2010-05-06 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / varobj.c
1 /* Implementation of the GDB variable objects API.
2
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009, 2010 Free Software Foundation, Inc.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "defs.h"
20 #include "exceptions.h"
21 #include "value.h"
22 #include "expression.h"
23 #include "frame.h"
24 #include "language.h"
25 #include "wrapper.h"
26 #include "gdbcmd.h"
27 #include "block.h"
28 #include "valprint.h"
29
30 #include "gdb_assert.h"
31 #include "gdb_string.h"
32 #include "gdb_regex.h"
33
34 #include "varobj.h"
35 #include "vec.h"
36 #include "gdbthread.h"
37 #include "inferior.h"
38
39 #if HAVE_PYTHON
40 #include "python/python.h"
41 #include "python/python-internal.h"
42 #else
43 typedef int PyObject;
44 #endif
45
46 /* Non-zero if we want to see trace of varobj level stuff. */
47
48 int varobjdebug = 0;
49 static void
50 show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52 {
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54 }
55
56 /* String representations of gdb's format codes */
57 char *varobj_format_string[] =
58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
59
60 /* String representations of gdb's known languages */
61 char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
62
63 /* True if we want to allow Python-based pretty-printing. */
64 static int pretty_printing = 0;
65
66 void
67 varobj_enable_pretty_printing (void)
68 {
69 pretty_printing = 1;
70 }
71
72 /* Data structures */
73
74 /* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76 struct varobj_root
77 {
78
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
81
82 /* Block for which this expression is valid */
83 struct block *valid_block;
84
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
87 struct frame_id frame;
88
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
100
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
107
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
110
111 /* Next root variable */
112 struct varobj_root *next;
113 };
114
115 /* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118 struct varobj
119 {
120
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
126
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
134
135 /* Index of this variable in its parent or -1 */
136 int index;
137
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
141 struct type *type;
142
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
147 struct value *value;
148
149 /* The number of (immediate) children this variable has */
150 int num_children;
151
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
154
155 /* Children of this object. */
156 VEC (varobj_p) *children;
157
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
166
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
172
173 /* Last print value. */
174 char *print_value;
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
185
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
211 };
212
213 struct cpstack
214 {
215 char *name;
216 struct cpstack *next;
217 };
218
219 /* A list of varobjs */
220
221 struct vlist
222 {
223 struct varobj *var;
224 struct vlist *next;
225 };
226
227 /* Private function prototypes */
228
229 /* Helper functions for the above subcommands. */
230
231 static int delete_variable (struct cpstack **, struct varobj *, int);
232
233 static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
235
236 static int install_variable (struct varobj *);
237
238 static void uninstall_variable (struct varobj *);
239
240 static struct varobj *create_child (struct varobj *, int, char *);
241
242 static struct varobj *
243 create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
246 /* Utility routines */
247
248 static struct varobj *new_variable (void);
249
250 static struct varobj *new_root_variable (void);
251
252 static void free_variable (struct varobj *var);
253
254 static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
256 static struct type *get_type (struct varobj *var);
257
258 static struct type *get_value_type (struct varobj *var);
259
260 static struct type *get_target_type (struct type *);
261
262 static enum varobj_display_formats variable_default_display (struct varobj *);
263
264 static void cppush (struct cpstack **pstack, char *name);
265
266 static char *cppop (struct cpstack **pstack);
267
268 static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
271 /* Language-specific routines. */
272
273 static enum varobj_languages variable_language (struct varobj *var);
274
275 static int number_of_children (struct varobj *);
276
277 static char *name_of_variable (struct varobj *);
278
279 static char *name_of_child (struct varobj *, int);
280
281 static struct value *value_of_root (struct varobj **var_handle, int *);
282
283 static struct value *value_of_child (struct varobj *parent, int index);
284
285 static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
287
288 static char *value_get_print_value (struct value *value,
289 enum varobj_display_formats format,
290 struct varobj *var);
291
292 static int varobj_value_is_changeable_p (struct varobj *var);
293
294 static int is_root_p (struct varobj *var);
295
296 #if HAVE_PYTHON
297
298 static struct varobj *
299 varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
301 #endif /* HAVE_PYTHON */
302
303 /* C implementation */
304
305 static int c_number_of_children (struct varobj *var);
306
307 static char *c_name_of_variable (struct varobj *parent);
308
309 static char *c_name_of_child (struct varobj *parent, int index);
310
311 static char *c_path_expr_of_child (struct varobj *child);
312
313 static struct value *c_value_of_root (struct varobj **var_handle);
314
315 static struct value *c_value_of_child (struct varobj *parent, int index);
316
317 static struct type *c_type_of_child (struct varobj *parent, int index);
318
319 static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
321
322 /* C++ implementation */
323
324 static int cplus_number_of_children (struct varobj *var);
325
326 static void cplus_class_num_children (struct type *type, int children[3]);
327
328 static char *cplus_name_of_variable (struct varobj *parent);
329
330 static char *cplus_name_of_child (struct varobj *parent, int index);
331
332 static char *cplus_path_expr_of_child (struct varobj *child);
333
334 static struct value *cplus_value_of_root (struct varobj **var_handle);
335
336 static struct value *cplus_value_of_child (struct varobj *parent, int index);
337
338 static struct type *cplus_type_of_child (struct varobj *parent, int index);
339
340 static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
342
343 /* Java implementation */
344
345 static int java_number_of_children (struct varobj *var);
346
347 static char *java_name_of_variable (struct varobj *parent);
348
349 static char *java_name_of_child (struct varobj *parent, int index);
350
351 static char *java_path_expr_of_child (struct varobj *child);
352
353 static struct value *java_value_of_root (struct varobj **var_handle);
354
355 static struct value *java_value_of_child (struct varobj *parent, int index);
356
357 static struct type *java_type_of_child (struct varobj *parent, int index);
358
359 static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
361
362 /* The language specific vector */
363
364 struct language_specific
365 {
366
367 /* The language of this variable */
368 enum varobj_languages language;
369
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
372
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
375
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
378
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
385
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
388
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
391
392 /* The current value of VAR. */
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
395 };
396
397 /* Array of known source language routines. */
398 static struct language_specific languages[vlang_end] = {
399 /* Unknown (try treating as C */
400 {
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
405 c_path_expr_of_child,
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
409 c_value_of_variable}
410 ,
411 /* C */
412 {
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
417 c_path_expr_of_child,
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
421 c_value_of_variable}
422 ,
423 /* C++ */
424 {
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
429 cplus_path_expr_of_child,
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
433 cplus_value_of_variable}
434 ,
435 /* Java */
436 {
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
441 java_path_expr_of_child,
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
445 java_value_of_variable}
446 };
447
448 /* A little convenience enum for dealing with C++/Java */
449 enum vsections
450 {
451 v_public = 0, v_private, v_protected
452 };
453
454 /* Private data */
455
456 /* Mappings of varobj_display_formats enums to gdb's format codes */
457 static int format_code[] = { 0, 't', 'd', 'x', 'o' };
458
459 /* Header of the list of root variable objects */
460 static struct varobj_root *rootlist;
461
462 /* Prime number indicating the number of buckets in the hash table */
463 /* A prime large enough to avoid too many colisions */
464 #define VAROBJ_TABLE_SIZE 227
465
466 /* Pointer to the varobj hash table (built at run time) */
467 static struct vlist **varobj_table;
468
469 /* Is the variable X one of our "fake" children? */
470 #define CPLUS_FAKE_CHILD(x) \
471 ((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472 \f
473
474 /* API Implementation */
475 static int
476 is_root_p (struct varobj *var)
477 {
478 return (var->root->rootvar == var);
479 }
480
481 #ifdef HAVE_PYTHON
482 /* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484 struct cleanup *
485 varobj_ensure_python_env (struct varobj *var)
486 {
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489 }
490 #endif
491
492 /* Creates a varobj (not its children) */
493
494 /* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497 static struct frame_info *
498 find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499 {
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
508 {
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
519 return frame;
520 }
521
522 return NULL;
523 }
524
525 struct varobj *
526 varobj_create (char *objname,
527 char *expression, CORE_ADDR frame, enum varobj_type type)
528 {
529 struct varobj *var;
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
537 old_chain = make_cleanup_free_variable (var);
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
543 struct value *value = NULL;
544
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
563 else
564 fi = NULL;
565
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
568 var->root->floating = 1;
569
570 block = NULL;
571 if (fi != NULL)
572 block = get_frame_block (fi, 0);
573
574 p = expression;
575 innermost_block = NULL;
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
594 var->name = xstrdup (expression);
595 /* For a root var, the name and the expr are the same. */
596 var->path_expr = xstrdup (expression);
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
602 if (innermost_block)
603 {
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
611 var->root->frame = get_frame_id (fi);
612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
613 old_fi = get_selected_frame (NULL);
614 select_frame (fi);
615 }
616
617 /* We definitely need to catch errors here.
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
620 if (!gdb_evaluate_expression (var->root->exp, &value))
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
629
630 install_new_value (var, value, 1 /* Initial assignment */);
631
632 /* Set language info */
633 lang = variable_language (var);
634 var->root->lang = &languages[lang];
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
640 if (old_fi != NULL)
641 select_frame (old_fi);
642 }
643
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
648 {
649 var->obj_name = xstrdup (objname);
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662 }
663
664 /* Generates an unique name that can be used for a varobj */
665
666 char *
667 varobj_gen_name (void)
668 {
669 static int id = 0;
670 char *obj_name;
671
672 /* generate a name for this object */
673 id++;
674 obj_name = xstrprintf ("var%d", id);
675
676 return obj_name;
677 }
678
679 /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
681
682 struct varobj *
683 varobj_get_handle (char *objname)
684 {
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
700 error (_("Variable object not found"));
701
702 return cv->var;
703 }
704
705 /* Given the handle, return the name of the object */
706
707 char *
708 varobj_get_objname (struct varobj *var)
709 {
710 return var->obj_name;
711 }
712
713 /* Given the handle, return the expression represented by the object */
714
715 char *
716 varobj_get_expression (struct varobj *var)
717 {
718 return name_of_variable (var);
719 }
720
721 /* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725 int
726 varobj_delete (struct varobj *var, char ***dellist, int only_children)
727 {
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
760 mycount);
761 }
762
763 return delcount;
764 }
765
766 #if HAVE_PYTHON
767
768 /* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770 static PyObject *
771 instantiate_pretty_printer (PyObject *constructor, struct value *value)
772 {
773 PyObject *val_obj = NULL;
774 PyObject *printer;
775
776 val_obj = value_to_value_object (value);
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
783 return NULL;
784 }
785
786 #endif
787
788 /* Set/Get variable object display format */
789
790 enum varobj_display_formats
791 varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793 {
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
811 xfree (var->print_value);
812 var->print_value = value_get_print_value (var->value, var->format, var);
813 }
814
815 return var->format;
816 }
817
818 enum varobj_display_formats
819 varobj_get_display_format (struct varobj *var)
820 {
821 return var->format;
822 }
823
824 char *
825 varobj_get_display_hint (struct varobj *var)
826 {
827 char *result = NULL;
828
829 #if HAVE_PYTHON
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
834
835 do_cleanups (back_to);
836 #endif
837
838 return result;
839 }
840
841 /* Return true if the varobj has items after TO, false otherwise. */
842
843 int
844 varobj_has_more (struct varobj *var, int to)
845 {
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850 }
851
852 /* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856 int
857 varobj_get_thread_id (struct varobj *var)
858 {
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863 }
864
865 void
866 varobj_set_frozen (struct varobj *var, int frozen)
867 {
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876 }
877
878 int
879 varobj_get_frozen (struct varobj *var)
880 {
881 return var->frozen;
882 }
883
884 /* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889 static void
890 restrict_range (VEC (varobj_p) *children, int *from, int *to)
891 {
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906 }
907
908 #if HAVE_PYTHON
909
910 /* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913 static void
914 install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922 {
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944 }
945
946 static int
947 dynamic_varobj_has_child_method (struct varobj *var)
948 {
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957 }
958
959 #endif
960
961 static int
962 update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
970 {
971 #if HAVE_PYTHON
972 struct cleanup *back_to;
973 PyObject *children;
974 int i;
975 PyObject *printer = var->pretty_printer;
976
977 back_to = varobj_ensure_python_env (var);
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
986 if (update_children || !var->child_iter)
987 {
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
990
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
996
997 make_cleanup_py_decref (children);
998
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
1014 }
1015 else
1016 i = VEC_length (varobj_p, var->children);
1017
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
1021 {
1022 PyObject *item;
1023
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
1032
1033 if (!item)
1034 break;
1035
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
1038 {
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
1056 }
1057 else
1058 {
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
1061
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
1075 }
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
1086 return 1;
1087 #else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089 #endif
1090 }
1091
1092 int
1093 varobj_get_num_children (struct varobj *var)
1094 {
1095 if (var->num_children == -1)
1096 {
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
1107 var->num_children = number_of_children (var);
1108 }
1109
1110 return var->num_children >= 0 ? var->num_children : 0;
1111 }
1112
1113 /* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
1116 VEC (varobj_p)*
1117 varobj_list_children (struct varobj *var, int *from, int *to)
1118 {
1119 char *name;
1120 int i, children_changed;
1121
1122 var->children_requested = 1;
1123
1124 if (var->pretty_printer)
1125 {
1126 /* This, in theory, can result in the number of children changing without
1127 frontend noticing. But well, calling -var-list-children on the same
1128 varobj twice is not something a sane frontend would do. */
1129 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1130 0, 0, *to);
1131 restrict_range (var->children, from, to);
1132 return var->children;
1133 }
1134
1135 if (var->num_children == -1)
1136 var->num_children = number_of_children (var);
1137
1138 /* If that failed, give up. */
1139 if (var->num_children == -1)
1140 return var->children;
1141
1142 /* If we're called when the list of children is not yet initialized,
1143 allocate enough elements in it. */
1144 while (VEC_length (varobj_p, var->children) < var->num_children)
1145 VEC_safe_push (varobj_p, var->children, NULL);
1146
1147 for (i = 0; i < var->num_children; i++)
1148 {
1149 varobj_p existing = VEC_index (varobj_p, var->children, i);
1150
1151 if (existing == NULL)
1152 {
1153 /* Either it's the first call to varobj_list_children for
1154 this variable object, and the child was never created,
1155 or it was explicitly deleted by the client. */
1156 name = name_of_child (var, i);
1157 existing = create_child (var, i, name);
1158 VEC_replace (varobj_p, var->children, i, existing);
1159 }
1160 }
1161
1162 restrict_range (var->children, from, to);
1163 return var->children;
1164 }
1165
1166 #if HAVE_PYTHON
1167
1168 static struct varobj *
1169 varobj_add_child (struct varobj *var, const char *name, struct value *value)
1170 {
1171 varobj_p v = create_child_with_value (var,
1172 VEC_length (varobj_p, var->children),
1173 name, value);
1174 VEC_safe_push (varobj_p, var->children, v);
1175 return v;
1176 }
1177
1178 #endif /* HAVE_PYTHON */
1179
1180 /* Obtain the type of an object Variable as a string similar to the one gdb
1181 prints on the console */
1182
1183 char *
1184 varobj_get_type (struct varobj *var)
1185 {
1186 /* For the "fake" variables, do not return a type. (It's type is
1187 NULL, too.)
1188 Do not return a type for invalid variables as well. */
1189 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
1190 return NULL;
1191
1192 return type_to_string (var->type);
1193 }
1194
1195 /* Obtain the type of an object variable. */
1196
1197 struct type *
1198 varobj_get_gdb_type (struct varobj *var)
1199 {
1200 return var->type;
1201 }
1202
1203 /* Return a pointer to the full rooted expression of varobj VAR.
1204 If it has not been computed yet, compute it. */
1205 char *
1206 varobj_get_path_expr (struct varobj *var)
1207 {
1208 if (var->path_expr != NULL)
1209 return var->path_expr;
1210 else
1211 {
1212 /* For root varobjs, we initialize path_expr
1213 when creating varobj, so here it should be
1214 child varobj. */
1215 gdb_assert (!is_root_p (var));
1216 return (*var->root->lang->path_expr_of_child) (var);
1217 }
1218 }
1219
1220 enum varobj_languages
1221 varobj_get_language (struct varobj *var)
1222 {
1223 return variable_language (var);
1224 }
1225
1226 int
1227 varobj_get_attributes (struct varobj *var)
1228 {
1229 int attributes = 0;
1230
1231 if (varobj_editable_p (var))
1232 /* FIXME: define masks for attributes */
1233 attributes |= 0x00000001; /* Editable */
1234
1235 return attributes;
1236 }
1237
1238 int
1239 varobj_pretty_printed_p (struct varobj *var)
1240 {
1241 return var->pretty_printer != NULL;
1242 }
1243
1244 char *
1245 varobj_get_formatted_value (struct varobj *var,
1246 enum varobj_display_formats format)
1247 {
1248 return my_value_of_variable (var, format);
1249 }
1250
1251 char *
1252 varobj_get_value (struct varobj *var)
1253 {
1254 return my_value_of_variable (var, var->format);
1255 }
1256
1257 /* Set the value of an object variable (if it is editable) to the
1258 value of the given expression */
1259 /* Note: Invokes functions that can call error() */
1260
1261 int
1262 varobj_set_value (struct varobj *var, char *expression)
1263 {
1264 struct value *val;
1265
1266 /* The argument "expression" contains the variable's new value.
1267 We need to first construct a legal expression for this -- ugh! */
1268 /* Does this cover all the bases? */
1269 struct expression *exp;
1270 struct value *value;
1271 int saved_input_radix = input_radix;
1272 char *s = expression;
1273
1274 gdb_assert (varobj_editable_p (var));
1275
1276 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1277 exp = parse_exp_1 (&s, 0, 0);
1278 if (!gdb_evaluate_expression (exp, &value))
1279 {
1280 /* We cannot proceed without a valid expression. */
1281 xfree (exp);
1282 return 0;
1283 }
1284
1285 /* All types that are editable must also be changeable. */
1286 gdb_assert (varobj_value_is_changeable_p (var));
1287
1288 /* The value of a changeable variable object must not be lazy. */
1289 gdb_assert (!value_lazy (var->value));
1290
1291 /* Need to coerce the input. We want to check if the
1292 value of the variable object will be different
1293 after assignment, and the first thing value_assign
1294 does is coerce the input.
1295 For example, if we are assigning an array to a pointer variable we
1296 should compare the pointer with the the array's address, not with the
1297 array's content. */
1298 value = coerce_array (value);
1299
1300 /* The new value may be lazy. gdb_value_assign, or
1301 rather value_contents, will take care of this.
1302 If fetching of the new value will fail, gdb_value_assign
1303 with catch the exception. */
1304 if (!gdb_value_assign (var->value, value, &val))
1305 return 0;
1306
1307 /* If the value has changed, record it, so that next -var-update can
1308 report this change. If a variable had a value of '1', we've set it
1309 to '333' and then set again to '1', when -var-update will report this
1310 variable as changed -- because the first assignment has set the
1311 'updated' flag. There's no need to optimize that, because return value
1312 of -var-update should be considered an approximation. */
1313 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1314 input_radix = saved_input_radix;
1315 return 1;
1316 }
1317
1318 #if HAVE_PYTHON
1319
1320 /* A helper function to install a constructor function and visualizer
1321 in a varobj. */
1322
1323 static void
1324 install_visualizer (struct varobj *var, PyObject *constructor,
1325 PyObject *visualizer)
1326 {
1327 Py_XDECREF (var->constructor);
1328 var->constructor = constructor;
1329
1330 Py_XDECREF (var->pretty_printer);
1331 var->pretty_printer = visualizer;
1332
1333 Py_XDECREF (var->child_iter);
1334 var->child_iter = NULL;
1335 }
1336
1337 /* Install the default visualizer for VAR. */
1338
1339 static void
1340 install_default_visualizer (struct varobj *var)
1341 {
1342 if (pretty_printing)
1343 {
1344 PyObject *pretty_printer = NULL;
1345
1346 if (var->value)
1347 {
1348 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1349 if (! pretty_printer)
1350 {
1351 gdbpy_print_stack ();
1352 error (_("Cannot instantiate printer for default visualizer"));
1353 }
1354 }
1355
1356 if (pretty_printer == Py_None)
1357 {
1358 Py_DECREF (pretty_printer);
1359 pretty_printer = NULL;
1360 }
1361
1362 install_visualizer (var, NULL, pretty_printer);
1363 }
1364 }
1365
1366 /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1367 make a new object. */
1368
1369 static void
1370 construct_visualizer (struct varobj *var, PyObject *constructor)
1371 {
1372 PyObject *pretty_printer;
1373
1374 Py_INCREF (constructor);
1375 if (constructor == Py_None)
1376 pretty_printer = NULL;
1377 else
1378 {
1379 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1380 if (! pretty_printer)
1381 {
1382 gdbpy_print_stack ();
1383 Py_DECREF (constructor);
1384 constructor = Py_None;
1385 Py_INCREF (constructor);
1386 }
1387
1388 if (pretty_printer == Py_None)
1389 {
1390 Py_DECREF (pretty_printer);
1391 pretty_printer = NULL;
1392 }
1393 }
1394
1395 install_visualizer (var, constructor, pretty_printer);
1396 }
1397
1398 #endif /* HAVE_PYTHON */
1399
1400 /* A helper function for install_new_value. This creates and installs
1401 a visualizer for VAR, if appropriate. */
1402
1403 static void
1404 install_new_value_visualizer (struct varobj *var)
1405 {
1406 #if HAVE_PYTHON
1407 /* If the constructor is None, then we want the raw value. If VAR
1408 does not have a value, just skip this. */
1409 if (var->constructor != Py_None && var->value)
1410 {
1411 struct cleanup *cleanup;
1412
1413 cleanup = varobj_ensure_python_env (var);
1414
1415 if (!var->constructor)
1416 install_default_visualizer (var);
1417 else
1418 construct_visualizer (var, var->constructor);
1419
1420 do_cleanups (cleanup);
1421 }
1422 #else
1423 /* Do nothing. */
1424 #endif
1425 }
1426
1427 /* Assign a new value to a variable object. If INITIAL is non-zero,
1428 this is the first assignement after the variable object was just
1429 created, or changed type. In that case, just assign the value
1430 and return 0.
1431 Otherwise, assign the new value, and return 1 if the value is different
1432 from the current one, 0 otherwise. The comparison is done on textual
1433 representation of value. Therefore, some types need not be compared. E.g.
1434 for structures the reported value is always "{...}", so no comparison is
1435 necessary here. If the old value was NULL and new one is not, or vice versa,
1436 we always return 1.
1437
1438 The VALUE parameter should not be released -- the function will
1439 take care of releasing it when needed. */
1440 static int
1441 install_new_value (struct varobj *var, struct value *value, int initial)
1442 {
1443 int changeable;
1444 int need_to_fetch;
1445 int changed = 0;
1446 int intentionally_not_fetched = 0;
1447 char *print_value = NULL;
1448
1449 /* We need to know the varobj's type to decide if the value should
1450 be fetched or not. C++ fake children (public/protected/private) don't have
1451 a type. */
1452 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
1453 changeable = varobj_value_is_changeable_p (var);
1454
1455 /* If the type has custom visualizer, we consider it to be always
1456 changeable. FIXME: need to make sure this behaviour will not
1457 mess up read-sensitive values. */
1458 if (var->pretty_printer)
1459 changeable = 1;
1460
1461 need_to_fetch = changeable;
1462
1463 /* We are not interested in the address of references, and given
1464 that in C++ a reference is not rebindable, it cannot
1465 meaningfully change. So, get hold of the real value. */
1466 if (value)
1467 value = coerce_ref (value);
1468
1469 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1470 /* For unions, we need to fetch the value implicitly because
1471 of implementation of union member fetch. When gdb
1472 creates a value for a field and the value of the enclosing
1473 structure is not lazy, it immediately copies the necessary
1474 bytes from the enclosing values. If the enclosing value is
1475 lazy, the call to value_fetch_lazy on the field will read
1476 the data from memory. For unions, that means we'll read the
1477 same memory more than once, which is not desirable. So
1478 fetch now. */
1479 need_to_fetch = 1;
1480
1481 /* The new value might be lazy. If the type is changeable,
1482 that is we'll be comparing values of this type, fetch the
1483 value now. Otherwise, on the next update the old value
1484 will be lazy, which means we've lost that old value. */
1485 if (need_to_fetch && value && value_lazy (value))
1486 {
1487 struct varobj *parent = var->parent;
1488 int frozen = var->frozen;
1489 for (; !frozen && parent; parent = parent->parent)
1490 frozen |= parent->frozen;
1491
1492 if (frozen && initial)
1493 {
1494 /* For variables that are frozen, or are children of frozen
1495 variables, we don't do fetch on initial assignment.
1496 For non-initial assignemnt we do the fetch, since it means we're
1497 explicitly asked to compare the new value with the old one. */
1498 intentionally_not_fetched = 1;
1499 }
1500 else if (!gdb_value_fetch_lazy (value))
1501 {
1502 /* Set the value to NULL, so that for the next -var-update,
1503 we don't try to compare the new value with this value,
1504 that we couldn't even read. */
1505 value = NULL;
1506 }
1507 }
1508
1509
1510 /* Below, we'll be comparing string rendering of old and new
1511 values. Don't get string rendering if the value is
1512 lazy -- if it is, the code above has decided that the value
1513 should not be fetched. */
1514 if (value && !value_lazy (value) && !var->pretty_printer)
1515 print_value = value_get_print_value (value, var->format, var);
1516
1517 /* If the type is changeable, compare the old and the new values.
1518 If this is the initial assignment, we don't have any old value
1519 to compare with. */
1520 if (!initial && changeable)
1521 {
1522 /* If the value of the varobj was changed by -var-set-value, then the
1523 value in the varobj and in the target is the same. However, that value
1524 is different from the value that the varobj had after the previous
1525 -var-update. So need to the varobj as changed. */
1526 if (var->updated)
1527 {
1528 changed = 1;
1529 }
1530 else if (! var->pretty_printer)
1531 {
1532 /* Try to compare the values. That requires that both
1533 values are non-lazy. */
1534 if (var->not_fetched && value_lazy (var->value))
1535 {
1536 /* This is a frozen varobj and the value was never read.
1537 Presumably, UI shows some "never read" indicator.
1538 Now that we've fetched the real value, we need to report
1539 this varobj as changed so that UI can show the real
1540 value. */
1541 changed = 1;
1542 }
1543 else if (var->value == NULL && value == NULL)
1544 /* Equal. */
1545 ;
1546 else if (var->value == NULL || value == NULL)
1547 {
1548 changed = 1;
1549 }
1550 else
1551 {
1552 gdb_assert (!value_lazy (var->value));
1553 gdb_assert (!value_lazy (value));
1554
1555 gdb_assert (var->print_value != NULL && print_value != NULL);
1556 if (strcmp (var->print_value, print_value) != 0)
1557 changed = 1;
1558 }
1559 }
1560 }
1561
1562 if (!initial && !changeable)
1563 {
1564 /* For values that are not changeable, we don't compare the values.
1565 However, we want to notice if a value was not NULL and now is NULL,
1566 or vise versa, so that we report when top-level varobjs come in scope
1567 and leave the scope. */
1568 changed = (var->value != NULL) != (value != NULL);
1569 }
1570
1571 /* We must always keep the new value, since children depend on it. */
1572 if (var->value != NULL && var->value != value)
1573 value_free (var->value);
1574 var->value = value;
1575 if (value != NULL)
1576 value_incref (value);
1577 if (value && value_lazy (value) && intentionally_not_fetched)
1578 var->not_fetched = 1;
1579 else
1580 var->not_fetched = 0;
1581 var->updated = 0;
1582
1583 install_new_value_visualizer (var);
1584
1585 /* If we installed a pretty-printer, re-compare the printed version
1586 to see if the variable changed. */
1587 if (var->pretty_printer)
1588 {
1589 xfree (print_value);
1590 print_value = value_get_print_value (var->value, var->format, var);
1591 if ((var->print_value == NULL && print_value != NULL)
1592 || (var->print_value != NULL && print_value == NULL)
1593 || (var->print_value != NULL && print_value != NULL
1594 && strcmp (var->print_value, print_value) != 0))
1595 changed = 1;
1596 }
1597 if (var->print_value)
1598 xfree (var->print_value);
1599 var->print_value = print_value;
1600
1601 gdb_assert (!var->value || value_type (var->value));
1602
1603 return changed;
1604 }
1605
1606 /* Return the requested range for a varobj. VAR is the varobj. FROM
1607 and TO are out parameters; *FROM and *TO will be set to the
1608 selected sub-range of VAR. If no range was selected using
1609 -var-set-update-range, then both will be -1. */
1610 void
1611 varobj_get_child_range (struct varobj *var, int *from, int *to)
1612 {
1613 *from = var->from;
1614 *to = var->to;
1615 }
1616
1617 /* Set the selected sub-range of children of VAR to start at index
1618 FROM and end at index TO. If either FROM or TO is less than zero,
1619 this is interpreted as a request for all children. */
1620 void
1621 varobj_set_child_range (struct varobj *var, int from, int to)
1622 {
1623 var->from = from;
1624 var->to = to;
1625 }
1626
1627 void
1628 varobj_set_visualizer (struct varobj *var, const char *visualizer)
1629 {
1630 #if HAVE_PYTHON
1631 PyObject *mainmod, *globals, *constructor;
1632 struct cleanup *back_to;
1633
1634 back_to = varobj_ensure_python_env (var);
1635
1636 mainmod = PyImport_AddModule ("__main__");
1637 globals = PyModule_GetDict (mainmod);
1638 Py_INCREF (globals);
1639 make_cleanup_py_decref (globals);
1640
1641 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1642
1643 if (! constructor)
1644 {
1645 gdbpy_print_stack ();
1646 error (_("Could not evaluate visualizer expression: %s"), visualizer);
1647 }
1648
1649 construct_visualizer (var, constructor);
1650 Py_XDECREF (constructor);
1651
1652 /* If there are any children now, wipe them. */
1653 varobj_delete (var, NULL, 1 /* children only */);
1654 var->num_children = -1;
1655
1656 do_cleanups (back_to);
1657 #else
1658 error (_("Python support required"));
1659 #endif
1660 }
1661
1662 /* Update the values for a variable and its children. This is a
1663 two-pronged attack. First, re-parse the value for the root's
1664 expression to see if it's changed. Then go all the way
1665 through its children, reconstructing them and noting if they've
1666 changed.
1667
1668 The EXPLICIT parameter specifies if this call is result
1669 of MI request to update this specific variable, or
1670 result of implicit -var-update *. For implicit request, we don't
1671 update frozen variables.
1672
1673 NOTE: This function may delete the caller's varobj. If it
1674 returns TYPE_CHANGED, then it has done this and VARP will be modified
1675 to point to the new varobj. */
1676
1677 VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
1678 {
1679 int changed = 0;
1680 int type_changed = 0;
1681 int i;
1682 struct value *new;
1683 VEC (varobj_update_result) *stack = NULL;
1684 VEC (varobj_update_result) *result = NULL;
1685
1686 /* Frozen means frozen -- we don't check for any change in
1687 this varobj, including its going out of scope, or
1688 changing type. One use case for frozen varobjs is
1689 retaining previously evaluated expressions, and we don't
1690 want them to be reevaluated at all. */
1691 if (!explicit && (*varp)->frozen)
1692 return result;
1693
1694 if (!(*varp)->root->is_valid)
1695 {
1696 varobj_update_result r = {0};
1697 r.varobj = *varp;
1698 r.status = VAROBJ_INVALID;
1699 VEC_safe_push (varobj_update_result, result, &r);
1700 return result;
1701 }
1702
1703 if ((*varp)->root->rootvar == *varp)
1704 {
1705 varobj_update_result r = {0};
1706 r.varobj = *varp;
1707 r.status = VAROBJ_IN_SCOPE;
1708
1709 /* Update the root variable. value_of_root can return NULL
1710 if the variable is no longer around, i.e. we stepped out of
1711 the frame in which a local existed. We are letting the
1712 value_of_root variable dispose of the varobj if the type
1713 has changed. */
1714 new = value_of_root (varp, &type_changed);
1715 r.varobj = *varp;
1716
1717 r.type_changed = type_changed;
1718 if (install_new_value ((*varp), new, type_changed))
1719 r.changed = 1;
1720
1721 if (new == NULL)
1722 r.status = VAROBJ_NOT_IN_SCOPE;
1723 r.value_installed = 1;
1724
1725 if (r.status == VAROBJ_NOT_IN_SCOPE)
1726 {
1727 if (r.type_changed || r.changed)
1728 VEC_safe_push (varobj_update_result, result, &r);
1729 return result;
1730 }
1731
1732 VEC_safe_push (varobj_update_result, stack, &r);
1733 }
1734 else
1735 {
1736 varobj_update_result r = {0};
1737 r.varobj = *varp;
1738 VEC_safe_push (varobj_update_result, stack, &r);
1739 }
1740
1741 /* Walk through the children, reconstructing them all. */
1742 while (!VEC_empty (varobj_update_result, stack))
1743 {
1744 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1745 struct varobj *v = r.varobj;
1746
1747 VEC_pop (varobj_update_result, stack);
1748
1749 /* Update this variable, unless it's a root, which is already
1750 updated. */
1751 if (!r.value_installed)
1752 {
1753 new = value_of_child (v->parent, v->index);
1754 if (install_new_value (v, new, 0 /* type not changed */))
1755 {
1756 r.changed = 1;
1757 v->updated = 0;
1758 }
1759 }
1760
1761 /* We probably should not get children of a varobj that has a
1762 pretty-printer, but for which -var-list-children was never
1763 invoked. */
1764 if (v->pretty_printer)
1765 {
1766 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
1767 int i, children_changed = 0;
1768
1769 if (v->frozen)
1770 continue;
1771
1772 if (!v->children_requested)
1773 {
1774 int dummy;
1775
1776 /* If we initially did not have potential children, but
1777 now we do, consider the varobj as changed.
1778 Otherwise, if children were never requested, consider
1779 it as unchanged -- presumably, such varobj is not yet
1780 expanded in the UI, so we need not bother getting
1781 it. */
1782 if (!varobj_has_more (v, 0))
1783 {
1784 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1785 &dummy, 0, 0, 0);
1786 if (varobj_has_more (v, 0))
1787 r.changed = 1;
1788 }
1789
1790 if (r.changed)
1791 VEC_safe_push (varobj_update_result, result, &r);
1792
1793 continue;
1794 }
1795
1796 /* If update_dynamic_varobj_children returns 0, then we have
1797 a non-conforming pretty-printer, so we skip it. */
1798 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1799 &children_changed, 1,
1800 v->from, v->to))
1801 {
1802 if (children_changed || new)
1803 {
1804 r.children_changed = 1;
1805 r.new = new;
1806 }
1807 /* Push in reverse order so that the first child is
1808 popped from the work stack first, and so will be
1809 added to result first. This does not affect
1810 correctness, just "nicer". */
1811 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
1812 {
1813 varobj_p tmp = VEC_index (varobj_p, changed, i);
1814 varobj_update_result r = {0};
1815 r.varobj = tmp;
1816 r.changed = 1;
1817 r.value_installed = 1;
1818 VEC_safe_push (varobj_update_result, stack, &r);
1819 }
1820 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1821 {
1822 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1823 if (!tmp->frozen)
1824 {
1825 varobj_update_result r = {0};
1826 r.varobj = tmp;
1827 r.value_installed = 1;
1828 VEC_safe_push (varobj_update_result, stack, &r);
1829 }
1830 }
1831 if (r.changed || r.children_changed)
1832 VEC_safe_push (varobj_update_result, result, &r);
1833
1834 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1835 has been put into the result vector. */
1836 VEC_free (varobj_p, changed);
1837 VEC_free (varobj_p, unchanged);
1838
1839 continue;
1840 }
1841 }
1842
1843 /* Push any children. Use reverse order so that the first
1844 child is popped from the work stack first, and so
1845 will be added to result first. This does not
1846 affect correctness, just "nicer". */
1847 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
1848 {
1849 varobj_p c = VEC_index (varobj_p, v->children, i);
1850 /* Child may be NULL if explicitly deleted by -var-delete. */
1851 if (c != NULL && !c->frozen)
1852 {
1853 varobj_update_result r = {0};
1854 r.varobj = c;
1855 VEC_safe_push (varobj_update_result, stack, &r);
1856 }
1857 }
1858
1859 if (r.changed || r.type_changed)
1860 VEC_safe_push (varobj_update_result, result, &r);
1861 }
1862
1863 VEC_free (varobj_update_result, stack);
1864
1865 return result;
1866 }
1867 \f
1868
1869 /* Helper functions */
1870
1871 /*
1872 * Variable object construction/destruction
1873 */
1874
1875 static int
1876 delete_variable (struct cpstack **resultp, struct varobj *var,
1877 int only_children_p)
1878 {
1879 int delcount = 0;
1880
1881 delete_variable_1 (resultp, &delcount, var,
1882 only_children_p, 1 /* remove_from_parent_p */ );
1883
1884 return delcount;
1885 }
1886
1887 /* Delete the variable object VAR and its children */
1888 /* IMPORTANT NOTE: If we delete a variable which is a child
1889 and the parent is not removed we dump core. It must be always
1890 initially called with remove_from_parent_p set */
1891 static void
1892 delete_variable_1 (struct cpstack **resultp, int *delcountp,
1893 struct varobj *var, int only_children_p,
1894 int remove_from_parent_p)
1895 {
1896 int i;
1897
1898 /* Delete any children of this variable, too. */
1899 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1900 {
1901 varobj_p child = VEC_index (varobj_p, var->children, i);
1902 if (!child)
1903 continue;
1904 if (!remove_from_parent_p)
1905 child->parent = NULL;
1906 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
1907 }
1908 VEC_free (varobj_p, var->children);
1909
1910 /* if we were called to delete only the children we are done here */
1911 if (only_children_p)
1912 return;
1913
1914 /* Otherwise, add it to the list of deleted ones and proceed to do so */
1915 /* If the name is null, this is a temporary variable, that has not
1916 yet been installed, don't report it, it belongs to the caller... */
1917 if (var->obj_name != NULL)
1918 {
1919 cppush (resultp, xstrdup (var->obj_name));
1920 *delcountp = *delcountp + 1;
1921 }
1922
1923 /* If this variable has a parent, remove it from its parent's list */
1924 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1925 (as indicated by remove_from_parent_p) we don't bother doing an
1926 expensive list search to find the element to remove when we are
1927 discarding the list afterwards */
1928 if ((remove_from_parent_p) && (var->parent != NULL))
1929 {
1930 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
1931 }
1932
1933 if (var->obj_name != NULL)
1934 uninstall_variable (var);
1935
1936 /* Free memory associated with this variable */
1937 free_variable (var);
1938 }
1939
1940 /* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1941 static int
1942 install_variable (struct varobj *var)
1943 {
1944 struct vlist *cv;
1945 struct vlist *newvl;
1946 const char *chp;
1947 unsigned int index = 0;
1948 unsigned int i = 1;
1949
1950 for (chp = var->obj_name; *chp; chp++)
1951 {
1952 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1953 }
1954
1955 cv = *(varobj_table + index);
1956 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1957 cv = cv->next;
1958
1959 if (cv != NULL)
1960 error (_("Duplicate variable object name"));
1961
1962 /* Add varobj to hash table */
1963 newvl = xmalloc (sizeof (struct vlist));
1964 newvl->next = *(varobj_table + index);
1965 newvl->var = var;
1966 *(varobj_table + index) = newvl;
1967
1968 /* If root, add varobj to root list */
1969 if (is_root_p (var))
1970 {
1971 /* Add to list of root variables */
1972 if (rootlist == NULL)
1973 var->root->next = NULL;
1974 else
1975 var->root->next = rootlist;
1976 rootlist = var->root;
1977 }
1978
1979 return 1; /* OK */
1980 }
1981
1982 /* Unistall the object VAR. */
1983 static void
1984 uninstall_variable (struct varobj *var)
1985 {
1986 struct vlist *cv;
1987 struct vlist *prev;
1988 struct varobj_root *cr;
1989 struct varobj_root *prer;
1990 const char *chp;
1991 unsigned int index = 0;
1992 unsigned int i = 1;
1993
1994 /* Remove varobj from hash table */
1995 for (chp = var->obj_name; *chp; chp++)
1996 {
1997 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1998 }
1999
2000 cv = *(varobj_table + index);
2001 prev = NULL;
2002 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2003 {
2004 prev = cv;
2005 cv = cv->next;
2006 }
2007
2008 if (varobjdebug)
2009 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2010
2011 if (cv == NULL)
2012 {
2013 warning
2014 ("Assertion failed: Could not find variable object \"%s\" to delete",
2015 var->obj_name);
2016 return;
2017 }
2018
2019 if (prev == NULL)
2020 *(varobj_table + index) = cv->next;
2021 else
2022 prev->next = cv->next;
2023
2024 xfree (cv);
2025
2026 /* If root, remove varobj from root list */
2027 if (is_root_p (var))
2028 {
2029 /* Remove from list of root variables */
2030 if (rootlist == var->root)
2031 rootlist = var->root->next;
2032 else
2033 {
2034 prer = NULL;
2035 cr = rootlist;
2036 while ((cr != NULL) && (cr->rootvar != var))
2037 {
2038 prer = cr;
2039 cr = cr->next;
2040 }
2041 if (cr == NULL)
2042 {
2043 warning
2044 ("Assertion failed: Could not find varobj \"%s\" in root list",
2045 var->obj_name);
2046 return;
2047 }
2048 if (prer == NULL)
2049 rootlist = NULL;
2050 else
2051 prer->next = cr->next;
2052 }
2053 }
2054
2055 }
2056
2057 /* Create and install a child of the parent of the given name */
2058 static struct varobj *
2059 create_child (struct varobj *parent, int index, char *name)
2060 {
2061 return create_child_with_value (parent, index, name,
2062 value_of_child (parent, index));
2063 }
2064
2065 static struct varobj *
2066 create_child_with_value (struct varobj *parent, int index, const char *name,
2067 struct value *value)
2068 {
2069 struct varobj *child;
2070 char *childs_name;
2071
2072 child = new_variable ();
2073
2074 /* name is allocated by name_of_child */
2075 /* FIXME: xstrdup should not be here. */
2076 child->name = xstrdup (name);
2077 child->index = index;
2078 child->parent = parent;
2079 child->root = parent->root;
2080 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
2081 child->obj_name = childs_name;
2082 install_variable (child);
2083
2084 /* Compute the type of the child. Must do this before
2085 calling install_new_value. */
2086 if (value != NULL)
2087 /* If the child had no evaluation errors, var->value
2088 will be non-NULL and contain a valid type. */
2089 child->type = value_type (value);
2090 else
2091 /* Otherwise, we must compute the type. */
2092 child->type = (*child->root->lang->type_of_child) (child->parent,
2093 child->index);
2094 install_new_value (child, value, 1);
2095
2096 return child;
2097 }
2098 \f
2099
2100 /*
2101 * Miscellaneous utility functions.
2102 */
2103
2104 /* Allocate memory and initialize a new variable */
2105 static struct varobj *
2106 new_variable (void)
2107 {
2108 struct varobj *var;
2109
2110 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2111 var->name = NULL;
2112 var->path_expr = NULL;
2113 var->obj_name = NULL;
2114 var->index = -1;
2115 var->type = NULL;
2116 var->value = NULL;
2117 var->num_children = -1;
2118 var->parent = NULL;
2119 var->children = NULL;
2120 var->format = 0;
2121 var->root = NULL;
2122 var->updated = 0;
2123 var->print_value = NULL;
2124 var->frozen = 0;
2125 var->not_fetched = 0;
2126 var->children_requested = 0;
2127 var->from = -1;
2128 var->to = -1;
2129 var->constructor = 0;
2130 var->pretty_printer = 0;
2131 var->child_iter = 0;
2132 var->saved_item = 0;
2133
2134 return var;
2135 }
2136
2137 /* Allocate memory and initialize a new root variable */
2138 static struct varobj *
2139 new_root_variable (void)
2140 {
2141 struct varobj *var = new_variable ();
2142 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2143 var->root->lang = NULL;
2144 var->root->exp = NULL;
2145 var->root->valid_block = NULL;
2146 var->root->frame = null_frame_id;
2147 var->root->floating = 0;
2148 var->root->rootvar = NULL;
2149 var->root->is_valid = 1;
2150
2151 return var;
2152 }
2153
2154 /* Free any allocated memory associated with VAR. */
2155 static void
2156 free_variable (struct varobj *var)
2157 {
2158 #if HAVE_PYTHON
2159 if (var->pretty_printer)
2160 {
2161 struct cleanup *cleanup = varobj_ensure_python_env (var);
2162 Py_XDECREF (var->constructor);
2163 Py_XDECREF (var->pretty_printer);
2164 Py_XDECREF (var->child_iter);
2165 Py_XDECREF (var->saved_item);
2166 do_cleanups (cleanup);
2167 }
2168 #endif
2169
2170 value_free (var->value);
2171
2172 /* Free the expression if this is a root variable. */
2173 if (is_root_p (var))
2174 {
2175 xfree (var->root->exp);
2176 xfree (var->root);
2177 }
2178
2179 xfree (var->name);
2180 xfree (var->obj_name);
2181 xfree (var->print_value);
2182 xfree (var->path_expr);
2183 xfree (var);
2184 }
2185
2186 static void
2187 do_free_variable_cleanup (void *var)
2188 {
2189 free_variable (var);
2190 }
2191
2192 static struct cleanup *
2193 make_cleanup_free_variable (struct varobj *var)
2194 {
2195 return make_cleanup (do_free_variable_cleanup, var);
2196 }
2197
2198 /* This returns the type of the variable. It also skips past typedefs
2199 to return the real type of the variable.
2200
2201 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2202 except within get_target_type and get_type. */
2203 static struct type *
2204 get_type (struct varobj *var)
2205 {
2206 struct type *type;
2207 type = var->type;
2208
2209 if (type != NULL)
2210 type = check_typedef (type);
2211
2212 return type;
2213 }
2214
2215 /* Return the type of the value that's stored in VAR,
2216 or that would have being stored there if the
2217 value were accessible.
2218
2219 This differs from VAR->type in that VAR->type is always
2220 the true type of the expession in the source language.
2221 The return value of this function is the type we're
2222 actually storing in varobj, and using for displaying
2223 the values and for comparing previous and new values.
2224
2225 For example, top-level references are always stripped. */
2226 static struct type *
2227 get_value_type (struct varobj *var)
2228 {
2229 struct type *type;
2230
2231 if (var->value)
2232 type = value_type (var->value);
2233 else
2234 type = var->type;
2235
2236 type = check_typedef (type);
2237
2238 if (TYPE_CODE (type) == TYPE_CODE_REF)
2239 type = get_target_type (type);
2240
2241 type = check_typedef (type);
2242
2243 return type;
2244 }
2245
2246 /* This returns the target type (or NULL) of TYPE, also skipping
2247 past typedefs, just like get_type ().
2248
2249 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2250 except within get_target_type and get_type. */
2251 static struct type *
2252 get_target_type (struct type *type)
2253 {
2254 if (type != NULL)
2255 {
2256 type = TYPE_TARGET_TYPE (type);
2257 if (type != NULL)
2258 type = check_typedef (type);
2259 }
2260
2261 return type;
2262 }
2263
2264 /* What is the default display for this variable? We assume that
2265 everything is "natural". Any exceptions? */
2266 static enum varobj_display_formats
2267 variable_default_display (struct varobj *var)
2268 {
2269 return FORMAT_NATURAL;
2270 }
2271
2272 /* FIXME: The following should be generic for any pointer */
2273 static void
2274 cppush (struct cpstack **pstack, char *name)
2275 {
2276 struct cpstack *s;
2277
2278 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2279 s->name = name;
2280 s->next = *pstack;
2281 *pstack = s;
2282 }
2283
2284 /* FIXME: The following should be generic for any pointer */
2285 static char *
2286 cppop (struct cpstack **pstack)
2287 {
2288 struct cpstack *s;
2289 char *v;
2290
2291 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2292 return NULL;
2293
2294 s = *pstack;
2295 v = s->name;
2296 *pstack = (*pstack)->next;
2297 xfree (s);
2298
2299 return v;
2300 }
2301 \f
2302 /*
2303 * Language-dependencies
2304 */
2305
2306 /* Common entry points */
2307
2308 /* Get the language of variable VAR. */
2309 static enum varobj_languages
2310 variable_language (struct varobj *var)
2311 {
2312 enum varobj_languages lang;
2313
2314 switch (var->root->exp->language_defn->la_language)
2315 {
2316 default:
2317 case language_c:
2318 lang = vlang_c;
2319 break;
2320 case language_cplus:
2321 lang = vlang_cplus;
2322 break;
2323 case language_java:
2324 lang = vlang_java;
2325 break;
2326 }
2327
2328 return lang;
2329 }
2330
2331 /* Return the number of children for a given variable.
2332 The result of this function is defined by the language
2333 implementation. The number of children returned by this function
2334 is the number of children that the user will see in the variable
2335 display. */
2336 static int
2337 number_of_children (struct varobj *var)
2338 {
2339 return (*var->root->lang->number_of_children) (var);;
2340 }
2341
2342 /* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2343 static char *
2344 name_of_variable (struct varobj *var)
2345 {
2346 return (*var->root->lang->name_of_variable) (var);
2347 }
2348
2349 /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2350 static char *
2351 name_of_child (struct varobj *var, int index)
2352 {
2353 return (*var->root->lang->name_of_child) (var, index);
2354 }
2355
2356 /* What is the ``struct value *'' of the root variable VAR?
2357 For floating variable object, evaluation can get us a value
2358 of different type from what is stored in varobj already. In
2359 that case:
2360 - *type_changed will be set to 1
2361 - old varobj will be freed, and new one will be
2362 created, with the same name.
2363 - *var_handle will be set to the new varobj
2364 Otherwise, *type_changed will be set to 0. */
2365 static struct value *
2366 value_of_root (struct varobj **var_handle, int *type_changed)
2367 {
2368 struct varobj *var;
2369
2370 if (var_handle == NULL)
2371 return NULL;
2372
2373 var = *var_handle;
2374
2375 /* This should really be an exception, since this should
2376 only get called with a root variable. */
2377
2378 if (!is_root_p (var))
2379 return NULL;
2380
2381 if (var->root->floating)
2382 {
2383 struct varobj *tmp_var;
2384 char *old_type, *new_type;
2385
2386 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2387 USE_SELECTED_FRAME);
2388 if (tmp_var == NULL)
2389 {
2390 return NULL;
2391 }
2392 old_type = varobj_get_type (var);
2393 new_type = varobj_get_type (tmp_var);
2394 if (strcmp (old_type, new_type) == 0)
2395 {
2396 /* The expression presently stored inside var->root->exp
2397 remembers the locations of local variables relatively to
2398 the frame where the expression was created (in DWARF location
2399 button, for example). Naturally, those locations are not
2400 correct in other frames, so update the expression. */
2401
2402 struct expression *tmp_exp = var->root->exp;
2403 var->root->exp = tmp_var->root->exp;
2404 tmp_var->root->exp = tmp_exp;
2405
2406 varobj_delete (tmp_var, NULL, 0);
2407 *type_changed = 0;
2408 }
2409 else
2410 {
2411 tmp_var->obj_name = xstrdup (var->obj_name);
2412 tmp_var->from = var->from;
2413 tmp_var->to = var->to;
2414 varobj_delete (var, NULL, 0);
2415
2416 install_variable (tmp_var);
2417 *var_handle = tmp_var;
2418 var = *var_handle;
2419 *type_changed = 1;
2420 }
2421 xfree (old_type);
2422 xfree (new_type);
2423 }
2424 else
2425 {
2426 *type_changed = 0;
2427 }
2428
2429 return (*var->root->lang->value_of_root) (var_handle);
2430 }
2431
2432 /* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2433 static struct value *
2434 value_of_child (struct varobj *parent, int index)
2435 {
2436 struct value *value;
2437
2438 value = (*parent->root->lang->value_of_child) (parent, index);
2439
2440 return value;
2441 }
2442
2443 /* GDB already has a command called "value_of_variable". Sigh. */
2444 static char *
2445 my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
2446 {
2447 if (var->root->is_valid)
2448 {
2449 if (var->pretty_printer)
2450 return value_get_print_value (var->value, var->format, var);
2451 return (*var->root->lang->value_of_variable) (var, format);
2452 }
2453 else
2454 return NULL;
2455 }
2456
2457 static char *
2458 value_get_print_value (struct value *value, enum varobj_display_formats format,
2459 struct varobj *var)
2460 {
2461 struct ui_file *stb;
2462 struct cleanup *old_chain;
2463 gdb_byte *thevalue = NULL;
2464 struct value_print_options opts;
2465 struct type *type = NULL;
2466 long len = 0;
2467 char *encoding = NULL;
2468 struct gdbarch *gdbarch = NULL;
2469
2470 if (value == NULL)
2471 return NULL;
2472
2473 gdbarch = get_type_arch (value_type (value));
2474 #if HAVE_PYTHON
2475 {
2476 struct cleanup *back_to = varobj_ensure_python_env (var);
2477 PyObject *value_formatter = var->pretty_printer;
2478
2479 if (value_formatter)
2480 {
2481 /* First check to see if we have any children at all. If so,
2482 we simply return {...}. */
2483 if (dynamic_varobj_has_child_method (var))
2484 return xstrdup ("{...}");
2485
2486 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2487 {
2488 char *hint;
2489 struct value *replacement;
2490 int string_print = 0;
2491 PyObject *output = NULL;
2492
2493 hint = gdbpy_get_display_hint (value_formatter);
2494 if (hint)
2495 {
2496 if (!strcmp (hint, "string"))
2497 string_print = 1;
2498 xfree (hint);
2499 }
2500
2501 output = apply_varobj_pretty_printer (value_formatter,
2502 &replacement);
2503 if (output)
2504 {
2505 if (gdbpy_is_lazy_string (output))
2506 {
2507 thevalue = gdbpy_extract_lazy_string (output, &type,
2508 &len, &encoding);
2509 string_print = 1;
2510 }
2511 else
2512 {
2513 PyObject *py_str
2514 = python_string_to_target_python_string (output);
2515 if (py_str)
2516 {
2517 char *s = PyString_AsString (py_str);
2518 len = PyString_Size (py_str);
2519 thevalue = xmemdup (s, len + 1, len + 1);
2520 type = builtin_type (gdbarch)->builtin_char;
2521 Py_DECREF (py_str);
2522 }
2523 }
2524 Py_DECREF (output);
2525 }
2526 if (thevalue && !string_print)
2527 {
2528 do_cleanups (back_to);
2529 xfree (encoding);
2530 return thevalue;
2531 }
2532 if (replacement)
2533 value = replacement;
2534 }
2535 }
2536 do_cleanups (back_to);
2537 }
2538 #endif
2539
2540 stb = mem_fileopen ();
2541 old_chain = make_cleanup_ui_file_delete (stb);
2542
2543 get_formatted_print_options (&opts, format_code[(int) format]);
2544 opts.deref_ref = 0;
2545 opts.raw = 1;
2546 if (thevalue)
2547 {
2548 make_cleanup (xfree, thevalue);
2549 make_cleanup (xfree, encoding);
2550 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2551 }
2552 else
2553 common_val_print (value, stb, 0, &opts, current_language);
2554 thevalue = ui_file_xstrdup (stb, NULL);
2555
2556 do_cleanups (old_chain);
2557 return thevalue;
2558 }
2559
2560 int
2561 varobj_editable_p (struct varobj *var)
2562 {
2563 struct type *type;
2564
2565 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2566 return 0;
2567
2568 type = get_value_type (var);
2569
2570 switch (TYPE_CODE (type))
2571 {
2572 case TYPE_CODE_STRUCT:
2573 case TYPE_CODE_UNION:
2574 case TYPE_CODE_ARRAY:
2575 case TYPE_CODE_FUNC:
2576 case TYPE_CODE_METHOD:
2577 return 0;
2578 break;
2579
2580 default:
2581 return 1;
2582 break;
2583 }
2584 }
2585
2586 /* Return non-zero if changes in value of VAR
2587 must be detected and reported by -var-update.
2588 Return zero is -var-update should never report
2589 changes of such values. This makes sense for structures
2590 (since the changes in children values will be reported separately),
2591 or for artifical objects (like 'public' pseudo-field in C++).
2592
2593 Return value of 0 means that gdb need not call value_fetch_lazy
2594 for the value of this variable object. */
2595 static int
2596 varobj_value_is_changeable_p (struct varobj *var)
2597 {
2598 int r;
2599 struct type *type;
2600
2601 if (CPLUS_FAKE_CHILD (var))
2602 return 0;
2603
2604 type = get_value_type (var);
2605
2606 switch (TYPE_CODE (type))
2607 {
2608 case TYPE_CODE_STRUCT:
2609 case TYPE_CODE_UNION:
2610 case TYPE_CODE_ARRAY:
2611 r = 0;
2612 break;
2613
2614 default:
2615 r = 1;
2616 }
2617
2618 return r;
2619 }
2620
2621 /* Return 1 if that varobj is floating, that is is always evaluated in the
2622 selected frame, and not bound to thread/frame. Such variable objects
2623 are created using '@' as frame specifier to -var-create. */
2624 int
2625 varobj_floating_p (struct varobj *var)
2626 {
2627 return var->root->floating;
2628 }
2629
2630 /* Given the value and the type of a variable object,
2631 adjust the value and type to those necessary
2632 for getting children of the variable object.
2633 This includes dereferencing top-level references
2634 to all types and dereferencing pointers to
2635 structures.
2636
2637 Both TYPE and *TYPE should be non-null. VALUE
2638 can be null if we want to only translate type.
2639 *VALUE can be null as well -- if the parent
2640 value is not known.
2641
2642 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
2643 depending on whether pointer was dereferenced
2644 in this function. */
2645 static void
2646 adjust_value_for_child_access (struct value **value,
2647 struct type **type,
2648 int *was_ptr)
2649 {
2650 gdb_assert (type && *type);
2651
2652 if (was_ptr)
2653 *was_ptr = 0;
2654
2655 *type = check_typedef (*type);
2656
2657 /* The type of value stored in varobj, that is passed
2658 to us, is already supposed to be
2659 reference-stripped. */
2660
2661 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2662
2663 /* Pointers to structures are treated just like
2664 structures when accessing children. Don't
2665 dererences pointers to other types. */
2666 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2667 {
2668 struct type *target_type = get_target_type (*type);
2669 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2670 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2671 {
2672 if (value && *value)
2673 {
2674 int success = gdb_value_ind (*value, value);
2675 if (!success)
2676 *value = NULL;
2677 }
2678 *type = target_type;
2679 if (was_ptr)
2680 *was_ptr = 1;
2681 }
2682 }
2683
2684 /* The 'get_target_type' function calls check_typedef on
2685 result, so we can immediately check type code. No
2686 need to call check_typedef here. */
2687 }
2688
2689 /* C */
2690 static int
2691 c_number_of_children (struct varobj *var)
2692 {
2693 struct type *type = get_value_type (var);
2694 int children = 0;
2695 struct type *target;
2696
2697 adjust_value_for_child_access (NULL, &type, NULL);
2698 target = get_target_type (type);
2699
2700 switch (TYPE_CODE (type))
2701 {
2702 case TYPE_CODE_ARRAY:
2703 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
2704 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
2705 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2706 else
2707 /* If we don't know how many elements there are, don't display
2708 any. */
2709 children = 0;
2710 break;
2711
2712 case TYPE_CODE_STRUCT:
2713 case TYPE_CODE_UNION:
2714 children = TYPE_NFIELDS (type);
2715 break;
2716
2717 case TYPE_CODE_PTR:
2718 /* The type here is a pointer to non-struct. Typically, pointers
2719 have one child, except for function ptrs, which have no children,
2720 and except for void*, as we don't know what to show.
2721
2722 We can show char* so we allow it to be dereferenced. If you decide
2723 to test for it, please mind that a little magic is necessary to
2724 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2725 TYPE_NAME == "char" */
2726 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2727 || TYPE_CODE (target) == TYPE_CODE_VOID)
2728 children = 0;
2729 else
2730 children = 1;
2731 break;
2732
2733 default:
2734 /* Other types have no children */
2735 break;
2736 }
2737
2738 return children;
2739 }
2740
2741 static char *
2742 c_name_of_variable (struct varobj *parent)
2743 {
2744 return xstrdup (parent->name);
2745 }
2746
2747 /* Return the value of element TYPE_INDEX of a structure
2748 value VALUE. VALUE's type should be a structure,
2749 or union, or a typedef to struct/union.
2750
2751 Returns NULL if getting the value fails. Never throws. */
2752 static struct value *
2753 value_struct_element_index (struct value *value, int type_index)
2754 {
2755 struct value *result = NULL;
2756 volatile struct gdb_exception e;
2757
2758 struct type *type = value_type (value);
2759 type = check_typedef (type);
2760
2761 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2762 || TYPE_CODE (type) == TYPE_CODE_UNION);
2763
2764 TRY_CATCH (e, RETURN_MASK_ERROR)
2765 {
2766 if (field_is_static (&TYPE_FIELD (type, type_index)))
2767 result = value_static_field (type, type_index);
2768 else
2769 result = value_primitive_field (value, 0, type_index, type);
2770 }
2771 if (e.reason < 0)
2772 {
2773 return NULL;
2774 }
2775 else
2776 {
2777 return result;
2778 }
2779 }
2780
2781 /* Obtain the information about child INDEX of the variable
2782 object PARENT.
2783 If CNAME is not null, sets *CNAME to the name of the child relative
2784 to the parent.
2785 If CVALUE is not null, sets *CVALUE to the value of the child.
2786 If CTYPE is not null, sets *CTYPE to the type of the child.
2787
2788 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2789 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2790 to NULL. */
2791 static void
2792 c_describe_child (struct varobj *parent, int index,
2793 char **cname, struct value **cvalue, struct type **ctype,
2794 char **cfull_expression)
2795 {
2796 struct value *value = parent->value;
2797 struct type *type = get_value_type (parent);
2798 char *parent_expression = NULL;
2799 int was_ptr;
2800
2801 if (cname)
2802 *cname = NULL;
2803 if (cvalue)
2804 *cvalue = NULL;
2805 if (ctype)
2806 *ctype = NULL;
2807 if (cfull_expression)
2808 {
2809 *cfull_expression = NULL;
2810 parent_expression = varobj_get_path_expr (parent);
2811 }
2812 adjust_value_for_child_access (&value, &type, &was_ptr);
2813
2814 switch (TYPE_CODE (type))
2815 {
2816 case TYPE_CODE_ARRAY:
2817 if (cname)
2818 *cname = xstrdup (int_string (index
2819 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2820 10, 1, 0, 0));
2821
2822 if (cvalue && value)
2823 {
2824 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2825 gdb_value_subscript (value, real_index, cvalue);
2826 }
2827
2828 if (ctype)
2829 *ctype = get_target_type (type);
2830
2831 if (cfull_expression)
2832 *cfull_expression =
2833 xstrprintf ("(%s)[%s]", parent_expression,
2834 int_string (index
2835 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2836 10, 1, 0, 0));
2837
2838
2839 break;
2840
2841 case TYPE_CODE_STRUCT:
2842 case TYPE_CODE_UNION:
2843 if (cname)
2844 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2845
2846 if (cvalue && value)
2847 {
2848 /* For C, varobj index is the same as type index. */
2849 *cvalue = value_struct_element_index (value, index);
2850 }
2851
2852 if (ctype)
2853 *ctype = TYPE_FIELD_TYPE (type, index);
2854
2855 if (cfull_expression)
2856 {
2857 char *join = was_ptr ? "->" : ".";
2858 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2859 TYPE_FIELD_NAME (type, index));
2860 }
2861
2862 break;
2863
2864 case TYPE_CODE_PTR:
2865 if (cname)
2866 *cname = xstrprintf ("*%s", parent->name);
2867
2868 if (cvalue && value)
2869 {
2870 int success = gdb_value_ind (value, cvalue);
2871 if (!success)
2872 *cvalue = NULL;
2873 }
2874
2875 /* Don't use get_target_type because it calls
2876 check_typedef and here, we want to show the true
2877 declared type of the variable. */
2878 if (ctype)
2879 *ctype = TYPE_TARGET_TYPE (type);
2880
2881 if (cfull_expression)
2882 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
2883
2884 break;
2885
2886 default:
2887 /* This should not happen */
2888 if (cname)
2889 *cname = xstrdup ("???");
2890 if (cfull_expression)
2891 *cfull_expression = xstrdup ("???");
2892 /* Don't set value and type, we don't know then. */
2893 }
2894 }
2895
2896 static char *
2897 c_name_of_child (struct varobj *parent, int index)
2898 {
2899 char *name;
2900 c_describe_child (parent, index, &name, NULL, NULL, NULL);
2901 return name;
2902 }
2903
2904 static char *
2905 c_path_expr_of_child (struct varobj *child)
2906 {
2907 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2908 &child->path_expr);
2909 return child->path_expr;
2910 }
2911
2912 /* If frame associated with VAR can be found, switch
2913 to it and return 1. Otherwise, return 0. */
2914 static int
2915 check_scope (struct varobj *var)
2916 {
2917 struct frame_info *fi;
2918 int scope;
2919
2920 fi = frame_find_by_id (var->root->frame);
2921 scope = fi != NULL;
2922
2923 if (fi)
2924 {
2925 CORE_ADDR pc = get_frame_pc (fi);
2926 if (pc < BLOCK_START (var->root->valid_block) ||
2927 pc >= BLOCK_END (var->root->valid_block))
2928 scope = 0;
2929 else
2930 select_frame (fi);
2931 }
2932 return scope;
2933 }
2934
2935 static struct value *
2936 c_value_of_root (struct varobj **var_handle)
2937 {
2938 struct value *new_val = NULL;
2939 struct varobj *var = *var_handle;
2940 int within_scope = 0;
2941 struct cleanup *back_to;
2942
2943 /* Only root variables can be updated... */
2944 if (!is_root_p (var))
2945 /* Not a root var */
2946 return NULL;
2947
2948 back_to = make_cleanup_restore_current_thread ();
2949
2950 /* Determine whether the variable is still around. */
2951 if (var->root->valid_block == NULL || var->root->floating)
2952 within_scope = 1;
2953 else if (var->root->thread_id == 0)
2954 {
2955 /* The program was single-threaded when the variable object was
2956 created. Technically, it's possible that the program became
2957 multi-threaded since then, but we don't support such
2958 scenario yet. */
2959 within_scope = check_scope (var);
2960 }
2961 else
2962 {
2963 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2964 if (in_thread_list (ptid))
2965 {
2966 switch_to_thread (ptid);
2967 within_scope = check_scope (var);
2968 }
2969 }
2970
2971 if (within_scope)
2972 {
2973 /* We need to catch errors here, because if evaluate
2974 expression fails we want to just return NULL. */
2975 gdb_evaluate_expression (var->root->exp, &new_val);
2976 return new_val;
2977 }
2978
2979 do_cleanups (back_to);
2980
2981 return NULL;
2982 }
2983
2984 static struct value *
2985 c_value_of_child (struct varobj *parent, int index)
2986 {
2987 struct value *value = NULL;
2988 c_describe_child (parent, index, NULL, &value, NULL, NULL);
2989
2990 return value;
2991 }
2992
2993 static struct type *
2994 c_type_of_child (struct varobj *parent, int index)
2995 {
2996 struct type *type = NULL;
2997 c_describe_child (parent, index, NULL, NULL, &type, NULL);
2998 return type;
2999 }
3000
3001 static char *
3002 c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3003 {
3004 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3005 it will print out its children instead of "{...}". So we need to
3006 catch that case explicitly. */
3007 struct type *type = get_type (var);
3008
3009 /* If we have a custom formatter, return whatever string it has
3010 produced. */
3011 if (var->pretty_printer && var->print_value)
3012 return xstrdup (var->print_value);
3013
3014 /* Strip top-level references. */
3015 while (TYPE_CODE (type) == TYPE_CODE_REF)
3016 type = check_typedef (TYPE_TARGET_TYPE (type));
3017
3018 switch (TYPE_CODE (type))
3019 {
3020 case TYPE_CODE_STRUCT:
3021 case TYPE_CODE_UNION:
3022 return xstrdup ("{...}");
3023 /* break; */
3024
3025 case TYPE_CODE_ARRAY:
3026 {
3027 char *number;
3028 number = xstrprintf ("[%d]", var->num_children);
3029 return (number);
3030 }
3031 /* break; */
3032
3033 default:
3034 {
3035 if (var->value == NULL)
3036 {
3037 /* This can happen if we attempt to get the value of a struct
3038 member when the parent is an invalid pointer. This is an
3039 error condition, so we should tell the caller. */
3040 return NULL;
3041 }
3042 else
3043 {
3044 if (var->not_fetched && value_lazy (var->value))
3045 /* Frozen variable and no value yet. We don't
3046 implicitly fetch the value. MI response will
3047 use empty string for the value, which is OK. */
3048 return NULL;
3049
3050 gdb_assert (varobj_value_is_changeable_p (var));
3051 gdb_assert (!value_lazy (var->value));
3052
3053 /* If the specified format is the current one,
3054 we can reuse print_value */
3055 if (format == var->format)
3056 return xstrdup (var->print_value);
3057 else
3058 return value_get_print_value (var->value, format, var);
3059 }
3060 }
3061 }
3062 }
3063 \f
3064
3065 /* C++ */
3066
3067 static int
3068 cplus_number_of_children (struct varobj *var)
3069 {
3070 struct type *type;
3071 int children, dont_know;
3072
3073 dont_know = 1;
3074 children = 0;
3075
3076 if (!CPLUS_FAKE_CHILD (var))
3077 {
3078 type = get_value_type (var);
3079 adjust_value_for_child_access (NULL, &type, NULL);
3080
3081 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
3082 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
3083 {
3084 int kids[3];
3085
3086 cplus_class_num_children (type, kids);
3087 if (kids[v_public] != 0)
3088 children++;
3089 if (kids[v_private] != 0)
3090 children++;
3091 if (kids[v_protected] != 0)
3092 children++;
3093
3094 /* Add any baseclasses */
3095 children += TYPE_N_BASECLASSES (type);
3096 dont_know = 0;
3097
3098 /* FIXME: save children in var */
3099 }
3100 }
3101 else
3102 {
3103 int kids[3];
3104
3105 type = get_value_type (var->parent);
3106 adjust_value_for_child_access (NULL, &type, NULL);
3107
3108 cplus_class_num_children (type, kids);
3109 if (strcmp (var->name, "public") == 0)
3110 children = kids[v_public];
3111 else if (strcmp (var->name, "private") == 0)
3112 children = kids[v_private];
3113 else
3114 children = kids[v_protected];
3115 dont_know = 0;
3116 }
3117
3118 if (dont_know)
3119 children = c_number_of_children (var);
3120
3121 return children;
3122 }
3123
3124 /* Compute # of public, private, and protected variables in this class.
3125 That means we need to descend into all baseclasses and find out
3126 how many are there, too. */
3127 static void
3128 cplus_class_num_children (struct type *type, int children[3])
3129 {
3130 int i, vptr_fieldno;
3131 struct type *basetype = NULL;
3132
3133 children[v_public] = 0;
3134 children[v_private] = 0;
3135 children[v_protected] = 0;
3136
3137 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3138 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3139 {
3140 /* If we have a virtual table pointer, omit it. Even if virtual
3141 table pointers are not specifically marked in the debug info,
3142 they should be artificial. */
3143 if ((type == basetype && i == vptr_fieldno)
3144 || TYPE_FIELD_ARTIFICIAL (type, i))
3145 continue;
3146
3147 if (TYPE_FIELD_PROTECTED (type, i))
3148 children[v_protected]++;
3149 else if (TYPE_FIELD_PRIVATE (type, i))
3150 children[v_private]++;
3151 else
3152 children[v_public]++;
3153 }
3154 }
3155
3156 static char *
3157 cplus_name_of_variable (struct varobj *parent)
3158 {
3159 return c_name_of_variable (parent);
3160 }
3161
3162 enum accessibility { private_field, protected_field, public_field };
3163
3164 /* Check if field INDEX of TYPE has the specified accessibility.
3165 Return 0 if so and 1 otherwise. */
3166 static int
3167 match_accessibility (struct type *type, int index, enum accessibility acc)
3168 {
3169 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3170 return 1;
3171 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3172 return 1;
3173 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3174 && !TYPE_FIELD_PROTECTED (type, index))
3175 return 1;
3176 else
3177 return 0;
3178 }
3179
3180 static void
3181 cplus_describe_child (struct varobj *parent, int index,
3182 char **cname, struct value **cvalue, struct type **ctype,
3183 char **cfull_expression)
3184 {
3185 struct value *value;
3186 struct type *type;
3187 int was_ptr;
3188 char *parent_expression = NULL;
3189
3190 if (cname)
3191 *cname = NULL;
3192 if (cvalue)
3193 *cvalue = NULL;
3194 if (ctype)
3195 *ctype = NULL;
3196 if (cfull_expression)
3197 *cfull_expression = NULL;
3198
3199 if (CPLUS_FAKE_CHILD (parent))
3200 {
3201 value = parent->parent->value;
3202 type = get_value_type (parent->parent);
3203 if (cfull_expression)
3204 parent_expression = varobj_get_path_expr (parent->parent);
3205 }
3206 else
3207 {
3208 value = parent->value;
3209 type = get_value_type (parent);
3210 if (cfull_expression)
3211 parent_expression = varobj_get_path_expr (parent);
3212 }
3213
3214 adjust_value_for_child_access (&value, &type, &was_ptr);
3215
3216 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3217 || TYPE_CODE (type) == TYPE_CODE_UNION)
3218 {
3219 char *join = was_ptr ? "->" : ".";
3220 if (CPLUS_FAKE_CHILD (parent))
3221 {
3222 /* The fields of the class type are ordered as they
3223 appear in the class. We are given an index for a
3224 particular access control type ("public","protected",
3225 or "private"). We must skip over fields that don't
3226 have the access control we are looking for to properly
3227 find the indexed field. */
3228 int type_index = TYPE_N_BASECLASSES (type);
3229 enum accessibility acc = public_field;
3230 int vptr_fieldno;
3231 struct type *basetype = NULL;
3232
3233 vptr_fieldno = get_vptr_fieldno (type, &basetype);
3234 if (strcmp (parent->name, "private") == 0)
3235 acc = private_field;
3236 else if (strcmp (parent->name, "protected") == 0)
3237 acc = protected_field;
3238
3239 while (index >= 0)
3240 {
3241 if ((type == basetype && type_index == vptr_fieldno)
3242 || TYPE_FIELD_ARTIFICIAL (type, type_index))
3243 ; /* ignore vptr */
3244 else if (match_accessibility (type, type_index, acc))
3245 --index;
3246 ++type_index;
3247 }
3248 --type_index;
3249
3250 if (cname)
3251 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3252
3253 if (cvalue && value)
3254 *cvalue = value_struct_element_index (value, type_index);
3255
3256 if (ctype)
3257 *ctype = TYPE_FIELD_TYPE (type, type_index);
3258
3259 if (cfull_expression)
3260 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3261 join,
3262 TYPE_FIELD_NAME (type, type_index));
3263 }
3264 else if (index < TYPE_N_BASECLASSES (type))
3265 {
3266 /* This is a baseclass. */
3267 if (cname)
3268 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3269
3270 if (cvalue && value)
3271 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
3272
3273 if (ctype)
3274 {
3275 *ctype = TYPE_FIELD_TYPE (type, index);
3276 }
3277
3278 if (cfull_expression)
3279 {
3280 char *ptr = was_ptr ? "*" : "";
3281 /* Cast the parent to the base' type. Note that in gdb,
3282 expression like
3283 (Base1)d
3284 will create an lvalue, for all appearences, so we don't
3285 need to use more fancy:
3286 *(Base1*)(&d)
3287 construct. */
3288 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3289 ptr,
3290 TYPE_FIELD_NAME (type, index),
3291 ptr,
3292 parent_expression);
3293 }
3294 }
3295 else
3296 {
3297 char *access = NULL;
3298 int children[3];
3299 cplus_class_num_children (type, children);
3300
3301 /* Everything beyond the baseclasses can
3302 only be "public", "private", or "protected"
3303
3304 The special "fake" children are always output by varobj in
3305 this order. So if INDEX == 2, it MUST be "protected". */
3306 index -= TYPE_N_BASECLASSES (type);
3307 switch (index)
3308 {
3309 case 0:
3310 if (children[v_public] > 0)
3311 access = "public";
3312 else if (children[v_private] > 0)
3313 access = "private";
3314 else
3315 access = "protected";
3316 break;
3317 case 1:
3318 if (children[v_public] > 0)
3319 {
3320 if (children[v_private] > 0)
3321 access = "private";
3322 else
3323 access = "protected";
3324 }
3325 else if (children[v_private] > 0)
3326 access = "protected";
3327 break;
3328 case 2:
3329 /* Must be protected */
3330 access = "protected";
3331 break;
3332 default:
3333 /* error! */
3334 break;
3335 }
3336
3337 gdb_assert (access);
3338 if (cname)
3339 *cname = xstrdup (access);
3340
3341 /* Value and type and full expression are null here. */
3342 }
3343 }
3344 else
3345 {
3346 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
3347 }
3348 }
3349
3350 static char *
3351 cplus_name_of_child (struct varobj *parent, int index)
3352 {
3353 char *name = NULL;
3354 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
3355 return name;
3356 }
3357
3358 static char *
3359 cplus_path_expr_of_child (struct varobj *child)
3360 {
3361 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3362 &child->path_expr);
3363 return child->path_expr;
3364 }
3365
3366 static struct value *
3367 cplus_value_of_root (struct varobj **var_handle)
3368 {
3369 return c_value_of_root (var_handle);
3370 }
3371
3372 static struct value *
3373 cplus_value_of_child (struct varobj *parent, int index)
3374 {
3375 struct value *value = NULL;
3376 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
3377 return value;
3378 }
3379
3380 static struct type *
3381 cplus_type_of_child (struct varobj *parent, int index)
3382 {
3383 struct type *type = NULL;
3384 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
3385 return type;
3386 }
3387
3388 static char *
3389 cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3390 {
3391
3392 /* If we have one of our special types, don't print out
3393 any value. */
3394 if (CPLUS_FAKE_CHILD (var))
3395 return xstrdup ("");
3396
3397 return c_value_of_variable (var, format);
3398 }
3399 \f
3400 /* Java */
3401
3402 static int
3403 java_number_of_children (struct varobj *var)
3404 {
3405 return cplus_number_of_children (var);
3406 }
3407
3408 static char *
3409 java_name_of_variable (struct varobj *parent)
3410 {
3411 char *p, *name;
3412
3413 name = cplus_name_of_variable (parent);
3414 /* If the name has "-" in it, it is because we
3415 needed to escape periods in the name... */
3416 p = name;
3417
3418 while (*p != '\000')
3419 {
3420 if (*p == '-')
3421 *p = '.';
3422 p++;
3423 }
3424
3425 return name;
3426 }
3427
3428 static char *
3429 java_name_of_child (struct varobj *parent, int index)
3430 {
3431 char *name, *p;
3432
3433 name = cplus_name_of_child (parent, index);
3434 /* Escape any periods in the name... */
3435 p = name;
3436
3437 while (*p != '\000')
3438 {
3439 if (*p == '.')
3440 *p = '-';
3441 p++;
3442 }
3443
3444 return name;
3445 }
3446
3447 static char *
3448 java_path_expr_of_child (struct varobj *child)
3449 {
3450 return NULL;
3451 }
3452
3453 static struct value *
3454 java_value_of_root (struct varobj **var_handle)
3455 {
3456 return cplus_value_of_root (var_handle);
3457 }
3458
3459 static struct value *
3460 java_value_of_child (struct varobj *parent, int index)
3461 {
3462 return cplus_value_of_child (parent, index);
3463 }
3464
3465 static struct type *
3466 java_type_of_child (struct varobj *parent, int index)
3467 {
3468 return cplus_type_of_child (parent, index);
3469 }
3470
3471 static char *
3472 java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3473 {
3474 return cplus_value_of_variable (var, format);
3475 }
3476
3477 /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3478 with an arbitrary caller supplied DATA pointer. */
3479
3480 void
3481 all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3482 {
3483 struct varobj_root *var_root, *var_root_next;
3484
3485 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3486
3487 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3488 {
3489 var_root_next = var_root->next;
3490
3491 (*func) (var_root->rootvar, data);
3492 }
3493 }
3494 \f
3495 extern void _initialize_varobj (void);
3496 void
3497 _initialize_varobj (void)
3498 {
3499 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3500
3501 varobj_table = xmalloc (sizeof_table);
3502 memset (varobj_table, 0, sizeof_table);
3503
3504 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3505 &varobjdebug, _("\
3506 Set varobj debugging."), _("\
3507 Show varobj debugging."), _("\
3508 When non-zero, varobj debugging is enabled."),
3509 NULL,
3510 show_varobjdebug,
3511 &setlist, &showlist);
3512 }
3513
3514 /* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3515 defined on globals. It is a helper for varobj_invalidate. */
3516
3517 static void
3518 varobj_invalidate_iter (struct varobj *var, void *unused)
3519 {
3520 /* Floating varobjs are reparsed on each stop, so we don't care if the
3521 presently parsed expression refers to something that's gone. */
3522 if (var->root->floating)
3523 return;
3524
3525 /* global var must be re-evaluated. */
3526 if (var->root->valid_block == NULL)
3527 {
3528 struct varobj *tmp_var;
3529
3530 /* Try to create a varobj with same expression. If we succeed
3531 replace the old varobj, otherwise invalidate it. */
3532 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3533 USE_CURRENT_FRAME);
3534 if (tmp_var != NULL)
3535 {
3536 tmp_var->obj_name = xstrdup (var->obj_name);
3537 varobj_delete (var, NULL, 0);
3538 install_variable (tmp_var);
3539 }
3540 else
3541 var->root->is_valid = 0;
3542 }
3543 else /* locals must be invalidated. */
3544 var->root->is_valid = 0;
3545 }
3546
3547 /* Invalidate the varobjs that are tied to locals and re-create the ones that
3548 are defined on globals.
3549 Invalidated varobjs will be always printed in_scope="invalid". */
3550
3551 void
3552 varobj_invalidate (void)
3553 {
3554 all_root_varobjs (varobj_invalidate_iter, NULL);
3555 }
This page took 0.097653 seconds and 5 git commands to generate.