0000155b52bad9953547142c026550a85a005b2d
[deliverable/binutils-gdb.git] / gdb / xtensa-tdep.c
1 /* Target-dependent code for the Xtensa port of GDB, the GNU debugger.
2
3 Copyright (C) 2003-2017 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "frame.h"
22 #include "solib-svr4.h"
23 #include "symtab.h"
24 #include "symfile.h"
25 #include "objfiles.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "value.h"
29 #include "dis-asm.h"
30 #include "inferior.h"
31 #include "osabi.h"
32 #include "floatformat.h"
33 #include "regcache.h"
34 #include "reggroups.h"
35 #include "regset.h"
36
37 #include "dummy-frame.h"
38 #include "dwarf2.h"
39 #include "dwarf2-frame.h"
40 #include "dwarf2loc.h"
41 #include "frame-base.h"
42 #include "frame-unwind.h"
43
44 #include "arch-utils.h"
45 #include "gdbarch.h"
46 #include "remote.h"
47 #include "serial.h"
48
49 #include "command.h"
50 #include "gdbcmd.h"
51
52 #include "xtensa-isa.h"
53 #include "xtensa-tdep.h"
54 #include "xtensa-config.h"
55 #include <algorithm>
56
57
58 static unsigned int xtensa_debug_level = 0;
59
60 #define DEBUGWARN(args...) \
61 if (xtensa_debug_level > 0) \
62 fprintf_unfiltered (gdb_stdlog, "(warn ) " args)
63
64 #define DEBUGINFO(args...) \
65 if (xtensa_debug_level > 1) \
66 fprintf_unfiltered (gdb_stdlog, "(info ) " args)
67
68 #define DEBUGTRACE(args...) \
69 if (xtensa_debug_level > 2) \
70 fprintf_unfiltered (gdb_stdlog, "(trace) " args)
71
72 #define DEBUGVERB(args...) \
73 if (xtensa_debug_level > 3) \
74 fprintf_unfiltered (gdb_stdlog, "(verb ) " args)
75
76
77 /* According to the ABI, the SP must be aligned to 16-byte boundaries. */
78 #define SP_ALIGNMENT 16
79
80
81 /* On Windowed ABI, we use a6 through a11 for passing arguments
82 to a function called by GDB because CALL4 is used. */
83 #define ARGS_NUM_REGS 6
84 #define REGISTER_SIZE 4
85
86
87 /* Extract the call size from the return address or PS register. */
88 #define PS_CALLINC_SHIFT 16
89 #define PS_CALLINC_MASK 0x00030000
90 #define CALLINC(ps) (((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
91 #define WINSIZE(ra) (4 * (( (ra) >> 30) & 0x3))
92
93 /* On TX, hardware can be configured without Exception Option.
94 There is no PS register in this case. Inside XT-GDB, let us treat
95 it as a virtual read-only register always holding the same value. */
96 #define TX_PS 0x20
97
98 /* ABI-independent macros. */
99 #define ARG_NOF(gdbarch) \
100 (gdbarch_tdep (gdbarch)->call_abi \
101 == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
102 #define ARG_1ST(gdbarch) \
103 (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only \
104 ? (gdbarch_tdep (gdbarch)->a0_base + C0_ARGS) \
105 : (gdbarch_tdep (gdbarch)->a0_base + 6))
106
107 /* XTENSA_IS_ENTRY tests whether the first byte of an instruction
108 indicates that the instruction is an ENTRY instruction. */
109
110 #define XTENSA_IS_ENTRY(gdbarch, op1) \
111 ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
112 ? ((op1) == 0x6c) : ((op1) == 0x36))
113
114 #define XTENSA_ENTRY_LENGTH 3
115
116 /* windowing_enabled() returns true, if windowing is enabled.
117 WOE must be set to 1; EXCM to 0.
118 Note: We assume that EXCM is always 0 for XEA1. */
119
120 #define PS_WOE (1<<18)
121 #define PS_EXC (1<<4)
122
123 static int
124 windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
125 {
126 /* If we know CALL0 ABI is set explicitly, say it is Call0. */
127 if (gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
128 return 0;
129
130 return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
131 }
132
133 /* Convert a live A-register number to the corresponding AR-register
134 number. */
135 static int
136 arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
137 {
138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
139 int arreg;
140
141 arreg = a_regnum - tdep->a0_base;
142 arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
143 arreg &= tdep->num_aregs - 1;
144
145 return arreg + tdep->ar_base;
146 }
147
148 /* Convert a live AR-register number to the corresponding A-register order
149 number in a range [0..15]. Return -1, if AR_REGNUM is out of WB window. */
150 static int
151 areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
152 {
153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
154 int areg;
155
156 areg = ar_regnum - tdep->ar_base;
157 if (areg < 0 || areg >= tdep->num_aregs)
158 return -1;
159 areg = (areg - wb * 4) & (tdep->num_aregs - 1);
160 return (areg > 15) ? -1 : areg;
161 }
162
163 /* Read Xtensa register directly from the hardware. */
164 static unsigned long
165 xtensa_read_register (int regnum)
166 {
167 ULONGEST value;
168
169 regcache_raw_read_unsigned (get_current_regcache (), regnum, &value);
170 return (unsigned long) value;
171 }
172
173 /* Write Xtensa register directly to the hardware. */
174 static void
175 xtensa_write_register (int regnum, ULONGEST value)
176 {
177 regcache_raw_write_unsigned (get_current_regcache (), regnum, value);
178 }
179
180 /* Return the window size of the previous call to the function from which we
181 have just returned.
182
183 This function is used to extract the return value after a called function
184 has returned to the caller. On Xtensa, the register that holds the return
185 value (from the perspective of the caller) depends on what call
186 instruction was used. For now, we are assuming that the call instruction
187 precedes the current address, so we simply analyze the call instruction.
188 If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
189 method to call the inferior function. */
190
191 static int
192 extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 int winsize = 4;
196 int insn;
197 gdb_byte buf[4];
198
199 DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);
200
201 /* Read the previous instruction (should be a call[x]{4|8|12}. */
202 read_memory (pc-3, buf, 3);
203 insn = extract_unsigned_integer (buf, 3, byte_order);
204
205 /* Decode call instruction:
206 Little Endian
207 call{0,4,8,12} OFFSET || {00,01,10,11} || 0101
208 callx{0,4,8,12} OFFSET || 11 || {00,01,10,11} || 0000
209 Big Endian
210 call{0,4,8,12} 0101 || {00,01,10,11} || OFFSET
211 callx{0,4,8,12} 0000 || {00,01,10,11} || 11 || OFFSET. */
212
213 if (byte_order == BFD_ENDIAN_LITTLE)
214 {
215 if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
216 winsize = (insn & 0x30) >> 2; /* 0, 4, 8, 12. */
217 }
218 else
219 {
220 if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
221 winsize = (insn >> 16) & 0xc; /* 0, 4, 8, 12. */
222 }
223 return winsize;
224 }
225
226
227 /* REGISTER INFORMATION */
228
229 /* Find register by name. */
230 static int
231 xtensa_find_register_by_name (struct gdbarch *gdbarch, char *name)
232 {
233 int i;
234
235 for (i = 0; i < gdbarch_num_regs (gdbarch)
236 + gdbarch_num_pseudo_regs (gdbarch);
237 i++)
238
239 if (strcasecmp (gdbarch_tdep (gdbarch)->regmap[i].name, name) == 0)
240 return i;
241
242 return -1;
243 }
244
245 /* Returns the name of a register. */
246 static const char *
247 xtensa_register_name (struct gdbarch *gdbarch, int regnum)
248 {
249 /* Return the name stored in the register map. */
250 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
251 + gdbarch_num_pseudo_regs (gdbarch))
252 return gdbarch_tdep (gdbarch)->regmap[regnum].name;
253
254 internal_error (__FILE__, __LINE__, _("invalid register %d"), regnum);
255 return 0;
256 }
257
258 /* Return the type of a register. Create a new type, if necessary. */
259
260 static struct type *
261 xtensa_register_type (struct gdbarch *gdbarch, int regnum)
262 {
263 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
264
265 /* Return signed integer for ARx and Ax registers. */
266 if ((regnum >= tdep->ar_base
267 && regnum < tdep->ar_base + tdep->num_aregs)
268 || (regnum >= tdep->a0_base
269 && regnum < tdep->a0_base + 16))
270 return builtin_type (gdbarch)->builtin_int;
271
272 if (regnum == gdbarch_pc_regnum (gdbarch)
273 || regnum == tdep->a0_base + 1)
274 return builtin_type (gdbarch)->builtin_data_ptr;
275
276 /* Return the stored type for all other registers. */
277 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch)
278 + gdbarch_num_pseudo_regs (gdbarch))
279 {
280 xtensa_register_t* reg = &tdep->regmap[regnum];
281
282 /* Set ctype for this register (only the first time). */
283
284 if (reg->ctype == 0)
285 {
286 struct ctype_cache *tp;
287 int size = reg->byte_size;
288
289 /* We always use the memory representation,
290 even if the register width is smaller. */
291 switch (size)
292 {
293 case 1:
294 reg->ctype = builtin_type (gdbarch)->builtin_uint8;
295 break;
296
297 case 2:
298 reg->ctype = builtin_type (gdbarch)->builtin_uint16;
299 break;
300
301 case 4:
302 reg->ctype = builtin_type (gdbarch)->builtin_uint32;
303 break;
304
305 case 8:
306 reg->ctype = builtin_type (gdbarch)->builtin_uint64;
307 break;
308
309 case 16:
310 reg->ctype = builtin_type (gdbarch)->builtin_uint128;
311 break;
312
313 default:
314 for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
315 if (tp->size == size)
316 break;
317
318 if (tp == NULL)
319 {
320 char *name = xstrprintf ("int%d", size * 8);
321
322 tp = XNEW (struct ctype_cache);
323 tp->next = tdep->type_entries;
324 tdep->type_entries = tp;
325 tp->size = size;
326 tp->virtual_type
327 = arch_integer_type (gdbarch, size * 8, 1, name);
328 xfree (name);
329 }
330
331 reg->ctype = tp->virtual_type;
332 }
333 }
334 return reg->ctype;
335 }
336
337 internal_error (__FILE__, __LINE__, _("invalid register number %d"), regnum);
338 return 0;
339 }
340
341
342 /* Return the 'local' register number for stubs, dwarf2, etc.
343 The debugging information enumerates registers starting from 0 for A0
344 to n for An. So, we only have to add the base number for A0. */
345
346 static int
347 xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
348 {
349 int i;
350
351 if (regnum >= 0 && regnum < 16)
352 return gdbarch_tdep (gdbarch)->a0_base + regnum;
353
354 for (i = 0;
355 i < gdbarch_num_regs (gdbarch) + gdbarch_num_pseudo_regs (gdbarch);
356 i++)
357 if (regnum == gdbarch_tdep (gdbarch)->regmap[i].target_number)
358 return i;
359
360 return -1;
361 }
362
363
364 /* Write the bits of a masked register to the various registers.
365 Only the masked areas of these registers are modified; the other
366 fields are untouched. The size of masked registers is always less
367 than or equal to 32 bits. */
368
369 static void
370 xtensa_register_write_masked (struct regcache *regcache,
371 xtensa_register_t *reg, const gdb_byte *buffer)
372 {
373 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
374 const xtensa_mask_t *mask = reg->mask;
375
376 int shift = 0; /* Shift for next mask (mod 32). */
377 int start, size; /* Start bit and size of current mask. */
378
379 unsigned int *ptr = value;
380 unsigned int regval, m, mem = 0;
381
382 int bytesize = reg->byte_size;
383 int bitsize = bytesize * 8;
384 int i, r;
385
386 DEBUGTRACE ("xtensa_register_write_masked ()\n");
387
388 /* Copy the masked register to host byte-order. */
389 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
390 for (i = 0; i < bytesize; i++)
391 {
392 mem >>= 8;
393 mem |= (buffer[bytesize - i - 1] << 24);
394 if ((i & 3) == 3)
395 *ptr++ = mem;
396 }
397 else
398 for (i = 0; i < bytesize; i++)
399 {
400 mem >>= 8;
401 mem |= (buffer[i] << 24);
402 if ((i & 3) == 3)
403 *ptr++ = mem;
404 }
405
406 /* We might have to shift the final value:
407 bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
408 bytesize & 3 == x -> shift (4-x) * 8. */
409
410 *ptr = mem >> (((0 - bytesize) & 3) * 8);
411 ptr = value;
412 mem = *ptr;
413
414 /* Write the bits to the masked areas of the other registers. */
415 for (i = 0; i < mask->count; i++)
416 {
417 start = mask->mask[i].bit_start;
418 size = mask->mask[i].bit_size;
419 regval = mem >> shift;
420
421 if ((shift += size) > bitsize)
422 error (_("size of all masks is larger than the register"));
423
424 if (shift >= 32)
425 {
426 mem = *(++ptr);
427 shift -= 32;
428 bitsize -= 32;
429
430 if (shift > 0)
431 regval |= mem << (size - shift);
432 }
433
434 /* Make sure we have a valid register. */
435 r = mask->mask[i].reg_num;
436 if (r >= 0 && size > 0)
437 {
438 /* Don't overwrite the unmasked areas. */
439 ULONGEST old_val;
440 regcache_cooked_read_unsigned (regcache, r, &old_val);
441 m = 0xffffffff >> (32 - size) << start;
442 regval <<= start;
443 regval = (regval & m) | (old_val & ~m);
444 regcache_cooked_write_unsigned (regcache, r, regval);
445 }
446 }
447 }
448
449
450 /* Read a tie state or mapped registers. Read the masked areas
451 of the registers and assemble them into a single value. */
452
453 static enum register_status
454 xtensa_register_read_masked (struct regcache *regcache,
455 xtensa_register_t *reg, gdb_byte *buffer)
456 {
457 unsigned int value[(MAX_REGISTER_SIZE + 3) / 4];
458 const xtensa_mask_t *mask = reg->mask;
459
460 int shift = 0;
461 int start, size;
462
463 unsigned int *ptr = value;
464 unsigned int regval, mem = 0;
465
466 int bytesize = reg->byte_size;
467 int bitsize = bytesize * 8;
468 int i;
469
470 DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
471 reg->name == 0 ? "" : reg->name);
472
473 /* Assemble the register from the masked areas of other registers. */
474 for (i = 0; i < mask->count; i++)
475 {
476 int r = mask->mask[i].reg_num;
477 if (r >= 0)
478 {
479 enum register_status status;
480 ULONGEST val;
481
482 status = regcache_cooked_read_unsigned (regcache, r, &val);
483 if (status != REG_VALID)
484 return status;
485 regval = (unsigned int) val;
486 }
487 else
488 regval = 0;
489
490 start = mask->mask[i].bit_start;
491 size = mask->mask[i].bit_size;
492
493 regval >>= start;
494
495 if (size < 32)
496 regval &= (0xffffffff >> (32 - size));
497
498 mem |= regval << shift;
499
500 if ((shift += size) > bitsize)
501 error (_("size of all masks is larger than the register"));
502
503 if (shift >= 32)
504 {
505 *ptr++ = mem;
506 bitsize -= 32;
507 shift -= 32;
508
509 if (shift == 0)
510 mem = 0;
511 else
512 mem = regval >> (size - shift);
513 }
514 }
515
516 if (shift > 0)
517 *ptr = mem;
518
519 /* Copy value to target byte order. */
520 ptr = value;
521 mem = *ptr;
522
523 if (gdbarch_byte_order (get_regcache_arch (regcache)) == BFD_ENDIAN_BIG)
524 for (i = 0; i < bytesize; i++)
525 {
526 if ((i & 3) == 0)
527 mem = *ptr++;
528 buffer[bytesize - i - 1] = mem & 0xff;
529 mem >>= 8;
530 }
531 else
532 for (i = 0; i < bytesize; i++)
533 {
534 if ((i & 3) == 0)
535 mem = *ptr++;
536 buffer[i] = mem & 0xff;
537 mem >>= 8;
538 }
539
540 return REG_VALID;
541 }
542
543
544 /* Read pseudo registers. */
545
546 static enum register_status
547 xtensa_pseudo_register_read (struct gdbarch *gdbarch,
548 struct regcache *regcache,
549 int regnum,
550 gdb_byte *buffer)
551 {
552 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
553
554 DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
555 regnum, xtensa_register_name (gdbarch, regnum));
556
557 /* Read aliases a0..a15, if this is a Windowed ABI. */
558 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
559 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
560 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
561 {
562 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
563 enum register_status status;
564
565 status = regcache_raw_read (regcache,
566 gdbarch_tdep (gdbarch)->wb_regnum,
567 buf);
568 if (status != REG_VALID)
569 return status;
570 regnum = arreg_number (gdbarch, regnum,
571 extract_unsigned_integer (buf, 4, byte_order));
572 }
573
574 /* We can always read non-pseudo registers. */
575 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
576 return regcache_raw_read (regcache, regnum, buffer);
577
578 /* We have to find out how to deal with priveleged registers.
579 Let's treat them as pseudo-registers, but we cannot read/write them. */
580
581 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
582 {
583 buffer[0] = (gdb_byte)0;
584 buffer[1] = (gdb_byte)0;
585 buffer[2] = (gdb_byte)0;
586 buffer[3] = (gdb_byte)0;
587 return REG_VALID;
588 }
589 /* Pseudo registers. */
590 else if (regnum >= 0
591 && regnum < gdbarch_num_regs (gdbarch)
592 + gdbarch_num_pseudo_regs (gdbarch))
593 {
594 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
595 xtensa_register_type_t type = reg->type;
596 int flags = gdbarch_tdep (gdbarch)->target_flags;
597
598 /* We cannot read Unknown or Unmapped registers. */
599 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
600 {
601 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
602 {
603 warning (_("cannot read register %s"),
604 xtensa_register_name (gdbarch, regnum));
605 return REG_VALID;
606 }
607 }
608
609 /* Some targets cannot read TIE register files. */
610 else if (type == xtRegisterTypeTieRegfile)
611 {
612 /* Use 'fetch' to get register? */
613 if (flags & xtTargetFlagsUseFetchStore)
614 {
615 warning (_("cannot read register"));
616 return REG_VALID;
617 }
618
619 /* On some targets (esp. simulators), we can always read the reg. */
620 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
621 {
622 warning (_("cannot read register"));
623 return REG_VALID;
624 }
625 }
626
627 /* We can always read mapped registers. */
628 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
629 return xtensa_register_read_masked (regcache, reg, buffer);
630
631 /* Assume that we can read the register. */
632 return regcache_raw_read (regcache, regnum, buffer);
633 }
634 else
635 internal_error (__FILE__, __LINE__,
636 _("invalid register number %d"), regnum);
637 }
638
639
640 /* Write pseudo registers. */
641
642 static void
643 xtensa_pseudo_register_write (struct gdbarch *gdbarch,
644 struct regcache *regcache,
645 int regnum,
646 const gdb_byte *buffer)
647 {
648 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
649
650 DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
651 regnum, xtensa_register_name (gdbarch, regnum));
652
653 /* Renumber register, if aliase a0..a15 on Windowed ABI. */
654 if (gdbarch_tdep (gdbarch)->isa_use_windowed_registers
655 && (regnum >= gdbarch_tdep (gdbarch)->a0_base)
656 && (regnum <= gdbarch_tdep (gdbarch)->a0_base + 15))
657 {
658 gdb_byte *buf = (gdb_byte *) alloca (MAX_REGISTER_SIZE);
659
660 regcache_raw_read (regcache,
661 gdbarch_tdep (gdbarch)->wb_regnum, buf);
662 regnum = arreg_number (gdbarch, regnum,
663 extract_unsigned_integer (buf, 4, byte_order));
664 }
665
666 /* We can always write 'core' registers.
667 Note: We might have converted Ax->ARy. */
668 if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
669 regcache_raw_write (regcache, regnum, buffer);
670
671 /* We have to find out how to deal with priveleged registers.
672 Let's treat them as pseudo-registers, but we cannot read/write them. */
673
674 else if (regnum < gdbarch_tdep (gdbarch)->a0_base)
675 {
676 return;
677 }
678 /* Pseudo registers. */
679 else if (regnum >= 0
680 && regnum < gdbarch_num_regs (gdbarch)
681 + gdbarch_num_pseudo_regs (gdbarch))
682 {
683 xtensa_register_t *reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
684 xtensa_register_type_t type = reg->type;
685 int flags = gdbarch_tdep (gdbarch)->target_flags;
686
687 /* On most targets, we cannot write registers
688 of type "Unknown" or "Unmapped". */
689 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
690 {
691 if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
692 {
693 warning (_("cannot write register %s"),
694 xtensa_register_name (gdbarch, regnum));
695 return;
696 }
697 }
698
699 /* Some targets cannot read TIE register files. */
700 else if (type == xtRegisterTypeTieRegfile)
701 {
702 /* Use 'store' to get register? */
703 if (flags & xtTargetFlagsUseFetchStore)
704 {
705 warning (_("cannot write register"));
706 return;
707 }
708
709 /* On some targets (esp. simulators), we can always write
710 the register. */
711 else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
712 {
713 warning (_("cannot write register"));
714 return;
715 }
716 }
717
718 /* We can always write mapped registers. */
719 else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
720 {
721 xtensa_register_write_masked (regcache, reg, buffer);
722 return;
723 }
724
725 /* Assume that we can write the register. */
726 regcache_raw_write (regcache, regnum, buffer);
727 }
728 else
729 internal_error (__FILE__, __LINE__,
730 _("invalid register number %d"), regnum);
731 }
732
733 static struct reggroup *xtensa_ar_reggroup;
734 static struct reggroup *xtensa_user_reggroup;
735 static struct reggroup *xtensa_vectra_reggroup;
736 static struct reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];
737
738 static void
739 xtensa_init_reggroups (void)
740 {
741 int i;
742 char cpname[] = "cp0";
743
744 xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
745 xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
746 xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);
747
748 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
749 {
750 cpname[2] = '0' + i;
751 xtensa_cp[i] = reggroup_new (cpname, USER_REGGROUP);
752 }
753 }
754
755 static void
756 xtensa_add_reggroups (struct gdbarch *gdbarch)
757 {
758 int i;
759
760 /* Predefined groups. */
761 reggroup_add (gdbarch, all_reggroup);
762 reggroup_add (gdbarch, save_reggroup);
763 reggroup_add (gdbarch, restore_reggroup);
764 reggroup_add (gdbarch, system_reggroup);
765 reggroup_add (gdbarch, vector_reggroup);
766 reggroup_add (gdbarch, general_reggroup);
767 reggroup_add (gdbarch, float_reggroup);
768
769 /* Xtensa-specific groups. */
770 reggroup_add (gdbarch, xtensa_ar_reggroup);
771 reggroup_add (gdbarch, xtensa_user_reggroup);
772 reggroup_add (gdbarch, xtensa_vectra_reggroup);
773
774 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
775 reggroup_add (gdbarch, xtensa_cp[i]);
776 }
777
778 static int
779 xtensa_coprocessor_register_group (struct reggroup *group)
780 {
781 int i;
782
783 for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
784 if (group == xtensa_cp[i])
785 return i;
786
787 return -1;
788 }
789
790 #define SAVE_REST_FLAGS (XTENSA_REGISTER_FLAGS_READABLE \
791 | XTENSA_REGISTER_FLAGS_WRITABLE \
792 | XTENSA_REGISTER_FLAGS_VOLATILE)
793
794 #define SAVE_REST_VALID (XTENSA_REGISTER_FLAGS_READABLE \
795 | XTENSA_REGISTER_FLAGS_WRITABLE)
796
797 static int
798 xtensa_register_reggroup_p (struct gdbarch *gdbarch,
799 int regnum,
800 struct reggroup *group)
801 {
802 xtensa_register_t* reg = &gdbarch_tdep (gdbarch)->regmap[regnum];
803 xtensa_register_type_t type = reg->type;
804 xtensa_register_group_t rg = reg->group;
805 int cp_number;
806
807 if (group == save_reggroup)
808 /* Every single register should be included into the list of registers
809 to be watched for changes while using -data-list-changed-registers. */
810 return 1;
811
812 /* First, skip registers that are not visible to this target
813 (unknown and unmapped registers when not using ISS). */
814
815 if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
816 return 0;
817 if (group == all_reggroup)
818 return 1;
819 if (group == xtensa_ar_reggroup)
820 return rg & xtRegisterGroupAddrReg;
821 if (group == xtensa_user_reggroup)
822 return rg & xtRegisterGroupUser;
823 if (group == float_reggroup)
824 return rg & xtRegisterGroupFloat;
825 if (group == general_reggroup)
826 return rg & xtRegisterGroupGeneral;
827 if (group == system_reggroup)
828 return rg & xtRegisterGroupState;
829 if (group == vector_reggroup || group == xtensa_vectra_reggroup)
830 return rg & xtRegisterGroupVectra;
831 if (group == restore_reggroup)
832 return (regnum < gdbarch_num_regs (gdbarch)
833 && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
834 cp_number = xtensa_coprocessor_register_group (group);
835 if (cp_number >= 0)
836 return rg & (xtRegisterGroupCP0 << cp_number);
837 else
838 return 1;
839 }
840
841
842 /* Supply register REGNUM from the buffer specified by GREGS and LEN
843 in the general-purpose register set REGSET to register cache
844 REGCACHE. If REGNUM is -1 do this for all registers in REGSET. */
845
846 static void
847 xtensa_supply_gregset (const struct regset *regset,
848 struct regcache *rc,
849 int regnum,
850 const void *gregs,
851 size_t len)
852 {
853 const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
854 struct gdbarch *gdbarch = get_regcache_arch (rc);
855 int i;
856
857 DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);
858
859 if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
860 regcache_raw_supply (rc, gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
861 if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
862 regcache_raw_supply (rc, gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
863 if (regnum == gdbarch_tdep (gdbarch)->wb_regnum || regnum == -1)
864 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->wb_regnum,
865 (char *) &regs->windowbase);
866 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum || regnum == -1)
867 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ws_regnum,
868 (char *) &regs->windowstart);
869 if (regnum == gdbarch_tdep (gdbarch)->lbeg_regnum || regnum == -1)
870 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lbeg_regnum,
871 (char *) &regs->lbeg);
872 if (regnum == gdbarch_tdep (gdbarch)->lend_regnum || regnum == -1)
873 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lend_regnum,
874 (char *) &regs->lend);
875 if (regnum == gdbarch_tdep (gdbarch)->lcount_regnum || regnum == -1)
876 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->lcount_regnum,
877 (char *) &regs->lcount);
878 if (regnum == gdbarch_tdep (gdbarch)->sar_regnum || regnum == -1)
879 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->sar_regnum,
880 (char *) &regs->sar);
881 if (regnum >=gdbarch_tdep (gdbarch)->ar_base
882 && regnum < gdbarch_tdep (gdbarch)->ar_base
883 + gdbarch_tdep (gdbarch)->num_aregs)
884 regcache_raw_supply (rc, regnum,
885 (char *) &regs->ar[regnum - gdbarch_tdep
886 (gdbarch)->ar_base]);
887 else if (regnum == -1)
888 {
889 for (i = 0; i < gdbarch_tdep (gdbarch)->num_aregs; ++i)
890 regcache_raw_supply (rc, gdbarch_tdep (gdbarch)->ar_base + i,
891 (char *) &regs->ar[i]);
892 }
893 }
894
895
896 /* Xtensa register set. */
897
898 static struct regset
899 xtensa_gregset =
900 {
901 NULL,
902 xtensa_supply_gregset
903 };
904
905
906 /* Iterate over supported core file register note sections. */
907
908 static void
909 xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
910 iterate_over_regset_sections_cb *cb,
911 void *cb_data,
912 const struct regcache *regcache)
913 {
914 DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");
915
916 cb (".reg", sizeof (xtensa_elf_gregset_t), &xtensa_gregset,
917 NULL, cb_data);
918 }
919
920
921 /* Handling frames. */
922
923 /* Number of registers to save in case of Windowed ABI. */
924 #define XTENSA_NUM_SAVED_AREGS 12
925
926 /* Frame cache part for Windowed ABI. */
927 typedef struct xtensa_windowed_frame_cache
928 {
929 int wb; /* WINDOWBASE of the previous frame. */
930 int callsize; /* Call size of this frame. */
931 int ws; /* WINDOWSTART of the previous frame. It keeps track of
932 life windows only. If there is no bit set for the
933 window, that means it had been already spilled
934 because of window overflow. */
935
936 /* Addresses of spilled A-registers.
937 AREGS[i] == -1, if corresponding AR is alive. */
938 CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
939 } xtensa_windowed_frame_cache_t;
940
941 /* Call0 ABI Definitions. */
942
943 #define C0_MAXOPDS 3 /* Maximum number of operands for prologue
944 analysis. */
945 #define C0_CLESV 12 /* Callee-saved registers are here and up. */
946 #define C0_SP 1 /* Register used as SP. */
947 #define C0_FP 15 /* Register used as FP. */
948 #define C0_RA 0 /* Register used as return address. */
949 #define C0_ARGS 2 /* Register used as first arg/retval. */
950 #define C0_NARGS 6 /* Number of A-regs for args/retvals. */
951
952 /* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
953 A-register where the current content of the reg came from (in terms
954 of an original reg and a constant). Negative values of c0_rt[n].fp_reg
955 mean that the orignal content of the register was saved to the stack.
956 c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't
957 know where SP will end up until the entire prologue has been analyzed. */
958
959 #define C0_CONST -1 /* fr_reg value if register contains a constant. */
960 #define C0_INEXP -2 /* fr_reg value if inexpressible as reg + offset. */
961 #define C0_NOSTK -1 /* to_stk value if register has not been stored. */
962
963 extern xtensa_isa xtensa_default_isa;
964
965 typedef struct xtensa_c0reg
966 {
967 int fr_reg; /* original register from which register content
968 is derived, or C0_CONST, or C0_INEXP. */
969 int fr_ofs; /* constant offset from reg, or immediate value. */
970 int to_stk; /* offset from original SP to register (4-byte aligned),
971 or C0_NOSTK if register has not been saved. */
972 } xtensa_c0reg_t;
973
974 /* Frame cache part for Call0 ABI. */
975 typedef struct xtensa_call0_frame_cache
976 {
977 int c0_frmsz; /* Stack frame size. */
978 int c0_hasfp; /* Current frame uses frame pointer. */
979 int fp_regnum; /* A-register used as FP. */
980 int c0_fp; /* Actual value of frame pointer. */
981 int c0_fpalign; /* Dinamic adjustment for the stack
982 pointer. It's an AND mask. Zero,
983 if alignment was not adjusted. */
984 int c0_old_sp; /* In case of dynamic adjustment, it is
985 a register holding unaligned sp.
986 C0_INEXP, when undefined. */
987 int c0_sp_ofs; /* If "c0_old_sp" was spilled it's a
988 stack offset. C0_NOSTK otherwise. */
989
990 xtensa_c0reg_t c0_rt[C0_NREGS]; /* Register tracking information. */
991 } xtensa_call0_frame_cache_t;
992
993 typedef struct xtensa_frame_cache
994 {
995 CORE_ADDR base; /* Stack pointer of this frame. */
996 CORE_ADDR pc; /* PC of this frame at the function entry point. */
997 CORE_ADDR ra; /* The raw return address of this frame. */
998 CORE_ADDR ps; /* The PS register of the previous (older) frame. */
999 CORE_ADDR prev_sp; /* Stack Pointer of the previous (older) frame. */
1000 int call0; /* It's a call0 framework (else windowed). */
1001 union
1002 {
1003 xtensa_windowed_frame_cache_t wd; /* call0 == false. */
1004 xtensa_call0_frame_cache_t c0; /* call0 == true. */
1005 };
1006 } xtensa_frame_cache_t;
1007
1008
1009 static struct xtensa_frame_cache *
1010 xtensa_alloc_frame_cache (int windowed)
1011 {
1012 xtensa_frame_cache_t *cache;
1013 int i;
1014
1015 DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");
1016
1017 cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);
1018
1019 cache->base = 0;
1020 cache->pc = 0;
1021 cache->ra = 0;
1022 cache->ps = 0;
1023 cache->prev_sp = 0;
1024 cache->call0 = !windowed;
1025 if (cache->call0)
1026 {
1027 cache->c0.c0_frmsz = -1;
1028 cache->c0.c0_hasfp = 0;
1029 cache->c0.fp_regnum = -1;
1030 cache->c0.c0_fp = -1;
1031 cache->c0.c0_fpalign = 0;
1032 cache->c0.c0_old_sp = C0_INEXP;
1033 cache->c0.c0_sp_ofs = C0_NOSTK;
1034
1035 for (i = 0; i < C0_NREGS; i++)
1036 {
1037 cache->c0.c0_rt[i].fr_reg = i;
1038 cache->c0.c0_rt[i].fr_ofs = 0;
1039 cache->c0.c0_rt[i].to_stk = C0_NOSTK;
1040 }
1041 }
1042 else
1043 {
1044 cache->wd.wb = 0;
1045 cache->wd.ws = 0;
1046 cache->wd.callsize = -1;
1047
1048 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
1049 cache->wd.aregs[i] = -1;
1050 }
1051 return cache;
1052 }
1053
1054
1055 static CORE_ADDR
1056 xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
1057 {
1058 return address & ~15;
1059 }
1060
1061
1062 static CORE_ADDR
1063 xtensa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1064 {
1065 gdb_byte buf[8];
1066 CORE_ADDR pc;
1067
1068 DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n",
1069 host_address_to_string (next_frame));
1070
1071 frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
1072 pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1073
1074 DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);
1075
1076 return pc;
1077 }
1078
1079
1080 static struct frame_id
1081 xtensa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1082 {
1083 CORE_ADDR pc, fp;
1084
1085 /* THIS-FRAME is a dummy frame. Return a frame ID of that frame. */
1086
1087 pc = get_frame_pc (this_frame);
1088 fp = get_frame_register_unsigned
1089 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1090
1091 /* Make dummy frame ID unique by adding a constant. */
1092 return frame_id_build (fp + SP_ALIGNMENT, pc);
1093 }
1094
1095 /* Returns true, if instruction to execute next is unique to Xtensa Window
1096 Interrupt Handlers. It can only be one of L32E, S32E, RFWO, or RFWU. */
1097
1098 static int
1099 xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
1100 {
1101 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1102 unsigned int insn = read_memory_integer (pc, 4, byte_order);
1103 unsigned int code;
1104
1105 if (byte_order == BFD_ENDIAN_BIG)
1106 {
1107 /* Check, if this is L32E or S32E. */
1108 code = insn & 0xf000ff00;
1109 if ((code == 0x00009000) || (code == 0x00009400))
1110 return 1;
1111 /* Check, if this is RFWU or RFWO. */
1112 code = insn & 0xffffff00;
1113 return ((code == 0x00430000) || (code == 0x00530000));
1114 }
1115 else
1116 {
1117 /* Check, if this is L32E or S32E. */
1118 code = insn & 0x00ff000f;
1119 if ((code == 0x090000) || (code == 0x490000))
1120 return 1;
1121 /* Check, if this is RFWU or RFWO. */
1122 code = insn & 0x00ffffff;
1123 return ((code == 0x00003400) || (code == 0x00003500));
1124 }
1125 }
1126
1127 /* Returns the best guess about which register is a frame pointer
1128 for the function containing CURRENT_PC. */
1129
1130 #define XTENSA_ISA_BSZ 32 /* Instruction buffer size. */
1131 #define XTENSA_ISA_BADPC ((CORE_ADDR)0) /* Bad PC value. */
1132
1133 static unsigned int
1134 xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
1135 {
1136 #define RETURN_FP goto done
1137
1138 unsigned int fp_regnum = gdbarch_tdep (gdbarch)->a0_base + 1;
1139 CORE_ADDR start_addr;
1140 xtensa_isa isa;
1141 xtensa_insnbuf ins, slot;
1142 gdb_byte ibuf[XTENSA_ISA_BSZ];
1143 CORE_ADDR ia, bt, ba;
1144 xtensa_format ifmt;
1145 int ilen, islots, is;
1146 xtensa_opcode opc;
1147 const char *opcname;
1148
1149 find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
1150 if (start_addr == 0)
1151 return fp_regnum;
1152
1153 isa = xtensa_default_isa;
1154 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
1155 ins = xtensa_insnbuf_alloc (isa);
1156 slot = xtensa_insnbuf_alloc (isa);
1157 ba = 0;
1158
1159 for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
1160 {
1161 if (ia + xtensa_isa_maxlength (isa) > bt)
1162 {
1163 ba = ia;
1164 bt = (ba + XTENSA_ISA_BSZ) < current_pc
1165 ? ba + XTENSA_ISA_BSZ : current_pc;
1166 if (target_read_memory (ba, ibuf, bt - ba) != 0)
1167 RETURN_FP;
1168 }
1169
1170 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
1171 ifmt = xtensa_format_decode (isa, ins);
1172 if (ifmt == XTENSA_UNDEFINED)
1173 RETURN_FP;
1174 ilen = xtensa_format_length (isa, ifmt);
1175 if (ilen == XTENSA_UNDEFINED)
1176 RETURN_FP;
1177 islots = xtensa_format_num_slots (isa, ifmt);
1178 if (islots == XTENSA_UNDEFINED)
1179 RETURN_FP;
1180
1181 for (is = 0; is < islots; ++is)
1182 {
1183 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
1184 RETURN_FP;
1185
1186 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
1187 if (opc == XTENSA_UNDEFINED)
1188 RETURN_FP;
1189
1190 opcname = xtensa_opcode_name (isa, opc);
1191
1192 if (strcasecmp (opcname, "mov.n") == 0
1193 || strcasecmp (opcname, "or") == 0)
1194 {
1195 unsigned int register_operand;
1196
1197 /* Possible candidate for setting frame pointer
1198 from A1. This is what we are looking for. */
1199
1200 if (xtensa_operand_get_field (isa, opc, 1, ifmt,
1201 is, slot, &register_operand) != 0)
1202 RETURN_FP;
1203 if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
1204 RETURN_FP;
1205 if (register_operand == 1) /* Mov{.n} FP A1. */
1206 {
1207 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot,
1208 &register_operand) != 0)
1209 RETURN_FP;
1210 if (xtensa_operand_decode (isa, opc, 0,
1211 &register_operand) != 0)
1212 RETURN_FP;
1213
1214 fp_regnum
1215 = gdbarch_tdep (gdbarch)->a0_base + register_operand;
1216 RETURN_FP;
1217 }
1218 }
1219
1220 if (
1221 /* We have problems decoding the memory. */
1222 opcname == NULL
1223 || strcasecmp (opcname, "ill") == 0
1224 || strcasecmp (opcname, "ill.n") == 0
1225 /* Hit planted breakpoint. */
1226 || strcasecmp (opcname, "break") == 0
1227 || strcasecmp (opcname, "break.n") == 0
1228 /* Flow control instructions finish prologue. */
1229 || xtensa_opcode_is_branch (isa, opc) > 0
1230 || xtensa_opcode_is_jump (isa, opc) > 0
1231 || xtensa_opcode_is_loop (isa, opc) > 0
1232 || xtensa_opcode_is_call (isa, opc) > 0
1233 || strcasecmp (opcname, "simcall") == 0
1234 || strcasecmp (opcname, "syscall") == 0)
1235 /* Can not continue analysis. */
1236 RETURN_FP;
1237 }
1238 }
1239 done:
1240 xtensa_insnbuf_free(isa, slot);
1241 xtensa_insnbuf_free(isa, ins);
1242 return fp_regnum;
1243 }
1244
1245 /* The key values to identify the frame using "cache" are
1246
1247 cache->base = SP (or best guess about FP) of this frame;
1248 cache->pc = entry-PC (entry point of the frame function);
1249 cache->prev_sp = SP of the previous frame. */
1250
1251 static void
1252 call0_frame_cache (struct frame_info *this_frame,
1253 xtensa_frame_cache_t *cache, CORE_ADDR pc);
1254
1255 static void
1256 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
1257 xtensa_frame_cache_t *cache,
1258 CORE_ADDR pc);
1259
1260 static struct xtensa_frame_cache *
1261 xtensa_frame_cache (struct frame_info *this_frame, void **this_cache)
1262 {
1263 xtensa_frame_cache_t *cache;
1264 CORE_ADDR ra, wb, ws, pc, sp, ps;
1265 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1266 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1267 unsigned int fp_regnum;
1268 int windowed, ps_regnum;
1269
1270 if (*this_cache)
1271 return (struct xtensa_frame_cache *) *this_cache;
1272
1273 pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
1274 ps_regnum = gdbarch_ps_regnum (gdbarch);
1275 ps = (ps_regnum >= 0
1276 ? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);
1277
1278 windowed = windowing_enabled (gdbarch, ps);
1279
1280 /* Get pristine xtensa-frame. */
1281 cache = xtensa_alloc_frame_cache (windowed);
1282 *this_cache = cache;
1283
1284 if (windowed)
1285 {
1286 LONGEST op1;
1287
1288 /* Get WINDOWBASE, WINDOWSTART, and PS registers. */
1289 wb = get_frame_register_unsigned (this_frame,
1290 gdbarch_tdep (gdbarch)->wb_regnum);
1291 ws = get_frame_register_unsigned (this_frame,
1292 gdbarch_tdep (gdbarch)->ws_regnum);
1293
1294 if (safe_read_memory_integer (pc, 1, byte_order, &op1)
1295 && XTENSA_IS_ENTRY (gdbarch, op1))
1296 {
1297 int callinc = CALLINC (ps);
1298 ra = get_frame_register_unsigned
1299 (this_frame, gdbarch_tdep (gdbarch)->a0_base + callinc * 4);
1300
1301 /* ENTRY hasn't been executed yet, therefore callsize is still 0. */
1302 cache->wd.callsize = 0;
1303 cache->wd.wb = wb;
1304 cache->wd.ws = ws;
1305 cache->prev_sp = get_frame_register_unsigned
1306 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1307
1308 /* This only can be the outermost frame since we are
1309 just about to execute ENTRY. SP hasn't been set yet.
1310 We can assume any frame size, because it does not
1311 matter, and, let's fake frame base in cache. */
1312 cache->base = cache->prev_sp - 16;
1313
1314 cache->pc = pc;
1315 cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
1316 cache->ps = (ps & ~PS_CALLINC_MASK)
1317 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1318
1319 return cache;
1320 }
1321 else
1322 {
1323 fp_regnum = xtensa_scan_prologue (gdbarch, pc);
1324 ra = get_frame_register_unsigned (this_frame,
1325 gdbarch_tdep (gdbarch)->a0_base);
1326 cache->wd.callsize = WINSIZE (ra);
1327 cache->wd.wb = (wb - cache->wd.callsize / 4)
1328 & (gdbarch_tdep (gdbarch)->num_aregs / 4 - 1);
1329 cache->wd.ws = ws & ~(1 << wb);
1330
1331 cache->pc = get_frame_func (this_frame);
1332 cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
1333 cache->ps = (ps & ~PS_CALLINC_MASK)
1334 | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
1335 }
1336
1337 if (cache->wd.ws == 0)
1338 {
1339 int i;
1340
1341 /* Set A0...A3. */
1342 sp = get_frame_register_unsigned
1343 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1) - 16;
1344
1345 for (i = 0; i < 4; i++, sp += 4)
1346 {
1347 cache->wd.aregs[i] = sp;
1348 }
1349
1350 if (cache->wd.callsize > 4)
1351 {
1352 /* Set A4...A7/A11. */
1353 /* Get the SP of the frame previous to the previous one.
1354 To achieve this, we have to dereference SP twice. */
1355 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1356 sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
1357 sp -= cache->wd.callsize * 4;
1358
1359 for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
1360 {
1361 cache->wd.aregs[i] = sp;
1362 }
1363 }
1364 }
1365
1366 if ((cache->prev_sp == 0) && ( ra != 0 ))
1367 /* If RA is equal to 0 this frame is an outermost frame. Leave
1368 cache->prev_sp unchanged marking the boundary of the frame stack. */
1369 {
1370 if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
1371 {
1372 /* Register window overflow already happened.
1373 We can read caller's SP from the proper spill loction. */
1374 sp = get_frame_register_unsigned
1375 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
1376 cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
1377 }
1378 else
1379 {
1380 /* Read caller's frame SP directly from the previous window. */
1381 int regnum = arreg_number
1382 (gdbarch, gdbarch_tdep (gdbarch)->a0_base + 1,
1383 cache->wd.wb);
1384
1385 cache->prev_sp = xtensa_read_register (regnum);
1386 }
1387 }
1388 }
1389 else if (xtensa_window_interrupt_insn (gdbarch, pc))
1390 {
1391 /* Execution stopped inside Xtensa Window Interrupt Handler. */
1392
1393 xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
1394 /* Everything was set already, including cache->base. */
1395 return cache;
1396 }
1397 else /* Call0 framework. */
1398 {
1399 call0_frame_cache (this_frame, cache, pc);
1400 fp_regnum = cache->c0.fp_regnum;
1401 }
1402
1403 cache->base = get_frame_register_unsigned (this_frame, fp_regnum);
1404
1405 return cache;
1406 }
1407
1408 static int xtensa_session_once_reported = 1;
1409
1410 /* Report a problem with prologue analysis while doing backtracing.
1411 But, do it only once to avoid annoyng repeated messages. */
1412
1413 static void
1414 warning_once (void)
1415 {
1416 if (xtensa_session_once_reported == 0)
1417 warning (_("\
1418 \nUnrecognised function prologue. Stack trace cannot be resolved. \
1419 This message will not be repeated in this session.\n"));
1420
1421 xtensa_session_once_reported = 1;
1422 }
1423
1424
1425 static void
1426 xtensa_frame_this_id (struct frame_info *this_frame,
1427 void **this_cache,
1428 struct frame_id *this_id)
1429 {
1430 struct xtensa_frame_cache *cache =
1431 xtensa_frame_cache (this_frame, this_cache);
1432
1433 if (cache->prev_sp == 0)
1434 return;
1435
1436 (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
1437 }
1438
1439 static struct value *
1440 xtensa_frame_prev_register (struct frame_info *this_frame,
1441 void **this_cache,
1442 int regnum)
1443 {
1444 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1445 struct xtensa_frame_cache *cache;
1446 ULONGEST saved_reg = 0;
1447 int done = 1;
1448
1449 if (*this_cache == NULL)
1450 *this_cache = xtensa_frame_cache (this_frame, this_cache);
1451 cache = (struct xtensa_frame_cache *) *this_cache;
1452
1453 if (regnum ==gdbarch_pc_regnum (gdbarch))
1454 saved_reg = cache->ra;
1455 else if (regnum == gdbarch_tdep (gdbarch)->a0_base + 1)
1456 saved_reg = cache->prev_sp;
1457 else if (!cache->call0)
1458 {
1459 if (regnum == gdbarch_tdep (gdbarch)->ws_regnum)
1460 saved_reg = cache->wd.ws;
1461 else if (regnum == gdbarch_tdep (gdbarch)->wb_regnum)
1462 saved_reg = cache->wd.wb;
1463 else if (regnum == gdbarch_ps_regnum (gdbarch))
1464 saved_reg = cache->ps;
1465 else
1466 done = 0;
1467 }
1468 else
1469 done = 0;
1470
1471 if (done)
1472 return frame_unwind_got_constant (this_frame, regnum, saved_reg);
1473
1474 if (!cache->call0) /* Windowed ABI. */
1475 {
1476 /* Convert A-register numbers to AR-register numbers,
1477 if we deal with A-register. */
1478 if (regnum >= gdbarch_tdep (gdbarch)->a0_base
1479 && regnum <= gdbarch_tdep (gdbarch)->a0_base + 15)
1480 regnum = arreg_number (gdbarch, regnum, cache->wd.wb);
1481
1482 /* Check, if we deal with AR-register saved on stack. */
1483 if (regnum >= gdbarch_tdep (gdbarch)->ar_base
1484 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1485 + gdbarch_tdep (gdbarch)->num_aregs))
1486 {
1487 int areg = areg_number (gdbarch, regnum, cache->wd.wb);
1488
1489 if (areg >= 0
1490 && areg < XTENSA_NUM_SAVED_AREGS
1491 && cache->wd.aregs[areg] != -1)
1492 return frame_unwind_got_memory (this_frame, regnum,
1493 cache->wd.aregs[areg]);
1494 }
1495 }
1496 else /* Call0 ABI. */
1497 {
1498 int reg = (regnum >= gdbarch_tdep (gdbarch)->ar_base
1499 && regnum <= (gdbarch_tdep (gdbarch)->ar_base
1500 + C0_NREGS))
1501 ? regnum - gdbarch_tdep (gdbarch)->ar_base : regnum;
1502
1503 if (reg < C0_NREGS)
1504 {
1505 CORE_ADDR spe;
1506 int stkofs;
1507
1508 /* If register was saved in the prologue, retrieve it. */
1509 stkofs = cache->c0.c0_rt[reg].to_stk;
1510 if (stkofs != C0_NOSTK)
1511 {
1512 /* Determine SP on entry based on FP. */
1513 spe = cache->c0.c0_fp
1514 - cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;
1515
1516 return frame_unwind_got_memory (this_frame, regnum,
1517 spe + stkofs);
1518 }
1519 }
1520 }
1521
1522 /* All other registers have been either saved to
1523 the stack or are still alive in the processor. */
1524
1525 return frame_unwind_got_register (this_frame, regnum, regnum);
1526 }
1527
1528
1529 static const struct frame_unwind
1530 xtensa_unwind =
1531 {
1532 NORMAL_FRAME,
1533 default_frame_unwind_stop_reason,
1534 xtensa_frame_this_id,
1535 xtensa_frame_prev_register,
1536 NULL,
1537 default_frame_sniffer
1538 };
1539
1540 static CORE_ADDR
1541 xtensa_frame_base_address (struct frame_info *this_frame, void **this_cache)
1542 {
1543 struct xtensa_frame_cache *cache =
1544 xtensa_frame_cache (this_frame, this_cache);
1545
1546 return cache->base;
1547 }
1548
1549 static const struct frame_base
1550 xtensa_frame_base =
1551 {
1552 &xtensa_unwind,
1553 xtensa_frame_base_address,
1554 xtensa_frame_base_address,
1555 xtensa_frame_base_address
1556 };
1557
1558
1559 static void
1560 xtensa_extract_return_value (struct type *type,
1561 struct regcache *regcache,
1562 void *dst)
1563 {
1564 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1565 bfd_byte *valbuf = (bfd_byte *) dst;
1566 int len = TYPE_LENGTH (type);
1567 ULONGEST pc, wb;
1568 int callsize, areg;
1569 int offset = 0;
1570
1571 DEBUGTRACE ("xtensa_extract_return_value (...)\n");
1572
1573 gdb_assert(len > 0);
1574
1575 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1576 {
1577 /* First, we have to find the caller window in the register file. */
1578 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1579 callsize = extract_call_winsize (gdbarch, pc);
1580
1581 /* On Xtensa, we can return up to 4 words (or 2 for call12). */
1582 if (len > (callsize > 8 ? 8 : 16))
1583 internal_error (__FILE__, __LINE__,
1584 _("cannot extract return value of %d bytes long"),
1585 len);
1586
1587 /* Get the register offset of the return
1588 register (A2) in the caller window. */
1589 regcache_raw_read_unsigned
1590 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1591 areg = arreg_number (gdbarch,
1592 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1593 }
1594 else
1595 {
1596 /* No windowing hardware - Call0 ABI. */
1597 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1598 }
1599
1600 DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);
1601
1602 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1603 offset = 4 - len;
1604
1605 for (; len > 0; len -= 4, areg++, valbuf += 4)
1606 {
1607 if (len < 4)
1608 regcache_raw_read_part (regcache, areg, offset, len, valbuf);
1609 else
1610 regcache_raw_read (regcache, areg, valbuf);
1611 }
1612 }
1613
1614
1615 static void
1616 xtensa_store_return_value (struct type *type,
1617 struct regcache *regcache,
1618 const void *dst)
1619 {
1620 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1621 const bfd_byte *valbuf = (const bfd_byte *) dst;
1622 unsigned int areg;
1623 ULONGEST pc, wb;
1624 int callsize;
1625 int len = TYPE_LENGTH (type);
1626 int offset = 0;
1627
1628 DEBUGTRACE ("xtensa_store_return_value (...)\n");
1629
1630 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1631 {
1632 regcache_raw_read_unsigned
1633 (regcache, gdbarch_tdep (gdbarch)->wb_regnum, &wb);
1634 regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
1635 callsize = extract_call_winsize (gdbarch, pc);
1636
1637 if (len > (callsize > 8 ? 8 : 16))
1638 internal_error (__FILE__, __LINE__,
1639 _("unimplemented for this length: %d"),
1640 TYPE_LENGTH (type));
1641 areg = arreg_number (gdbarch,
1642 gdbarch_tdep (gdbarch)->a0_base + 2 + callsize, wb);
1643
1644 DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
1645 callsize, (int) wb);
1646 }
1647 else
1648 {
1649 areg = gdbarch_tdep (gdbarch)->a0_base + C0_ARGS;
1650 }
1651
1652 if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1653 offset = 4 - len;
1654
1655 for (; len > 0; len -= 4, areg++, valbuf += 4)
1656 {
1657 if (len < 4)
1658 regcache_raw_write_part (regcache, areg, offset, len, valbuf);
1659 else
1660 regcache_raw_write (regcache, areg, valbuf);
1661 }
1662 }
1663
1664
1665 static enum return_value_convention
1666 xtensa_return_value (struct gdbarch *gdbarch,
1667 struct value *function,
1668 struct type *valtype,
1669 struct regcache *regcache,
1670 gdb_byte *readbuf,
1671 const gdb_byte *writebuf)
1672 {
1673 /* Structures up to 16 bytes are returned in registers. */
1674
1675 int struct_return = ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1676 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1677 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1678 && TYPE_LENGTH (valtype) > 16);
1679
1680 if (struct_return)
1681 return RETURN_VALUE_STRUCT_CONVENTION;
1682
1683 DEBUGTRACE ("xtensa_return_value(...)\n");
1684
1685 if (writebuf != NULL)
1686 {
1687 xtensa_store_return_value (valtype, regcache, writebuf);
1688 }
1689
1690 if (readbuf != NULL)
1691 {
1692 gdb_assert (!struct_return);
1693 xtensa_extract_return_value (valtype, regcache, readbuf);
1694 }
1695 return RETURN_VALUE_REGISTER_CONVENTION;
1696 }
1697
1698
1699 /* DUMMY FRAME */
1700
1701 static CORE_ADDR
1702 xtensa_push_dummy_call (struct gdbarch *gdbarch,
1703 struct value *function,
1704 struct regcache *regcache,
1705 CORE_ADDR bp_addr,
1706 int nargs,
1707 struct value **args,
1708 CORE_ADDR sp,
1709 int struct_return,
1710 CORE_ADDR struct_addr)
1711 {
1712 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1713 int i;
1714 int size, onstack_size;
1715 gdb_byte *buf = (gdb_byte *) alloca (16);
1716 CORE_ADDR ra, ps;
1717 struct argument_info
1718 {
1719 const bfd_byte *contents;
1720 int length;
1721 int onstack; /* onstack == 0 => in reg */
1722 int align; /* alignment */
1723 union
1724 {
1725 int offset; /* stack offset if on stack. */
1726 int regno; /* regno if in register. */
1727 } u;
1728 };
1729
1730 struct argument_info *arg_info =
1731 (struct argument_info *) alloca (nargs * sizeof (struct argument_info));
1732
1733 CORE_ADDR osp = sp;
1734
1735 DEBUGTRACE ("xtensa_push_dummy_call (...)\n");
1736
1737 if (xtensa_debug_level > 3)
1738 {
1739 int i;
1740 DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
1741 DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, struct_return=%d, "
1742 "struct_addr=0x%x\n",
1743 (int) sp, (int) struct_return, (int) struct_addr);
1744
1745 for (i = 0; i < nargs; i++)
1746 {
1747 struct value *arg = args[i];
1748 struct type *arg_type = check_typedef (value_type (arg));
1749 fprintf_unfiltered (gdb_stdlog, "%2d: %s %3d ", i,
1750 host_address_to_string (arg),
1751 TYPE_LENGTH (arg_type));
1752 switch (TYPE_CODE (arg_type))
1753 {
1754 case TYPE_CODE_INT:
1755 fprintf_unfiltered (gdb_stdlog, "int");
1756 break;
1757 case TYPE_CODE_STRUCT:
1758 fprintf_unfiltered (gdb_stdlog, "struct");
1759 break;
1760 default:
1761 fprintf_unfiltered (gdb_stdlog, "%3d", TYPE_CODE (arg_type));
1762 break;
1763 }
1764 fprintf_unfiltered (gdb_stdlog, " %s\n",
1765 host_address_to_string (value_contents (arg)));
1766 }
1767 }
1768
1769 /* First loop: collect information.
1770 Cast into type_long. (This shouldn't happen often for C because
1771 GDB already does this earlier.) It's possible that GDB could
1772 do it all the time but it's harmless to leave this code here. */
1773
1774 size = 0;
1775 onstack_size = 0;
1776 i = 0;
1777
1778 if (struct_return)
1779 size = REGISTER_SIZE;
1780
1781 for (i = 0; i < nargs; i++)
1782 {
1783 struct argument_info *info = &arg_info[i];
1784 struct value *arg = args[i];
1785 struct type *arg_type = check_typedef (value_type (arg));
1786
1787 switch (TYPE_CODE (arg_type))
1788 {
1789 case TYPE_CODE_INT:
1790 case TYPE_CODE_BOOL:
1791 case TYPE_CODE_CHAR:
1792 case TYPE_CODE_RANGE:
1793 case TYPE_CODE_ENUM:
1794
1795 /* Cast argument to long if necessary as the mask does it too. */
1796 if (TYPE_LENGTH (arg_type)
1797 < TYPE_LENGTH (builtin_type (gdbarch)->builtin_long))
1798 {
1799 arg_type = builtin_type (gdbarch)->builtin_long;
1800 arg = value_cast (arg_type, arg);
1801 }
1802 /* Aligment is equal to the type length for the basic types. */
1803 info->align = TYPE_LENGTH (arg_type);
1804 break;
1805
1806 case TYPE_CODE_FLT:
1807
1808 /* Align doubles correctly. */
1809 if (TYPE_LENGTH (arg_type)
1810 == TYPE_LENGTH (builtin_type (gdbarch)->builtin_double))
1811 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_double);
1812 else
1813 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1814 break;
1815
1816 case TYPE_CODE_STRUCT:
1817 default:
1818 info->align = TYPE_LENGTH (builtin_type (gdbarch)->builtin_long);
1819 break;
1820 }
1821 info->length = TYPE_LENGTH (arg_type);
1822 info->contents = value_contents (arg);
1823
1824 /* Align size and onstack_size. */
1825 size = (size + info->align - 1) & ~(info->align - 1);
1826 onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);
1827
1828 if (size + info->length > REGISTER_SIZE * ARG_NOF (gdbarch))
1829 {
1830 info->onstack = 1;
1831 info->u.offset = onstack_size;
1832 onstack_size += info->length;
1833 }
1834 else
1835 {
1836 info->onstack = 0;
1837 info->u.regno = ARG_1ST (gdbarch) + size / REGISTER_SIZE;
1838 }
1839 size += info->length;
1840 }
1841
1842 /* Adjust the stack pointer and align it. */
1843 sp = align_down (sp - onstack_size, SP_ALIGNMENT);
1844
1845 /* Simulate MOVSP, if Windowed ABI. */
1846 if ((gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1847 && (sp != osp))
1848 {
1849 read_memory (osp - 16, buf, 16);
1850 write_memory (sp - 16, buf, 16);
1851 }
1852
1853 /* Second Loop: Load arguments. */
1854
1855 if (struct_return)
1856 {
1857 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
1858 regcache_cooked_write (regcache, ARG_1ST (gdbarch), buf);
1859 }
1860
1861 for (i = 0; i < nargs; i++)
1862 {
1863 struct argument_info *info = &arg_info[i];
1864
1865 if (info->onstack)
1866 {
1867 int n = info->length;
1868 CORE_ADDR offset = sp + info->u.offset;
1869
1870 /* Odd-sized structs are aligned to the lower side of a memory
1871 word in big-endian mode and require a shift. This only
1872 applies for structures smaller than one word. */
1873
1874 if (n < REGISTER_SIZE
1875 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1876 offset += (REGISTER_SIZE - n);
1877
1878 write_memory (offset, info->contents, info->length);
1879
1880 }
1881 else
1882 {
1883 int n = info->length;
1884 const bfd_byte *cp = info->contents;
1885 int r = info->u.regno;
1886
1887 /* Odd-sized structs are aligned to the lower side of registers in
1888 big-endian mode and require a shift. The odd-sized leftover will
1889 be at the end. Note that this is only true for structures smaller
1890 than REGISTER_SIZE; for larger odd-sized structures the excess
1891 will be left-aligned in the register on both endiannesses. */
1892
1893 if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
1894 {
1895 ULONGEST v;
1896 v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
1897 v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);
1898
1899 store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
1900 regcache_cooked_write (regcache, r, buf);
1901
1902 cp += REGISTER_SIZE;
1903 n -= REGISTER_SIZE;
1904 r++;
1905 }
1906 else
1907 while (n > 0)
1908 {
1909 regcache_cooked_write (regcache, r, cp);
1910
1911 cp += REGISTER_SIZE;
1912 n -= REGISTER_SIZE;
1913 r++;
1914 }
1915 }
1916 }
1917
1918 /* Set the return address of dummy frame to the dummy address.
1919 The return address for the current function (in A0) is
1920 saved in the dummy frame, so we can savely overwrite A0 here. */
1921
1922 if (gdbarch_tdep (gdbarch)->call_abi != CallAbiCall0Only)
1923 {
1924 ULONGEST val;
1925
1926 ra = (bp_addr & 0x3fffffff) | 0x40000000;
1927 regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
1928 ps = (unsigned long) val & ~0x00030000;
1929 regcache_cooked_write_unsigned
1930 (regcache, gdbarch_tdep (gdbarch)->a0_base + 4, ra);
1931 regcache_cooked_write_unsigned (regcache,
1932 gdbarch_ps_regnum (gdbarch),
1933 ps | 0x00010000);
1934
1935 /* All the registers have been saved. After executing
1936 dummy call, they all will be restored. So it's safe
1937 to modify WINDOWSTART register to make it look like there
1938 is only one register window corresponding to WINDOWEBASE. */
1939
1940 regcache_raw_read (regcache, gdbarch_tdep (gdbarch)->wb_regnum, buf);
1941 regcache_cooked_write_unsigned
1942 (regcache, gdbarch_tdep (gdbarch)->ws_regnum,
1943 1 << extract_unsigned_integer (buf, 4, byte_order));
1944 }
1945 else
1946 {
1947 /* Simulate CALL0: write RA into A0 register. */
1948 regcache_cooked_write_unsigned
1949 (regcache, gdbarch_tdep (gdbarch)->a0_base, bp_addr);
1950 }
1951
1952 /* Set new stack pointer and return it. */
1953 regcache_cooked_write_unsigned (regcache,
1954 gdbarch_tdep (gdbarch)->a0_base + 1, sp);
1955 /* Make dummy frame ID unique by adding a constant. */
1956 return sp + SP_ALIGNMENT;
1957 }
1958
1959 /* Implement the breakpoint_kind_from_pc gdbarch method. */
1960
1961 static int
1962 xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1963 {
1964 if (gdbarch_tdep (gdbarch)->isa_use_density_instructions)
1965 return 2;
1966 else
1967 return 4;
1968 }
1969
1970 /* Return a breakpoint for the current location of PC. We always use
1971 the density version if we have density instructions (regardless of the
1972 current instruction at PC), and use regular instructions otherwise. */
1973
1974 #define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
1975 #define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
1976 #define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
1977 #define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }
1978
1979 /* Implement the sw_breakpoint_from_kind gdbarch method. */
1980
1981 static const gdb_byte *
1982 xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1983 {
1984 *size = kind;
1985
1986 if (kind == 4)
1987 {
1988 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
1989 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
1990
1991 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1992 return big_breakpoint;
1993 else
1994 return little_breakpoint;
1995 }
1996 else
1997 {
1998 static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
1999 static unsigned char density_little_breakpoint[]
2000 = DENSITY_LITTLE_BREAKPOINT;
2001
2002 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2003 return density_big_breakpoint;
2004 else
2005 return density_little_breakpoint;
2006 }
2007 }
2008
2009 /* Call0 ABI support routines. */
2010
2011 /* Return true, if PC points to "ret" or "ret.n". */
2012
2013 static int
2014 call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
2015 {
2016 #define RETURN_RET goto done
2017 xtensa_isa isa;
2018 xtensa_insnbuf ins, slot;
2019 gdb_byte ibuf[XTENSA_ISA_BSZ];
2020 CORE_ADDR ia, bt, ba;
2021 xtensa_format ifmt;
2022 int ilen, islots, is;
2023 xtensa_opcode opc;
2024 const char *opcname;
2025 int found_ret = 0;
2026
2027 isa = xtensa_default_isa;
2028 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2029 ins = xtensa_insnbuf_alloc (isa);
2030 slot = xtensa_insnbuf_alloc (isa);
2031 ba = 0;
2032
2033 for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
2034 {
2035 if (ia + xtensa_isa_maxlength (isa) > bt)
2036 {
2037 ba = ia;
2038 bt = (ba + XTENSA_ISA_BSZ) < finish_pc
2039 ? ba + XTENSA_ISA_BSZ : finish_pc;
2040 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2041 RETURN_RET;
2042 }
2043
2044 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2045 ifmt = xtensa_format_decode (isa, ins);
2046 if (ifmt == XTENSA_UNDEFINED)
2047 RETURN_RET;
2048 ilen = xtensa_format_length (isa, ifmt);
2049 if (ilen == XTENSA_UNDEFINED)
2050 RETURN_RET;
2051 islots = xtensa_format_num_slots (isa, ifmt);
2052 if (islots == XTENSA_UNDEFINED)
2053 RETURN_RET;
2054
2055 for (is = 0; is < islots; ++is)
2056 {
2057 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2058 RETURN_RET;
2059
2060 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2061 if (opc == XTENSA_UNDEFINED)
2062 RETURN_RET;
2063
2064 opcname = xtensa_opcode_name (isa, opc);
2065
2066 if ((strcasecmp (opcname, "ret.n") == 0)
2067 || (strcasecmp (opcname, "ret") == 0))
2068 {
2069 found_ret = 1;
2070 RETURN_RET;
2071 }
2072 }
2073 }
2074 done:
2075 xtensa_insnbuf_free(isa, slot);
2076 xtensa_insnbuf_free(isa, ins);
2077 return found_ret;
2078 }
2079
2080 /* Call0 opcode class. Opcodes are preclassified according to what they
2081 mean for Call0 prologue analysis, and their number of significant operands.
2082 The purpose of this is to simplify prologue analysis by separating
2083 instruction decoding (libisa) from the semantics of prologue analysis. */
2084
2085 typedef enum
2086 {
2087 c0opc_illegal, /* Unknown to libisa (invalid) or 'ill' opcode. */
2088 c0opc_uninteresting, /* Not interesting for Call0 prologue analysis. */
2089 c0opc_flow, /* Flow control insn. */
2090 c0opc_entry, /* ENTRY indicates non-Call0 prologue. */
2091 c0opc_break, /* Debugger software breakpoints. */
2092 c0opc_add, /* Adding two registers. */
2093 c0opc_addi, /* Adding a register and an immediate. */
2094 c0opc_and, /* Bitwise "and"-ing two registers. */
2095 c0opc_sub, /* Subtracting a register from a register. */
2096 c0opc_mov, /* Moving a register to a register. */
2097 c0opc_movi, /* Moving an immediate to a register. */
2098 c0opc_l32r, /* Loading a literal. */
2099 c0opc_s32i, /* Storing word at fixed offset from a base register. */
2100 c0opc_rwxsr, /* RSR, WRS, or XSR instructions. */
2101 c0opc_l32e, /* L32E instruction. */
2102 c0opc_s32e, /* S32E instruction. */
2103 c0opc_rfwo, /* RFWO instruction. */
2104 c0opc_rfwu, /* RFWU instruction. */
2105 c0opc_NrOf /* Number of opcode classifications. */
2106 } xtensa_insn_kind;
2107
2108 /* Return true, if OPCNAME is RSR, WRS, or XSR instruction. */
2109
2110 static int
2111 rwx_special_register (const char *opcname)
2112 {
2113 char ch = *opcname++;
2114
2115 if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
2116 return 0;
2117 if (*opcname++ != 's')
2118 return 0;
2119 if (*opcname++ != 'r')
2120 return 0;
2121 if (*opcname++ != '.')
2122 return 0;
2123
2124 return 1;
2125 }
2126
2127 /* Classify an opcode based on what it means for Call0 prologue analysis. */
2128
2129 static xtensa_insn_kind
2130 call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
2131 {
2132 const char *opcname;
2133 xtensa_insn_kind opclass = c0opc_uninteresting;
2134
2135 DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);
2136
2137 /* Get opcode name and handle special classifications. */
2138
2139 opcname = xtensa_opcode_name (isa, opc);
2140
2141 if (opcname == NULL
2142 || strcasecmp (opcname, "ill") == 0
2143 || strcasecmp (opcname, "ill.n") == 0)
2144 opclass = c0opc_illegal;
2145 else if (strcasecmp (opcname, "break") == 0
2146 || strcasecmp (opcname, "break.n") == 0)
2147 opclass = c0opc_break;
2148 else if (strcasecmp (opcname, "entry") == 0)
2149 opclass = c0opc_entry;
2150 else if (strcasecmp (opcname, "rfwo") == 0)
2151 opclass = c0opc_rfwo;
2152 else if (strcasecmp (opcname, "rfwu") == 0)
2153 opclass = c0opc_rfwu;
2154 else if (xtensa_opcode_is_branch (isa, opc) > 0
2155 || xtensa_opcode_is_jump (isa, opc) > 0
2156 || xtensa_opcode_is_loop (isa, opc) > 0
2157 || xtensa_opcode_is_call (isa, opc) > 0
2158 || strcasecmp (opcname, "simcall") == 0
2159 || strcasecmp (opcname, "syscall") == 0)
2160 opclass = c0opc_flow;
2161
2162 /* Also, classify specific opcodes that need to be tracked. */
2163 else if (strcasecmp (opcname, "add") == 0
2164 || strcasecmp (opcname, "add.n") == 0)
2165 opclass = c0opc_add;
2166 else if (strcasecmp (opcname, "and") == 0)
2167 opclass = c0opc_and;
2168 else if (strcasecmp (opcname, "addi") == 0
2169 || strcasecmp (opcname, "addi.n") == 0
2170 || strcasecmp (opcname, "addmi") == 0)
2171 opclass = c0opc_addi;
2172 else if (strcasecmp (opcname, "sub") == 0)
2173 opclass = c0opc_sub;
2174 else if (strcasecmp (opcname, "mov.n") == 0
2175 || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro. */
2176 opclass = c0opc_mov;
2177 else if (strcasecmp (opcname, "movi") == 0
2178 || strcasecmp (opcname, "movi.n") == 0)
2179 opclass = c0opc_movi;
2180 else if (strcasecmp (opcname, "l32r") == 0)
2181 opclass = c0opc_l32r;
2182 else if (strcasecmp (opcname, "s32i") == 0
2183 || strcasecmp (opcname, "s32i.n") == 0)
2184 opclass = c0opc_s32i;
2185 else if (strcasecmp (opcname, "l32e") == 0)
2186 opclass = c0opc_l32e;
2187 else if (strcasecmp (opcname, "s32e") == 0)
2188 opclass = c0opc_s32e;
2189 else if (rwx_special_register (opcname))
2190 opclass = c0opc_rwxsr;
2191
2192 return opclass;
2193 }
2194
2195 /* Tracks register movement/mutation for a given operation, which may
2196 be within a bundle. Updates the destination register tracking info
2197 accordingly. The pc is needed only for pc-relative load instructions
2198 (eg. l32r). The SP register number is needed to identify stores to
2199 the stack frame. Returns 0, if analysis was succesfull, non-zero
2200 otherwise. */
2201
2202 static int
2203 call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
2204 xtensa_insn_kind opclass, int nods, unsigned odv[],
2205 CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
2206 {
2207 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2208 unsigned litbase, litaddr, litval;
2209
2210 switch (opclass)
2211 {
2212 case c0opc_addi:
2213 /* 3 operands: dst, src, imm. */
2214 gdb_assert (nods == 3);
2215 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2216 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
2217 break;
2218 case c0opc_add:
2219 /* 3 operands: dst, src1, src2. */
2220 gdb_assert (nods == 3);
2221 if (src[odv[1]].fr_reg == C0_CONST)
2222 {
2223 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2224 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
2225 }
2226 else if (src[odv[2]].fr_reg == C0_CONST)
2227 {
2228 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2229 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
2230 }
2231 else dst[odv[0]].fr_reg = C0_INEXP;
2232 break;
2233 case c0opc_and:
2234 /* 3 operands: dst, src1, src2. */
2235 gdb_assert (nods == 3);
2236 if (cache->c0.c0_fpalign == 0)
2237 {
2238 /* Handle dynamic stack alignment. */
2239 if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
2240 {
2241 if (src[odv[2]].fr_reg == C0_CONST)
2242 cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
2243 break;
2244 }
2245 else if ((src[odv[0]].fr_reg == spreg)
2246 && (src[odv[2]].fr_reg == spreg))
2247 {
2248 if (src[odv[1]].fr_reg == C0_CONST)
2249 cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
2250 break;
2251 }
2252 /* else fall through. */
2253 }
2254 if (src[odv[1]].fr_reg == C0_CONST)
2255 {
2256 dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
2257 dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
2258 }
2259 else if (src[odv[2]].fr_reg == C0_CONST)
2260 {
2261 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2262 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
2263 }
2264 else dst[odv[0]].fr_reg = C0_INEXP;
2265 break;
2266 case c0opc_sub:
2267 /* 3 operands: dst, src1, src2. */
2268 gdb_assert (nods == 3);
2269 if (src[odv[2]].fr_reg == C0_CONST)
2270 {
2271 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2272 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
2273 }
2274 else dst[odv[0]].fr_reg = C0_INEXP;
2275 break;
2276 case c0opc_mov:
2277 /* 2 operands: dst, src [, src]. */
2278 gdb_assert (nods == 2);
2279 /* First, check if it's a special case of saving unaligned SP
2280 to a spare register in case of dynamic stack adjustment.
2281 But, only do it one time. The second time could be initializing
2282 frame pointer. We don't want to overwrite the first one. */
2283 if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
2284 cache->c0.c0_old_sp = odv[0];
2285
2286 dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
2287 dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
2288 break;
2289 case c0opc_movi:
2290 /* 2 operands: dst, imm. */
2291 gdb_assert (nods == 2);
2292 dst[odv[0]].fr_reg = C0_CONST;
2293 dst[odv[0]].fr_ofs = odv[1];
2294 break;
2295 case c0opc_l32r:
2296 /* 2 operands: dst, literal offset. */
2297 gdb_assert (nods == 2);
2298 /* litbase = xtensa_get_litbase (pc); can be also used. */
2299 litbase = (gdbarch_tdep (gdbarch)->litbase_regnum == -1)
2300 ? 0 : xtensa_read_register
2301 (gdbarch_tdep (gdbarch)->litbase_regnum);
2302 litaddr = litbase & 1
2303 ? (litbase & ~1) + (signed)odv[1]
2304 : (pc + 3 + (signed)odv[1]) & ~3;
2305 litval = read_memory_integer (litaddr, 4, byte_order);
2306 dst[odv[0]].fr_reg = C0_CONST;
2307 dst[odv[0]].fr_ofs = litval;
2308 break;
2309 case c0opc_s32i:
2310 /* 3 operands: value, base, offset. */
2311 gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
2312 /* First, check if it's a spill for saved unaligned SP,
2313 when dynamic stack adjustment was applied to this frame. */
2314 if ((cache->c0.c0_fpalign != 0) /* Dynamic stack adjustment. */
2315 && (odv[1] == spreg) /* SP usage indicates spill. */
2316 && (odv[0] == cache->c0.c0_old_sp)) /* Old SP register spilled. */
2317 cache->c0.c0_sp_ofs = odv[2];
2318
2319 if (src[odv[1]].fr_reg == spreg /* Store to stack frame. */
2320 && (src[odv[1]].fr_ofs & 3) == 0 /* Alignment preserved. */
2321 && src[odv[0]].fr_reg >= 0 /* Value is from a register. */
2322 && src[odv[0]].fr_ofs == 0 /* Value hasn't been modified. */
2323 && src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time. */
2324 {
2325 /* ISA encoding guarantees alignment. But, check it anyway. */
2326 gdb_assert ((odv[2] & 3) == 0);
2327 dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
2328 }
2329 break;
2330 /* If we end up inside Window Overflow / Underflow interrupt handler
2331 report an error because these handlers should have been handled
2332 already in a different way. */
2333 case c0opc_l32e:
2334 case c0opc_s32e:
2335 case c0opc_rfwo:
2336 case c0opc_rfwu:
2337 return 1;
2338 default:
2339 return 1;
2340 }
2341 return 0;
2342 }
2343
2344 /* Analyze prologue of the function at start address to determine if it uses
2345 the Call0 ABI, and if so track register moves and linear modifications
2346 in the prologue up to the PC or just beyond the prologue, whichever is
2347 first. An 'entry' instruction indicates non-Call0 ABI and the end of the
2348 prologue. The prologue may overlap non-prologue instructions but is
2349 guaranteed to end by the first flow-control instruction (jump, branch,
2350 call or return). Since an optimized function may move information around
2351 and change the stack frame arbitrarily during the prologue, the information
2352 is guaranteed valid only at the point in the function indicated by the PC.
2353 May be used to skip the prologue or identify the ABI, w/o tracking.
2354
2355 Returns: Address of first instruction after prologue, or PC (whichever
2356 is first), or 0, if decoding failed (in libisa).
2357 Input args:
2358 start Start address of function/prologue.
2359 pc Program counter to stop at. Use 0 to continue to end of prologue.
2360 If 0, avoids infinite run-on in corrupt code memory by bounding
2361 the scan to the end of the function if that can be determined.
2362 nregs Number of general registers to track.
2363 InOut args:
2364 cache Xtensa frame cache.
2365
2366 Note that these may produce useful results even if decoding fails
2367 because they begin with default assumptions that analysis may change. */
2368
2369 static CORE_ADDR
2370 call0_analyze_prologue (struct gdbarch *gdbarch,
2371 CORE_ADDR start, CORE_ADDR pc,
2372 int nregs, xtensa_frame_cache_t *cache)
2373 {
2374 CORE_ADDR ia; /* Current insn address in prologue. */
2375 CORE_ADDR ba = 0; /* Current address at base of insn buffer. */
2376 CORE_ADDR bt; /* Current address at top+1 of insn buffer. */
2377 gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue. */
2378 xtensa_isa isa; /* libisa ISA handle. */
2379 xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot. */
2380 xtensa_format ifmt; /* libisa instruction format. */
2381 int ilen, islots, is; /* Instruction length, nbr slots, current slot. */
2382 xtensa_opcode opc; /* Opcode in current slot. */
2383 xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis. */
2384 int nods; /* Opcode number of operands. */
2385 unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa. */
2386 xtensa_c0reg_t *rtmp; /* Register tracking info snapshot. */
2387 int j; /* General loop counter. */
2388 int fail = 0; /* Set non-zero and exit, if decoding fails. */
2389 CORE_ADDR body_pc; /* The PC for the first non-prologue insn. */
2390 CORE_ADDR end_pc; /* The PC for the lust function insn. */
2391
2392 struct symtab_and_line prologue_sal;
2393
2394 DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n",
2395 (int)start, (int)pc);
2396
2397 /* Try to limit the scan to the end of the function if a non-zero pc
2398 arg was not supplied to avoid probing beyond the end of valid memory.
2399 If memory is full of garbage that classifies as c0opc_uninteresting.
2400 If this fails (eg. if no symbols) pc ends up 0 as it was.
2401 Initialize the Call0 frame and register tracking info.
2402 Assume it's Call0 until an 'entry' instruction is encountered.
2403 Assume we may be in the prologue until we hit a flow control instr. */
2404
2405 rtmp = NULL;
2406 body_pc = UINT_MAX;
2407 end_pc = 0;
2408
2409 /* Find out, if we have an information about the prologue from DWARF. */
2410 prologue_sal = find_pc_line (start, 0);
2411 if (prologue_sal.line != 0) /* Found debug info. */
2412 body_pc = prologue_sal.end;
2413
2414 /* If we are going to analyze the prologue in general without knowing about
2415 the current PC, make the best assumtion for the end of the prologue. */
2416 if (pc == 0)
2417 {
2418 find_pc_partial_function (start, 0, NULL, &end_pc);
2419 body_pc = std::min (end_pc, body_pc);
2420 }
2421 else
2422 body_pc = std::min (pc, body_pc);
2423
2424 cache->call0 = 1;
2425 rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));
2426
2427 isa = xtensa_default_isa;
2428 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2429 ins = xtensa_insnbuf_alloc (isa);
2430 slot = xtensa_insnbuf_alloc (isa);
2431
2432 for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
2433 {
2434 /* (Re)fill instruction buffer from memory if necessary, but do not
2435 read memory beyond PC to be sure we stay within text section
2436 (this protection only works if a non-zero pc is supplied). */
2437
2438 if (ia + xtensa_isa_maxlength (isa) > bt)
2439 {
2440 ba = ia;
2441 bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
2442 if (target_read_memory (ba, ibuf, bt - ba) != 0 )
2443 error (_("Unable to read target memory ..."));
2444 }
2445
2446 /* Decode format information. */
2447
2448 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2449 ifmt = xtensa_format_decode (isa, ins);
2450 if (ifmt == XTENSA_UNDEFINED)
2451 {
2452 fail = 1;
2453 goto done;
2454 }
2455 ilen = xtensa_format_length (isa, ifmt);
2456 if (ilen == XTENSA_UNDEFINED)
2457 {
2458 fail = 1;
2459 goto done;
2460 }
2461 islots = xtensa_format_num_slots (isa, ifmt);
2462 if (islots == XTENSA_UNDEFINED)
2463 {
2464 fail = 1;
2465 goto done;
2466 }
2467
2468 /* Analyze a bundle or a single instruction, using a snapshot of
2469 the register tracking info as input for the entire bundle so that
2470 register changes do not take effect within this bundle. */
2471
2472 for (j = 0; j < nregs; ++j)
2473 rtmp[j] = cache->c0.c0_rt[j];
2474
2475 for (is = 0; is < islots; ++is)
2476 {
2477 /* Decode a slot and classify the opcode. */
2478
2479 fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
2480 if (fail)
2481 goto done;
2482
2483 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2484 DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n",
2485 (unsigned)ia, opc);
2486 if (opc == XTENSA_UNDEFINED)
2487 opclass = c0opc_illegal;
2488 else
2489 opclass = call0_classify_opcode (isa, opc);
2490
2491 /* Decide whether to track this opcode, ignore it, or bail out. */
2492
2493 switch (opclass)
2494 {
2495 case c0opc_illegal:
2496 case c0opc_break:
2497 fail = 1;
2498 goto done;
2499
2500 case c0opc_uninteresting:
2501 continue;
2502
2503 case c0opc_flow: /* Flow control instructions stop analysis. */
2504 case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis. */
2505 goto done;
2506
2507 case c0opc_entry:
2508 cache->call0 = 0;
2509 ia += ilen; /* Skip over 'entry' insn. */
2510 goto done;
2511
2512 default:
2513 cache->call0 = 1;
2514 }
2515
2516 /* Only expected opcodes should get this far. */
2517
2518 /* Extract and decode the operands. */
2519 nods = xtensa_opcode_num_operands (isa, opc);
2520 if (nods == XTENSA_UNDEFINED)
2521 {
2522 fail = 1;
2523 goto done;
2524 }
2525
2526 for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
2527 {
2528 fail = xtensa_operand_get_field (isa, opc, j, ifmt,
2529 is, slot, &odv[j]);
2530 if (fail)
2531 goto done;
2532
2533 fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
2534 if (fail)
2535 goto done;
2536 }
2537
2538 /* Check operands to verify use of 'mov' assembler macro. */
2539 if (opclass == c0opc_mov && nods == 3)
2540 {
2541 if (odv[2] == odv[1])
2542 {
2543 nods = 2;
2544 if ((odv[0] == 1) && (odv[1] != 1))
2545 /* OR A1, An, An , where n != 1.
2546 This means we are inside epilogue already. */
2547 goto done;
2548 }
2549 else
2550 {
2551 opclass = c0opc_uninteresting;
2552 continue;
2553 }
2554 }
2555
2556 /* Track register movement and modification for this operation. */
2557 fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
2558 opclass, nods, odv, ia, 1, cache);
2559 if (fail)
2560 goto done;
2561 }
2562 }
2563 done:
2564 DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
2565 (unsigned)ia, fail ? "failed" : "succeeded");
2566 xtensa_insnbuf_free(isa, slot);
2567 xtensa_insnbuf_free(isa, ins);
2568 return fail ? XTENSA_ISA_BADPC : ia;
2569 }
2570
2571 /* Initialize frame cache for the current frame in CALL0 ABI. */
2572
2573 static void
2574 call0_frame_cache (struct frame_info *this_frame,
2575 xtensa_frame_cache_t *cache, CORE_ADDR pc)
2576 {
2577 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2578 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2579 CORE_ADDR start_pc; /* The beginning of the function. */
2580 CORE_ADDR body_pc=UINT_MAX; /* PC, where prologue analysis stopped. */
2581 CORE_ADDR sp, fp, ra;
2582 int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
2583
2584 sp = get_frame_register_unsigned
2585 (this_frame, gdbarch_tdep (gdbarch)->a0_base + 1);
2586 fp = sp; /* Assume FP == SP until proven otherwise. */
2587
2588 /* Find the beginning of the prologue of the function containing the PC
2589 and analyze it up to the PC or the end of the prologue. */
2590
2591 if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
2592 {
2593 body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);
2594
2595 if (body_pc == XTENSA_ISA_BADPC)
2596 {
2597 warning_once ();
2598 ra = 0;
2599 goto finish_frame_analysis;
2600 }
2601 }
2602
2603 /* Get the frame information and FP (if used) at the current PC.
2604 If PC is in the prologue, the prologue analysis is more reliable
2605 than DWARF info. We don't not know for sure, if PC is in the prologue,
2606 but we do know no calls have yet taken place, so we can almost
2607 certainly rely on the prologue analysis. */
2608
2609 if (body_pc <= pc)
2610 {
2611 /* Prologue analysis was successful up to the PC.
2612 It includes the cases when PC == START_PC. */
2613 c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
2614 /* c0_hasfp == true means there is a frame pointer because
2615 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
2616 was derived from SP. Otherwise, it would be C0_FP. */
2617 fp_regnum = c0_hasfp ? C0_FP : C0_SP;
2618 c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
2619 fp_regnum += gdbarch_tdep (gdbarch)->a0_base;
2620 }
2621 else /* No data from the prologue analysis. */
2622 {
2623 c0_hasfp = 0;
2624 fp_regnum = gdbarch_tdep (gdbarch)->a0_base + C0_SP;
2625 c0_frmsz = 0;
2626 start_pc = pc;
2627 }
2628
2629 if (cache->c0.c0_fpalign)
2630 {
2631 /* This frame has a special prologue with a dynamic stack adjustment
2632 to force an alignment, which is bigger than standard 16 bytes. */
2633
2634 CORE_ADDR unaligned_sp;
2635
2636 if (cache->c0.c0_old_sp == C0_INEXP)
2637 /* This can't be. Prologue code should be consistent.
2638 Unaligned stack pointer should be saved in a spare register. */
2639 {
2640 warning_once ();
2641 ra = 0;
2642 goto finish_frame_analysis;
2643 }
2644
2645 if (cache->c0.c0_sp_ofs == C0_NOSTK)
2646 /* Saved unaligned value of SP is kept in a register. */
2647 unaligned_sp = get_frame_register_unsigned
2648 (this_frame, gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_old_sp);
2649 else
2650 /* Get the value from stack. */
2651 unaligned_sp = (CORE_ADDR)
2652 read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);
2653
2654 prev_sp = unaligned_sp + c0_frmsz;
2655 }
2656 else
2657 prev_sp = fp + c0_frmsz;
2658
2659 /* Frame size from debug info or prologue tracking does not account for
2660 alloca() and other dynamic allocations. Adjust frame size by FP - SP. */
2661 if (c0_hasfp)
2662 {
2663 fp = get_frame_register_unsigned (this_frame, fp_regnum);
2664
2665 /* Update the stack frame size. */
2666 c0_frmsz += fp - sp;
2667 }
2668
2669 /* Get the return address (RA) from the stack if saved,
2670 or try to get it from a register. */
2671
2672 to_stk = cache->c0.c0_rt[C0_RA].to_stk;
2673 if (to_stk != C0_NOSTK)
2674 ra = (CORE_ADDR)
2675 read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
2676 4, byte_order);
2677
2678 else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
2679 && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
2680 {
2681 /* Special case for terminating backtrace at a function that wants to
2682 be seen as the outermost one. Such a function will clear it's RA (A0)
2683 register to 0 in the prologue instead of saving its original value. */
2684 ra = 0;
2685 }
2686 else
2687 {
2688 /* RA was copied to another register or (before any function call) may
2689 still be in the original RA register. This is not always reliable:
2690 even in a leaf function, register tracking stops after prologue, and
2691 even in prologue, non-prologue instructions (not tracked) may overwrite
2692 RA or any register it was copied to. If likely in prologue or before
2693 any call, use retracking info and hope for the best (compiler should
2694 have saved RA in stack if not in a leaf function). If not in prologue,
2695 too bad. */
2696
2697 int i;
2698 for (i = 0;
2699 (i < C0_NREGS)
2700 && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
2701 ++i);
2702 if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
2703 i = C0_RA;
2704 if (i < C0_NREGS)
2705 {
2706 ra = get_frame_register_unsigned
2707 (this_frame,
2708 gdbarch_tdep (gdbarch)->a0_base + cache->c0.c0_rt[i].fr_reg);
2709 }
2710 else ra = 0;
2711 }
2712
2713 finish_frame_analysis:
2714 cache->pc = start_pc;
2715 cache->ra = ra;
2716 /* RA == 0 marks the outermost frame. Do not go past it. */
2717 cache->prev_sp = (ra != 0) ? prev_sp : 0;
2718 cache->c0.fp_regnum = fp_regnum;
2719 cache->c0.c0_frmsz = c0_frmsz;
2720 cache->c0.c0_hasfp = c0_hasfp;
2721 cache->c0.c0_fp = fp;
2722 }
2723
2724 static CORE_ADDR a0_saved;
2725 static CORE_ADDR a7_saved;
2726 static CORE_ADDR a11_saved;
2727 static int a0_was_saved;
2728 static int a7_was_saved;
2729 static int a11_was_saved;
2730
2731 /* Simulate L32E instruction: AT <-- ref (AS + offset). */
2732 static void
2733 execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2734 {
2735 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2736 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2737 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2738 unsigned int spilled_value
2739 = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));
2740
2741 if ((at == 0) && !a0_was_saved)
2742 {
2743 a0_saved = xtensa_read_register (atreg);
2744 a0_was_saved = 1;
2745 }
2746 else if ((at == 7) && !a7_was_saved)
2747 {
2748 a7_saved = xtensa_read_register (atreg);
2749 a7_was_saved = 1;
2750 }
2751 else if ((at == 11) && !a11_was_saved)
2752 {
2753 a11_saved = xtensa_read_register (atreg);
2754 a11_was_saved = 1;
2755 }
2756
2757 xtensa_write_register (atreg, spilled_value);
2758 }
2759
2760 /* Simulate S32E instruction: AT --> ref (AS + offset). */
2761 static void
2762 execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
2763 {
2764 int atreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + at, wb);
2765 int asreg = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base + as, wb);
2766 CORE_ADDR addr = xtensa_read_register (asreg) + offset;
2767 ULONGEST spilled_value = xtensa_read_register (atreg);
2768
2769 write_memory_unsigned_integer (addr, 4,
2770 gdbarch_byte_order (gdbarch),
2771 spilled_value);
2772 }
2773
2774 #define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN 200
2775
2776 typedef enum
2777 {
2778 xtWindowOverflow,
2779 xtWindowUnderflow,
2780 xtNoExceptionHandler
2781 } xtensa_exception_handler_t;
2782
2783 /* Execute instruction stream from current PC until hitting RFWU or RFWO.
2784 Return type of Xtensa Window Interrupt Handler on success. */
2785 static xtensa_exception_handler_t
2786 execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
2787 {
2788 xtensa_isa isa;
2789 xtensa_insnbuf ins, slot;
2790 gdb_byte ibuf[XTENSA_ISA_BSZ];
2791 CORE_ADDR ia, bt, ba;
2792 xtensa_format ifmt;
2793 int ilen, islots, is;
2794 xtensa_opcode opc;
2795 int insn_num = 0;
2796 void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
2797
2798 uint32_t at, as, offset;
2799
2800 /* WindowUnderflow12 = true, when inside _WindowUnderflow12. */
2801 int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140;
2802
2803 isa = xtensa_default_isa;
2804 gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
2805 ins = xtensa_insnbuf_alloc (isa);
2806 slot = xtensa_insnbuf_alloc (isa);
2807 ba = 0;
2808 ia = current_pc;
2809 bt = ia;
2810
2811 a0_was_saved = 0;
2812 a7_was_saved = 0;
2813 a11_was_saved = 0;
2814
2815 while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
2816 {
2817 if (ia + xtensa_isa_maxlength (isa) > bt)
2818 {
2819 ba = ia;
2820 bt = (ba + XTENSA_ISA_BSZ);
2821 if (target_read_memory (ba, ibuf, bt - ba) != 0)
2822 return xtNoExceptionHandler;
2823 }
2824 xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
2825 ifmt = xtensa_format_decode (isa, ins);
2826 if (ifmt == XTENSA_UNDEFINED)
2827 return xtNoExceptionHandler;
2828 ilen = xtensa_format_length (isa, ifmt);
2829 if (ilen == XTENSA_UNDEFINED)
2830 return xtNoExceptionHandler;
2831 islots = xtensa_format_num_slots (isa, ifmt);
2832 if (islots == XTENSA_UNDEFINED)
2833 return xtNoExceptionHandler;
2834 for (is = 0; is < islots; ++is)
2835 {
2836 if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
2837 return xtNoExceptionHandler;
2838 opc = xtensa_opcode_decode (isa, ifmt, is, slot);
2839 if (opc == XTENSA_UNDEFINED)
2840 return xtNoExceptionHandler;
2841 switch (call0_classify_opcode (isa, opc))
2842 {
2843 case c0opc_illegal:
2844 case c0opc_flow:
2845 case c0opc_entry:
2846 case c0opc_break:
2847 /* We expect none of them here. */
2848 return xtNoExceptionHandler;
2849 case c0opc_l32e:
2850 func = execute_l32e;
2851 break;
2852 case c0opc_s32e:
2853 func = execute_s32e;
2854 break;
2855 case c0opc_rfwo: /* RFWO. */
2856 /* Here, we return from WindowOverflow handler and,
2857 if we stopped at the very beginning, which means
2858 A0 was saved, we have to restore it now. */
2859 if (a0_was_saved)
2860 {
2861 int arreg = arreg_number (gdbarch,
2862 gdbarch_tdep (gdbarch)->a0_base,
2863 wb);
2864 xtensa_write_register (arreg, a0_saved);
2865 }
2866 return xtWindowOverflow;
2867 case c0opc_rfwu: /* RFWU. */
2868 /* Here, we return from WindowUnderflow handler.
2869 Let's see if either A7 or A11 has to be restored. */
2870 if (WindowUnderflow12)
2871 {
2872 if (a11_was_saved)
2873 {
2874 int arreg = arreg_number (gdbarch,
2875 gdbarch_tdep (gdbarch)->a0_base + 11,
2876 wb);
2877 xtensa_write_register (arreg, a11_saved);
2878 }
2879 }
2880 else if (a7_was_saved)
2881 {
2882 int arreg = arreg_number (gdbarch,
2883 gdbarch_tdep (gdbarch)->a0_base + 7,
2884 wb);
2885 xtensa_write_register (arreg, a7_saved);
2886 }
2887 return xtWindowUnderflow;
2888 default: /* Simply skip this insns. */
2889 continue;
2890 }
2891
2892 /* Decode arguments for L32E / S32E and simulate their execution. */
2893 if ( xtensa_opcode_num_operands (isa, opc) != 3 )
2894 return xtNoExceptionHandler;
2895 if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
2896 return xtNoExceptionHandler;
2897 if (xtensa_operand_decode (isa, opc, 0, &at))
2898 return xtNoExceptionHandler;
2899 if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
2900 return xtNoExceptionHandler;
2901 if (xtensa_operand_decode (isa, opc, 1, &as))
2902 return xtNoExceptionHandler;
2903 if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
2904 return xtNoExceptionHandler;
2905 if (xtensa_operand_decode (isa, opc, 2, &offset))
2906 return xtNoExceptionHandler;
2907
2908 (*func) (gdbarch, at, as, offset, wb);
2909 }
2910
2911 ia += ilen;
2912 }
2913 return xtNoExceptionHandler;
2914 }
2915
2916 /* Handle Window Overflow / Underflow exception frames. */
2917
2918 static void
2919 xtensa_window_interrupt_frame_cache (struct frame_info *this_frame,
2920 xtensa_frame_cache_t *cache,
2921 CORE_ADDR pc)
2922 {
2923 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2924 CORE_ADDR ps, wb, ws, ra;
2925 int epc1_regnum, i, regnum;
2926 xtensa_exception_handler_t eh_type;
2927
2928 /* Read PS, WB, and WS from the hardware. Note that PS register
2929 must be present, if Windowed ABI is supported. */
2930 ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
2931 wb = xtensa_read_register (gdbarch_tdep (gdbarch)->wb_regnum);
2932 ws = xtensa_read_register (gdbarch_tdep (gdbarch)->ws_regnum);
2933
2934 /* Execute all the remaining instructions from Window Interrupt Handler
2935 by simulating them on the remote protocol level. On return, set the
2936 type of Xtensa Window Interrupt Handler, or report an error. */
2937 eh_type = execute_code (gdbarch, pc, wb);
2938 if (eh_type == xtNoExceptionHandler)
2939 error (_("\
2940 Unable to decode Xtensa Window Interrupt Handler's code."));
2941
2942 cache->ps = ps ^ PS_EXC; /* Clear the exception bit in PS. */
2943 cache->call0 = 0; /* It's Windowed ABI. */
2944
2945 /* All registers for the cached frame will be alive. */
2946 for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
2947 cache->wd.aregs[i] = -1;
2948
2949 if (eh_type == xtWindowOverflow)
2950 cache->wd.ws = ws ^ (1 << wb);
2951 else /* eh_type == xtWindowUnderflow. */
2952 cache->wd.ws = ws | (1 << wb);
2953
2954 cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB. */
2955 regnum = arreg_number (gdbarch, gdbarch_tdep (gdbarch)->a0_base,
2956 cache->wd.wb);
2957 ra = xtensa_read_register (regnum);
2958 cache->wd.callsize = WINSIZE (ra);
2959 cache->prev_sp = xtensa_read_register (regnum + 1);
2960 /* Set regnum to a frame pointer of the frame being cached. */
2961 regnum = xtensa_scan_prologue (gdbarch, pc);
2962 regnum = arreg_number (gdbarch,
2963 gdbarch_tdep (gdbarch)->a0_base + regnum,
2964 cache->wd.wb);
2965 cache->base = get_frame_register_unsigned (this_frame, regnum);
2966
2967 /* Read PC of interrupted function from EPC1 register. */
2968 epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
2969 if (epc1_regnum < 0)
2970 error(_("Unable to read Xtensa register EPC1"));
2971 cache->ra = xtensa_read_register (epc1_regnum);
2972 cache->pc = get_frame_func (this_frame);
2973 }
2974
2975
2976 /* Skip function prologue.
2977
2978 Return the pc of the first instruction after prologue. GDB calls this to
2979 find the address of the first line of the function or (if there is no line
2980 number information) to skip the prologue for planting breakpoints on
2981 function entries. Use debug info (if present) or prologue analysis to skip
2982 the prologue to achieve reliable debugging behavior. For windowed ABI,
2983 only the 'entry' instruction is skipped. It is not strictly necessary to
2984 skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
2985 backtrace at any point in the prologue, however certain potential hazards
2986 are avoided and a more "normal" debugging experience is ensured by
2987 skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
2988 For example, if we don't skip the prologue:
2989 - Some args may not yet have been saved to the stack where the debug
2990 info expects to find them (true anyway when only 'entry' is skipped);
2991 - Software breakpoints ('break' instrs) may not have been unplanted
2992 when the prologue analysis is done on initializing the frame cache,
2993 and breaks in the prologue will throw off the analysis.
2994
2995 If we have debug info ( line-number info, in particular ) we simply skip
2996 the code associated with the first function line effectively skipping
2997 the prologue code. It works even in cases like
2998
2999 int main()
3000 { int local_var = 1;
3001 ....
3002 }
3003
3004 because, for this source code, both Xtensa compilers will generate two
3005 separate entries ( with the same line number ) in dwarf line-number
3006 section to make sure there is a boundary between the prologue code and
3007 the rest of the function.
3008
3009 If there is no debug info, we need to analyze the code. */
3010
3011 /* #define DONT_SKIP_PROLOGUE */
3012
3013 static CORE_ADDR
3014 xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
3015 {
3016 struct symtab_and_line prologue_sal;
3017 CORE_ADDR body_pc;
3018
3019 DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);
3020
3021 #if DONT_SKIP_PROLOGUE
3022 return start_pc;
3023 #endif
3024
3025 /* Try to find first body line from debug info. */
3026
3027 prologue_sal = find_pc_line (start_pc, 0);
3028 if (prologue_sal.line != 0) /* Found debug info. */
3029 {
3030 /* In Call0, it is possible to have a function with only one instruction
3031 ('ret') resulting from a one-line optimized function that does nothing.
3032 In that case, prologue_sal.end may actually point to the start of the
3033 next function in the text section, causing a breakpoint to be set at
3034 the wrong place. Check, if the end address is within a different
3035 function, and if so return the start PC. We know we have symbol
3036 information. */
3037
3038 CORE_ADDR end_func;
3039
3040 if ((gdbarch_tdep (gdbarch)->call_abi == CallAbiCall0Only)
3041 && call0_ret (start_pc, prologue_sal.end))
3042 return start_pc;
3043
3044 find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
3045 if (end_func != start_pc)
3046 return start_pc;
3047
3048 return prologue_sal.end;
3049 }
3050
3051 /* No debug line info. Analyze prologue for Call0 or simply skip ENTRY. */
3052 body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
3053 xtensa_alloc_frame_cache (0));
3054 return body_pc != 0 ? body_pc : start_pc;
3055 }
3056
3057 /* Verify the current configuration. */
3058 static void
3059 xtensa_verify_config (struct gdbarch *gdbarch)
3060 {
3061 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3062 string_file log;
3063
3064 /* Verify that we got a reasonable number of AREGS. */
3065 if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
3066 log.printf (_("\
3067 \n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
3068 tdep->num_aregs);
3069
3070 /* Verify that certain registers exist. */
3071
3072 if (tdep->pc_regnum == -1)
3073 log.printf (_("\n\tpc_regnum: No PC register"));
3074 if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
3075 log.printf (_("\n\tps_regnum: No PS register"));
3076
3077 if (tdep->isa_use_windowed_registers)
3078 {
3079 if (tdep->wb_regnum == -1)
3080 log.printf (_("\n\twb_regnum: No WB register"));
3081 if (tdep->ws_regnum == -1)
3082 log.printf (_("\n\tws_regnum: No WS register"));
3083 if (tdep->ar_base == -1)
3084 log.printf (_("\n\tar_base: No AR registers"));
3085 }
3086
3087 if (tdep->a0_base == -1)
3088 log.printf (_("\n\ta0_base: No Ax registers"));
3089
3090 if (!log.empty ())
3091 internal_error (__FILE__, __LINE__,
3092 _("the following are invalid: %s"), log.c_str ());
3093 }
3094
3095
3096 /* Derive specific register numbers from the array of registers. */
3097
3098 static void
3099 xtensa_derive_tdep (struct gdbarch_tdep *tdep)
3100 {
3101 xtensa_register_t* rmap;
3102 int n, max_size = 4;
3103
3104 tdep->num_regs = 0;
3105 tdep->num_nopriv_regs = 0;
3106
3107 /* Special registers 0..255 (core). */
3108 #define XTENSA_DBREGN_SREG(n) (0x0200+(n))
3109
3110 for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
3111 {
3112 if (rmap->target_number == 0x0020)
3113 tdep->pc_regnum = n;
3114 else if (rmap->target_number == 0x0100)
3115 tdep->ar_base = n;
3116 else if (rmap->target_number == 0x0000)
3117 tdep->a0_base = n;
3118 else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
3119 tdep->wb_regnum = n;
3120 else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
3121 tdep->ws_regnum = n;
3122 else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
3123 tdep->debugcause_regnum = n;
3124 else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
3125 tdep->exccause_regnum = n;
3126 else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
3127 tdep->excvaddr_regnum = n;
3128 else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
3129 tdep->lbeg_regnum = n;
3130 else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
3131 tdep->lend_regnum = n;
3132 else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
3133 tdep->lcount_regnum = n;
3134 else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
3135 tdep->sar_regnum = n;
3136 else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
3137 tdep->litbase_regnum = n;
3138 else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
3139 tdep->ps_regnum = n;
3140 #if 0
3141 else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
3142 tdep->interrupt_regnum = n;
3143 else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
3144 tdep->interrupt2_regnum = n;
3145 else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
3146 tdep->cpenable_regnum = n;
3147 #endif
3148
3149 if (rmap->byte_size > max_size)
3150 max_size = rmap->byte_size;
3151 if (rmap->mask != 0 && tdep->num_regs == 0)
3152 tdep->num_regs = n;
3153 /* Find out out how to deal with priveleged registers.
3154
3155 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3156 && tdep->num_nopriv_regs == 0)
3157 tdep->num_nopriv_regs = n;
3158 */
3159 if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
3160 && tdep->num_regs == 0)
3161 tdep->num_regs = n;
3162 }
3163
3164 /* Number of pseudo registers. */
3165 tdep->num_pseudo_regs = n - tdep->num_regs;
3166
3167 /* Empirically determined maximum sizes. */
3168 tdep->max_register_raw_size = max_size;
3169 tdep->max_register_virtual_size = max_size;
3170 }
3171
3172 /* Module "constructor" function. */
3173
3174 extern struct gdbarch_tdep xtensa_tdep;
3175
3176 static struct gdbarch *
3177 xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3178 {
3179 struct gdbarch_tdep *tdep;
3180 struct gdbarch *gdbarch;
3181
3182 DEBUGTRACE ("gdbarch_init()\n");
3183
3184 if (!xtensa_default_isa)
3185 xtensa_default_isa = xtensa_isa_init (0, 0);
3186
3187 /* We have to set the byte order before we call gdbarch_alloc. */
3188 info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
3189
3190 tdep = &xtensa_tdep;
3191 gdbarch = gdbarch_alloc (&info, tdep);
3192 xtensa_derive_tdep (tdep);
3193
3194 /* Verify our configuration. */
3195 xtensa_verify_config (gdbarch);
3196 xtensa_session_once_reported = 0;
3197
3198 /* Pseudo-Register read/write. */
3199 set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
3200 set_gdbarch_pseudo_register_write (gdbarch, xtensa_pseudo_register_write);
3201
3202 /* Set target information. */
3203 set_gdbarch_num_regs (gdbarch, tdep->num_regs);
3204 set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
3205 set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
3206 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
3207 set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);
3208
3209 /* Renumber registers for known formats (stabs and dwarf2). */
3210 set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3211 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
3212
3213 /* We provide our own function to get register information. */
3214 set_gdbarch_register_name (gdbarch, xtensa_register_name);
3215 set_gdbarch_register_type (gdbarch, xtensa_register_type);
3216
3217 /* To call functions from GDB using dummy frame. */
3218 set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);
3219
3220 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3221
3222 set_gdbarch_return_value (gdbarch, xtensa_return_value);
3223
3224 /* Advance PC across any prologue instructions to reach "real" code. */
3225 set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);
3226
3227 /* Stack grows downward. */
3228 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3229
3230 /* Set breakpoints. */
3231 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3232 xtensa_breakpoint_kind_from_pc);
3233 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3234 xtensa_sw_breakpoint_from_kind);
3235
3236 /* After breakpoint instruction or illegal instruction, pc still
3237 points at break instruction, so don't decrement. */
3238 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3239
3240 /* We don't skip args. */
3241 set_gdbarch_frame_args_skip (gdbarch, 0);
3242
3243 set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);
3244
3245 set_gdbarch_frame_align (gdbarch, xtensa_frame_align);
3246
3247 set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);
3248
3249 /* Frame handling. */
3250 frame_base_set_default (gdbarch, &xtensa_frame_base);
3251 frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
3252 dwarf2_append_unwinders (gdbarch);
3253
3254 set_gdbarch_print_insn (gdbarch, print_insn_xtensa);
3255
3256 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3257
3258 xtensa_add_reggroups (gdbarch);
3259 set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);
3260
3261 set_gdbarch_iterate_over_regset_sections
3262 (gdbarch, xtensa_iterate_over_regset_sections);
3263
3264 set_solib_svr4_fetch_link_map_offsets
3265 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
3266
3267 /* Hook in the ABI-specific overrides, if they have been registered. */
3268 gdbarch_init_osabi (info, gdbarch);
3269
3270 return gdbarch;
3271 }
3272
3273 static void
3274 xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3275 {
3276 error (_("xtensa_dump_tdep(): not implemented"));
3277 }
3278
3279 /* Provide a prototype to silence -Wmissing-prototypes. */
3280 extern initialize_file_ftype _initialize_xtensa_tdep;
3281
3282 void
3283 _initialize_xtensa_tdep (void)
3284 {
3285 gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
3286 xtensa_init_reggroups ();
3287
3288 add_setshow_zuinteger_cmd ("xtensa",
3289 class_maintenance,
3290 &xtensa_debug_level,
3291 _("Set Xtensa debugging."),
3292 _("Show Xtensa debugging."), _("\
3293 When non-zero, Xtensa-specific debugging is enabled. \
3294 Can be 1, 2, 3, or 4 indicating the level of debugging."),
3295 NULL,
3296 NULL,
3297 &setdebuglist, &showdebuglist);
3298 }
This page took 0.11856 seconds and 4 git commands to generate.