b9712581e24cc1bde733d31e67e63038ce8784e7
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 3 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
17
18 #include "defs.h"
19 #include "exceptions.h"
20 #include "value.h"
21 #include "expression.h"
22 #include "frame.h"
23 #include "language.h"
24 #include "gdbcmd.h"
25 #include "block.h"
26 #include "valprint.h"
27
28 #include "gdb_assert.h"
29 #include <string.h>
30 #include "gdb_regex.h"
31
32 #include "varobj.h"
33 #include "vec.h"
34 #include "gdbthread.h"
35 #include "inferior.h"
36 #include "varobj-iter.h"
37
38 #if HAVE_PYTHON
39 #include "python/python.h"
40 #include "python/python-internal.h"
41 #else
42 typedef int PyObject;
43 #endif
44
45 /* Non-zero if we want to see trace of varobj level stuff. */
46
47 unsigned int varobjdebug = 0;
48 static void
49 show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51 {
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53 }
54
55 /* String representations of gdb's format codes. */
56 char *varobj_format_string[] =
57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
58
59 /* True if we want to allow Python-based pretty-printing. */
60 static int pretty_printing = 0;
61
62 void
63 varobj_enable_pretty_printing (void)
64 {
65 pretty_printing = 1;
66 }
67
68 /* Data structures */
69
70 /* Every root variable has one of these structures saved in its
71 varobj. Members which must be free'd are noted. */
72 struct varobj_root
73 {
74
75 /* Alloc'd expression for this parent. */
76 struct expression *exp;
77
78 /* Block for which this expression is valid. */
79 const struct block *valid_block;
80
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
83 struct frame_id frame;
84
85 /* The thread ID that this varobj_root belong to. This field
86 is only valid if valid_block is not NULL.
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
94 always updated in the specific scope/thread/frame. */
95 int floating;
96
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
101 /* Language-related operations for this variable and its
102 children. */
103 const struct lang_varobj_ops *lang_ops;
104
105 /* The varobj for this root node. */
106 struct varobj *rootvar;
107
108 /* Next root variable */
109 struct varobj_root *next;
110 };
111
112 /* Dynamic part of varobj. */
113
114 struct varobj_dynamic
115 {
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
133 struct varobj_iter *child_iter;
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
140 varobj_item *saved_item;
141 };
142
143 struct cpstack
144 {
145 char *name;
146 struct cpstack *next;
147 };
148
149 /* A list of varobjs */
150
151 struct vlist
152 {
153 struct varobj *var;
154 struct vlist *next;
155 };
156
157 /* Private function prototypes */
158
159 /* Helper functions for the above subcommands. */
160
161 static int delete_variable (struct cpstack **, struct varobj *, int);
162
163 static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
165
166 static int install_variable (struct varobj *);
167
168 static void uninstall_variable (struct varobj *);
169
170 static struct varobj *create_child (struct varobj *, int, char *);
171
172 static struct varobj *
173 create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
175
176 /* Utility routines */
177
178 static struct varobj *new_variable (void);
179
180 static struct varobj *new_root_variable (void);
181
182 static void free_variable (struct varobj *var);
183
184 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
186 static enum varobj_display_formats variable_default_display (struct varobj *);
187
188 static void cppush (struct cpstack **pstack, char *name);
189
190 static char *cppop (struct cpstack **pstack);
191
192 static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
195 static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
198 /* Language-specific routines. */
199
200 static int number_of_children (struct varobj *);
201
202 static char *name_of_variable (struct varobj *);
203
204 static char *name_of_child (struct varobj *, int);
205
206 static struct value *value_of_root (struct varobj **var_handle, int *);
207
208 static struct value *value_of_child (struct varobj *parent, int index);
209
210 static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
212
213 static int is_root_p (struct varobj *var);
214
215 static struct varobj *varobj_add_child (struct varobj *var,
216 struct varobj_item *item);
217
218 /* Private data */
219
220 /* Mappings of varobj_display_formats enums to gdb's format codes. */
221 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
222
223 /* Header of the list of root variable objects. */
224 static struct varobj_root *rootlist;
225
226 /* Prime number indicating the number of buckets in the hash table. */
227 /* A prime large enough to avoid too many colisions. */
228 #define VAROBJ_TABLE_SIZE 227
229
230 /* Pointer to the varobj hash table (built at run time). */
231 static struct vlist **varobj_table;
232
233 \f
234
235 /* API Implementation */
236 static int
237 is_root_p (struct varobj *var)
238 {
239 return (var->root->rootvar == var);
240 }
241
242 #ifdef HAVE_PYTHON
243 /* Helper function to install a Python environment suitable for
244 use during operations on VAR. */
245 struct cleanup *
246 varobj_ensure_python_env (struct varobj *var)
247 {
248 return ensure_python_env (var->root->exp->gdbarch,
249 var->root->exp->language_defn);
250 }
251 #endif
252
253 /* Creates a varobj (not its children). */
254
255 /* Return the full FRAME which corresponds to the given CORE_ADDR
256 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
257
258 static struct frame_info *
259 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
260 {
261 struct frame_info *frame = NULL;
262
263 if (frame_addr == (CORE_ADDR) 0)
264 return NULL;
265
266 for (frame = get_current_frame ();
267 frame != NULL;
268 frame = get_prev_frame (frame))
269 {
270 /* The CORE_ADDR we get as argument was parsed from a string GDB
271 output as $fp. This output got truncated to gdbarch_addr_bit.
272 Truncate the frame base address in the same manner before
273 comparing it against our argument. */
274 CORE_ADDR frame_base = get_frame_base_address (frame);
275 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
276
277 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
278 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
279
280 if (frame_base == frame_addr)
281 return frame;
282 }
283
284 return NULL;
285 }
286
287 struct varobj *
288 varobj_create (char *objname,
289 char *expression, CORE_ADDR frame, enum varobj_type type)
290 {
291 struct varobj *var;
292 struct cleanup *old_chain;
293
294 /* Fill out a varobj structure for the (root) variable being constructed. */
295 var = new_root_variable ();
296 old_chain = make_cleanup_free_variable (var);
297
298 if (expression != NULL)
299 {
300 struct frame_info *fi;
301 struct frame_id old_id = null_frame_id;
302 struct block *block;
303 const char *p;
304 struct value *value = NULL;
305 volatile struct gdb_exception except;
306 CORE_ADDR pc;
307
308 /* Parse and evaluate the expression, filling in as much of the
309 variable's data as possible. */
310
311 if (has_stack_frames ())
312 {
313 /* Allow creator to specify context of variable. */
314 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
315 fi = get_selected_frame (NULL);
316 else
317 /* FIXME: cagney/2002-11-23: This code should be doing a
318 lookup using the frame ID and not just the frame's
319 ``address''. This, of course, means an interface
320 change. However, with out that interface change ISAs,
321 such as the ia64 with its two stacks, won't work.
322 Similar goes for the case where there is a frameless
323 function. */
324 fi = find_frame_addr_in_frame_chain (frame);
325 }
326 else
327 fi = NULL;
328
329 /* frame = -2 means always use selected frame. */
330 if (type == USE_SELECTED_FRAME)
331 var->root->floating = 1;
332
333 pc = 0;
334 block = NULL;
335 if (fi != NULL)
336 {
337 block = get_frame_block (fi, 0);
338 pc = get_frame_pc (fi);
339 }
340
341 p = expression;
342 innermost_block = NULL;
343 /* Wrap the call to parse expression, so we can
344 return a sensible error. */
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
347 var->root->exp = parse_exp_1 (&p, pc, block, 0);
348 }
349
350 if (except.reason < 0)
351 {
352 do_cleanups (old_chain);
353 return NULL;
354 }
355
356 /* Don't allow variables to be created for types. */
357 if (var->root->exp->elts[0].opcode == OP_TYPE
358 || var->root->exp->elts[0].opcode == OP_TYPEOF
359 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
360 {
361 do_cleanups (old_chain);
362 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
363 " as an expression.\n");
364 return NULL;
365 }
366
367 var->format = variable_default_display (var);
368 var->root->valid_block = innermost_block;
369 var->name = xstrdup (expression);
370 /* For a root var, the name and the expr are the same. */
371 var->path_expr = xstrdup (expression);
372
373 /* When the frame is different from the current frame,
374 we must select the appropriate frame before parsing
375 the expression, otherwise the value will not be current.
376 Since select_frame is so benign, just call it for all cases. */
377 if (innermost_block)
378 {
379 /* User could specify explicit FRAME-ADDR which was not found but
380 EXPRESSION is frame specific and we would not be able to evaluate
381 it correctly next time. With VALID_BLOCK set we must also set
382 FRAME and THREAD_ID. */
383 if (fi == NULL)
384 error (_("Failed to find the specified frame"));
385
386 var->root->frame = get_frame_id (fi);
387 var->root->thread_id = pid_to_thread_id (inferior_ptid);
388 old_id = get_frame_id (get_selected_frame (NULL));
389 select_frame (fi);
390 }
391
392 /* We definitely need to catch errors here.
393 If evaluate_expression succeeds we got the value we wanted.
394 But if it fails, we still go on with a call to evaluate_type(). */
395 TRY_CATCH (except, RETURN_MASK_ERROR)
396 {
397 value = evaluate_expression (var->root->exp);
398 }
399
400 if (except.reason < 0)
401 {
402 /* Error getting the value. Try to at least get the
403 right type. */
404 struct value *type_only_value = evaluate_type (var->root->exp);
405
406 var->type = value_type (type_only_value);
407 }
408 else
409 {
410 int real_type_found = 0;
411
412 var->type = value_actual_type (value, 0, &real_type_found);
413 if (real_type_found)
414 value = value_cast (var->type, value);
415 }
416
417 /* Set language info */
418 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
419
420 install_new_value (var, value, 1 /* Initial assignment */);
421
422 /* Set ourselves as our root. */
423 var->root->rootvar = var;
424
425 /* Reset the selected frame. */
426 if (frame_id_p (old_id))
427 select_frame (frame_find_by_id (old_id));
428 }
429
430 /* If the variable object name is null, that means this
431 is a temporary variable, so don't install it. */
432
433 if ((var != NULL) && (objname != NULL))
434 {
435 var->obj_name = xstrdup (objname);
436
437 /* If a varobj name is duplicated, the install will fail so
438 we must cleanup. */
439 if (!install_variable (var))
440 {
441 do_cleanups (old_chain);
442 return NULL;
443 }
444 }
445
446 discard_cleanups (old_chain);
447 return var;
448 }
449
450 /* Generates an unique name that can be used for a varobj. */
451
452 char *
453 varobj_gen_name (void)
454 {
455 static int id = 0;
456 char *obj_name;
457
458 /* Generate a name for this object. */
459 id++;
460 obj_name = xstrprintf ("var%d", id);
461
462 return obj_name;
463 }
464
465 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
466 error if OBJNAME cannot be found. */
467
468 struct varobj *
469 varobj_get_handle (char *objname)
470 {
471 struct vlist *cv;
472 const char *chp;
473 unsigned int index = 0;
474 unsigned int i = 1;
475
476 for (chp = objname; *chp; chp++)
477 {
478 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
479 }
480
481 cv = *(varobj_table + index);
482 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
483 cv = cv->next;
484
485 if (cv == NULL)
486 error (_("Variable object not found"));
487
488 return cv->var;
489 }
490
491 /* Given the handle, return the name of the object. */
492
493 char *
494 varobj_get_objname (struct varobj *var)
495 {
496 return var->obj_name;
497 }
498
499 /* Given the handle, return the expression represented by the object. */
500
501 char *
502 varobj_get_expression (struct varobj *var)
503 {
504 return name_of_variable (var);
505 }
506
507 /* Deletes a varobj and all its children if only_children == 0,
508 otherwise deletes only the children; returns a malloc'ed list of
509 all the (malloc'ed) names of the variables that have been deleted
510 (NULL terminated). */
511
512 int
513 varobj_delete (struct varobj *var, char ***dellist, int only_children)
514 {
515 int delcount;
516 int mycount;
517 struct cpstack *result = NULL;
518 char **cp;
519
520 /* Initialize a stack for temporary results. */
521 cppush (&result, NULL);
522
523 if (only_children)
524 /* Delete only the variable children. */
525 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 else
527 /* Delete the variable and all its children. */
528 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529
530 /* We may have been asked to return a list of what has been deleted. */
531 if (dellist != NULL)
532 {
533 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
534
535 cp = *dellist;
536 mycount = delcount;
537 *cp = cppop (&result);
538 while ((*cp != NULL) && (mycount > 0))
539 {
540 mycount--;
541 cp++;
542 *cp = cppop (&result);
543 }
544
545 if (mycount || (*cp != NULL))
546 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
547 mycount);
548 }
549
550 return delcount;
551 }
552
553 #if HAVE_PYTHON
554
555 /* Convenience function for varobj_set_visualizer. Instantiate a
556 pretty-printer for a given value. */
557 static PyObject *
558 instantiate_pretty_printer (PyObject *constructor, struct value *value)
559 {
560 PyObject *val_obj = NULL;
561 PyObject *printer;
562
563 val_obj = value_to_value_object (value);
564 if (! val_obj)
565 return NULL;
566
567 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
568 Py_DECREF (val_obj);
569 return printer;
570 }
571
572 #endif
573
574 /* Set/Get variable object display format. */
575
576 enum varobj_display_formats
577 varobj_set_display_format (struct varobj *var,
578 enum varobj_display_formats format)
579 {
580 switch (format)
581 {
582 case FORMAT_NATURAL:
583 case FORMAT_BINARY:
584 case FORMAT_DECIMAL:
585 case FORMAT_HEXADECIMAL:
586 case FORMAT_OCTAL:
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
597 xfree (var->print_value);
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
600 }
601
602 return var->format;
603 }
604
605 enum varobj_display_formats
606 varobj_get_display_format (struct varobj *var)
607 {
608 return var->format;
609 }
610
611 char *
612 varobj_get_display_hint (struct varobj *var)
613 {
614 char *result = NULL;
615
616 #if HAVE_PYTHON
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
623
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
626
627 do_cleanups (back_to);
628 #endif
629
630 return result;
631 }
632
633 /* Return true if the varobj has items after TO, false otherwise. */
634
635 int
636 varobj_has_more (struct varobj *var, int to)
637 {
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
641 && (var->dynamic->saved_item != NULL));
642 }
643
644 /* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
647 is always positive. Otherwise, returns -1. */
648 int
649 varobj_get_thread_id (struct varobj *var)
650 {
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655 }
656
657 void
658 varobj_set_frozen (struct varobj *var, int frozen)
659 {
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668 }
669
670 int
671 varobj_get_frozen (struct varobj *var)
672 {
673 return var->frozen;
674 }
675
676 /* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
681 void
682 varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
683 {
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698 }
699
700 /* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703 static void
704 install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
706 VEC (varobj_p) **type_changed,
707 VEC (varobj_p) **new,
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
711 struct varobj_item *item)
712 {
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
716 struct varobj *child = varobj_add_child (var, item);
717
718 if (new)
719 {
720 VEC_safe_push (varobj_p, *new, child);
721 *cchanged = 1;
722 }
723 }
724 else
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
727 int type_updated = update_type_if_necessary (existing, item->value);
728
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
734 if (install_new_value (existing, item->value, 0))
735 {
736 if (!type_updated && changed)
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
739 else if (!type_updated && unchanged)
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742 }
743
744 #if HAVE_PYTHON
745
746 static int
747 dynamic_varobj_has_child_method (struct varobj *var)
748 {
749 struct cleanup *back_to;
750 PyObject *printer = var->dynamic->pretty_printer;
751 int result;
752
753 if (!gdb_python_initialized)
754 return 0;
755
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760 }
761 #endif
762
763 /* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766 static struct varobj_iter *
767 varobj_get_iterator (struct varobj *var)
768 {
769 #if HAVE_PYTHON
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
772 #endif
773
774 gdb_assert_not_reached (_("\
775 requested an iterator from a non-dynamic varobj"));
776 }
777
778 /* Release and clear VAR's saved item, if any. */
779
780 static void
781 varobj_clear_saved_item (struct varobj_dynamic *var)
782 {
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789 }
790
791 static int
792 update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
794 VEC (varobj_p) **type_changed,
795 VEC (varobj_p) **new,
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
801 {
802 int i;
803
804 *cchanged = 0;
805
806 if (update_children || var->dynamic->child_iter == NULL)
807 {
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
810
811 varobj_clear_saved_item (var->dynamic);
812
813 i = 0;
814
815 if (var->dynamic->child_iter == NULL)
816 return 0;
817 }
818 else
819 i = VEC_length (varobj_p, var->children);
820
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
824 {
825 varobj_item *item;
826
827 /* See if there was a leftover from last time. */
828 if (var->dynamic->saved_item != NULL)
829 {
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
832 }
833 else
834 {
835 item = varobj_iter_next (var->dynamic->child_iter);
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
840 }
841
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
851 {
852 int can_mention = from < 0 || i >= from;
853
854 install_dynamic_child (var, can_mention ? changed : NULL,
855 can_mention ? type_changed : NULL,
856 can_mention ? new : NULL,
857 can_mention ? unchanged : NULL,
858 can_mention ? cchanged : NULL, i,
859 item);
860
861 xfree (item);
862 }
863 else
864 {
865 var->dynamic->saved_item = item;
866
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
875 int j;
876
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
881 }
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
888 var->num_children = VEC_length (varobj_p, var->children);
889
890 return 1;
891 }
892
893 int
894 varobj_get_num_children (struct varobj *var)
895 {
896 if (var->num_children == -1)
897 {
898 if (var->dynamic->pretty_printer != NULL)
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
905 0, 0, 0);
906 }
907 else
908 var->num_children = number_of_children (var);
909 }
910
911 return var->num_children >= 0 ? var->num_children : 0;
912 }
913
914 /* Creates a list of the immediate children of a variable object;
915 the return code is the number of such children or -1 on error. */
916
917 VEC (varobj_p)*
918 varobj_list_children (struct varobj *var, int *from, int *to)
919 {
920 char *name;
921 int i, children_changed;
922
923 var->dynamic->children_requested = 1;
924
925 if (var->dynamic->pretty_printer != NULL)
926 {
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
932 varobj_restrict_range (var->children, from, to);
933 return var->children;
934 }
935
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
939 /* If that failed, give up. */
940 if (var->num_children == -1)
941 return var->children;
942
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
948 for (i = 0; i < var->num_children; i++)
949 {
950 varobj_p existing = VEC_index (varobj_p, var->children, i);
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
961 }
962
963 varobj_restrict_range (var->children, from, to);
964 return var->children;
965 }
966
967 static struct varobj *
968 varobj_add_child (struct varobj *var, struct varobj_item *item)
969 {
970 varobj_p v = create_child_with_value (var,
971 VEC_length (varobj_p, var->children),
972 item);
973
974 VEC_safe_push (varobj_p, var->children, v);
975 return v;
976 }
977
978 /* Obtain the type of an object Variable as a string similar to the one gdb
979 prints on the console. */
980
981 char *
982 varobj_get_type (struct varobj *var)
983 {
984 /* For the "fake" variables, do not return a type. (Its type is
985 NULL, too.)
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
988 return NULL;
989
990 return type_to_string (var->type);
991 }
992
993 /* Obtain the type of an object variable. */
994
995 struct type *
996 varobj_get_gdb_type (struct varobj *var)
997 {
998 return var->type;
999 }
1000
1001 /* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1003
1004 static int
1005 is_path_expr_parent (struct varobj *var)
1006 {
1007 struct type *type;
1008
1009 /* "Fake" children are not path_expr parents. */
1010 if (CPLUS_FAKE_CHILD (var))
1011 return 0;
1012
1013 type = varobj_get_value_type (var);
1014
1015 /* Anonymous unions and structs are also not path_expr parents. */
1016 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1017 || TYPE_CODE (type) == TYPE_CODE_UNION)
1018 && TYPE_NAME (type) == NULL);
1019 }
1020
1021 /* Return the path expression parent for VAR. */
1022
1023 struct varobj *
1024 varobj_get_path_expr_parent (struct varobj *var)
1025 {
1026 struct varobj *parent = var;
1027
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1030
1031 return parent;
1032 }
1033
1034 /* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1036 char *
1037 varobj_get_path_expr (struct varobj *var)
1038 {
1039 if (var->path_expr != NULL)
1040 return var->path_expr;
1041 else
1042 {
1043 /* For root varobjs, we initialize path_expr
1044 when creating varobj, so here it should be
1045 child varobj. */
1046 gdb_assert (!is_root_p (var));
1047 return (*var->root->lang_ops->path_expr_of_child) (var);
1048 }
1049 }
1050
1051 const struct language_defn *
1052 varobj_get_language (struct varobj *var)
1053 {
1054 return var->root->exp->language_defn;
1055 }
1056
1057 int
1058 varobj_get_attributes (struct varobj *var)
1059 {
1060 int attributes = 0;
1061
1062 if (varobj_editable_p (var))
1063 /* FIXME: define masks for attributes. */
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067 }
1068
1069 int
1070 varobj_pretty_printed_p (struct varobj *var)
1071 {
1072 return var->dynamic->pretty_printer != NULL;
1073 }
1074
1075 char *
1076 varobj_get_formatted_value (struct varobj *var,
1077 enum varobj_display_formats format)
1078 {
1079 return my_value_of_variable (var, format);
1080 }
1081
1082 char *
1083 varobj_get_value (struct varobj *var)
1084 {
1085 return my_value_of_variable (var, var->format);
1086 }
1087
1088 /* Set the value of an object variable (if it is editable) to the
1089 value of the given expression. */
1090 /* Note: Invokes functions that can call error(). */
1091
1092 int
1093 varobj_set_value (struct varobj *var, char *expression)
1094 {
1095 struct value *val = NULL; /* Initialize to keep gcc happy. */
1096 /* The argument "expression" contains the variable's new value.
1097 We need to first construct a legal expression for this -- ugh! */
1098 /* Does this cover all the bases? */
1099 struct expression *exp;
1100 struct value *value = NULL; /* Initialize to keep gcc happy. */
1101 int saved_input_radix = input_radix;
1102 const char *s = expression;
1103 volatile struct gdb_exception except;
1104
1105 gdb_assert (varobj_editable_p (var));
1106
1107 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1108 exp = parse_exp_1 (&s, 0, 0, 0);
1109 TRY_CATCH (except, RETURN_MASK_ERROR)
1110 {
1111 value = evaluate_expression (exp);
1112 }
1113
1114 if (except.reason < 0)
1115 {
1116 /* We cannot proceed without a valid expression. */
1117 xfree (exp);
1118 return 0;
1119 }
1120
1121 /* All types that are editable must also be changeable. */
1122 gdb_assert (varobj_value_is_changeable_p (var));
1123
1124 /* The value of a changeable variable object must not be lazy. */
1125 gdb_assert (!value_lazy (var->value));
1126
1127 /* Need to coerce the input. We want to check if the
1128 value of the variable object will be different
1129 after assignment, and the first thing value_assign
1130 does is coerce the input.
1131 For example, if we are assigning an array to a pointer variable we
1132 should compare the pointer with the array's address, not with the
1133 array's content. */
1134 value = coerce_array (value);
1135
1136 /* The new value may be lazy. value_assign, or
1137 rather value_contents, will take care of this. */
1138 TRY_CATCH (except, RETURN_MASK_ERROR)
1139 {
1140 val = value_assign (var->value, value);
1141 }
1142
1143 if (except.reason < 0)
1144 return 0;
1145
1146 /* If the value has changed, record it, so that next -var-update can
1147 report this change. If a variable had a value of '1', we've set it
1148 to '333' and then set again to '1', when -var-update will report this
1149 variable as changed -- because the first assignment has set the
1150 'updated' flag. There's no need to optimize that, because return value
1151 of -var-update should be considered an approximation. */
1152 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1153 input_radix = saved_input_radix;
1154 return 1;
1155 }
1156
1157 #if HAVE_PYTHON
1158
1159 /* A helper function to install a constructor function and visualizer
1160 in a varobj_dynamic. */
1161
1162 static void
1163 install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
1164 PyObject *visualizer)
1165 {
1166 Py_XDECREF (var->constructor);
1167 var->constructor = constructor;
1168
1169 Py_XDECREF (var->pretty_printer);
1170 var->pretty_printer = visualizer;
1171
1172 varobj_iter_delete (var->child_iter);
1173 var->child_iter = NULL;
1174 }
1175
1176 /* Install the default visualizer for VAR. */
1177
1178 static void
1179 install_default_visualizer (struct varobj *var)
1180 {
1181 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1182 if (CPLUS_FAKE_CHILD (var))
1183 return;
1184
1185 if (pretty_printing)
1186 {
1187 PyObject *pretty_printer = NULL;
1188
1189 if (var->value)
1190 {
1191 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1192 if (! pretty_printer)
1193 {
1194 gdbpy_print_stack ();
1195 error (_("Cannot instantiate printer for default visualizer"));
1196 }
1197 }
1198
1199 if (pretty_printer == Py_None)
1200 {
1201 Py_DECREF (pretty_printer);
1202 pretty_printer = NULL;
1203 }
1204
1205 install_visualizer (var->dynamic, NULL, pretty_printer);
1206 }
1207 }
1208
1209 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1210 make a new object. */
1211
1212 static void
1213 construct_visualizer (struct varobj *var, PyObject *constructor)
1214 {
1215 PyObject *pretty_printer;
1216
1217 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1218 if (CPLUS_FAKE_CHILD (var))
1219 return;
1220
1221 Py_INCREF (constructor);
1222 if (constructor == Py_None)
1223 pretty_printer = NULL;
1224 else
1225 {
1226 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1227 if (! pretty_printer)
1228 {
1229 gdbpy_print_stack ();
1230 Py_DECREF (constructor);
1231 constructor = Py_None;
1232 Py_INCREF (constructor);
1233 }
1234
1235 if (pretty_printer == Py_None)
1236 {
1237 Py_DECREF (pretty_printer);
1238 pretty_printer = NULL;
1239 }
1240 }
1241
1242 install_visualizer (var->dynamic, constructor, pretty_printer);
1243 }
1244
1245 #endif /* HAVE_PYTHON */
1246
1247 /* A helper function for install_new_value. This creates and installs
1248 a visualizer for VAR, if appropriate. */
1249
1250 static void
1251 install_new_value_visualizer (struct varobj *var)
1252 {
1253 #if HAVE_PYTHON
1254 /* If the constructor is None, then we want the raw value. If VAR
1255 does not have a value, just skip this. */
1256 if (!gdb_python_initialized)
1257 return;
1258
1259 if (var->dynamic->constructor != Py_None && var->value != NULL)
1260 {
1261 struct cleanup *cleanup;
1262
1263 cleanup = varobj_ensure_python_env (var);
1264
1265 if (var->dynamic->constructor == NULL)
1266 install_default_visualizer (var);
1267 else
1268 construct_visualizer (var, var->dynamic->constructor);
1269
1270 do_cleanups (cleanup);
1271 }
1272 #else
1273 /* Do nothing. */
1274 #endif
1275 }
1276
1277 /* When using RTTI to determine variable type it may be changed in runtime when
1278 the variable value is changed. This function checks whether type of varobj
1279 VAR will change when a new value NEW_VALUE is assigned and if it is so
1280 updates the type of VAR. */
1281
1282 static int
1283 update_type_if_necessary (struct varobj *var, struct value *new_value)
1284 {
1285 if (new_value)
1286 {
1287 struct value_print_options opts;
1288
1289 get_user_print_options (&opts);
1290 if (opts.objectprint)
1291 {
1292 struct type *new_type;
1293 char *curr_type_str, *new_type_str;
1294
1295 new_type = value_actual_type (new_value, 0, 0);
1296 new_type_str = type_to_string (new_type);
1297 curr_type_str = varobj_get_type (var);
1298 if (strcmp (curr_type_str, new_type_str) != 0)
1299 {
1300 var->type = new_type;
1301
1302 /* This information may be not valid for a new type. */
1303 varobj_delete (var, NULL, 1);
1304 VEC_free (varobj_p, var->children);
1305 var->num_children = -1;
1306 return 1;
1307 }
1308 }
1309 }
1310
1311 return 0;
1312 }
1313
1314 /* Assign a new value to a variable object. If INITIAL is non-zero,
1315 this is the first assignement after the variable object was just
1316 created, or changed type. In that case, just assign the value
1317 and return 0.
1318 Otherwise, assign the new value, and return 1 if the value is
1319 different from the current one, 0 otherwise. The comparison is
1320 done on textual representation of value. Therefore, some types
1321 need not be compared. E.g. for structures the reported value is
1322 always "{...}", so no comparison is necessary here. If the old
1323 value was NULL and new one is not, or vice versa, we always return 1.
1324
1325 The VALUE parameter should not be released -- the function will
1326 take care of releasing it when needed. */
1327 static int
1328 install_new_value (struct varobj *var, struct value *value, int initial)
1329 {
1330 int changeable;
1331 int need_to_fetch;
1332 int changed = 0;
1333 int intentionally_not_fetched = 0;
1334 char *print_value = NULL;
1335
1336 /* We need to know the varobj's type to decide if the value should
1337 be fetched or not. C++ fake children (public/protected/private)
1338 don't have a type. */
1339 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1340 changeable = varobj_value_is_changeable_p (var);
1341
1342 /* If the type has custom visualizer, we consider it to be always
1343 changeable. FIXME: need to make sure this behaviour will not
1344 mess up read-sensitive values. */
1345 if (var->dynamic->pretty_printer != NULL)
1346 changeable = 1;
1347
1348 need_to_fetch = changeable;
1349
1350 /* We are not interested in the address of references, and given
1351 that in C++ a reference is not rebindable, it cannot
1352 meaningfully change. So, get hold of the real value. */
1353 if (value)
1354 value = coerce_ref (value);
1355
1356 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1357 /* For unions, we need to fetch the value implicitly because
1358 of implementation of union member fetch. When gdb
1359 creates a value for a field and the value of the enclosing
1360 structure is not lazy, it immediately copies the necessary
1361 bytes from the enclosing values. If the enclosing value is
1362 lazy, the call to value_fetch_lazy on the field will read
1363 the data from memory. For unions, that means we'll read the
1364 same memory more than once, which is not desirable. So
1365 fetch now. */
1366 need_to_fetch = 1;
1367
1368 /* The new value might be lazy. If the type is changeable,
1369 that is we'll be comparing values of this type, fetch the
1370 value now. Otherwise, on the next update the old value
1371 will be lazy, which means we've lost that old value. */
1372 if (need_to_fetch && value && value_lazy (value))
1373 {
1374 struct varobj *parent = var->parent;
1375 int frozen = var->frozen;
1376
1377 for (; !frozen && parent; parent = parent->parent)
1378 frozen |= parent->frozen;
1379
1380 if (frozen && initial)
1381 {
1382 /* For variables that are frozen, or are children of frozen
1383 variables, we don't do fetch on initial assignment.
1384 For non-initial assignemnt we do the fetch, since it means we're
1385 explicitly asked to compare the new value with the old one. */
1386 intentionally_not_fetched = 1;
1387 }
1388 else
1389 {
1390 volatile struct gdb_exception except;
1391
1392 TRY_CATCH (except, RETURN_MASK_ERROR)
1393 {
1394 value_fetch_lazy (value);
1395 }
1396
1397 if (except.reason < 0)
1398 {
1399 /* Set the value to NULL, so that for the next -var-update,
1400 we don't try to compare the new value with this value,
1401 that we couldn't even read. */
1402 value = NULL;
1403 }
1404 }
1405 }
1406
1407 /* Get a reference now, before possibly passing it to any Python
1408 code that might release it. */
1409 if (value != NULL)
1410 value_incref (value);
1411
1412 /* Below, we'll be comparing string rendering of old and new
1413 values. Don't get string rendering if the value is
1414 lazy -- if it is, the code above has decided that the value
1415 should not be fetched. */
1416 if (value != NULL && !value_lazy (value)
1417 && var->dynamic->pretty_printer == NULL)
1418 print_value = varobj_value_get_print_value (value, var->format, var);
1419
1420 /* If the type is changeable, compare the old and the new values.
1421 If this is the initial assignment, we don't have any old value
1422 to compare with. */
1423 if (!initial && changeable)
1424 {
1425 /* If the value of the varobj was changed by -var-set-value,
1426 then the value in the varobj and in the target is the same.
1427 However, that value is different from the value that the
1428 varobj had after the previous -var-update. So need to the
1429 varobj as changed. */
1430 if (var->updated)
1431 {
1432 changed = 1;
1433 }
1434 else if (var->dynamic->pretty_printer == NULL)
1435 {
1436 /* Try to compare the values. That requires that both
1437 values are non-lazy. */
1438 if (var->not_fetched && value_lazy (var->value))
1439 {
1440 /* This is a frozen varobj and the value was never read.
1441 Presumably, UI shows some "never read" indicator.
1442 Now that we've fetched the real value, we need to report
1443 this varobj as changed so that UI can show the real
1444 value. */
1445 changed = 1;
1446 }
1447 else if (var->value == NULL && value == NULL)
1448 /* Equal. */
1449 ;
1450 else if (var->value == NULL || value == NULL)
1451 {
1452 changed = 1;
1453 }
1454 else
1455 {
1456 gdb_assert (!value_lazy (var->value));
1457 gdb_assert (!value_lazy (value));
1458
1459 gdb_assert (var->print_value != NULL && print_value != NULL);
1460 if (strcmp (var->print_value, print_value) != 0)
1461 changed = 1;
1462 }
1463 }
1464 }
1465
1466 if (!initial && !changeable)
1467 {
1468 /* For values that are not changeable, we don't compare the values.
1469 However, we want to notice if a value was not NULL and now is NULL,
1470 or vise versa, so that we report when top-level varobjs come in scope
1471 and leave the scope. */
1472 changed = (var->value != NULL) != (value != NULL);
1473 }
1474
1475 /* We must always keep the new value, since children depend on it. */
1476 if (var->value != NULL && var->value != value)
1477 value_free (var->value);
1478 var->value = value;
1479 if (value && value_lazy (value) && intentionally_not_fetched)
1480 var->not_fetched = 1;
1481 else
1482 var->not_fetched = 0;
1483 var->updated = 0;
1484
1485 install_new_value_visualizer (var);
1486
1487 /* If we installed a pretty-printer, re-compare the printed version
1488 to see if the variable changed. */
1489 if (var->dynamic->pretty_printer != NULL)
1490 {
1491 xfree (print_value);
1492 print_value = varobj_value_get_print_value (var->value, var->format,
1493 var);
1494 if ((var->print_value == NULL && print_value != NULL)
1495 || (var->print_value != NULL && print_value == NULL)
1496 || (var->print_value != NULL && print_value != NULL
1497 && strcmp (var->print_value, print_value) != 0))
1498 changed = 1;
1499 }
1500 if (var->print_value)
1501 xfree (var->print_value);
1502 var->print_value = print_value;
1503
1504 gdb_assert (!var->value || value_type (var->value));
1505
1506 return changed;
1507 }
1508
1509 /* Return the requested range for a varobj. VAR is the varobj. FROM
1510 and TO are out parameters; *FROM and *TO will be set to the
1511 selected sub-range of VAR. If no range was selected using
1512 -var-set-update-range, then both will be -1. */
1513 void
1514 varobj_get_child_range (struct varobj *var, int *from, int *to)
1515 {
1516 *from = var->from;
1517 *to = var->to;
1518 }
1519
1520 /* Set the selected sub-range of children of VAR to start at index
1521 FROM and end at index TO. If either FROM or TO is less than zero,
1522 this is interpreted as a request for all children. */
1523 void
1524 varobj_set_child_range (struct varobj *var, int from, int to)
1525 {
1526 var->from = from;
1527 var->to = to;
1528 }
1529
1530 void
1531 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1532 {
1533 #if HAVE_PYTHON
1534 PyObject *mainmod, *globals, *constructor;
1535 struct cleanup *back_to;
1536
1537 if (!gdb_python_initialized)
1538 return;
1539
1540 back_to = varobj_ensure_python_env (var);
1541
1542 mainmod = PyImport_AddModule ("__main__");
1543 globals = PyModule_GetDict (mainmod);
1544 Py_INCREF (globals);
1545 make_cleanup_py_decref (globals);
1546
1547 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1548
1549 if (! constructor)
1550 {
1551 gdbpy_print_stack ();
1552 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1553 }
1554
1555 construct_visualizer (var, constructor);
1556 Py_XDECREF (constructor);
1557
1558 /* If there are any children now, wipe them. */
1559 varobj_delete (var, NULL, 1 /* children only */);
1560 var->num_children = -1;
1561
1562 do_cleanups (back_to);
1563 #else
1564 error (_("Python support required"));
1565 #endif
1566 }
1567
1568 /* If NEW_VALUE is the new value of the given varobj (var), return
1569 non-zero if var has mutated. In other words, if the type of
1570 the new value is different from the type of the varobj's old
1571 value.
1572
1573 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1574
1575 static int
1576 varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1577 struct type *new_type)
1578 {
1579 /* If we haven't previously computed the number of children in var,
1580 it does not matter from the front-end's perspective whether
1581 the type has mutated or not. For all intents and purposes,
1582 it has not mutated. */
1583 if (var->num_children < 0)
1584 return 0;
1585
1586 if (var->root->lang_ops->value_has_mutated)
1587 {
1588 /* The varobj module, when installing new values, explicitly strips
1589 references, saying that we're not interested in those addresses.
1590 But detection of mutation happens before installing the new
1591 value, so our value may be a reference that we need to strip
1592 in order to remain consistent. */
1593 if (new_value != NULL)
1594 new_value = coerce_ref (new_value);
1595 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1596 }
1597 else
1598 return 0;
1599 }
1600
1601 /* Update the values for a variable and its children. This is a
1602 two-pronged attack. First, re-parse the value for the root's
1603 expression to see if it's changed. Then go all the way
1604 through its children, reconstructing them and noting if they've
1605 changed.
1606
1607 The EXPLICIT parameter specifies if this call is result
1608 of MI request to update this specific variable, or
1609 result of implicit -var-update *. For implicit request, we don't
1610 update frozen variables.
1611
1612 NOTE: This function may delete the caller's varobj. If it
1613 returns TYPE_CHANGED, then it has done this and VARP will be modified
1614 to point to the new varobj. */
1615
1616 VEC(varobj_update_result) *
1617 varobj_update (struct varobj **varp, int explicit)
1618 {
1619 int type_changed = 0;
1620 int i;
1621 struct value *new;
1622 VEC (varobj_update_result) *stack = NULL;
1623 VEC (varobj_update_result) *result = NULL;
1624
1625 /* Frozen means frozen -- we don't check for any change in
1626 this varobj, including its going out of scope, or
1627 changing type. One use case for frozen varobjs is
1628 retaining previously evaluated expressions, and we don't
1629 want them to be reevaluated at all. */
1630 if (!explicit && (*varp)->frozen)
1631 return result;
1632
1633 if (!(*varp)->root->is_valid)
1634 {
1635 varobj_update_result r = {0};
1636
1637 r.varobj = *varp;
1638 r.status = VAROBJ_INVALID;
1639 VEC_safe_push (varobj_update_result, result, &r);
1640 return result;
1641 }
1642
1643 if ((*varp)->root->rootvar == *varp)
1644 {
1645 varobj_update_result r = {0};
1646
1647 r.varobj = *varp;
1648 r.status = VAROBJ_IN_SCOPE;
1649
1650 /* Update the root variable. value_of_root can return NULL
1651 if the variable is no longer around, i.e. we stepped out of
1652 the frame in which a local existed. We are letting the
1653 value_of_root variable dispose of the varobj if the type
1654 has changed. */
1655 new = value_of_root (varp, &type_changed);
1656 if (update_type_if_necessary(*varp, new))
1657 type_changed = 1;
1658 r.varobj = *varp;
1659 r.type_changed = type_changed;
1660 if (install_new_value ((*varp), new, type_changed))
1661 r.changed = 1;
1662
1663 if (new == NULL)
1664 r.status = VAROBJ_NOT_IN_SCOPE;
1665 r.value_installed = 1;
1666
1667 if (r.status == VAROBJ_NOT_IN_SCOPE)
1668 {
1669 if (r.type_changed || r.changed)
1670 VEC_safe_push (varobj_update_result, result, &r);
1671 return result;
1672 }
1673
1674 VEC_safe_push (varobj_update_result, stack, &r);
1675 }
1676 else
1677 {
1678 varobj_update_result r = {0};
1679
1680 r.varobj = *varp;
1681 VEC_safe_push (varobj_update_result, stack, &r);
1682 }
1683
1684 /* Walk through the children, reconstructing them all. */
1685 while (!VEC_empty (varobj_update_result, stack))
1686 {
1687 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1688 struct varobj *v = r.varobj;
1689
1690 VEC_pop (varobj_update_result, stack);
1691
1692 /* Update this variable, unless it's a root, which is already
1693 updated. */
1694 if (!r.value_installed)
1695 {
1696 struct type *new_type;
1697
1698 new = value_of_child (v->parent, v->index);
1699 if (update_type_if_necessary(v, new))
1700 r.type_changed = 1;
1701 if (new)
1702 new_type = value_type (new);
1703 else
1704 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
1705
1706 if (varobj_value_has_mutated (v, new, new_type))
1707 {
1708 /* The children are no longer valid; delete them now.
1709 Report the fact that its type changed as well. */
1710 varobj_delete (v, NULL, 1 /* only_children */);
1711 v->num_children = -1;
1712 v->to = -1;
1713 v->from = -1;
1714 v->type = new_type;
1715 r.type_changed = 1;
1716 }
1717
1718 if (install_new_value (v, new, r.type_changed))
1719 {
1720 r.changed = 1;
1721 v->updated = 0;
1722 }
1723 }
1724
1725 /* We probably should not get children of a varobj that has a
1726 pretty-printer, but for which -var-list-children was never
1727 invoked. */
1728 if (v->dynamic->pretty_printer != NULL)
1729 {
1730 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1731 VEC (varobj_p) *new = 0;
1732 int i, children_changed = 0;
1733
1734 if (v->frozen)
1735 continue;
1736
1737 if (!v->dynamic->children_requested)
1738 {
1739 int dummy;
1740
1741 /* If we initially did not have potential children, but
1742 now we do, consider the varobj as changed.
1743 Otherwise, if children were never requested, consider
1744 it as unchanged -- presumably, such varobj is not yet
1745 expanded in the UI, so we need not bother getting
1746 it. */
1747 if (!varobj_has_more (v, 0))
1748 {
1749 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
1750 &dummy, 0, 0, 0);
1751 if (varobj_has_more (v, 0))
1752 r.changed = 1;
1753 }
1754
1755 if (r.changed)
1756 VEC_safe_push (varobj_update_result, result, &r);
1757
1758 continue;
1759 }
1760
1761 /* If update_dynamic_varobj_children returns 0, then we have
1762 a non-conforming pretty-printer, so we skip it. */
1763 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1764 &unchanged, &children_changed, 1,
1765 v->from, v->to))
1766 {
1767 if (children_changed || new)
1768 {
1769 r.children_changed = 1;
1770 r.new = new;
1771 }
1772 /* Push in reverse order so that the first child is
1773 popped from the work stack first, and so will be
1774 added to result first. This does not affect
1775 correctness, just "nicer". */
1776 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1777 {
1778 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1779 varobj_update_result r = {0};
1780
1781 /* Type may change only if value was changed. */
1782 r.varobj = tmp;
1783 r.changed = 1;
1784 r.type_changed = 1;
1785 r.value_installed = 1;
1786 VEC_safe_push (varobj_update_result, stack, &r);
1787 }
1788 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1789 {
1790 varobj_p tmp = VEC_index (varobj_p, changed, i);
1791 varobj_update_result r = {0};
1792
1793 r.varobj = tmp;
1794 r.changed = 1;
1795 r.value_installed = 1;
1796 VEC_safe_push (varobj_update_result, stack, &r);
1797 }
1798 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1799 {
1800 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1801
1802 if (!tmp->frozen)
1803 {
1804 varobj_update_result r = {0};
1805
1806 r.varobj = tmp;
1807 r.value_installed = 1;
1808 VEC_safe_push (varobj_update_result, stack, &r);
1809 }
1810 }
1811 if (r.changed || r.children_changed)
1812 VEC_safe_push (varobj_update_result, result, &r);
1813
1814 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1815 because NEW has been put into the result vector. */
1816 VEC_free (varobj_p, changed);
1817 VEC_free (varobj_p, type_changed);
1818 VEC_free (varobj_p, unchanged);
1819
1820 continue;
1821 }
1822 }
1823
1824 /* Push any children. Use reverse order so that the first
1825 child is popped from the work stack first, and so
1826 will be added to result first. This does not
1827 affect correctness, just "nicer". */
1828 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1829 {
1830 varobj_p c = VEC_index (varobj_p, v->children, i);
1831
1832 /* Child may be NULL if explicitly deleted by -var-delete. */
1833 if (c != NULL && !c->frozen)
1834 {
1835 varobj_update_result r = {0};
1836
1837 r.varobj = c;
1838 VEC_safe_push (varobj_update_result, stack, &r);
1839 }
1840 }
1841
1842 if (r.changed || r.type_changed)
1843 VEC_safe_push (varobj_update_result, result, &r);
1844 }
1845
1846 VEC_free (varobj_update_result, stack);
1847
1848 return result;
1849 }
1850 \f
1851
1852 /* Helper functions */
1853
1854 /*
1855 * Variable object construction/destruction
1856 */
1857
1858 static int
1859 delete_variable (struct cpstack **resultp, struct varobj *var,
1860 int only_children_p)
1861 {
1862 int delcount = 0;
1863
1864 delete_variable_1 (resultp, &delcount, var,
1865 only_children_p, 1 /* remove_from_parent_p */ );
1866
1867 return delcount;
1868 }
1869
1870 /* Delete the variable object VAR and its children. */
1871 /* IMPORTANT NOTE: If we delete a variable which is a child
1872 and the parent is not removed we dump core. It must be always
1873 initially called with remove_from_parent_p set. */
1874 static void
1875 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1876 struct varobj *var, int only_children_p,
1877 int remove_from_parent_p)
1878 {
1879 int i;
1880
1881 /* Delete any children of this variable, too. */
1882 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1883 {
1884 varobj_p child = VEC_index (varobj_p, var->children, i);
1885
1886 if (!child)
1887 continue;
1888 if (!remove_from_parent_p)
1889 child->parent = NULL;
1890 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1891 }
1892 VEC_free (varobj_p, var->children);
1893
1894 /* if we were called to delete only the children we are done here. */
1895 if (only_children_p)
1896 return;
1897
1898 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
1899 /* If the name is null, this is a temporary variable, that has not
1900 yet been installed, don't report it, it belongs to the caller... */
1901 if (var->obj_name != NULL)
1902 {
1903 cppush (resultp, xstrdup (var->obj_name));
1904 *delcountp = *delcountp + 1;
1905 }
1906
1907 /* If this variable has a parent, remove it from its parent's list. */
1908 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1909 (as indicated by remove_from_parent_p) we don't bother doing an
1910 expensive list search to find the element to remove when we are
1911 discarding the list afterwards. */
1912 if ((remove_from_parent_p) && (var->parent != NULL))
1913 {
1914 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1915 }
1916
1917 if (var->obj_name != NULL)
1918 uninstall_variable (var);
1919
1920 /* Free memory associated with this variable. */
1921 free_variable (var);
1922 }
1923
1924 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1925 static int
1926 install_variable (struct varobj *var)
1927 {
1928 struct vlist *cv;
1929 struct vlist *newvl;
1930 const char *chp;
1931 unsigned int index = 0;
1932 unsigned int i = 1;
1933
1934 for (chp = var->obj_name; *chp; chp++)
1935 {
1936 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1937 }
1938
1939 cv = *(varobj_table + index);
1940 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1941 cv = cv->next;
1942
1943 if (cv != NULL)
1944 error (_("Duplicate variable object name"));
1945
1946 /* Add varobj to hash table. */
1947 newvl = xmalloc (sizeof (struct vlist));
1948 newvl->next = *(varobj_table + index);
1949 newvl->var = var;
1950 *(varobj_table + index) = newvl;
1951
1952 /* If root, add varobj to root list. */
1953 if (is_root_p (var))
1954 {
1955 /* Add to list of root variables. */
1956 if (rootlist == NULL)
1957 var->root->next = NULL;
1958 else
1959 var->root->next = rootlist;
1960 rootlist = var->root;
1961 }
1962
1963 return 1; /* OK */
1964 }
1965
1966 /* Unistall the object VAR. */
1967 static void
1968 uninstall_variable (struct varobj *var)
1969 {
1970 struct vlist *cv;
1971 struct vlist *prev;
1972 struct varobj_root *cr;
1973 struct varobj_root *prer;
1974 const char *chp;
1975 unsigned int index = 0;
1976 unsigned int i = 1;
1977
1978 /* Remove varobj from hash table. */
1979 for (chp = var->obj_name; *chp; chp++)
1980 {
1981 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1982 }
1983
1984 cv = *(varobj_table + index);
1985 prev = NULL;
1986 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1987 {
1988 prev = cv;
1989 cv = cv->next;
1990 }
1991
1992 if (varobjdebug)
1993 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1994
1995 if (cv == NULL)
1996 {
1997 warning
1998 ("Assertion failed: Could not find variable object \"%s\" to delete",
1999 var->obj_name);
2000 return;
2001 }
2002
2003 if (prev == NULL)
2004 *(varobj_table + index) = cv->next;
2005 else
2006 prev->next = cv->next;
2007
2008 xfree (cv);
2009
2010 /* If root, remove varobj from root list. */
2011 if (is_root_p (var))
2012 {
2013 /* Remove from list of root variables. */
2014 if (rootlist == var->root)
2015 rootlist = var->root->next;
2016 else
2017 {
2018 prer = NULL;
2019 cr = rootlist;
2020 while ((cr != NULL) && (cr->rootvar != var))
2021 {
2022 prer = cr;
2023 cr = cr->next;
2024 }
2025 if (cr == NULL)
2026 {
2027 warning (_("Assertion failed: Could not find "
2028 "varobj \"%s\" in root list"),
2029 var->obj_name);
2030 return;
2031 }
2032 if (prer == NULL)
2033 rootlist = NULL;
2034 else
2035 prer->next = cr->next;
2036 }
2037 }
2038
2039 }
2040
2041 /* Create and install a child of the parent of the given name. */
2042 static struct varobj *
2043 create_child (struct varobj *parent, int index, char *name)
2044 {
2045 struct varobj_item item;
2046
2047 item.name = name;
2048 item.value = value_of_child (parent, index);
2049
2050 return create_child_with_value (parent, index, &item);
2051 }
2052
2053 static struct varobj *
2054 create_child_with_value (struct varobj *parent, int index,
2055 struct varobj_item *item)
2056 {
2057 struct varobj *child;
2058 char *childs_name;
2059
2060 child = new_variable ();
2061
2062 /* NAME is allocated by caller. */
2063 child->name = item->name;
2064 child->index = index;
2065 child->parent = parent;
2066 child->root = parent->root;
2067
2068 if (varobj_is_anonymous_child (child))
2069 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2070 else
2071 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
2072 child->obj_name = childs_name;
2073
2074 install_variable (child);
2075
2076 /* Compute the type of the child. Must do this before
2077 calling install_new_value. */
2078 if (item->value != NULL)
2079 /* If the child had no evaluation errors, var->value
2080 will be non-NULL and contain a valid type. */
2081 child->type = value_actual_type (item->value, 0, NULL);
2082 else
2083 /* Otherwise, we must compute the type. */
2084 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2085 child->index);
2086 install_new_value (child, item->value, 1);
2087
2088 return child;
2089 }
2090 \f
2091
2092 /*
2093 * Miscellaneous utility functions.
2094 */
2095
2096 /* Allocate memory and initialize a new variable. */
2097 static struct varobj *
2098 new_variable (void)
2099 {
2100 struct varobj *var;
2101
2102 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2103 var->name = NULL;
2104 var->path_expr = NULL;
2105 var->obj_name = NULL;
2106 var->index = -1;
2107 var->type = NULL;
2108 var->value = NULL;
2109 var->num_children = -1;
2110 var->parent = NULL;
2111 var->children = NULL;
2112 var->format = 0;
2113 var->root = NULL;
2114 var->updated = 0;
2115 var->print_value = NULL;
2116 var->frozen = 0;
2117 var->not_fetched = 0;
2118 var->dynamic
2119 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2120 var->dynamic->children_requested = 0;
2121 var->from = -1;
2122 var->to = -1;
2123 var->dynamic->constructor = 0;
2124 var->dynamic->pretty_printer = 0;
2125 var->dynamic->child_iter = 0;
2126 var->dynamic->saved_item = 0;
2127
2128 return var;
2129 }
2130
2131 /* Allocate memory and initialize a new root variable. */
2132 static struct varobj *
2133 new_root_variable (void)
2134 {
2135 struct varobj *var = new_variable ();
2136
2137 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
2138 var->root->lang_ops = NULL;
2139 var->root->exp = NULL;
2140 var->root->valid_block = NULL;
2141 var->root->frame = null_frame_id;
2142 var->root->floating = 0;
2143 var->root->rootvar = NULL;
2144 var->root->is_valid = 1;
2145
2146 return var;
2147 }
2148
2149 /* Free any allocated memory associated with VAR. */
2150 static void
2151 free_variable (struct varobj *var)
2152 {
2153 #if HAVE_PYTHON
2154 if (var->dynamic->pretty_printer != NULL)
2155 {
2156 struct cleanup *cleanup = varobj_ensure_python_env (var);
2157
2158 Py_XDECREF (var->dynamic->constructor);
2159 Py_XDECREF (var->dynamic->pretty_printer);
2160 do_cleanups (cleanup);
2161 }
2162 #endif
2163
2164 varobj_iter_delete (var->dynamic->child_iter);
2165 varobj_clear_saved_item (var->dynamic);
2166 value_free (var->value);
2167
2168 /* Free the expression if this is a root variable. */
2169 if (is_root_p (var))
2170 {
2171 xfree (var->root->exp);
2172 xfree (var->root);
2173 }
2174
2175 xfree (var->name);
2176 xfree (var->obj_name);
2177 xfree (var->print_value);
2178 xfree (var->path_expr);
2179 xfree (var->dynamic);
2180 xfree (var);
2181 }
2182
2183 static void
2184 do_free_variable_cleanup (void *var)
2185 {
2186 free_variable (var);
2187 }
2188
2189 static struct cleanup *
2190 make_cleanup_free_variable (struct varobj *var)
2191 {
2192 return make_cleanup (do_free_variable_cleanup, var);
2193 }
2194
2195 /* Return the type of the value that's stored in VAR,
2196 or that would have being stored there if the
2197 value were accessible.
2198
2199 This differs from VAR->type in that VAR->type is always
2200 the true type of the expession in the source language.
2201 The return value of this function is the type we're
2202 actually storing in varobj, and using for displaying
2203 the values and for comparing previous and new values.
2204
2205 For example, top-level references are always stripped. */
2206 struct type *
2207 varobj_get_value_type (struct varobj *var)
2208 {
2209 struct type *type;
2210
2211 if (var->value)
2212 type = value_type (var->value);
2213 else
2214 type = var->type;
2215
2216 type = check_typedef (type);
2217
2218 if (TYPE_CODE (type) == TYPE_CODE_REF)
2219 type = get_target_type (type);
2220
2221 type = check_typedef (type);
2222
2223 return type;
2224 }
2225
2226 /* What is the default display for this variable? We assume that
2227 everything is "natural". Any exceptions? */
2228 static enum varobj_display_formats
2229 variable_default_display (struct varobj *var)
2230 {
2231 return FORMAT_NATURAL;
2232 }
2233
2234 /* FIXME: The following should be generic for any pointer. */
2235 static void
2236 cppush (struct cpstack **pstack, char *name)
2237 {
2238 struct cpstack *s;
2239
2240 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2241 s->name = name;
2242 s->next = *pstack;
2243 *pstack = s;
2244 }
2245
2246 /* FIXME: The following should be generic for any pointer. */
2247 static char *
2248 cppop (struct cpstack **pstack)
2249 {
2250 struct cpstack *s;
2251 char *v;
2252
2253 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2254 return NULL;
2255
2256 s = *pstack;
2257 v = s->name;
2258 *pstack = (*pstack)->next;
2259 xfree (s);
2260
2261 return v;
2262 }
2263 \f
2264 /*
2265 * Language-dependencies
2266 */
2267
2268 /* Common entry points */
2269
2270 /* Return the number of children for a given variable.
2271 The result of this function is defined by the language
2272 implementation. The number of children returned by this function
2273 is the number of children that the user will see in the variable
2274 display. */
2275 static int
2276 number_of_children (struct varobj *var)
2277 {
2278 return (*var->root->lang_ops->number_of_children) (var);
2279 }
2280
2281 /* What is the expression for the root varobj VAR? Returns a malloc'd
2282 string. */
2283 static char *
2284 name_of_variable (struct varobj *var)
2285 {
2286 return (*var->root->lang_ops->name_of_variable) (var);
2287 }
2288
2289 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd
2290 string. */
2291 static char *
2292 name_of_child (struct varobj *var, int index)
2293 {
2294 return (*var->root->lang_ops->name_of_child) (var, index);
2295 }
2296
2297 /* If frame associated with VAR can be found, switch
2298 to it and return 1. Otherwise, return 0. */
2299
2300 static int
2301 check_scope (struct varobj *var)
2302 {
2303 struct frame_info *fi;
2304 int scope;
2305
2306 fi = frame_find_by_id (var->root->frame);
2307 scope = fi != NULL;
2308
2309 if (fi)
2310 {
2311 CORE_ADDR pc = get_frame_pc (fi);
2312
2313 if (pc < BLOCK_START (var->root->valid_block) ||
2314 pc >= BLOCK_END (var->root->valid_block))
2315 scope = 0;
2316 else
2317 select_frame (fi);
2318 }
2319 return scope;
2320 }
2321
2322 /* Helper function to value_of_root. */
2323
2324 static struct value *
2325 value_of_root_1 (struct varobj **var_handle)
2326 {
2327 struct value *new_val = NULL;
2328 struct varobj *var = *var_handle;
2329 int within_scope = 0;
2330 struct cleanup *back_to;
2331
2332 /* Only root variables can be updated... */
2333 if (!is_root_p (var))
2334 /* Not a root var. */
2335 return NULL;
2336
2337 back_to = make_cleanup_restore_current_thread ();
2338
2339 /* Determine whether the variable is still around. */
2340 if (var->root->valid_block == NULL || var->root->floating)
2341 within_scope = 1;
2342 else if (var->root->thread_id == 0)
2343 {
2344 /* The program was single-threaded when the variable object was
2345 created. Technically, it's possible that the program became
2346 multi-threaded since then, but we don't support such
2347 scenario yet. */
2348 within_scope = check_scope (var);
2349 }
2350 else
2351 {
2352 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2353 if (in_thread_list (ptid))
2354 {
2355 switch_to_thread (ptid);
2356 within_scope = check_scope (var);
2357 }
2358 }
2359
2360 if (within_scope)
2361 {
2362 volatile struct gdb_exception except;
2363
2364 /* We need to catch errors here, because if evaluate
2365 expression fails we want to just return NULL. */
2366 TRY_CATCH (except, RETURN_MASK_ERROR)
2367 {
2368 new_val = evaluate_expression (var->root->exp);
2369 }
2370 }
2371
2372 do_cleanups (back_to);
2373
2374 return new_val;
2375 }
2376
2377 /* What is the ``struct value *'' of the root variable VAR?
2378 For floating variable object, evaluation can get us a value
2379 of different type from what is stored in varobj already. In
2380 that case:
2381 - *type_changed will be set to 1
2382 - old varobj will be freed, and new one will be
2383 created, with the same name.
2384 - *var_handle will be set to the new varobj
2385 Otherwise, *type_changed will be set to 0. */
2386 static struct value *
2387 value_of_root (struct varobj **var_handle, int *type_changed)
2388 {
2389 struct varobj *var;
2390
2391 if (var_handle == NULL)
2392 return NULL;
2393
2394 var = *var_handle;
2395
2396 /* This should really be an exception, since this should
2397 only get called with a root variable. */
2398
2399 if (!is_root_p (var))
2400 return NULL;
2401
2402 if (var->root->floating)
2403 {
2404 struct varobj *tmp_var;
2405 char *old_type, *new_type;
2406
2407 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2408 USE_SELECTED_FRAME);
2409 if (tmp_var == NULL)
2410 {
2411 return NULL;
2412 }
2413 old_type = varobj_get_type (var);
2414 new_type = varobj_get_type (tmp_var);
2415 if (strcmp (old_type, new_type) == 0)
2416 {
2417 /* The expression presently stored inside var->root->exp
2418 remembers the locations of local variables relatively to
2419 the frame where the expression was created (in DWARF location
2420 button, for example). Naturally, those locations are not
2421 correct in other frames, so update the expression. */
2422
2423 struct expression *tmp_exp = var->root->exp;
2424
2425 var->root->exp = tmp_var->root->exp;
2426 tmp_var->root->exp = tmp_exp;
2427
2428 varobj_delete (tmp_var, NULL, 0);
2429 *type_changed = 0;
2430 }
2431 else
2432 {
2433 tmp_var->obj_name = xstrdup (var->obj_name);
2434 tmp_var->from = var->from;
2435 tmp_var->to = var->to;
2436 varobj_delete (var, NULL, 0);
2437
2438 install_variable (tmp_var);
2439 *var_handle = tmp_var;
2440 var = *var_handle;
2441 *type_changed = 1;
2442 }
2443 xfree (old_type);
2444 xfree (new_type);
2445 }
2446 else
2447 {
2448 *type_changed = 0;
2449 }
2450
2451 {
2452 struct value *value;
2453
2454 value = value_of_root_1 (var_handle);
2455 if (var->value == NULL || value == NULL)
2456 {
2457 /* For root varobj-s, a NULL value indicates a scoping issue.
2458 So, nothing to do in terms of checking for mutations. */
2459 }
2460 else if (varobj_value_has_mutated (var, value, value_type (value)))
2461 {
2462 /* The type has mutated, so the children are no longer valid.
2463 Just delete them, and tell our caller that the type has
2464 changed. */
2465 varobj_delete (var, NULL, 1 /* only_children */);
2466 var->num_children = -1;
2467 var->to = -1;
2468 var->from = -1;
2469 *type_changed = 1;
2470 }
2471 return value;
2472 }
2473 }
2474
2475 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2476 static struct value *
2477 value_of_child (struct varobj *parent, int index)
2478 {
2479 struct value *value;
2480
2481 value = (*parent->root->lang_ops->value_of_child) (parent, index);
2482
2483 return value;
2484 }
2485
2486 /* GDB already has a command called "value_of_variable". Sigh. */
2487 static char *
2488 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2489 {
2490 if (var->root->is_valid)
2491 {
2492 if (var->dynamic->pretty_printer != NULL)
2493 return varobj_value_get_print_value (var->value, var->format, var);
2494 return (*var->root->lang_ops->value_of_variable) (var, format);
2495 }
2496 else
2497 return NULL;
2498 }
2499
2500 void
2501 varobj_formatted_print_options (struct value_print_options *opts,
2502 enum varobj_display_formats format)
2503 {
2504 get_formatted_print_options (opts, format_code[(int) format]);
2505 opts->deref_ref = 0;
2506 opts->raw = 1;
2507 }
2508
2509 char *
2510 varobj_value_get_print_value (struct value *value,
2511 enum varobj_display_formats format,
2512 struct varobj *var)
2513 {
2514 struct ui_file *stb;
2515 struct cleanup *old_chain;
2516 char *thevalue = NULL;
2517 struct value_print_options opts;
2518 struct type *type = NULL;
2519 long len = 0;
2520 char *encoding = NULL;
2521 struct gdbarch *gdbarch = NULL;
2522 /* Initialize it just to avoid a GCC false warning. */
2523 CORE_ADDR str_addr = 0;
2524 int string_print = 0;
2525
2526 if (value == NULL)
2527 return NULL;
2528
2529 stb = mem_fileopen ();
2530 old_chain = make_cleanup_ui_file_delete (stb);
2531
2532 gdbarch = get_type_arch (value_type (value));
2533 #if HAVE_PYTHON
2534 if (gdb_python_initialized)
2535 {
2536 PyObject *value_formatter = var->dynamic->pretty_printer;
2537
2538 varobj_ensure_python_env (var);
2539
2540 if (value_formatter)
2541 {
2542 /* First check to see if we have any children at all. If so,
2543 we simply return {...}. */
2544 if (dynamic_varobj_has_child_method (var))
2545 {
2546 do_cleanups (old_chain);
2547 return xstrdup ("{...}");
2548 }
2549
2550 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2551 {
2552 struct value *replacement;
2553 PyObject *output = NULL;
2554
2555 output = apply_varobj_pretty_printer (value_formatter,
2556 &replacement,
2557 stb);
2558
2559 /* If we have string like output ... */
2560 if (output)
2561 {
2562 make_cleanup_py_decref (output);
2563
2564 /* If this is a lazy string, extract it. For lazy
2565 strings we always print as a string, so set
2566 string_print. */
2567 if (gdbpy_is_lazy_string (output))
2568 {
2569 gdbpy_extract_lazy_string (output, &str_addr, &type,
2570 &len, &encoding);
2571 make_cleanup (free_current_contents, &encoding);
2572 string_print = 1;
2573 }
2574 else
2575 {
2576 /* If it is a regular (non-lazy) string, extract
2577 it and copy the contents into THEVALUE. If the
2578 hint says to print it as a string, set
2579 string_print. Otherwise just return the extracted
2580 string as a value. */
2581
2582 char *s = python_string_to_target_string (output);
2583
2584 if (s)
2585 {
2586 char *hint;
2587
2588 hint = gdbpy_get_display_hint (value_formatter);
2589 if (hint)
2590 {
2591 if (!strcmp (hint, "string"))
2592 string_print = 1;
2593 xfree (hint);
2594 }
2595
2596 len = strlen (s);
2597 thevalue = xmemdup (s, len + 1, len + 1);
2598 type = builtin_type (gdbarch)->builtin_char;
2599 xfree (s);
2600
2601 if (!string_print)
2602 {
2603 do_cleanups (old_chain);
2604 return thevalue;
2605 }
2606
2607 make_cleanup (xfree, thevalue);
2608 }
2609 else
2610 gdbpy_print_stack ();
2611 }
2612 }
2613 /* If the printer returned a replacement value, set VALUE
2614 to REPLACEMENT. If there is not a replacement value,
2615 just use the value passed to this function. */
2616 if (replacement)
2617 value = replacement;
2618 }
2619 }
2620 }
2621 #endif
2622
2623 varobj_formatted_print_options (&opts, format);
2624
2625 /* If the THEVALUE has contents, it is a regular string. */
2626 if (thevalue)
2627 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
2628 else if (string_print)
2629 /* Otherwise, if string_print is set, and it is not a regular
2630 string, it is a lazy string. */
2631 val_print_string (type, encoding, str_addr, len, stb, &opts);
2632 else
2633 /* All other cases. */
2634 common_val_print (value, stb, 0, &opts, current_language);
2635
2636 thevalue = ui_file_xstrdup (stb, NULL);
2637
2638 do_cleanups (old_chain);
2639 return thevalue;
2640 }
2641
2642 int
2643 varobj_editable_p (struct varobj *var)
2644 {
2645 struct type *type;
2646
2647 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2648 return 0;
2649
2650 type = varobj_get_value_type (var);
2651
2652 switch (TYPE_CODE (type))
2653 {
2654 case TYPE_CODE_STRUCT:
2655 case TYPE_CODE_UNION:
2656 case TYPE_CODE_ARRAY:
2657 case TYPE_CODE_FUNC:
2658 case TYPE_CODE_METHOD:
2659 return 0;
2660 break;
2661
2662 default:
2663 return 1;
2664 break;
2665 }
2666 }
2667
2668 /* Call VAR's value_is_changeable_p language-specific callback. */
2669
2670 int
2671 varobj_value_is_changeable_p (struct varobj *var)
2672 {
2673 return var->root->lang_ops->value_is_changeable_p (var);
2674 }
2675
2676 /* Return 1 if that varobj is floating, that is is always evaluated in the
2677 selected frame, and not bound to thread/frame. Such variable objects
2678 are created using '@' as frame specifier to -var-create. */
2679 int
2680 varobj_floating_p (struct varobj *var)
2681 {
2682 return var->root->floating;
2683 }
2684
2685 /* Implement the "value_is_changeable_p" varobj callback for most
2686 languages. */
2687
2688 int
2689 varobj_default_value_is_changeable_p (struct varobj *var)
2690 {
2691 int r;
2692 struct type *type;
2693
2694 if (CPLUS_FAKE_CHILD (var))
2695 return 0;
2696
2697 type = varobj_get_value_type (var);
2698
2699 switch (TYPE_CODE (type))
2700 {
2701 case TYPE_CODE_STRUCT:
2702 case TYPE_CODE_UNION:
2703 case TYPE_CODE_ARRAY:
2704 r = 0;
2705 break;
2706
2707 default:
2708 r = 1;
2709 }
2710
2711 return r;
2712 }
2713
2714 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2715 with an arbitrary caller supplied DATA pointer. */
2716
2717 void
2718 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2719 {
2720 struct varobj_root *var_root, *var_root_next;
2721
2722 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2723
2724 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2725 {
2726 var_root_next = var_root->next;
2727
2728 (*func) (var_root->rootvar, data);
2729 }
2730 }
2731 \f
2732 extern void _initialize_varobj (void);
2733 void
2734 _initialize_varobj (void)
2735 {
2736 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2737
2738 varobj_table = xmalloc (sizeof_table);
2739 memset (varobj_table, 0, sizeof_table);
2740
2741 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2742 &varobjdebug,
2743 _("Set varobj debugging."),
2744 _("Show varobj debugging."),
2745 _("When non-zero, varobj debugging is enabled."),
2746 NULL, show_varobjdebug,
2747 &setdebuglist, &showdebuglist);
2748 }
2749
2750 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
2751 defined on globals. It is a helper for varobj_invalidate.
2752
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2756
2757 static void
2758 varobj_invalidate_iter (struct varobj *var, void *unused)
2759 {
2760 /* global and floating var must be re-evaluated. */
2761 if (var->root->floating || var->root->valid_block == NULL)
2762 {
2763 struct varobj *tmp_var;
2764
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2768 USE_CURRENT_FRAME);
2769 if (tmp_var != NULL)
2770 {
2771 tmp_var->obj_name = xstrdup (var->obj_name);
2772 varobj_delete (var, NULL, 0);
2773 install_variable (tmp_var);
2774 }
2775 else
2776 var->root->is_valid = 0;
2777 }
2778 else /* locals must be invalidated. */
2779 var->root->is_valid = 0;
2780 }
2781
2782 /* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2785
2786 void
2787 varobj_invalidate (void)
2788 {
2789 all_root_varobjs (varobj_invalidate_iter, NULL);
2790 }
This page took 0.103527 seconds and 4 git commands to generate.