Multiexec MI
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
519 return frame;
520 }
521
522 return NULL;
523 }
524
525 struct varobj *
526 varobj_create (char *objname,
527 char *expression, CORE_ADDR frame, enum varobj_type type)
528 {
529 struct varobj *var;
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
543 struct value *value = NULL;
544
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
563 else
564 fi = NULL;
565
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
568 var->root->floating = 1;
569
570 block = NULL;
571 if (fi != NULL)
572 block = get_frame_block (fi, 0);
573
574 p = expression;
575 innermost_block = NULL;
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
594 var->name = xstrdup (expression);
595 /* For a root var, the name and the expr are the same. */
596 var->path_expr = xstrdup (expression);
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
602 if (innermost_block)
603 {
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
611 var->root->frame = get_frame_id (fi);
612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
613 old_fi = get_selected_frame (NULL);
614 select_frame (fi);
615 }
616
617 /* We definitely need to catch errors here.
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
620 if (!gdb_evaluate_expression (var->root->exp, &value))
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
629
630 install_new_value (var, value, 1 /* Initial assignment */);
631
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
640 if (old_fi != NULL)
641 select_frame (old_fi);
642 }
643
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
648 {
649 var->obj_name = xstrdup (objname);
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662 }
663
664 /* Generates an unique name that can be used for a varobj */
665
666 char *
667 varobj_gen_name (void)
668 {
669 static int id = 0;
670 char *obj_name;
671
672 /* generate a name for this object */
673 id++;
674 obj_name = xstrprintf ("var%d", id);
675
676 return obj_name;
677 }
678
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
681
682 struct varobj *
683 varobj_get_handle (char *objname)
684 {
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
700 error (_("Variable object not found"));
701
702 return cv->var;
703 }
704
705 /* Given the handle, return the name of the object */
706
707 char *
708 varobj_get_objname (struct varobj *var)
709 {
710 return var->obj_name;
711 }
712
713 /* Given the handle, return the expression represented by the object */
714
715 char *
716 varobj_get_expression (struct varobj *var)
717 {
718 return name_of_variable (var);
719 }
720
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725 int
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
727 {
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
760 mycount);
761 }
762
763 return delcount;
764 }
765
766 #if HAVE_PYTHON
767
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770 static PyObject *
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
772 {
773 PyObject *val_obj = NULL;
774 PyObject *printer;
775
776 val_obj = value_to_value_object (value);
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
783 return NULL;
784 }
785
786 #endif
787
788 /* Set/Get variable object display format */
789
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793 {
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
813 }
814
815 return var->format;
816 }
817
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
820 {
821 return var->format;
822 }
823
824 char *
825 varobj_get_display_hint (struct varobj *var)
826 {
827 char *result = NULL;
828
829 #if HAVE_PYTHON
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
834
835 do_cleanups (back_to);
836 #endif
837
838 return result;
839 }
840
841 /* Return true if the varobj has items after TO, false otherwise. */
842
843 int
844 varobj_has_more (struct varobj *var, int to)
845 {
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850 }
851
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856 int
857 varobj_get_thread_id (struct varobj *var)
858 {
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863 }
864
865 void
866 varobj_set_frozen (struct varobj *var, int frozen)
867 {
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876 }
877
878 int
879 varobj_get_frozen (struct varobj *var)
880 {
881 return var->frozen;
882 }
883
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889 static void
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
891 {
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906 }
907
908 #if HAVE_PYTHON
909
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913 static void
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922 {
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944 }
945
946 static int
947 dynamic_varobj_has_child_method (struct varobj *var)
948 {
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957 }
958
959 #endif
960
961 static int
962 update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
970 {
971 #if HAVE_PYTHON
972 struct cleanup *back_to;
973 PyObject *children;
974 int i;
975 PyObject *printer = var->pretty_printer;
976
977 back_to = varobj_ensure_python_env (var);
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
986 if (update_children || !var->child_iter)
987 {
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
990
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
996
997 make_cleanup_py_decref (children);
998
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
1014 }
1015 else
1016 i = VEC_length (varobj_p, var->children);
1017
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
1021 {
1022 PyObject *item;
1023
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
1032
1033 if (!item)
1034 break;
1035
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
1038 {
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
1056 }
1057 else
1058 {
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
1061
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
1075 }
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
1086 return 1;
1087 #else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089 #endif
1090 }
1091
1092 int
1093 varobj_get_num_children (struct varobj *var)
1094 {
1095 if (var->num_children == -1)
1096 {
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
1107 var->num_children = number_of_children (var);
1108 }
1109
1110 return var->num_children >= 0 ? var->num_children : 0;
1111 }
1112
1113 /* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
1116 VEC (varobj_p)*
1117 varobj_list_children (struct varobj *var, int *from, int *to)
1118 {
1119 struct varobj *child;
1120 char *name;
1121 int i, children_changed;
1122
1123 var->children_requested = 1;
1124
1125 if (var->pretty_printer)
1126 {
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1131 0, 0, *to);
1132 restrict_range (var->children, from, to);
1133 return var->children;
1134 }
1135
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1138
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
1141 return var->children;
1142
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1147
1148 for (i = 0; i < var->num_children; i++)
1149 {
1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
1151
1152 if (existing == NULL)
1153 {
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1160 }
1161 }
1162
1163 restrict_range (var->children, from, to);
1164 return var->children;
1165 }
1166
1167 #if HAVE_PYTHON
1168
1169 static struct varobj *
1170 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1171 {
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1174 name, value);
1175 VEC_safe_push (varobj_p, var->children, v);
1176 return v;
1177 }
1178
1179 #endif /* HAVE_PYTHON */
1180
1181 /* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1183
1184 char *
1185 varobj_get_type (struct varobj *var)
1186 {
1187 /* For the "fake" variables, do not return a type. (It's type is
1188 NULL, too.)
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1191 return NULL;
1192
1193 return type_to_string (var->type);
1194 }
1195
1196 /* Obtain the type of an object variable. */
1197
1198 struct type *
1199 varobj_get_gdb_type (struct varobj *var)
1200 {
1201 return var->type;
1202 }
1203
1204 /* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1206 char *
1207 varobj_get_path_expr (struct varobj *var)
1208 {
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1211 else
1212 {
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1215 child varobj. */
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1218 }
1219 }
1220
1221 enum varobj_languages
1222 varobj_get_language (struct varobj *var)
1223 {
1224 return variable_language (var);
1225 }
1226
1227 int
1228 varobj_get_attributes (struct varobj *var)
1229 {
1230 int attributes = 0;
1231
1232 if (varobj_editable_p (var))
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1235
1236 return attributes;
1237 }
1238
1239 int
1240 varobj_pretty_printed_p (struct varobj *var)
1241 {
1242 return var->pretty_printer != NULL;
1243 }
1244
1245 char *
1246 varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1248 {
1249 return my_value_of_variable (var, format);
1250 }
1251
1252 char *
1253 varobj_get_value (struct varobj *var)
1254 {
1255 return my_value_of_variable (var, var->format);
1256 }
1257
1258 /* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260 /* Note: Invokes functions that can call error() */
1261
1262 int
1263 varobj_set_value (struct varobj *var, char *expression)
1264 {
1265 struct value *val;
1266 int offset = 0;
1267 int error = 0;
1268
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
1273 struct value *value;
1274 int saved_input_radix = input_radix;
1275 char *s = expression;
1276 int i;
1277
1278 gdb_assert (varobj_editable_p (var));
1279
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1283 {
1284 /* We cannot proceed without a valid expression. */
1285 xfree (exp);
1286 return 0;
1287 }
1288
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1291
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1294
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1301 array's content. */
1302 value = coerce_array (value);
1303
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1309 return 0;
1310
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1319 return 1;
1320 }
1321
1322 #if HAVE_PYTHON
1323
1324 /* A helper function to install a constructor function and visualizer
1325 in a varobj. */
1326
1327 static void
1328 install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1330 {
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1333
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1336
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1339 }
1340
1341 /* Install the default visualizer for VAR. */
1342
1343 static void
1344 install_default_visualizer (struct varobj *var)
1345 {
1346 if (pretty_printing)
1347 {
1348 PyObject *pretty_printer = NULL;
1349
1350 if (var->value)
1351 {
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1354 {
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1357 }
1358 }
1359
1360 if (pretty_printer == Py_None)
1361 {
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1364 }
1365
1366 install_visualizer (var, NULL, pretty_printer);
1367 }
1368 }
1369
1370 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1372
1373 static void
1374 construct_visualizer (struct varobj *var, PyObject *constructor)
1375 {
1376 PyObject *pretty_printer;
1377
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1381 else
1382 {
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1385 {
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1390 }
1391
1392 if (pretty_printer == Py_None)
1393 {
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1396 }
1397 }
1398
1399 install_visualizer (var, constructor, pretty_printer);
1400 }
1401
1402 #endif /* HAVE_PYTHON */
1403
1404 /* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1406
1407 static void
1408 install_new_value_visualizer (struct varobj *var)
1409 {
1410 #if HAVE_PYTHON
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1414 {
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1417
1418 cleanup = varobj_ensure_python_env (var);
1419
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1422 else
1423 construct_visualizer (var, var->constructor);
1424
1425 do_cleanups (cleanup);
1426 }
1427 #else
1428 /* Do nothing. */
1429 #endif
1430 }
1431
1432 /* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1435 and return 0.
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1441 we always return 1.
1442
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
1445 static int
1446 install_new_value (struct varobj *var, struct value *value, int initial)
1447 {
1448 int changeable;
1449 int need_to_fetch;
1450 int changed = 0;
1451 int intentionally_not_fetched = 0;
1452 char *print_value = NULL;
1453
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1456 a type. */
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1458 changeable = varobj_value_is_changeable_p (var);
1459
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1464 changeable = 1;
1465
1466 need_to_fetch = changeable;
1467
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1471 if (value)
1472 value = coerce_ref (value);
1473
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1483 fetch now. */
1484 need_to_fetch = 1;
1485
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1491 {
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1496
1497 if (frozen && initial)
1498 {
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1504 }
1505 else if (!gdb_value_fetch_lazy (value))
1506 {
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1510 value = NULL;
1511 }
1512 }
1513
1514
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
1519 if (value && !value_lazy (value) && !var->pretty_printer)
1520 print_value = value_get_print_value (value, var->format, var);
1521
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1524 to compare with. */
1525 if (!initial && changeable)
1526 {
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
1530 -var-update. So need to the varobj as changed. */
1531 if (var->updated)
1532 {
1533 changed = 1;
1534 }
1535 else if (! var->pretty_printer)
1536 {
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
1539 if (var->not_fetched && value_lazy (var->value))
1540 {
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1545 value. */
1546 changed = 1;
1547 }
1548 else if (var->value == NULL && value == NULL)
1549 /* Equal. */
1550 ;
1551 else if (var->value == NULL || value == NULL)
1552 {
1553 changed = 1;
1554 }
1555 else
1556 {
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
1559
1560 gdb_assert (var->print_value != NULL && print_value != NULL);
1561 if (strcmp (var->print_value, print_value) != 0)
1562 changed = 1;
1563 }
1564 }
1565 }
1566
1567 if (!initial && !changeable)
1568 {
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1574 }
1575
1576 /* We must always keep the new value, since children depend on it. */
1577 if (var->value != NULL && var->value != value)
1578 value_free (var->value);
1579 var->value = value;
1580 if (value != NULL)
1581 value_incref (value);
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1584 else
1585 var->not_fetched = 0;
1586 var->updated = 0;
1587
1588 install_new_value_visualizer (var);
1589
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1593 {
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1597 changed = 1;
1598 }
1599 if (var->print_value)
1600 xfree (var->print_value);
1601 var->print_value = print_value;
1602
1603 gdb_assert (!var->value || value_type (var->value));
1604
1605 return changed;
1606 }
1607
1608 /* Return the requested range for a varobj. VAR is the varobj. FROM
1609 and TO are out parameters; *FROM and *TO will be set to the
1610 selected sub-range of VAR. If no range was selected using
1611 -var-set-update-range, then both will be -1. */
1612 void
1613 varobj_get_child_range (struct varobj *var, int *from, int *to)
1614 {
1615 *from = var->from;
1616 *to = var->to;
1617 }
1618
1619 /* Set the selected sub-range of children of VAR to start at index
1620 FROM and end at index TO. If either FROM or TO is less than zero,
1621 this is interpreted as a request for all children. */
1622 void
1623 varobj_set_child_range (struct varobj *var, int from, int to)
1624 {
1625 var->from = from;
1626 var->to = to;
1627 }
1628
1629 void
1630 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1631 {
1632 #if HAVE_PYTHON
1633 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1634 struct cleanup *back_to, *value;
1635
1636 back_to = varobj_ensure_python_env (var);
1637
1638 mainmod = PyImport_AddModule ("__main__");
1639 globals = PyModule_GetDict (mainmod);
1640 Py_INCREF (globals);
1641 make_cleanup_py_decref (globals);
1642
1643 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1644
1645 if (! constructor)
1646 {
1647 gdbpy_print_stack ();
1648 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1649 }
1650
1651 construct_visualizer (var, constructor);
1652 Py_XDECREF (constructor);
1653
1654 /* If there are any children now, wipe them. */
1655 varobj_delete (var, NULL, 1 /* children only */);
1656 var->num_children = -1;
1657
1658 do_cleanups (back_to);
1659 #else
1660 error (_("Python support required"));
1661 #endif
1662 }
1663
1664 /* Update the values for a variable and its children. This is a
1665 two-pronged attack. First, re-parse the value for the root's
1666 expression to see if it's changed. Then go all the way
1667 through its children, reconstructing them and noting if they've
1668 changed.
1669
1670 The EXPLICIT parameter specifies if this call is result
1671 of MI request to update this specific variable, or
1672 result of implicit -var-update *. For implicit request, we don't
1673 update frozen variables.
1674
1675 NOTE: This function may delete the caller's varobj. If it
1676 returns TYPE_CHANGED, then it has done this and VARP will be modified
1677 to point to the new varobj. */
1678
1679 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1680 {
1681 int changed = 0;
1682 int type_changed = 0;
1683 int i;
1684 int vleft;
1685 struct varobj *v;
1686 struct varobj **cv;
1687 struct varobj **templist = NULL;
1688 struct value *new;
1689 VEC (varobj_update_result) *stack = NULL;
1690 VEC (varobj_update_result) *result = NULL;
1691 struct frame_info *fi;
1692
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
1699 return result;
1700
1701 if (!(*varp)->root->is_valid)
1702 {
1703 varobj_update_result r = {0};
1704 r.varobj = *varp;
1705 r.status = VAROBJ_INVALID;
1706 VEC_safe_push (varobj_update_result, result, &r);
1707 return result;
1708 }
1709
1710 if ((*varp)->root->rootvar == *varp)
1711 {
1712 varobj_update_result r = {0};
1713 r.varobj = *varp;
1714 r.status = VAROBJ_IN_SCOPE;
1715
1716 /* Update the root variable. value_of_root can return NULL
1717 if the variable is no longer around, i.e. we stepped out of
1718 the frame in which a local existed. We are letting the
1719 value_of_root variable dispose of the varobj if the type
1720 has changed. */
1721 new = value_of_root (varp, &type_changed);
1722 r.varobj = *varp;
1723
1724 r.type_changed = type_changed;
1725 if (install_new_value ((*varp), new, type_changed))
1726 r.changed = 1;
1727
1728 if (new == NULL)
1729 r.status = VAROBJ_NOT_IN_SCOPE;
1730 r.value_installed = 1;
1731
1732 if (r.status == VAROBJ_NOT_IN_SCOPE)
1733 {
1734 if (r.type_changed || r.changed)
1735 VEC_safe_push (varobj_update_result, result, &r);
1736 return result;
1737 }
1738
1739 VEC_safe_push (varobj_update_result, stack, &r);
1740 }
1741 else
1742 {
1743 varobj_update_result r = {0};
1744 r.varobj = *varp;
1745 VEC_safe_push (varobj_update_result, stack, &r);
1746 }
1747
1748 /* Walk through the children, reconstructing them all. */
1749 while (!VEC_empty (varobj_update_result, stack))
1750 {
1751 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1752 struct varobj *v = r.varobj;
1753
1754 VEC_pop (varobj_update_result, stack);
1755
1756 /* Update this variable, unless it's a root, which is already
1757 updated. */
1758 if (!r.value_installed)
1759 {
1760 new = value_of_child (v->parent, v->index);
1761 if (install_new_value (v, new, 0 /* type not changed */))
1762 {
1763 r.changed = 1;
1764 v->updated = 0;
1765 }
1766 }
1767
1768 /* We probably should not get children of a varobj that has a
1769 pretty-printer, but for which -var-list-children was never
1770 invoked. */
1771 if (v->pretty_printer)
1772 {
1773 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1774 int i, children_changed = 0;
1775
1776 if (v->frozen)
1777 continue;
1778
1779 if (!v->children_requested)
1780 {
1781 int dummy;
1782
1783 /* If we initially did not have potential children, but
1784 now we do, consider the varobj as changed.
1785 Otherwise, if children were never requested, consider
1786 it as unchanged -- presumably, such varobj is not yet
1787 expanded in the UI, so we need not bother getting
1788 it. */
1789 if (!varobj_has_more (v, 0))
1790 {
1791 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1792 &dummy, 0, 0, 0);
1793 if (varobj_has_more (v, 0))
1794 r.changed = 1;
1795 }
1796
1797 if (r.changed)
1798 VEC_safe_push (varobj_update_result, result, &r);
1799
1800 continue;
1801 }
1802
1803 /* If update_dynamic_varobj_children returns 0, then we have
1804 a non-conforming pretty-printer, so we skip it. */
1805 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1806 &children_changed, 1,
1807 v->from, v->to))
1808 {
1809 if (children_changed || new)
1810 {
1811 r.children_changed = 1;
1812 r.new = new;
1813 }
1814 /* Push in reverse order so that the first child is
1815 popped from the work stack first, and so will be
1816 added to result first. This does not affect
1817 correctness, just "nicer". */
1818 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1819 {
1820 varobj_p tmp = VEC_index (varobj_p, changed, i);
1821 varobj_update_result r = {0};
1822 r.varobj = tmp;
1823 r.changed = 1;
1824 r.value_installed = 1;
1825 VEC_safe_push (varobj_update_result, stack, &r);
1826 }
1827 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1828 {
1829 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1830 if (!tmp->frozen)
1831 {
1832 varobj_update_result r = {0};
1833 r.varobj = tmp;
1834 r.value_installed = 1;
1835 VEC_safe_push (varobj_update_result, stack, &r);
1836 }
1837 }
1838 if (r.changed || r.children_changed)
1839 VEC_safe_push (varobj_update_result, result, &r);
1840
1841 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1842 has been put into the result vector. */
1843 VEC_free (varobj_p, changed);
1844 VEC_free (varobj_p, unchanged);
1845
1846 continue;
1847 }
1848 }
1849
1850 /* Push any children. Use reverse order so that the first
1851 child is popped from the work stack first, and so
1852 will be added to result first. This does not
1853 affect correctness, just "nicer". */
1854 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1855 {
1856 varobj_p c = VEC_index (varobj_p, v->children, i);
1857 /* Child may be NULL if explicitly deleted by -var-delete. */
1858 if (c != NULL && !c->frozen)
1859 {
1860 varobj_update_result r = {0};
1861 r.varobj = c;
1862 VEC_safe_push (varobj_update_result, stack, &r);
1863 }
1864 }
1865
1866 if (r.changed || r.type_changed)
1867 VEC_safe_push (varobj_update_result, result, &r);
1868 }
1869
1870 VEC_free (varobj_update_result, stack);
1871
1872 return result;
1873 }
1874 \f
1875
1876 /* Helper functions */
1877
1878 /*
1879 * Variable object construction/destruction
1880 */
1881
1882 static int
1883 delete_variable (struct cpstack **resultp, struct varobj *var,
1884 int only_children_p)
1885 {
1886 int delcount = 0;
1887
1888 delete_variable_1 (resultp, &delcount, var,
1889 only_children_p, 1 /* remove_from_parent_p */ );
1890
1891 return delcount;
1892 }
1893
1894 /* Delete the variable object VAR and its children */
1895 /* IMPORTANT NOTE: If we delete a variable which is a child
1896 and the parent is not removed we dump core. It must be always
1897 initially called with remove_from_parent_p set */
1898 static void
1899 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1900 struct varobj *var, int only_children_p,
1901 int remove_from_parent_p)
1902 {
1903 int i;
1904
1905 /* Delete any children of this variable, too. */
1906 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1907 {
1908 varobj_p child = VEC_index (varobj_p, var->children, i);
1909 if (!child)
1910 continue;
1911 if (!remove_from_parent_p)
1912 child->parent = NULL;
1913 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1914 }
1915 VEC_free (varobj_p, var->children);
1916
1917 /* if we were called to delete only the children we are done here */
1918 if (only_children_p)
1919 return;
1920
1921 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1922 /* If the name is null, this is a temporary variable, that has not
1923 yet been installed, don't report it, it belongs to the caller... */
1924 if (var->obj_name != NULL)
1925 {
1926 cppush (resultp, xstrdup (var->obj_name));
1927 *delcountp = *delcountp + 1;
1928 }
1929
1930 /* If this variable has a parent, remove it from its parent's list */
1931 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1932 (as indicated by remove_from_parent_p) we don't bother doing an
1933 expensive list search to find the element to remove when we are
1934 discarding the list afterwards */
1935 if ((remove_from_parent_p) && (var->parent != NULL))
1936 {
1937 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1938 }
1939
1940 if (var->obj_name != NULL)
1941 uninstall_variable (var);
1942
1943 /* Free memory associated with this variable */
1944 free_variable (var);
1945 }
1946
1947 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1948 static int
1949 install_variable (struct varobj *var)
1950 {
1951 struct vlist *cv;
1952 struct vlist *newvl;
1953 const char *chp;
1954 unsigned int index = 0;
1955 unsigned int i = 1;
1956
1957 for (chp = var->obj_name; *chp; chp++)
1958 {
1959 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1960 }
1961
1962 cv = *(varobj_table + index);
1963 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1964 cv = cv->next;
1965
1966 if (cv != NULL)
1967 error (_("Duplicate variable object name"));
1968
1969 /* Add varobj to hash table */
1970 newvl = xmalloc (sizeof (struct vlist));
1971 newvl->next = *(varobj_table + index);
1972 newvl->var = var;
1973 *(varobj_table + index) = newvl;
1974
1975 /* If root, add varobj to root list */
1976 if (is_root_p (var))
1977 {
1978 /* Add to list of root variables */
1979 if (rootlist == NULL)
1980 var->root->next = NULL;
1981 else
1982 var->root->next = rootlist;
1983 rootlist = var->root;
1984 }
1985
1986 return 1; /* OK */
1987 }
1988
1989 /* Unistall the object VAR. */
1990 static void
1991 uninstall_variable (struct varobj *var)
1992 {
1993 struct vlist *cv;
1994 struct vlist *prev;
1995 struct varobj_root *cr;
1996 struct varobj_root *prer;
1997 const char *chp;
1998 unsigned int index = 0;
1999 unsigned int i = 1;
2000
2001 /* Remove varobj from hash table */
2002 for (chp = var->obj_name; *chp; chp++)
2003 {
2004 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2005 }
2006
2007 cv = *(varobj_table + index);
2008 prev = NULL;
2009 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2010 {
2011 prev = cv;
2012 cv = cv->next;
2013 }
2014
2015 if (varobjdebug)
2016 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2017
2018 if (cv == NULL)
2019 {
2020 warning
2021 ("Assertion failed: Could not find variable object \"%s\" to delete",
2022 var->obj_name);
2023 return;
2024 }
2025
2026 if (prev == NULL)
2027 *(varobj_table + index) = cv->next;
2028 else
2029 prev->next = cv->next;
2030
2031 xfree (cv);
2032
2033 /* If root, remove varobj from root list */
2034 if (is_root_p (var))
2035 {
2036 /* Remove from list of root variables */
2037 if (rootlist == var->root)
2038 rootlist = var->root->next;
2039 else
2040 {
2041 prer = NULL;
2042 cr = rootlist;
2043 while ((cr != NULL) && (cr->rootvar != var))
2044 {
2045 prer = cr;
2046 cr = cr->next;
2047 }
2048 if (cr == NULL)
2049 {
2050 warning
2051 ("Assertion failed: Could not find varobj \"%s\" in root list",
2052 var->obj_name);
2053 return;
2054 }
2055 if (prer == NULL)
2056 rootlist = NULL;
2057 else
2058 prer->next = cr->next;
2059 }
2060 }
2061
2062 }
2063
2064 /* Create and install a child of the parent of the given name */
2065 static struct varobj *
2066 create_child (struct varobj *parent, int index, char *name)
2067 {
2068 return create_child_with_value (parent, index, name,
2069 value_of_child (parent, index));
2070 }
2071
2072 static struct varobj *
2073 create_child_with_value (struct varobj *parent, int index, const char *name,
2074 struct value *value)
2075 {
2076 struct varobj *child;
2077 char *childs_name;
2078
2079 child = new_variable ();
2080
2081 /* name is allocated by name_of_child */
2082 /* FIXME: xstrdup should not be here. */
2083 child->name = xstrdup (name);
2084 child->index = index;
2085 child->parent = parent;
2086 child->root = parent->root;
2087 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2088 child->obj_name = childs_name;
2089 install_variable (child);
2090
2091 /* Compute the type of the child. Must do this before
2092 calling install_new_value. */
2093 if (value != NULL)
2094 /* If the child had no evaluation errors, var->value
2095 will be non-NULL and contain a valid type. */
2096 child->type = value_type (value);
2097 else
2098 /* Otherwise, we must compute the type. */
2099 child->type = (*child->root->lang->type_of_child) (child->parent,
2100 child->index);
2101 install_new_value (child, value, 1);
2102
2103 return child;
2104 }
2105 \f
2106
2107 /*
2108 * Miscellaneous utility functions.
2109 */
2110
2111 /* Allocate memory and initialize a new variable */
2112 static struct varobj *
2113 new_variable (void)
2114 {
2115 struct varobj *var;
2116
2117 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2118 var->name = NULL;
2119 var->path_expr = NULL;
2120 var->obj_name = NULL;
2121 var->index = -1;
2122 var->type = NULL;
2123 var->value = NULL;
2124 var->num_children = -1;
2125 var->parent = NULL;
2126 var->children = NULL;
2127 var->format = 0;
2128 var->root = NULL;
2129 var->updated = 0;
2130 var->print_value = NULL;
2131 var->frozen = 0;
2132 var->not_fetched = 0;
2133 var->children_requested = 0;
2134 var->from = -1;
2135 var->to = -1;
2136 var->constructor = 0;
2137 var->pretty_printer = 0;
2138 var->child_iter = 0;
2139 var->saved_item = 0;
2140
2141 return var;
2142 }
2143
2144 /* Allocate memory and initialize a new root variable */
2145 static struct varobj *
2146 new_root_variable (void)
2147 {
2148 struct varobj *var = new_variable ();
2149 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2150 var->root->lang = NULL;
2151 var->root->exp = NULL;
2152 var->root->valid_block = NULL;
2153 var->root->frame = null_frame_id;
2154 var->root->floating = 0;
2155 var->root->rootvar = NULL;
2156 var->root->is_valid = 1;
2157
2158 return var;
2159 }
2160
2161 /* Free any allocated memory associated with VAR. */
2162 static void
2163 free_variable (struct varobj *var)
2164 {
2165 #if HAVE_PYTHON
2166 if (var->pretty_printer)
2167 {
2168 struct cleanup *cleanup = varobj_ensure_python_env (var);
2169 Py_XDECREF (var->constructor);
2170 Py_XDECREF (var->pretty_printer);
2171 Py_XDECREF (var->child_iter);
2172 Py_XDECREF (var->saved_item);
2173 do_cleanups (cleanup);
2174 }
2175 #endif
2176
2177 value_free (var->value);
2178
2179 /* Free the expression if this is a root variable. */
2180 if (is_root_p (var))
2181 {
2182 xfree (var->root->exp);
2183 xfree (var->root);
2184 }
2185
2186 xfree (var->name);
2187 xfree (var->obj_name);
2188 xfree (var->print_value);
2189 xfree (var->path_expr);
2190 xfree (var);
2191 }
2192
2193 static void
2194 do_free_variable_cleanup (void *var)
2195 {
2196 free_variable (var);
2197 }
2198
2199 static struct cleanup *
2200 make_cleanup_free_variable (struct varobj *var)
2201 {
2202 return make_cleanup (do_free_variable_cleanup, var);
2203 }
2204
2205 /* This returns the type of the variable. It also skips past typedefs
2206 to return the real type of the variable.
2207
2208 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2209 except within get_target_type and get_type. */
2210 static struct type *
2211 get_type (struct varobj *var)
2212 {
2213 struct type *type;
2214 type = var->type;
2215
2216 if (type != NULL)
2217 type = check_typedef (type);
2218
2219 return type;
2220 }
2221
2222 /* Return the type of the value that's stored in VAR,
2223 or that would have being stored there if the
2224 value were accessible.
2225
2226 This differs from VAR->type in that VAR->type is always
2227 the true type of the expession in the source language.
2228 The return value of this function is the type we're
2229 actually storing in varobj, and using for displaying
2230 the values and for comparing previous and new values.
2231
2232 For example, top-level references are always stripped. */
2233 static struct type *
2234 get_value_type (struct varobj *var)
2235 {
2236 struct type *type;
2237
2238 if (var->value)
2239 type = value_type (var->value);
2240 else
2241 type = var->type;
2242
2243 type = check_typedef (type);
2244
2245 if (TYPE_CODE (type) == TYPE_CODE_REF)
2246 type = get_target_type (type);
2247
2248 type = check_typedef (type);
2249
2250 return type;
2251 }
2252
2253 /* This returns the target type (or NULL) of TYPE, also skipping
2254 past typedefs, just like get_type ().
2255
2256 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2257 except within get_target_type and get_type. */
2258 static struct type *
2259 get_target_type (struct type *type)
2260 {
2261 if (type != NULL)
2262 {
2263 type = TYPE_TARGET_TYPE (type);
2264 if (type != NULL)
2265 type = check_typedef (type);
2266 }
2267
2268 return type;
2269 }
2270
2271 /* What is the default display for this variable? We assume that
2272 everything is "natural". Any exceptions? */
2273 static enum varobj_display_formats
2274 variable_default_display (struct varobj *var)
2275 {
2276 return FORMAT_NATURAL;
2277 }
2278
2279 /* FIXME: The following should be generic for any pointer */
2280 static void
2281 cppush (struct cpstack **pstack, char *name)
2282 {
2283 struct cpstack *s;
2284
2285 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2286 s->name = name;
2287 s->next = *pstack;
2288 *pstack = s;
2289 }
2290
2291 /* FIXME: The following should be generic for any pointer */
2292 static char *
2293 cppop (struct cpstack **pstack)
2294 {
2295 struct cpstack *s;
2296 char *v;
2297
2298 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2299 return NULL;
2300
2301 s = *pstack;
2302 v = s->name;
2303 *pstack = (*pstack)->next;
2304 xfree (s);
2305
2306 return v;
2307 }
2308 \f
2309 /*
2310 * Language-dependencies
2311 */
2312
2313 /* Common entry points */
2314
2315 /* Get the language of variable VAR. */
2316 static enum varobj_languages
2317 variable_language (struct varobj *var)
2318 {
2319 enum varobj_languages lang;
2320
2321 switch (var->root->exp->language_defn->la_language)
2322 {
2323 default:
2324 case language_c:
2325 lang = vlang_c;
2326 break;
2327 case language_cplus:
2328 lang = vlang_cplus;
2329 break;
2330 case language_java:
2331 lang = vlang_java;
2332 break;
2333 }
2334
2335 return lang;
2336 }
2337
2338 /* Return the number of children for a given variable.
2339 The result of this function is defined by the language
2340 implementation. The number of children returned by this function
2341 is the number of children that the user will see in the variable
2342 display. */
2343 static int
2344 number_of_children (struct varobj *var)
2345 {
2346 return (*var->root->lang->number_of_children) (var);;
2347 }
2348
2349 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2350 static char *
2351 name_of_variable (struct varobj *var)
2352 {
2353 return (*var->root->lang->name_of_variable) (var);
2354 }
2355
2356 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2357 static char *
2358 name_of_child (struct varobj *var, int index)
2359 {
2360 return (*var->root->lang->name_of_child) (var, index);
2361 }
2362
2363 /* What is the ``struct value *'' of the root variable VAR?
2364 For floating variable object, evaluation can get us a value
2365 of different type from what is stored in varobj already. In
2366 that case:
2367 - *type_changed will be set to 1
2368 - old varobj will be freed, and new one will be
2369 created, with the same name.
2370 - *var_handle will be set to the new varobj
2371 Otherwise, *type_changed will be set to 0. */
2372 static struct value *
2373 value_of_root (struct varobj **var_handle, int *type_changed)
2374 {
2375 struct varobj *var;
2376
2377 if (var_handle == NULL)
2378 return NULL;
2379
2380 var = *var_handle;
2381
2382 /* This should really be an exception, since this should
2383 only get called with a root variable. */
2384
2385 if (!is_root_p (var))
2386 return NULL;
2387
2388 if (var->root->floating)
2389 {
2390 struct varobj *tmp_var;
2391 char *old_type, *new_type;
2392
2393 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2394 USE_SELECTED_FRAME);
2395 if (tmp_var == NULL)
2396 {
2397 return NULL;
2398 }
2399 old_type = varobj_get_type (var);
2400 new_type = varobj_get_type (tmp_var);
2401 if (strcmp (old_type, new_type) == 0)
2402 {
2403 /* The expression presently stored inside var->root->exp
2404 remembers the locations of local variables relatively to
2405 the frame where the expression was created (in DWARF location
2406 button, for example). Naturally, those locations are not
2407 correct in other frames, so update the expression. */
2408
2409 struct expression *tmp_exp = var->root->exp;
2410 var->root->exp = tmp_var->root->exp;
2411 tmp_var->root->exp = tmp_exp;
2412
2413 varobj_delete (tmp_var, NULL, 0);
2414 *type_changed = 0;
2415 }
2416 else
2417 {
2418 tmp_var->obj_name = xstrdup (var->obj_name);
2419 tmp_var->from = var->from;
2420 tmp_var->to = var->to;
2421 varobj_delete (var, NULL, 0);
2422
2423 install_variable (tmp_var);
2424 *var_handle = tmp_var;
2425 var = *var_handle;
2426 *type_changed = 1;
2427 }
2428 xfree (old_type);
2429 xfree (new_type);
2430 }
2431 else
2432 {
2433 *type_changed = 0;
2434 }
2435
2436 return (*var->root->lang->value_of_root) (var_handle);
2437 }
2438
2439 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2440 static struct value *
2441 value_of_child (struct varobj *parent, int index)
2442 {
2443 struct value *value;
2444
2445 value = (*parent->root->lang->value_of_child) (parent, index);
2446
2447 return value;
2448 }
2449
2450 /* GDB already has a command called "value_of_variable". Sigh. */
2451 static char *
2452 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2453 {
2454 if (var->root->is_valid)
2455 {
2456 if (var->pretty_printer)
2457 return value_get_print_value (var->value, var->format, var);
2458 return (*var->root->lang->value_of_variable) (var, format);
2459 }
2460 else
2461 return NULL;
2462 }
2463
2464 static char *
2465 value_get_print_value (struct value *value, enum varobj_display_formats format,
2466 struct varobj *var)
2467 {
2468 struct ui_file *stb;
2469 struct cleanup *old_chain;
2470 gdb_byte *thevalue = NULL;
2471 struct value_print_options opts;
2472 struct type *type = NULL;
2473 long len = 0;
2474 char *encoding = NULL;
2475 struct gdbarch *gdbarch = NULL;
2476
2477 if (value == NULL)
2478 return NULL;
2479
2480 gdbarch = get_type_arch (value_type (value));
2481 #if HAVE_PYTHON
2482 {
2483 struct cleanup *back_to = varobj_ensure_python_env (var);
2484 PyObject *value_formatter = var->pretty_printer;
2485
2486 if (value_formatter)
2487 {
2488 /* First check to see if we have any children at all. If so,
2489 we simply return {...}. */
2490 if (dynamic_varobj_has_child_method (var))
2491 return xstrdup ("{...}");
2492
2493 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2494 {
2495 char *hint;
2496 struct value *replacement;
2497 int string_print = 0;
2498 PyObject *output = NULL;
2499
2500 hint = gdbpy_get_display_hint (value_formatter);
2501 if (hint)
2502 {
2503 if (!strcmp (hint, "string"))
2504 string_print = 1;
2505 xfree (hint);
2506 }
2507
2508 output = apply_varobj_pretty_printer (value_formatter,
2509 &replacement);
2510 if (output)
2511 {
2512 if (gdbpy_is_lazy_string (output))
2513 {
2514 thevalue = gdbpy_extract_lazy_string (output, &type,
2515 &len, &encoding);
2516 string_print = 1;
2517 }
2518 else
2519 {
2520 PyObject *py_str
2521 = python_string_to_target_python_string (output);
2522 if (py_str)
2523 {
2524 char *s = PyString_AsString (py_str);
2525 len = PyString_Size (py_str);
2526 thevalue = xmemdup (s, len + 1, len + 1);
2527 type = builtin_type (gdbarch)->builtin_char;
2528 Py_DECREF (py_str);
2529 }
2530 }
2531 Py_DECREF (output);
2532 }
2533 if (thevalue && !string_print)
2534 {
2535 do_cleanups (back_to);
2536 xfree (encoding);
2537 return thevalue;
2538 }
2539 if (replacement)
2540 value = replacement;
2541 }
2542 }
2543 do_cleanups (back_to);
2544 }
2545 #endif
2546
2547 stb = mem_fileopen ();
2548 old_chain = make_cleanup_ui_file_delete (stb);
2549
2550 get_formatted_print_options (&opts, format_code[(int) format]);
2551 opts.deref_ref = 0;
2552 opts.raw = 1;
2553 if (thevalue)
2554 {
2555 make_cleanup (xfree, thevalue);
2556 make_cleanup (xfree, encoding);
2557 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2558 }
2559 else
2560 common_val_print (value, stb, 0, &opts, current_language);
2561 thevalue = ui_file_xstrdup (stb, NULL);
2562
2563 do_cleanups (old_chain);
2564 return thevalue;
2565 }
2566
2567 int
2568 varobj_editable_p (struct varobj *var)
2569 {
2570 struct type *type;
2571 struct value *value;
2572
2573 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2574 return 0;
2575
2576 type = get_value_type (var);
2577
2578 switch (TYPE_CODE (type))
2579 {
2580 case TYPE_CODE_STRUCT:
2581 case TYPE_CODE_UNION:
2582 case TYPE_CODE_ARRAY:
2583 case TYPE_CODE_FUNC:
2584 case TYPE_CODE_METHOD:
2585 return 0;
2586 break;
2587
2588 default:
2589 return 1;
2590 break;
2591 }
2592 }
2593
2594 /* Return non-zero if changes in value of VAR
2595 must be detected and reported by -var-update.
2596 Return zero is -var-update should never report
2597 changes of such values. This makes sense for structures
2598 (since the changes in children values will be reported separately),
2599 or for artifical objects (like 'public' pseudo-field in C++).
2600
2601 Return value of 0 means that gdb need not call value_fetch_lazy
2602 for the value of this variable object. */
2603 static int
2604 varobj_value_is_changeable_p (struct varobj *var)
2605 {
2606 int r;
2607 struct type *type;
2608
2609 if (CPLUS_FAKE_CHILD (var))
2610 return 0;
2611
2612 type = get_value_type (var);
2613
2614 switch (TYPE_CODE (type))
2615 {
2616 case TYPE_CODE_STRUCT:
2617 case TYPE_CODE_UNION:
2618 case TYPE_CODE_ARRAY:
2619 r = 0;
2620 break;
2621
2622 default:
2623 r = 1;
2624 }
2625
2626 return r;
2627 }
2628
2629 /* Return 1 if that varobj is floating, that is is always evaluated in the
2630 selected frame, and not bound to thread/frame. Such variable objects
2631 are created using '@' as frame specifier to -var-create. */
2632 int
2633 varobj_floating_p (struct varobj *var)
2634 {
2635 return var->root->floating;
2636 }
2637
2638 /* Given the value and the type of a variable object,
2639 adjust the value and type to those necessary
2640 for getting children of the variable object.
2641 This includes dereferencing top-level references
2642 to all types and dereferencing pointers to
2643 structures.
2644
2645 Both TYPE and *TYPE should be non-null. VALUE
2646 can be null if we want to only translate type.
2647 *VALUE can be null as well -- if the parent
2648 value is not known.
2649
2650 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2651 depending on whether pointer was dereferenced
2652 in this function. */
2653 static void
2654 adjust_value_for_child_access (struct value **value,
2655 struct type **type,
2656 int *was_ptr)
2657 {
2658 gdb_assert (type && *type);
2659
2660 if (was_ptr)
2661 *was_ptr = 0;
2662
2663 *type = check_typedef (*type);
2664
2665 /* The type of value stored in varobj, that is passed
2666 to us, is already supposed to be
2667 reference-stripped. */
2668
2669 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2670
2671 /* Pointers to structures are treated just like
2672 structures when accessing children. Don't
2673 dererences pointers to other types. */
2674 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2675 {
2676 struct type *target_type = get_target_type (*type);
2677 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2678 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2679 {
2680 if (value && *value)
2681 {
2682 int success = gdb_value_ind (*value, value);
2683 if (!success)
2684 *value = NULL;
2685 }
2686 *type = target_type;
2687 if (was_ptr)
2688 *was_ptr = 1;
2689 }
2690 }
2691
2692 /* The 'get_target_type' function calls check_typedef on
2693 result, so we can immediately check type code. No
2694 need to call check_typedef here. */
2695 }
2696
2697 /* C */
2698 static int
2699 c_number_of_children (struct varobj *var)
2700 {
2701 struct type *type = get_value_type (var);
2702 int children = 0;
2703 struct type *target;
2704
2705 adjust_value_for_child_access (NULL, &type, NULL);
2706 target = get_target_type (type);
2707
2708 switch (TYPE_CODE (type))
2709 {
2710 case TYPE_CODE_ARRAY:
2711 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2712 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2713 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2714 else
2715 /* If we don't know how many elements there are, don't display
2716 any. */
2717 children = 0;
2718 break;
2719
2720 case TYPE_CODE_STRUCT:
2721 case TYPE_CODE_UNION:
2722 children = TYPE_NFIELDS (type);
2723 break;
2724
2725 case TYPE_CODE_PTR:
2726 /* The type here is a pointer to non-struct. Typically, pointers
2727 have one child, except for function ptrs, which have no children,
2728 and except for void*, as we don't know what to show.
2729
2730 We can show char* so we allow it to be dereferenced. If you decide
2731 to test for it, please mind that a little magic is necessary to
2732 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2733 TYPE_NAME == "char" */
2734 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2735 || TYPE_CODE (target) == TYPE_CODE_VOID)
2736 children = 0;
2737 else
2738 children = 1;
2739 break;
2740
2741 default:
2742 /* Other types have no children */
2743 break;
2744 }
2745
2746 return children;
2747 }
2748
2749 static char *
2750 c_name_of_variable (struct varobj *parent)
2751 {
2752 return xstrdup (parent->name);
2753 }
2754
2755 /* Return the value of element TYPE_INDEX of a structure
2756 value VALUE. VALUE's type should be a structure,
2757 or union, or a typedef to struct/union.
2758
2759 Returns NULL if getting the value fails. Never throws. */
2760 static struct value *
2761 value_struct_element_index (struct value *value, int type_index)
2762 {
2763 struct value *result = NULL;
2764 volatile struct gdb_exception e;
2765
2766 struct type *type = value_type (value);
2767 type = check_typedef (type);
2768
2769 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2770 || TYPE_CODE (type) == TYPE_CODE_UNION);
2771
2772 TRY_CATCH (e, RETURN_MASK_ERROR)
2773 {
2774 if (field_is_static (&TYPE_FIELD (type, type_index)))
2775 result = value_static_field (type, type_index);
2776 else
2777 result = value_primitive_field (value, 0, type_index, type);
2778 }
2779 if (e.reason < 0)
2780 {
2781 return NULL;
2782 }
2783 else
2784 {
2785 return result;
2786 }
2787 }
2788
2789 /* Obtain the information about child INDEX of the variable
2790 object PARENT.
2791 If CNAME is not null, sets *CNAME to the name of the child relative
2792 to the parent.
2793 If CVALUE is not null, sets *CVALUE to the value of the child.
2794 If CTYPE is not null, sets *CTYPE to the type of the child.
2795
2796 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2797 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2798 to NULL. */
2799 static void
2800 c_describe_child (struct varobj *parent, int index,
2801 char **cname, struct value **cvalue, struct type **ctype,
2802 char **cfull_expression)
2803 {
2804 struct value *value = parent->value;
2805 struct type *type = get_value_type (parent);
2806 char *parent_expression = NULL;
2807 int was_ptr;
2808
2809 if (cname)
2810 *cname = NULL;
2811 if (cvalue)
2812 *cvalue = NULL;
2813 if (ctype)
2814 *ctype = NULL;
2815 if (cfull_expression)
2816 {
2817 *cfull_expression = NULL;
2818 parent_expression = varobj_get_path_expr (parent);
2819 }
2820 adjust_value_for_child_access (&value, &type, &was_ptr);
2821
2822 switch (TYPE_CODE (type))
2823 {
2824 case TYPE_CODE_ARRAY:
2825 if (cname)
2826 *cname = xstrdup (int_string (index
2827 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2828 10, 1, 0, 0));
2829
2830 if (cvalue && value)
2831 {
2832 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2833 gdb_value_subscript (value, real_index, cvalue);
2834 }
2835
2836 if (ctype)
2837 *ctype = get_target_type (type);
2838
2839 if (cfull_expression)
2840 *cfull_expression =
2841 xstrprintf ("(%s)[%s]", parent_expression,
2842 int_string (index
2843 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2844 10, 1, 0, 0));
2845
2846
2847 break;
2848
2849 case TYPE_CODE_STRUCT:
2850 case TYPE_CODE_UNION:
2851 if (cname)
2852 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2853
2854 if (cvalue && value)
2855 {
2856 /* For C, varobj index is the same as type index. */
2857 *cvalue = value_struct_element_index (value, index);
2858 }
2859
2860 if (ctype)
2861 *ctype = TYPE_FIELD_TYPE (type, index);
2862
2863 if (cfull_expression)
2864 {
2865 char *join = was_ptr ? "->" : ".";
2866 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2867 TYPE_FIELD_NAME (type, index));
2868 }
2869
2870 break;
2871
2872 case TYPE_CODE_PTR:
2873 if (cname)
2874 *cname = xstrprintf ("*%s", parent->name);
2875
2876 if (cvalue && value)
2877 {
2878 int success = gdb_value_ind (value, cvalue);
2879 if (!success)
2880 *cvalue = NULL;
2881 }
2882
2883 /* Don't use get_target_type because it calls
2884 check_typedef and here, we want to show the true
2885 declared type of the variable. */
2886 if (ctype)
2887 *ctype = TYPE_TARGET_TYPE (type);
2888
2889 if (cfull_expression)
2890 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2891
2892 break;
2893
2894 default:
2895 /* This should not happen */
2896 if (cname)
2897 *cname = xstrdup ("???");
2898 if (cfull_expression)
2899 *cfull_expression = xstrdup ("???");
2900 /* Don't set value and type, we don't know then. */
2901 }
2902 }
2903
2904 static char *
2905 c_name_of_child (struct varobj *parent, int index)
2906 {
2907 char *name;
2908 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2909 return name;
2910 }
2911
2912 static char *
2913 c_path_expr_of_child (struct varobj *child)
2914 {
2915 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2916 &child->path_expr);
2917 return child->path_expr;
2918 }
2919
2920 /* If frame associated with VAR can be found, switch
2921 to it and return 1. Otherwise, return 0. */
2922 static int
2923 check_scope (struct varobj *var)
2924 {
2925 struct frame_info *fi;
2926 int scope;
2927
2928 fi = frame_find_by_id (var->root->frame);
2929 scope = fi != NULL;
2930
2931 if (fi)
2932 {
2933 CORE_ADDR pc = get_frame_pc (fi);
2934 if (pc < BLOCK_START (var->root->valid_block) ||
2935 pc >= BLOCK_END (var->root->valid_block))
2936 scope = 0;
2937 else
2938 select_frame (fi);
2939 }
2940 return scope;
2941 }
2942
2943 static struct value *
2944 c_value_of_root (struct varobj **var_handle)
2945 {
2946 struct value *new_val = NULL;
2947 struct varobj *var = *var_handle;
2948 struct frame_info *fi;
2949 int within_scope = 0;
2950 struct cleanup *back_to;
2951
2952 /* Only root variables can be updated... */
2953 if (!is_root_p (var))
2954 /* Not a root var */
2955 return NULL;
2956
2957 back_to = make_cleanup_restore_current_thread ();
2958
2959 /* Determine whether the variable is still around. */
2960 if (var->root->valid_block == NULL || var->root->floating)
2961 within_scope = 1;
2962 else if (var->root->thread_id == 0)
2963 {
2964 /* The program was single-threaded when the variable object was
2965 created. Technically, it's possible that the program became
2966 multi-threaded since then, but we don't support such
2967 scenario yet. */
2968 within_scope = check_scope (var);
2969 }
2970 else
2971 {
2972 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2973 if (in_thread_list (ptid))
2974 {
2975 switch_to_thread (ptid);
2976 within_scope = check_scope (var);
2977 }
2978 }
2979
2980 if (within_scope)
2981 {
2982 /* We need to catch errors here, because if evaluate
2983 expression fails we want to just return NULL. */
2984 gdb_evaluate_expression (var->root->exp, &new_val);
2985 return new_val;
2986 }
2987
2988 do_cleanups (back_to);
2989
2990 return NULL;
2991 }
2992
2993 static struct value *
2994 c_value_of_child (struct varobj *parent, int index)
2995 {
2996 struct value *value = NULL;
2997 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2998
2999 return value;
3000 }
3001
3002 static struct type *
3003 c_type_of_child (struct varobj *parent, int index)
3004 {
3005 struct type *type = NULL;
3006 c_describe_child (parent, index, NULL, NULL, &type, NULL);
3007 return type;
3008 }
3009
3010 static char *
3011 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3012 {
3013 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3014 it will print out its children instead of "{...}". So we need to
3015 catch that case explicitly. */
3016 struct type *type = get_type (var);
3017
3018 /* If we have a custom formatter, return whatever string it has
3019 produced. */
3020 if (var->pretty_printer && var->print_value)
3021 return xstrdup (var->print_value);
3022
3023 /* Strip top-level references. */
3024 while (TYPE_CODE (type) == TYPE_CODE_REF)
3025 type = check_typedef (TYPE_TARGET_TYPE (type));
3026
3027 switch (TYPE_CODE (type))
3028 {
3029 case TYPE_CODE_STRUCT:
3030 case TYPE_CODE_UNION:
3031 return xstrdup ("{...}");
3032 /* break; */
3033
3034 case TYPE_CODE_ARRAY:
3035 {
3036 char *number;
3037 number = xstrprintf ("[%d]", var->num_children);
3038 return (number);
3039 }
3040 /* break; */
3041
3042 default:
3043 {
3044 if (var->value == NULL)
3045 {
3046 /* This can happen if we attempt to get the value of a struct
3047 member when the parent is an invalid pointer. This is an
3048 error condition, so we should tell the caller. */
3049 return NULL;
3050 }
3051 else
3052 {
3053 if (var->not_fetched && value_lazy (var->value))
3054 /* Frozen variable and no value yet. We don't
3055 implicitly fetch the value. MI response will
3056 use empty string for the value, which is OK. */
3057 return NULL;
3058
3059 gdb_assert (varobj_value_is_changeable_p (var));
3060 gdb_assert (!value_lazy (var->value));
3061
3062 /* If the specified format is the current one,
3063 we can reuse print_value */
3064 if (format == var->format)
3065 return xstrdup (var->print_value);
3066 else
3067 return value_get_print_value (var->value, format, var);
3068 }
3069 }
3070 }
3071 }
3072 \f
3073
3074 /* C++ */
3075
3076 static int
3077 cplus_number_of_children (struct varobj *var)
3078 {
3079 struct type *type;
3080 int children, dont_know;
3081
3082 dont_know = 1;
3083 children = 0;
3084
3085 if (!CPLUS_FAKE_CHILD (var))
3086 {
3087 type = get_value_type (var);
3088 adjust_value_for_child_access (NULL, &type, NULL);
3089
3090 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3091 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3092 {
3093 int kids[3];
3094
3095 cplus_class_num_children (type, kids);
3096 if (kids[v_public] != 0)
3097 children++;
3098 if (kids[v_private] != 0)
3099 children++;
3100 if (kids[v_protected] != 0)
3101 children++;
3102
3103 /* Add any baseclasses */
3104 children += TYPE_N_BASECLASSES (type);
3105 dont_know = 0;
3106
3107 /* FIXME: save children in var */
3108 }
3109 }
3110 else
3111 {
3112 int kids[3];
3113
3114 type = get_value_type (var->parent);
3115 adjust_value_for_child_access (NULL, &type, NULL);
3116
3117 cplus_class_num_children (type, kids);
3118 if (strcmp (var->name, "public") == 0)
3119 children = kids[v_public];
3120 else if (strcmp (var->name, "private") == 0)
3121 children = kids[v_private];
3122 else
3123 children = kids[v_protected];
3124 dont_know = 0;
3125 }
3126
3127 if (dont_know)
3128 children = c_number_of_children (var);
3129
3130 return children;
3131 }
3132
3133 /* Compute # of public, private, and protected variables in this class.
3134 That means we need to descend into all baseclasses and find out
3135 how many are there, too. */
3136 static void
3137 cplus_class_num_children (struct type *type, int children[3])
3138 {
3139 int i, vptr_fieldno;
3140 struct type *basetype = NULL;
3141
3142 children[v_public] = 0;
3143 children[v_private] = 0;
3144 children[v_protected] = 0;
3145
3146 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3147 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3148 {
3149 /* If we have a virtual table pointer, omit it. Even if virtual
3150 table pointers are not specifically marked in the debug info,
3151 they should be artificial. */
3152 if ((type == basetype && i == vptr_fieldno)
3153 || TYPE_FIELD_ARTIFICIAL (type, i))
3154 continue;
3155
3156 if (TYPE_FIELD_PROTECTED (type, i))
3157 children[v_protected]++;
3158 else if (TYPE_FIELD_PRIVATE (type, i))
3159 children[v_private]++;
3160 else
3161 children[v_public]++;
3162 }
3163 }
3164
3165 static char *
3166 cplus_name_of_variable (struct varobj *parent)
3167 {
3168 return c_name_of_variable (parent);
3169 }
3170
3171 enum accessibility { private_field, protected_field, public_field };
3172
3173 /* Check if field INDEX of TYPE has the specified accessibility.
3174 Return 0 if so and 1 otherwise. */
3175 static int
3176 match_accessibility (struct type *type, int index, enum accessibility acc)
3177 {
3178 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3179 return 1;
3180 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3181 return 1;
3182 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3183 && !TYPE_FIELD_PROTECTED (type, index))
3184 return 1;
3185 else
3186 return 0;
3187 }
3188
3189 static void
3190 cplus_describe_child (struct varobj *parent, int index,
3191 char **cname, struct value **cvalue, struct type **ctype,
3192 char **cfull_expression)
3193 {
3194 char *name = NULL;
3195 struct value *value;
3196 struct type *type;
3197 int was_ptr;
3198 char *parent_expression = NULL;
3199
3200 if (cname)
3201 *cname = NULL;
3202 if (cvalue)
3203 *cvalue = NULL;
3204 if (ctype)
3205 *ctype = NULL;
3206 if (cfull_expression)
3207 *cfull_expression = NULL;
3208
3209 if (CPLUS_FAKE_CHILD (parent))
3210 {
3211 value = parent->parent->value;
3212 type = get_value_type (parent->parent);
3213 if (cfull_expression)
3214 parent_expression = varobj_get_path_expr (parent->parent);
3215 }
3216 else
3217 {
3218 value = parent->value;
3219 type = get_value_type (parent);
3220 if (cfull_expression)
3221 parent_expression = varobj_get_path_expr (parent);
3222 }
3223
3224 adjust_value_for_child_access (&value, &type, &was_ptr);
3225
3226 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3227 || TYPE_CODE (type) == TYPE_CODE_UNION)
3228 {
3229 char *join = was_ptr ? "->" : ".";
3230 if (CPLUS_FAKE_CHILD (parent))
3231 {
3232 /* The fields of the class type are ordered as they
3233 appear in the class. We are given an index for a
3234 particular access control type ("public","protected",
3235 or "private"). We must skip over fields that don't
3236 have the access control we are looking for to properly
3237 find the indexed field. */
3238 int type_index = TYPE_N_BASECLASSES (type);
3239 enum accessibility acc = public_field;
3240 int vptr_fieldno;
3241 struct type *basetype = NULL;
3242
3243 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3244 if (strcmp (parent->name, "private") == 0)
3245 acc = private_field;
3246 else if (strcmp (parent->name, "protected") == 0)
3247 acc = protected_field;
3248
3249 while (index >= 0)
3250 {
3251 if ((type == basetype && type_index == vptr_fieldno)
3252 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3253 ; /* ignore vptr */
3254 else if (match_accessibility (type, type_index, acc))
3255 --index;
3256 ++type_index;
3257 }
3258 --type_index;
3259
3260 if (cname)
3261 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3262
3263 if (cvalue && value)
3264 *cvalue = value_struct_element_index (value, type_index);
3265
3266 if (ctype)
3267 *ctype = TYPE_FIELD_TYPE (type, type_index);
3268
3269 if (cfull_expression)
3270 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3271 join,
3272 TYPE_FIELD_NAME (type, type_index));
3273 }
3274 else if (index < TYPE_N_BASECLASSES (type))
3275 {
3276 /* This is a baseclass. */
3277 if (cname)
3278 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3279
3280 if (cvalue && value)
3281 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3282
3283 if (ctype)
3284 {
3285 *ctype = TYPE_FIELD_TYPE (type, index);
3286 }
3287
3288 if (cfull_expression)
3289 {
3290 char *ptr = was_ptr ? "*" : "";
3291 /* Cast the parent to the base' type. Note that in gdb,
3292 expression like
3293 (Base1)d
3294 will create an lvalue, for all appearences, so we don't
3295 need to use more fancy:
3296 *(Base1*)(&d)
3297 construct. */
3298 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3299 ptr,
3300 TYPE_FIELD_NAME (type, index),
3301 ptr,
3302 parent_expression);
3303 }
3304 }
3305 else
3306 {
3307 char *access = NULL;
3308 int children[3];
3309 cplus_class_num_children (type, children);
3310
3311 /* Everything beyond the baseclasses can
3312 only be "public", "private", or "protected"
3313
3314 The special "fake" children are always output by varobj in
3315 this order. So if INDEX == 2, it MUST be "protected". */
3316 index -= TYPE_N_BASECLASSES (type);
3317 switch (index)
3318 {
3319 case 0:
3320 if (children[v_public] > 0)
3321 access = "public";
3322 else if (children[v_private] > 0)
3323 access = "private";
3324 else
3325 access = "protected";
3326 break;
3327 case 1:
3328 if (children[v_public] > 0)
3329 {
3330 if (children[v_private] > 0)
3331 access = "private";
3332 else
3333 access = "protected";
3334 }
3335 else if (children[v_private] > 0)
3336 access = "protected";
3337 break;
3338 case 2:
3339 /* Must be protected */
3340 access = "protected";
3341 break;
3342 default:
3343 /* error! */
3344 break;
3345 }
3346
3347 gdb_assert (access);
3348 if (cname)
3349 *cname = xstrdup (access);
3350
3351 /* Value and type and full expression are null here. */
3352 }
3353 }
3354 else
3355 {
3356 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3357 }
3358 }
3359
3360 static char *
3361 cplus_name_of_child (struct varobj *parent, int index)
3362 {
3363 char *name = NULL;
3364 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3365 return name;
3366 }
3367
3368 static char *
3369 cplus_path_expr_of_child (struct varobj *child)
3370 {
3371 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3372 &child->path_expr);
3373 return child->path_expr;
3374 }
3375
3376 static struct value *
3377 cplus_value_of_root (struct varobj **var_handle)
3378 {
3379 return c_value_of_root (var_handle);
3380 }
3381
3382 static struct value *
3383 cplus_value_of_child (struct varobj *parent, int index)
3384 {
3385 struct value *value = NULL;
3386 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3387 return value;
3388 }
3389
3390 static struct type *
3391 cplus_type_of_child (struct varobj *parent, int index)
3392 {
3393 struct type *type = NULL;
3394 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3395 return type;
3396 }
3397
3398 static char *
3399 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3400 {
3401
3402 /* If we have one of our special types, don't print out
3403 any value. */
3404 if (CPLUS_FAKE_CHILD (var))
3405 return xstrdup ("");
3406
3407 return c_value_of_variable (var, format);
3408 }
3409 \f
3410 /* Java */
3411
3412 static int
3413 java_number_of_children (struct varobj *var)
3414 {
3415 return cplus_number_of_children (var);
3416 }
3417
3418 static char *
3419 java_name_of_variable (struct varobj *parent)
3420 {
3421 char *p, *name;
3422
3423 name = cplus_name_of_variable (parent);
3424 /* If the name has "-" in it, it is because we
3425 needed to escape periods in the name... */
3426 p = name;
3427
3428 while (*p != '\000')
3429 {
3430 if (*p == '-')
3431 *p = '.';
3432 p++;
3433 }
3434
3435 return name;
3436 }
3437
3438 static char *
3439 java_name_of_child (struct varobj *parent, int index)
3440 {
3441 char *name, *p;
3442
3443 name = cplus_name_of_child (parent, index);
3444 /* Escape any periods in the name... */
3445 p = name;
3446
3447 while (*p != '\000')
3448 {
3449 if (*p == '.')
3450 *p = '-';
3451 p++;
3452 }
3453
3454 return name;
3455 }
3456
3457 static char *
3458 java_path_expr_of_child (struct varobj *child)
3459 {
3460 return NULL;
3461 }
3462
3463 static struct value *
3464 java_value_of_root (struct varobj **var_handle)
3465 {
3466 return cplus_value_of_root (var_handle);
3467 }
3468
3469 static struct value *
3470 java_value_of_child (struct varobj *parent, int index)
3471 {
3472 return cplus_value_of_child (parent, index);
3473 }
3474
3475 static struct type *
3476 java_type_of_child (struct varobj *parent, int index)
3477 {
3478 return cplus_type_of_child (parent, index);
3479 }
3480
3481 static char *
3482 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3483 {
3484 return cplus_value_of_variable (var, format);
3485 }
3486
3487 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3488 with an arbitrary caller supplied DATA pointer. */
3489
3490 void
3491 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3492 {
3493 struct varobj_root *var_root, *var_root_next;
3494
3495 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3496
3497 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3498 {
3499 var_root_next = var_root->next;
3500
3501 (*func) (var_root->rootvar, data);
3502 }
3503 }
3504 \f
3505 extern void _initialize_varobj (void);
3506 void
3507 _initialize_varobj (void)
3508 {
3509 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3510
3511 varobj_table = xmalloc (sizeof_table);
3512 memset (varobj_table, 0, sizeof_table);
3513
3514 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3515 &varobjdebug, _("\
3516 Set varobj debugging."), _("\
3517 Show varobj debugging."), _("\
3518 When non-zero, varobj debugging is enabled."),
3519 NULL,
3520 show_varobjdebug,
3521 &setlist, &showlist);
3522 }
3523
3524 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3525 defined on globals. It is a helper for varobj_invalidate. */
3526
3527 static void
3528 varobj_invalidate_iter (struct varobj *var, void *unused)
3529 {
3530 /* Floating varobjs are reparsed on each stop, so we don't care if the
3531 presently parsed expression refers to something that's gone. */
3532 if (var->root->floating)
3533 return;
3534
3535 /* global var must be re-evaluated. */
3536 if (var->root->valid_block == NULL)
3537 {
3538 struct varobj *tmp_var;
3539
3540 /* Try to create a varobj with same expression. If we succeed
3541 replace the old varobj, otherwise invalidate it. */
3542 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3543 USE_CURRENT_FRAME);
3544 if (tmp_var != NULL)
3545 {
3546 tmp_var->obj_name = xstrdup (var->obj_name);
3547 varobj_delete (var, NULL, 0);
3548 install_variable (tmp_var);
3549 }
3550 else
3551 var->root->is_valid = 0;
3552 }
3553 else /* locals must be invalidated. */
3554 var->root->is_valid = 0;
3555 }
3556
3557 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3558 are defined on globals.
3559 Invalidated varobjs will be always printed in_scope="invalid". */
3560
3561 void
3562 varobj_invalidate (void)
3563 {
3564 all_root_varobjs (varobj_invalidate_iter, NULL);
3565 }
This page took 0.103702 seconds and 4 git commands to generate.