gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32
33 #include "varobj.h"
34 #include "vec.h"
35 #include "gdbthread.h"
36 #include "inferior.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* String representations of gdb's known languages */
60 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
61
62 /* Data structures */
63
64 /* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66 struct varobj_root
67 {
68
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
71
72 /* Block for which this expression is valid */
73 struct block *valid_block;
74
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
77 struct frame_id frame;
78
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
90
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
97
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
100
101 /* Next root variable */
102 struct varobj_root *next;
103 };
104
105 /* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108 struct varobj
109 {
110
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
116
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
124
125 /* Index of this variable in its parent or -1 */
126 int index;
127
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
131 struct type *type;
132
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
137 struct value *value;
138
139 /* The number of (immediate) children this variable has */
140 int num_children;
141
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
144
145 /* Children of this object. */
146 VEC (varobj_p) *children;
147
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
156
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
162
163 /* Last print value. */
164 char *print_value;
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
179 };
180
181 struct cpstack
182 {
183 char *name;
184 struct cpstack *next;
185 };
186
187 /* A list of varobjs */
188
189 struct vlist
190 {
191 struct varobj *var;
192 struct vlist *next;
193 };
194
195 /* Private function prototypes */
196
197 /* Helper functions for the above subcommands. */
198
199 static int delete_variable (struct cpstack **, struct varobj *, int);
200
201 static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
203
204 static int install_variable (struct varobj *);
205
206 static void uninstall_variable (struct varobj *);
207
208 static struct varobj *create_child (struct varobj *, int, char *);
209
210 static struct varobj *
211 create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
214 /* Utility routines */
215
216 static struct varobj *new_variable (void);
217
218 static struct varobj *new_root_variable (void);
219
220 static void free_variable (struct varobj *var);
221
222 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
224 static struct type *get_type (struct varobj *var);
225
226 static struct type *get_value_type (struct varobj *var);
227
228 static struct type *get_target_type (struct type *);
229
230 static enum varobj_display_formats variable_default_display (struct varobj *);
231
232 static void cppush (struct cpstack **pstack, char *name);
233
234 static char *cppop (struct cpstack **pstack);
235
236 static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
239 static void install_default_visualizer (struct varobj *var);
240
241 /* Language-specific routines. */
242
243 static enum varobj_languages variable_language (struct varobj *var);
244
245 static int number_of_children (struct varobj *);
246
247 static char *name_of_variable (struct varobj *);
248
249 static char *name_of_child (struct varobj *, int);
250
251 static struct value *value_of_root (struct varobj **var_handle, int *);
252
253 static struct value *value_of_child (struct varobj *parent, int index);
254
255 static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
257
258 static char *value_get_print_value (struct value *value,
259 enum varobj_display_formats format,
260 struct varobj *var);
261
262 static int varobj_value_is_changeable_p (struct varobj *var);
263
264 static int is_root_p (struct varobj *var);
265
266 static struct varobj *
267 varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
269 /* C implementation */
270
271 static int c_number_of_children (struct varobj *var);
272
273 static char *c_name_of_variable (struct varobj *parent);
274
275 static char *c_name_of_child (struct varobj *parent, int index);
276
277 static char *c_path_expr_of_child (struct varobj *child);
278
279 static struct value *c_value_of_root (struct varobj **var_handle);
280
281 static struct value *c_value_of_child (struct varobj *parent, int index);
282
283 static struct type *c_type_of_child (struct varobj *parent, int index);
284
285 static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 /* C++ implementation */
289
290 static int cplus_number_of_children (struct varobj *var);
291
292 static void cplus_class_num_children (struct type *type, int children[3]);
293
294 static char *cplus_name_of_variable (struct varobj *parent);
295
296 static char *cplus_name_of_child (struct varobj *parent, int index);
297
298 static char *cplus_path_expr_of_child (struct varobj *child);
299
300 static struct value *cplus_value_of_root (struct varobj **var_handle);
301
302 static struct value *cplus_value_of_child (struct varobj *parent, int index);
303
304 static struct type *cplus_type_of_child (struct varobj *parent, int index);
305
306 static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
308
309 /* Java implementation */
310
311 static int java_number_of_children (struct varobj *var);
312
313 static char *java_name_of_variable (struct varobj *parent);
314
315 static char *java_name_of_child (struct varobj *parent, int index);
316
317 static char *java_path_expr_of_child (struct varobj *child);
318
319 static struct value *java_value_of_root (struct varobj **var_handle);
320
321 static struct value *java_value_of_child (struct varobj *parent, int index);
322
323 static struct type *java_type_of_child (struct varobj *parent, int index);
324
325 static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
327
328 /* The language specific vector */
329
330 struct language_specific
331 {
332
333 /* The language of this variable */
334 enum varobj_languages language;
335
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
338
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
341
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
344
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
351
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
354
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
357
358 /* The current value of VAR. */
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
361 };
362
363 /* Array of known source language routines. */
364 static struct language_specific languages[vlang_end] = {
365 /* Unknown (try treating as C */
366 {
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
371 c_path_expr_of_child,
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
375 c_value_of_variable}
376 ,
377 /* C */
378 {
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
383 c_path_expr_of_child,
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
387 c_value_of_variable}
388 ,
389 /* C++ */
390 {
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
395 cplus_path_expr_of_child,
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
399 cplus_value_of_variable}
400 ,
401 /* Java */
402 {
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
407 java_path_expr_of_child,
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
411 java_value_of_variable}
412 };
413
414 /* A little convenience enum for dealing with C++/Java */
415 enum vsections
416 {
417 v_public = 0, v_private, v_protected
418 };
419
420 /* Private data */
421
422 /* Mappings of varobj_display_formats enums to gdb's format codes */
423 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
424
425 /* Header of the list of root variable objects */
426 static struct varobj_root *rootlist;
427
428 /* Prime number indicating the number of buckets in the hash table */
429 /* A prime large enough to avoid too many colisions */
430 #define VAROBJ_TABLE_SIZE 227
431
432 /* Pointer to the varobj hash table (built at run time) */
433 static struct vlist **varobj_table;
434
435 /* Is the variable X one of our "fake" children? */
436 #define CPLUS_FAKE_CHILD(x) \
437 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
438 \f
439
440 /* API Implementation */
441 static int
442 is_root_p (struct varobj *var)
443 {
444 return (var->root->rootvar == var);
445 }
446
447 #ifdef HAVE_PYTHON
448 /* Helper function to install a Python environment suitable for
449 use during operations on VAR. */
450 struct cleanup *
451 varobj_ensure_python_env (struct varobj *var)
452 {
453 return ensure_python_env (var->root->exp->gdbarch,
454 var->root->exp->language_defn);
455 }
456 #endif
457
458 /* Creates a varobj (not its children) */
459
460 /* Return the full FRAME which corresponds to the given CORE_ADDR
461 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
462
463 static struct frame_info *
464 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
465 {
466 struct frame_info *frame = NULL;
467
468 if (frame_addr == (CORE_ADDR) 0)
469 return NULL;
470
471 for (frame = get_current_frame ();
472 frame != NULL;
473 frame = get_prev_frame (frame))
474 {
475 /* The CORE_ADDR we get as argument was parsed from a string GDB
476 output as $fp. This output got truncated to gdbarch_addr_bit.
477 Truncate the frame base address in the same manner before
478 comparing it against our argument. */
479 CORE_ADDR frame_base = get_frame_base_address (frame);
480 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
481 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
482 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
483
484 if (frame_base == frame_addr)
485 return frame;
486 }
487
488 return NULL;
489 }
490
491 struct varobj *
492 varobj_create (char *objname,
493 char *expression, CORE_ADDR frame, enum varobj_type type)
494 {
495 struct varobj *var;
496 struct frame_info *fi;
497 struct frame_info *old_fi = NULL;
498 struct block *block;
499 struct cleanup *old_chain;
500
501 /* Fill out a varobj structure for the (root) variable being constructed. */
502 var = new_root_variable ();
503 old_chain = make_cleanup_free_variable (var);
504
505 if (expression != NULL)
506 {
507 char *p;
508 enum varobj_languages lang;
509 struct value *value = NULL;
510
511 /* Parse and evaluate the expression, filling in as much of the
512 variable's data as possible. */
513
514 if (has_stack_frames ())
515 {
516 /* Allow creator to specify context of variable */
517 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
518 fi = get_selected_frame (NULL);
519 else
520 /* FIXME: cagney/2002-11-23: This code should be doing a
521 lookup using the frame ID and not just the frame's
522 ``address''. This, of course, means an interface
523 change. However, with out that interface change ISAs,
524 such as the ia64 with its two stacks, won't work.
525 Similar goes for the case where there is a frameless
526 function. */
527 fi = find_frame_addr_in_frame_chain (frame);
528 }
529 else
530 fi = NULL;
531
532 /* frame = -2 means always use selected frame */
533 if (type == USE_SELECTED_FRAME)
534 var->root->floating = 1;
535
536 block = NULL;
537 if (fi != NULL)
538 block = get_frame_block (fi, 0);
539
540 p = expression;
541 innermost_block = NULL;
542 /* Wrap the call to parse expression, so we can
543 return a sensible error. */
544 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
545 {
546 return NULL;
547 }
548
549 /* Don't allow variables to be created for types. */
550 if (var->root->exp->elts[0].opcode == OP_TYPE)
551 {
552 do_cleanups (old_chain);
553 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
554 " as an expression.\n");
555 return NULL;
556 }
557
558 var->format = variable_default_display (var);
559 var->root->valid_block = innermost_block;
560 var->name = xstrdup (expression);
561 /* For a root var, the name and the expr are the same. */
562 var->path_expr = xstrdup (expression);
563
564 /* When the frame is different from the current frame,
565 we must select the appropriate frame before parsing
566 the expression, otherwise the value will not be current.
567 Since select_frame is so benign, just call it for all cases. */
568 if (innermost_block)
569 {
570 /* User could specify explicit FRAME-ADDR which was not found but
571 EXPRESSION is frame specific and we would not be able to evaluate
572 it correctly next time. With VALID_BLOCK set we must also set
573 FRAME and THREAD_ID. */
574 if (fi == NULL)
575 error (_("Failed to find the specified frame"));
576
577 var->root->frame = get_frame_id (fi);
578 var->root->thread_id = pid_to_thread_id (inferior_ptid);
579 old_fi = get_selected_frame (NULL);
580 select_frame (fi);
581 }
582
583 /* We definitely need to catch errors here.
584 If evaluate_expression succeeds we got the value we wanted.
585 But if it fails, we still go on with a call to evaluate_type() */
586 if (!gdb_evaluate_expression (var->root->exp, &value))
587 {
588 /* Error getting the value. Try to at least get the
589 right type. */
590 struct value *type_only_value = evaluate_type (var->root->exp);
591 var->type = value_type (type_only_value);
592 }
593 else
594 var->type = value_type (value);
595
596 install_new_value (var, value, 1 /* Initial assignment */);
597
598 /* Set language info */
599 lang = variable_language (var);
600 var->root->lang = &languages[lang];
601
602 /* Set ourselves as our root */
603 var->root->rootvar = var;
604
605 /* Reset the selected frame */
606 if (old_fi != NULL)
607 select_frame (old_fi);
608 }
609
610 /* If the variable object name is null, that means this
611 is a temporary variable, so don't install it. */
612
613 if ((var != NULL) && (objname != NULL))
614 {
615 var->obj_name = xstrdup (objname);
616
617 /* If a varobj name is duplicated, the install will fail so
618 we must clenup */
619 if (!install_variable (var))
620 {
621 do_cleanups (old_chain);
622 return NULL;
623 }
624 }
625
626 install_default_visualizer (var);
627 discard_cleanups (old_chain);
628 return var;
629 }
630
631 /* Generates an unique name that can be used for a varobj */
632
633 char *
634 varobj_gen_name (void)
635 {
636 static int id = 0;
637 char *obj_name;
638
639 /* generate a name for this object */
640 id++;
641 obj_name = xstrprintf ("var%d", id);
642
643 return obj_name;
644 }
645
646 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
647 error if OBJNAME cannot be found. */
648
649 struct varobj *
650 varobj_get_handle (char *objname)
651 {
652 struct vlist *cv;
653 const char *chp;
654 unsigned int index = 0;
655 unsigned int i = 1;
656
657 for (chp = objname; *chp; chp++)
658 {
659 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
660 }
661
662 cv = *(varobj_table + index);
663 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
664 cv = cv->next;
665
666 if (cv == NULL)
667 error (_("Variable object not found"));
668
669 return cv->var;
670 }
671
672 /* Given the handle, return the name of the object */
673
674 char *
675 varobj_get_objname (struct varobj *var)
676 {
677 return var->obj_name;
678 }
679
680 /* Given the handle, return the expression represented by the object */
681
682 char *
683 varobj_get_expression (struct varobj *var)
684 {
685 return name_of_variable (var);
686 }
687
688 /* Deletes a varobj and all its children if only_children == 0,
689 otherwise deletes only the children; returns a malloc'ed list of all the
690 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
691
692 int
693 varobj_delete (struct varobj *var, char ***dellist, int only_children)
694 {
695 int delcount;
696 int mycount;
697 struct cpstack *result = NULL;
698 char **cp;
699
700 /* Initialize a stack for temporary results */
701 cppush (&result, NULL);
702
703 if (only_children)
704 /* Delete only the variable children */
705 delcount = delete_variable (&result, var, 1 /* only the children */ );
706 else
707 /* Delete the variable and all its children */
708 delcount = delete_variable (&result, var, 0 /* parent+children */ );
709
710 /* We may have been asked to return a list of what has been deleted */
711 if (dellist != NULL)
712 {
713 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
714
715 cp = *dellist;
716 mycount = delcount;
717 *cp = cppop (&result);
718 while ((*cp != NULL) && (mycount > 0))
719 {
720 mycount--;
721 cp++;
722 *cp = cppop (&result);
723 }
724
725 if (mycount || (*cp != NULL))
726 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
727 mycount);
728 }
729
730 return delcount;
731 }
732
733 /* Convenience function for varobj_set_visualizer. Instantiate a
734 pretty-printer for a given value. */
735 static PyObject *
736 instantiate_pretty_printer (PyObject *constructor, struct value *value)
737 {
738 #if HAVE_PYTHON
739 PyObject *val_obj = NULL;
740 PyObject *printer;
741 volatile struct gdb_exception except;
742
743 TRY_CATCH (except, RETURN_MASK_ALL)
744 {
745 value = value_copy (value);
746 }
747 GDB_PY_HANDLE_EXCEPTION (except);
748 val_obj = value_to_value_object (value);
749
750 if (! val_obj)
751 return NULL;
752
753 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
754 Py_DECREF (val_obj);
755 return printer;
756 #endif
757 return NULL;
758 }
759
760 /* Set/Get variable object display format */
761
762 enum varobj_display_formats
763 varobj_set_display_format (struct varobj *var,
764 enum varobj_display_formats format)
765 {
766 switch (format)
767 {
768 case FORMAT_NATURAL:
769 case FORMAT_BINARY:
770 case FORMAT_DECIMAL:
771 case FORMAT_HEXADECIMAL:
772 case FORMAT_OCTAL:
773 var->format = format;
774 break;
775
776 default:
777 var->format = variable_default_display (var);
778 }
779
780 if (varobj_value_is_changeable_p (var)
781 && var->value && !value_lazy (var->value))
782 {
783 xfree (var->print_value);
784 var->print_value = value_get_print_value (var->value, var->format, var);
785 }
786
787 return var->format;
788 }
789
790 enum varobj_display_formats
791 varobj_get_display_format (struct varobj *var)
792 {
793 return var->format;
794 }
795
796 char *
797 varobj_get_display_hint (struct varobj *var)
798 {
799 char *result = NULL;
800
801 #if HAVE_PYTHON
802 struct cleanup *back_to = varobj_ensure_python_env (var);
803
804 if (var->pretty_printer)
805 result = gdbpy_get_display_hint (var->pretty_printer);
806
807 do_cleanups (back_to);
808 #endif
809
810 return result;
811 }
812
813 /* If the variable object is bound to a specific thread, that
814 is its evaluation can always be done in context of a frame
815 inside that thread, returns GDB id of the thread -- which
816 is always positive. Otherwise, returns -1. */
817 int
818 varobj_get_thread_id (struct varobj *var)
819 {
820 if (var->root->valid_block && var->root->thread_id > 0)
821 return var->root->thread_id;
822 else
823 return -1;
824 }
825
826 void
827 varobj_set_frozen (struct varobj *var, int frozen)
828 {
829 /* When a variable is unfrozen, we don't fetch its value.
830 The 'not_fetched' flag remains set, so next -var-update
831 won't complain.
832
833 We don't fetch the value, because for structures the client
834 should do -var-update anyway. It would be bad to have different
835 client-size logic for structure and other types. */
836 var->frozen = frozen;
837 }
838
839 int
840 varobj_get_frozen (struct varobj *var)
841 {
842 return var->frozen;
843 }
844
845 static int
846 update_dynamic_varobj_children (struct varobj *var,
847 VEC (varobj_p) **changed,
848 VEC (varobj_p) **new_and_unchanged,
849 int *cchanged)
850
851 {
852 #if HAVE_PYTHON
853 /* FIXME: we *might* want to provide this functionality as
854 a standalone function, so that other interested parties
855 than varobj code can benefit for this. */
856 struct cleanup *back_to;
857 PyObject *children;
858 PyObject *iterator;
859 int i;
860 int children_changed = 0;
861 PyObject *printer = var->pretty_printer;
862
863 back_to = varobj_ensure_python_env (var);
864
865 *cchanged = 0;
866 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
867 {
868 do_cleanups (back_to);
869 return 0;
870 }
871
872 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
873 NULL);
874
875 if (!children)
876 {
877 gdbpy_print_stack ();
878 error (_("Null value returned for children"));
879 }
880
881 make_cleanup_py_decref (children);
882
883 if (!PyIter_Check (children))
884 error (_("Returned value is not iterable"));
885
886 iterator = PyObject_GetIter (children);
887 if (!iterator)
888 {
889 gdbpy_print_stack ();
890 error (_("Could not get children iterator"));
891 }
892 make_cleanup_py_decref (iterator);
893
894 for (i = 0; ; ++i)
895 {
896 PyObject *item = PyIter_Next (iterator);
897 PyObject *py_v;
898 struct value *v;
899 char *name;
900 struct cleanup *inner;
901
902 if (!item)
903 break;
904 inner = make_cleanup_py_decref (item);
905
906 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
907 error (_("Invalid item from the child list"));
908
909 v = convert_value_from_python (py_v);
910
911 /* TODO: This assume the name of the i-th child never changes. */
912
913 /* Now see what to do here. */
914 if (VEC_length (varobj_p, var->children) < i + 1)
915 {
916 /* There's no child yet. */
917 struct varobj *child = varobj_add_child (var, name, v);
918 if (new_and_unchanged)
919 VEC_safe_push (varobj_p, *new_and_unchanged, child);
920 children_changed = 1;
921 }
922 else
923 {
924 varobj_p existing = VEC_index (varobj_p, var->children, i);
925 if (install_new_value (existing, v, 0) && changed)
926 {
927 if (changed)
928 VEC_safe_push (varobj_p, *changed, existing);
929 }
930 else
931 {
932 if (new_and_unchanged)
933 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
934 }
935 }
936
937 do_cleanups (inner);
938 }
939
940 if (i < VEC_length (varobj_p, var->children))
941 {
942 int i;
943 children_changed = 1;
944 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
945 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
946 }
947 VEC_truncate (varobj_p, var->children, i);
948 var->num_children = VEC_length (varobj_p, var->children);
949
950 do_cleanups (back_to);
951
952 *cchanged = children_changed;
953 return 1;
954 #else
955 gdb_assert (0 && "should never be called if Python is not enabled");
956 #endif
957 }
958
959 int
960 varobj_get_num_children (struct varobj *var)
961 {
962 if (var->num_children == -1)
963 {
964 int changed;
965 if (!var->pretty_printer
966 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
967 var->num_children = number_of_children (var);
968 }
969
970 return var->num_children;
971 }
972
973 /* Creates a list of the immediate children of a variable object;
974 the return code is the number of such children or -1 on error */
975
976 VEC (varobj_p)*
977 varobj_list_children (struct varobj *var)
978 {
979 struct varobj *child;
980 char *name;
981 int i, children_changed;
982
983 var->children_requested = 1;
984
985 if (var->pretty_printer
986 /* This, in theory, can result in the number of children changing without
987 frontend noticing. But well, calling -var-list-children on the same
988 varobj twice is not something a sane frontend would do. */
989 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
990 return var->children;
991
992 if (var->num_children == -1)
993 var->num_children = number_of_children (var);
994
995 /* If that failed, give up. */
996 if (var->num_children == -1)
997 return var->children;
998
999 /* If we're called when the list of children is not yet initialized,
1000 allocate enough elements in it. */
1001 while (VEC_length (varobj_p, var->children) < var->num_children)
1002 VEC_safe_push (varobj_p, var->children, NULL);
1003
1004 for (i = 0; i < var->num_children; i++)
1005 {
1006 varobj_p existing = VEC_index (varobj_p, var->children, i);
1007
1008 if (existing == NULL)
1009 {
1010 /* Either it's the first call to varobj_list_children for
1011 this variable object, and the child was never created,
1012 or it was explicitly deleted by the client. */
1013 name = name_of_child (var, i);
1014 existing = create_child (var, i, name);
1015 VEC_replace (varobj_p, var->children, i, existing);
1016 install_default_visualizer (existing);
1017 }
1018 }
1019
1020 return var->children;
1021 }
1022
1023 static struct varobj *
1024 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1025 {
1026 varobj_p v = create_child_with_value (var,
1027 VEC_length (varobj_p, var->children),
1028 name, value);
1029 VEC_safe_push (varobj_p, var->children, v);
1030 install_default_visualizer (v);
1031 return v;
1032 }
1033
1034 /* Obtain the type of an object Variable as a string similar to the one gdb
1035 prints on the console */
1036
1037 char *
1038 varobj_get_type (struct varobj *var)
1039 {
1040 /* For the "fake" variables, do not return a type. (It's type is
1041 NULL, too.)
1042 Do not return a type for invalid variables as well. */
1043 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1044 return NULL;
1045
1046 return type_to_string (var->type);
1047 }
1048
1049 /* Obtain the type of an object variable. */
1050
1051 struct type *
1052 varobj_get_gdb_type (struct varobj *var)
1053 {
1054 return var->type;
1055 }
1056
1057 /* Return a pointer to the full rooted expression of varobj VAR.
1058 If it has not been computed yet, compute it. */
1059 char *
1060 varobj_get_path_expr (struct varobj *var)
1061 {
1062 if (var->path_expr != NULL)
1063 return var->path_expr;
1064 else
1065 {
1066 /* For root varobjs, we initialize path_expr
1067 when creating varobj, so here it should be
1068 child varobj. */
1069 gdb_assert (!is_root_p (var));
1070 return (*var->root->lang->path_expr_of_child) (var);
1071 }
1072 }
1073
1074 enum varobj_languages
1075 varobj_get_language (struct varobj *var)
1076 {
1077 return variable_language (var);
1078 }
1079
1080 int
1081 varobj_get_attributes (struct varobj *var)
1082 {
1083 int attributes = 0;
1084
1085 if (varobj_editable_p (var))
1086 /* FIXME: define masks for attributes */
1087 attributes |= 0x00000001; /* Editable */
1088
1089 return attributes;
1090 }
1091
1092 char *
1093 varobj_get_formatted_value (struct varobj *var,
1094 enum varobj_display_formats format)
1095 {
1096 return my_value_of_variable (var, format);
1097 }
1098
1099 char *
1100 varobj_get_value (struct varobj *var)
1101 {
1102 return my_value_of_variable (var, var->format);
1103 }
1104
1105 /* Set the value of an object variable (if it is editable) to the
1106 value of the given expression */
1107 /* Note: Invokes functions that can call error() */
1108
1109 int
1110 varobj_set_value (struct varobj *var, char *expression)
1111 {
1112 struct value *val;
1113 int offset = 0;
1114 int error = 0;
1115
1116 /* The argument "expression" contains the variable's new value.
1117 We need to first construct a legal expression for this -- ugh! */
1118 /* Does this cover all the bases? */
1119 struct expression *exp;
1120 struct value *value;
1121 int saved_input_radix = input_radix;
1122 char *s = expression;
1123 int i;
1124
1125 gdb_assert (varobj_editable_p (var));
1126
1127 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1128 exp = parse_exp_1 (&s, 0, 0);
1129 if (!gdb_evaluate_expression (exp, &value))
1130 {
1131 /* We cannot proceed without a valid expression. */
1132 xfree (exp);
1133 return 0;
1134 }
1135
1136 /* All types that are editable must also be changeable. */
1137 gdb_assert (varobj_value_is_changeable_p (var));
1138
1139 /* The value of a changeable variable object must not be lazy. */
1140 gdb_assert (!value_lazy (var->value));
1141
1142 /* Need to coerce the input. We want to check if the
1143 value of the variable object will be different
1144 after assignment, and the first thing value_assign
1145 does is coerce the input.
1146 For example, if we are assigning an array to a pointer variable we
1147 should compare the pointer with the the array's address, not with the
1148 array's content. */
1149 value = coerce_array (value);
1150
1151 /* The new value may be lazy. gdb_value_assign, or
1152 rather value_contents, will take care of this.
1153 If fetching of the new value will fail, gdb_value_assign
1154 with catch the exception. */
1155 if (!gdb_value_assign (var->value, value, &val))
1156 return 0;
1157
1158 /* If the value has changed, record it, so that next -var-update can
1159 report this change. If a variable had a value of '1', we've set it
1160 to '333' and then set again to '1', when -var-update will report this
1161 variable as changed -- because the first assignment has set the
1162 'updated' flag. There's no need to optimize that, because return value
1163 of -var-update should be considered an approximation. */
1164 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1165 input_radix = saved_input_radix;
1166 return 1;
1167 }
1168
1169 /* Assign a new value to a variable object. If INITIAL is non-zero,
1170 this is the first assignement after the variable object was just
1171 created, or changed type. In that case, just assign the value
1172 and return 0.
1173 Otherwise, assign the new value, and return 1 if the value is different
1174 from the current one, 0 otherwise. The comparison is done on textual
1175 representation of value. Therefore, some types need not be compared. E.g.
1176 for structures the reported value is always "{...}", so no comparison is
1177 necessary here. If the old value was NULL and new one is not, or vice versa,
1178 we always return 1.
1179
1180 The VALUE parameter should not be released -- the function will
1181 take care of releasing it when needed. */
1182 static int
1183 install_new_value (struct varobj *var, struct value *value, int initial)
1184 {
1185 int changeable;
1186 int need_to_fetch;
1187 int changed = 0;
1188 int intentionally_not_fetched = 0;
1189 char *print_value = NULL;
1190
1191 /* We need to know the varobj's type to decide if the value should
1192 be fetched or not. C++ fake children (public/protected/private) don't have
1193 a type. */
1194 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1195 changeable = varobj_value_is_changeable_p (var);
1196
1197 /* If the type has custom visualizer, we consider it to be always
1198 changeable. FIXME: need to make sure this behaviour will not
1199 mess up read-sensitive values. */
1200 if (var->pretty_printer)
1201 changeable = 1;
1202
1203 need_to_fetch = changeable;
1204
1205 /* We are not interested in the address of references, and given
1206 that in C++ a reference is not rebindable, it cannot
1207 meaningfully change. So, get hold of the real value. */
1208 if (value)
1209 {
1210 value = coerce_ref (value);
1211 release_value (value);
1212 }
1213
1214 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1215 /* For unions, we need to fetch the value implicitly because
1216 of implementation of union member fetch. When gdb
1217 creates a value for a field and the value of the enclosing
1218 structure is not lazy, it immediately copies the necessary
1219 bytes from the enclosing values. If the enclosing value is
1220 lazy, the call to value_fetch_lazy on the field will read
1221 the data from memory. For unions, that means we'll read the
1222 same memory more than once, which is not desirable. So
1223 fetch now. */
1224 need_to_fetch = 1;
1225
1226 /* The new value might be lazy. If the type is changeable,
1227 that is we'll be comparing values of this type, fetch the
1228 value now. Otherwise, on the next update the old value
1229 will be lazy, which means we've lost that old value. */
1230 if (need_to_fetch && value && value_lazy (value))
1231 {
1232 struct varobj *parent = var->parent;
1233 int frozen = var->frozen;
1234 for (; !frozen && parent; parent = parent->parent)
1235 frozen |= parent->frozen;
1236
1237 if (frozen && initial)
1238 {
1239 /* For variables that are frozen, or are children of frozen
1240 variables, we don't do fetch on initial assignment.
1241 For non-initial assignemnt we do the fetch, since it means we're
1242 explicitly asked to compare the new value with the old one. */
1243 intentionally_not_fetched = 1;
1244 }
1245 else if (!gdb_value_fetch_lazy (value))
1246 {
1247 /* Set the value to NULL, so that for the next -var-update,
1248 we don't try to compare the new value with this value,
1249 that we couldn't even read. */
1250 value = NULL;
1251 }
1252 }
1253
1254
1255 /* Below, we'll be comparing string rendering of old and new
1256 values. Don't get string rendering if the value is
1257 lazy -- if it is, the code above has decided that the value
1258 should not be fetched. */
1259 if (value && !value_lazy (value))
1260 print_value = value_get_print_value (value, var->format, var);
1261
1262 /* If the type is changeable, compare the old and the new values.
1263 If this is the initial assignment, we don't have any old value
1264 to compare with. */
1265 if (!initial && changeable)
1266 {
1267 /* If the value of the varobj was changed by -var-set-value, then the
1268 value in the varobj and in the target is the same. However, that value
1269 is different from the value that the varobj had after the previous
1270 -var-update. So need to the varobj as changed. */
1271 if (var->updated)
1272 {
1273 changed = 1;
1274 }
1275 else
1276 {
1277 /* Try to compare the values. That requires that both
1278 values are non-lazy. */
1279 if (var->not_fetched && value_lazy (var->value))
1280 {
1281 /* This is a frozen varobj and the value was never read.
1282 Presumably, UI shows some "never read" indicator.
1283 Now that we've fetched the real value, we need to report
1284 this varobj as changed so that UI can show the real
1285 value. */
1286 changed = 1;
1287 }
1288 else if (var->value == NULL && value == NULL)
1289 /* Equal. */
1290 ;
1291 else if (var->value == NULL || value == NULL)
1292 {
1293 changed = 1;
1294 }
1295 else
1296 {
1297 gdb_assert (!value_lazy (var->value));
1298 gdb_assert (!value_lazy (value));
1299
1300 gdb_assert (var->print_value != NULL && print_value != NULL);
1301 if (strcmp (var->print_value, print_value) != 0)
1302 changed = 1;
1303 }
1304 }
1305 }
1306
1307 if (!initial && !changeable)
1308 {
1309 /* For values that are not changeable, we don't compare the values.
1310 However, we want to notice if a value was not NULL and now is NULL,
1311 or vise versa, so that we report when top-level varobjs come in scope
1312 and leave the scope. */
1313 changed = (var->value != NULL) != (value != NULL);
1314 }
1315
1316 /* We must always keep the new value, since children depend on it. */
1317 if (var->value != NULL && var->value != value)
1318 value_free (var->value);
1319 var->value = value;
1320 if (var->print_value)
1321 xfree (var->print_value);
1322 var->print_value = print_value;
1323 if (value && value_lazy (value) && intentionally_not_fetched)
1324 var->not_fetched = 1;
1325 else
1326 var->not_fetched = 0;
1327 var->updated = 0;
1328
1329 gdb_assert (!var->value || value_type (var->value));
1330
1331 return changed;
1332 }
1333
1334 static void
1335 install_visualizer (struct varobj *var, PyObject *visualizer)
1336 {
1337 #if HAVE_PYTHON
1338 /* If there are any children now, wipe them. */
1339 varobj_delete (var, NULL, 1 /* children only */);
1340 var->num_children = -1;
1341
1342 Py_XDECREF (var->pretty_printer);
1343 var->pretty_printer = visualizer;
1344
1345 install_new_value (var, var->value, 1);
1346
1347 /* If we removed the visualizer, and the user ever requested the
1348 object's children, then we must compute the list of children.
1349 Note that we needn't do this when installing a visualizer,
1350 because updating will recompute dynamic children. */
1351 if (!visualizer && var->children_requested)
1352 varobj_list_children (var);
1353 #else
1354 error (_("Python support required"));
1355 #endif
1356 }
1357
1358 static void
1359 install_default_visualizer (struct varobj *var)
1360 {
1361 #if HAVE_PYTHON
1362 struct cleanup *cleanup;
1363 PyObject *pretty_printer = NULL;
1364
1365 cleanup = varobj_ensure_python_env (var);
1366
1367 if (var->value)
1368 {
1369 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1370 if (! pretty_printer)
1371 {
1372 gdbpy_print_stack ();
1373 error (_("Cannot instantiate printer for default visualizer"));
1374 }
1375 }
1376
1377 if (pretty_printer == Py_None)
1378 {
1379 Py_DECREF (pretty_printer);
1380 pretty_printer = NULL;
1381 }
1382
1383 install_visualizer (var, pretty_printer);
1384 do_cleanups (cleanup);
1385 #else
1386 /* No error is right as this function is inserted just as a hook. */
1387 #endif
1388 }
1389
1390 void
1391 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1392 {
1393 #if HAVE_PYTHON
1394 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1395 struct cleanup *back_to, *value;
1396
1397 back_to = varobj_ensure_python_env (var);
1398
1399 mainmod = PyImport_AddModule ("__main__");
1400 globals = PyModule_GetDict (mainmod);
1401 Py_INCREF (globals);
1402 make_cleanup_py_decref (globals);
1403
1404 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1405
1406 /* Do not instantiate NoneType. */
1407 if (constructor == Py_None)
1408 {
1409 pretty_printer = Py_None;
1410 Py_INCREF (pretty_printer);
1411 }
1412 else
1413 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1414
1415 Py_XDECREF (constructor);
1416
1417 if (! pretty_printer)
1418 {
1419 gdbpy_print_stack ();
1420 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1421 }
1422
1423 if (pretty_printer == Py_None)
1424 {
1425 Py_DECREF (pretty_printer);
1426 pretty_printer = NULL;
1427 }
1428
1429 install_visualizer (var, pretty_printer);
1430
1431 do_cleanups (back_to);
1432 #else
1433 error (_("Python support required"));
1434 #endif
1435 }
1436
1437 /* Update the values for a variable and its children. This is a
1438 two-pronged attack. First, re-parse the value for the root's
1439 expression to see if it's changed. Then go all the way
1440 through its children, reconstructing them and noting if they've
1441 changed.
1442
1443 The EXPLICIT parameter specifies if this call is result
1444 of MI request to update this specific variable, or
1445 result of implicit -var-update *. For implicit request, we don't
1446 update frozen variables.
1447
1448 NOTE: This function may delete the caller's varobj. If it
1449 returns TYPE_CHANGED, then it has done this and VARP will be modified
1450 to point to the new varobj. */
1451
1452 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1453 {
1454 int changed = 0;
1455 int type_changed = 0;
1456 int i;
1457 int vleft;
1458 struct varobj *v;
1459 struct varobj **cv;
1460 struct varobj **templist = NULL;
1461 struct value *new;
1462 VEC (varobj_update_result) *stack = NULL;
1463 VEC (varobj_update_result) *result = NULL;
1464 struct frame_info *fi;
1465
1466 /* Frozen means frozen -- we don't check for any change in
1467 this varobj, including its going out of scope, or
1468 changing type. One use case for frozen varobjs is
1469 retaining previously evaluated expressions, and we don't
1470 want them to be reevaluated at all. */
1471 if (!explicit && (*varp)->frozen)
1472 return result;
1473
1474 if (!(*varp)->root->is_valid)
1475 {
1476 varobj_update_result r = {*varp};
1477 r.status = VAROBJ_INVALID;
1478 VEC_safe_push (varobj_update_result, result, &r);
1479 return result;
1480 }
1481
1482 if ((*varp)->root->rootvar == *varp)
1483 {
1484 varobj_update_result r = {*varp};
1485 r.status = VAROBJ_IN_SCOPE;
1486
1487 /* Update the root variable. value_of_root can return NULL
1488 if the variable is no longer around, i.e. we stepped out of
1489 the frame in which a local existed. We are letting the
1490 value_of_root variable dispose of the varobj if the type
1491 has changed. */
1492 new = value_of_root (varp, &type_changed);
1493 r.varobj = *varp;
1494
1495 r.type_changed = type_changed;
1496 if (install_new_value ((*varp), new, type_changed))
1497 r.changed = 1;
1498
1499 if (new == NULL)
1500 r.status = VAROBJ_NOT_IN_SCOPE;
1501 r.value_installed = 1;
1502
1503 if (r.status == VAROBJ_NOT_IN_SCOPE)
1504 {
1505 if (r.type_changed || r.changed)
1506 VEC_safe_push (varobj_update_result, result, &r);
1507 return result;
1508 }
1509
1510 VEC_safe_push (varobj_update_result, stack, &r);
1511 }
1512 else
1513 {
1514 varobj_update_result r = {*varp};
1515 VEC_safe_push (varobj_update_result, stack, &r);
1516 }
1517
1518 /* Walk through the children, reconstructing them all. */
1519 while (!VEC_empty (varobj_update_result, stack))
1520 {
1521 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1522 struct varobj *v = r.varobj;
1523
1524 VEC_pop (varobj_update_result, stack);
1525
1526 /* Update this variable, unless it's a root, which is already
1527 updated. */
1528 if (!r.value_installed)
1529 {
1530 new = value_of_child (v->parent, v->index);
1531 if (install_new_value (v, new, 0 /* type not changed */))
1532 {
1533 r.changed = 1;
1534 v->updated = 0;
1535 }
1536 }
1537
1538 /* We probably should not get children of a varobj that has a
1539 pretty-printer, but for which -var-list-children was never
1540 invoked. Presumably, such varobj is not yet expanded in the
1541 UI, so we need not bother getting it. */
1542 if (v->pretty_printer)
1543 {
1544 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1545 int i, children_changed;
1546 varobj_p tmp;
1547
1548 if (!v->children_requested)
1549 continue;
1550
1551 if (v->frozen)
1552 continue;
1553
1554 /* If update_dynamic_varobj_children returns 0, then we have
1555 a non-conforming pretty-printer, so we skip it. */
1556 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1557 &children_changed))
1558 {
1559 if (children_changed)
1560 r.children_changed = 1;
1561 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1562 {
1563 varobj_update_result r = {tmp};
1564 r.changed = 1;
1565 r.value_installed = 1;
1566 VEC_safe_push (varobj_update_result, stack, &r);
1567 }
1568 for (i = 0;
1569 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1570 ++i)
1571 {
1572 varobj_update_result r = {tmp};
1573 r.value_installed = 1;
1574 VEC_safe_push (varobj_update_result, stack, &r);
1575 }
1576 if (r.changed || r.children_changed)
1577 VEC_safe_push (varobj_update_result, result, &r);
1578 continue;
1579 }
1580 }
1581
1582 /* Push any children. Use reverse order so that the first
1583 child is popped from the work stack first, and so
1584 will be added to result first. This does not
1585 affect correctness, just "nicer". */
1586 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1587 {
1588 varobj_p c = VEC_index (varobj_p, v->children, i);
1589 /* Child may be NULL if explicitly deleted by -var-delete. */
1590 if (c != NULL && !c->frozen)
1591 {
1592 varobj_update_result r = {c};
1593 VEC_safe_push (varobj_update_result, stack, &r);
1594 }
1595 }
1596
1597 if (r.changed || r.type_changed)
1598 VEC_safe_push (varobj_update_result, result, &r);
1599 }
1600
1601 VEC_free (varobj_update_result, stack);
1602
1603 return result;
1604 }
1605 \f
1606
1607 /* Helper functions */
1608
1609 /*
1610 * Variable object construction/destruction
1611 */
1612
1613 static int
1614 delete_variable (struct cpstack **resultp, struct varobj *var,
1615 int only_children_p)
1616 {
1617 int delcount = 0;
1618
1619 delete_variable_1 (resultp, &delcount, var,
1620 only_children_p, 1 /* remove_from_parent_p */ );
1621
1622 return delcount;
1623 }
1624
1625 /* Delete the variable object VAR and its children */
1626 /* IMPORTANT NOTE: If we delete a variable which is a child
1627 and the parent is not removed we dump core. It must be always
1628 initially called with remove_from_parent_p set */
1629 static void
1630 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1631 struct varobj *var, int only_children_p,
1632 int remove_from_parent_p)
1633 {
1634 int i;
1635
1636 /* Delete any children of this variable, too. */
1637 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1638 {
1639 varobj_p child = VEC_index (varobj_p, var->children, i);
1640 if (!child)
1641 continue;
1642 if (!remove_from_parent_p)
1643 child->parent = NULL;
1644 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1645 }
1646 VEC_free (varobj_p, var->children);
1647
1648 /* if we were called to delete only the children we are done here */
1649 if (only_children_p)
1650 return;
1651
1652 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1653 /* If the name is null, this is a temporary variable, that has not
1654 yet been installed, don't report it, it belongs to the caller... */
1655 if (var->obj_name != NULL)
1656 {
1657 cppush (resultp, xstrdup (var->obj_name));
1658 *delcountp = *delcountp + 1;
1659 }
1660
1661 /* If this variable has a parent, remove it from its parent's list */
1662 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1663 (as indicated by remove_from_parent_p) we don't bother doing an
1664 expensive list search to find the element to remove when we are
1665 discarding the list afterwards */
1666 if ((remove_from_parent_p) && (var->parent != NULL))
1667 {
1668 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1669 }
1670
1671 if (var->obj_name != NULL)
1672 uninstall_variable (var);
1673
1674 /* Free memory associated with this variable */
1675 free_variable (var);
1676 }
1677
1678 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1679 static int
1680 install_variable (struct varobj *var)
1681 {
1682 struct vlist *cv;
1683 struct vlist *newvl;
1684 const char *chp;
1685 unsigned int index = 0;
1686 unsigned int i = 1;
1687
1688 for (chp = var->obj_name; *chp; chp++)
1689 {
1690 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1691 }
1692
1693 cv = *(varobj_table + index);
1694 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1695 cv = cv->next;
1696
1697 if (cv != NULL)
1698 error (_("Duplicate variable object name"));
1699
1700 /* Add varobj to hash table */
1701 newvl = xmalloc (sizeof (struct vlist));
1702 newvl->next = *(varobj_table + index);
1703 newvl->var = var;
1704 *(varobj_table + index) = newvl;
1705
1706 /* If root, add varobj to root list */
1707 if (is_root_p (var))
1708 {
1709 /* Add to list of root variables */
1710 if (rootlist == NULL)
1711 var->root->next = NULL;
1712 else
1713 var->root->next = rootlist;
1714 rootlist = var->root;
1715 }
1716
1717 return 1; /* OK */
1718 }
1719
1720 /* Unistall the object VAR. */
1721 static void
1722 uninstall_variable (struct varobj *var)
1723 {
1724 struct vlist *cv;
1725 struct vlist *prev;
1726 struct varobj_root *cr;
1727 struct varobj_root *prer;
1728 const char *chp;
1729 unsigned int index = 0;
1730 unsigned int i = 1;
1731
1732 /* Remove varobj from hash table */
1733 for (chp = var->obj_name; *chp; chp++)
1734 {
1735 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1736 }
1737
1738 cv = *(varobj_table + index);
1739 prev = NULL;
1740 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1741 {
1742 prev = cv;
1743 cv = cv->next;
1744 }
1745
1746 if (varobjdebug)
1747 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1748
1749 if (cv == NULL)
1750 {
1751 warning
1752 ("Assertion failed: Could not find variable object \"%s\" to delete",
1753 var->obj_name);
1754 return;
1755 }
1756
1757 if (prev == NULL)
1758 *(varobj_table + index) = cv->next;
1759 else
1760 prev->next = cv->next;
1761
1762 xfree (cv);
1763
1764 /* If root, remove varobj from root list */
1765 if (is_root_p (var))
1766 {
1767 /* Remove from list of root variables */
1768 if (rootlist == var->root)
1769 rootlist = var->root->next;
1770 else
1771 {
1772 prer = NULL;
1773 cr = rootlist;
1774 while ((cr != NULL) && (cr->rootvar != var))
1775 {
1776 prer = cr;
1777 cr = cr->next;
1778 }
1779 if (cr == NULL)
1780 {
1781 warning
1782 ("Assertion failed: Could not find varobj \"%s\" in root list",
1783 var->obj_name);
1784 return;
1785 }
1786 if (prer == NULL)
1787 rootlist = NULL;
1788 else
1789 prer->next = cr->next;
1790 }
1791 }
1792
1793 }
1794
1795 /* Create and install a child of the parent of the given name */
1796 static struct varobj *
1797 create_child (struct varobj *parent, int index, char *name)
1798 {
1799 return create_child_with_value (parent, index, name,
1800 value_of_child (parent, index));
1801 }
1802
1803 static struct varobj *
1804 create_child_with_value (struct varobj *parent, int index, const char *name,
1805 struct value *value)
1806 {
1807 struct varobj *child;
1808 char *childs_name;
1809
1810 child = new_variable ();
1811
1812 /* name is allocated by name_of_child */
1813 /* FIXME: xstrdup should not be here. */
1814 child->name = xstrdup (name);
1815 child->index = index;
1816 child->parent = parent;
1817 child->root = parent->root;
1818 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
1819 child->obj_name = childs_name;
1820 install_variable (child);
1821
1822 /* Compute the type of the child. Must do this before
1823 calling install_new_value. */
1824 if (value != NULL)
1825 /* If the child had no evaluation errors, var->value
1826 will be non-NULL and contain a valid type. */
1827 child->type = value_type (value);
1828 else
1829 /* Otherwise, we must compute the type. */
1830 child->type = (*child->root->lang->type_of_child) (child->parent,
1831 child->index);
1832 install_new_value (child, value, 1);
1833
1834 return child;
1835 }
1836 \f
1837
1838 /*
1839 * Miscellaneous utility functions.
1840 */
1841
1842 /* Allocate memory and initialize a new variable */
1843 static struct varobj *
1844 new_variable (void)
1845 {
1846 struct varobj *var;
1847
1848 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1849 var->name = NULL;
1850 var->path_expr = NULL;
1851 var->obj_name = NULL;
1852 var->index = -1;
1853 var->type = NULL;
1854 var->value = NULL;
1855 var->num_children = -1;
1856 var->parent = NULL;
1857 var->children = NULL;
1858 var->format = 0;
1859 var->root = NULL;
1860 var->updated = 0;
1861 var->print_value = NULL;
1862 var->frozen = 0;
1863 var->not_fetched = 0;
1864 var->children_requested = 0;
1865 var->pretty_printer = 0;
1866
1867 return var;
1868 }
1869
1870 /* Allocate memory and initialize a new root variable */
1871 static struct varobj *
1872 new_root_variable (void)
1873 {
1874 struct varobj *var = new_variable ();
1875 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1876 var->root->lang = NULL;
1877 var->root->exp = NULL;
1878 var->root->valid_block = NULL;
1879 var->root->frame = null_frame_id;
1880 var->root->floating = 0;
1881 var->root->rootvar = NULL;
1882 var->root->is_valid = 1;
1883
1884 return var;
1885 }
1886
1887 /* Free any allocated memory associated with VAR. */
1888 static void
1889 free_variable (struct varobj *var)
1890 {
1891 #if HAVE_PYTHON
1892 if (var->pretty_printer)
1893 {
1894 struct cleanup *cleanup = varobj_ensure_python_env (var);
1895 Py_DECREF (var->pretty_printer);
1896 do_cleanups (cleanup);
1897 }
1898 #endif
1899
1900 value_free (var->value);
1901
1902 /* Free the expression if this is a root variable. */
1903 if (is_root_p (var))
1904 {
1905 xfree (var->root->exp);
1906 xfree (var->root);
1907 }
1908
1909 xfree (var->name);
1910 xfree (var->obj_name);
1911 xfree (var->print_value);
1912 xfree (var->path_expr);
1913 xfree (var);
1914 }
1915
1916 static void
1917 do_free_variable_cleanup (void *var)
1918 {
1919 free_variable (var);
1920 }
1921
1922 static struct cleanup *
1923 make_cleanup_free_variable (struct varobj *var)
1924 {
1925 return make_cleanup (do_free_variable_cleanup, var);
1926 }
1927
1928 /* This returns the type of the variable. It also skips past typedefs
1929 to return the real type of the variable.
1930
1931 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1932 except within get_target_type and get_type. */
1933 static struct type *
1934 get_type (struct varobj *var)
1935 {
1936 struct type *type;
1937 type = var->type;
1938
1939 if (type != NULL)
1940 type = check_typedef (type);
1941
1942 return type;
1943 }
1944
1945 /* Return the type of the value that's stored in VAR,
1946 or that would have being stored there if the
1947 value were accessible.
1948
1949 This differs from VAR->type in that VAR->type is always
1950 the true type of the expession in the source language.
1951 The return value of this function is the type we're
1952 actually storing in varobj, and using for displaying
1953 the values and for comparing previous and new values.
1954
1955 For example, top-level references are always stripped. */
1956 static struct type *
1957 get_value_type (struct varobj *var)
1958 {
1959 struct type *type;
1960
1961 if (var->value)
1962 type = value_type (var->value);
1963 else
1964 type = var->type;
1965
1966 type = check_typedef (type);
1967
1968 if (TYPE_CODE (type) == TYPE_CODE_REF)
1969 type = get_target_type (type);
1970
1971 type = check_typedef (type);
1972
1973 return type;
1974 }
1975
1976 /* This returns the target type (or NULL) of TYPE, also skipping
1977 past typedefs, just like get_type ().
1978
1979 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1980 except within get_target_type and get_type. */
1981 static struct type *
1982 get_target_type (struct type *type)
1983 {
1984 if (type != NULL)
1985 {
1986 type = TYPE_TARGET_TYPE (type);
1987 if (type != NULL)
1988 type = check_typedef (type);
1989 }
1990
1991 return type;
1992 }
1993
1994 /* What is the default display for this variable? We assume that
1995 everything is "natural". Any exceptions? */
1996 static enum varobj_display_formats
1997 variable_default_display (struct varobj *var)
1998 {
1999 return FORMAT_NATURAL;
2000 }
2001
2002 /* FIXME: The following should be generic for any pointer */
2003 static void
2004 cppush (struct cpstack **pstack, char *name)
2005 {
2006 struct cpstack *s;
2007
2008 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2009 s->name = name;
2010 s->next = *pstack;
2011 *pstack = s;
2012 }
2013
2014 /* FIXME: The following should be generic for any pointer */
2015 static char *
2016 cppop (struct cpstack **pstack)
2017 {
2018 struct cpstack *s;
2019 char *v;
2020
2021 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2022 return NULL;
2023
2024 s = *pstack;
2025 v = s->name;
2026 *pstack = (*pstack)->next;
2027 xfree (s);
2028
2029 return v;
2030 }
2031 \f
2032 /*
2033 * Language-dependencies
2034 */
2035
2036 /* Common entry points */
2037
2038 /* Get the language of variable VAR. */
2039 static enum varobj_languages
2040 variable_language (struct varobj *var)
2041 {
2042 enum varobj_languages lang;
2043
2044 switch (var->root->exp->language_defn->la_language)
2045 {
2046 default:
2047 case language_c:
2048 lang = vlang_c;
2049 break;
2050 case language_cplus:
2051 lang = vlang_cplus;
2052 break;
2053 case language_java:
2054 lang = vlang_java;
2055 break;
2056 }
2057
2058 return lang;
2059 }
2060
2061 /* Return the number of children for a given variable.
2062 The result of this function is defined by the language
2063 implementation. The number of children returned by this function
2064 is the number of children that the user will see in the variable
2065 display. */
2066 static int
2067 number_of_children (struct varobj *var)
2068 {
2069 return (*var->root->lang->number_of_children) (var);;
2070 }
2071
2072 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2073 static char *
2074 name_of_variable (struct varobj *var)
2075 {
2076 return (*var->root->lang->name_of_variable) (var);
2077 }
2078
2079 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2080 static char *
2081 name_of_child (struct varobj *var, int index)
2082 {
2083 return (*var->root->lang->name_of_child) (var, index);
2084 }
2085
2086 /* What is the ``struct value *'' of the root variable VAR?
2087 For floating variable object, evaluation can get us a value
2088 of different type from what is stored in varobj already. In
2089 that case:
2090 - *type_changed will be set to 1
2091 - old varobj will be freed, and new one will be
2092 created, with the same name.
2093 - *var_handle will be set to the new varobj
2094 Otherwise, *type_changed will be set to 0. */
2095 static struct value *
2096 value_of_root (struct varobj **var_handle, int *type_changed)
2097 {
2098 struct varobj *var;
2099
2100 if (var_handle == NULL)
2101 return NULL;
2102
2103 var = *var_handle;
2104
2105 /* This should really be an exception, since this should
2106 only get called with a root variable. */
2107
2108 if (!is_root_p (var))
2109 return NULL;
2110
2111 if (var->root->floating)
2112 {
2113 struct varobj *tmp_var;
2114 char *old_type, *new_type;
2115
2116 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2117 USE_SELECTED_FRAME);
2118 if (tmp_var == NULL)
2119 {
2120 return NULL;
2121 }
2122 old_type = varobj_get_type (var);
2123 new_type = varobj_get_type (tmp_var);
2124 if (strcmp (old_type, new_type) == 0)
2125 {
2126 /* The expression presently stored inside var->root->exp
2127 remembers the locations of local variables relatively to
2128 the frame where the expression was created (in DWARF location
2129 button, for example). Naturally, those locations are not
2130 correct in other frames, so update the expression. */
2131
2132 struct expression *tmp_exp = var->root->exp;
2133 var->root->exp = tmp_var->root->exp;
2134 tmp_var->root->exp = tmp_exp;
2135
2136 varobj_delete (tmp_var, NULL, 0);
2137 *type_changed = 0;
2138 }
2139 else
2140 {
2141 tmp_var->obj_name = xstrdup (var->obj_name);
2142 varobj_delete (var, NULL, 0);
2143
2144 install_variable (tmp_var);
2145 *var_handle = tmp_var;
2146 var = *var_handle;
2147 *type_changed = 1;
2148 }
2149 xfree (old_type);
2150 xfree (new_type);
2151 }
2152 else
2153 {
2154 *type_changed = 0;
2155 }
2156
2157 return (*var->root->lang->value_of_root) (var_handle);
2158 }
2159
2160 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2161 static struct value *
2162 value_of_child (struct varobj *parent, int index)
2163 {
2164 struct value *value;
2165
2166 value = (*parent->root->lang->value_of_child) (parent, index);
2167
2168 return value;
2169 }
2170
2171 /* GDB already has a command called "value_of_variable". Sigh. */
2172 static char *
2173 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2174 {
2175 if (var->root->is_valid)
2176 return (*var->root->lang->value_of_variable) (var, format);
2177 else
2178 return NULL;
2179 }
2180
2181 static char *
2182 value_get_print_value (struct value *value, enum varobj_display_formats format,
2183 struct varobj *var)
2184 {
2185 struct ui_file *stb;
2186 struct cleanup *old_chain;
2187 gdb_byte *thevalue = NULL;
2188 struct value_print_options opts;
2189 int len = 0;
2190
2191 if (value == NULL)
2192 return NULL;
2193
2194 #if HAVE_PYTHON
2195 {
2196 struct cleanup *back_to = varobj_ensure_python_env (var);
2197 PyObject *value_formatter = var->pretty_printer;
2198
2199 if (value_formatter && PyObject_HasAttr (value_formatter,
2200 gdbpy_to_string_cst))
2201 {
2202 char *hint;
2203 struct value *replacement;
2204 int string_print = 0;
2205 PyObject *output = NULL;
2206
2207 hint = gdbpy_get_display_hint (value_formatter);
2208 if (hint)
2209 {
2210 if (!strcmp (hint, "string"))
2211 string_print = 1;
2212 xfree (hint);
2213 }
2214
2215 output = apply_varobj_pretty_printer (value_formatter,
2216 &replacement);
2217 if (output)
2218 {
2219 PyObject *py_str = python_string_to_target_python_string (output);
2220 if (py_str)
2221 {
2222 char *s = PyString_AsString (py_str);
2223 len = PyString_Size (py_str);
2224 thevalue = xmemdup (s, len + 1, len + 1);
2225 Py_DECREF (py_str);
2226 }
2227 Py_DECREF (output);
2228 }
2229 if (thevalue && !string_print)
2230 {
2231 do_cleanups (back_to);
2232 return thevalue;
2233 }
2234 if (replacement)
2235 value = replacement;
2236 }
2237 do_cleanups (back_to);
2238 }
2239 #endif
2240
2241 stb = mem_fileopen ();
2242 old_chain = make_cleanup_ui_file_delete (stb);
2243
2244 get_formatted_print_options (&opts, format_code[(int) format]);
2245 opts.deref_ref = 0;
2246 opts.raw = 1;
2247 if (thevalue)
2248 {
2249 struct gdbarch *gdbarch = get_type_arch (value_type (value));
2250 make_cleanup (xfree, thevalue);
2251 LA_PRINT_STRING (stb, builtin_type (gdbarch)->builtin_char,
2252 thevalue, len, 0, &opts);
2253 }
2254 else
2255 common_val_print (value, stb, 0, &opts, current_language);
2256 thevalue = ui_file_xstrdup (stb, NULL);
2257
2258 do_cleanups (old_chain);
2259 return thevalue;
2260 }
2261
2262 int
2263 varobj_editable_p (struct varobj *var)
2264 {
2265 struct type *type;
2266 struct value *value;
2267
2268 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2269 return 0;
2270
2271 type = get_value_type (var);
2272
2273 switch (TYPE_CODE (type))
2274 {
2275 case TYPE_CODE_STRUCT:
2276 case TYPE_CODE_UNION:
2277 case TYPE_CODE_ARRAY:
2278 case TYPE_CODE_FUNC:
2279 case TYPE_CODE_METHOD:
2280 return 0;
2281 break;
2282
2283 default:
2284 return 1;
2285 break;
2286 }
2287 }
2288
2289 /* Return non-zero if changes in value of VAR
2290 must be detected and reported by -var-update.
2291 Return zero is -var-update should never report
2292 changes of such values. This makes sense for structures
2293 (since the changes in children values will be reported separately),
2294 or for artifical objects (like 'public' pseudo-field in C++).
2295
2296 Return value of 0 means that gdb need not call value_fetch_lazy
2297 for the value of this variable object. */
2298 static int
2299 varobj_value_is_changeable_p (struct varobj *var)
2300 {
2301 int r;
2302 struct type *type;
2303
2304 if (CPLUS_FAKE_CHILD (var))
2305 return 0;
2306
2307 type = get_value_type (var);
2308
2309 switch (TYPE_CODE (type))
2310 {
2311 case TYPE_CODE_STRUCT:
2312 case TYPE_CODE_UNION:
2313 case TYPE_CODE_ARRAY:
2314 r = 0;
2315 break;
2316
2317 default:
2318 r = 1;
2319 }
2320
2321 return r;
2322 }
2323
2324 /* Return 1 if that varobj is floating, that is is always evaluated in the
2325 selected frame, and not bound to thread/frame. Such variable objects
2326 are created using '@' as frame specifier to -var-create. */
2327 int
2328 varobj_floating_p (struct varobj *var)
2329 {
2330 return var->root->floating;
2331 }
2332
2333 /* Given the value and the type of a variable object,
2334 adjust the value and type to those necessary
2335 for getting children of the variable object.
2336 This includes dereferencing top-level references
2337 to all types and dereferencing pointers to
2338 structures.
2339
2340 Both TYPE and *TYPE should be non-null. VALUE
2341 can be null if we want to only translate type.
2342 *VALUE can be null as well -- if the parent
2343 value is not known.
2344
2345 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2346 depending on whether pointer was dereferenced
2347 in this function. */
2348 static void
2349 adjust_value_for_child_access (struct value **value,
2350 struct type **type,
2351 int *was_ptr)
2352 {
2353 gdb_assert (type && *type);
2354
2355 if (was_ptr)
2356 *was_ptr = 0;
2357
2358 *type = check_typedef (*type);
2359
2360 /* The type of value stored in varobj, that is passed
2361 to us, is already supposed to be
2362 reference-stripped. */
2363
2364 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2365
2366 /* Pointers to structures are treated just like
2367 structures when accessing children. Don't
2368 dererences pointers to other types. */
2369 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2370 {
2371 struct type *target_type = get_target_type (*type);
2372 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2374 {
2375 if (value && *value)
2376 {
2377 int success = gdb_value_ind (*value, value);
2378 if (!success)
2379 *value = NULL;
2380 }
2381 *type = target_type;
2382 if (was_ptr)
2383 *was_ptr = 1;
2384 }
2385 }
2386
2387 /* The 'get_target_type' function calls check_typedef on
2388 result, so we can immediately check type code. No
2389 need to call check_typedef here. */
2390 }
2391
2392 /* C */
2393 static int
2394 c_number_of_children (struct varobj *var)
2395 {
2396 struct type *type = get_value_type (var);
2397 int children = 0;
2398 struct type *target;
2399
2400 adjust_value_for_child_access (NULL, &type, NULL);
2401 target = get_target_type (type);
2402
2403 switch (TYPE_CODE (type))
2404 {
2405 case TYPE_CODE_ARRAY:
2406 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2407 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2408 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2409 else
2410 /* If we don't know how many elements there are, don't display
2411 any. */
2412 children = 0;
2413 break;
2414
2415 case TYPE_CODE_STRUCT:
2416 case TYPE_CODE_UNION:
2417 children = TYPE_NFIELDS (type);
2418 break;
2419
2420 case TYPE_CODE_PTR:
2421 /* The type here is a pointer to non-struct. Typically, pointers
2422 have one child, except for function ptrs, which have no children,
2423 and except for void*, as we don't know what to show.
2424
2425 We can show char* so we allow it to be dereferenced. If you decide
2426 to test for it, please mind that a little magic is necessary to
2427 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2428 TYPE_NAME == "char" */
2429 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2430 || TYPE_CODE (target) == TYPE_CODE_VOID)
2431 children = 0;
2432 else
2433 children = 1;
2434 break;
2435
2436 default:
2437 /* Other types have no children */
2438 break;
2439 }
2440
2441 return children;
2442 }
2443
2444 static char *
2445 c_name_of_variable (struct varobj *parent)
2446 {
2447 return xstrdup (parent->name);
2448 }
2449
2450 /* Return the value of element TYPE_INDEX of a structure
2451 value VALUE. VALUE's type should be a structure,
2452 or union, or a typedef to struct/union.
2453
2454 Returns NULL if getting the value fails. Never throws. */
2455 static struct value *
2456 value_struct_element_index (struct value *value, int type_index)
2457 {
2458 struct value *result = NULL;
2459 volatile struct gdb_exception e;
2460
2461 struct type *type = value_type (value);
2462 type = check_typedef (type);
2463
2464 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2465 || TYPE_CODE (type) == TYPE_CODE_UNION);
2466
2467 TRY_CATCH (e, RETURN_MASK_ERROR)
2468 {
2469 if (field_is_static (&TYPE_FIELD (type, type_index)))
2470 result = value_static_field (type, type_index);
2471 else
2472 result = value_primitive_field (value, 0, type_index, type);
2473 }
2474 if (e.reason < 0)
2475 {
2476 return NULL;
2477 }
2478 else
2479 {
2480 return result;
2481 }
2482 }
2483
2484 /* Obtain the information about child INDEX of the variable
2485 object PARENT.
2486 If CNAME is not null, sets *CNAME to the name of the child relative
2487 to the parent.
2488 If CVALUE is not null, sets *CVALUE to the value of the child.
2489 If CTYPE is not null, sets *CTYPE to the type of the child.
2490
2491 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2492 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2493 to NULL. */
2494 static void
2495 c_describe_child (struct varobj *parent, int index,
2496 char **cname, struct value **cvalue, struct type **ctype,
2497 char **cfull_expression)
2498 {
2499 struct value *value = parent->value;
2500 struct type *type = get_value_type (parent);
2501 char *parent_expression = NULL;
2502 int was_ptr;
2503
2504 if (cname)
2505 *cname = NULL;
2506 if (cvalue)
2507 *cvalue = NULL;
2508 if (ctype)
2509 *ctype = NULL;
2510 if (cfull_expression)
2511 {
2512 *cfull_expression = NULL;
2513 parent_expression = varobj_get_path_expr (parent);
2514 }
2515 adjust_value_for_child_access (&value, &type, &was_ptr);
2516
2517 switch (TYPE_CODE (type))
2518 {
2519 case TYPE_CODE_ARRAY:
2520 if (cname)
2521 *cname = xstrprintf ("%d", index
2522 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2523
2524 if (cvalue && value)
2525 {
2526 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2527 gdb_value_subscript (value, real_index, cvalue);
2528 }
2529
2530 if (ctype)
2531 *ctype = get_target_type (type);
2532
2533 if (cfull_expression)
2534 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2535 index
2536 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2537
2538
2539 break;
2540
2541 case TYPE_CODE_STRUCT:
2542 case TYPE_CODE_UNION:
2543 if (cname)
2544 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2545
2546 if (cvalue && value)
2547 {
2548 /* For C, varobj index is the same as type index. */
2549 *cvalue = value_struct_element_index (value, index);
2550 }
2551
2552 if (ctype)
2553 *ctype = TYPE_FIELD_TYPE (type, index);
2554
2555 if (cfull_expression)
2556 {
2557 char *join = was_ptr ? "->" : ".";
2558 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2559 TYPE_FIELD_NAME (type, index));
2560 }
2561
2562 break;
2563
2564 case TYPE_CODE_PTR:
2565 if (cname)
2566 *cname = xstrprintf ("*%s", parent->name);
2567
2568 if (cvalue && value)
2569 {
2570 int success = gdb_value_ind (value, cvalue);
2571 if (!success)
2572 *cvalue = NULL;
2573 }
2574
2575 /* Don't use get_target_type because it calls
2576 check_typedef and here, we want to show the true
2577 declared type of the variable. */
2578 if (ctype)
2579 *ctype = TYPE_TARGET_TYPE (type);
2580
2581 if (cfull_expression)
2582 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2583
2584 break;
2585
2586 default:
2587 /* This should not happen */
2588 if (cname)
2589 *cname = xstrdup ("???");
2590 if (cfull_expression)
2591 *cfull_expression = xstrdup ("???");
2592 /* Don't set value and type, we don't know then. */
2593 }
2594 }
2595
2596 static char *
2597 c_name_of_child (struct varobj *parent, int index)
2598 {
2599 char *name;
2600 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2601 return name;
2602 }
2603
2604 static char *
2605 c_path_expr_of_child (struct varobj *child)
2606 {
2607 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2608 &child->path_expr);
2609 return child->path_expr;
2610 }
2611
2612 /* If frame associated with VAR can be found, switch
2613 to it and return 1. Otherwise, return 0. */
2614 static int
2615 check_scope (struct varobj *var)
2616 {
2617 struct frame_info *fi;
2618 int scope;
2619
2620 fi = frame_find_by_id (var->root->frame);
2621 scope = fi != NULL;
2622
2623 if (fi)
2624 {
2625 CORE_ADDR pc = get_frame_pc (fi);
2626 if (pc < BLOCK_START (var->root->valid_block) ||
2627 pc >= BLOCK_END (var->root->valid_block))
2628 scope = 0;
2629 else
2630 select_frame (fi);
2631 }
2632 return scope;
2633 }
2634
2635 static struct value *
2636 c_value_of_root (struct varobj **var_handle)
2637 {
2638 struct value *new_val = NULL;
2639 struct varobj *var = *var_handle;
2640 struct frame_info *fi;
2641 int within_scope = 0;
2642 struct cleanup *back_to;
2643
2644 /* Only root variables can be updated... */
2645 if (!is_root_p (var))
2646 /* Not a root var */
2647 return NULL;
2648
2649 back_to = make_cleanup_restore_current_thread ();
2650
2651 /* Determine whether the variable is still around. */
2652 if (var->root->valid_block == NULL || var->root->floating)
2653 within_scope = 1;
2654 else if (var->root->thread_id == 0)
2655 {
2656 /* The program was single-threaded when the variable object was
2657 created. Technically, it's possible that the program became
2658 multi-threaded since then, but we don't support such
2659 scenario yet. */
2660 within_scope = check_scope (var);
2661 }
2662 else
2663 {
2664 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2665 if (in_thread_list (ptid))
2666 {
2667 switch_to_thread (ptid);
2668 within_scope = check_scope (var);
2669 }
2670 }
2671
2672 if (within_scope)
2673 {
2674 /* We need to catch errors here, because if evaluate
2675 expression fails we want to just return NULL. */
2676 gdb_evaluate_expression (var->root->exp, &new_val);
2677 return new_val;
2678 }
2679
2680 do_cleanups (back_to);
2681
2682 return NULL;
2683 }
2684
2685 static struct value *
2686 c_value_of_child (struct varobj *parent, int index)
2687 {
2688 struct value *value = NULL;
2689 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2690
2691 return value;
2692 }
2693
2694 static struct type *
2695 c_type_of_child (struct varobj *parent, int index)
2696 {
2697 struct type *type = NULL;
2698 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2699 return type;
2700 }
2701
2702 static char *
2703 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2704 {
2705 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2706 it will print out its children instead of "{...}". So we need to
2707 catch that case explicitly. */
2708 struct type *type = get_type (var);
2709
2710 /* If we have a custom formatter, return whatever string it has
2711 produced. */
2712 if (var->pretty_printer && var->print_value)
2713 return xstrdup (var->print_value);
2714
2715 /* Strip top-level references. */
2716 while (TYPE_CODE (type) == TYPE_CODE_REF)
2717 type = check_typedef (TYPE_TARGET_TYPE (type));
2718
2719 switch (TYPE_CODE (type))
2720 {
2721 case TYPE_CODE_STRUCT:
2722 case TYPE_CODE_UNION:
2723 return xstrdup ("{...}");
2724 /* break; */
2725
2726 case TYPE_CODE_ARRAY:
2727 {
2728 char *number;
2729 number = xstrprintf ("[%d]", var->num_children);
2730 return (number);
2731 }
2732 /* break; */
2733
2734 default:
2735 {
2736 if (var->value == NULL)
2737 {
2738 /* This can happen if we attempt to get the value of a struct
2739 member when the parent is an invalid pointer. This is an
2740 error condition, so we should tell the caller. */
2741 return NULL;
2742 }
2743 else
2744 {
2745 if (var->not_fetched && value_lazy (var->value))
2746 /* Frozen variable and no value yet. We don't
2747 implicitly fetch the value. MI response will
2748 use empty string for the value, which is OK. */
2749 return NULL;
2750
2751 gdb_assert (varobj_value_is_changeable_p (var));
2752 gdb_assert (!value_lazy (var->value));
2753
2754 /* If the specified format is the current one,
2755 we can reuse print_value */
2756 if (format == var->format)
2757 return xstrdup (var->print_value);
2758 else
2759 return value_get_print_value (var->value, format, var);
2760 }
2761 }
2762 }
2763 }
2764 \f
2765
2766 /* C++ */
2767
2768 static int
2769 cplus_number_of_children (struct varobj *var)
2770 {
2771 struct type *type;
2772 int children, dont_know;
2773
2774 dont_know = 1;
2775 children = 0;
2776
2777 if (!CPLUS_FAKE_CHILD (var))
2778 {
2779 type = get_value_type (var);
2780 adjust_value_for_child_access (NULL, &type, NULL);
2781
2782 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
2783 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
2784 {
2785 int kids[3];
2786
2787 cplus_class_num_children (type, kids);
2788 if (kids[v_public] != 0)
2789 children++;
2790 if (kids[v_private] != 0)
2791 children++;
2792 if (kids[v_protected] != 0)
2793 children++;
2794
2795 /* Add any baseclasses */
2796 children += TYPE_N_BASECLASSES (type);
2797 dont_know = 0;
2798
2799 /* FIXME: save children in var */
2800 }
2801 }
2802 else
2803 {
2804 int kids[3];
2805
2806 type = get_value_type (var->parent);
2807 adjust_value_for_child_access (NULL, &type, NULL);
2808
2809 cplus_class_num_children (type, kids);
2810 if (strcmp (var->name, "public") == 0)
2811 children = kids[v_public];
2812 else if (strcmp (var->name, "private") == 0)
2813 children = kids[v_private];
2814 else
2815 children = kids[v_protected];
2816 dont_know = 0;
2817 }
2818
2819 if (dont_know)
2820 children = c_number_of_children (var);
2821
2822 return children;
2823 }
2824
2825 /* Compute # of public, private, and protected variables in this class.
2826 That means we need to descend into all baseclasses and find out
2827 how many are there, too. */
2828 static void
2829 cplus_class_num_children (struct type *type, int children[3])
2830 {
2831 int i;
2832
2833 children[v_public] = 0;
2834 children[v_private] = 0;
2835 children[v_protected] = 0;
2836
2837 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2838 {
2839 /* If we have a virtual table pointer, omit it. */
2840 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
2841 continue;
2842
2843 if (TYPE_FIELD_PROTECTED (type, i))
2844 children[v_protected]++;
2845 else if (TYPE_FIELD_PRIVATE (type, i))
2846 children[v_private]++;
2847 else
2848 children[v_public]++;
2849 }
2850 }
2851
2852 static char *
2853 cplus_name_of_variable (struct varobj *parent)
2854 {
2855 return c_name_of_variable (parent);
2856 }
2857
2858 enum accessibility { private_field, protected_field, public_field };
2859
2860 /* Check if field INDEX of TYPE has the specified accessibility.
2861 Return 0 if so and 1 otherwise. */
2862 static int
2863 match_accessibility (struct type *type, int index, enum accessibility acc)
2864 {
2865 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2866 return 1;
2867 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2868 return 1;
2869 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2870 && !TYPE_FIELD_PROTECTED (type, index))
2871 return 1;
2872 else
2873 return 0;
2874 }
2875
2876 static void
2877 cplus_describe_child (struct varobj *parent, int index,
2878 char **cname, struct value **cvalue, struct type **ctype,
2879 char **cfull_expression)
2880 {
2881 char *name = NULL;
2882 struct value *value;
2883 struct type *type;
2884 int was_ptr;
2885 char *parent_expression = NULL;
2886
2887 if (cname)
2888 *cname = NULL;
2889 if (cvalue)
2890 *cvalue = NULL;
2891 if (ctype)
2892 *ctype = NULL;
2893 if (cfull_expression)
2894 *cfull_expression = NULL;
2895
2896 if (CPLUS_FAKE_CHILD (parent))
2897 {
2898 value = parent->parent->value;
2899 type = get_value_type (parent->parent);
2900 if (cfull_expression)
2901 parent_expression = varobj_get_path_expr (parent->parent);
2902 }
2903 else
2904 {
2905 value = parent->value;
2906 type = get_value_type (parent);
2907 if (cfull_expression)
2908 parent_expression = varobj_get_path_expr (parent);
2909 }
2910
2911 adjust_value_for_child_access (&value, &type, &was_ptr);
2912
2913 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2914 || TYPE_CODE (type) == TYPE_CODE_UNION)
2915 {
2916 char *join = was_ptr ? "->" : ".";
2917 if (CPLUS_FAKE_CHILD (parent))
2918 {
2919 /* The fields of the class type are ordered as they
2920 appear in the class. We are given an index for a
2921 particular access control type ("public","protected",
2922 or "private"). We must skip over fields that don't
2923 have the access control we are looking for to properly
2924 find the indexed field. */
2925 int type_index = TYPE_N_BASECLASSES (type);
2926 enum accessibility acc = public_field;
2927 if (strcmp (parent->name, "private") == 0)
2928 acc = private_field;
2929 else if (strcmp (parent->name, "protected") == 0)
2930 acc = protected_field;
2931
2932 while (index >= 0)
2933 {
2934 if (TYPE_VPTR_BASETYPE (type) == type
2935 && type_index == TYPE_VPTR_FIELDNO (type))
2936 ; /* ignore vptr */
2937 else if (match_accessibility (type, type_index, acc))
2938 --index;
2939 ++type_index;
2940 }
2941 --type_index;
2942
2943 if (cname)
2944 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2945
2946 if (cvalue && value)
2947 *cvalue = value_struct_element_index (value, type_index);
2948
2949 if (ctype)
2950 *ctype = TYPE_FIELD_TYPE (type, type_index);
2951
2952 if (cfull_expression)
2953 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2954 join,
2955 TYPE_FIELD_NAME (type, type_index));
2956 }
2957 else if (index < TYPE_N_BASECLASSES (type))
2958 {
2959 /* This is a baseclass. */
2960 if (cname)
2961 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2962
2963 if (cvalue && value)
2964 {
2965 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
2966 release_value (*cvalue);
2967 }
2968
2969 if (ctype)
2970 {
2971 *ctype = TYPE_FIELD_TYPE (type, index);
2972 }
2973
2974 if (cfull_expression)
2975 {
2976 char *ptr = was_ptr ? "*" : "";
2977 /* Cast the parent to the base' type. Note that in gdb,
2978 expression like
2979 (Base1)d
2980 will create an lvalue, for all appearences, so we don't
2981 need to use more fancy:
2982 *(Base1*)(&d)
2983 construct. */
2984 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2985 ptr,
2986 TYPE_FIELD_NAME (type, index),
2987 ptr,
2988 parent_expression);
2989 }
2990 }
2991 else
2992 {
2993 char *access = NULL;
2994 int children[3];
2995 cplus_class_num_children (type, children);
2996
2997 /* Everything beyond the baseclasses can
2998 only be "public", "private", or "protected"
2999
3000 The special "fake" children are always output by varobj in
3001 this order. So if INDEX == 2, it MUST be "protected". */
3002 index -= TYPE_N_BASECLASSES (type);
3003 switch (index)
3004 {
3005 case 0:
3006 if (children[v_public] > 0)
3007 access = "public";
3008 else if (children[v_private] > 0)
3009 access = "private";
3010 else
3011 access = "protected";
3012 break;
3013 case 1:
3014 if (children[v_public] > 0)
3015 {
3016 if (children[v_private] > 0)
3017 access = "private";
3018 else
3019 access = "protected";
3020 }
3021 else if (children[v_private] > 0)
3022 access = "protected";
3023 break;
3024 case 2:
3025 /* Must be protected */
3026 access = "protected";
3027 break;
3028 default:
3029 /* error! */
3030 break;
3031 }
3032
3033 gdb_assert (access);
3034 if (cname)
3035 *cname = xstrdup (access);
3036
3037 /* Value and type and full expression are null here. */
3038 }
3039 }
3040 else
3041 {
3042 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3043 }
3044 }
3045
3046 static char *
3047 cplus_name_of_child (struct varobj *parent, int index)
3048 {
3049 char *name = NULL;
3050 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3051 return name;
3052 }
3053
3054 static char *
3055 cplus_path_expr_of_child (struct varobj *child)
3056 {
3057 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3058 &child->path_expr);
3059 return child->path_expr;
3060 }
3061
3062 static struct value *
3063 cplus_value_of_root (struct varobj **var_handle)
3064 {
3065 return c_value_of_root (var_handle);
3066 }
3067
3068 static struct value *
3069 cplus_value_of_child (struct varobj *parent, int index)
3070 {
3071 struct value *value = NULL;
3072 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3073 return value;
3074 }
3075
3076 static struct type *
3077 cplus_type_of_child (struct varobj *parent, int index)
3078 {
3079 struct type *type = NULL;
3080 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3081 return type;
3082 }
3083
3084 static char *
3085 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3086 {
3087
3088 /* If we have one of our special types, don't print out
3089 any value. */
3090 if (CPLUS_FAKE_CHILD (var))
3091 return xstrdup ("");
3092
3093 return c_value_of_variable (var, format);
3094 }
3095 \f
3096 /* Java */
3097
3098 static int
3099 java_number_of_children (struct varobj *var)
3100 {
3101 return cplus_number_of_children (var);
3102 }
3103
3104 static char *
3105 java_name_of_variable (struct varobj *parent)
3106 {
3107 char *p, *name;
3108
3109 name = cplus_name_of_variable (parent);
3110 /* If the name has "-" in it, it is because we
3111 needed to escape periods in the name... */
3112 p = name;
3113
3114 while (*p != '\000')
3115 {
3116 if (*p == '-')
3117 *p = '.';
3118 p++;
3119 }
3120
3121 return name;
3122 }
3123
3124 static char *
3125 java_name_of_child (struct varobj *parent, int index)
3126 {
3127 char *name, *p;
3128
3129 name = cplus_name_of_child (parent, index);
3130 /* Escape any periods in the name... */
3131 p = name;
3132
3133 while (*p != '\000')
3134 {
3135 if (*p == '.')
3136 *p = '-';
3137 p++;
3138 }
3139
3140 return name;
3141 }
3142
3143 static char *
3144 java_path_expr_of_child (struct varobj *child)
3145 {
3146 return NULL;
3147 }
3148
3149 static struct value *
3150 java_value_of_root (struct varobj **var_handle)
3151 {
3152 return cplus_value_of_root (var_handle);
3153 }
3154
3155 static struct value *
3156 java_value_of_child (struct varobj *parent, int index)
3157 {
3158 return cplus_value_of_child (parent, index);
3159 }
3160
3161 static struct type *
3162 java_type_of_child (struct varobj *parent, int index)
3163 {
3164 return cplus_type_of_child (parent, index);
3165 }
3166
3167 static char *
3168 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3169 {
3170 return cplus_value_of_variable (var, format);
3171 }
3172
3173 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3174 with an arbitrary caller supplied DATA pointer. */
3175
3176 void
3177 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3178 {
3179 struct varobj_root *var_root, *var_root_next;
3180
3181 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3182
3183 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3184 {
3185 var_root_next = var_root->next;
3186
3187 (*func) (var_root->rootvar, data);
3188 }
3189 }
3190 \f
3191 extern void _initialize_varobj (void);
3192 void
3193 _initialize_varobj (void)
3194 {
3195 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3196
3197 varobj_table = xmalloc (sizeof_table);
3198 memset (varobj_table, 0, sizeof_table);
3199
3200 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3201 &varobjdebug, _("\
3202 Set varobj debugging."), _("\
3203 Show varobj debugging."), _("\
3204 When non-zero, varobj debugging is enabled."),
3205 NULL,
3206 show_varobjdebug,
3207 &setlist, &showlist);
3208 }
3209
3210 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3211 defined on globals. It is a helper for varobj_invalidate. */
3212
3213 static void
3214 varobj_invalidate_iter (struct varobj *var, void *unused)
3215 {
3216 /* Floating varobjs are reparsed on each stop, so we don't care if the
3217 presently parsed expression refers to something that's gone. */
3218 if (var->root->floating)
3219 return;
3220
3221 /* global var must be re-evaluated. */
3222 if (var->root->valid_block == NULL)
3223 {
3224 struct varobj *tmp_var;
3225
3226 /* Try to create a varobj with same expression. If we succeed
3227 replace the old varobj, otherwise invalidate it. */
3228 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3229 USE_CURRENT_FRAME);
3230 if (tmp_var != NULL)
3231 {
3232 tmp_var->obj_name = xstrdup (var->obj_name);
3233 varobj_delete (var, NULL, 0);
3234 install_variable (tmp_var);
3235 }
3236 else
3237 var->root->is_valid = 0;
3238 }
3239 else /* locals must be invalidated. */
3240 var->root->is_valid = 0;
3241 }
3242
3243 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3244 are defined on globals.
3245 Invalidated varobjs will be always printed in_scope="invalid". */
3246
3247 void
3248 varobj_invalidate (void)
3249 {
3250 all_root_varobjs (varobj_invalidate_iter, NULL);
3251 }
This page took 0.11492 seconds and 4 git commands to generate.