* x86-64-tdep.c (x86_64_dwarf_regmap): Remove trailing whitespace.
[deliverable/binutils-gdb.git] / gdb / x86-64-tdep.c
1 /* Target-dependent code for the x86-64 for GDB, the GNU debugger.
2
3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Jiri Smid, SuSE Labs.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "arch-utils.h"
25 #include "block.h"
26 #include "dummy-frame.h"
27 #include "frame.h"
28 #include "frame-base.h"
29 #include "frame-unwind.h"
30 #include "inferior.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "objfiles.h"
34 #include "regcache.h"
35 #include "symfile.h"
36
37 #include "gdb_assert.h"
38
39 #include "x86-64-tdep.h"
40 #include "i387-tdep.h"
41
42 /* Register information. */
43
44 struct x86_64_register_info
45 {
46 char *name;
47 struct type **type;
48 };
49
50 static struct x86_64_register_info x86_64_register_info[] =
51 {
52 { "rax", &builtin_type_int64 },
53 { "rbx", &builtin_type_int64 },
54 { "rcx", &builtin_type_int64 },
55 { "rdx", &builtin_type_int64 },
56 { "rsi", &builtin_type_int64 },
57 { "rdi", &builtin_type_int64 },
58 { "rbp", &builtin_type_void_data_ptr },
59 { "rsp", &builtin_type_void_data_ptr },
60
61 /* %r8 is indeed register number 8. */
62 { "r8", &builtin_type_int64 },
63 { "r9", &builtin_type_int64 },
64 { "r10", &builtin_type_int64 },
65 { "r11", &builtin_type_int64 },
66 { "r12", &builtin_type_int64 },
67 { "r13", &builtin_type_int64 },
68 { "r14", &builtin_type_int64 },
69 { "r15", &builtin_type_int64 },
70 { "rip", &builtin_type_void_func_ptr },
71 { "eflags", &builtin_type_int32 },
72 { "ds", &builtin_type_int32 },
73 { "es", &builtin_type_int32 },
74 { "fs", &builtin_type_int32 },
75 { "gs", &builtin_type_int32 },
76
77 /* %st0 is register number 22. */
78 { "st0", &builtin_type_i387_ext },
79 { "st1", &builtin_type_i387_ext },
80 { "st2", &builtin_type_i387_ext },
81 { "st3", &builtin_type_i387_ext },
82 { "st4", &builtin_type_i387_ext },
83 { "st5", &builtin_type_i387_ext },
84 { "st6", &builtin_type_i387_ext },
85 { "st7", &builtin_type_i387_ext },
86 { "fctrl", &builtin_type_int32 },
87 { "fstat", &builtin_type_int32 },
88 { "ftag", &builtin_type_int32 },
89 { "fiseg", &builtin_type_int32 },
90 { "fioff", &builtin_type_int32 },
91 { "foseg", &builtin_type_int32 },
92 { "fooff", &builtin_type_int32 },
93 { "fop", &builtin_type_int32 },
94
95 /* %xmm0 is register number 38. */
96 { "xmm0", &builtin_type_v4sf },
97 { "xmm1", &builtin_type_v4sf },
98 { "xmm2", &builtin_type_v4sf },
99 { "xmm3", &builtin_type_v4sf },
100 { "xmm4", &builtin_type_v4sf },
101 { "xmm5", &builtin_type_v4sf },
102 { "xmm6", &builtin_type_v4sf },
103 { "xmm7", &builtin_type_v4sf },
104 { "xmm8", &builtin_type_v4sf },
105 { "xmm9", &builtin_type_v4sf },
106 { "xmm10", &builtin_type_v4sf },
107 { "xmm11", &builtin_type_v4sf },
108 { "xmm12", &builtin_type_v4sf },
109 { "xmm13", &builtin_type_v4sf },
110 { "xmm14", &builtin_type_v4sf },
111 { "xmm15", &builtin_type_v4sf },
112 { "mxcsr", &builtin_type_int32 }
113 };
114
115 /* Total number of registers. */
116 #define X86_64_NUM_REGS \
117 (sizeof (x86_64_register_info) / sizeof (x86_64_register_info[0]))
118
119 /* Return the name of register REGNUM. */
120
121 static const char *
122 x86_64_register_name (int regnum)
123 {
124 if (regnum >= 0 && regnum < X86_64_NUM_REGS)
125 return x86_64_register_info[regnum].name;
126
127 return NULL;
128 }
129
130 /* Return the GDB type object for the "standard" data type of data in
131 register REGNUM. */
132
133 static struct type *
134 x86_64_register_type (struct gdbarch *gdbarch, int regnum)
135 {
136 gdb_assert (regnum >= 0 && regnum < X86_64_NUM_REGS);
137
138 return *x86_64_register_info[regnum].type;
139 }
140
141 /* DWARF Register Number Mapping as defined in the System V psABI,
142 section 3.6. */
143
144 static int x86_64_dwarf_regmap[] =
145 {
146 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
147 X86_64_RAX_REGNUM, X86_64_RDX_REGNUM, 2, 1,
148 4, X86_64_RDI_REGNUM,
149
150 /* Frame Pointer Register RBP. */
151 X86_64_RBP_REGNUM,
152
153 /* Stack Pointer Register RSP. */
154 X86_64_RSP_REGNUM,
155
156 /* Extended Integer Registers 8 - 15. */
157 8, 9, 10, 11, 12, 13, 14, 15,
158
159 /* Return Address RA. Not mapped. */
160 -1,
161
162 /* SSE Registers 0 - 7. */
163 X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
164 X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
165 X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
166 X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
167
168 /* Extended SSE Registers 8 - 15. */
169 X86_64_XMM0_REGNUM + 8, X86_64_XMM0_REGNUM + 9,
170 X86_64_XMM0_REGNUM + 10, X86_64_XMM0_REGNUM + 11,
171 X86_64_XMM0_REGNUM + 12, X86_64_XMM0_REGNUM + 13,
172 X86_64_XMM0_REGNUM + 14, X86_64_XMM0_REGNUM + 15,
173
174 /* Floating Point Registers 0-7. */
175 X86_64_ST0_REGNUM + 0, X86_64_ST0_REGNUM + 1,
176 X86_64_ST0_REGNUM + 2, X86_64_ST0_REGNUM + 3,
177 X86_64_ST0_REGNUM + 4, X86_64_ST0_REGNUM + 5,
178 X86_64_ST0_REGNUM + 6, X86_64_ST0_REGNUM + 7
179 };
180
181 static const int x86_64_dwarf_regmap_len =
182 (sizeof (x86_64_dwarf_regmap) / sizeof (x86_64_dwarf_regmap[0]));
183
184 /* Convert DWARF register number REG to the appropriate register
185 number used by GDB. */
186
187 static int
188 x86_64_dwarf_reg_to_regnum (int reg)
189 {
190 int regnum = -1;
191
192 if (reg >= 0 || reg < x86_64_dwarf_regmap_len)
193 regnum = x86_64_dwarf_regmap[reg];
194
195 if (regnum == -1)
196 warning ("Unmapped DWARF Register #%d encountered\n", reg);
197
198 return regnum;
199 }
200
201 /* Return nonzero if a value of type TYPE stored in register REGNUM
202 needs any special handling. */
203
204 static int
205 x86_64_convert_register_p (int regnum, struct type *type)
206 {
207 return i386_fp_regnum_p (regnum);
208 }
209 \f
210
211 /* The returning of values is done according to the special algorithm.
212 Some types are returned in registers an some (big structures) in
213 memory. See the System V psABI for details. */
214
215 #define MAX_CLASSES 4
216
217 enum x86_64_reg_class
218 {
219 X86_64_NO_CLASS,
220 X86_64_INTEGER_CLASS,
221 X86_64_INTEGERSI_CLASS,
222 X86_64_SSE_CLASS,
223 X86_64_SSESF_CLASS,
224 X86_64_SSEDF_CLASS,
225 X86_64_SSEUP_CLASS,
226 X86_64_X87_CLASS,
227 X86_64_X87UP_CLASS,
228 X86_64_MEMORY_CLASS
229 };
230
231 /* Return the union class of CLASS1 and CLASS2.
232 See the System V psABI for details. */
233
234 static enum x86_64_reg_class
235 merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2)
236 {
237 /* Rule (a): If both classes are equal, this is the resulting class. */
238 if (class1 == class2)
239 return class1;
240
241 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
242 is the other class. */
243 if (class1 == X86_64_NO_CLASS)
244 return class2;
245 if (class2 == X86_64_NO_CLASS)
246 return class1;
247
248 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
249 if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS)
250 return X86_64_MEMORY_CLASS;
251
252 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
253 if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS)
254 || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS))
255 return X86_64_INTEGERSI_CLASS;
256 if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS
257 || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS)
258 return X86_64_INTEGER_CLASS;
259
260 /* Rule (e): If one of the classes is X87 or X87UP class, MEMORY is
261 used as class. */
262 if (class1 == X86_64_X87_CLASS || class1 == X86_64_X87UP_CLASS
263 || class2 == X86_64_X87_CLASS || class2 == X86_64_X87UP_CLASS)
264 return X86_64_MEMORY_CLASS;
265
266 /* Rule (f): Otherwise class SSE is used. */
267 return X86_64_SSE_CLASS;
268 }
269
270 /* Classify the argument type. CLASSES will be filled by the register
271 class used to pass each word of the operand. The number of words
272 is returned. In case the parameter should be passed in memory, 0
273 is returned. As a special case for zero sized containers,
274 classes[0] will be NO_CLASS and 1 is returned.
275
276 See the System V psABI for details. */
277
278 static int
279 classify_argument (struct type *type,
280 enum x86_64_reg_class classes[MAX_CLASSES], int bit_offset)
281 {
282 int bytes = TYPE_LENGTH (type);
283 int words = (bytes + 8 - 1) / 8;
284
285 switch (TYPE_CODE (type))
286 {
287 case TYPE_CODE_ARRAY:
288 case TYPE_CODE_STRUCT:
289 case TYPE_CODE_UNION:
290 {
291 int i;
292 enum x86_64_reg_class subclasses[MAX_CLASSES];
293
294 /* On x86-64 we pass structures larger than 16 bytes on the stack. */
295 if (bytes > 16)
296 return 0;
297
298 for (i = 0; i < words; i++)
299 classes[i] = X86_64_NO_CLASS;
300
301 /* Zero sized arrays or structures are NO_CLASS. We return 0
302 to signalize memory class, so handle it as special case. */
303 if (!words)
304 {
305 classes[0] = X86_64_NO_CLASS;
306 return 1;
307 }
308 switch (TYPE_CODE (type))
309 {
310 case TYPE_CODE_STRUCT:
311 {
312 int j;
313 for (j = 0; j < TYPE_NFIELDS (type); ++j)
314 {
315 int num = classify_argument (TYPE_FIELDS (type)[j].type,
316 subclasses,
317 (TYPE_FIELDS (type)[j].loc.
318 bitpos + bit_offset) % 256);
319 if (!num)
320 return 0;
321 for (i = 0; i < num; i++)
322 {
323 int pos =
324 (TYPE_FIELDS (type)[j].loc.bitpos +
325 bit_offset) / 8 / 8;
326 classes[i + pos] =
327 merge_classes (subclasses[i], classes[i + pos]);
328 }
329 }
330 }
331 break;
332 case TYPE_CODE_ARRAY:
333 {
334 int num;
335
336 num = classify_argument (TYPE_TARGET_TYPE (type),
337 subclasses, bit_offset);
338 if (!num)
339 return 0;
340
341 /* The partial classes are now full classes. */
342 if (subclasses[0] == X86_64_SSESF_CLASS && bytes != 4)
343 subclasses[0] = X86_64_SSE_CLASS;
344 if (subclasses[0] == X86_64_INTEGERSI_CLASS && bytes != 4)
345 subclasses[0] = X86_64_INTEGER_CLASS;
346
347 for (i = 0; i < words; i++)
348 classes[i] = subclasses[i % num];
349 }
350 break;
351 case TYPE_CODE_UNION:
352 {
353 int j;
354 {
355 for (j = 0; j < TYPE_NFIELDS (type); ++j)
356 {
357 int num;
358 num = classify_argument (TYPE_FIELDS (type)[j].type,
359 subclasses, bit_offset);
360 if (!num)
361 return 0;
362 for (i = 0; i < num; i++)
363 classes[i] = merge_classes (subclasses[i], classes[i]);
364 }
365 }
366 }
367 break;
368 default:
369 break;
370 }
371 /* Final merger cleanup. */
372 for (i = 0; i < words; i++)
373 {
374 /* If one class is MEMORY, everything should be passed in
375 memory. */
376 if (classes[i] == X86_64_MEMORY_CLASS)
377 return 0;
378
379 /* The X86_64_SSEUP_CLASS should be always preceeded by
380 X86_64_SSE_CLASS. */
381 if (classes[i] == X86_64_SSEUP_CLASS
382 && (i == 0 || classes[i - 1] != X86_64_SSE_CLASS))
383 classes[i] = X86_64_SSE_CLASS;
384
385 /* X86_64_X87UP_CLASS should be preceeded by X86_64_X87_CLASS. */
386 if (classes[i] == X86_64_X87UP_CLASS
387 && (i == 0 || classes[i - 1] != X86_64_X87_CLASS))
388 classes[i] = X86_64_SSE_CLASS;
389 }
390 return words;
391 }
392 break;
393 case TYPE_CODE_FLT:
394 switch (bytes)
395 {
396 case 4:
397 if (!(bit_offset % 64))
398 classes[0] = X86_64_SSESF_CLASS;
399 else
400 classes[0] = X86_64_SSE_CLASS;
401 return 1;
402 case 8:
403 classes[0] = X86_64_SSEDF_CLASS;
404 return 1;
405 case 16:
406 classes[0] = X86_64_X87_CLASS;
407 classes[1] = X86_64_X87UP_CLASS;
408 return 2;
409 }
410 break;
411 case TYPE_CODE_ENUM:
412 case TYPE_CODE_REF:
413 case TYPE_CODE_INT:
414 case TYPE_CODE_PTR:
415 switch (bytes)
416 {
417 case 1:
418 case 2:
419 case 4:
420 case 8:
421 if (bytes * 8 + bit_offset <= 32)
422 classes[0] = X86_64_INTEGERSI_CLASS;
423 else
424 classes[0] = X86_64_INTEGER_CLASS;
425 return 1;
426 case 16:
427 classes[0] = classes[1] = X86_64_INTEGER_CLASS;
428 return 2;
429 default:
430 break;
431 }
432 case TYPE_CODE_VOID:
433 return 0;
434 default: /* Avoid warning. */
435 break;
436 }
437 internal_error (__FILE__, __LINE__,
438 "classify_argument: unknown argument type");
439 }
440
441 /* Examine the argument and set *INT_NREGS and *SSE_NREGS to the
442 number of registers required based on the information passed in
443 CLASSES. Return 0 if parameter should be passed in memory. */
444
445 static int
446 examine_argument (enum x86_64_reg_class classes[MAX_CLASSES],
447 int n, int *int_nregs, int *sse_nregs)
448 {
449 *int_nregs = 0;
450 *sse_nregs = 0;
451 if (!n)
452 return 0;
453 for (n--; n >= 0; n--)
454 switch (classes[n])
455 {
456 case X86_64_INTEGER_CLASS:
457 case X86_64_INTEGERSI_CLASS:
458 (*int_nregs)++;
459 break;
460 case X86_64_SSE_CLASS:
461 case X86_64_SSESF_CLASS:
462 case X86_64_SSEDF_CLASS:
463 (*sse_nregs)++;
464 break;
465 case X86_64_NO_CLASS:
466 case X86_64_SSEUP_CLASS:
467 case X86_64_X87_CLASS:
468 case X86_64_X87UP_CLASS:
469 break;
470 case X86_64_MEMORY_CLASS:
471 internal_error (__FILE__, __LINE__,
472 "examine_argument: unexpected memory class");
473 }
474 return 1;
475 }
476
477 #define RET_INT_REGS 2
478 #define RET_SSE_REGS 2
479
480 /* Check if the structure in value_type is returned in registers or in
481 memory. If this function returns 1, GDB will call
482 STORE_STRUCT_RETURN and EXTRACT_STRUCT_VALUE_ADDRESS else
483 STORE_RETURN_VALUE and EXTRACT_RETURN_VALUE will be used. */
484
485 static int
486 x86_64_use_struct_convention (int gcc_p, struct type *value_type)
487 {
488 enum x86_64_reg_class class[MAX_CLASSES];
489 int n = classify_argument (value_type, class, 0);
490 int needed_intregs;
491 int needed_sseregs;
492
493 return (!n ||
494 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
495 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS);
496 }
497
498 /* Extract from an array REGBUF containing the (raw) register state, a
499 function return value of TYPE, and copy that, in virtual format,
500 into VALBUF. */
501
502 static void
503 x86_64_extract_return_value (struct type *type, struct regcache *regcache,
504 void *valbuf)
505 {
506 enum x86_64_reg_class class[MAX_CLASSES];
507 int n = classify_argument (type, class, 0);
508 int needed_intregs;
509 int needed_sseregs;
510 int intreg = 0;
511 int ssereg = 0;
512 int offset = 0;
513 int ret_int_r[RET_INT_REGS] = { X86_64_RAX_REGNUM, X86_64_RDX_REGNUM };
514 int ret_sse_r[RET_SSE_REGS] = { X86_64_XMM0_REGNUM, X86_64_XMM1_REGNUM };
515
516 if (!n ||
517 !examine_argument (class, n, &needed_intregs, &needed_sseregs) ||
518 needed_intregs > RET_INT_REGS || needed_sseregs > RET_SSE_REGS)
519 { /* memory class */
520 CORE_ADDR addr;
521 regcache_cooked_read (regcache, X86_64_RAX_REGNUM, &addr);
522 read_memory (addr, valbuf, TYPE_LENGTH (type));
523 return;
524 }
525 else
526 {
527 int i;
528 for (i = 0; i < n; i++)
529 {
530 switch (class[i])
531 {
532 case X86_64_NO_CLASS:
533 break;
534 case X86_64_INTEGER_CLASS:
535 regcache_cooked_read (regcache, ret_int_r[(intreg + 1) / 2],
536 (char *) valbuf + offset);
537 offset += 8;
538 intreg += 2;
539 break;
540 case X86_64_INTEGERSI_CLASS:
541 regcache_cooked_read_part (regcache, ret_int_r[intreg / 2],
542 0, 4, (char *) valbuf + offset);
543 offset += 8;
544 intreg++;
545 break;
546 case X86_64_SSEDF_CLASS:
547 case X86_64_SSESF_CLASS:
548 case X86_64_SSE_CLASS:
549 regcache_cooked_read_part (regcache,
550 ret_sse_r[(ssereg + 1) / 2], 0, 8,
551 (char *) valbuf + offset);
552 offset += 8;
553 ssereg += 2;
554 break;
555 case X86_64_SSEUP_CLASS:
556 regcache_cooked_read_part (regcache, ret_sse_r[ssereg / 2],
557 0, 8, (char *) valbuf + offset);
558 offset += 8;
559 ssereg++;
560 break;
561 case X86_64_X87_CLASS:
562 regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
563 0, 8, (char *) valbuf + offset);
564 offset += 8;
565 break;
566 case X86_64_X87UP_CLASS:
567 regcache_cooked_read_part (regcache, X86_64_ST0_REGNUM,
568 8, 2, (char *) valbuf + offset);
569 offset += 8;
570 break;
571 case X86_64_MEMORY_CLASS:
572 default:
573 internal_error (__FILE__, __LINE__,
574 "Unexpected argument class");
575 }
576 }
577 }
578 }
579
580 #define INT_REGS 6
581 #define SSE_REGS 8
582
583 static CORE_ADDR
584 x86_64_push_arguments (struct regcache *regcache, int nargs,
585 struct value **args, CORE_ADDR sp)
586 {
587 int intreg = 0;
588 int ssereg = 0;
589 /* For varargs functions we have to pass the total number of SSE
590 registers used in %rax. So, let's count this number. */
591 int total_sse_args = 0;
592 /* Once an SSE/int argument is passed on the stack, all subsequent
593 arguments are passed there. */
594 int sse_stack = 0;
595 int int_stack = 0;
596 unsigned total_sp;
597 int i;
598 char buf[8];
599 static int int_parameter_registers[INT_REGS] =
600 {
601 X86_64_RDI_REGNUM, 4, /* %rdi, %rsi */
602 X86_64_RDX_REGNUM, 2, /* %rdx, %rcx */
603 8, 9 /* %r8, %r9 */
604 };
605 /* %xmm0 - %xmm7 */
606 static int sse_parameter_registers[SSE_REGS] =
607 {
608 X86_64_XMM0_REGNUM + 0, X86_64_XMM1_REGNUM,
609 X86_64_XMM0_REGNUM + 2, X86_64_XMM0_REGNUM + 3,
610 X86_64_XMM0_REGNUM + 4, X86_64_XMM0_REGNUM + 5,
611 X86_64_XMM0_REGNUM + 6, X86_64_XMM0_REGNUM + 7,
612 };
613 int stack_values_count = 0;
614 int *stack_values;
615 stack_values = alloca (nargs * sizeof (int));
616
617 /* Before storing anything to the stack we must skip
618 the "Red zone" (see the "Function calling sequence" section
619 of AMD64 ABI).
620 It could have already been skipped in the function's
621 prologue, but we don't care and will easily skip it once again. */
622 sp -= 128;
623
624 for (i = 0; i < nargs; i++)
625 {
626 enum x86_64_reg_class class[MAX_CLASSES];
627 int n = classify_argument (args[i]->type, class, 0);
628 int needed_intregs;
629 int needed_sseregs;
630
631 if (!n ||
632 !examine_argument (class, n, &needed_intregs, &needed_sseregs))
633 { /* memory class */
634 stack_values[stack_values_count++] = i;
635 }
636 else
637 {
638 int j;
639 int offset = 0;
640
641 if (intreg / 2 + needed_intregs > INT_REGS)
642 int_stack = 1;
643 if (ssereg / 2 + needed_sseregs > SSE_REGS)
644 sse_stack = 1;
645 if (!sse_stack)
646 total_sse_args += needed_sseregs;
647
648 for (j = 0; j < n; j++)
649 {
650 switch (class[j])
651 {
652 case X86_64_NO_CLASS:
653 break;
654 case X86_64_INTEGER_CLASS:
655 if (int_stack)
656 stack_values[stack_values_count++] = i;
657 else
658 {
659 regcache_cooked_write
660 (regcache, int_parameter_registers[(intreg + 1) / 2],
661 VALUE_CONTENTS_ALL (args[i]) + offset);
662 offset += 8;
663 intreg += 2;
664 }
665 break;
666 case X86_64_INTEGERSI_CLASS:
667 if (int_stack)
668 stack_values[stack_values_count++] = i;
669 else
670 {
671 LONGEST val = extract_signed_integer
672 (VALUE_CONTENTS_ALL (args[i]) + offset, 4);
673 regcache_cooked_write_signed
674 (regcache, int_parameter_registers[intreg / 2], val);
675
676 offset += 8;
677 intreg++;
678 }
679 break;
680 case X86_64_SSEDF_CLASS:
681 case X86_64_SSESF_CLASS:
682 case X86_64_SSE_CLASS:
683 if (sse_stack)
684 stack_values[stack_values_count++] = i;
685 else
686 {
687 regcache_cooked_write
688 (regcache, sse_parameter_registers[(ssereg + 1) / 2],
689 VALUE_CONTENTS_ALL (args[i]) + offset);
690 offset += 8;
691 ssereg += 2;
692 }
693 break;
694 case X86_64_SSEUP_CLASS:
695 if (sse_stack)
696 stack_values[stack_values_count++] = i;
697 else
698 {
699 regcache_cooked_write
700 (regcache, sse_parameter_registers[ssereg / 2],
701 VALUE_CONTENTS_ALL (args[i]) + offset);
702 offset += 8;
703 ssereg++;
704 }
705 break;
706 case X86_64_X87_CLASS:
707 case X86_64_MEMORY_CLASS:
708 stack_values[stack_values_count++] = i;
709 break;
710 case X86_64_X87UP_CLASS:
711 break;
712 default:
713 internal_error (__FILE__, __LINE__,
714 "Unexpected argument class");
715 }
716 intreg += intreg % 2;
717 ssereg += ssereg % 2;
718 }
719 }
720 }
721
722 /* We have to make sure that the stack is 16-byte aligned after the
723 setup. Let's calculate size of arguments first, align stack and
724 then fill in the arguments. */
725 total_sp = 0;
726 for (i = 0; i < stack_values_count; i++)
727 {
728 struct value *arg = args[stack_values[i]];
729 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
730 total_sp += (len + 7) & ~7;
731 }
732 /* total_sp is now a multiple of 8, if it is not a multiple of 16,
733 change the stack pointer so that it will be afterwards correctly
734 aligned. */
735 if (total_sp & 15)
736 sp -= 8;
737
738 /* Push any remaining arguments onto the stack. */
739 while (--stack_values_count >= 0)
740 {
741 struct value *arg = args[stack_values[stack_values_count]];
742 int len = TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg));
743
744 /* Make sure the stack is 8-byte-aligned. */
745 sp -= (len + 7) & ~7;
746 write_memory (sp, VALUE_CONTENTS_ALL (arg), len);
747 }
748
749 /* Write number of SSE type arguments to RAX to take care of varargs
750 functions. */
751 store_unsigned_integer (buf, 8, total_sse_args);
752 regcache_cooked_write (regcache, X86_64_RAX_REGNUM, buf);
753
754 return sp;
755 }
756
757 /* Write into the appropriate registers a function return value stored
758 in VALBUF of type TYPE, given in virtual format. */
759
760 static void
761 x86_64_store_return_value (struct type *type, struct regcache *regcache,
762 const void *valbuf)
763 {
764 int len = TYPE_LENGTH (type);
765
766 /* First handle long doubles. */
767 if (TYPE_CODE_FLT == TYPE_CODE (type) && len == 16)
768 {
769 ULONGEST fstat;
770 char buf[FPU_REG_RAW_SIZE];
771
772 /* Returning floating-point values is a bit tricky. Apart from
773 storing the return value in %st(0), we have to simulate the
774 state of the FPU at function return point. */
775
776 /* Convert the value found in VALBUF to the extended
777 floating-point format used by the FPU. This is probably
778 not exactly how it would happen on the target itself, but
779 it is the best we can do. */
780 convert_typed_floating (valbuf, type, buf, builtin_type_i387_ext);
781 regcache_raw_write (regcache, X86_64_ST0_REGNUM, buf);
782
783 /* Set the top of the floating-point register stack to 7. The
784 actual value doesn't really matter, but 7 is what a normal
785 function return would end up with if the program started out
786 with a freshly initialized FPU. */
787 regcache_raw_read_unsigned (regcache, FSTAT_REGNUM, &fstat);
788 fstat |= (7 << 11);
789 regcache_raw_write_unsigned (regcache, FSTAT_REGNUM, fstat);
790
791 /* Mark %st(1) through %st(7) as empty. Since we set the top of
792 the floating-point register stack to 7, the appropriate value
793 for the tag word is 0x3fff. */
794 regcache_raw_write_unsigned (regcache, FTAG_REGNUM, 0x3fff);
795 }
796 else if (TYPE_CODE_FLT == TYPE_CODE (type))
797 {
798 /* Handle double and float variables. */
799 regcache_cooked_write_part (regcache, X86_64_XMM0_REGNUM,
800 0, len, valbuf);
801 }
802 /* XXX: What about complex floating point types? */
803 else
804 {
805 int low_size = REGISTER_RAW_SIZE (0);
806 int high_size = REGISTER_RAW_SIZE (1);
807
808 if (len <= low_size)
809 regcache_cooked_write_part (regcache, 0, 0, len, valbuf);
810 else if (len <= (low_size + high_size))
811 {
812 regcache_cooked_write_part (regcache, 0, 0, low_size, valbuf);
813 regcache_cooked_write_part (regcache, 1, 0,
814 len - low_size,
815 (const char *) valbuf + low_size);
816 }
817 else
818 internal_error (__FILE__, __LINE__,
819 "Cannot store return value of %d bytes long.", len);
820 }
821 }
822 \f
823
824 static CORE_ADDR
825 x86_64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
826 struct regcache *regcache, CORE_ADDR bp_addr,
827 int nargs, struct value **args, CORE_ADDR sp,
828 int struct_return, CORE_ADDR struct_addr)
829 {
830 char buf[8];
831
832 /* Pass arguments. */
833 sp = x86_64_push_arguments (regcache, nargs, args, sp);
834
835 /* Pass "hidden" argument". */
836 if (struct_return)
837 {
838 store_unsigned_integer (buf, 8, struct_addr);
839 regcache_cooked_write (regcache, X86_64_RDI_REGNUM, buf);
840 }
841
842 /* Store return address. */
843 sp -= 8;
844 store_unsigned_integer (buf, 8, bp_addr);
845 write_memory (sp, buf, 8);
846
847 /* Finally, update the stack pointer... */
848 store_unsigned_integer (buf, 8, sp);
849 regcache_cooked_write (regcache, X86_64_RSP_REGNUM, buf);
850
851 /* ...and fake a frame pointer. */
852 regcache_cooked_write (regcache, X86_64_RBP_REGNUM, buf);
853
854 return sp + 16;
855 }
856 \f
857
858 /* The maximum number of saved registers. This should include %rip. */
859 #define X86_64_NUM_SAVED_REGS X86_64_NUM_GREGS
860
861 struct x86_64_frame_cache
862 {
863 /* Base address. */
864 CORE_ADDR base;
865 CORE_ADDR sp_offset;
866 CORE_ADDR pc;
867
868 /* Saved registers. */
869 CORE_ADDR saved_regs[X86_64_NUM_SAVED_REGS];
870 CORE_ADDR saved_sp;
871
872 /* Do we have a frame? */
873 int frameless_p;
874 };
875
876 /* Allocate and initialize a frame cache. */
877
878 static struct x86_64_frame_cache *
879 x86_64_alloc_frame_cache (void)
880 {
881 struct x86_64_frame_cache *cache;
882 int i;
883
884 cache = FRAME_OBSTACK_ZALLOC (struct x86_64_frame_cache);
885
886 /* Base address. */
887 cache->base = 0;
888 cache->sp_offset = -8;
889 cache->pc = 0;
890
891 /* Saved registers. We initialize these to -1 since zero is a valid
892 offset (that's where %rbp is supposed to be stored). */
893 for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
894 cache->saved_regs[i] = -1;
895 cache->saved_sp = 0;
896
897 /* Frameless until proven otherwise. */
898 cache->frameless_p = 1;
899
900 return cache;
901 }
902
903 /* Do a limited analysis of the prologue at PC and update CACHE
904 accordingly. Bail out early if CURRENT_PC is reached. Return the
905 address where the analysis stopped.
906
907 We will handle only functions beginning with:
908
909 pushq %rbp 0x55
910 movq %rsp, %rbp 0x48 0x89 0xe5
911
912 Any function that doesn't start with this sequence will be assumed
913 to have no prologue and thus no valid frame pointer in %rbp. */
914
915 static CORE_ADDR
916 x86_64_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
917 struct x86_64_frame_cache *cache)
918 {
919 static unsigned char proto[3] = { 0x48, 0x89, 0xe5 };
920 unsigned char buf[3];
921 unsigned char op;
922
923 if (current_pc <= pc)
924 return current_pc;
925
926 op = read_memory_unsigned_integer (pc, 1);
927
928 if (op == 0x55) /* pushq %rbp */
929 {
930 /* Take into account that we've executed the `pushq %rbp' that
931 starts this instruction sequence. */
932 cache->saved_regs[X86_64_RBP_REGNUM] = 0;
933 cache->sp_offset += 8;
934
935 /* If that's all, return now. */
936 if (current_pc <= pc + 1)
937 return current_pc;
938
939 /* Check for `movq %rsp, %rbp'. */
940 read_memory (pc + 1, buf, 3);
941 if (memcmp (buf, proto, 3) != 0)
942 return pc + 1;
943
944 /* OK, we actually have a frame. */
945 cache->frameless_p = 0;
946 return pc + 4;
947 }
948
949 return pc;
950 }
951
952 /* Return PC of first real instruction. */
953
954 static CORE_ADDR
955 x86_64_skip_prologue (CORE_ADDR start_pc)
956 {
957 struct x86_64_frame_cache cache;
958 CORE_ADDR pc;
959
960 pc = x86_64_analyze_prologue (start_pc, 0xffffffffffffffff, &cache);
961 if (cache.frameless_p)
962 return start_pc;
963
964 return pc;
965 }
966 \f
967
968 /* Normal frames. */
969
970 static struct x86_64_frame_cache *
971 x86_64_frame_cache (struct frame_info *next_frame, void **this_cache)
972 {
973 struct x86_64_frame_cache *cache;
974 char buf[8];
975 int i;
976
977 if (*this_cache)
978 return *this_cache;
979
980 cache = x86_64_alloc_frame_cache ();
981 *this_cache = cache;
982
983 frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
984 cache->base = extract_unsigned_integer (buf, 8);
985 if (cache->base == 0)
986 return cache;
987
988 /* For normal frames, %rip is stored at 8(%rbp). */
989 cache->saved_regs[X86_64_RIP_REGNUM] = 8;
990
991 cache->pc = frame_func_unwind (next_frame);
992 if (cache->pc != 0)
993 x86_64_analyze_prologue (cache->pc, frame_pc_unwind (next_frame), cache);
994
995 if (cache->frameless_p)
996 {
997 /* We didn't find a valid frame, which means that CACHE->base
998 currently holds the frame pointer for our calling frame. If
999 we're at the start of a function, or somewhere half-way its
1000 prologue, the function's frame probably hasn't been fully
1001 setup yet. Try to reconstruct the base address for the stack
1002 frame by looking at the stack pointer. For truly "frameless"
1003 functions this might work too. */
1004
1005 frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
1006 cache->base = extract_unsigned_integer (buf, 8) + cache->sp_offset;
1007 }
1008
1009 /* Now that we have the base address for the stack frame we can
1010 calculate the value of %rsp in the calling frame. */
1011 cache->saved_sp = cache->base + 16;
1012
1013 /* Adjust all the saved registers such that they contain addresses
1014 instead of offsets. */
1015 for (i = 0; i < X86_64_NUM_SAVED_REGS; i++)
1016 if (cache->saved_regs[i] != -1)
1017 cache->saved_regs[i] += cache->base;
1018
1019 return cache;
1020 }
1021
1022 static void
1023 x86_64_frame_this_id (struct frame_info *next_frame, void **this_cache,
1024 struct frame_id *this_id)
1025 {
1026 struct x86_64_frame_cache *cache =
1027 x86_64_frame_cache (next_frame, this_cache);
1028
1029 /* This marks the outermost frame. */
1030 if (cache->base == 0)
1031 return;
1032
1033 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
1034 }
1035
1036 static void
1037 x86_64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1038 int regnum, int *optimizedp,
1039 enum lval_type *lvalp, CORE_ADDR *addrp,
1040 int *realnump, void *valuep)
1041 {
1042 struct x86_64_frame_cache *cache =
1043 x86_64_frame_cache (next_frame, this_cache);
1044
1045 gdb_assert (regnum >= 0);
1046
1047 if (regnum == SP_REGNUM && cache->saved_sp)
1048 {
1049 *optimizedp = 0;
1050 *lvalp = not_lval;
1051 *addrp = 0;
1052 *realnump = -1;
1053 if (valuep)
1054 {
1055 /* Store the value. */
1056 store_unsigned_integer (valuep, 8, cache->saved_sp);
1057 }
1058 return;
1059 }
1060
1061 if (regnum < X86_64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
1062 {
1063 *optimizedp = 0;
1064 *lvalp = lval_memory;
1065 *addrp = cache->saved_regs[regnum];
1066 *realnump = -1;
1067 if (valuep)
1068 {
1069 /* Read the value in from memory. */
1070 read_memory (*addrp, valuep,
1071 register_size (current_gdbarch, regnum));
1072 }
1073 return;
1074 }
1075
1076 frame_register_unwind (next_frame, regnum,
1077 optimizedp, lvalp, addrp, realnump, valuep);
1078 }
1079
1080 static const struct frame_unwind x86_64_frame_unwind =
1081 {
1082 NORMAL_FRAME,
1083 x86_64_frame_this_id,
1084 x86_64_frame_prev_register
1085 };
1086
1087 static const struct frame_unwind *
1088 x86_64_frame_sniffer (struct frame_info *next_frame)
1089 {
1090 return &x86_64_frame_unwind;
1091 }
1092 \f
1093
1094 /* Signal trampolines. */
1095
1096 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
1097 64-bit variants. This would require using identical frame caches
1098 on both platforms. */
1099
1100 static struct x86_64_frame_cache *
1101 x86_64_sigtramp_frame_cache (struct frame_info *next_frame, void **this_cache)
1102 {
1103 struct x86_64_frame_cache *cache;
1104 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1105 CORE_ADDR addr;
1106 char buf[8];
1107 int i;
1108
1109 if (*this_cache)
1110 return *this_cache;
1111
1112 cache = x86_64_alloc_frame_cache ();
1113
1114 frame_unwind_register (next_frame, X86_64_RSP_REGNUM, buf);
1115 cache->base = extract_unsigned_integer (buf, 8) - 8;
1116
1117 addr = tdep->sigcontext_addr (next_frame);
1118 gdb_assert (tdep->sc_reg_offset);
1119 gdb_assert (tdep->sc_num_regs <= X86_64_NUM_SAVED_REGS);
1120 for (i = 0; i < tdep->sc_num_regs; i++)
1121 if (tdep->sc_reg_offset[i] != -1)
1122 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
1123
1124 *this_cache = cache;
1125 return cache;
1126 }
1127
1128 static void
1129 x86_64_sigtramp_frame_this_id (struct frame_info *next_frame,
1130 void **this_cache, struct frame_id *this_id)
1131 {
1132 struct x86_64_frame_cache *cache =
1133 x86_64_sigtramp_frame_cache (next_frame, this_cache);
1134
1135 (*this_id) = frame_id_build (cache->base + 16, frame_pc_unwind (next_frame));
1136 }
1137
1138 static void
1139 x86_64_sigtramp_frame_prev_register (struct frame_info *next_frame,
1140 void **this_cache,
1141 int regnum, int *optimizedp,
1142 enum lval_type *lvalp, CORE_ADDR *addrp,
1143 int *realnump, void *valuep)
1144 {
1145 /* Make sure we've initialized the cache. */
1146 x86_64_sigtramp_frame_cache (next_frame, this_cache);
1147
1148 x86_64_frame_prev_register (next_frame, this_cache, regnum,
1149 optimizedp, lvalp, addrp, realnump, valuep);
1150 }
1151
1152 static const struct frame_unwind x86_64_sigtramp_frame_unwind =
1153 {
1154 SIGTRAMP_FRAME,
1155 x86_64_sigtramp_frame_this_id,
1156 x86_64_sigtramp_frame_prev_register
1157 };
1158
1159 static const struct frame_unwind *
1160 x86_64_sigtramp_frame_sniffer (struct frame_info *next_frame)
1161 {
1162 CORE_ADDR pc = frame_pc_unwind (next_frame);
1163 char *name;
1164
1165 find_pc_partial_function (pc, &name, NULL, NULL);
1166 if (PC_IN_SIGTRAMP (pc, name))
1167 {
1168 gdb_assert (gdbarch_tdep (current_gdbarch)->sigcontext_addr);
1169
1170 return &x86_64_sigtramp_frame_unwind;
1171 }
1172
1173 return NULL;
1174 }
1175 \f
1176
1177 static CORE_ADDR
1178 x86_64_frame_base_address (struct frame_info *next_frame, void **this_cache)
1179 {
1180 struct x86_64_frame_cache *cache =
1181 x86_64_frame_cache (next_frame, this_cache);
1182
1183 return cache->base;
1184 }
1185
1186 static const struct frame_base x86_64_frame_base =
1187 {
1188 &x86_64_frame_unwind,
1189 x86_64_frame_base_address,
1190 x86_64_frame_base_address,
1191 x86_64_frame_base_address
1192 };
1193
1194 static struct frame_id
1195 x86_64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
1196 {
1197 char buf[8];
1198 CORE_ADDR fp;
1199
1200 frame_unwind_register (next_frame, X86_64_RBP_REGNUM, buf);
1201 fp = extract_unsigned_integer (buf, 8);
1202
1203 return frame_id_build (fp + 16, frame_pc_unwind (next_frame));
1204 }
1205
1206 void
1207 x86_64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1208 {
1209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1210
1211 /* The x86-64 has 16 SSE registers. */
1212 tdep->num_xmm_regs = 16;
1213
1214 /* This is what all the fuss is about. */
1215 set_gdbarch_long_bit (gdbarch, 64);
1216 set_gdbarch_long_long_bit (gdbarch, 64);
1217 set_gdbarch_ptr_bit (gdbarch, 64);
1218
1219 /* In contrast to the i386, on the x86-64 a `long double' actually
1220 takes up 128 bits, even though it's still based on the i387
1221 extended floating-point format which has only 80 significant bits. */
1222 set_gdbarch_long_double_bit (gdbarch, 128);
1223
1224 set_gdbarch_num_regs (gdbarch, X86_64_NUM_REGS);
1225 set_gdbarch_register_name (gdbarch, x86_64_register_name);
1226 set_gdbarch_register_type (gdbarch, x86_64_register_type);
1227
1228 /* Register numbers of various important registers. */
1229 set_gdbarch_sp_regnum (gdbarch, X86_64_RSP_REGNUM); /* %rsp */
1230 set_gdbarch_pc_regnum (gdbarch, X86_64_RIP_REGNUM); /* %rip */
1231 set_gdbarch_ps_regnum (gdbarch, X86_64_EFLAGS_REGNUM); /* %eflags */
1232 set_gdbarch_fp0_regnum (gdbarch, X86_64_ST0_REGNUM); /* %st(0) */
1233
1234 /* The "default" register numbering scheme for the x86-64 is
1235 referred to as the "DWARF Register Number Mapping" in the System
1236 V psABI. The preferred debugging format for all known x86-64
1237 targets is actually DWARF2, and GCC doesn't seem to support DWARF
1238 (that is DWARF-1), but we provide the same mapping just in case.
1239 This mapping is also used for stabs, which GCC does support. */
1240 set_gdbarch_stab_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
1241 set_gdbarch_dwarf_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
1242 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, x86_64_dwarf_reg_to_regnum);
1243
1244 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
1245 be in use on any of the supported x86-64 targets. */
1246
1247 /* Call dummy code. */
1248 set_gdbarch_push_dummy_call (gdbarch, x86_64_push_dummy_call);
1249
1250 set_gdbarch_convert_register_p (gdbarch, x86_64_convert_register_p);
1251 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
1252 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
1253
1254 set_gdbarch_extract_return_value (gdbarch, x86_64_extract_return_value);
1255 set_gdbarch_store_return_value (gdbarch, x86_64_store_return_value);
1256 /* Override, since this is handled by x86_64_extract_return_value. */
1257 set_gdbarch_extract_struct_value_address (gdbarch, NULL);
1258 set_gdbarch_use_struct_convention (gdbarch, x86_64_use_struct_convention);
1259
1260 set_gdbarch_skip_prologue (gdbarch, x86_64_skip_prologue);
1261
1262 /* Avoid wiring in the MMX registers for now. */
1263 set_gdbarch_num_pseudo_regs (gdbarch, 0);
1264
1265 set_gdbarch_unwind_dummy_id (gdbarch, x86_64_unwind_dummy_id);
1266
1267 /* FIXME: kettenis/20021026: This is ELF-specific. Fine for now,
1268 since all supported x86-64 targets are ELF, but that might change
1269 in the future. */
1270 set_gdbarch_in_solib_call_trampoline (gdbarch, in_plt_section);
1271
1272 frame_unwind_append_sniffer (gdbarch, x86_64_sigtramp_frame_sniffer);
1273 frame_unwind_append_sniffer (gdbarch, x86_64_frame_sniffer);
1274 frame_base_set_default (gdbarch, &x86_64_frame_base);
1275 }
1276 \f
1277
1278 #define I387_FISEG_REGNUM FISEG_REGNUM
1279 #define I387_FOSEG_REGNUM FOSEG_REGNUM
1280
1281 /* The 64-bit FXSAVE format differs from the 32-bit format in the
1282 sense that the instruction pointer and data pointer are simply
1283 64-bit offsets into the code segment and the data segment instead
1284 of a selector offset pair. The functions below store the upper 32
1285 bits of these pointers (instead of just the 16-bits of the segment
1286 selector). */
1287
1288 /* Fill GDB's register array with the floating-point and SSE register
1289 values in *FXSAVE. This function masks off any of the reserved
1290 bits in *FXSAVE. */
1291
1292 void
1293 x86_64_supply_fxsave (char *fxsave)
1294 {
1295 i387_supply_fxsave (fxsave);
1296
1297 if (fxsave)
1298 {
1299 supply_register (I387_FISEG_REGNUM, fxsave + 12);
1300 supply_register (I387_FOSEG_REGNUM, fxsave + 20);
1301 }
1302 }
1303
1304 /* Fill register REGNUM (if it is a floating-point or SSE register) in
1305 *FXSAVE with the value in GDB's register array. If REGNUM is -1, do
1306 this for all registers. This function doesn't touch any of the
1307 reserved bits in *FXSAVE. */
1308
1309 void
1310 x86_64_fill_fxsave (char *fxsave, int regnum)
1311 {
1312 i387_fill_fxsave (fxsave, regnum);
1313
1314 if (regnum == -1 || regnum == I387_FISEG_REGNUM)
1315 regcache_collect (I387_FISEG_REGNUM, fxsave + 12);
1316 if (regnum == -1 || regnum == I387_FOSEG_REGNUM)
1317 regcache_collect (I387_FOSEG_REGNUM, fxsave + 20);
1318 }
This page took 0.06001 seconds and 5 git commands to generate.