Language-specific routines. */
242
243 static enum varobj_languages variable_language (struct varobj *var);
244
245 static int number_of_children (struct varobj *);
246
247 static char *name_of_variable (struct varobj *);
248
249 static char *name_of_child (struct varobj *, int);
250
251 static struct value *value_of_root (struct varobj **var_handle, int *);
252
253 static struct value *value_of_child (struct varobj *parent, int index);
254
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
257
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 struct varobj *var);
261
262 static int varobj_value_is_changeable_p (struct varobj *var);
263
264 static int is_root_p (struct varobj *var);
265
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
269 /* C implementation */
270
271 static int c_number_of_children (struct varobj *var);
272
273 static char *c_name_of_variable (struct varobj *parent);
274
275 static char *c_name_of_child (struct varobj *parent, int index);
276
277 static char *c_path_expr_of_child (struct varobj *child);
278
279 static struct value *c_value_of_root (struct varobj **var_handle);
280
281 static struct value *c_value_of_child (struct varobj *parent, int index);
282
283 static struct type *c_type_of_child (struct varobj *parent, int index);
284
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 /* C++ implementation */
289
290 static int cplus_number_of_children (struct varobj *var);
291
292 static void cplus_class_num_children (struct type *type, int children[3]);
293
294 static char *cplus_name_of_variable (struct varobj *parent);
295
296 static char *cplus_name_of_child (struct varobj *parent, int index);
297
298 static char *cplus_path_expr_of_child (struct varobj *child);
299
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
301
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
303
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
305
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
308
309 /* Java implementation */
310
311 static int java_number_of_children (struct varobj *var);
312
313 static char *java_name_of_variable (struct varobj *parent);
314
315 static char *java_name_of_child (struct varobj *parent, int index);
316
317 static char *java_path_expr_of_child (struct varobj *child);
318
319 static struct value *java_value_of_root (struct varobj **var_handle);
320
321 static struct value *java_value_of_child (struct varobj *parent, int index);
322
323 static struct type *java_type_of_child (struct varobj *parent, int index);
324
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
327
328 /* The language specific vector */
329
330 struct language_specific
331 {
332
333 /* The language of this variable */
334 enum varobj_languages language;
335
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
338
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
341
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
344
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
351
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
354
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
357
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
361 };
362
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
366 {
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
371 c_path_expr_of_child,
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
375 c_value_of_variable}
376 ,
377 /* C */
378 {
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
383 c_path_expr_of_child,
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
387 c_value_of_variable}
388 ,
389 /* C++ */
390 {
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
395 cplus_path_expr_of_child,
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
399 cplus_value_of_variable}
400 ,
401 /* Java */
402 {
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
407 java_path_expr_of_child,
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
411 java_value_of_variable}
412 };
413
414 /* A little convenience enum for dealing with C++/Java */
415 enum vsections
416 {
417 v_public = 0, v_private, v_protected
418 };
419
420 /* Private data */
421
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
424
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427
428 /* Prime number indicating the number of buckets in the hash table */
429 /* A prime large enough to avoid too many colisions */
430 #define VAROBJ_TABLE_SIZE 227
431
432 /* Pointer to the varobj hash table (built at run time) */
433 static struct vlist **varobj_table;
434
435 /* Is the variable X one of our "fake" children? */
436 #define CPLUS_FAKE_CHILD(x) \
437 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
438 \f
439
440 /* API Implementation */
441 static int
442 is_root_p (struct varobj *var)
443 {
444 return (var->root->rootvar == var);
445 }
446
447 #ifdef HAVE_PYTHON
448 /* Helper function to install a Python environment suitable for
449 use during operations on VAR. */
450 struct cleanup *
451 varobj_ensure_python_env (struct varobj *var)
452 {
453 return ensure_python_env (var->root->exp->gdbarch,
454 var->root->exp->language_defn);
455 }
456 #endif
457
458 /* Creates a varobj (not its children) */
459
460 /* Return the full FRAME which corresponds to the given CORE_ADDR
461 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
462
463 static struct frame_info *
464 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
465 {
466 struct frame_info *frame = NULL;
467
468 if (frame_addr == (CORE_ADDR) 0)
469 return NULL;
470
471 for (frame = get_current_frame ();
472 frame != NULL;
473 frame = get_prev_frame (frame))
474 {
475 /* The CORE_ADDR we get as argument was parsed from a string GDB
476 output as $fp. This output got truncated to gdbarch_addr_bit.
477 Truncate the frame base address in the same manner before
478 comparing it against our argument. */
479 CORE_ADDR frame_base = get_frame_base_address (frame);
480 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
481 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
482 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
483
484 if (frame_base == frame_addr)
485 return frame;
486 }
487
488 return NULL;
489 }
490
491 struct varobj *
492 varobj_create (char *objname,
493 char *expression, CORE_ADDR frame, enum varobj_type type)
494 {
495 struct varobj *var;
496 struct frame_info *fi;
497 struct frame_info *old_fi = NULL;
498 struct block *block;
499 struct cleanup *old_chain;
500
501 /* Fill out a varobj structure for the (root) variable being constructed. */
502 var = new_root_variable ();
503 old_chain = make_cleanup_free_variable (var);
504
505 if (expression != NULL)
506 {
507 char *p;
508 enum varobj_languages lang;
509 struct value *value = NULL;
510
511 /* Parse and evaluate the expression, filling in as much of the
512 variable's data as possible. */
513
514 if (has_stack_frames ())
515 {
516 /* Allow creator to specify context of variable */
517 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
518 fi = get_selected_frame (NULL);
519 else
520 /* FIXME: cagney/2002-11-23: This code should be doing a
521 lookup using the frame ID and not just the frame's
522 ``address''. This, of course, means an interface
523 change. However, with out that interface change ISAs,
524 such as the ia64 with its two stacks, won't work.
525 Similar goes for the case where there is a frameless
526 function. */
527 fi = find_frame_addr_in_frame_chain (frame);
528 }
529 else
530 fi = NULL;
531
532 /* frame = -2 means always use selected frame */
533 if (type == USE_SELECTED_FRAME)
534 var->root->floating = 1;
535
536 block = NULL;
537 if (fi != NULL)
538 block = get_frame_block (fi, 0);
539
540 p = expression;
541 innermost_block = NULL;
542 /* Wrap the call to parse expression, so we can
543 return a sensible error. */
544 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
545 {
546 return NULL;
547 }
548
549 /* Don't allow variables to be created for types. */
550 if (var->root->exp->elts[0].opcode == OP_TYPE)
551 {
552 do_cleanups (old_chain);
553 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
554 " as an expression.\n");
555 return NULL;
556 }
557
558 var->format = variable_default_display (var);
559 var->root->valid_block = innermost_block;
560 var->name = xstrdup (expression);
561 /* For a root var, the name and the expr are the same. */
562 var->path_expr = xstrdup (expression);
563
564 /* When the frame is different from the current frame,
565 we must select the appropriate frame before parsing
566 the expression, otherwise the value will not be current.
567 Since select_frame is so benign, just call it for all cases. */
568 if (innermost_block && fi != NULL)
569 {
570 var->root->frame = get_frame_id (fi);
571 var->root->thread_id = pid_to_thread_id (inferior_ptid);
572 old_fi = get_selected_frame (NULL);
573 select_frame (fi);
574 }
575
576 /* We definitely need to catch errors here.
577 If evaluate_expression succeeds we got the value we wanted.
578 But if it fails, we still go on with a call to evaluate_type() */
579 if (!gdb_evaluate_expression (var->root->exp, &value))
580 {
581 /* Error getting the value. Try to at least get the
582 right type. */
583 struct value *type_only_value = evaluate_type (var->root->exp);
584 var->type = value_type (type_only_value);
585 }
586 else
587 var->type = value_type (value);
588
589 install_new_value (var, value, 1 /* Initial assignment */);
590
591 /* Set language info */
592 lang = variable_language (var);
593 var->root->lang = &languages[lang];
594
595 /* Set ourselves as our root */
596 var->root->rootvar = var;
597
598 /* Reset the selected frame */
599 if (old_fi != NULL)
600 select_frame (old_fi);
601 }
602
603 /* If the variable object name is null, that means this
604 is a temporary variable, so don't install it. */
605
606 if ((var != NULL) && (objname != NULL))
607 {
608 var->obj_name = xstrdup (objname);
609
610 /* If a varobj name is duplicated, the install will fail so
611 we must clenup */
612 if (!install_variable (var))
613 {
614 do_cleanups (old_chain);
615 return NULL;
616 }
617 }
618
619 install_default_visualizer (var);
620 discard_cleanups (old_chain);
621 return var;
622 }
623
624 /* Generates an unique name that can be used for a varobj */
625
626 char *
627 varobj_gen_name (void)
628 {
629 static int id = 0;
630 char *obj_name;
631
632 /* generate a name for this object */
633 id++;
634 obj_name = xstrprintf ("var%d", id);
635
636 return obj_name;
637 }
638
639 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
640 error if OBJNAME cannot be found. */
641
642 struct varobj *
643 varobj_get_handle (char *objname)
644 {
645 struct vlist *cv;
646 const char *chp;
647 unsigned int index = 0;
648 unsigned int i = 1;
649
650 for (chp = objname; *chp; chp++)
651 {
652 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
653 }
654
655 cv = *(varobj_table + index);
656 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
657 cv = cv->next;
658
659 if (cv == NULL)
660 error (_("Variable object not found"));
661
662 return cv->var;
663 }
664
665 /* Given the handle, return the name of the object */
666
667 char *
668 varobj_get_objname (struct varobj *var)
669 {
670 return var->obj_name;
671 }
672
673 /* Given the handle, return the expression represented by the object */
674
675 char *
676 varobj_get_expression (struct varobj *var)
677 {
678 return name_of_variable (var);
679 }
680
681 /* Deletes a varobj and all its children if only_children == 0,
682 otherwise deletes only the children; returns a malloc'ed list of all the
683 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
684
685 int
686 varobj_delete (struct varobj *var, char ***dellist, int only_children)
687 {
688 int delcount;
689 int mycount;
690 struct cpstack *result = NULL;
691 char **cp;
692
693 /* Initialize a stack for temporary results */
694 cppush (&result, NULL);
695
696 if (only_children)
697 /* Delete only the variable children */
698 delcount = delete_variable (&result, var, 1 /* only the children */ );
699 else
700 /* Delete the variable and all its children */
701 delcount = delete_variable (&result, var, 0 /* parent+children */ );
702
703 /* We may have been asked to return a list of what has been deleted */
704 if (dellist != NULL)
705 {
706 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
707
708 cp = *dellist;
709 mycount = delcount;
710 *cp = cppop (&result);
711 while ((*cp != NULL) && (mycount > 0))
712 {
713 mycount--;
714 cp++;
715 *cp = cppop (&result);
716 }
717
718 if (mycount || (*cp != NULL))
719 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
720 mycount);
721 }
722
723 return delcount;
724 }
725
726 /* Convenience function for varobj_set_visualizer. Instantiate a
727 pretty-printer for a given value. */
728 static PyObject *
729 instantiate_pretty_printer (PyObject *constructor, struct value *value)
730 {
731 #if HAVE_PYTHON
732 PyObject *val_obj = NULL;
733 PyObject *printer;
734 volatile struct gdb_exception except;
735
736 TRY_CATCH (except, RETURN_MASK_ALL)
737 {
738 value = value_copy (value);
739 }
740 GDB_PY_HANDLE_EXCEPTION (except);
741 val_obj = value_to_value_object (value);
742
743 if (! val_obj)
744 return NULL;
745
746 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
747 Py_DECREF (val_obj);
748 return printer;
749 #endif
750 return NULL;
751 }
752
753 /* Set/Get variable object display format */
754
755 enum varobj_display_formats
756 varobj_set_display_format (struct varobj *var,
757 enum varobj_display_formats format)
758 {
759 switch (format)
760 {
761 case FORMAT_NATURAL:
762 case FORMAT_BINARY:
763 case FORMAT_DECIMAL:
764 case FORMAT_HEXADECIMAL:
765 case FORMAT_OCTAL:
766 var->format = format;
767 break;
768
769 default:
770 var->format = variable_default_display (var);
771 }
772
773 if (varobj_value_is_changeable_p (var)
774 && var->value && !value_lazy (var->value))
775 {
776 xfree (var->print_value);
777 var->print_value = value_get_print_value (var->value, var->format, var);
778 }
779
780 return var->format;
781 }
782
783 enum varobj_display_formats
784 varobj_get_display_format (struct varobj *var)
785 {
786 return var->format;
787 }
788
789 char *
790 varobj_get_display_hint (struct varobj *var)
791 {
792 char *result = NULL;
793
794 #if HAVE_PYTHON
795 struct cleanup *back_to = varobj_ensure_python_env (var);
796
797 if (var->pretty_printer)
798 result = gdbpy_get_display_hint (var->pretty_printer);
799
800 do_cleanups (back_to);
801 #endif
802
803 return result;
804 }
805
806 /* If the variable object is bound to a specific thread, that
807 is its evaluation can always be done in context of a frame
808 inside that thread, returns GDB id of the thread -- which
809 is always positive. Otherwise, returns -1. */
810 int
811 varobj_get_thread_id (struct varobj *var)
812 {
813 if (var->root->valid_block && var->root->thread_id > 0)
814 return var->root->thread_id;
815 else
816 return -1;
817 }
818
819 void
820 varobj_set_frozen (struct varobj *var, int frozen)
821 {
822 /* When a variable is unfrozen, we don't fetch its value.
823 The 'not_fetched' flag remains set, so next -var-update
824 won't complain.
825
826 We don't fetch the value, because for structures the client
827 should do -var-update anyway. It would be bad to have different
828 client-size logic for structure and other types. */
829 var->frozen = frozen;
830 }
831
832 int
833 varobj_get_frozen (struct varobj *var)
834 {
835 return var->frozen;
836 }
837
838 static int
839 update_dynamic_varobj_children (struct varobj *var,
840 VEC (varobj_p) **changed,
841 VEC (varobj_p) **new_and_unchanged,
842 int *cchanged)
843
844 {
845 #if HAVE_PYTHON
846 /* FIXME: we *might* want to provide this functionality as
847 a standalone function, so that other interested parties
848 than varobj code can benefit for this. */
849 struct cleanup *back_to;
850 PyObject *children;
851 PyObject *iterator;
852 int i;
853 int children_changed = 0;
854 PyObject *printer = var->pretty_printer;
855
856 back_to = varobj_ensure_python_env (var);
857
858 *cchanged = 0;
859 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
860 {
861 do_cleanups (back_to);
862 return 0;
863 }
864
865 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
866 NULL);
867
868 if (!children)
869 {
870 gdbpy_print_stack ();
871 error (_("Null value returned for children"));
872 }
873
874 make_cleanup_py_decref (children);
875
876 if (!PyIter_Check (children))
877 error (_("Returned value is not iterable"));
878
879 iterator = PyObject_GetIter (children);
880 if (!iterator)
881 {
882 gdbpy_print_stack ();
883 error (_("Could not get children iterator"));
884 }
885 make_cleanup_py_decref (iterator);
886
887 for (i = 0; ; ++i)
888 {
889 PyObject *item = PyIter_Next (iterator);
890 PyObject *py_v;
891 struct value *v;
892 char *name;
893 struct cleanup *inner;
894
895 if (!item)
896 break;
897 inner = make_cleanup_py_decref (item);
898
899 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
900 error (_("Invalid item from the child list"));
901
902 if (PyObject_TypeCheck (py_v, &value_object_type))
903 {
904 /* If we just call convert_value_from_python for this type,
905 we won't know who owns the result. For this one case we
906 need to copy the resulting value. */
907 v = value_object_to_value (py_v);
908 v = value_copy (v);
909 }
910 else
911 v = convert_value_from_python (py_v);
912
913 /* TODO: This assume the name of the i-th child never changes. */
914
915 /* Now see what to do here. */
916 if (VEC_length (varobj_p, var->children) < i + 1)
917 {
918 /* There's no child yet. */
919 struct varobj *child = varobj_add_child (var, name, v);
920 if (new_and_unchanged)
921 VEC_safe_push (varobj_p, *new_and_unchanged, child);
922 children_changed = 1;
923 }
924 else
925 {
926 varobj_p existing = VEC_index (varobj_p, var->children, i);
927 if (install_new_value (existing, v, 0) && changed)
928 {
929 if (changed)
930 VEC_safe_push (varobj_p, *changed, existing);
931 }
932 else
933 {
934 if (new_and_unchanged)
935 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
936 }
937 }
938
939 do_cleanups (inner);
940 }
941
942 if (i < VEC_length (varobj_p, var->children))
943 {
944 int i;
945 children_changed = 1;
946 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
947 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
948 }
949 VEC_truncate (varobj_p, var->children, i);
950 var->num_children = VEC_length (varobj_p, var->children);
951
952 do_cleanups (back_to);
953
954 *cchanged = children_changed;
955 return 1;
956 #else
957 gdb_assert (0 && "should never be called if Python is not enabled");
958 #endif
959 }
960
961 int
962 varobj_get_num_children (struct varobj *var)
963 {
964 if (var->num_children == -1)
965 {
966 int changed;
967 if (!var->pretty_printer
968 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
969 var->num_children = number_of_children (var);
970 }
971
972 return var->num_children;
973 }
974
975 /* Creates a list of the immediate children of a variable object;
976 the return code is the number of such children or -1 on error */
977
978 VEC (varobj_p)*
979 varobj_list_children (struct varobj *var)
980 {
981 struct varobj *child;
982 char *name;
983 int i, children_changed;
984
985 var->children_requested = 1;
986
987 if (var->pretty_printer
988 /* This, in theory, can result in the number of children changing without
989 frontend noticing. But well, calling -var-list-children on the same
990 varobj twice is not something a sane frontend would do. */
991 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
992 return var->children;
993
994 if (var->num_children == -1)
995 var->num_children = number_of_children (var);
996
997 /* If that failed, give up. */
998 if (var->num_children == -1)
999 return var->children;
1000
1001 /* If we're called when the list of children is not yet initialized,
1002 allocate enough elements in it. */
1003 while (VEC_length (varobj_p, var->children) < var->num_children)
1004 VEC_safe_push (varobj_p, var->children, NULL);
1005
1006 for (i = 0; i < var->num_children; i++)
1007 {
1008 varobj_p existing = VEC_index (varobj_p, var->children, i);
1009
1010 if (existing == NULL)
1011 {
1012 /* Either it's the first call to varobj_list_children for
1013 this variable object, and the child was never created,
1014 or it was explicitly deleted by the client. */
1015 name = name_of_child (var, i);
1016 existing = create_child (var, i, name);
1017 VEC_replace (varobj_p, var->children, i, existing);
1018 install_default_visualizer (existing);
1019 }
1020 }
1021
1022 return var->children;
1023 }
1024
1025 static struct varobj *
1026 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1027 {
1028 varobj_p v = create_child_with_value (var,
1029 VEC_length (varobj_p, var->children),
1030 name, value);
1031 VEC_safe_push (varobj_p, var->children, v);
1032 install_default_visualizer (v);
1033 return v;
1034 }
1035
1036 /* Obtain the type of an object Variable as a string similar to the one gdb
1037 prints on the console */
1038
1039 char *
1040 varobj_get_type (struct varobj *var)
1041 {
1042 /* For the "fake" variables, do not return a type. (It's type is
1043 NULL, too.)
1044 Do not return a type for invalid variables as well. */
1045 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1046 return NULL;
1047
1048 return type_to_string (var->type);
1049 }
1050
1051 /* Obtain the type of an object variable. */
1052
1053 struct type *
1054 varobj_get_gdb_type (struct varobj *var)
1055 {
1056 return var->type;
1057 }
1058
1059 /* Return a pointer to the full rooted expression of varobj VAR.
1060 If it has not been computed yet, compute it. */
1061 char *
1062 varobj_get_path_expr (struct varobj *var)
1063 {
1064 if (var->path_expr != NULL)
1065 return var->path_expr;
1066 else
1067 {
1068 /* For root varobjs, we initialize path_expr
1069 when creating varobj, so here it should be
1070 child varobj. */
1071 gdb_assert (!is_root_p (var));
1072 return (*var->root->lang->path_expr_of_child) (var);
1073 }
1074 }
1075
1076 enum varobj_languages
1077 varobj_get_language (struct varobj *var)
1078 {
1079 return variable_language (var);
1080 }
1081
1082 int
1083 varobj_get_attributes (struct varobj *var)
1084 {
1085 int attributes = 0;
1086
1087 if (varobj_editable_p (var))
1088 /* FIXME: define masks for attributes */
1089 attributes |= 0x00000001; /* Editable */
1090
1091 return attributes;
1092 }
1093
1094 char *
1095 varobj_get_formatted_value (struct varobj *var,
1096 enum varobj_display_formats format)
1097 {
1098 return my_value_of_variable (var, format);
1099 }
1100
1101 char *
1102 varobj_get_value (struct varobj *var)
1103 {
1104 return my_value_of_variable (var, var->format);
1105 }
1106
1107 /* Set the value of an object variable (if it is editable) to the
1108 value of the given expression */
1109 /* Note: Invokes functions that can call error() */
1110
1111 int
1112 varobj_set_value (struct varobj *var, char *expression)
1113 {
1114 struct value *val;
1115 int offset = 0;
1116 int error = 0;
1117
1118 /* The argument "expression" contains the variable's new value.
1119 We need to first construct a legal expression for this -- ugh! */
1120 /* Does this cover all the bases? */
1121 struct expression *exp;
1122 struct value *value;
1123 int saved_input_radix = input_radix;
1124 char *s = expression;
1125 int i;
1126
1127 gdb_assert (varobj_editable_p (var));
1128
1129 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1130 exp = parse_exp_1 (&s, 0, 0);
1131 if (!gdb_evaluate_expression (exp, &value))
1132 {
1133 /* We cannot proceed without a valid expression. */
1134 xfree (exp);
1135 return 0;
1136 }
1137
1138 /* All types that are editable must also be changeable. */
1139 gdb_assert (varobj_value_is_changeable_p (var));
1140
1141 /* The value of a changeable variable object must not be lazy. */
1142 gdb_assert (!value_lazy (var->value));
1143
1144 /* Need to coerce the input. We want to check if the
1145 value of the variable object will be different
1146 after assignment, and the first thing value_assign
1147 does is coerce the input.
1148 For example, if we are assigning an array to a pointer variable we
1149 should compare the pointer with the the array's address, not with the
1150 array's content. */
1151 value = coerce_array (value);
1152
1153 /* The new value may be lazy. gdb_value_assign, or
1154 rather value_contents, will take care of this.
1155 If fetching of the new value will fail, gdb_value_assign
1156 with catch the exception. */
1157 if (!gdb_value_assign (var->value, value, &val))
1158 return 0;
1159
1160 /* If the value has changed, record it, so that next -var-update can
1161 report this change. If a variable had a value of '1', we've set it
1162 to '333' and then set again to '1', when -var-update will report this
1163 variable as changed -- because the first assignment has set the
1164 'updated' flag. There's no need to optimize that, because return value
1165 of -var-update should be considered an approximation. */
1166 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1167 input_radix = saved_input_radix;
1168 return 1;
1169 }
1170
1171 /* Assign a new value to a variable object. If INITIAL is non-zero,
1172 this is the first assignement after the variable object was just
1173 created, or changed type. In that case, just assign the value
1174 and return 0.
1175 Otherwise, assign the new value, and return 1 if the value is different
1176 from the current one, 0 otherwise. The comparison is done on textual
1177 representation of value. Therefore, some types need not be compared. E.g.
1178 for structures the reported value is always "{...}", so no comparison is
1179 necessary here. If the old value was NULL and new one is not, or vice versa,
1180 we always return 1.
1181
1182 The VALUE parameter should not be released -- the function will
1183 take care of releasing it when needed. */
1184 static int
1185 install_new_value (struct varobj *var, struct value *value, int initial)
1186 {
1187 int changeable;
1188 int need_to_fetch;
1189 int changed = 0;
1190 int intentionally_not_fetched = 0;
1191 char *print_value = NULL;
1192
1193 /* We need to know the varobj's type to decide if the value should
1194 be fetched or not. C++ fake children (public/protected/private) don't have
1195 a type. */
1196 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1197 changeable = varobj_value_is_changeable_p (var);
1198
1199 /* If the type has custom visualizer, we consider it to be always
1200 changeable. FIXME: need to make sure this behaviour will not
1201 mess up read-sensitive values. */
1202 if (var->pretty_printer)
1203 changeable = 1;
1204
1205 need_to_fetch = changeable;
1206
1207 /* We are not interested in the address of references, and given
1208 that in C++ a reference is not rebindable, it cannot
1209 meaningfully change. So, get hold of the real value. */
1210 if (value)
1211 {
1212 value = coerce_ref (value);
1213 release_value (value);
1214 }
1215
1216 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1217 /* For unions, we need to fetch the value implicitly because
1218 of implementation of union member fetch. When gdb
1219 creates a value for a field and the value of the enclosing
1220 structure is not lazy, it immediately copies the necessary
1221 bytes from the enclosing values. If the enclosing value is
1222 lazy, the call to value_fetch_lazy on the field will read
1223 the data from memory. For unions, that means we'll read the
1224 same memory more than once, which is not desirable. So
1225 fetch now. */
1226 need_to_fetch = 1;
1227
1228 /* The new value might be lazy. If the type is changeable,
1229 that is we'll be comparing values of this type, fetch the
1230 value now. Otherwise, on the next update the old value
1231 will be lazy, which means we've lost that old value. */
1232 if (need_to_fetch && value && value_lazy (value))
1233 {
1234 struct varobj *parent = var->parent;
1235 int frozen = var->frozen;
1236 for (; !frozen && parent; parent = parent->parent)
1237 frozen |= parent->frozen;
1238
1239 if (frozen && initial)
1240 {
1241 /* For variables that are frozen, or are children of frozen
1242 variables, we don't do fetch on initial assignment.
1243 For non-initial assignemnt we do the fetch, since it means we're
1244 explicitly asked to compare the new value with the old one. */
1245 intentionally_not_fetched = 1;
1246 }
1247 else if (!gdb_value_fetch_lazy (value))
1248 {
1249 /* Set the value to NULL, so that for the next -var-update,
1250 we don't try to compare the new value with this value,
1251 that we couldn't even read. */
1252 value = NULL;
1253 }
1254 }
1255
1256
1257 /* Below, we'll be comparing string rendering of old and new
1258 values. Don't get string rendering if the value is
1259 lazy -- if it is, the code above has decided that the value
1260 should not be fetched. */
1261 if (value && !value_lazy (value))
1262 print_value = value_get_print_value (value, var->format, var);
1263
1264 /* If the type is changeable, compare the old and the new values.
1265 If this is the initial assignment, we don't have any old value
1266 to compare with. */
1267 if (!initial && changeable)
1268 {
1269 /* If the value of the varobj was changed by -var-set-value, then the
1270 value in the varobj and in the target is the same. However, that value
1271 is different from the value that the varobj had after the previous
1272 -var-update. So need to the varobj as changed. */
1273 if (var->updated)
1274 {
1275 changed = 1;
1276 }
1277 else
1278 {
1279 /* Try to compare the values. That requires that both
1280 values are non-lazy. */
1281 if (var->not_fetched && value_lazy (var->value))
1282 {
1283 /* This is a frozen varobj and the value was never read.
1284 Presumably, UI shows some "never read" indicator.
1285 Now that we've fetched the real value, we need to report
1286 this varobj as changed so that UI can show the real
1287 value. */
1288 changed = 1;
1289 }
1290 else if (var->value == NULL && value == NULL)
1291 /* Equal. */
1292 ;
1293 else if (var->value == NULL || value == NULL)
1294 {
1295 changed = 1;
1296 }
1297 else
1298 {
1299 gdb_assert (!value_lazy (var->value));
1300 gdb_assert (!value_lazy (value));
1301
1302 gdb_assert (var->print_value != NULL && print_value != NULL);
1303 if (strcmp (var->print_value, print_value) != 0)
1304 changed = 1;
1305 }
1306 }
1307 }
1308
1309 if (!initial && !changeable)
1310 {
1311 /* For values that are not changeable, we don't compare the values.
1312 However, we want to notice if a value was not NULL and now is NULL,
1313 or vise versa, so that we report when top-level varobjs come in scope
1314 and leave the scope. */
1315 changed = (var->value != NULL) != (value != NULL);
1316 }
1317
1318 /* We must always keep the new value, since children depend on it. */
1319 if (var->value != NULL && var->value != value)
1320 value_free (var->value);
1321 var->value = value;
1322 if (var->print_value)
1323 xfree (var->print_value);
1324 var->print_value = print_value;
1325 if (value && value_lazy (value) && intentionally_not_fetched)
1326 var->not_fetched = 1;
1327 else
1328 var->not_fetched = 0;
1329 var->updated = 0;
1330
1331 gdb_assert (!var->value || value_type (var->value));
1332
1333 return changed;
1334 }
1335
1336 static void
1337 install_visualizer (struct varobj *var, PyObject *visualizer)
1338 {
1339 #if HAVE_PYTHON
1340 /* If there are any children now, wipe them. */
1341 varobj_delete (var, NULL, 1 /* children only */);
1342 var->num_children = -1;
1343
1344 Py_XDECREF (var->pretty_printer);
1345 var->pretty_printer = visualizer;
1346
1347 install_new_value (var, var->value, 1);
1348
1349 /* If we removed the visualizer, and the user ever requested the
1350 object's children, then we must compute the list of children.
1351 Note that we needn't do this when installing a visualizer,
1352 because updating will recompute dynamic children. */
1353 if (!visualizer && var->children_requested)
1354 varobj_list_children (var);
1355 #else
1356 error (_("Python support required"));
1357 #endif
1358 }
1359
1360 static void
1361 install_default_visualizer (struct varobj *var)
1362 {
1363 #if HAVE_PYTHON
1364 struct cleanup *cleanup;
1365 PyObject *pretty_printer = NULL;
1366
1367 cleanup = varobj_ensure_python_env (var);
1368
1369 if (var->value)
1370 {
1371 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1372 if (! pretty_printer)
1373 {
1374 gdbpy_print_stack ();
1375 error (_("Cannot instantiate printer for default visualizer"));
1376 }
1377 }
1378
1379 if (pretty_printer == Py_None)
1380 {
1381 Py_DECREF (pretty_printer);
1382 pretty_printer = NULL;
1383 }
1384
1385 install_visualizer (var, pretty_printer);
1386 do_cleanups (cleanup);
1387 #else
1388 /* No error is right as this function is inserted just as a hook. */
1389 #endif
1390 }
1391
1392 void
1393 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1394 {
1395 #if HAVE_PYTHON
1396 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1397 struct cleanup *back_to, *value;
1398
1399 back_to = varobj_ensure_python_env (var);
1400
1401 mainmod = PyImport_AddModule ("__main__");
1402 globals = PyModule_GetDict (mainmod);
1403 Py_INCREF (globals);
1404 make_cleanup_py_decref (globals);
1405
1406 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1407
1408 /* Do not instantiate NoneType. */
1409 if (constructor == Py_None)
1410 {
1411 pretty_printer = Py_None;
1412 Py_INCREF (pretty_printer);
1413 }
1414 else
1415 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1416
1417 Py_XDECREF (constructor);
1418
1419 if (! pretty_printer)
1420 {
1421 gdbpy_print_stack ();
1422 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1423 }
1424
1425 if (pretty_printer == Py_None)
1426 {
1427 Py_DECREF (pretty_printer);
1428 pretty_printer = NULL;
1429 }
1430
1431 install_visualizer (var, pretty_printer);
1432
1433 do_cleanups (back_to);
1434 #else
1435 error (_("Python support required"));
1436 #endif
1437 }
1438
1439 /* Update the values for a variable and its children. This is a
1440 two-pronged attack. First, re-parse the value for the root's
1441 expression to see if it's changed. Then go all the way
1442 through its children, reconstructing them and noting if they've
1443 changed.
1444
1445 The EXPLICIT parameter specifies if this call is result
1446 of MI request to update this specific variable, or
1447 result of implicit -var-update *. For implicit request, we don't
1448 update frozen variables.
1449
1450 NOTE: This function may delete the caller's varobj. If it
1451 returns TYPE_CHANGED, then it has done this and VARP will be modified
1452 to point to the new varobj. */
1453
1454 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1455 {
1456 int changed = 0;
1457 int type_changed = 0;
1458 int i;
1459 int vleft;
1460 struct varobj *v;
1461 struct varobj **cv;
1462 struct varobj **templist = NULL;
1463 struct value *new;
1464 VEC (varobj_update_result) *stack = NULL;
1465 VEC (varobj_update_result) *result = NULL;
1466 struct frame_info *fi;
1467
1468 /* Frozen means frozen -- we don't check for any change in
1469 this varobj, including its going out of scope, or
1470 changing type. One use case for frozen varobjs is
1471 retaining previously evaluated expressions, and we don't
1472 want them to be reevaluated at all. */
1473 if (!explicit && (*varp)->frozen)
1474 return result;
1475
1476 if (!(*varp)->root->is_valid)
1477 {
1478 varobj_update_result r = {*varp};
1479 r.status = VAROBJ_INVALID;
1480 VEC_safe_push (varobj_update_result, result, &r);
1481 return result;
1482 }
1483
1484 if ((*varp)->root->rootvar == *varp)
1485 {
1486 varobj_update_result r = {*varp};
1487 r.status = VAROBJ_IN_SCOPE;
1488
1489 /* Update the root variable. value_of_root can return NULL
1490 if the variable is no longer around, i.e. we stepped out of
1491 the frame in which a local existed. We are letting the
1492 value_of_root variable dispose of the varobj if the type
1493 has changed. */
1494 new = value_of_root (varp, &type_changed);
1495 r.varobj = *varp;
1496
1497 r.type_changed = type_changed;
1498 if (install_new_value ((*varp), new, type_changed))
1499 r.changed = 1;
1500
1501 if (new == NULL)
1502 r.status = VAROBJ_NOT_IN_SCOPE;
1503 r.value_installed = 1;
1504
1505 if (r.status == VAROBJ_NOT_IN_SCOPE)
1506 {
1507 if (r.type_changed || r.changed)
1508 VEC_safe_push (varobj_update_result, result, &r);
1509 return result;
1510 }
1511
1512 VEC_safe_push (varobj_update_result, stack, &r);
1513 }
1514 else
1515 {
1516 varobj_update_result r = {*varp};
1517 VEC_safe_push (varobj_update_result, stack, &r);
1518 }
1519
1520 /* Walk through the children, reconstructing them all. */
1521 while (!VEC_empty (varobj_update_result, stack))
1522 {
1523 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1524 struct varobj *v = r.varobj;
1525
1526 VEC_pop (varobj_update_result, stack);
1527
1528 /* Update this variable, unless it's a root, which is already
1529 updated. */
1530 if (!r.value_installed)
1531 {
1532 new = value_of_child (v->parent, v->index);
1533 if (install_new_value (v, new, 0 /* type not changed */))
1534 {
1535 r.changed = 1;
1536 v->updated = 0;
1537 }
1538 }
1539
1540 /* We probably should not get children of a varobj that has a
1541 pretty-printer, but for which -var-list-children was never
1542 invoked. Presumably, such varobj is not yet expanded in the
1543 UI, so we need not bother getting it. */
1544 if (v->pretty_printer)
1545 {
1546 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1547 int i, children_changed;
1548 varobj_p tmp;
1549
1550 if (!v->children_requested)
1551 continue;
1552
1553 if (v->frozen)
1554 continue;
1555
1556 /* If update_dynamic_varobj_children returns 0, then we have
1557 a non-conforming pretty-printer, so we skip it. */
1558 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1559 &children_changed))
1560 {
1561 if (children_changed)
1562 r.children_changed = 1;
1563 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1564 {
1565 varobj_update_result r = {tmp};
1566 r.changed = 1;
1567 r.value_installed = 1;
1568 VEC_safe_push (varobj_update_result, stack, &r);
1569 }
1570 for (i = 0;
1571 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1572 ++i)
1573 {
1574 varobj_update_result r = {tmp};
1575 r.value_installed = 1;
1576 VEC_safe_push (varobj_update_result, stack, &r);
1577 }
1578 if (r.changed || r.children_changed)
1579 VEC_safe_push (varobj_update_result, result, &r);
1580 continue;
1581 }
1582 }
1583
1584 /* Push any children. Use reverse order so that the first
1585 child is popped from the work stack first, and so
1586 will be added to result first. This does not
1587 affect correctness, just "nicer". */
1588 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1589 {
1590 varobj_p c = VEC_index (varobj_p, v->children, i);
1591 /* Child may be NULL if explicitly deleted by -var-delete. */
1592 if (c != NULL && !c->frozen)
1593 {
1594 varobj_update_result r = {c};
1595 VEC_safe_push (varobj_update_result, stack, &r);
1596 }
1597 }
1598
1599 if (r.changed || r.type_changed)
1600 VEC_safe_push (varobj_update_result, result, &r);
1601 }
1602
1603 VEC_free (varobj_update_result, stack);
1604
1605 return result;
1606 }
1607 \f
1608
1609 /* Helper functions */
1610
1611 /*
1612 * Variable object construction/destruction
1613 */
1614
1615 static int
1616 delete_variable (struct cpstack **resultp, struct varobj *var,
1617 int only_children_p)
1618 {
1619 int delcount = 0;
1620
1621 delete_variable_1 (resultp, &delcount, var,
1622 only_children_p, 1 /* remove_from_parent_p */ );
1623
1624 return delcount;
1625 }
1626
1627 /* Delete the variable object VAR and its children */
1628 /* IMPORTANT NOTE: If we delete a variable which is a child
1629 and the parent is not removed we dump core. It must be always
1630 initially called with remove_from_parent_p set */
1631 static void
1632 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1633 struct varobj *var, int only_children_p,
1634 int remove_from_parent_p)
1635 {
1636 int i;
1637
1638 /* Delete any children of this variable, too. */
1639 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1640 {
1641 varobj_p child = VEC_index (varobj_p, var->children, i);
1642 if (!child)
1643 continue;
1644 if (!remove_from_parent_p)
1645 child->parent = NULL;
1646 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1647 }
1648 VEC_free (varobj_p, var->children);
1649
1650 /* if we were called to delete only the children we are done here */
1651 if (only_children_p)
1652 return;
1653
1654 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1655 /* If the name is null, this is a temporary variable, that has not
1656 yet been installed, don't report it, it belongs to the caller... */
1657 if (var->obj_name != NULL)
1658 {
1659 cppush (resultp, xstrdup (var->obj_name));
1660 *delcountp = *delcountp + 1;
1661 }
1662
1663 /* If this variable has a parent, remove it from its parent's list */
1664 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1665 (as indicated by remove_from_parent_p) we don't bother doing an
1666 expensive list search to find the element to remove when we are
1667 discarding the list afterwards */
1668 if ((remove_from_parent_p) && (var->parent != NULL))
1669 {
1670 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1671 }
1672
1673 if (var->obj_name != NULL)
1674 uninstall_variable (var);
1675
1676 /* Free memory associated with this variable */
1677 free_variable (var);
1678 }
1679
1680 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1681 static int
1682 install_variable (struct varobj *var)
1683 {
1684 struct vlist *cv;
1685 struct vlist *newvl;
1686 const char *chp;
1687 unsigned int index = 0;
1688 unsigned int i = 1;
1689
1690 for (chp = var->obj_name; *chp; chp++)
1691 {
1692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1693 }
1694
1695 cv = *(varobj_table + index);
1696 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1697 cv = cv->next;
1698
1699 if (cv != NULL)
1700 error (_("Duplicate variable object name"));
1701
1702 /* Add varobj to hash table */
1703 newvl = xmalloc (sizeof (struct vlist));
1704 newvl->next = *(varobj_table + index);
1705 newvl->var = var;
1706 *(varobj_table + index) = newvl;
1707
1708 /* If root, add varobj to root list */
1709 if (is_root_p (var))
1710 {
1711 /* Add to list of root variables */
1712 if (rootlist == NULL)
1713 var->root->next = NULL;
1714 else
1715 var->root->next = rootlist;
1716 rootlist = var->root;
1717 }
1718
1719 return 1; /* OK */
1720 }
1721
1722 /* Unistall the object VAR. */
1723 static void
1724 uninstall_variable (struct varobj *var)
1725 {
1726 struct vlist *cv;
1727 struct vlist *prev;
1728 struct varobj_root *cr;
1729 struct varobj_root *prer;
1730 const char *chp;
1731 unsigned int index = 0;
1732 unsigned int i = 1;
1733
1734 /* Remove varobj from hash table */
1735 for (chp = var->obj_name; *chp; chp++)
1736 {
1737 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1738 }
1739
1740 cv = *(varobj_table + index);
1741 prev = NULL;
1742 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1743 {
1744 prev = cv;
1745 cv = cv->next;
1746 }
1747
1748 if (varobjdebug)
1749 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1750
1751 if (cv == NULL)
1752 {
1753 warning
1754 ("Assertion failed: Could not find variable object \"%s\" to delete",
1755 var->obj_name);
1756 return;
1757 }
1758
1759 if (prev == NULL)
1760 *(varobj_table + index) = cv->next;
1761 else
1762 prev->next = cv->next;
1763
1764 xfree (cv);
1765
1766 /* If root, remove varobj from root list */
1767 if (is_root_p (var))
1768 {
1769 /* Remove from list of root variables */
1770 if (rootlist == var->root)
1771 rootlist = var->root->next;
1772 else
1773 {
1774 prer = NULL;
1775 cr = rootlist;
1776 while ((cr != NULL) && (cr->rootvar != var))
1777 {
1778 prer = cr;
1779 cr = cr->next;
1780 }
1781 if (cr == NULL)
1782 {
1783 warning
1784 ("Assertion failed: Could not find varobj \"%s\" in root list",
1785 var->obj_name);
1786 return;
1787 }
1788 if (prer == NULL)
1789 rootlist = NULL;
1790 else
1791 prer->next = cr->next;
1792 }
1793 }
1794
1795 }
1796
1797 /* Create and install a child of the parent of the given name */
1798 static struct varobj *
1799 create_child (struct varobj *parent, int index, char *name)
1800 {
1801 return create_child_with_value (parent, index, name,
1802 value_of_child (parent, index));
1803 }
1804
1805 static struct varobj *
1806 create_child_with_value (struct varobj *parent, int index, const char *name,
1807 struct value *value)
1808 {
1809 struct varobj *child;
1810 char *childs_name;
1811
1812 child = new_variable ();
1813
1814 /* name is allocated by name_of_child */
1815 /* FIXME: xstrdup should not be here. */
1816 child->name = xstrdup (name);
1817 child->index = index;
1818 child->parent = parent;
1819 child->root = parent->root;
1820 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1821 child->obj_name = childs_name;
1822 install_variable (child);
1823
1824 /* Compute the type of the child. Must do this before
1825 calling install_new_value. */
1826 if (value != NULL)
1827 /* If the child had no evaluation errors, var->value
1828 will be non-NULL and contain a valid type. */
1829 child->type = value_type (value);
1830 else
1831 /* Otherwise, we must compute the type. */
1832 child->type = (*child->root->lang->type_of_child) (child->parent,
1833 child->index);
1834 install_new_value (child, value, 1);
1835
1836 return child;
1837 }
1838 \f
1839
1840 /*
1841 * Miscellaneous utility functions.
1842 */
1843
1844 /* Allocate memory and initialize a new variable */
1845 static struct varobj *
1846 new_variable (void)
1847 {
1848 struct varobj *var;
1849
1850 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1851 var->name = NULL;
1852 var->path_expr = NULL;
1853 var->obj_name = NULL;
1854 var->index = -1;
1855 var->type = NULL;
1856 var->value = NULL;
1857 var->num_children = -1;
1858 var->parent = NULL;
1859 var->children = NULL;
1860 var->format = 0;
1861 var->root = NULL;
1862 var->updated = 0;
1863 var->print_value = NULL;
1864 var->frozen = 0;
1865 var->not_fetched = 0;
1866 var->children_requested = 0;
1867 var->pretty_printer = 0;
1868
1869 return var;
1870 }
1871
1872 /* Allocate memory and initialize a new root variable */
1873 static struct varobj *
1874 new_root_variable (void)
1875 {
1876 struct varobj *var = new_variable ();
1877 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1878 var->root->lang = NULL;
1879 var->root->exp = NULL;
1880 var->root->valid_block = NULL;
1881 var->root->frame = null_frame_id;
1882 var->root->floating = 0;
1883 var->root->rootvar = NULL;
1884 var->root->is_valid = 1;
1885
1886 return var;
1887 }
1888
1889 /* Free any allocated memory associated with VAR. */
1890 static void
1891 free_variable (struct varobj *var)
1892 {
1893 #if HAVE_PYTHON
1894 if (var->pretty_printer)
1895 {
1896 struct cleanup *cleanup = varobj_ensure_python_env (var);
1897 Py_DECREF (var->pretty_printer);
1898 do_cleanups (cleanup);
1899 }
1900 #endif
1901
1902 value_free (var->value);
1903
1904 /* Free the expression if this is a root variable. */
1905 if (is_root_p (var))
1906 {
1907 xfree (var->root->exp);
1908 xfree (var->root);
1909 }
1910
1911 xfree (var->name);
1912 xfree (var->obj_name);
1913 xfree (var->print_value);
1914 xfree (var->path_expr);
1915 xfree (var);
1916 }
1917
1918 static void
1919 do_free_variable_cleanup (void *var)
1920 {
1921 free_variable (var);
1922 }
1923
1924 static struct cleanup *
1925 make_cleanup_free_variable (struct varobj *var)
1926 {
1927 return make_cleanup (do_free_variable_cleanup, var);
1928 }
1929
1930 /* This returns the type of the variable. It also skips past typedefs
1931 to return the real type of the variable.
1932
1933 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1934 except within get_target_type and get_type. */
1935 static struct type *
1936 get_type (struct varobj *var)
1937 {
1938 struct type *type;
1939 type = var->type;
1940
1941 if (type != NULL)
1942 type = check_typedef (type);
1943
1944 return type;
1945 }
1946
1947 /* Return the type of the value that's stored in VAR,
1948 or that would have being stored there if the
1949 value were accessible.
1950
1951 This differs from VAR->type in that VAR->type is always
1952 the true type of the expession in the source language.
1953 The return value of this function is the type we're
1954 actually storing in varobj, and using for displaying
1955 the values and for comparing previous and new values.
1956
1957 For example, top-level references are always stripped. */
1958 static struct type *
1959 get_value_type (struct varobj *var)
1960 {
1961 struct type *type;
1962
1963 if (var->value)
1964 type = value_type (var->value);
1965 else
1966 type = var->type;
1967
1968 type = check_typedef (type);
1969
1970 if (TYPE_CODE (type) == TYPE_CODE_REF)
1971 type = get_target_type (type);
1972
1973 type = check_typedef (type);
1974
1975 return type;
1976 }
1977
1978 /* This returns the target type (or NULL) of TYPE, also skipping
1979 past typedefs, just like get_type ().
1980
1981 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1982 except within get_target_type and get_type. */
1983 static struct type *
1984 get_target_type (struct type *type)
1985 {
1986 if (type != NULL)
1987 {
1988 type = TYPE_TARGET_TYPE (type);
1989 if (type != NULL)
1990 type = check_typedef (type);
1991 }
1992
1993 return type;
1994 }
1995
1996 /* What is the default display for this variable? We assume that
1997 everything is "natural". Any exceptions? */
1998 static enum varobj_display_formats
1999 variable_default_display (struct varobj *var)
2000 {
2001 return FORMAT_NATURAL;
2002 }
2003
2004 /* FIXME: The following should be generic for any pointer */
2005 static void
2006 cppush (struct cpstack **pstack, char *name)
2007 {
2008 struct cpstack *s;
2009
2010 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2011 s->name = name;
2012 s->next = *pstack;
2013 *pstack = s;
2014 }
2015
2016 /* FIXME: The following should be generic for any pointer */
2017 static char *
2018 cppop (struct cpstack **pstack)
2019 {
2020 struct cpstack *s;
2021 char *v;
2022
2023 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2024 return NULL;
2025
2026 s = *pstack;
2027 v = s->name;
2028 *pstack = (*pstack)->next;
2029 xfree (s);
2030
2031 return v;
2032 }
2033 \f
2034 /*
2035 * Language-dependencies
2036 */
2037
2038 /* Common entry points */
2039
2040 /* Get the language of variable VAR. */
2041 static enum varobj_languages
2042 variable_language (struct varobj *var)
2043 {
2044 enum varobj_languages lang;
2045
2046 switch (var->root->exp->language_defn->la_language)
2047 {
2048 default:
2049 case language_c:
2050 lang = vlang_c;
2051 break;
2052 case language_cplus:
2053 lang = vlang_cplus;
2054 break;
2055 case language_java:
2056 lang = vlang_java;
2057 break;
2058 }
2059
2060 return lang;
2061 }
2062
2063 /* Return the number of children for a given variable.
2064 The result of this function is defined by the language
2065 implementation. The number of children returned by this function
2066 is the number of children that the user will see in the variable
2067 display. */
2068 static int
2069 number_of_children (struct varobj *var)
2070 {
2071 return (*var->root->lang->number_of_children) (var);;
2072 }
2073
2074 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2075 static char *
2076 name_of_variable (struct varobj *var)
2077 {
2078 return (*var->root->lang->name_of_variable) (var);
2079 }
2080
2081 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2082 static char *
2083 name_of_child (struct varobj *var, int index)
2084 {
2085 return (*var->root->lang->name_of_child) (var, index);
2086 }
2087
2088 /* What is the ``struct value *'' of the root variable VAR?
2089 For floating variable object, evaluation can get us a value
2090 of different type from what is stored in varobj already. In
2091 that case:
2092 - *type_changed will be set to 1
2093 - old varobj will be freed, and new one will be
2094 created, with the same name.
2095 - *var_handle will be set to the new varobj
2096 Otherwise, *type_changed will be set to 0. */
2097 static struct value *
2098 value_of_root (struct varobj **var_handle, int *type_changed)
2099 {
2100 struct varobj *var;
2101
2102 if (var_handle == NULL)
2103 return NULL;
2104
2105 var = *var_handle;
2106
2107 /* This should really be an exception, since this should
2108 only get called with a root variable. */
2109
2110 if (!is_root_p (var))
2111 return NULL;
2112
2113 if (var->root->floating)
2114 {
2115 struct varobj *tmp_var;
2116 char *old_type, *new_type;
2117
2118 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2119 USE_SELECTED_FRAME);
2120 if (tmp_var == NULL)
2121 {
2122 return NULL;
2123 }
2124 old_type = varobj_get_type (var);
2125 new_type = varobj_get_type (tmp_var);
2126 if (strcmp (old_type, new_type) == 0)
2127 {
2128 /* The expression presently stored inside var->root->exp
2129 remembers the locations of local variables relatively to
2130 the frame where the expression was created (in DWARF location
2131 button, for example). Naturally, those locations are not
2132 correct in other frames, so update the expression. */
2133
2134 struct expression *tmp_exp = var->root->exp;
2135 var->root->exp = tmp_var->root->exp;
2136 tmp_var->root->exp = tmp_exp;
2137
2138 varobj_delete (tmp_var, NULL, 0);
2139 *type_changed = 0;
2140 }
2141 else
2142 {
2143 tmp_var->obj_name = xstrdup (var->obj_name);
2144 varobj_delete (var, NULL, 0);
2145
2146 install_variable (tmp_var);
2147 *var_handle = tmp_var;
2148 var = *var_handle;
2149 *type_changed = 1;
2150 }
2151 xfree (old_type);
2152 xfree (new_type);
2153 }
2154 else
2155 {
2156 *type_changed = 0;
2157 }
2158
2159 return (*var->root->lang->value_of_root) (var_handle);
2160 }
2161
2162 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2163 static struct value *
2164 value_of_child (struct varobj *parent, int index)
2165 {
2166 struct value *value;
2167
2168 value = (*parent->root->lang->value_of_child) (parent, index);
2169
2170 return value;
2171 }
2172
2173 /* GDB already has a command called "value_of_variable". Sigh. */
2174 static char *
2175 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2176 {
2177 if (var->root->is_valid)
2178 return (*var->root->lang->value_of_variable) (var, format);
2179 else
2180 return NULL;
2181 }
2182
2183 static char *
2184 value_get_print_value (struct value *value, enum varobj_display_formats format,
2185 struct varobj *var)
2186 {
2187 long dummy;
2188 struct ui_file *stb;
2189 struct cleanup *old_chain;
2190 gdb_byte *thevalue = NULL;
2191 struct value_print_options opts;
2192 int len = 0;
2193
2194 if (value == NULL)
2195 return NULL;
2196
2197 #if HAVE_PYTHON
2198 {
2199 struct cleanup *back_to = varobj_ensure_python_env (var);
2200 PyObject *value_formatter = var->pretty_printer;
2201
2202 if (value_formatter && PyObject_HasAttr (value_formatter,
2203 gdbpy_to_string_cst))
2204 {
2205 char *hint;
2206 struct value *replacement;
2207 int string_print = 0;
2208 PyObject *output = NULL;
2209
2210 hint = gdbpy_get_display_hint (value_formatter);
2211 if (hint)
2212 {
2213 if (!strcmp (hint, "string"))
2214 string_print = 1;
2215 xfree (hint);
2216 }
2217
2218 output = apply_varobj_pretty_printer (value_formatter,
2219 &replacement);
2220 if (output)
2221 {
2222 PyObject *py_str = python_string_to_target_python_string (output);
2223 if (py_str)
2224 {
2225 char *s = PyString_AsString (py_str);
2226 len = PyString_Size (py_str);
2227 thevalue = xmemdup (s, len + 1, len + 1);
2228 Py_DECREF (py_str);
2229 }
2230 Py_DECREF (output);
2231 }
2232 if (thevalue && !string_print)
2233 {
2234 do_cleanups (back_to);
2235 return thevalue;
2236 }
2237 if (replacement)
2238 value = replacement;
2239 }
2240 do_cleanups (back_to);
2241 }
2242 #endif
2243
2244 stb = mem_fileopen ();
2245 old_chain = make_cleanup_ui_file_delete (stb);
2246
2247 get_formatted_print_options (&opts, format_code[(int) format]);
2248 opts.deref_ref = 0;
2249 opts.raw = 1;
2250 if (thevalue)
2251 {
2252 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2253 make_cleanup (xfree, thevalue);
2254 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2255 thevalue, len, 0, &opts);
2256 }
2257 else
2258 common_val_print (value, stb, 0, &opts, current_language);
2259 thevalue = ui_file_xstrdup (stb, &dummy);
2260
2261 do_cleanups (old_chain);
2262 return thevalue;
2263 }
2264
2265 int
2266 varobj_editable_p (struct varobj *var)
2267 {
2268 struct type *type;
2269 struct value *value;
2270
2271 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2272 return 0;
2273
2274 type = get_value_type (var);
2275
2276 switch (TYPE_CODE (type))
2277 {
2278 case TYPE_CODE_STRUCT:
2279 case TYPE_CODE_UNION:
2280 case TYPE_CODE_ARRAY:
2281 case TYPE_CODE_FUNC:
2282 case TYPE_CODE_METHOD:
2283 return 0;
2284 break;
2285
2286 default:
2287 return 1;
2288 break;
2289 }
2290 }
2291
2292 /* Return non-zero if changes in value of VAR
2293 must be detected and reported by -var-update.
2294 Return zero is -var-update should never report
2295 changes of such values. This makes sense for structures
2296 (since the changes in children values will be reported separately),
2297 or for artifical objects (like 'public' pseudo-field in C++).
2298
2299 Return value of 0 means that gdb need not call value_fetch_lazy
2300 for the value of this variable object. */
2301 static int
2302 varobj_value_is_changeable_p (struct varobj *var)
2303 {
2304 int r;
2305 struct type *type;
2306
2307 if (CPLUS_FAKE_CHILD (var))
2308 return 0;
2309
2310 type = get_value_type (var);
2311
2312 switch (TYPE_CODE (type))
2313 {
2314 case TYPE_CODE_STRUCT:
2315 case TYPE_CODE_UNION:
2316 case TYPE_CODE_ARRAY:
2317 r = 0;
2318 break;
2319
2320 default:
2321 r = 1;
2322 }
2323
2324 return r;
2325 }
2326
2327 /* Return 1 if that varobj is floating, that is is always evaluated in the
2328 selected frame, and not bound to thread/frame. Such variable objects
2329 are created using '@' as frame specifier to -var-create. */
2330 int
2331 varobj_floating_p (struct varobj *var)
2332 {
2333 return var->root->floating;
2334 }
2335
2336 /* Given the value and the type of a variable object,
2337 adjust the value and type to those necessary
2338 for getting children of the variable object.
2339 This includes dereferencing top-level references
2340 to all types and dereferencing pointers to
2341 structures.
2342
2343 Both TYPE and *TYPE should be non-null. VALUE
2344 can be null if we want to only translate type.
2345 *VALUE can be null as well -- if the parent
2346 value is not known.
2347
2348 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2349 depending on whether pointer was dereferenced
2350 in this function. */
2351 static void
2352 adjust_value_for_child_access (struct value **value,
2353 struct type **type,
2354 int *was_ptr)
2355 {
2356 gdb_assert (type && *type);
2357
2358 if (was_ptr)
2359 *was_ptr = 0;
2360
2361 *type = check_typedef (*type);
2362
2363 /* The type of value stored in varobj, that is passed
2364 to us, is already supposed to be
2365 reference-stripped. */
2366
2367 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2368
2369 /* Pointers to structures are treated just like
2370 structures when accessing children. Don't
2371 dererences pointers to other types. */
2372 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2373 {
2374 struct type *target_type = get_target_type (*type);
2375 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2376 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2377 {
2378 if (value && *value)
2379 {
2380 int success = gdb_value_ind (*value, value);
2381 if (!success)
2382 *value = NULL;
2383 }
2384 *type = target_type;
2385 if (was_ptr)
2386 *was_ptr = 1;
2387 }
2388 }
2389
2390 /* The 'get_target_type' function calls check_typedef on
2391 result, so we can immediately check type code. No
2392 need to call check_typedef here. */
2393 }
2394
2395 /* C */
2396 static int
2397 c_number_of_children (struct varobj *var)
2398 {
2399 struct type *type = get_value_type (var);
2400 int children = 0;
2401 struct type *target;
2402
2403 adjust_value_for_child_access (NULL, &type, NULL);
2404 target = get_target_type (type);
2405
2406 switch (TYPE_CODE (type))
2407 {
2408 case TYPE_CODE_ARRAY:
2409 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2410 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2411 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2412 else
2413 /* If we don't know how many elements there are, don't display
2414 any. */
2415 children = 0;
2416 break;
2417
2418 case TYPE_CODE_STRUCT:
2419 case TYPE_CODE_UNION:
2420 children = TYPE_NFIELDS (type);
2421 break;
2422
2423 case TYPE_CODE_PTR:
2424 /* The type here is a pointer to non-struct. Typically, pointers
2425 have one child, except for function ptrs, which have no children,
2426 and except for void*, as we don't know what to show.
2427
2428 We can show char* so we allow it to be dereferenced. If you decide
2429 to test for it, please mind that a little magic is necessary to
2430 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2431 TYPE_NAME == "char" */
2432 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2433 || TYPE_CODE (target) == TYPE_CODE_VOID)
2434 children = 0;
2435 else
2436 children = 1;
2437 break;
2438
2439 default:
2440 /* Other types have no children */
2441 break;
2442 }
2443
2444 return children;
2445 }
2446
2447 static char *
2448 c_name_of_variable (struct varobj *parent)
2449 {
2450 return xstrdup (parent->name);
2451 }
2452
2453 /* Return the value of element TYPE_INDEX of a structure
2454 value VALUE. VALUE's type should be a structure,
2455 or union, or a typedef to struct/union.
2456
2457 Returns NULL if getting the value fails. Never throws. */
2458 static struct value *
2459 value_struct_element_index (struct value *value, int type_index)
2460 {
2461 struct value *result = NULL;
2462 volatile struct gdb_exception e;
2463
2464 struct type *type = value_type (value);
2465 type = check_typedef (type);
2466
2467 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2468 || TYPE_CODE (type) == TYPE_CODE_UNION);
2469
2470 TRY_CATCH (e, RETURN_MASK_ERROR)
2471 {
2472 if (field_is_static (&TYPE_FIELD (type, type_index)))
2473 result = value_static_field (type, type_index);
2474 else
2475 result = value_primitive_field (value, 0, type_index, type);
2476 }
2477 if (e.reason < 0)
2478 {
2479 return NULL;
2480 }
2481 else
2482 {
2483 return result;
2484 }
2485 }
2486
2487 /* Obtain the information about child INDEX of the variable
2488 object PARENT.
2489 If CNAME is not null, sets *CNAME to the name of the child relative
2490 to the parent.
2491 If CVALUE is not null, sets *CVALUE to the value of the child.
2492 If CTYPE is not null, sets *CTYPE to the type of the child.
2493
2494 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2495 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2496 to NULL. */
2497 static void
2498 c_describe_child (struct varobj *parent, int index,
2499 char **cname, struct value **cvalue, struct type **ctype,
2500 char **cfull_expression)
2501 {
2502 struct value *value = parent->value;
2503 struct type *type = get_value_type (parent);
2504 char *parent_expression = NULL;
2505 int was_ptr;
2506
2507 if (cname)
2508 *cname = NULL;
2509 if (cvalue)
2510 *cvalue = NULL;
2511 if (ctype)
2512 *ctype = NULL;
2513 if (cfull_expression)
2514 {
2515 *cfull_expression = NULL;
2516 parent_expression = varobj_get_path_expr (parent);
2517 }
2518 adjust_value_for_child_access (&value, &type, &was_ptr);
2519
2520 switch (TYPE_CODE (type))
2521 {
2522 case TYPE_CODE_ARRAY:
2523 if (cname)
2524 *cname = xstrprintf ("%d", index
2525 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2526
2527 if (cvalue && value)
2528 {
2529 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2530 gdb_value_subscript (value, real_index, cvalue);
2531 }
2532
2533 if (ctype)
2534 *ctype = get_target_type (type);
2535
2536 if (cfull_expression)
2537 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2538 index
2539 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2540
2541
2542 break;
2543
2544 case TYPE_CODE_STRUCT:
2545 case TYPE_CODE_UNION:
2546 if (cname)
2547 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2548
2549 if (cvalue && value)
2550 {
2551 /* For C, varobj index is the same as type index. */
2552 *cvalue = value_struct_element_index (value, index);
2553 }
2554
2555 if (ctype)
2556 *ctype = TYPE_FIELD_TYPE (type, index);
2557
2558 if (cfull_expression)
2559 {
2560 char *join = was_ptr ? "->" : ".";
2561 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2562 TYPE_FIELD_NAME (type, index));
2563 }
2564
2565 break;
2566
2567 case TYPE_CODE_PTR:
2568 if (cname)
2569 *cname = xstrprintf ("*%s", parent->name);
2570
2571 if (cvalue && value)
2572 {
2573 int success = gdb_value_ind (value, cvalue);
2574 if (!success)
2575 *cvalue = NULL;
2576 }
2577
2578 /* Don't use get_target_type because it calls
2579 check_typedef and here, we want to show the true
2580 declared type of the variable. */
2581 if (ctype)
2582 *ctype = TYPE_TARGET_TYPE (type);
2583
2584 if (cfull_expression)
2585 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2586
2587 break;
2588
2589 default:
2590 /* This should not happen */
2591 if (cname)
2592 *cname = xstrdup ("???");
2593 if (cfull_expression)
2594 *cfull_expression = xstrdup ("???");
2595 /* Don't set value and type, we don't know then. */
2596 }
2597 }
2598
2599 static char *
2600 c_name_of_child (struct varobj *parent, int index)
2601 {
2602 char *name;
2603 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2604 return name;
2605 }
2606
2607 static char *
2608 c_path_expr_of_child (struct varobj *child)
2609 {
2610 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2611 &child->path_expr);
2612 return child->path_expr;
2613 }
2614
2615 /* If frame associated with VAR can be found, switch
2616 to it and return 1. Otherwise, return 0. */
2617 static int
2618 check_scope (struct varobj *var)
2619 {
2620 struct frame_info *fi;
2621 int scope;
2622
2623 fi = frame_find_by_id (var->root->frame);
2624 scope = fi != NULL;
2625
2626 if (fi)
2627 {
2628 CORE_ADDR pc = get_frame_pc (fi);
2629 if (pc < BLOCK_START (var->root->valid_block) ||
2630 pc >= BLOCK_END (var->root->valid_block))
2631 scope = 0;
2632 else
2633 select_frame (fi);
2634 }
2635 return scope;
2636 }
2637
2638 static struct value *
2639 c_value_of_root (struct varobj **var_handle)
2640 {
2641 struct value *new_val = NULL;
2642 struct varobj *var = *var_handle;
2643 struct frame_info *fi;
2644 int within_scope = 0;
2645 struct cleanup *back_to;
2646
2647 /* Only root variables can be updated... */
2648 if (!is_root_p (var))
2649 /* Not a root var */
2650 return NULL;
2651
2652 back_to = make_cleanup_restore_current_thread ();
2653
2654 /* Determine whether the variable is still around. */
2655 if (var->root->valid_block == NULL || var->root->floating)
2656 within_scope = 1;
2657 else if (var->root->thread_id == 0)
2658 {
2659 /* The program was single-threaded when the variable object was
2660 created. Technically, it's possible that the program became
2661 multi-threaded since then, but we don't support such
2662 scenario yet. */
2663 within_scope = check_scope (var);
2664 }
2665 else
2666 {
2667 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2668 if (in_thread_list (ptid))
2669 {
2670 switch_to_thread (ptid);
2671 within_scope = check_scope (var);
2672 }
2673 }
2674
2675 if (within_scope)
2676 {
2677 /* We need to catch errors here, because if evaluate
2678 expression fails we want to just return NULL. */
2679 gdb_evaluate_expression (var->root->exp, &new_val);
2680 return new_val;
2681 }
2682
2683 do_cleanups (back_to);
2684
2685 return NULL;
2686 }
2687
2688 static struct value *
2689 c_value_of_child (struct varobj *parent, int index)
2690 {
2691 struct value *value = NULL;
2692 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2693
2694 return value;
2695 }
2696
2697 static struct type *
2698 c_type_of_child (struct varobj *parent, int index)
2699 {
2700 struct type *type = NULL;
2701 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2702 return type;
2703 }
2704
2705 static char *
2706 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2707 {
2708 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2709 it will print out its children instead of "{...}". So we need to
2710 catch that case explicitly. */
2711 struct type *type = get_type (var);
2712
2713 /* If we have a custom formatter, return whatever string it has
2714 produced. */
2715 if (var->pretty_printer && var->print_value)
2716 return xstrdup (var->print_value);
2717
2718 /* Strip top-level references. */
2719 while (TYPE_CODE (type) == TYPE_CODE_REF)
2720 type = check_typedef (TYPE_TARGET_TYPE (type));
2721
2722 switch (TYPE_CODE (type))
2723 {
2724 case TYPE_CODE_STRUCT:
2725 case TYPE_CODE_UNION:
2726 return xstrdup ("{...}");
2727 /* break; */
2728
2729 case TYPE_CODE_ARRAY:
2730 {
2731 char *number;
2732 number = xstrprintf ("[%d]", var->num_children);
2733 return (number);
2734 }
2735 /* break; */
2736
2737 default:
2738 {
2739 if (var->value == NULL)
2740 {
2741 /* This can happen if we attempt to get the value of a struct
2742 member when the parent is an invalid pointer. This is an
2743 error condition, so we should tell the caller. */
2744 return NULL;
2745 }
2746 else
2747 {
2748 if (var->not_fetched && value_lazy (var->value))
2749 /* Frozen variable and no value yet. We don't
2750 implicitly fetch the value. MI response will
2751 use empty string for the value, which is OK. */
2752 return NULL;
2753
2754 gdb_assert (varobj_value_is_changeable_p (var));
2755 gdb_assert (!value_lazy (var->value));
2756
2757 /* If the specified format is the current one,
2758 we can reuse print_value */
2759 if (format == var->format)
2760 return xstrdup (var->print_value);
2761 else
2762 return value_get_print_value (var->value, format, var);
2763 }
2764 }
2765 }
2766 }
2767 \f
2768
2769 /* C++ */
2770
2771 static int
2772 cplus_number_of_children (struct varobj *var)
2773 {
2774 struct type *type;
2775 int children, dont_know;
2776
2777 dont_know = 1;
2778 children = 0;
2779
2780 if (!CPLUS_FAKE_CHILD (var))
2781 {
2782 type = get_value_type (var);
2783 adjust_value_for_child_access (NULL, &type, NULL);
2784
2785 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2786 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2787 {
2788 int kids[3];
2789
2790 cplus_class_num_children (type, kids);
2791 if (kids[v_public] != 0)
2792 children++;
2793 if (kids[v_private] != 0)
2794 children++;
2795 if (kids[v_protected] != 0)
2796 children++;
2797
2798 /* Add any baseclasses */
2799 children += TYPE_N_BASECLASSES (type);
2800 dont_know = 0;
2801
2802 /* FIXME: save children in var */
2803 }
2804 }
2805 else
2806 {
2807 int kids[3];
2808
2809 type = get_value_type (var->parent);
2810 adjust_value_for_child_access (NULL, &type, NULL);
2811
2812 cplus_class_num_children (type, kids);
2813 if (strcmp (var->name, "public") == 0)
2814 children = kids[v_public];
2815 else if (strcmp (var->name, "private") == 0)
2816 children = kids[v_private];
2817 else
2818 children = kids[v_protected];
2819 dont_know = 0;
2820 }
2821
2822 if (dont_know)
2823 children = c_number_of_children (var);
2824
2825 return children;
2826 }
2827
2828 /* Compute # of public, private, and protected variables in this class.
2829 That means we need to descend into all baseclasses and find out
2830 how many are there, too. */
2831 static void
2832 cplus_class_num_children (struct type *type, int children[3])
2833 {
2834 int i;
2835
2836 children[v_public] = 0;
2837 children[v_private] = 0;
2838 children[v_protected] = 0;
2839
2840 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2841 {
2842 /* If we have a virtual table pointer, omit it. */
2843 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2844 continue;
2845
2846 if (TYPE_FIELD_PROTECTED (type, i))
2847 children[v_protected]++;
2848 else if (TYPE_FIELD_PRIVATE (type, i))
2849 children[v_private]++;
2850 else
2851 children[v_public]++;
2852 }
2853 }
2854
2855 static char *
2856 cplus_name_of_variable (struct varobj *parent)
2857 {
2858 return c_name_of_variable (parent);
2859 }
2860
2861 enum accessibility { private_field, protected_field, public_field };
2862
2863 /* Check if field INDEX of TYPE has the specified accessibility.
2864 Return 0 if so and 1 otherwise. */
2865 static int
2866 match_accessibility (struct type *type, int index, enum accessibility acc)
2867 {
2868 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2869 return 1;
2870 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2871 return 1;
2872 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2873 && !TYPE_FIELD_PROTECTED (type, index))
2874 return 1;
2875 else
2876 return 0;
2877 }
2878
2879 static void
2880 cplus_describe_child (struct varobj *parent, int index,
2881 char **cname, struct value **cvalue, struct type **ctype,
2882 char **cfull_expression)
2883 {
2884 char *name = NULL;
2885 struct value *value;
2886 struct type *type;
2887 int was_ptr;
2888 char *parent_expression = NULL;
2889
2890 if (cname)
2891 *cname = NULL;
2892 if (cvalue)
2893 *cvalue = NULL;
2894 if (ctype)
2895 *ctype = NULL;
2896 if (cfull_expression)
2897 *cfull_expression = NULL;
2898
2899 if (CPLUS_FAKE_CHILD (parent))
2900 {
2901 value = parent->parent->value;
2902 type = get_value_type (parent->parent);
2903 if (cfull_expression)
2904 parent_expression = varobj_get_path_expr (parent->parent);
2905 }
2906 else
2907 {
2908 value = parent->value;
2909 type = get_value_type (parent);
2910 if (cfull_expression)
2911 parent_expression = varobj_get_path_expr (parent);
2912 }
2913
2914 adjust_value_for_child_access (&value, &type, &was_ptr);
2915
2916 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2917 || TYPE_CODE (type) == TYPE_CODE_UNION)
2918 {
2919 char *join = was_ptr ? "->" : ".";
2920 if (CPLUS_FAKE_CHILD (parent))
2921 {
2922 /* The fields of the class type are ordered as they
2923 appear in the class. We are given an index for a
2924 particular access control type ("public","protected",
2925 or "private"). We must skip over fields that don't
2926 have the access control we are looking for to properly
2927 find the indexed field. */
2928 int type_index = TYPE_N_BASECLASSES (type);
2929 enum accessibility acc = public_field;
2930 if (strcmp (parent->name, "private") == 0)
2931 acc = private_field;
2932 else if (strcmp (parent->name, "protected") == 0)
2933 acc = protected_field;
2934
2935 while (index >= 0)
2936 {
2937 if (TYPE_VPTR_BASETYPE (type) == type
2938 && type_index == TYPE_VPTR_FIELDNO (type))
2939 ; /* ignore vptr */
2940 else if (match_accessibility (type, type_index, acc))
2941 --index;
2942 ++type_index;
2943 }
2944 --type_index;
2945
2946 if (cname)
2947 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2948
2949 if (cvalue && value)
2950 *cvalue = value_struct_element_index (value, type_index);
2951
2952 if (ctype)
2953 *ctype = TYPE_FIELD_TYPE (type, type_index);
2954
2955 if (cfull_expression)
2956 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2957 join,
2958 TYPE_FIELD_NAME (type, type_index));
2959 }
2960 else if (index < TYPE_N_BASECLASSES (type))
2961 {
2962 /* This is a baseclass. */
2963 if (cname)
2964 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2965
2966 if (cvalue && value)
2967 {
2968 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2969 release_value (*cvalue);
2970 }
2971
2972 if (ctype)
2973 {
2974 *ctype = TYPE_FIELD_TYPE (type, index);
2975 }
2976
2977 if (cfull_expression)
2978 {
2979 char *ptr = was_ptr ? "*" : "";
2980 /* Cast the parent to the base' type. Note that in gdb,
2981 expression like
2982 (Base1)d
2983 will create an lvalue, for all appearences, so we don't
2984 need to use more fancy:
2985 *(Base1*)(&d)
2986 construct. */
2987 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2988 ptr,
2989 TYPE_FIELD_NAME (type, index),
2990 ptr,
2991 parent_expression);
2992 }
2993 }
2994 else
2995 {
2996 char *access = NULL;
2997 int children[3];
2998 cplus_class_num_children (type, children);
2999
3000 /* Everything beyond the baseclasses can
3001 only be "public", "private", or "protected"
3002
3003 The special "fake" children are always output by varobj in
3004 this order. So if INDEX == 2, it MUST be "protected". */
3005 index -= TYPE_N_BASECLASSES (type);
3006 switch (index)
3007 {
3008 case 0:
3009 if (children[v_public] > 0)
3010 access = "public";
3011 else if (children[v_private] > 0)
3012 access = "private";
3013 else
3014 access = "protected";
3015 break;
3016 case 1:
3017 if (children[v_public] > 0)
3018 {
3019 if (children[v_private] > 0)
3020 access = "private";
3021 else
3022 access = "protected";
3023 }
3024 else if (children[v_private] > 0)
3025 access = "protected";
3026 break;
3027 case 2:
3028 /* Must be protected */
3029 access = "protected";
3030 break;
3031 default:
3032 /* error! */
3033 break;
3034 }
3035
3036 gdb_assert (access);
3037 if (cname)
3038 *cname = xstrdup (access);
3039
3040 /* Value and type and full expression are null here. */
3041 }
3042 }
3043 else
3044 {
3045 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3046 }
3047 }
3048
3049 static char *
3050 cplus_name_of_child (struct varobj *parent, int index)
3051 {
3052 char *name = NULL;
3053 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3054 return name;
3055 }
3056
3057 static char *
3058 cplus_path_expr_of_child (struct varobj *child)
3059 {
3060 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3061 &child->path_expr);
3062 return child->path_expr;
3063 }
3064
3065 static struct value *
3066 cplus_value_of_root (struct varobj **var_handle)
3067 {
3068 return c_value_of_root (var_handle);
3069 }
3070
3071 static struct value *
3072 cplus_value_of_child (struct varobj *parent, int index)
3073 {
3074 struct value *value = NULL;
3075 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3076 return value;
3077 }
3078
3079 static struct type *
3080 cplus_type_of_child (struct varobj *parent, int index)
3081 {
3082 struct type *type = NULL;
3083 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3084 return type;
3085 }
3086
3087 static char *
3088 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3089 {
3090
3091 /* If we have one of our special types, don't print out
3092 any value. */
3093 if (CPLUS_FAKE_CHILD (var))
3094 return xstrdup ("");
3095
3096 return c_value_of_variable (var, format);
3097 }
3098 \f
3099 /* Java */
3100
3101 static int
3102 java_number_of_children (struct varobj *var)
3103 {
3104 return cplus_number_of_children (var);
3105 }
3106
3107 static char *
3108 java_name_of_variable (struct varobj *parent)
3109 {
3110 char *p, *name;
3111
3112 name = cplus_name_of_variable (parent);
3113 /* If the name has "-" in it, it is because we
3114 needed to escape periods in the name... */
3115 p = name;
3116
3117 while (*p != '\000')
3118 {
3119 if (*p == '-')
3120 *p = '.';
3121 p++;
3122 }
3123
3124 return name;
3125 }
3126
3127 static char *
3128 java_name_of_child (struct varobj *parent, int index)
3129 {
3130 char *name, *p;
3131
3132 name = cplus_name_of_child (parent, index);
3133 /* Escape any periods in the name... */
3134 p = name;
3135
3136 while (*p != '\000')
3137 {
3138 if (*p == '.')
3139 *p = '-';
3140 p++;
3141 }
3142
3143 return name;
3144 }
3145
3146 static char *
3147 java_path_expr_of_child (struct varobj *child)
3148 {
3149 return NULL;
3150 }
3151
3152 static struct value *
3153 java_value_of_root (struct varobj **var_handle)
3154 {
3155 return cplus_value_of_root (var_handle);
3156 }
3157
3158 static struct value *
3159 java_value_of_child (struct varobj *parent, int index)
3160 {
3161 return cplus_value_of_child (parent, index);
3162 }
3163
3164 static struct type *
3165 java_type_of_child (struct varobj *parent, int index)
3166 {
3167 return cplus_type_of_child (parent, index);
3168 }
3169
3170 static char *
3171 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3172 {
3173 return cplus_value_of_variable (var, format);
3174 }
3175
3176 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3177 with an arbitrary caller supplied DATA pointer. */
3178
3179 void
3180 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3181 {
3182 struct varobj_root *var_root, *var_root_next;
3183
3184 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3185
3186 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3187 {
3188 var_root_next = var_root->next;
3189
3190 (*func) (var_root->rootvar, data);
3191 }
3192 }
3193 \f
3194 extern void _initialize_varobj (void);
3195 void
3196 _initialize_varobj (void)
3197 {
3198 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3199
3200 varobj_table = xmalloc (sizeof_table);
3201 memset (varobj_table, 0, sizeof_table);
3202
3203 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3204 &varobjdebug, _("\
3205 Set varobj debugging."), _("\
3206 Show varobj debugging."), _("\
3207 When non-zero, varobj debugging is enabled."),
3208 NULL,
3209 show_varobjdebug,
3210 &setlist, &showlist);
3211 }
3212
3213 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3214 defined on globals. It is a helper for varobj_invalidate. */
3215
3216 static void
3217 varobj_invalidate_iter (struct varobj *var, void *unused)
3218 {
3219 /* Floating varobjs are reparsed on each stop, so we don't care if the
3220 presently parsed expression refers to something that's gone. */
3221 if (var->root->floating)
3222 return;
3223
3224 /* global var must be re-evaluated. */
3225 if (var->root->valid_block == NULL)
3226 {
3227 struct varobj *tmp_var;
3228
3229 /* Try to create a varobj with same expression. If we succeed
3230 replace the old varobj, otherwise invalidate it. */
3231 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3232 USE_CURRENT_FRAME);
3233 if (tmp_var != NULL)
3234 {
3235 tmp_var->obj_name = xstrdup (var->obj_name);
3236 varobj_delete (var, NULL, 0);
3237 install_variable (tmp_var);
3238 }
3239 else
3240 var->root->is_valid = 0;
3241 }
3242 else /* locals must be invalidated. */
3243 var->root->is_valid = 0;
3244 }
3245
3246 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3247 are defined on globals.
3248 Invalidated varobjs will be always printed in_scope="invalid". */
3249
3250 void
3251 varobj_invalidate (void)
3252 {
3253 all_root_varobjs (varobj_invalidate_iter, NULL);
3254 }
This page took 0.132126 seconds and 4 git commands to generate.