81e897feec10c75b7c8acd04209dca84ab099c66
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "value.h"
20 #include "expression.h"
21 #include "frame.h"
22 #include "language.h"
23 #include "gdbcmd.h"
24 #include "block.h"
25 #include "valprint.h"
26 #include "gdb_regex.h"
27
28 #include "varobj.h"
29 #include "vec.h"
30 #include "gdbthread.h"
31 #include "inferior.h"
32 #include "varobj-iter.h"
33
34 #if HAVE_PYTHON
35 #include "python/python.h"
36 #include "python/python-internal.h"
37 #else
38 typedef int PyObject;
39 #endif
40
41 /* Non-zero if we want to see trace of varobj level stuff. */
42
43 unsigned int varobjdebug = 0;
44 static void
45 show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47 {
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49 }
50
51 /* String representations of gdb's format codes. */
52 char *varobj_format_string[] =
53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
54
55 /* True if we want to allow Python-based pretty-printing. */
56 static int pretty_printing = 0;
57
58 void
59 varobj_enable_pretty_printing (void)
60 {
61 pretty_printing = 1;
62 }
63
64 /* Data structures */
65
66 /* Every root variable has one of these structures saved in its
67 varobj. */
68 struct varobj_root
69 {
70
71 /* The expression for this parent. */
72 expression_up exp;
73
74 /* Block for which this expression is valid. */
75 const struct block *valid_block;
76
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
79 struct frame_id frame;
80
81 /* The global thread ID that this varobj_root belongs to. This field
82 is only valid if valid_block is not NULL.
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
90 always updated in the specific scope/thread/frame. */
91 int floating;
92
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
97 /* Language-related operations for this variable and its
98 children. */
99 const struct lang_varobj_ops *lang_ops;
100
101 /* The varobj for this root node. */
102 struct varobj *rootvar;
103
104 /* Next root variable */
105 struct varobj_root *next;
106 };
107
108 /* Dynamic part of varobj. */
109
110 struct varobj_dynamic
111 {
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
129 struct varobj_iter *child_iter;
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
136 varobj_item *saved_item;
137 };
138
139 /* A list of varobjs */
140
141 struct vlist
142 {
143 struct varobj *var;
144 struct vlist *next;
145 };
146
147 /* Private function prototypes */
148
149 /* Helper functions for the above subcommands. */
150
151 static int delete_variable (struct varobj *, int);
152
153 static void delete_variable_1 (int *, struct varobj *, int, int);
154
155 static int install_variable (struct varobj *);
156
157 static void uninstall_variable (struct varobj *);
158
159 static struct varobj *create_child (struct varobj *, int, char *);
160
161 static struct varobj *
162 create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
164
165 /* Utility routines */
166
167 static struct varobj *new_variable (void);
168
169 static struct varobj *new_root_variable (void);
170
171 static void free_variable (struct varobj *var);
172
173 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
174
175 static enum varobj_display_formats variable_default_display (struct varobj *);
176
177 static int update_type_if_necessary (struct varobj *var,
178 struct value *new_value);
179
180 static int install_new_value (struct varobj *var, struct value *value,
181 int initial);
182
183 /* Language-specific routines. */
184
185 static int number_of_children (const struct varobj *);
186
187 static char *name_of_variable (const struct varobj *);
188
189 static char *name_of_child (struct varobj *, int);
190
191 static struct value *value_of_root (struct varobj **var_handle, int *);
192
193 static struct value *value_of_child (const struct varobj *parent, int index);
194
195 static char *my_value_of_variable (struct varobj *var,
196 enum varobj_display_formats format);
197
198 static int is_root_p (const struct varobj *var);
199
200 static struct varobj *varobj_add_child (struct varobj *var,
201 struct varobj_item *item);
202
203 /* Private data */
204
205 /* Mappings of varobj_display_formats enums to gdb's format codes. */
206 static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
207
208 /* Header of the list of root variable objects. */
209 static struct varobj_root *rootlist;
210
211 /* Prime number indicating the number of buckets in the hash table. */
212 /* A prime large enough to avoid too many collisions. */
213 #define VAROBJ_TABLE_SIZE 227
214
215 /* Pointer to the varobj hash table (built at run time). */
216 static struct vlist **varobj_table;
217
218 \f
219
220 /* API Implementation */
221 static int
222 is_root_p (const struct varobj *var)
223 {
224 return (var->root->rootvar == var);
225 }
226
227 #ifdef HAVE_PYTHON
228 /* Helper function to install a Python environment suitable for
229 use during operations on VAR. */
230 struct cleanup *
231 varobj_ensure_python_env (const struct varobj *var)
232 {
233 return ensure_python_env (var->root->exp->gdbarch,
234 var->root->exp->language_defn);
235 }
236 #endif
237
238 /* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
240
241 static struct frame_info *
242 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
243 {
244 struct frame_info *frame = NULL;
245
246 if (frame_addr == (CORE_ADDR) 0)
247 return NULL;
248
249 for (frame = get_current_frame ();
250 frame != NULL;
251 frame = get_prev_frame (frame))
252 {
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
259
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
262
263 if (frame_base == frame_addr)
264 return frame;
265 }
266
267 return NULL;
268 }
269
270 /* Creates a varobj (not its children). */
271
272 struct varobj *
273 varobj_create (char *objname,
274 char *expression, CORE_ADDR frame, enum varobj_type type)
275 {
276 struct varobj *var;
277 struct cleanup *old_chain;
278
279 /* Fill out a varobj structure for the (root) variable being constructed. */
280 var = new_root_variable ();
281 old_chain = make_cleanup_free_variable (var);
282
283 if (expression != NULL)
284 {
285 struct frame_info *fi;
286 struct frame_id old_id = null_frame_id;
287 const struct block *block;
288 const char *p;
289 struct value *value = NULL;
290 CORE_ADDR pc;
291
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
294
295 if (has_stack_frames ())
296 {
297 /* Allow creator to specify context of variable. */
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
300 else
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
307 function. */
308 fi = find_frame_addr_in_frame_chain (frame);
309 }
310 else
311 fi = NULL;
312
313 /* frame = -2 means always use selected frame. */
314 if (type == USE_SELECTED_FRAME)
315 var->root->floating = 1;
316
317 pc = 0;
318 block = NULL;
319 if (fi != NULL)
320 {
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
323 }
324
325 p = expression;
326 innermost_block = NULL;
327 /* Wrap the call to parse expression, so we can
328 return a sensible error. */
329 TRY
330 {
331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
332 }
333
334 CATCH (except, RETURN_MASK_ERROR)
335 {
336 do_cleanups (old_chain);
337 return NULL;
338 }
339 END_CATCH
340
341 /* Don't allow variables to be created for types. */
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
345 {
346 do_cleanups (old_chain);
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
349 return NULL;
350 }
351
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
354 var->name = xstrdup (expression);
355 /* For a root var, the name and the expr are the same. */
356 var->path_expr = xstrdup (expression);
357
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
361 Since select_frame is so benign, just call it for all cases. */
362 if (innermost_block)
363 {
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
368 if (fi == NULL)
369 error (_("Failed to find the specified frame"));
370
371 var->root->frame = get_frame_id (fi);
372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
373 old_id = get_frame_id (get_selected_frame (NULL));
374 select_frame (fi);
375 }
376
377 /* We definitely need to catch errors here.
378 If evaluate_expression succeeds we got the value we wanted.
379 But if it fails, we still go on with a call to evaluate_type(). */
380 TRY
381 {
382 value = evaluate_expression (var->root->exp.get ());
383 }
384 CATCH (except, RETURN_MASK_ERROR)
385 {
386 /* Error getting the value. Try to at least get the
387 right type. */
388 struct value *type_only_value = evaluate_type (var->root->exp.get ());
389
390 var->type = value_type (type_only_value);
391 }
392 END_CATCH
393
394 if (value != NULL)
395 {
396 int real_type_found = 0;
397
398 var->type = value_actual_type (value, 0, &real_type_found);
399 if (real_type_found)
400 value = value_cast (var->type, value);
401 }
402
403 /* Set language info */
404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
405
406 install_new_value (var, value, 1 /* Initial assignment */);
407
408 /* Set ourselves as our root. */
409 var->root->rootvar = var;
410
411 /* Reset the selected frame. */
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
414 }
415
416 /* If the variable object name is null, that means this
417 is a temporary variable, so don't install it. */
418
419 if ((var != NULL) && (objname != NULL))
420 {
421 var->obj_name = xstrdup (objname);
422
423 /* If a varobj name is duplicated, the install will fail so
424 we must cleanup. */
425 if (!install_variable (var))
426 {
427 do_cleanups (old_chain);
428 return NULL;
429 }
430 }
431
432 discard_cleanups (old_chain);
433 return var;
434 }
435
436 /* Generates an unique name that can be used for a varobj. */
437
438 char *
439 varobj_gen_name (void)
440 {
441 static int id = 0;
442 char *obj_name;
443
444 /* Generate a name for this object. */
445 id++;
446 obj_name = xstrprintf ("var%d", id);
447
448 return obj_name;
449 }
450
451 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
452 error if OBJNAME cannot be found. */
453
454 struct varobj *
455 varobj_get_handle (char *objname)
456 {
457 struct vlist *cv;
458 const char *chp;
459 unsigned int index = 0;
460 unsigned int i = 1;
461
462 for (chp = objname; *chp; chp++)
463 {
464 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
465 }
466
467 cv = *(varobj_table + index);
468 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
469 cv = cv->next;
470
471 if (cv == NULL)
472 error (_("Variable object not found"));
473
474 return cv->var;
475 }
476
477 /* Given the handle, return the name of the object. */
478
479 char *
480 varobj_get_objname (const struct varobj *var)
481 {
482 return var->obj_name;
483 }
484
485 /* Given the handle, return the expression represented by the object. The
486 result must be freed by the caller. */
487
488 char *
489 varobj_get_expression (const struct varobj *var)
490 {
491 return name_of_variable (var);
492 }
493
494 /* See varobj.h. */
495
496 int
497 varobj_delete (struct varobj *var, int only_children)
498 {
499 return delete_variable (var, only_children);
500 }
501
502 #if HAVE_PYTHON
503
504 /* Convenience function for varobj_set_visualizer. Instantiate a
505 pretty-printer for a given value. */
506 static PyObject *
507 instantiate_pretty_printer (PyObject *constructor, struct value *value)
508 {
509 PyObject *val_obj = NULL;
510 PyObject *printer;
511
512 val_obj = value_to_value_object (value);
513 if (! val_obj)
514 return NULL;
515
516 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
517 Py_DECREF (val_obj);
518 return printer;
519 }
520
521 #endif
522
523 /* Set/Get variable object display format. */
524
525 enum varobj_display_formats
526 varobj_set_display_format (struct varobj *var,
527 enum varobj_display_formats format)
528 {
529 switch (format)
530 {
531 case FORMAT_NATURAL:
532 case FORMAT_BINARY:
533 case FORMAT_DECIMAL:
534 case FORMAT_HEXADECIMAL:
535 case FORMAT_OCTAL:
536 case FORMAT_ZHEXADECIMAL:
537 var->format = format;
538 break;
539
540 default:
541 var->format = variable_default_display (var);
542 }
543
544 if (varobj_value_is_changeable_p (var)
545 && var->value && !value_lazy (var->value))
546 {
547 xfree (var->print_value);
548 var->print_value = varobj_value_get_print_value (var->value,
549 var->format, var);
550 }
551
552 return var->format;
553 }
554
555 enum varobj_display_formats
556 varobj_get_display_format (const struct varobj *var)
557 {
558 return var->format;
559 }
560
561 char *
562 varobj_get_display_hint (const struct varobj *var)
563 {
564 char *result = NULL;
565
566 #if HAVE_PYTHON
567 struct cleanup *back_to;
568
569 if (!gdb_python_initialized)
570 return NULL;
571
572 back_to = varobj_ensure_python_env (var);
573
574 if (var->dynamic->pretty_printer != NULL)
575 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
576
577 do_cleanups (back_to);
578 #endif
579
580 return result;
581 }
582
583 /* Return true if the varobj has items after TO, false otherwise. */
584
585 int
586 varobj_has_more (const struct varobj *var, int to)
587 {
588 if (VEC_length (varobj_p, var->children) > to)
589 return 1;
590 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
591 && (var->dynamic->saved_item != NULL));
592 }
593
594 /* If the variable object is bound to a specific thread, that
595 is its evaluation can always be done in context of a frame
596 inside that thread, returns GDB id of the thread -- which
597 is always positive. Otherwise, returns -1. */
598 int
599 varobj_get_thread_id (const struct varobj *var)
600 {
601 if (var->root->valid_block && var->root->thread_id > 0)
602 return var->root->thread_id;
603 else
604 return -1;
605 }
606
607 void
608 varobj_set_frozen (struct varobj *var, int frozen)
609 {
610 /* When a variable is unfrozen, we don't fetch its value.
611 The 'not_fetched' flag remains set, so next -var-update
612 won't complain.
613
614 We don't fetch the value, because for structures the client
615 should do -var-update anyway. It would be bad to have different
616 client-size logic for structure and other types. */
617 var->frozen = frozen;
618 }
619
620 int
621 varobj_get_frozen (const struct varobj *var)
622 {
623 return var->frozen;
624 }
625
626 /* A helper function that restricts a range to what is actually
627 available in a VEC. This follows the usual rules for the meaning
628 of FROM and TO -- if either is negative, the entire range is
629 used. */
630
631 void
632 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
633 {
634 if (*from < 0 || *to < 0)
635 {
636 *from = 0;
637 *to = VEC_length (varobj_p, children);
638 }
639 else
640 {
641 if (*from > VEC_length (varobj_p, children))
642 *from = VEC_length (varobj_p, children);
643 if (*to > VEC_length (varobj_p, children))
644 *to = VEC_length (varobj_p, children);
645 if (*from > *to)
646 *from = *to;
647 }
648 }
649
650 /* A helper for update_dynamic_varobj_children that installs a new
651 child when needed. */
652
653 static void
654 install_dynamic_child (struct varobj *var,
655 VEC (varobj_p) **changed,
656 VEC (varobj_p) **type_changed,
657 VEC (varobj_p) **newobj,
658 VEC (varobj_p) **unchanged,
659 int *cchanged,
660 int index,
661 struct varobj_item *item)
662 {
663 if (VEC_length (varobj_p, var->children) < index + 1)
664 {
665 /* There's no child yet. */
666 struct varobj *child = varobj_add_child (var, item);
667
668 if (newobj)
669 {
670 VEC_safe_push (varobj_p, *newobj, child);
671 *cchanged = 1;
672 }
673 }
674 else
675 {
676 varobj_p existing = VEC_index (varobj_p, var->children, index);
677 int type_updated = update_type_if_necessary (existing, item->value);
678
679 if (type_updated)
680 {
681 if (type_changed)
682 VEC_safe_push (varobj_p, *type_changed, existing);
683 }
684 if (install_new_value (existing, item->value, 0))
685 {
686 if (!type_updated && changed)
687 VEC_safe_push (varobj_p, *changed, existing);
688 }
689 else if (!type_updated && unchanged)
690 VEC_safe_push (varobj_p, *unchanged, existing);
691 }
692 }
693
694 #if HAVE_PYTHON
695
696 static int
697 dynamic_varobj_has_child_method (const struct varobj *var)
698 {
699 struct cleanup *back_to;
700 PyObject *printer = var->dynamic->pretty_printer;
701 int result;
702
703 if (!gdb_python_initialized)
704 return 0;
705
706 back_to = varobj_ensure_python_env (var);
707 result = PyObject_HasAttr (printer, gdbpy_children_cst);
708 do_cleanups (back_to);
709 return result;
710 }
711 #endif
712
713 /* A factory for creating dynamic varobj's iterators. Returns an
714 iterator object suitable for iterating over VAR's children. */
715
716 static struct varobj_iter *
717 varobj_get_iterator (struct varobj *var)
718 {
719 #if HAVE_PYTHON
720 if (var->dynamic->pretty_printer)
721 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
722 #endif
723
724 gdb_assert_not_reached (_("\
725 requested an iterator from a non-dynamic varobj"));
726 }
727
728 /* Release and clear VAR's saved item, if any. */
729
730 static void
731 varobj_clear_saved_item (struct varobj_dynamic *var)
732 {
733 if (var->saved_item != NULL)
734 {
735 value_free (var->saved_item->value);
736 xfree (var->saved_item);
737 var->saved_item = NULL;
738 }
739 }
740
741 static int
742 update_dynamic_varobj_children (struct varobj *var,
743 VEC (varobj_p) **changed,
744 VEC (varobj_p) **type_changed,
745 VEC (varobj_p) **newobj,
746 VEC (varobj_p) **unchanged,
747 int *cchanged,
748 int update_children,
749 int from,
750 int to)
751 {
752 int i;
753
754 *cchanged = 0;
755
756 if (update_children || var->dynamic->child_iter == NULL)
757 {
758 varobj_iter_delete (var->dynamic->child_iter);
759 var->dynamic->child_iter = varobj_get_iterator (var);
760
761 varobj_clear_saved_item (var->dynamic);
762
763 i = 0;
764
765 if (var->dynamic->child_iter == NULL)
766 return 0;
767 }
768 else
769 i = VEC_length (varobj_p, var->children);
770
771 /* We ask for one extra child, so that MI can report whether there
772 are more children. */
773 for (; to < 0 || i < to + 1; ++i)
774 {
775 varobj_item *item;
776
777 /* See if there was a leftover from last time. */
778 if (var->dynamic->saved_item != NULL)
779 {
780 item = var->dynamic->saved_item;
781 var->dynamic->saved_item = NULL;
782 }
783 else
784 {
785 item = varobj_iter_next (var->dynamic->child_iter);
786 /* Release vitem->value so its lifetime is not bound to the
787 execution of a command. */
788 if (item != NULL && item->value != NULL)
789 release_value_or_incref (item->value);
790 }
791
792 if (item == NULL)
793 {
794 /* Iteration is done. Remove iterator from VAR. */
795 varobj_iter_delete (var->dynamic->child_iter);
796 var->dynamic->child_iter = NULL;
797 break;
798 }
799 /* We don't want to push the extra child on any report list. */
800 if (to < 0 || i < to)
801 {
802 int can_mention = from < 0 || i >= from;
803
804 install_dynamic_child (var, can_mention ? changed : NULL,
805 can_mention ? type_changed : NULL,
806 can_mention ? newobj : NULL,
807 can_mention ? unchanged : NULL,
808 can_mention ? cchanged : NULL, i,
809 item);
810
811 xfree (item);
812 }
813 else
814 {
815 var->dynamic->saved_item = item;
816
817 /* We want to truncate the child list just before this
818 element. */
819 break;
820 }
821 }
822
823 if (i < VEC_length (varobj_p, var->children))
824 {
825 int j;
826
827 *cchanged = 1;
828 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
829 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
830 VEC_truncate (varobj_p, var->children, i);
831 }
832
833 /* If there are fewer children than requested, note that the list of
834 children changed. */
835 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
836 *cchanged = 1;
837
838 var->num_children = VEC_length (varobj_p, var->children);
839
840 return 1;
841 }
842
843 int
844 varobj_get_num_children (struct varobj *var)
845 {
846 if (var->num_children == -1)
847 {
848 if (varobj_is_dynamic_p (var))
849 {
850 int dummy;
851
852 /* If we have a dynamic varobj, don't report -1 children.
853 So, try to fetch some children first. */
854 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
855 0, 0, 0);
856 }
857 else
858 var->num_children = number_of_children (var);
859 }
860
861 return var->num_children >= 0 ? var->num_children : 0;
862 }
863
864 /* Creates a list of the immediate children of a variable object;
865 the return code is the number of such children or -1 on error. */
866
867 VEC (varobj_p)*
868 varobj_list_children (struct varobj *var, int *from, int *to)
869 {
870 char *name;
871 int i, children_changed;
872
873 var->dynamic->children_requested = 1;
874
875 if (varobj_is_dynamic_p (var))
876 {
877 /* This, in theory, can result in the number of children changing without
878 frontend noticing. But well, calling -var-list-children on the same
879 varobj twice is not something a sane frontend would do. */
880 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
881 &children_changed, 0, 0, *to);
882 varobj_restrict_range (var->children, from, to);
883 return var->children;
884 }
885
886 if (var->num_children == -1)
887 var->num_children = number_of_children (var);
888
889 /* If that failed, give up. */
890 if (var->num_children == -1)
891 return var->children;
892
893 /* If we're called when the list of children is not yet initialized,
894 allocate enough elements in it. */
895 while (VEC_length (varobj_p, var->children) < var->num_children)
896 VEC_safe_push (varobj_p, var->children, NULL);
897
898 for (i = 0; i < var->num_children; i++)
899 {
900 varobj_p existing = VEC_index (varobj_p, var->children, i);
901
902 if (existing == NULL)
903 {
904 /* Either it's the first call to varobj_list_children for
905 this variable object, and the child was never created,
906 or it was explicitly deleted by the client. */
907 name = name_of_child (var, i);
908 existing = create_child (var, i, name);
909 VEC_replace (varobj_p, var->children, i, existing);
910 }
911 }
912
913 varobj_restrict_range (var->children, from, to);
914 return var->children;
915 }
916
917 static struct varobj *
918 varobj_add_child (struct varobj *var, struct varobj_item *item)
919 {
920 varobj_p v = create_child_with_value (var,
921 VEC_length (varobj_p, var->children),
922 item);
923
924 VEC_safe_push (varobj_p, var->children, v);
925 return v;
926 }
927
928 /* Obtain the type of an object Variable as a string similar to the one gdb
929 prints on the console. The caller is responsible for freeing the string.
930 */
931
932 char *
933 varobj_get_type (struct varobj *var)
934 {
935 /* For the "fake" variables, do not return a type. (Its type is
936 NULL, too.)
937 Do not return a type for invalid variables as well. */
938 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
939 return NULL;
940
941 return type_to_string (var->type);
942 }
943
944 /* Obtain the type of an object variable. */
945
946 struct type *
947 varobj_get_gdb_type (const struct varobj *var)
948 {
949 return var->type;
950 }
951
952 /* Is VAR a path expression parent, i.e., can it be used to construct
953 a valid path expression? */
954
955 static int
956 is_path_expr_parent (const struct varobj *var)
957 {
958 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
959 return var->root->lang_ops->is_path_expr_parent (var);
960 }
961
962 /* Is VAR a path expression parent, i.e., can it be used to construct
963 a valid path expression? By default we assume any VAR can be a path
964 parent. */
965
966 int
967 varobj_default_is_path_expr_parent (const struct varobj *var)
968 {
969 return 1;
970 }
971
972 /* Return the path expression parent for VAR. */
973
974 const struct varobj *
975 varobj_get_path_expr_parent (const struct varobj *var)
976 {
977 const struct varobj *parent = var;
978
979 while (!is_root_p (parent) && !is_path_expr_parent (parent))
980 parent = parent->parent;
981
982 return parent;
983 }
984
985 /* Return a pointer to the full rooted expression of varobj VAR.
986 If it has not been computed yet, compute it. */
987 char *
988 varobj_get_path_expr (const struct varobj *var)
989 {
990 if (var->path_expr == NULL)
991 {
992 /* For root varobjs, we initialize path_expr
993 when creating varobj, so here it should be
994 child varobj. */
995 struct varobj *mutable_var = (struct varobj *) var;
996 gdb_assert (!is_root_p (var));
997
998 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
999 }
1000
1001 return var->path_expr;
1002 }
1003
1004 const struct language_defn *
1005 varobj_get_language (const struct varobj *var)
1006 {
1007 return var->root->exp->language_defn;
1008 }
1009
1010 int
1011 varobj_get_attributes (const struct varobj *var)
1012 {
1013 int attributes = 0;
1014
1015 if (varobj_editable_p (var))
1016 /* FIXME: define masks for attributes. */
1017 attributes |= 0x00000001; /* Editable */
1018
1019 return attributes;
1020 }
1021
1022 /* Return true if VAR is a dynamic varobj. */
1023
1024 int
1025 varobj_is_dynamic_p (const struct varobj *var)
1026 {
1027 return var->dynamic->pretty_printer != NULL;
1028 }
1029
1030 char *
1031 varobj_get_formatted_value (struct varobj *var,
1032 enum varobj_display_formats format)
1033 {
1034 return my_value_of_variable (var, format);
1035 }
1036
1037 char *
1038 varobj_get_value (struct varobj *var)
1039 {
1040 return my_value_of_variable (var, var->format);
1041 }
1042
1043 /* Set the value of an object variable (if it is editable) to the
1044 value of the given expression. */
1045 /* Note: Invokes functions that can call error(). */
1046
1047 int
1048 varobj_set_value (struct varobj *var, char *expression)
1049 {
1050 struct value *val = NULL; /* Initialize to keep gcc happy. */
1051 /* The argument "expression" contains the variable's new value.
1052 We need to first construct a legal expression for this -- ugh! */
1053 /* Does this cover all the bases? */
1054 struct value *value = NULL; /* Initialize to keep gcc happy. */
1055 int saved_input_radix = input_radix;
1056 const char *s = expression;
1057
1058 gdb_assert (varobj_editable_p (var));
1059
1060 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1061 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
1062 TRY
1063 {
1064 value = evaluate_expression (exp.get ());
1065 }
1066
1067 CATCH (except, RETURN_MASK_ERROR)
1068 {
1069 /* We cannot proceed without a valid expression. */
1070 return 0;
1071 }
1072 END_CATCH
1073
1074 /* All types that are editable must also be changeable. */
1075 gdb_assert (varobj_value_is_changeable_p (var));
1076
1077 /* The value of a changeable variable object must not be lazy. */
1078 gdb_assert (!value_lazy (var->value));
1079
1080 /* Need to coerce the input. We want to check if the
1081 value of the variable object will be different
1082 after assignment, and the first thing value_assign
1083 does is coerce the input.
1084 For example, if we are assigning an array to a pointer variable we
1085 should compare the pointer with the array's address, not with the
1086 array's content. */
1087 value = coerce_array (value);
1088
1089 /* The new value may be lazy. value_assign, or
1090 rather value_contents, will take care of this. */
1091 TRY
1092 {
1093 val = value_assign (var->value, value);
1094 }
1095
1096 CATCH (except, RETURN_MASK_ERROR)
1097 {
1098 return 0;
1099 }
1100 END_CATCH
1101
1102 /* If the value has changed, record it, so that next -var-update can
1103 report this change. If a variable had a value of '1', we've set it
1104 to '333' and then set again to '1', when -var-update will report this
1105 variable as changed -- because the first assignment has set the
1106 'updated' flag. There's no need to optimize that, because return value
1107 of -var-update should be considered an approximation. */
1108 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1109 input_radix = saved_input_radix;
1110 return 1;
1111 }
1112
1113 #if HAVE_PYTHON
1114
1115 /* A helper function to install a constructor function and visualizer
1116 in a varobj_dynamic. */
1117
1118 static void
1119 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1120 PyObject *visualizer)
1121 {
1122 Py_XDECREF (var->constructor);
1123 var->constructor = constructor;
1124
1125 Py_XDECREF (var->pretty_printer);
1126 var->pretty_printer = visualizer;
1127
1128 varobj_iter_delete (var->child_iter);
1129 var->child_iter = NULL;
1130 }
1131
1132 /* Install the default visualizer for VAR. */
1133
1134 static void
1135 install_default_visualizer (struct varobj *var)
1136 {
1137 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1138 if (CPLUS_FAKE_CHILD (var))
1139 return;
1140
1141 if (pretty_printing)
1142 {
1143 PyObject *pretty_printer = NULL;
1144
1145 if (var->value)
1146 {
1147 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1148 if (! pretty_printer)
1149 {
1150 gdbpy_print_stack ();
1151 error (_("Cannot instantiate printer for default visualizer"));
1152 }
1153 }
1154
1155 if (pretty_printer == Py_None)
1156 {
1157 Py_DECREF (pretty_printer);
1158 pretty_printer = NULL;
1159 }
1160
1161 install_visualizer (var->dynamic, NULL, pretty_printer);
1162 }
1163 }
1164
1165 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1166 make a new object. */
1167
1168 static void
1169 construct_visualizer (struct varobj *var, PyObject *constructor)
1170 {
1171 PyObject *pretty_printer;
1172
1173 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1174 if (CPLUS_FAKE_CHILD (var))
1175 return;
1176
1177 Py_INCREF (constructor);
1178 if (constructor == Py_None)
1179 pretty_printer = NULL;
1180 else
1181 {
1182 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1183 if (! pretty_printer)
1184 {
1185 gdbpy_print_stack ();
1186 Py_DECREF (constructor);
1187 constructor = Py_None;
1188 Py_INCREF (constructor);
1189 }
1190
1191 if (pretty_printer == Py_None)
1192 {
1193 Py_DECREF (pretty_printer);
1194 pretty_printer = NULL;
1195 }
1196 }
1197
1198 install_visualizer (var->dynamic, constructor, pretty_printer);
1199 }
1200
1201 #endif /* HAVE_PYTHON */
1202
1203 /* A helper function for install_new_value. This creates and installs
1204 a visualizer for VAR, if appropriate. */
1205
1206 static void
1207 install_new_value_visualizer (struct varobj *var)
1208 {
1209 #if HAVE_PYTHON
1210 /* If the constructor is None, then we want the raw value. If VAR
1211 does not have a value, just skip this. */
1212 if (!gdb_python_initialized)
1213 return;
1214
1215 if (var->dynamic->constructor != Py_None && var->value != NULL)
1216 {
1217 struct cleanup *cleanup;
1218
1219 cleanup = varobj_ensure_python_env (var);
1220
1221 if (var->dynamic->constructor == NULL)
1222 install_default_visualizer (var);
1223 else
1224 construct_visualizer (var, var->dynamic->constructor);
1225
1226 do_cleanups (cleanup);
1227 }
1228 #else
1229 /* Do nothing. */
1230 #endif
1231 }
1232
1233 /* When using RTTI to determine variable type it may be changed in runtime when
1234 the variable value is changed. This function checks whether type of varobj
1235 VAR will change when a new value NEW_VALUE is assigned and if it is so
1236 updates the type of VAR. */
1237
1238 static int
1239 update_type_if_necessary (struct varobj *var, struct value *new_value)
1240 {
1241 if (new_value)
1242 {
1243 struct value_print_options opts;
1244
1245 get_user_print_options (&opts);
1246 if (opts.objectprint)
1247 {
1248 struct type *new_type;
1249 char *curr_type_str, *new_type_str;
1250 int type_name_changed;
1251
1252 new_type = value_actual_type (new_value, 0, 0);
1253 new_type_str = type_to_string (new_type);
1254 curr_type_str = varobj_get_type (var);
1255 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1256 xfree (curr_type_str);
1257 xfree (new_type_str);
1258
1259 if (type_name_changed)
1260 {
1261 var->type = new_type;
1262
1263 /* This information may be not valid for a new type. */
1264 varobj_delete (var, 1);
1265 VEC_free (varobj_p, var->children);
1266 var->num_children = -1;
1267 return 1;
1268 }
1269 }
1270 }
1271
1272 return 0;
1273 }
1274
1275 /* Assign a new value to a variable object. If INITIAL is non-zero,
1276 this is the first assignement after the variable object was just
1277 created, or changed type. In that case, just assign the value
1278 and return 0.
1279 Otherwise, assign the new value, and return 1 if the value is
1280 different from the current one, 0 otherwise. The comparison is
1281 done on textual representation of value. Therefore, some types
1282 need not be compared. E.g. for structures the reported value is
1283 always "{...}", so no comparison is necessary here. If the old
1284 value was NULL and new one is not, or vice versa, we always return 1.
1285
1286 The VALUE parameter should not be released -- the function will
1287 take care of releasing it when needed. */
1288 static int
1289 install_new_value (struct varobj *var, struct value *value, int initial)
1290 {
1291 int changeable;
1292 int need_to_fetch;
1293 int changed = 0;
1294 int intentionally_not_fetched = 0;
1295 char *print_value = NULL;
1296
1297 /* We need to know the varobj's type to decide if the value should
1298 be fetched or not. C++ fake children (public/protected/private)
1299 don't have a type. */
1300 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1301 changeable = varobj_value_is_changeable_p (var);
1302
1303 /* If the type has custom visualizer, we consider it to be always
1304 changeable. FIXME: need to make sure this behaviour will not
1305 mess up read-sensitive values. */
1306 if (var->dynamic->pretty_printer != NULL)
1307 changeable = 1;
1308
1309 need_to_fetch = changeable;
1310
1311 /* We are not interested in the address of references, and given
1312 that in C++ a reference is not rebindable, it cannot
1313 meaningfully change. So, get hold of the real value. */
1314 if (value)
1315 value = coerce_ref (value);
1316
1317 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1318 /* For unions, we need to fetch the value implicitly because
1319 of implementation of union member fetch. When gdb
1320 creates a value for a field and the value of the enclosing
1321 structure is not lazy, it immediately copies the necessary
1322 bytes from the enclosing values. If the enclosing value is
1323 lazy, the call to value_fetch_lazy on the field will read
1324 the data from memory. For unions, that means we'll read the
1325 same memory more than once, which is not desirable. So
1326 fetch now. */
1327 need_to_fetch = 1;
1328
1329 /* The new value might be lazy. If the type is changeable,
1330 that is we'll be comparing values of this type, fetch the
1331 value now. Otherwise, on the next update the old value
1332 will be lazy, which means we've lost that old value. */
1333 if (need_to_fetch && value && value_lazy (value))
1334 {
1335 const struct varobj *parent = var->parent;
1336 int frozen = var->frozen;
1337
1338 for (; !frozen && parent; parent = parent->parent)
1339 frozen |= parent->frozen;
1340
1341 if (frozen && initial)
1342 {
1343 /* For variables that are frozen, or are children of frozen
1344 variables, we don't do fetch on initial assignment.
1345 For non-initial assignemnt we do the fetch, since it means we're
1346 explicitly asked to compare the new value with the old one. */
1347 intentionally_not_fetched = 1;
1348 }
1349 else
1350 {
1351
1352 TRY
1353 {
1354 value_fetch_lazy (value);
1355 }
1356
1357 CATCH (except, RETURN_MASK_ERROR)
1358 {
1359 /* Set the value to NULL, so that for the next -var-update,
1360 we don't try to compare the new value with this value,
1361 that we couldn't even read. */
1362 value = NULL;
1363 }
1364 END_CATCH
1365 }
1366 }
1367
1368 /* Get a reference now, before possibly passing it to any Python
1369 code that might release it. */
1370 if (value != NULL)
1371 value_incref (value);
1372
1373 /* Below, we'll be comparing string rendering of old and new
1374 values. Don't get string rendering if the value is
1375 lazy -- if it is, the code above has decided that the value
1376 should not be fetched. */
1377 if (value != NULL && !value_lazy (value)
1378 && var->dynamic->pretty_printer == NULL)
1379 print_value = varobj_value_get_print_value (value, var->format, var);
1380
1381 /* If the type is changeable, compare the old and the new values.
1382 If this is the initial assignment, we don't have any old value
1383 to compare with. */
1384 if (!initial && changeable)
1385 {
1386 /* If the value of the varobj was changed by -var-set-value,
1387 then the value in the varobj and in the target is the same.
1388 However, that value is different from the value that the
1389 varobj had after the previous -var-update. So need to the
1390 varobj as changed. */
1391 if (var->updated)
1392 {
1393 changed = 1;
1394 }
1395 else if (var->dynamic->pretty_printer == NULL)
1396 {
1397 /* Try to compare the values. That requires that both
1398 values are non-lazy. */
1399 if (var->not_fetched && value_lazy (var->value))
1400 {
1401 /* This is a frozen varobj and the value was never read.
1402 Presumably, UI shows some "never read" indicator.
1403 Now that we've fetched the real value, we need to report
1404 this varobj as changed so that UI can show the real
1405 value. */
1406 changed = 1;
1407 }
1408 else if (var->value == NULL && value == NULL)
1409 /* Equal. */
1410 ;
1411 else if (var->value == NULL || value == NULL)
1412 {
1413 changed = 1;
1414 }
1415 else
1416 {
1417 gdb_assert (!value_lazy (var->value));
1418 gdb_assert (!value_lazy (value));
1419
1420 gdb_assert (var->print_value != NULL && print_value != NULL);
1421 if (strcmp (var->print_value, print_value) != 0)
1422 changed = 1;
1423 }
1424 }
1425 }
1426
1427 if (!initial && !changeable)
1428 {
1429 /* For values that are not changeable, we don't compare the values.
1430 However, we want to notice if a value was not NULL and now is NULL,
1431 or vise versa, so that we report when top-level varobjs come in scope
1432 and leave the scope. */
1433 changed = (var->value != NULL) != (value != NULL);
1434 }
1435
1436 /* We must always keep the new value, since children depend on it. */
1437 if (var->value != NULL && var->value != value)
1438 value_free (var->value);
1439 var->value = value;
1440 if (value && value_lazy (value) && intentionally_not_fetched)
1441 var->not_fetched = 1;
1442 else
1443 var->not_fetched = 0;
1444 var->updated = 0;
1445
1446 install_new_value_visualizer (var);
1447
1448 /* If we installed a pretty-printer, re-compare the printed version
1449 to see if the variable changed. */
1450 if (var->dynamic->pretty_printer != NULL)
1451 {
1452 xfree (print_value);
1453 print_value = varobj_value_get_print_value (var->value, var->format,
1454 var);
1455 if ((var->print_value == NULL && print_value != NULL)
1456 || (var->print_value != NULL && print_value == NULL)
1457 || (var->print_value != NULL && print_value != NULL
1458 && strcmp (var->print_value, print_value) != 0))
1459 changed = 1;
1460 }
1461 if (var->print_value)
1462 xfree (var->print_value);
1463 var->print_value = print_value;
1464
1465 gdb_assert (!var->value || value_type (var->value));
1466
1467 return changed;
1468 }
1469
1470 /* Return the requested range for a varobj. VAR is the varobj. FROM
1471 and TO are out parameters; *FROM and *TO will be set to the
1472 selected sub-range of VAR. If no range was selected using
1473 -var-set-update-range, then both will be -1. */
1474 void
1475 varobj_get_child_range (const struct varobj *var, int *from, int *to)
1476 {
1477 *from = var->from;
1478 *to = var->to;
1479 }
1480
1481 /* Set the selected sub-range of children of VAR to start at index
1482 FROM and end at index TO. If either FROM or TO is less than zero,
1483 this is interpreted as a request for all children. */
1484 void
1485 varobj_set_child_range (struct varobj *var, int from, int to)
1486 {
1487 var->from = from;
1488 var->to = to;
1489 }
1490
1491 void
1492 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1493 {
1494 #if HAVE_PYTHON
1495 PyObject *mainmod, *globals, *constructor;
1496 struct cleanup *back_to;
1497
1498 if (!gdb_python_initialized)
1499 return;
1500
1501 back_to = varobj_ensure_python_env (var);
1502
1503 mainmod = PyImport_AddModule ("__main__");
1504 globals = PyModule_GetDict (mainmod);
1505 Py_INCREF (globals);
1506 make_cleanup_py_decref (globals);
1507
1508 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1509
1510 if (! constructor)
1511 {
1512 gdbpy_print_stack ();
1513 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1514 }
1515
1516 construct_visualizer (var, constructor);
1517 Py_XDECREF (constructor);
1518
1519 /* If there are any children now, wipe them. */
1520 varobj_delete (var, 1 /* children only */);
1521 var->num_children = -1;
1522
1523 do_cleanups (back_to);
1524 #else
1525 error (_("Python support required"));
1526 #endif
1527 }
1528
1529 /* If NEW_VALUE is the new value of the given varobj (var), return
1530 non-zero if var has mutated. In other words, if the type of
1531 the new value is different from the type of the varobj's old
1532 value.
1533
1534 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1535
1536 static int
1537 varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
1538 struct type *new_type)
1539 {
1540 /* If we haven't previously computed the number of children in var,
1541 it does not matter from the front-end's perspective whether
1542 the type has mutated or not. For all intents and purposes,
1543 it has not mutated. */
1544 if (var->num_children < 0)
1545 return 0;
1546
1547 if (var->root->lang_ops->value_has_mutated)
1548 {
1549 /* The varobj module, when installing new values, explicitly strips
1550 references, saying that we're not interested in those addresses.
1551 But detection of mutation happens before installing the new
1552 value, so our value may be a reference that we need to strip
1553 in order to remain consistent. */
1554 if (new_value != NULL)
1555 new_value = coerce_ref (new_value);
1556 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1557 }
1558 else
1559 return 0;
1560 }
1561
1562 /* Update the values for a variable and its children. This is a
1563 two-pronged attack. First, re-parse the value for the root's
1564 expression to see if it's changed. Then go all the way
1565 through its children, reconstructing them and noting if they've
1566 changed.
1567
1568 The EXPLICIT parameter specifies if this call is result
1569 of MI request to update this specific variable, or
1570 result of implicit -var-update *. For implicit request, we don't
1571 update frozen variables.
1572
1573 NOTE: This function may delete the caller's varobj. If it
1574 returns TYPE_CHANGED, then it has done this and VARP will be modified
1575 to point to the new varobj. */
1576
1577 VEC(varobj_update_result) *
1578 varobj_update (struct varobj **varp, int is_explicit)
1579 {
1580 int type_changed = 0;
1581 int i;
1582 struct value *newobj;
1583 VEC (varobj_update_result) *stack = NULL;
1584 VEC (varobj_update_result) *result = NULL;
1585
1586 /* Frozen means frozen -- we don't check for any change in
1587 this varobj, including its going out of scope, or
1588 changing type. One use case for frozen varobjs is
1589 retaining previously evaluated expressions, and we don't
1590 want them to be reevaluated at all. */
1591 if (!is_explicit && (*varp)->frozen)
1592 return result;
1593
1594 if (!(*varp)->root->is_valid)
1595 {
1596 varobj_update_result r = {0};
1597
1598 r.varobj = *varp;
1599 r.status = VAROBJ_INVALID;
1600 VEC_safe_push (varobj_update_result, result, &r);
1601 return result;
1602 }
1603
1604 if ((*varp)->root->rootvar == *varp)
1605 {
1606 varobj_update_result r = {0};
1607
1608 r.varobj = *varp;
1609 r.status = VAROBJ_IN_SCOPE;
1610
1611 /* Update the root variable. value_of_root can return NULL
1612 if the variable is no longer around, i.e. we stepped out of
1613 the frame in which a local existed. We are letting the
1614 value_of_root variable dispose of the varobj if the type
1615 has changed. */
1616 newobj = value_of_root (varp, &type_changed);
1617 if (update_type_if_necessary(*varp, newobj))
1618 type_changed = 1;
1619 r.varobj = *varp;
1620 r.type_changed = type_changed;
1621 if (install_new_value ((*varp), newobj, type_changed))
1622 r.changed = 1;
1623
1624 if (newobj == NULL)
1625 r.status = VAROBJ_NOT_IN_SCOPE;
1626 r.value_installed = 1;
1627
1628 if (r.status == VAROBJ_NOT_IN_SCOPE)
1629 {
1630 if (r.type_changed || r.changed)
1631 VEC_safe_push (varobj_update_result, result, &r);
1632 return result;
1633 }
1634
1635 VEC_safe_push (varobj_update_result, stack, &r);
1636 }
1637 else
1638 {
1639 varobj_update_result r = {0};
1640
1641 r.varobj = *varp;
1642 VEC_safe_push (varobj_update_result, stack, &r);
1643 }
1644
1645 /* Walk through the children, reconstructing them all. */
1646 while (!VEC_empty (varobj_update_result, stack))
1647 {
1648 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1649 struct varobj *v = r.varobj;
1650
1651 VEC_pop (varobj_update_result, stack);
1652
1653 /* Update this variable, unless it's a root, which is already
1654 updated. */
1655 if (!r.value_installed)
1656 {
1657 struct type *new_type;
1658
1659 newobj = value_of_child (v->parent, v->index);
1660 if (update_type_if_necessary(v, newobj))
1661 r.type_changed = 1;
1662 if (newobj)
1663 new_type = value_type (newobj);
1664 else
1665 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1666
1667 if (varobj_value_has_mutated (v, newobj, new_type))
1668 {
1669 /* The children are no longer valid; delete them now.
1670 Report the fact that its type changed as well. */
1671 varobj_delete (v, 1 /* only_children */);
1672 v->num_children = -1;
1673 v->to = -1;
1674 v->from = -1;
1675 v->type = new_type;
1676 r.type_changed = 1;
1677 }
1678
1679 if (install_new_value (v, newobj, r.type_changed))
1680 {
1681 r.changed = 1;
1682 v->updated = 0;
1683 }
1684 }
1685
1686 /* We probably should not get children of a dynamic varobj, but
1687 for which -var-list-children was never invoked. */
1688 if (varobj_is_dynamic_p (v))
1689 {
1690 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1691 VEC (varobj_p) *newobj = 0;
1692 int i, children_changed = 0;
1693
1694 if (v->frozen)
1695 continue;
1696
1697 if (!v->dynamic->children_requested)
1698 {
1699 int dummy;
1700
1701 /* If we initially did not have potential children, but
1702 now we do, consider the varobj as changed.
1703 Otherwise, if children were never requested, consider
1704 it as unchanged -- presumably, such varobj is not yet
1705 expanded in the UI, so we need not bother getting
1706 it. */
1707 if (!varobj_has_more (v, 0))
1708 {
1709 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1710 &dummy, 0, 0, 0);
1711 if (varobj_has_more (v, 0))
1712 r.changed = 1;
1713 }
1714
1715 if (r.changed)
1716 VEC_safe_push (varobj_update_result, result, &r);
1717
1718 continue;
1719 }
1720
1721 /* If update_dynamic_varobj_children returns 0, then we have
1722 a non-conforming pretty-printer, so we skip it. */
1723 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
1724 &unchanged, &children_changed, 1,
1725 v->from, v->to))
1726 {
1727 if (children_changed || newobj)
1728 {
1729 r.children_changed = 1;
1730 r.newobj = newobj;
1731 }
1732 /* Push in reverse order so that the first child is
1733 popped from the work stack first, and so will be
1734 added to result first. This does not affect
1735 correctness, just "nicer". */
1736 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1737 {
1738 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1739 varobj_update_result r = {0};
1740
1741 /* Type may change only if value was changed. */
1742 r.varobj = tmp;
1743 r.changed = 1;
1744 r.type_changed = 1;
1745 r.value_installed = 1;
1746 VEC_safe_push (varobj_update_result, stack, &r);
1747 }
1748 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1749 {
1750 varobj_p tmp = VEC_index (varobj_p, changed, i);
1751 varobj_update_result r = {0};
1752
1753 r.varobj = tmp;
1754 r.changed = 1;
1755 r.value_installed = 1;
1756 VEC_safe_push (varobj_update_result, stack, &r);
1757 }
1758 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1759 {
1760 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1761
1762 if (!tmp->frozen)
1763 {
1764 varobj_update_result r = {0};
1765
1766 r.varobj = tmp;
1767 r.value_installed = 1;
1768 VEC_safe_push (varobj_update_result, stack, &r);
1769 }
1770 }
1771 if (r.changed || r.children_changed)
1772 VEC_safe_push (varobj_update_result, result, &r);
1773
1774 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1775 because NEW has been put into the result vector. */
1776 VEC_free (varobj_p, changed);
1777 VEC_free (varobj_p, type_changed);
1778 VEC_free (varobj_p, unchanged);
1779
1780 continue;
1781 }
1782 }
1783
1784 /* Push any children. Use reverse order so that the first
1785 child is popped from the work stack first, and so
1786 will be added to result first. This does not
1787 affect correctness, just "nicer". */
1788 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1789 {
1790 varobj_p c = VEC_index (varobj_p, v->children, i);
1791
1792 /* Child may be NULL if explicitly deleted by -var-delete. */
1793 if (c != NULL && !c->frozen)
1794 {
1795 varobj_update_result r = {0};
1796
1797 r.varobj = c;
1798 VEC_safe_push (varobj_update_result, stack, &r);
1799 }
1800 }
1801
1802 if (r.changed || r.type_changed)
1803 VEC_safe_push (varobj_update_result, result, &r);
1804 }
1805
1806 VEC_free (varobj_update_result, stack);
1807
1808 return result;
1809 }
1810 \f
1811
1812 /* Helper functions */
1813
1814 /*
1815 * Variable object construction/destruction
1816 */
1817
1818 static int
1819 delete_variable (struct varobj *var, int only_children_p)
1820 {
1821 int delcount = 0;
1822
1823 delete_variable_1 (&delcount, var, only_children_p,
1824 1 /* remove_from_parent_p */ );
1825
1826 return delcount;
1827 }
1828
1829 /* Delete the variable object VAR and its children. */
1830 /* IMPORTANT NOTE: If we delete a variable which is a child
1831 and the parent is not removed we dump core. It must be always
1832 initially called with remove_from_parent_p set. */
1833 static void
1834 delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
1835 int remove_from_parent_p)
1836 {
1837 int i;
1838
1839 /* Delete any children of this variable, too. */
1840 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1841 {
1842 varobj_p child = VEC_index (varobj_p, var->children, i);
1843
1844 if (!child)
1845 continue;
1846 if (!remove_from_parent_p)
1847 child->parent = NULL;
1848 delete_variable_1 (delcountp, child, 0, only_children_p);
1849 }
1850 VEC_free (varobj_p, var->children);
1851
1852 /* if we were called to delete only the children we are done here. */
1853 if (only_children_p)
1854 return;
1855
1856 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1857 /* If the name is null, this is a temporary variable, that has not
1858 yet been installed, don't report it, it belongs to the caller... */
1859 if (var->obj_name != NULL)
1860 {
1861 *delcountp = *delcountp + 1;
1862 }
1863
1864 /* If this variable has a parent, remove it from its parent's list. */
1865 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1866 (as indicated by remove_from_parent_p) we don't bother doing an
1867 expensive list search to find the element to remove when we are
1868 discarding the list afterwards. */
1869 if ((remove_from_parent_p) && (var->parent != NULL))
1870 {
1871 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1872 }
1873
1874 if (var->obj_name != NULL)
1875 uninstall_variable (var);
1876
1877 /* Free memory associated with this variable. */
1878 free_variable (var);
1879 }
1880
1881 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1882 static int
1883 install_variable (struct varobj *var)
1884 {
1885 struct vlist *cv;
1886 struct vlist *newvl;
1887 const char *chp;
1888 unsigned int index = 0;
1889 unsigned int i = 1;
1890
1891 for (chp = var->obj_name; *chp; chp++)
1892 {
1893 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1894 }
1895
1896 cv = *(varobj_table + index);
1897 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1898 cv = cv->next;
1899
1900 if (cv != NULL)
1901 error (_("Duplicate variable object name"));
1902
1903 /* Add varobj to hash table. */
1904 newvl = XNEW (struct vlist);
1905 newvl->next = *(varobj_table + index);
1906 newvl->var = var;
1907 *(varobj_table + index) = newvl;
1908
1909 /* If root, add varobj to root list. */
1910 if (is_root_p (var))
1911 {
1912 /* Add to list of root variables. */
1913 if (rootlist == NULL)
1914 var->root->next = NULL;
1915 else
1916 var->root->next = rootlist;
1917 rootlist = var->root;
1918 }
1919
1920 return 1; /* OK */
1921 }
1922
1923 /* Unistall the object VAR. */
1924 static void
1925 uninstall_variable (struct varobj *var)
1926 {
1927 struct vlist *cv;
1928 struct vlist *prev;
1929 struct varobj_root *cr;
1930 struct varobj_root *prer;
1931 const char *chp;
1932 unsigned int index = 0;
1933 unsigned int i = 1;
1934
1935 /* Remove varobj from hash table. */
1936 for (chp = var->obj_name; *chp; chp++)
1937 {
1938 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1939 }
1940
1941 cv = *(varobj_table + index);
1942 prev = NULL;
1943 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1944 {
1945 prev = cv;
1946 cv = cv->next;
1947 }
1948
1949 if (varobjdebug)
1950 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1951
1952 if (cv == NULL)
1953 {
1954 warning
1955 ("Assertion failed: Could not find variable object \"%s\" to delete",
1956 var->obj_name);
1957 return;
1958 }
1959
1960 if (prev == NULL)
1961 *(varobj_table + index) = cv->next;
1962 else
1963 prev->next = cv->next;
1964
1965 xfree (cv);
1966
1967 /* If root, remove varobj from root list. */
1968 if (is_root_p (var))
1969 {
1970 /* Remove from list of root variables. */
1971 if (rootlist == var->root)
1972 rootlist = var->root->next;
1973 else
1974 {
1975 prer = NULL;
1976 cr = rootlist;
1977 while ((cr != NULL) && (cr->rootvar != var))
1978 {
1979 prer = cr;
1980 cr = cr->next;
1981 }
1982 if (cr == NULL)
1983 {
1984 warning (_("Assertion failed: Could not find "
1985 "varobj \"%s\" in root list"),
1986 var->obj_name);
1987 return;
1988 }
1989 if (prer == NULL)
1990 rootlist = NULL;
1991 else
1992 prer->next = cr->next;
1993 }
1994 }
1995
1996 }
1997
1998 /* Create and install a child of the parent of the given name.
1999
2000 The created VAROBJ takes ownership of the allocated NAME. */
2001
2002 static struct varobj *
2003 create_child (struct varobj *parent, int index, char *name)
2004 {
2005 struct varobj_item item;
2006
2007 item.name = name;
2008 item.value = value_of_child (parent, index);
2009
2010 return create_child_with_value (parent, index, &item);
2011 }
2012
2013 static struct varobj *
2014 create_child_with_value (struct varobj *parent, int index,
2015 struct varobj_item *item)
2016 {
2017 struct varobj *child;
2018 char *childs_name;
2019
2020 child = new_variable ();
2021
2022 /* NAME is allocated by caller. */
2023 child->name = item->name;
2024 child->index = index;
2025 child->parent = parent;
2026 child->root = parent->root;
2027
2028 if (varobj_is_anonymous_child (child))
2029 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2030 else
2031 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2032 child->obj_name = childs_name;
2033
2034 install_variable (child);
2035
2036 /* Compute the type of the child. Must do this before
2037 calling install_new_value. */
2038 if (item->value != NULL)
2039 /* If the child had no evaluation errors, var->value
2040 will be non-NULL and contain a valid type. */
2041 child->type = value_actual_type (item->value, 0, NULL);
2042 else
2043 /* Otherwise, we must compute the type. */
2044 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2045 child->index);
2046 install_new_value (child, item->value, 1);
2047
2048 return child;
2049 }
2050 \f
2051
2052 /*
2053 * Miscellaneous utility functions.
2054 */
2055
2056 /* Allocate memory and initialize a new variable. */
2057 static struct varobj *
2058 new_variable (void)
2059 {
2060 struct varobj *var;
2061
2062 var = XNEW (struct varobj);
2063 var->name = NULL;
2064 var->path_expr = NULL;
2065 var->obj_name = NULL;
2066 var->index = -1;
2067 var->type = NULL;
2068 var->value = NULL;
2069 var->num_children = -1;
2070 var->parent = NULL;
2071 var->children = NULL;
2072 var->format = FORMAT_NATURAL;
2073 var->root = NULL;
2074 var->updated = 0;
2075 var->print_value = NULL;
2076 var->frozen = 0;
2077 var->not_fetched = 0;
2078 var->dynamic = XNEW (struct varobj_dynamic);
2079 var->dynamic->children_requested = 0;
2080 var->from = -1;
2081 var->to = -1;
2082 var->dynamic->constructor = 0;
2083 var->dynamic->pretty_printer = 0;
2084 var->dynamic->child_iter = 0;
2085 var->dynamic->saved_item = 0;
2086
2087 return var;
2088 }
2089
2090 /* Allocate memory and initialize a new root variable. */
2091 static struct varobj *
2092 new_root_variable (void)
2093 {
2094 struct varobj *var = new_variable ();
2095
2096 var->root = new varobj_root ();
2097 var->root->lang_ops = NULL;
2098 var->root->exp = NULL;
2099 var->root->valid_block = NULL;
2100 var->root->frame = null_frame_id;
2101 var->root->floating = 0;
2102 var->root->rootvar = NULL;
2103 var->root->is_valid = 1;
2104
2105 return var;
2106 }
2107
2108 /* Free any allocated memory associated with VAR. */
2109 static void
2110 free_variable (struct varobj *var)
2111 {
2112 #if HAVE_PYTHON
2113 if (var->dynamic->pretty_printer != NULL)
2114 {
2115 struct cleanup *cleanup = varobj_ensure_python_env (var);
2116
2117 Py_XDECREF (var->dynamic->constructor);
2118 Py_XDECREF (var->dynamic->pretty_printer);
2119 do_cleanups (cleanup);
2120 }
2121 #endif
2122
2123 varobj_iter_delete (var->dynamic->child_iter);
2124 varobj_clear_saved_item (var->dynamic);
2125 value_free (var->value);
2126
2127 if (is_root_p (var))
2128 delete var->root;
2129
2130 xfree (var->name);
2131 xfree (var->obj_name);
2132 xfree (var->print_value);
2133 xfree (var->path_expr);
2134 xfree (var->dynamic);
2135 xfree (var);
2136 }
2137
2138 static void
2139 do_free_variable_cleanup (void *var)
2140 {
2141 free_variable ((struct varobj *) var);
2142 }
2143
2144 static struct cleanup *
2145 make_cleanup_free_variable (struct varobj *var)
2146 {
2147 return make_cleanup (do_free_variable_cleanup, var);
2148 }
2149
2150 /* Return the type of the value that's stored in VAR,
2151 or that would have being stored there if the
2152 value were accessible.
2153
2154 This differs from VAR->type in that VAR->type is always
2155 the true type of the expession in the source language.
2156 The return value of this function is the type we're
2157 actually storing in varobj, and using for displaying
2158 the values and for comparing previous and new values.
2159
2160 For example, top-level references are always stripped. */
2161 struct type *
2162 varobj_get_value_type (const struct varobj *var)
2163 {
2164 struct type *type;
2165
2166 if (var->value)
2167 type = value_type (var->value);
2168 else
2169 type = var->type;
2170
2171 type = check_typedef (type);
2172
2173 if (TYPE_CODE (type) == TYPE_CODE_REF)
2174 type = get_target_type (type);
2175
2176 type = check_typedef (type);
2177
2178 return type;
2179 }
2180
2181 /* What is the default display for this variable? We assume that
2182 everything is "natural". Any exceptions? */
2183 static enum varobj_display_formats
2184 variable_default_display (struct varobj *var)
2185 {
2186 return FORMAT_NATURAL;
2187 }
2188
2189 /*
2190 * Language-dependencies
2191 */
2192
2193 /* Common entry points */
2194
2195 /* Return the number of children for a given variable.
2196 The result of this function is defined by the language
2197 implementation. The number of children returned by this function
2198 is the number of children that the user will see in the variable
2199 display. */
2200 static int
2201 number_of_children (const struct varobj *var)
2202 {
2203 return (*var->root->lang_ops->number_of_children) (var);
2204 }
2205
2206 /* What is the expression for the root varobj VAR? Returns a malloc'd
2207 string. */
2208 static char *
2209 name_of_variable (const struct varobj *var)
2210 {
2211 return (*var->root->lang_ops->name_of_variable) (var);
2212 }
2213
2214 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2215 string. */
2216 static char *
2217 name_of_child (struct varobj *var, int index)
2218 {
2219 return (*var->root->lang_ops->name_of_child) (var, index);
2220 }
2221
2222 /* If frame associated with VAR can be found, switch
2223 to it and return 1. Otherwise, return 0. */
2224
2225 static int
2226 check_scope (const struct varobj *var)
2227 {
2228 struct frame_info *fi;
2229 int scope;
2230
2231 fi = frame_find_by_id (var->root->frame);
2232 scope = fi != NULL;
2233
2234 if (fi)
2235 {
2236 CORE_ADDR pc = get_frame_pc (fi);
2237
2238 if (pc < BLOCK_START (var->root->valid_block) ||
2239 pc >= BLOCK_END (var->root->valid_block))
2240 scope = 0;
2241 else
2242 select_frame (fi);
2243 }
2244 return scope;
2245 }
2246
2247 /* Helper function to value_of_root. */
2248
2249 static struct value *
2250 value_of_root_1 (struct varobj **var_handle)
2251 {
2252 struct value *new_val = NULL;
2253 struct varobj *var = *var_handle;
2254 int within_scope = 0;
2255 struct cleanup *back_to;
2256
2257 /* Only root variables can be updated... */
2258 if (!is_root_p (var))
2259 /* Not a root var. */
2260 return NULL;
2261
2262 back_to = make_cleanup_restore_current_thread ();
2263
2264 /* Determine whether the variable is still around. */
2265 if (var->root->valid_block == NULL || var->root->floating)
2266 within_scope = 1;
2267 else if (var->root->thread_id == 0)
2268 {
2269 /* The program was single-threaded when the variable object was
2270 created. Technically, it's possible that the program became
2271 multi-threaded since then, but we don't support such
2272 scenario yet. */
2273 within_scope = check_scope (var);
2274 }
2275 else
2276 {
2277 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2278
2279 if (!ptid_equal (minus_one_ptid, ptid))
2280 {
2281 switch_to_thread (ptid);
2282 within_scope = check_scope (var);
2283 }
2284 }
2285
2286 if (within_scope)
2287 {
2288
2289 /* We need to catch errors here, because if evaluate
2290 expression fails we want to just return NULL. */
2291 TRY
2292 {
2293 new_val = evaluate_expression (var->root->exp.get ());
2294 }
2295 CATCH (except, RETURN_MASK_ERROR)
2296 {
2297 }
2298 END_CATCH
2299 }
2300
2301 do_cleanups (back_to);
2302
2303 return new_val;
2304 }
2305
2306 /* What is the ``struct value *'' of the root variable VAR?
2307 For floating variable object, evaluation can get us a value
2308 of different type from what is stored in varobj already. In
2309 that case:
2310 - *type_changed will be set to 1
2311 - old varobj will be freed, and new one will be
2312 created, with the same name.
2313 - *var_handle will be set to the new varobj
2314 Otherwise, *type_changed will be set to 0. */
2315 static struct value *
2316 value_of_root (struct varobj **var_handle, int *type_changed)
2317 {
2318 struct varobj *var;
2319
2320 if (var_handle == NULL)
2321 return NULL;
2322
2323 var = *var_handle;
2324
2325 /* This should really be an exception, since this should
2326 only get called with a root variable. */
2327
2328 if (!is_root_p (var))
2329 return NULL;
2330
2331 if (var->root->floating)
2332 {
2333 struct varobj *tmp_var;
2334 char *old_type, *new_type;
2335
2336 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2337 USE_SELECTED_FRAME);
2338 if (tmp_var == NULL)
2339 {
2340 return NULL;
2341 }
2342 old_type = varobj_get_type (var);
2343 new_type = varobj_get_type (tmp_var);
2344 if (strcmp (old_type, new_type) == 0)
2345 {
2346 /* The expression presently stored inside var->root->exp
2347 remembers the locations of local variables relatively to
2348 the frame where the expression was created (in DWARF location
2349 button, for example). Naturally, those locations are not
2350 correct in other frames, so update the expression. */
2351
2352 std::swap (var->root->exp, tmp_var->root->exp);
2353
2354 varobj_delete (tmp_var, 0);
2355 *type_changed = 0;
2356 }
2357 else
2358 {
2359 tmp_var->obj_name = xstrdup (var->obj_name);
2360 tmp_var->from = var->from;
2361 tmp_var->to = var->to;
2362 varobj_delete (var, 0);
2363
2364 install_variable (tmp_var);
2365 *var_handle = tmp_var;
2366 var = *var_handle;
2367 *type_changed = 1;
2368 }
2369 xfree (old_type);
2370 xfree (new_type);
2371 }
2372 else
2373 {
2374 *type_changed = 0;
2375 }
2376
2377 {
2378 struct value *value;
2379
2380 value = value_of_root_1 (var_handle);
2381 if (var->value == NULL || value == NULL)
2382 {
2383 /* For root varobj-s, a NULL value indicates a scoping issue.
2384 So, nothing to do in terms of checking for mutations. */
2385 }
2386 else if (varobj_value_has_mutated (var, value, value_type (value)))
2387 {
2388 /* The type has mutated, so the children are no longer valid.
2389 Just delete them, and tell our caller that the type has
2390 changed. */
2391 varobj_delete (var, 1 /* only_children */);
2392 var->num_children = -1;
2393 var->to = -1;
2394 var->from = -1;
2395 *type_changed = 1;
2396 }
2397 return value;
2398 }
2399 }
2400
2401 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2402 static struct value *
2403 value_of_child (const struct varobj *parent, int index)
2404 {
2405 struct value *value;
2406
2407 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2408
2409 return value;
2410 }
2411
2412 /* GDB already has a command called "value_of_variable". Sigh. */
2413 static char *
2414 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2415 {
2416 if (var->root->is_valid)
2417 {
2418 if (var->dynamic->pretty_printer != NULL)
2419 return varobj_value_get_print_value (var->value, var->format, var);
2420 return (*var->root->lang_ops->value_of_variable) (var, format);
2421 }
2422 else
2423 return NULL;
2424 }
2425
2426 void
2427 varobj_formatted_print_options (struct value_print_options *opts,
2428 enum varobj_display_formats format)
2429 {
2430 get_formatted_print_options (opts, format_code[(int) format]);
2431 opts->deref_ref = 0;
2432 opts->raw = 1;
2433 }
2434
2435 char *
2436 varobj_value_get_print_value (struct value *value,
2437 enum varobj_display_formats format,
2438 const struct varobj *var)
2439 {
2440 struct ui_file *stb;
2441 struct cleanup *old_chain;
2442 char *thevalue = NULL;
2443 struct value_print_options opts;
2444 struct type *type = NULL;
2445 long len = 0;
2446 char *encoding = NULL;
2447 /* Initialize it just to avoid a GCC false warning. */
2448 CORE_ADDR str_addr = 0;
2449 int string_print = 0;
2450
2451 if (value == NULL)
2452 return NULL;
2453
2454 stb = mem_fileopen ();
2455 old_chain = make_cleanup_ui_file_delete (stb);
2456
2457 #if HAVE_PYTHON
2458 if (gdb_python_initialized)
2459 {
2460 PyObject *value_formatter = var->dynamic->pretty_printer;
2461
2462 varobj_ensure_python_env (var);
2463
2464 if (value_formatter)
2465 {
2466 /* First check to see if we have any children at all. If so,
2467 we simply return {...}. */
2468 if (dynamic_varobj_has_child_method (var))
2469 {
2470 do_cleanups (old_chain);
2471 return xstrdup ("{...}");
2472 }
2473
2474 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2475 {
2476 struct value *replacement;
2477 PyObject *output = NULL;
2478
2479 output = apply_varobj_pretty_printer (value_formatter,
2480 &replacement,
2481 stb);
2482
2483 /* If we have string like output ... */
2484 if (output)
2485 {
2486 make_cleanup_py_decref (output);
2487
2488 /* If this is a lazy string, extract it. For lazy
2489 strings we always print as a string, so set
2490 string_print. */
2491 if (gdbpy_is_lazy_string (output))
2492 {
2493 gdbpy_extract_lazy_string (output, &str_addr, &type,
2494 &len, &encoding);
2495 make_cleanup (free_current_contents, &encoding);
2496 string_print = 1;
2497 }
2498 else
2499 {
2500 /* If it is a regular (non-lazy) string, extract
2501 it and copy the contents into THEVALUE. If the
2502 hint says to print it as a string, set
2503 string_print. Otherwise just return the extracted
2504 string as a value. */
2505
2506 char *s = python_string_to_target_string (output);
2507
2508 if (s)
2509 {
2510 struct gdbarch *gdbarch;
2511 char *hint;
2512
2513 hint = gdbpy_get_display_hint (value_formatter);
2514 if (hint)
2515 {
2516 if (!strcmp (hint, "string"))
2517 string_print = 1;
2518 xfree (hint);
2519 }
2520
2521 len = strlen (s);
2522 thevalue = (char *) xmemdup (s, len + 1, len + 1);
2523 gdbarch = get_type_arch (value_type (value));
2524 type = builtin_type (gdbarch)->builtin_char;
2525 xfree (s);
2526
2527 if (!string_print)
2528 {
2529 do_cleanups (old_chain);
2530 return thevalue;
2531 }
2532
2533 make_cleanup (xfree, thevalue);
2534 }
2535 else
2536 gdbpy_print_stack ();
2537 }
2538 }
2539 /* If the printer returned a replacement value, set VALUE
2540 to REPLACEMENT. If there is not a replacement value,
2541 just use the value passed to this function. */
2542 if (replacement)
2543 value = replacement;
2544 }
2545 }
2546 }
2547 #endif
2548
2549 varobj_formatted_print_options (&opts, format);
2550
2551 /* If the THEVALUE has contents, it is a regular string. */
2552 if (thevalue)
2553 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2554 else if (string_print)
2555 /* Otherwise, if string_print is set, and it is not a regular
2556 string, it is a lazy string. */
2557 val_print_string (type, encoding, str_addr, len, stb, &opts);
2558 else
2559 /* All other cases. */
2560 common_val_print (value, stb, 0, &opts, current_language);
2561
2562 thevalue = ui_file_xstrdup (stb, NULL);
2563
2564 do_cleanups (old_chain);
2565 return thevalue;
2566 }
2567
2568 int
2569 varobj_editable_p (const struct varobj *var)
2570 {
2571 struct type *type;
2572
2573 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2574 return 0;
2575
2576 type = varobj_get_value_type (var);
2577
2578 switch (TYPE_CODE (type))
2579 {
2580 case TYPE_CODE_STRUCT:
2581 case TYPE_CODE_UNION:
2582 case TYPE_CODE_ARRAY:
2583 case TYPE_CODE_FUNC:
2584 case TYPE_CODE_METHOD:
2585 return 0;
2586 break;
2587
2588 default:
2589 return 1;
2590 break;
2591 }
2592 }
2593
2594 /* Call VAR's value_is_changeable_p language-specific callback. */
2595
2596 int
2597 varobj_value_is_changeable_p (const struct varobj *var)
2598 {
2599 return var->root->lang_ops->value_is_changeable_p (var);
2600 }
2601
2602 /* Return 1 if that varobj is floating, that is is always evaluated in the
2603 selected frame, and not bound to thread/frame. Such variable objects
2604 are created using '@' as frame specifier to -var-create. */
2605 int
2606 varobj_floating_p (const struct varobj *var)
2607 {
2608 return var->root->floating;
2609 }
2610
2611 /* Implement the "value_is_changeable_p" varobj callback for most
2612 languages. */
2613
2614 int
2615 varobj_default_value_is_changeable_p (const struct varobj *var)
2616 {
2617 int r;
2618 struct type *type;
2619
2620 if (CPLUS_FAKE_CHILD (var))
2621 return 0;
2622
2623 type = varobj_get_value_type (var);
2624
2625 switch (TYPE_CODE (type))
2626 {
2627 case TYPE_CODE_STRUCT:
2628 case TYPE_CODE_UNION:
2629 case TYPE_CODE_ARRAY:
2630 r = 0;
2631 break;
2632
2633 default:
2634 r = 1;
2635 }
2636
2637 return r;
2638 }
2639
2640 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2641 with an arbitrary caller supplied DATA pointer. */
2642
2643 void
2644 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2645 {
2646 struct varobj_root *var_root, *var_root_next;
2647
2648 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2649
2650 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2651 {
2652 var_root_next = var_root->next;
2653
2654 (*func) (var_root->rootvar, data);
2655 }
2656 }
2657
2658 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2659 defined on globals. It is a helper for varobj_invalidate.
2660
2661 This function is called after changing the symbol file, in this case the
2662 pointers to "struct type" stored by the varobj are no longer valid. All
2663 varobj must be either re-evaluated, or marked as invalid here. */
2664
2665 static void
2666 varobj_invalidate_iter (struct varobj *var, void *unused)
2667 {
2668 /* global and floating var must be re-evaluated. */
2669 if (var->root->floating || var->root->valid_block == NULL)
2670 {
2671 struct varobj *tmp_var;
2672
2673 /* Try to create a varobj with same expression. If we succeed
2674 replace the old varobj, otherwise invalidate it. */
2675 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2676 USE_CURRENT_FRAME);
2677 if (tmp_var != NULL)
2678 {
2679 tmp_var->obj_name = xstrdup (var->obj_name);
2680 varobj_delete (var, 0);
2681 install_variable (tmp_var);
2682 }
2683 else
2684 var->root->is_valid = 0;
2685 }
2686 else /* locals must be invalidated. */
2687 var->root->is_valid = 0;
2688 }
2689
2690 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2691 are defined on globals.
2692 Invalidated varobjs will be always printed in_scope="invalid". */
2693
2694 void
2695 varobj_invalidate (void)
2696 {
2697 all_root_varobjs (varobj_invalidate_iter, NULL);
2698 }
2699 \f
2700 extern void _initialize_varobj (void);
2701 void
2702 _initialize_varobj (void)
2703 {
2704 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
2705
2706 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2707 &varobjdebug,
2708 _("Set varobj debugging."),
2709 _("Show varobj debugging."),
2710 _("When non-zero, varobj debugging is enabled."),
2711 NULL, show_varobjdebug,
2712 &setdebuglist, &showdebuglist);
2713 }
This page took 0.079716 seconds and 3 git commands to generate.