5a5c6372823c31e7fcef8d7fc6f9e931396bcefa
[deliverable/binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "gdbsupport/common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "gdbsupport/environ.h"
53 #include "gdbsupport/gdb-sigmask.h"
54 #include "gdbsupport/scoped_restore.h"
55 #ifndef ELFMAG0
56 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
57 then ELFMAG0 will have been defined. If it didn't get included by
58 gdb_proc_service.h then including it will likely introduce a duplicate
59 definition of elf_fpregset_t. */
60 #include <elf.h>
61 #endif
62 #include "nat/linux-namespaces.h"
63
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
68 # endif
69 #endif
70
71 #ifndef O_LARGEFILE
72 #define O_LARGEFILE 0
73 #endif
74
75 #ifndef AT_HWCAP2
76 #define AT_HWCAP2 26
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 # include "gdbsupport/btrace-common.h"
106 #endif
107
108 #ifndef HAVE_ELF32_AUXV_T
109 /* Copied from glibc's elf.h. */
110 typedef struct
111 {
112 uint32_t a_type; /* Entry type */
113 union
114 {
115 uint32_t a_val; /* Integer value */
116 /* We use to have pointer elements added here. We cannot do that,
117 though, since it does not work when using 32-bit definitions
118 on 64-bit platforms and vice versa. */
119 } a_un;
120 } Elf32_auxv_t;
121 #endif
122
123 #ifndef HAVE_ELF64_AUXV_T
124 /* Copied from glibc's elf.h. */
125 typedef struct
126 {
127 uint64_t a_type; /* Entry type */
128 union
129 {
130 uint64_t a_val; /* Integer value */
131 /* We use to have pointer elements added here. We cannot do that,
132 though, since it does not work when using 32-bit definitions
133 on 64-bit platforms and vice versa. */
134 } a_un;
135 } Elf64_auxv_t;
136 #endif
137
138 /* Does the current host support PTRACE_GETREGSET? */
139 int have_ptrace_getregset = -1;
140
141 /* LWP accessors. */
142
143 /* See nat/linux-nat.h. */
144
145 ptid_t
146 ptid_of_lwp (struct lwp_info *lwp)
147 {
148 return ptid_of (get_lwp_thread (lwp));
149 }
150
151 /* See nat/linux-nat.h. */
152
153 void
154 lwp_set_arch_private_info (struct lwp_info *lwp,
155 struct arch_lwp_info *info)
156 {
157 lwp->arch_private = info;
158 }
159
160 /* See nat/linux-nat.h. */
161
162 struct arch_lwp_info *
163 lwp_arch_private_info (struct lwp_info *lwp)
164 {
165 return lwp->arch_private;
166 }
167
168 /* See nat/linux-nat.h. */
169
170 int
171 lwp_is_stopped (struct lwp_info *lwp)
172 {
173 return lwp->stopped;
174 }
175
176 /* See nat/linux-nat.h. */
177
178 enum target_stop_reason
179 lwp_stop_reason (struct lwp_info *lwp)
180 {
181 return lwp->stop_reason;
182 }
183
184 /* See nat/linux-nat.h. */
185
186 int
187 lwp_is_stepping (struct lwp_info *lwp)
188 {
189 return lwp->stepping;
190 }
191
192 /* A list of all unknown processes which receive stop signals. Some
193 other process will presumably claim each of these as forked
194 children momentarily. */
195
196 struct simple_pid_list
197 {
198 /* The process ID. */
199 int pid;
200
201 /* The status as reported by waitpid. */
202 int status;
203
204 /* Next in chain. */
205 struct simple_pid_list *next;
206 };
207 struct simple_pid_list *stopped_pids;
208
209 /* Trivial list manipulation functions to keep track of a list of new
210 stopped processes. */
211
212 static void
213 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
214 {
215 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
216
217 new_pid->pid = pid;
218 new_pid->status = status;
219 new_pid->next = *listp;
220 *listp = new_pid;
221 }
222
223 static int
224 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
225 {
226 struct simple_pid_list **p;
227
228 for (p = listp; *p != NULL; p = &(*p)->next)
229 if ((*p)->pid == pid)
230 {
231 struct simple_pid_list *next = (*p)->next;
232
233 *statusp = (*p)->status;
234 xfree (*p);
235 *p = next;
236 return 1;
237 }
238 return 0;
239 }
240
241 enum stopping_threads_kind
242 {
243 /* Not stopping threads presently. */
244 NOT_STOPPING_THREADS,
245
246 /* Stopping threads. */
247 STOPPING_THREADS,
248
249 /* Stopping and suspending threads. */
250 STOPPING_AND_SUSPENDING_THREADS
251 };
252
253 /* This is set while stop_all_lwps is in effect. */
254 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
255
256 /* FIXME make into a target method? */
257 int using_threads = 1;
258
259 /* True if we're presently stabilizing threads (moving them out of
260 jump pads). */
261 static int stabilizing_threads;
262
263 static void linux_resume_one_lwp (struct lwp_info *lwp,
264 int step, int signal, siginfo_t *info);
265 static void stop_all_lwps (int suspend, struct lwp_info *except);
266 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
267 static void unsuspend_all_lwps (struct lwp_info *except);
268 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
269 int *wstat, int options);
270 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
271 static struct lwp_info *add_lwp (ptid_t ptid);
272 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
273 static int lwp_is_marked_dead (struct lwp_info *lwp);
274 static void proceed_all_lwps (void);
275 static int finish_step_over (struct lwp_info *lwp);
276 static int kill_lwp (unsigned long lwpid, int signo);
277 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
278 static void complete_ongoing_step_over (void);
279 static int linux_low_ptrace_options (int attached);
280 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
281 static void proceed_one_lwp (thread_info *thread, lwp_info *except);
282
283 /* When the event-loop is doing a step-over, this points at the thread
284 being stepped. */
285 ptid_t step_over_bkpt;
286
287 /* True if the low target can hardware single-step. */
288
289 static int
290 can_hardware_single_step (void)
291 {
292 if (the_low_target.supports_hardware_single_step != NULL)
293 return the_low_target.supports_hardware_single_step ();
294 else
295 return 0;
296 }
297
298 /* True if the low target can software single-step. Such targets
299 implement the GET_NEXT_PCS callback. */
300
301 static int
302 can_software_single_step (void)
303 {
304 return (the_low_target.get_next_pcs != NULL);
305 }
306
307 /* True if the low target supports memory breakpoints. If so, we'll
308 have a GET_PC implementation. */
309
310 static int
311 supports_breakpoints (void)
312 {
313 return (the_low_target.get_pc != NULL);
314 }
315
316 /* Returns true if this target can support fast tracepoints. This
317 does not mean that the in-process agent has been loaded in the
318 inferior. */
319
320 static int
321 supports_fast_tracepoints (void)
322 {
323 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
324 }
325
326 /* True if LWP is stopped in its stepping range. */
327
328 static int
329 lwp_in_step_range (struct lwp_info *lwp)
330 {
331 CORE_ADDR pc = lwp->stop_pc;
332
333 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
334 }
335
336 struct pending_signals
337 {
338 int signal;
339 siginfo_t info;
340 struct pending_signals *prev;
341 };
342
343 /* The read/write ends of the pipe registered as waitable file in the
344 event loop. */
345 static int linux_event_pipe[2] = { -1, -1 };
346
347 /* True if we're currently in async mode. */
348 #define target_is_async_p() (linux_event_pipe[0] != -1)
349
350 static void send_sigstop (struct lwp_info *lwp);
351 static void wait_for_sigstop (void);
352
353 /* Return non-zero if HEADER is a 64-bit ELF file. */
354
355 static int
356 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
357 {
358 if (header->e_ident[EI_MAG0] == ELFMAG0
359 && header->e_ident[EI_MAG1] == ELFMAG1
360 && header->e_ident[EI_MAG2] == ELFMAG2
361 && header->e_ident[EI_MAG3] == ELFMAG3)
362 {
363 *machine = header->e_machine;
364 return header->e_ident[EI_CLASS] == ELFCLASS64;
365
366 }
367 *machine = EM_NONE;
368 return -1;
369 }
370
371 /* Return non-zero if FILE is a 64-bit ELF file,
372 zero if the file is not a 64-bit ELF file,
373 and -1 if the file is not accessible or doesn't exist. */
374
375 static int
376 elf_64_file_p (const char *file, unsigned int *machine)
377 {
378 Elf64_Ehdr header;
379 int fd;
380
381 fd = open (file, O_RDONLY);
382 if (fd < 0)
383 return -1;
384
385 if (read (fd, &header, sizeof (header)) != sizeof (header))
386 {
387 close (fd);
388 return 0;
389 }
390 close (fd);
391
392 return elf_64_header_p (&header, machine);
393 }
394
395 /* Accepts an integer PID; Returns true if the executable PID is
396 running is a 64-bit ELF file.. */
397
398 int
399 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
400 {
401 char file[PATH_MAX];
402
403 sprintf (file, "/proc/%d/exe", pid);
404 return elf_64_file_p (file, machine);
405 }
406
407 static void
408 delete_lwp (struct lwp_info *lwp)
409 {
410 struct thread_info *thr = get_lwp_thread (lwp);
411
412 if (debug_threads)
413 debug_printf ("deleting %ld\n", lwpid_of (thr));
414
415 remove_thread (thr);
416
417 if (the_low_target.delete_thread != NULL)
418 the_low_target.delete_thread (lwp->arch_private);
419 else
420 gdb_assert (lwp->arch_private == NULL);
421
422 free (lwp);
423 }
424
425 /* Add a process to the common process list, and set its private
426 data. */
427
428 static struct process_info *
429 linux_add_process (int pid, int attached)
430 {
431 struct process_info *proc;
432
433 proc = add_process (pid, attached);
434 proc->priv = XCNEW (struct process_info_private);
435
436 if (the_low_target.new_process != NULL)
437 proc->priv->arch_private = the_low_target.new_process ();
438
439 return proc;
440 }
441
442 static CORE_ADDR get_pc (struct lwp_info *lwp);
443
444 /* Call the target arch_setup function on the current thread. */
445
446 static void
447 linux_arch_setup (void)
448 {
449 the_low_target.arch_setup ();
450 }
451
452 /* Call the target arch_setup function on THREAD. */
453
454 static void
455 linux_arch_setup_thread (struct thread_info *thread)
456 {
457 struct thread_info *saved_thread;
458
459 saved_thread = current_thread;
460 current_thread = thread;
461
462 linux_arch_setup ();
463
464 current_thread = saved_thread;
465 }
466
467 /* Handle a GNU/Linux extended wait response. If we see a clone,
468 fork, or vfork event, we need to add the new LWP to our list
469 (and return 0 so as not to report the trap to higher layers).
470 If we see an exec event, we will modify ORIG_EVENT_LWP to point
471 to a new LWP representing the new program. */
472
473 static int
474 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
475 {
476 client_state &cs = get_client_state ();
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_t (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_of (event_thr).lwp (),
531 ptid.pid ());
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (cs.report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 #ifdef USE_THREAD_DB
665 thread_db_notice_clone (event_thr, ptid);
666 #endif
667
668 /* Don't report the event. */
669 return 1;
670 }
671 else if (event == PTRACE_EVENT_VFORK_DONE)
672 {
673 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
674
675 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
676 {
677 reinsert_single_step_breakpoints (event_thr);
678
679 gdb_assert (has_single_step_breakpoints (event_thr));
680 }
681
682 /* Report the event. */
683 return 0;
684 }
685 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
686 {
687 struct process_info *proc;
688 std::vector<int> syscalls_to_catch;
689 ptid_t event_ptid;
690 pid_t event_pid;
691
692 if (debug_threads)
693 {
694 debug_printf ("HEW: Got exec event from LWP %ld\n",
695 lwpid_of (event_thr));
696 }
697
698 /* Get the event ptid. */
699 event_ptid = ptid_of (event_thr);
700 event_pid = event_ptid.pid ();
701
702 /* Save the syscall list from the execing process. */
703 proc = get_thread_process (event_thr);
704 syscalls_to_catch = std::move (proc->syscalls_to_catch);
705
706 /* Delete the execing process and all its threads. */
707 the_target->pt->mourn (proc);
708 current_thread = NULL;
709
710 /* Create a new process/lwp/thread. */
711 proc = linux_add_process (event_pid, 0);
712 event_lwp = add_lwp (event_ptid);
713 event_thr = get_lwp_thread (event_lwp);
714 gdb_assert (current_thread == event_thr);
715 linux_arch_setup_thread (event_thr);
716
717 /* Set the event status. */
718 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
719 event_lwp->waitstatus.value.execd_pathname
720 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
721
722 /* Mark the exec status as pending. */
723 event_lwp->stopped = 1;
724 event_lwp->status_pending_p = 1;
725 event_lwp->status_pending = wstat;
726 event_thr->last_resume_kind = resume_continue;
727 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
728
729 /* Update syscall state in the new lwp, effectively mid-syscall too. */
730 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
731
732 /* Restore the list to catch. Don't rely on the client, which is free
733 to avoid sending a new list when the architecture doesn't change.
734 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
735 proc->syscalls_to_catch = std::move (syscalls_to_catch);
736
737 /* Report the event. */
738 *orig_event_lwp = event_lwp;
739 return 0;
740 }
741
742 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
743 }
744
745 /* Return the PC as read from the regcache of LWP, without any
746 adjustment. */
747
748 static CORE_ADDR
749 get_pc (struct lwp_info *lwp)
750 {
751 struct thread_info *saved_thread;
752 struct regcache *regcache;
753 CORE_ADDR pc;
754
755 if (the_low_target.get_pc == NULL)
756 return 0;
757
758 saved_thread = current_thread;
759 current_thread = get_lwp_thread (lwp);
760
761 regcache = get_thread_regcache (current_thread, 1);
762 pc = (*the_low_target.get_pc) (regcache);
763
764 if (debug_threads)
765 debug_printf ("pc is 0x%lx\n", (long) pc);
766
767 current_thread = saved_thread;
768 return pc;
769 }
770
771 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
772 Fill *SYSNO with the syscall nr trapped. */
773
774 static void
775 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
776 {
777 struct thread_info *saved_thread;
778 struct regcache *regcache;
779
780 if (the_low_target.get_syscall_trapinfo == NULL)
781 {
782 /* If we cannot get the syscall trapinfo, report an unknown
783 system call number. */
784 *sysno = UNKNOWN_SYSCALL;
785 return;
786 }
787
788 saved_thread = current_thread;
789 current_thread = get_lwp_thread (lwp);
790
791 regcache = get_thread_regcache (current_thread, 1);
792 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
793
794 if (debug_threads)
795 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
796
797 current_thread = saved_thread;
798 }
799
800 static int check_stopped_by_watchpoint (struct lwp_info *child);
801
802 /* Called when the LWP stopped for a signal/trap. If it stopped for a
803 trap check what caused it (breakpoint, watchpoint, trace, etc.),
804 and save the result in the LWP's stop_reason field. If it stopped
805 for a breakpoint, decrement the PC if necessary on the lwp's
806 architecture. Returns true if we now have the LWP's stop PC. */
807
808 static int
809 save_stop_reason (struct lwp_info *lwp)
810 {
811 CORE_ADDR pc;
812 CORE_ADDR sw_breakpoint_pc;
813 struct thread_info *saved_thread;
814 #if USE_SIGTRAP_SIGINFO
815 siginfo_t siginfo;
816 #endif
817
818 if (the_low_target.get_pc == NULL)
819 return 0;
820
821 pc = get_pc (lwp);
822 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
823
824 /* breakpoint_at reads from the current thread. */
825 saved_thread = current_thread;
826 current_thread = get_lwp_thread (lwp);
827
828 #if USE_SIGTRAP_SIGINFO
829 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
830 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
831 {
832 if (siginfo.si_signo == SIGTRAP)
833 {
834 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
835 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
836 {
837 /* The si_code is ambiguous on this arch -- check debug
838 registers. */
839 if (!check_stopped_by_watchpoint (lwp))
840 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
841 }
842 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
843 {
844 /* If we determine the LWP stopped for a SW breakpoint,
845 trust it. Particularly don't check watchpoint
846 registers, because at least on s390, we'd find
847 stopped-by-watchpoint as long as there's a watchpoint
848 set. */
849 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
850 }
851 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
852 {
853 /* This can indicate either a hardware breakpoint or
854 hardware watchpoint. Check debug registers. */
855 if (!check_stopped_by_watchpoint (lwp))
856 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
857 }
858 else if (siginfo.si_code == TRAP_TRACE)
859 {
860 /* We may have single stepped an instruction that
861 triggered a watchpoint. In that case, on some
862 architectures (such as x86), instead of TRAP_HWBKPT,
863 si_code indicates TRAP_TRACE, and we need to check
864 the debug registers separately. */
865 if (!check_stopped_by_watchpoint (lwp))
866 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
867 }
868 }
869 }
870 #else
871 /* We may have just stepped a breakpoint instruction. E.g., in
872 non-stop mode, GDB first tells the thread A to step a range, and
873 then the user inserts a breakpoint inside the range. In that
874 case we need to report the breakpoint PC. */
875 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
876 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
877 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
878
879 if (hardware_breakpoint_inserted_here (pc))
880 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
881
882 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
883 check_stopped_by_watchpoint (lwp);
884 #endif
885
886 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
887 {
888 if (debug_threads)
889 {
890 struct thread_info *thr = get_lwp_thread (lwp);
891
892 debug_printf ("CSBB: %s stopped by software breakpoint\n",
893 target_pid_to_str (ptid_of (thr)));
894 }
895
896 /* Back up the PC if necessary. */
897 if (pc != sw_breakpoint_pc)
898 {
899 struct regcache *regcache
900 = get_thread_regcache (current_thread, 1);
901 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
902 }
903
904 /* Update this so we record the correct stop PC below. */
905 pc = sw_breakpoint_pc;
906 }
907 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
908 {
909 if (debug_threads)
910 {
911 struct thread_info *thr = get_lwp_thread (lwp);
912
913 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
914 target_pid_to_str (ptid_of (thr)));
915 }
916 }
917 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
918 {
919 if (debug_threads)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922
923 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
924 target_pid_to_str (ptid_of (thr)));
925 }
926 }
927 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
928 {
929 if (debug_threads)
930 {
931 struct thread_info *thr = get_lwp_thread (lwp);
932
933 debug_printf ("CSBB: %s stopped by trace\n",
934 target_pid_to_str (ptid_of (thr)));
935 }
936 }
937
938 lwp->stop_pc = pc;
939 current_thread = saved_thread;
940 return 1;
941 }
942
943 static struct lwp_info *
944 add_lwp (ptid_t ptid)
945 {
946 struct lwp_info *lwp;
947
948 lwp = XCNEW (struct lwp_info);
949
950 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
951
952 lwp->thread = add_thread (ptid, lwp);
953
954 if (the_low_target.new_thread != NULL)
955 the_low_target.new_thread (lwp);
956
957 return lwp;
958 }
959
960 /* Callback to be used when calling fork_inferior, responsible for
961 actually initiating the tracing of the inferior. */
962
963 static void
964 linux_ptrace_fun ()
965 {
966 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
967 (PTRACE_TYPE_ARG4) 0) < 0)
968 trace_start_error_with_name ("ptrace");
969
970 if (setpgid (0, 0) < 0)
971 trace_start_error_with_name ("setpgid");
972
973 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
974 stdout to stderr so that inferior i/o doesn't corrupt the connection.
975 Also, redirect stdin to /dev/null. */
976 if (remote_connection_is_stdio ())
977 {
978 if (close (0) < 0)
979 trace_start_error_with_name ("close");
980 if (open ("/dev/null", O_RDONLY) < 0)
981 trace_start_error_with_name ("open");
982 if (dup2 (2, 1) < 0)
983 trace_start_error_with_name ("dup2");
984 if (write (2, "stdin/stdout redirected\n",
985 sizeof ("stdin/stdout redirected\n") - 1) < 0)
986 {
987 /* Errors ignored. */;
988 }
989 }
990 }
991
992 /* Start an inferior process and returns its pid.
993 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
994 are its arguments. */
995
996 int
997 linux_process_target::create_inferior (const char *program,
998 const std::vector<char *> &program_args)
999 {
1000 client_state &cs = get_client_state ();
1001 struct lwp_info *new_lwp;
1002 int pid;
1003 ptid_t ptid;
1004
1005 {
1006 maybe_disable_address_space_randomization restore_personality
1007 (cs.disable_randomization);
1008 std::string str_program_args = stringify_argv (program_args);
1009
1010 pid = fork_inferior (program,
1011 str_program_args.c_str (),
1012 get_environ ()->envp (), linux_ptrace_fun,
1013 NULL, NULL, NULL, NULL);
1014 }
1015
1016 linux_add_process (pid, 0);
1017
1018 ptid = ptid_t (pid, pid, 0);
1019 new_lwp = add_lwp (ptid);
1020 new_lwp->must_set_ptrace_flags = 1;
1021
1022 post_fork_inferior (pid, program);
1023
1024 return pid;
1025 }
1026
1027 /* Implement the post_create_inferior target_ops method. */
1028
1029 void
1030 linux_process_target::post_create_inferior ()
1031 {
1032 struct lwp_info *lwp = get_thread_lwp (current_thread);
1033
1034 linux_arch_setup ();
1035
1036 if (lwp->must_set_ptrace_flags)
1037 {
1038 struct process_info *proc = current_process ();
1039 int options = linux_low_ptrace_options (proc->attached);
1040
1041 linux_enable_event_reporting (lwpid_of (current_thread), options);
1042 lwp->must_set_ptrace_flags = 0;
1043 }
1044 }
1045
1046 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1047 error. */
1048
1049 int
1050 linux_attach_lwp (ptid_t ptid)
1051 {
1052 struct lwp_info *new_lwp;
1053 int lwpid = ptid.lwp ();
1054
1055 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1056 != 0)
1057 return errno;
1058
1059 new_lwp = add_lwp (ptid);
1060
1061 /* We need to wait for SIGSTOP before being able to make the next
1062 ptrace call on this LWP. */
1063 new_lwp->must_set_ptrace_flags = 1;
1064
1065 if (linux_proc_pid_is_stopped (lwpid))
1066 {
1067 if (debug_threads)
1068 debug_printf ("Attached to a stopped process\n");
1069
1070 /* The process is definitely stopped. It is in a job control
1071 stop, unless the kernel predates the TASK_STOPPED /
1072 TASK_TRACED distinction, in which case it might be in a
1073 ptrace stop. Make sure it is in a ptrace stop; from there we
1074 can kill it, signal it, et cetera.
1075
1076 First make sure there is a pending SIGSTOP. Since we are
1077 already attached, the process can not transition from stopped
1078 to running without a PTRACE_CONT; so we know this signal will
1079 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1080 probably already in the queue (unless this kernel is old
1081 enough to use TASK_STOPPED for ptrace stops); but since
1082 SIGSTOP is not an RT signal, it can only be queued once. */
1083 kill_lwp (lwpid, SIGSTOP);
1084
1085 /* Finally, resume the stopped process. This will deliver the
1086 SIGSTOP (or a higher priority signal, just like normal
1087 PTRACE_ATTACH), which we'll catch later on. */
1088 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1089 }
1090
1091 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1092 brings it to a halt.
1093
1094 There are several cases to consider here:
1095
1096 1) gdbserver has already attached to the process and is being notified
1097 of a new thread that is being created.
1098 In this case we should ignore that SIGSTOP and resume the
1099 process. This is handled below by setting stop_expected = 1,
1100 and the fact that add_thread sets last_resume_kind ==
1101 resume_continue.
1102
1103 2) This is the first thread (the process thread), and we're attaching
1104 to it via attach_inferior.
1105 In this case we want the process thread to stop.
1106 This is handled by having linux_attach set last_resume_kind ==
1107 resume_stop after we return.
1108
1109 If the pid we are attaching to is also the tgid, we attach to and
1110 stop all the existing threads. Otherwise, we attach to pid and
1111 ignore any other threads in the same group as this pid.
1112
1113 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1114 existing threads.
1115 In this case we want the thread to stop.
1116 FIXME: This case is currently not properly handled.
1117 We should wait for the SIGSTOP but don't. Things work apparently
1118 because enough time passes between when we ptrace (ATTACH) and when
1119 gdb makes the next ptrace call on the thread.
1120
1121 On the other hand, if we are currently trying to stop all threads, we
1122 should treat the new thread as if we had sent it a SIGSTOP. This works
1123 because we are guaranteed that the add_lwp call above added us to the
1124 end of the list, and so the new thread has not yet reached
1125 wait_for_sigstop (but will). */
1126 new_lwp->stop_expected = 1;
1127
1128 return 0;
1129 }
1130
1131 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1132 already attached. Returns true if a new LWP is found, false
1133 otherwise. */
1134
1135 static int
1136 attach_proc_task_lwp_callback (ptid_t ptid)
1137 {
1138 /* Is this a new thread? */
1139 if (find_thread_ptid (ptid) == NULL)
1140 {
1141 int lwpid = ptid.lwp ();
1142 int err;
1143
1144 if (debug_threads)
1145 debug_printf ("Found new lwp %d\n", lwpid);
1146
1147 err = linux_attach_lwp (ptid);
1148
1149 /* Be quiet if we simply raced with the thread exiting. EPERM
1150 is returned if the thread's task still exists, and is marked
1151 as exited or zombie, as well as other conditions, so in that
1152 case, confirm the status in /proc/PID/status. */
1153 if (err == ESRCH
1154 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1155 {
1156 if (debug_threads)
1157 {
1158 debug_printf ("Cannot attach to lwp %d: "
1159 "thread is gone (%d: %s)\n",
1160 lwpid, err, safe_strerror (err));
1161 }
1162 }
1163 else if (err != 0)
1164 {
1165 std::string reason
1166 = linux_ptrace_attach_fail_reason_string (ptid, err);
1167
1168 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1169 }
1170
1171 return 1;
1172 }
1173 return 0;
1174 }
1175
1176 static void async_file_mark (void);
1177
1178 /* Attach to PID. If PID is the tgid, attach to it and all
1179 of its threads. */
1180
1181 int
1182 linux_process_target::attach (unsigned long pid)
1183 {
1184 struct process_info *proc;
1185 struct thread_info *initial_thread;
1186 ptid_t ptid = ptid_t (pid, pid, 0);
1187 int err;
1188
1189 proc = linux_add_process (pid, 1);
1190
1191 /* Attach to PID. We will check for other threads
1192 soon. */
1193 err = linux_attach_lwp (ptid);
1194 if (err != 0)
1195 {
1196 remove_process (proc);
1197
1198 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1199 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1200 }
1201
1202 /* Don't ignore the initial SIGSTOP if we just attached to this
1203 process. It will be collected by wait shortly. */
1204 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1205 initial_thread->last_resume_kind = resume_stop;
1206
1207 /* We must attach to every LWP. If /proc is mounted, use that to
1208 find them now. On the one hand, the inferior may be using raw
1209 clone instead of using pthreads. On the other hand, even if it
1210 is using pthreads, GDB may not be connected yet (thread_db needs
1211 to do symbol lookups, through qSymbol). Also, thread_db walks
1212 structures in the inferior's address space to find the list of
1213 threads/LWPs, and those structures may well be corrupted. Note
1214 that once thread_db is loaded, we'll still use it to list threads
1215 and associate pthread info with each LWP. */
1216 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1217
1218 /* GDB will shortly read the xml target description for this
1219 process, to figure out the process' architecture. But the target
1220 description is only filled in when the first process/thread in
1221 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1222 that now, otherwise, if GDB is fast enough, it could read the
1223 target description _before_ that initial stop. */
1224 if (non_stop)
1225 {
1226 struct lwp_info *lwp;
1227 int wstat, lwpid;
1228 ptid_t pid_ptid = ptid_t (pid);
1229
1230 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1231 &wstat, __WALL);
1232 gdb_assert (lwpid > 0);
1233
1234 lwp = find_lwp_pid (ptid_t (lwpid));
1235
1236 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1237 {
1238 lwp->status_pending_p = 1;
1239 lwp->status_pending = wstat;
1240 }
1241
1242 initial_thread->last_resume_kind = resume_continue;
1243
1244 async_file_mark ();
1245
1246 gdb_assert (proc->tdesc != NULL);
1247 }
1248
1249 return 0;
1250 }
1251
1252 static int
1253 last_thread_of_process_p (int pid)
1254 {
1255 bool seen_one = false;
1256
1257 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1258 {
1259 if (!seen_one)
1260 {
1261 /* This is the first thread of this process we see. */
1262 seen_one = true;
1263 return false;
1264 }
1265 else
1266 {
1267 /* This is the second thread of this process we see. */
1268 return true;
1269 }
1270 });
1271
1272 return thread == NULL;
1273 }
1274
1275 /* Kill LWP. */
1276
1277 static void
1278 linux_kill_one_lwp (struct lwp_info *lwp)
1279 {
1280 struct thread_info *thr = get_lwp_thread (lwp);
1281 int pid = lwpid_of (thr);
1282
1283 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1284 there is no signal context, and ptrace(PTRACE_KILL) (or
1285 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1286 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1287 alternative is to kill with SIGKILL. We only need one SIGKILL
1288 per process, not one for each thread. But since we still support
1289 support debugging programs using raw clone without CLONE_THREAD,
1290 we send one for each thread. For years, we used PTRACE_KILL
1291 only, so we're being a bit paranoid about some old kernels where
1292 PTRACE_KILL might work better (dubious if there are any such, but
1293 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1294 second, and so we're fine everywhere. */
1295
1296 errno = 0;
1297 kill_lwp (pid, SIGKILL);
1298 if (debug_threads)
1299 {
1300 int save_errno = errno;
1301
1302 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1303 target_pid_to_str (ptid_of (thr)),
1304 save_errno ? safe_strerror (save_errno) : "OK");
1305 }
1306
1307 errno = 0;
1308 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1309 if (debug_threads)
1310 {
1311 int save_errno = errno;
1312
1313 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1314 target_pid_to_str (ptid_of (thr)),
1315 save_errno ? safe_strerror (save_errno) : "OK");
1316 }
1317 }
1318
1319 /* Kill LWP and wait for it to die. */
1320
1321 static void
1322 kill_wait_lwp (struct lwp_info *lwp)
1323 {
1324 struct thread_info *thr = get_lwp_thread (lwp);
1325 int pid = ptid_of (thr).pid ();
1326 int lwpid = ptid_of (thr).lwp ();
1327 int wstat;
1328 int res;
1329
1330 if (debug_threads)
1331 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1332
1333 do
1334 {
1335 linux_kill_one_lwp (lwp);
1336
1337 /* Make sure it died. Notes:
1338
1339 - The loop is most likely unnecessary.
1340
1341 - We don't use linux_wait_for_event as that could delete lwps
1342 while we're iterating over them. We're not interested in
1343 any pending status at this point, only in making sure all
1344 wait status on the kernel side are collected until the
1345 process is reaped.
1346
1347 - We don't use __WALL here as the __WALL emulation relies on
1348 SIGCHLD, and killing a stopped process doesn't generate
1349 one, nor an exit status.
1350 */
1351 res = my_waitpid (lwpid, &wstat, 0);
1352 if (res == -1 && errno == ECHILD)
1353 res = my_waitpid (lwpid, &wstat, __WCLONE);
1354 } while (res > 0 && WIFSTOPPED (wstat));
1355
1356 /* Even if it was stopped, the child may have already disappeared.
1357 E.g., if it was killed by SIGKILL. */
1358 if (res < 0 && errno != ECHILD)
1359 perror_with_name ("kill_wait_lwp");
1360 }
1361
1362 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1363 except the leader. */
1364
1365 static void
1366 kill_one_lwp_callback (thread_info *thread, int pid)
1367 {
1368 struct lwp_info *lwp = get_thread_lwp (thread);
1369
1370 /* We avoid killing the first thread here, because of a Linux kernel (at
1371 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1372 the children get a chance to be reaped, it will remain a zombie
1373 forever. */
1374
1375 if (lwpid_of (thread) == pid)
1376 {
1377 if (debug_threads)
1378 debug_printf ("lkop: is last of process %s\n",
1379 target_pid_to_str (thread->id));
1380 return;
1381 }
1382
1383 kill_wait_lwp (lwp);
1384 }
1385
1386 int
1387 linux_process_target::kill (process_info *process)
1388 {
1389 int pid = process->pid;
1390
1391 /* If we're killing a running inferior, make sure it is stopped
1392 first, as PTRACE_KILL will not work otherwise. */
1393 stop_all_lwps (0, NULL);
1394
1395 for_each_thread (pid, [&] (thread_info *thread)
1396 {
1397 kill_one_lwp_callback (thread, pid);
1398 });
1399
1400 /* See the comment in linux_kill_one_lwp. We did not kill the first
1401 thread in the list, so do so now. */
1402 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1403
1404 if (lwp == NULL)
1405 {
1406 if (debug_threads)
1407 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1408 pid);
1409 }
1410 else
1411 kill_wait_lwp (lwp);
1412
1413 mourn (process);
1414
1415 /* Since we presently can only stop all lwps of all processes, we
1416 need to unstop lwps of other processes. */
1417 unstop_all_lwps (0, NULL);
1418 return 0;
1419 }
1420
1421 /* Get pending signal of THREAD, for detaching purposes. This is the
1422 signal the thread last stopped for, which we need to deliver to the
1423 thread when detaching, otherwise, it'd be suppressed/lost. */
1424
1425 static int
1426 get_detach_signal (struct thread_info *thread)
1427 {
1428 client_state &cs = get_client_state ();
1429 enum gdb_signal signo = GDB_SIGNAL_0;
1430 int status;
1431 struct lwp_info *lp = get_thread_lwp (thread);
1432
1433 if (lp->status_pending_p)
1434 status = lp->status_pending;
1435 else
1436 {
1437 /* If the thread had been suspended by gdbserver, and it stopped
1438 cleanly, then it'll have stopped with SIGSTOP. But we don't
1439 want to deliver that SIGSTOP. */
1440 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1441 || thread->last_status.value.sig == GDB_SIGNAL_0)
1442 return 0;
1443
1444 /* Otherwise, we may need to deliver the signal we
1445 intercepted. */
1446 status = lp->last_status;
1447 }
1448
1449 if (!WIFSTOPPED (status))
1450 {
1451 if (debug_threads)
1452 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1453 target_pid_to_str (ptid_of (thread)));
1454 return 0;
1455 }
1456
1457 /* Extended wait statuses aren't real SIGTRAPs. */
1458 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1459 {
1460 if (debug_threads)
1461 debug_printf ("GPS: lwp %s had stopped with extended "
1462 "status: no pending signal\n",
1463 target_pid_to_str (ptid_of (thread)));
1464 return 0;
1465 }
1466
1467 signo = gdb_signal_from_host (WSTOPSIG (status));
1468
1469 if (cs.program_signals_p && !cs.program_signals[signo])
1470 {
1471 if (debug_threads)
1472 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1473 target_pid_to_str (ptid_of (thread)),
1474 gdb_signal_to_string (signo));
1475 return 0;
1476 }
1477 else if (!cs.program_signals_p
1478 /* If we have no way to know which signals GDB does not
1479 want to have passed to the program, assume
1480 SIGTRAP/SIGINT, which is GDB's default. */
1481 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1482 {
1483 if (debug_threads)
1484 debug_printf ("GPS: lwp %s had signal %s, "
1485 "but we don't know if we should pass it. "
1486 "Default to not.\n",
1487 target_pid_to_str (ptid_of (thread)),
1488 gdb_signal_to_string (signo));
1489 return 0;
1490 }
1491 else
1492 {
1493 if (debug_threads)
1494 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1495 target_pid_to_str (ptid_of (thread)),
1496 gdb_signal_to_string (signo));
1497
1498 return WSTOPSIG (status);
1499 }
1500 }
1501
1502 /* Detach from LWP. */
1503
1504 static void
1505 linux_detach_one_lwp (struct lwp_info *lwp)
1506 {
1507 struct thread_info *thread = get_lwp_thread (lwp);
1508 int sig;
1509 int lwpid;
1510
1511 /* If there is a pending SIGSTOP, get rid of it. */
1512 if (lwp->stop_expected)
1513 {
1514 if (debug_threads)
1515 debug_printf ("Sending SIGCONT to %s\n",
1516 target_pid_to_str (ptid_of (thread)));
1517
1518 kill_lwp (lwpid_of (thread), SIGCONT);
1519 lwp->stop_expected = 0;
1520 }
1521
1522 /* Pass on any pending signal for this thread. */
1523 sig = get_detach_signal (thread);
1524
1525 /* Preparing to resume may try to write registers, and fail if the
1526 lwp is zombie. If that happens, ignore the error. We'll handle
1527 it below, when detach fails with ESRCH. */
1528 try
1529 {
1530 /* Flush any pending changes to the process's registers. */
1531 regcache_invalidate_thread (thread);
1532
1533 /* Finally, let it resume. */
1534 if (the_low_target.prepare_to_resume != NULL)
1535 the_low_target.prepare_to_resume (lwp);
1536 }
1537 catch (const gdb_exception_error &ex)
1538 {
1539 if (!check_ptrace_stopped_lwp_gone (lwp))
1540 throw;
1541 }
1542
1543 lwpid = lwpid_of (thread);
1544 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1545 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1546 {
1547 int save_errno = errno;
1548
1549 /* We know the thread exists, so ESRCH must mean the lwp is
1550 zombie. This can happen if one of the already-detached
1551 threads exits the whole thread group. In that case we're
1552 still attached, and must reap the lwp. */
1553 if (save_errno == ESRCH)
1554 {
1555 int ret, status;
1556
1557 ret = my_waitpid (lwpid, &status, __WALL);
1558 if (ret == -1)
1559 {
1560 warning (_("Couldn't reap LWP %d while detaching: %s"),
1561 lwpid, safe_strerror (errno));
1562 }
1563 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1564 {
1565 warning (_("Reaping LWP %d while detaching "
1566 "returned unexpected status 0x%x"),
1567 lwpid, status);
1568 }
1569 }
1570 else
1571 {
1572 error (_("Can't detach %s: %s"),
1573 target_pid_to_str (ptid_of (thread)),
1574 safe_strerror (save_errno));
1575 }
1576 }
1577 else if (debug_threads)
1578 {
1579 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1580 target_pid_to_str (ptid_of (thread)),
1581 strsignal (sig));
1582 }
1583
1584 delete_lwp (lwp);
1585 }
1586
1587 /* Callback for for_each_thread. Detaches from non-leader threads of a
1588 given process. */
1589
1590 static void
1591 linux_detach_lwp_callback (thread_info *thread)
1592 {
1593 /* We don't actually detach from the thread group leader just yet.
1594 If the thread group exits, we must reap the zombie clone lwps
1595 before we're able to reap the leader. */
1596 if (thread->id.pid () == thread->id.lwp ())
1597 return;
1598
1599 lwp_info *lwp = get_thread_lwp (thread);
1600 linux_detach_one_lwp (lwp);
1601 }
1602
1603 int
1604 linux_process_target::detach (process_info *process)
1605 {
1606 struct lwp_info *main_lwp;
1607
1608 /* As there's a step over already in progress, let it finish first,
1609 otherwise nesting a stabilize_threads operation on top gets real
1610 messy. */
1611 complete_ongoing_step_over ();
1612
1613 /* Stop all threads before detaching. First, ptrace requires that
1614 the thread is stopped to successfully detach. Second, thread_db
1615 may need to uninstall thread event breakpoints from memory, which
1616 only works with a stopped process anyway. */
1617 stop_all_lwps (0, NULL);
1618
1619 #ifdef USE_THREAD_DB
1620 thread_db_detach (process);
1621 #endif
1622
1623 /* Stabilize threads (move out of jump pads). */
1624 stabilize_threads ();
1625
1626 /* Detach from the clone lwps first. If the thread group exits just
1627 while we're detaching, we must reap the clone lwps before we're
1628 able to reap the leader. */
1629 for_each_thread (process->pid, linux_detach_lwp_callback);
1630
1631 main_lwp = find_lwp_pid (ptid_t (process->pid));
1632 linux_detach_one_lwp (main_lwp);
1633
1634 mourn (process);
1635
1636 /* Since we presently can only stop all lwps of all processes, we
1637 need to unstop lwps of other processes. */
1638 unstop_all_lwps (0, NULL);
1639 return 0;
1640 }
1641
1642 /* Remove all LWPs that belong to process PROC from the lwp list. */
1643
1644 void
1645 linux_process_target::mourn (process_info *process)
1646 {
1647 struct process_info_private *priv;
1648
1649 #ifdef USE_THREAD_DB
1650 thread_db_mourn (process);
1651 #endif
1652
1653 for_each_thread (process->pid, [] (thread_info *thread)
1654 {
1655 delete_lwp (get_thread_lwp (thread));
1656 });
1657
1658 /* Freeing all private data. */
1659 priv = process->priv;
1660 if (the_low_target.delete_process != NULL)
1661 the_low_target.delete_process (priv->arch_private);
1662 else
1663 gdb_assert (priv->arch_private == NULL);
1664 free (priv);
1665 process->priv = NULL;
1666
1667 remove_process (process);
1668 }
1669
1670 void
1671 linux_process_target::join (int pid)
1672 {
1673 int status, ret;
1674
1675 do {
1676 ret = my_waitpid (pid, &status, 0);
1677 if (WIFEXITED (status) || WIFSIGNALED (status))
1678 break;
1679 } while (ret != -1 || errno != ECHILD);
1680 }
1681
1682 /* Return true if the given thread is still alive. */
1683
1684 bool
1685 linux_process_target::thread_alive (ptid_t ptid)
1686 {
1687 struct lwp_info *lwp = find_lwp_pid (ptid);
1688
1689 /* We assume we always know if a thread exits. If a whole process
1690 exited but we still haven't been able to report it to GDB, we'll
1691 hold on to the last lwp of the dead process. */
1692 if (lwp != NULL)
1693 return !lwp_is_marked_dead (lwp);
1694 else
1695 return 0;
1696 }
1697
1698 /* Return 1 if this lwp still has an interesting status pending. If
1699 not (e.g., it had stopped for a breakpoint that is gone), return
1700 false. */
1701
1702 static int
1703 thread_still_has_status_pending_p (struct thread_info *thread)
1704 {
1705 struct lwp_info *lp = get_thread_lwp (thread);
1706
1707 if (!lp->status_pending_p)
1708 return 0;
1709
1710 if (thread->last_resume_kind != resume_stop
1711 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1712 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1713 {
1714 struct thread_info *saved_thread;
1715 CORE_ADDR pc;
1716 int discard = 0;
1717
1718 gdb_assert (lp->last_status != 0);
1719
1720 pc = get_pc (lp);
1721
1722 saved_thread = current_thread;
1723 current_thread = thread;
1724
1725 if (pc != lp->stop_pc)
1726 {
1727 if (debug_threads)
1728 debug_printf ("PC of %ld changed\n",
1729 lwpid_of (thread));
1730 discard = 1;
1731 }
1732
1733 #if !USE_SIGTRAP_SIGINFO
1734 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1735 && !(*the_low_target.breakpoint_at) (pc))
1736 {
1737 if (debug_threads)
1738 debug_printf ("previous SW breakpoint of %ld gone\n",
1739 lwpid_of (thread));
1740 discard = 1;
1741 }
1742 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1743 && !hardware_breakpoint_inserted_here (pc))
1744 {
1745 if (debug_threads)
1746 debug_printf ("previous HW breakpoint of %ld gone\n",
1747 lwpid_of (thread));
1748 discard = 1;
1749 }
1750 #endif
1751
1752 current_thread = saved_thread;
1753
1754 if (discard)
1755 {
1756 if (debug_threads)
1757 debug_printf ("discarding pending breakpoint status\n");
1758 lp->status_pending_p = 0;
1759 return 0;
1760 }
1761 }
1762
1763 return 1;
1764 }
1765
1766 /* Returns true if LWP is resumed from the client's perspective. */
1767
1768 static int
1769 lwp_resumed (struct lwp_info *lwp)
1770 {
1771 struct thread_info *thread = get_lwp_thread (lwp);
1772
1773 if (thread->last_resume_kind != resume_stop)
1774 return 1;
1775
1776 /* Did gdb send us a `vCont;t', but we haven't reported the
1777 corresponding stop to gdb yet? If so, the thread is still
1778 resumed/running from gdb's perspective. */
1779 if (thread->last_resume_kind == resume_stop
1780 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1781 return 1;
1782
1783 return 0;
1784 }
1785
1786 /* Return true if this lwp has an interesting status pending. */
1787 static bool
1788 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1789 {
1790 struct lwp_info *lp = get_thread_lwp (thread);
1791
1792 /* Check if we're only interested in events from a specific process
1793 or a specific LWP. */
1794 if (!thread->id.matches (ptid))
1795 return 0;
1796
1797 if (!lwp_resumed (lp))
1798 return 0;
1799
1800 if (lp->status_pending_p
1801 && !thread_still_has_status_pending_p (thread))
1802 {
1803 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1804 return 0;
1805 }
1806
1807 return lp->status_pending_p;
1808 }
1809
1810 struct lwp_info *
1811 find_lwp_pid (ptid_t ptid)
1812 {
1813 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1814 {
1815 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1816 return thr_arg->id.lwp () == lwp;
1817 });
1818
1819 if (thread == NULL)
1820 return NULL;
1821
1822 return get_thread_lwp (thread);
1823 }
1824
1825 /* Return the number of known LWPs in the tgid given by PID. */
1826
1827 static int
1828 num_lwps (int pid)
1829 {
1830 int count = 0;
1831
1832 for_each_thread (pid, [&] (thread_info *thread)
1833 {
1834 count++;
1835 });
1836
1837 return count;
1838 }
1839
1840 /* See nat/linux-nat.h. */
1841
1842 struct lwp_info *
1843 iterate_over_lwps (ptid_t filter,
1844 gdb::function_view<iterate_over_lwps_ftype> callback)
1845 {
1846 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1847 {
1848 lwp_info *lwp = get_thread_lwp (thr_arg);
1849
1850 return callback (lwp);
1851 });
1852
1853 if (thread == NULL)
1854 return NULL;
1855
1856 return get_thread_lwp (thread);
1857 }
1858
1859 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1860 their exits until all other threads in the group have exited. */
1861
1862 static void
1863 check_zombie_leaders (void)
1864 {
1865 for_each_process ([] (process_info *proc) {
1866 pid_t leader_pid = pid_of (proc);
1867 struct lwp_info *leader_lp;
1868
1869 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1870
1871 if (debug_threads)
1872 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1873 "num_lwps=%d, zombie=%d\n",
1874 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1875 linux_proc_pid_is_zombie (leader_pid));
1876
1877 if (leader_lp != NULL && !leader_lp->stopped
1878 /* Check if there are other threads in the group, as we may
1879 have raced with the inferior simply exiting. */
1880 && !last_thread_of_process_p (leader_pid)
1881 && linux_proc_pid_is_zombie (leader_pid))
1882 {
1883 /* A leader zombie can mean one of two things:
1884
1885 - It exited, and there's an exit status pending
1886 available, or only the leader exited (not the whole
1887 program). In the latter case, we can't waitpid the
1888 leader's exit status until all other threads are gone.
1889
1890 - There are 3 or more threads in the group, and a thread
1891 other than the leader exec'd. On an exec, the Linux
1892 kernel destroys all other threads (except the execing
1893 one) in the thread group, and resets the execing thread's
1894 tid to the tgid. No exit notification is sent for the
1895 execing thread -- from the ptracer's perspective, it
1896 appears as though the execing thread just vanishes.
1897 Until we reap all other threads except the leader and the
1898 execing thread, the leader will be zombie, and the
1899 execing thread will be in `D (disc sleep)'. As soon as
1900 all other threads are reaped, the execing thread changes
1901 it's tid to the tgid, and the previous (zombie) leader
1902 vanishes, giving place to the "new" leader. We could try
1903 distinguishing the exit and exec cases, by waiting once
1904 more, and seeing if something comes out, but it doesn't
1905 sound useful. The previous leader _does_ go away, and
1906 we'll re-add the new one once we see the exec event
1907 (which is just the same as what would happen if the
1908 previous leader did exit voluntarily before some other
1909 thread execs). */
1910
1911 if (debug_threads)
1912 debug_printf ("CZL: Thread group leader %d zombie "
1913 "(it exited, or another thread execd).\n",
1914 leader_pid);
1915
1916 delete_lwp (leader_lp);
1917 }
1918 });
1919 }
1920
1921 /* Callback for `find_thread'. Returns the first LWP that is not
1922 stopped. */
1923
1924 static bool
1925 not_stopped_callback (thread_info *thread, ptid_t filter)
1926 {
1927 if (!thread->id.matches (filter))
1928 return false;
1929
1930 lwp_info *lwp = get_thread_lwp (thread);
1931
1932 return !lwp->stopped;
1933 }
1934
1935 /* Increment LWP's suspend count. */
1936
1937 static void
1938 lwp_suspended_inc (struct lwp_info *lwp)
1939 {
1940 lwp->suspended++;
1941
1942 if (debug_threads && lwp->suspended > 4)
1943 {
1944 struct thread_info *thread = get_lwp_thread (lwp);
1945
1946 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1947 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1948 }
1949 }
1950
1951 /* Decrement LWP's suspend count. */
1952
1953 static void
1954 lwp_suspended_decr (struct lwp_info *lwp)
1955 {
1956 lwp->suspended--;
1957
1958 if (lwp->suspended < 0)
1959 {
1960 struct thread_info *thread = get_lwp_thread (lwp);
1961
1962 internal_error (__FILE__, __LINE__,
1963 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1964 lwp->suspended);
1965 }
1966 }
1967
1968 /* This function should only be called if the LWP got a SIGTRAP.
1969
1970 Handle any tracepoint steps or hits. Return true if a tracepoint
1971 event was handled, 0 otherwise. */
1972
1973 static int
1974 handle_tracepoints (struct lwp_info *lwp)
1975 {
1976 struct thread_info *tinfo = get_lwp_thread (lwp);
1977 int tpoint_related_event = 0;
1978
1979 gdb_assert (lwp->suspended == 0);
1980
1981 /* If this tracepoint hit causes a tracing stop, we'll immediately
1982 uninsert tracepoints. To do this, we temporarily pause all
1983 threads, unpatch away, and then unpause threads. We need to make
1984 sure the unpausing doesn't resume LWP too. */
1985 lwp_suspended_inc (lwp);
1986
1987 /* And we need to be sure that any all-threads-stopping doesn't try
1988 to move threads out of the jump pads, as it could deadlock the
1989 inferior (LWP could be in the jump pad, maybe even holding the
1990 lock.) */
1991
1992 /* Do any necessary step collect actions. */
1993 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1994
1995 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1996
1997 /* See if we just hit a tracepoint and do its main collect
1998 actions. */
1999 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2000
2001 lwp_suspended_decr (lwp);
2002
2003 gdb_assert (lwp->suspended == 0);
2004 gdb_assert (!stabilizing_threads
2005 || (lwp->collecting_fast_tracepoint
2006 != fast_tpoint_collect_result::not_collecting));
2007
2008 if (tpoint_related_event)
2009 {
2010 if (debug_threads)
2011 debug_printf ("got a tracepoint event\n");
2012 return 1;
2013 }
2014
2015 return 0;
2016 }
2017
2018 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2019 collection status. */
2020
2021 static fast_tpoint_collect_result
2022 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2023 struct fast_tpoint_collect_status *status)
2024 {
2025 CORE_ADDR thread_area;
2026 struct thread_info *thread = get_lwp_thread (lwp);
2027
2028 if (the_low_target.get_thread_area == NULL)
2029 return fast_tpoint_collect_result::not_collecting;
2030
2031 /* Get the thread area address. This is used to recognize which
2032 thread is which when tracing with the in-process agent library.
2033 We don't read anything from the address, and treat it as opaque;
2034 it's the address itself that we assume is unique per-thread. */
2035 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2036 return fast_tpoint_collect_result::not_collecting;
2037
2038 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2039 }
2040
2041 /* The reason we resume in the caller, is because we want to be able
2042 to pass lwp->status_pending as WSTAT, and we need to clear
2043 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2044 refuses to resume. */
2045
2046 static int
2047 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2048 {
2049 struct thread_info *saved_thread;
2050
2051 saved_thread = current_thread;
2052 current_thread = get_lwp_thread (lwp);
2053
2054 if ((wstat == NULL
2055 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2056 && supports_fast_tracepoints ()
2057 && agent_loaded_p ())
2058 {
2059 struct fast_tpoint_collect_status status;
2060
2061 if (debug_threads)
2062 debug_printf ("Checking whether LWP %ld needs to move out of the "
2063 "jump pad.\n",
2064 lwpid_of (current_thread));
2065
2066 fast_tpoint_collect_result r
2067 = linux_fast_tracepoint_collecting (lwp, &status);
2068
2069 if (wstat == NULL
2070 || (WSTOPSIG (*wstat) != SIGILL
2071 && WSTOPSIG (*wstat) != SIGFPE
2072 && WSTOPSIG (*wstat) != SIGSEGV
2073 && WSTOPSIG (*wstat) != SIGBUS))
2074 {
2075 lwp->collecting_fast_tracepoint = r;
2076
2077 if (r != fast_tpoint_collect_result::not_collecting)
2078 {
2079 if (r == fast_tpoint_collect_result::before_insn
2080 && lwp->exit_jump_pad_bkpt == NULL)
2081 {
2082 /* Haven't executed the original instruction yet.
2083 Set breakpoint there, and wait till it's hit,
2084 then single-step until exiting the jump pad. */
2085 lwp->exit_jump_pad_bkpt
2086 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2087 }
2088
2089 if (debug_threads)
2090 debug_printf ("Checking whether LWP %ld needs to move out of "
2091 "the jump pad...it does\n",
2092 lwpid_of (current_thread));
2093 current_thread = saved_thread;
2094
2095 return 1;
2096 }
2097 }
2098 else
2099 {
2100 /* If we get a synchronous signal while collecting, *and*
2101 while executing the (relocated) original instruction,
2102 reset the PC to point at the tpoint address, before
2103 reporting to GDB. Otherwise, it's an IPA lib bug: just
2104 report the signal to GDB, and pray for the best. */
2105
2106 lwp->collecting_fast_tracepoint
2107 = fast_tpoint_collect_result::not_collecting;
2108
2109 if (r != fast_tpoint_collect_result::not_collecting
2110 && (status.adjusted_insn_addr <= lwp->stop_pc
2111 && lwp->stop_pc < status.adjusted_insn_addr_end))
2112 {
2113 siginfo_t info;
2114 struct regcache *regcache;
2115
2116 /* The si_addr on a few signals references the address
2117 of the faulting instruction. Adjust that as
2118 well. */
2119 if ((WSTOPSIG (*wstat) == SIGILL
2120 || WSTOPSIG (*wstat) == SIGFPE
2121 || WSTOPSIG (*wstat) == SIGBUS
2122 || WSTOPSIG (*wstat) == SIGSEGV)
2123 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2124 (PTRACE_TYPE_ARG3) 0, &info) == 0
2125 /* Final check just to make sure we don't clobber
2126 the siginfo of non-kernel-sent signals. */
2127 && (uintptr_t) info.si_addr == lwp->stop_pc)
2128 {
2129 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2130 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2131 (PTRACE_TYPE_ARG3) 0, &info);
2132 }
2133
2134 regcache = get_thread_regcache (current_thread, 1);
2135 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2136 lwp->stop_pc = status.tpoint_addr;
2137
2138 /* Cancel any fast tracepoint lock this thread was
2139 holding. */
2140 force_unlock_trace_buffer ();
2141 }
2142
2143 if (lwp->exit_jump_pad_bkpt != NULL)
2144 {
2145 if (debug_threads)
2146 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2147 "stopping all threads momentarily.\n");
2148
2149 stop_all_lwps (1, lwp);
2150
2151 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2152 lwp->exit_jump_pad_bkpt = NULL;
2153
2154 unstop_all_lwps (1, lwp);
2155
2156 gdb_assert (lwp->suspended >= 0);
2157 }
2158 }
2159 }
2160
2161 if (debug_threads)
2162 debug_printf ("Checking whether LWP %ld needs to move out of the "
2163 "jump pad...no\n",
2164 lwpid_of (current_thread));
2165
2166 current_thread = saved_thread;
2167 return 0;
2168 }
2169
2170 /* Enqueue one signal in the "signals to report later when out of the
2171 jump pad" list. */
2172
2173 static void
2174 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2175 {
2176 struct pending_signals *p_sig;
2177 struct thread_info *thread = get_lwp_thread (lwp);
2178
2179 if (debug_threads)
2180 debug_printf ("Deferring signal %d for LWP %ld.\n",
2181 WSTOPSIG (*wstat), lwpid_of (thread));
2182
2183 if (debug_threads)
2184 {
2185 struct pending_signals *sig;
2186
2187 for (sig = lwp->pending_signals_to_report;
2188 sig != NULL;
2189 sig = sig->prev)
2190 debug_printf (" Already queued %d\n",
2191 sig->signal);
2192
2193 debug_printf (" (no more currently queued signals)\n");
2194 }
2195
2196 /* Don't enqueue non-RT signals if they are already in the deferred
2197 queue. (SIGSTOP being the easiest signal to see ending up here
2198 twice) */
2199 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2200 {
2201 struct pending_signals *sig;
2202
2203 for (sig = lwp->pending_signals_to_report;
2204 sig != NULL;
2205 sig = sig->prev)
2206 {
2207 if (sig->signal == WSTOPSIG (*wstat))
2208 {
2209 if (debug_threads)
2210 debug_printf ("Not requeuing already queued non-RT signal %d"
2211 " for LWP %ld\n",
2212 sig->signal,
2213 lwpid_of (thread));
2214 return;
2215 }
2216 }
2217 }
2218
2219 p_sig = XCNEW (struct pending_signals);
2220 p_sig->prev = lwp->pending_signals_to_report;
2221 p_sig->signal = WSTOPSIG (*wstat);
2222
2223 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2224 &p_sig->info);
2225
2226 lwp->pending_signals_to_report = p_sig;
2227 }
2228
2229 /* Dequeue one signal from the "signals to report later when out of
2230 the jump pad" list. */
2231
2232 static int
2233 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2234 {
2235 struct thread_info *thread = get_lwp_thread (lwp);
2236
2237 if (lwp->pending_signals_to_report != NULL)
2238 {
2239 struct pending_signals **p_sig;
2240
2241 p_sig = &lwp->pending_signals_to_report;
2242 while ((*p_sig)->prev != NULL)
2243 p_sig = &(*p_sig)->prev;
2244
2245 *wstat = W_STOPCODE ((*p_sig)->signal);
2246 if ((*p_sig)->info.si_signo != 0)
2247 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2248 &(*p_sig)->info);
2249 free (*p_sig);
2250 *p_sig = NULL;
2251
2252 if (debug_threads)
2253 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2254 WSTOPSIG (*wstat), lwpid_of (thread));
2255
2256 if (debug_threads)
2257 {
2258 struct pending_signals *sig;
2259
2260 for (sig = lwp->pending_signals_to_report;
2261 sig != NULL;
2262 sig = sig->prev)
2263 debug_printf (" Still queued %d\n",
2264 sig->signal);
2265
2266 debug_printf (" (no more queued signals)\n");
2267 }
2268
2269 return 1;
2270 }
2271
2272 return 0;
2273 }
2274
2275 /* Fetch the possibly triggered data watchpoint info and store it in
2276 CHILD.
2277
2278 On some archs, like x86, that use debug registers to set
2279 watchpoints, it's possible that the way to know which watched
2280 address trapped, is to check the register that is used to select
2281 which address to watch. Problem is, between setting the watchpoint
2282 and reading back which data address trapped, the user may change
2283 the set of watchpoints, and, as a consequence, GDB changes the
2284 debug registers in the inferior. To avoid reading back a stale
2285 stopped-data-address when that happens, we cache in LP the fact
2286 that a watchpoint trapped, and the corresponding data address, as
2287 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2288 registers meanwhile, we have the cached data we can rely on. */
2289
2290 static int
2291 check_stopped_by_watchpoint (struct lwp_info *child)
2292 {
2293 if (the_low_target.stopped_by_watchpoint != NULL)
2294 {
2295 struct thread_info *saved_thread;
2296
2297 saved_thread = current_thread;
2298 current_thread = get_lwp_thread (child);
2299
2300 if (the_low_target.stopped_by_watchpoint ())
2301 {
2302 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2303
2304 if (the_low_target.stopped_data_address != NULL)
2305 child->stopped_data_address
2306 = the_low_target.stopped_data_address ();
2307 else
2308 child->stopped_data_address = 0;
2309 }
2310
2311 current_thread = saved_thread;
2312 }
2313
2314 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2315 }
2316
2317 /* Return the ptrace options that we want to try to enable. */
2318
2319 static int
2320 linux_low_ptrace_options (int attached)
2321 {
2322 client_state &cs = get_client_state ();
2323 int options = 0;
2324
2325 if (!attached)
2326 options |= PTRACE_O_EXITKILL;
2327
2328 if (cs.report_fork_events)
2329 options |= PTRACE_O_TRACEFORK;
2330
2331 if (cs.report_vfork_events)
2332 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2333
2334 if (cs.report_exec_events)
2335 options |= PTRACE_O_TRACEEXEC;
2336
2337 options |= PTRACE_O_TRACESYSGOOD;
2338
2339 return options;
2340 }
2341
2342 /* Do low-level handling of the event, and check if we should go on
2343 and pass it to caller code. Return the affected lwp if we are, or
2344 NULL otherwise. */
2345
2346 static struct lwp_info *
2347 linux_low_filter_event (int lwpid, int wstat)
2348 {
2349 client_state &cs = get_client_state ();
2350 struct lwp_info *child;
2351 struct thread_info *thread;
2352 int have_stop_pc = 0;
2353
2354 child = find_lwp_pid (ptid_t (lwpid));
2355
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2358
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2364
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2369
2370 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2372 {
2373 ptid_t child_ptid;
2374
2375 /* A multi-thread exec after we had seen the leader exiting. */
2376 if (debug_threads)
2377 {
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid);
2380 }
2381
2382 child_ptid = ptid_t (lwpid, lwpid, 0);
2383 child = add_lwp (child_ptid);
2384 child->stopped = 1;
2385 current_thread = child->thread;
2386 }
2387
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child == NULL && WIFSTOPPED (wstat))
2393 {
2394 add_to_pid_list (&stopped_pids, lwpid, wstat);
2395 return NULL;
2396 }
2397 else if (child == NULL)
2398 return NULL;
2399
2400 thread = get_lwp_thread (child);
2401
2402 child->stopped = 1;
2403
2404 child->last_status = wstat;
2405
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2408 {
2409 if (debug_threads)
2410 debug_printf ("LLFE: %d exited.\n", lwpid);
2411
2412 if (finish_step_over (child))
2413 {
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child);
2416 }
2417
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (cs.report_thread_events
2422 || last_thread_of_process_p (pid_of (thread)))
2423 {
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child, wstat);
2428 return child;
2429 }
2430 else
2431 {
2432 delete_lwp (child);
2433 return NULL;
2434 }
2435 }
2436
2437 gdb_assert (WIFSTOPPED (wstat));
2438
2439 if (WIFSTOPPED (wstat))
2440 {
2441 struct process_info *proc;
2442
2443 /* Architecture-specific setup after inferior is running. */
2444 proc = find_process_pid (pid_of (thread));
2445 if (proc->tdesc == NULL)
2446 {
2447 if (proc->attached)
2448 {
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread);
2453 }
2454 else
2455 {
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child->status_pending_p = 1;
2460 child->status_pending = wstat;
2461 return child;
2462 }
2463 }
2464 }
2465
2466 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2467 {
2468 struct process_info *proc = find_process_pid (pid_of (thread));
2469 int options = linux_low_ptrace_options (proc->attached);
2470
2471 linux_enable_event_reporting (lwpid, options);
2472 child->must_set_ptrace_flags = 0;
2473 }
2474
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2477 {
2478 child->syscall_state
2479 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY);
2482 }
2483 else
2484 {
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child->syscall_state = TARGET_WAITKIND_IGNORE;
2488 }
2489
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2491 called. */
2492 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat))
2494 {
2495 child->stop_pc = get_pc (child);
2496 if (handle_extended_wait (&child, wstat))
2497 {
2498 /* The event has been handled, so just return without
2499 reporting it. */
2500 return NULL;
2501 }
2502 }
2503
2504 if (linux_wstatus_maybe_breakpoint (wstat))
2505 {
2506 if (save_stop_reason (child))
2507 have_stop_pc = 1;
2508 }
2509
2510 if (!have_stop_pc)
2511 child->stop_pc = get_pc (child);
2512
2513 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2514 && child->stop_expected)
2515 {
2516 if (debug_threads)
2517 debug_printf ("Expected stop.\n");
2518 child->stop_expected = 0;
2519
2520 if (thread->last_resume_kind == resume_stop)
2521 {
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2524 if (debug_threads)
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread)));
2527 }
2528 else if (stopping_threads != NOT_STOPPING_THREADS)
2529 {
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2531 pending. */
2532 if (debug_threads)
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread)));
2536 return NULL;
2537 }
2538 else
2539 {
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2541 if (debug_threads)
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child->stepping ? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread)));
2545
2546 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2547 return NULL;
2548 }
2549 }
2550
2551 child->status_pending_p = 1;
2552 child->status_pending = wstat;
2553 return child;
2554 }
2555
2556 /* Return true if THREAD is doing hardware single step. */
2557
2558 static int
2559 maybe_hw_step (struct thread_info *thread)
2560 {
2561 if (can_hardware_single_step ())
2562 return 1;
2563 else
2564 {
2565 /* GDBserver must insert single-step breakpoint for software
2566 single step. */
2567 gdb_assert (has_single_step_breakpoints (thread));
2568 return 0;
2569 }
2570 }
2571
2572 /* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2574
2575 static void
2576 resume_stopped_resumed_lwps (thread_info *thread)
2577 {
2578 struct lwp_info *lp = get_thread_lwp (thread);
2579
2580 if (lp->stopped
2581 && !lp->suspended
2582 && !lp->status_pending_p
2583 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2584 {
2585 int step = 0;
2586
2587 if (thread->last_resume_kind == resume_step)
2588 step = maybe_hw_step (thread);
2589
2590 if (debug_threads)
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread)),
2593 paddress (lp->stop_pc),
2594 step);
2595
2596 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2597 }
2598 }
2599
2600 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2608
2609 static int
2610 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2611 int *wstatp, int options)
2612 {
2613 struct thread_info *event_thread;
2614 struct lwp_info *event_child, *requested_child;
2615 sigset_t block_mask, prev_mask;
2616
2617 retry:
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread = NULL;
2621 event_child = NULL;
2622 requested_child = NULL;
2623
2624 /* Check for a lwp with a pending status. */
2625
2626 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2627 {
2628 event_thread = find_thread_in_random ([&] (thread_info *thread)
2629 {
2630 return status_pending_p_callback (thread, filter_ptid);
2631 });
2632
2633 if (event_thread != NULL)
2634 event_child = get_thread_lwp (event_thread);
2635 if (debug_threads && event_thread)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2637 }
2638 else if (filter_ptid != null_ptid)
2639 {
2640 requested_child = find_lwp_pid (filter_ptid);
2641
2642 if (stopping_threads == NOT_STOPPING_THREADS
2643 && requested_child->status_pending_p
2644 && (requested_child->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting))
2646 {
2647 enqueue_one_deferred_signal (requested_child,
2648 &requested_child->status_pending);
2649 requested_child->status_pending_p = 0;
2650 requested_child->status_pending = 0;
2651 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2652 }
2653
2654 if (requested_child->suspended
2655 && requested_child->status_pending_p)
2656 {
2657 internal_error (__FILE__, __LINE__,
2658 "requesting an event out of a"
2659 " suspended child?");
2660 }
2661
2662 if (requested_child->status_pending_p)
2663 {
2664 event_child = requested_child;
2665 event_thread = get_lwp_thread (event_child);
2666 }
2667 }
2668
2669 if (event_child != NULL)
2670 {
2671 if (debug_threads)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread), event_child->status_pending);
2674 *wstatp = event_child->status_pending;
2675 event_child->status_pending_p = 0;
2676 event_child->status_pending = 0;
2677 current_thread = event_thread;
2678 return lwpid_of (event_thread);
2679 }
2680
2681 /* But if we don't find a pending event, we'll have to wait.
2682
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2686 pending events. */
2687
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask);
2691 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2692
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2695 starvation. */
2696 while (event_child == NULL)
2697 {
2698 pid_t ret = 0;
2699
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2701 quirks:
2702
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2707
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2711 the TGID pid. */
2712 errno = 0;
2713 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2714
2715 if (debug_threads)
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2718
2719 if (ret > 0)
2720 {
2721 if (debug_threads)
2722 {
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret, status_to_str (*wstatp));
2725 }
2726
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2729 below. */
2730 linux_low_filter_event (ret, *wstatp);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2733 continue;
2734 }
2735
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads == NOT_STOPPING_THREADS)
2739 for_each_thread (resume_stopped_resumed_lwps);
2740
2741 /* ... and find an LWP with a status to report to the core, if
2742 any. */
2743 event_thread = find_thread_in_random ([&] (thread_info *thread)
2744 {
2745 return status_pending_p_callback (thread, filter_ptid);
2746 });
2747
2748 if (event_thread != NULL)
2749 {
2750 event_child = get_thread_lwp (event_thread);
2751 *wstatp = event_child->status_pending;
2752 event_child->status_pending_p = 0;
2753 event_child->status_pending = 0;
2754 break;
2755 }
2756
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2760
2761 auto not_stopped = [&] (thread_info *thread)
2762 {
2763 return not_stopped_callback (thread, wait_ptid);
2764 };
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped) == NULL)
2774 {
2775 if (debug_threads)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2778 return -1;
2779 }
2780
2781 /* No interesting event to report to the caller. */
2782 if ((options & WNOHANG))
2783 {
2784 if (debug_threads)
2785 debug_printf ("WNOHANG set, no event found\n");
2786
2787 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2788 return 0;
2789 }
2790
2791 /* Block until we get an event reported with SIGCHLD. */
2792 if (debug_threads)
2793 debug_printf ("sigsuspend'ing\n");
2794
2795 sigsuspend (&prev_mask);
2796 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2797 goto retry;
2798 }
2799
2800 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2801
2802 current_thread = event_thread;
2803
2804 return lwpid_of (event_thread);
2805 }
2806
2807 /* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2814
2815 static int
2816 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2817 {
2818 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2819 }
2820
2821 /* Select one LWP out of those that have events pending. */
2822
2823 static void
2824 select_event_lwp (struct lwp_info **orig_lp)
2825 {
2826 struct thread_info *event_thread = NULL;
2827
2828 /* In all-stop, give preference to the LWP that is being
2829 single-stepped. There will be at most one, and it's the LWP that
2830 the core is most interested in. If we didn't do this, then we'd
2831 have to handle pending step SIGTRAPs somehow in case the core
2832 later continues the previously-stepped thread, otherwise we'd
2833 report the pending SIGTRAP, and the core, not having stepped the
2834 thread, wouldn't understand what the trap was for, and therefore
2835 would report it to the user as a random signal. */
2836 if (!non_stop)
2837 {
2838 event_thread = find_thread ([] (thread_info *thread)
2839 {
2840 lwp_info *lp = get_thread_lwp (thread);
2841
2842 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2843 && thread->last_resume_kind == resume_step
2844 && lp->status_pending_p);
2845 });
2846
2847 if (event_thread != NULL)
2848 {
2849 if (debug_threads)
2850 debug_printf ("SEL: Select single-step %s\n",
2851 target_pid_to_str (ptid_of (event_thread)));
2852 }
2853 }
2854 if (event_thread == NULL)
2855 {
2856 /* No single-stepping LWP. Select one at random, out of those
2857 which have had events. */
2858
2859 event_thread = find_thread_in_random ([&] (thread_info *thread)
2860 {
2861 lwp_info *lp = get_thread_lwp (thread);
2862
2863 /* Only resumed LWPs that have an event pending. */
2864 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2865 && lp->status_pending_p);
2866 });
2867 }
2868
2869 if (event_thread != NULL)
2870 {
2871 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2872
2873 /* Switch the event LWP. */
2874 *orig_lp = event_lp;
2875 }
2876 }
2877
2878 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2879 NULL. */
2880
2881 static void
2882 unsuspend_all_lwps (struct lwp_info *except)
2883 {
2884 for_each_thread ([&] (thread_info *thread)
2885 {
2886 lwp_info *lwp = get_thread_lwp (thread);
2887
2888 if (lwp != except)
2889 lwp_suspended_decr (lwp);
2890 });
2891 }
2892
2893 static void move_out_of_jump_pad_callback (thread_info *thread);
2894 static bool stuck_in_jump_pad_callback (thread_info *thread);
2895 static bool lwp_running (thread_info *thread);
2896 static ptid_t linux_wait_1 (ptid_t ptid,
2897 struct target_waitstatus *ourstatus,
2898 int target_options);
2899
2900 /* Stabilize threads (move out of jump pads).
2901
2902 If a thread is midway collecting a fast tracepoint, we need to
2903 finish the collection and move it out of the jump pad before
2904 reporting the signal.
2905
2906 This avoids recursion while collecting (when a signal arrives
2907 midway, and the signal handler itself collects), which would trash
2908 the trace buffer. In case the user set a breakpoint in a signal
2909 handler, this avoids the backtrace showing the jump pad, etc..
2910 Most importantly, there are certain things we can't do safely if
2911 threads are stopped in a jump pad (or in its callee's). For
2912 example:
2913
2914 - starting a new trace run. A thread still collecting the
2915 previous run, could trash the trace buffer when resumed. The trace
2916 buffer control structures would have been reset but the thread had
2917 no way to tell. The thread could even midway memcpy'ing to the
2918 buffer, which would mean that when resumed, it would clobber the
2919 trace buffer that had been set for a new run.
2920
2921 - we can't rewrite/reuse the jump pads for new tracepoints
2922 safely. Say you do tstart while a thread is stopped midway while
2923 collecting. When the thread is later resumed, it finishes the
2924 collection, and returns to the jump pad, to execute the original
2925 instruction that was under the tracepoint jump at the time the
2926 older run had been started. If the jump pad had been rewritten
2927 since for something else in the new run, the thread would now
2928 execute the wrong / random instructions. */
2929
2930 static void
2931 linux_stabilize_threads (void)
2932 {
2933 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2934
2935 if (thread_stuck != NULL)
2936 {
2937 if (debug_threads)
2938 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2939 lwpid_of (thread_stuck));
2940 return;
2941 }
2942
2943 thread_info *saved_thread = current_thread;
2944
2945 stabilizing_threads = 1;
2946
2947 /* Kick 'em all. */
2948 for_each_thread (move_out_of_jump_pad_callback);
2949
2950 /* Loop until all are stopped out of the jump pads. */
2951 while (find_thread (lwp_running) != NULL)
2952 {
2953 struct target_waitstatus ourstatus;
2954 struct lwp_info *lwp;
2955 int wstat;
2956
2957 /* Note that we go through the full wait even loop. While
2958 moving threads out of jump pad, we need to be able to step
2959 over internal breakpoints and such. */
2960 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2961
2962 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2963 {
2964 lwp = get_thread_lwp (current_thread);
2965
2966 /* Lock it. */
2967 lwp_suspended_inc (lwp);
2968
2969 if (ourstatus.value.sig != GDB_SIGNAL_0
2970 || current_thread->last_resume_kind == resume_stop)
2971 {
2972 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2973 enqueue_one_deferred_signal (lwp, &wstat);
2974 }
2975 }
2976 }
2977
2978 unsuspend_all_lwps (NULL);
2979
2980 stabilizing_threads = 0;
2981
2982 current_thread = saved_thread;
2983
2984 if (debug_threads)
2985 {
2986 thread_stuck = find_thread (stuck_in_jump_pad_callback);
2987
2988 if (thread_stuck != NULL)
2989 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2990 lwpid_of (thread_stuck));
2991 }
2992 }
2993
2994 /* Convenience function that is called when the kernel reports an
2995 event that is not passed out to GDB. */
2996
2997 static ptid_t
2998 ignore_event (struct target_waitstatus *ourstatus)
2999 {
3000 /* If we got an event, there may still be others, as a single
3001 SIGCHLD can indicate more than one child stopped. This forces
3002 another target_wait call. */
3003 async_file_mark ();
3004
3005 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3006 return null_ptid;
3007 }
3008
3009 /* Convenience function that is called when the kernel reports an exit
3010 event. This decides whether to report the event to GDB as a
3011 process exit event, a thread exit event, or to suppress the
3012 event. */
3013
3014 static ptid_t
3015 filter_exit_event (struct lwp_info *event_child,
3016 struct target_waitstatus *ourstatus)
3017 {
3018 client_state &cs = get_client_state ();
3019 struct thread_info *thread = get_lwp_thread (event_child);
3020 ptid_t ptid = ptid_of (thread);
3021
3022 if (!last_thread_of_process_p (pid_of (thread)))
3023 {
3024 if (cs.report_thread_events)
3025 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3026 else
3027 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3028
3029 delete_lwp (event_child);
3030 }
3031 return ptid;
3032 }
3033
3034 /* Returns 1 if GDB is interested in any event_child syscalls. */
3035
3036 static int
3037 gdb_catching_syscalls_p (struct lwp_info *event_child)
3038 {
3039 struct thread_info *thread = get_lwp_thread (event_child);
3040 struct process_info *proc = get_thread_process (thread);
3041
3042 return !proc->syscalls_to_catch.empty ();
3043 }
3044
3045 /* Returns 1 if GDB is interested in the event_child syscall.
3046 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3047
3048 static int
3049 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3050 {
3051 int sysno;
3052 struct thread_info *thread = get_lwp_thread (event_child);
3053 struct process_info *proc = get_thread_process (thread);
3054
3055 if (proc->syscalls_to_catch.empty ())
3056 return 0;
3057
3058 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3059 return 1;
3060
3061 get_syscall_trapinfo (event_child, &sysno);
3062
3063 for (int iter : proc->syscalls_to_catch)
3064 if (iter == sysno)
3065 return 1;
3066
3067 return 0;
3068 }
3069
3070 /* Wait for process, returns status. */
3071
3072 static ptid_t
3073 linux_wait_1 (ptid_t ptid,
3074 struct target_waitstatus *ourstatus, int target_options)
3075 {
3076 client_state &cs = get_client_state ();
3077 int w;
3078 struct lwp_info *event_child;
3079 int options;
3080 int pid;
3081 int step_over_finished;
3082 int bp_explains_trap;
3083 int maybe_internal_trap;
3084 int report_to_gdb;
3085 int trace_event;
3086 int in_step_range;
3087 int any_resumed;
3088
3089 if (debug_threads)
3090 {
3091 debug_enter ();
3092 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3093 }
3094
3095 /* Translate generic target options into linux options. */
3096 options = __WALL;
3097 if (target_options & TARGET_WNOHANG)
3098 options |= WNOHANG;
3099
3100 bp_explains_trap = 0;
3101 trace_event = 0;
3102 in_step_range = 0;
3103 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3104
3105 auto status_pending_p_any = [&] (thread_info *thread)
3106 {
3107 return status_pending_p_callback (thread, minus_one_ptid);
3108 };
3109
3110 auto not_stopped = [&] (thread_info *thread)
3111 {
3112 return not_stopped_callback (thread, minus_one_ptid);
3113 };
3114
3115 /* Find a resumed LWP, if any. */
3116 if (find_thread (status_pending_p_any) != NULL)
3117 any_resumed = 1;
3118 else if (find_thread (not_stopped) != NULL)
3119 any_resumed = 1;
3120 else
3121 any_resumed = 0;
3122
3123 if (step_over_bkpt == null_ptid)
3124 pid = linux_wait_for_event (ptid, &w, options);
3125 else
3126 {
3127 if (debug_threads)
3128 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3129 target_pid_to_str (step_over_bkpt));
3130 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3131 }
3132
3133 if (pid == 0 || (pid == -1 && !any_resumed))
3134 {
3135 gdb_assert (target_options & TARGET_WNOHANG);
3136
3137 if (debug_threads)
3138 {
3139 debug_printf ("linux_wait_1 ret = null_ptid, "
3140 "TARGET_WAITKIND_IGNORE\n");
3141 debug_exit ();
3142 }
3143
3144 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3145 return null_ptid;
3146 }
3147 else if (pid == -1)
3148 {
3149 if (debug_threads)
3150 {
3151 debug_printf ("linux_wait_1 ret = null_ptid, "
3152 "TARGET_WAITKIND_NO_RESUMED\n");
3153 debug_exit ();
3154 }
3155
3156 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3157 return null_ptid;
3158 }
3159
3160 event_child = get_thread_lwp (current_thread);
3161
3162 /* linux_wait_for_event only returns an exit status for the last
3163 child of a process. Report it. */
3164 if (WIFEXITED (w) || WIFSIGNALED (w))
3165 {
3166 if (WIFEXITED (w))
3167 {
3168 ourstatus->kind = TARGET_WAITKIND_EXITED;
3169 ourstatus->value.integer = WEXITSTATUS (w);
3170
3171 if (debug_threads)
3172 {
3173 debug_printf ("linux_wait_1 ret = %s, exited with "
3174 "retcode %d\n",
3175 target_pid_to_str (ptid_of (current_thread)),
3176 WEXITSTATUS (w));
3177 debug_exit ();
3178 }
3179 }
3180 else
3181 {
3182 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3183 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3184
3185 if (debug_threads)
3186 {
3187 debug_printf ("linux_wait_1 ret = %s, terminated with "
3188 "signal %d\n",
3189 target_pid_to_str (ptid_of (current_thread)),
3190 WTERMSIG (w));
3191 debug_exit ();
3192 }
3193 }
3194
3195 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3196 return filter_exit_event (event_child, ourstatus);
3197
3198 return ptid_of (current_thread);
3199 }
3200
3201 /* If step-over executes a breakpoint instruction, in the case of a
3202 hardware single step it means a gdb/gdbserver breakpoint had been
3203 planted on top of a permanent breakpoint, in the case of a software
3204 single step it may just mean that gdbserver hit the reinsert breakpoint.
3205 The PC has been adjusted by save_stop_reason to point at
3206 the breakpoint address.
3207 So in the case of the hardware single step advance the PC manually
3208 past the breakpoint and in the case of software single step advance only
3209 if it's not the single_step_breakpoint we are hitting.
3210 This avoids that a program would keep trapping a permanent breakpoint
3211 forever. */
3212 if (step_over_bkpt != null_ptid
3213 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3214 && (event_child->stepping
3215 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3216 {
3217 int increment_pc = 0;
3218 int breakpoint_kind = 0;
3219 CORE_ADDR stop_pc = event_child->stop_pc;
3220
3221 breakpoint_kind =
3222 the_target->breakpoint_kind_from_current_state (&stop_pc);
3223 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3224
3225 if (debug_threads)
3226 {
3227 debug_printf ("step-over for %s executed software breakpoint\n",
3228 target_pid_to_str (ptid_of (current_thread)));
3229 }
3230
3231 if (increment_pc != 0)
3232 {
3233 struct regcache *regcache
3234 = get_thread_regcache (current_thread, 1);
3235
3236 event_child->stop_pc += increment_pc;
3237 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3238
3239 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3240 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3241 }
3242 }
3243
3244 /* If this event was not handled before, and is not a SIGTRAP, we
3245 report it. SIGILL and SIGSEGV are also treated as traps in case
3246 a breakpoint is inserted at the current PC. If this target does
3247 not support internal breakpoints at all, we also report the
3248 SIGTRAP without further processing; it's of no concern to us. */
3249 maybe_internal_trap
3250 = (supports_breakpoints ()
3251 && (WSTOPSIG (w) == SIGTRAP
3252 || ((WSTOPSIG (w) == SIGILL
3253 || WSTOPSIG (w) == SIGSEGV)
3254 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3255
3256 if (maybe_internal_trap)
3257 {
3258 /* Handle anything that requires bookkeeping before deciding to
3259 report the event or continue waiting. */
3260
3261 /* First check if we can explain the SIGTRAP with an internal
3262 breakpoint, or if we should possibly report the event to GDB.
3263 Do this before anything that may remove or insert a
3264 breakpoint. */
3265 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3266
3267 /* We have a SIGTRAP, possibly a step-over dance has just
3268 finished. If so, tweak the state machine accordingly,
3269 reinsert breakpoints and delete any single-step
3270 breakpoints. */
3271 step_over_finished = finish_step_over (event_child);
3272
3273 /* Now invoke the callbacks of any internal breakpoints there. */
3274 check_breakpoints (event_child->stop_pc);
3275
3276 /* Handle tracepoint data collecting. This may overflow the
3277 trace buffer, and cause a tracing stop, removing
3278 breakpoints. */
3279 trace_event = handle_tracepoints (event_child);
3280
3281 if (bp_explains_trap)
3282 {
3283 if (debug_threads)
3284 debug_printf ("Hit a gdbserver breakpoint.\n");
3285 }
3286 }
3287 else
3288 {
3289 /* We have some other signal, possibly a step-over dance was in
3290 progress, and it should be cancelled too. */
3291 step_over_finished = finish_step_over (event_child);
3292 }
3293
3294 /* We have all the data we need. Either report the event to GDB, or
3295 resume threads and keep waiting for more. */
3296
3297 /* If we're collecting a fast tracepoint, finish the collection and
3298 move out of the jump pad before delivering a signal. See
3299 linux_stabilize_threads. */
3300
3301 if (WIFSTOPPED (w)
3302 && WSTOPSIG (w) != SIGTRAP
3303 && supports_fast_tracepoints ()
3304 && agent_loaded_p ())
3305 {
3306 if (debug_threads)
3307 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3308 "to defer or adjust it.\n",
3309 WSTOPSIG (w), lwpid_of (current_thread));
3310
3311 /* Allow debugging the jump pad itself. */
3312 if (current_thread->last_resume_kind != resume_step
3313 && maybe_move_out_of_jump_pad (event_child, &w))
3314 {
3315 enqueue_one_deferred_signal (event_child, &w);
3316
3317 if (debug_threads)
3318 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3319 WSTOPSIG (w), lwpid_of (current_thread));
3320
3321 linux_resume_one_lwp (event_child, 0, 0, NULL);
3322
3323 if (debug_threads)
3324 debug_exit ();
3325 return ignore_event (ourstatus);
3326 }
3327 }
3328
3329 if (event_child->collecting_fast_tracepoint
3330 != fast_tpoint_collect_result::not_collecting)
3331 {
3332 if (debug_threads)
3333 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3334 "Check if we're already there.\n",
3335 lwpid_of (current_thread),
3336 (int) event_child->collecting_fast_tracepoint);
3337
3338 trace_event = 1;
3339
3340 event_child->collecting_fast_tracepoint
3341 = linux_fast_tracepoint_collecting (event_child, NULL);
3342
3343 if (event_child->collecting_fast_tracepoint
3344 != fast_tpoint_collect_result::before_insn)
3345 {
3346 /* No longer need this breakpoint. */
3347 if (event_child->exit_jump_pad_bkpt != NULL)
3348 {
3349 if (debug_threads)
3350 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3351 "stopping all threads momentarily.\n");
3352
3353 /* Other running threads could hit this breakpoint.
3354 We don't handle moribund locations like GDB does,
3355 instead we always pause all threads when removing
3356 breakpoints, so that any step-over or
3357 decr_pc_after_break adjustment is always taken
3358 care of while the breakpoint is still
3359 inserted. */
3360 stop_all_lwps (1, event_child);
3361
3362 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3363 event_child->exit_jump_pad_bkpt = NULL;
3364
3365 unstop_all_lwps (1, event_child);
3366
3367 gdb_assert (event_child->suspended >= 0);
3368 }
3369 }
3370
3371 if (event_child->collecting_fast_tracepoint
3372 == fast_tpoint_collect_result::not_collecting)
3373 {
3374 if (debug_threads)
3375 debug_printf ("fast tracepoint finished "
3376 "collecting successfully.\n");
3377
3378 /* We may have a deferred signal to report. */
3379 if (dequeue_one_deferred_signal (event_child, &w))
3380 {
3381 if (debug_threads)
3382 debug_printf ("dequeued one signal.\n");
3383 }
3384 else
3385 {
3386 if (debug_threads)
3387 debug_printf ("no deferred signals.\n");
3388
3389 if (stabilizing_threads)
3390 {
3391 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3392 ourstatus->value.sig = GDB_SIGNAL_0;
3393
3394 if (debug_threads)
3395 {
3396 debug_printf ("linux_wait_1 ret = %s, stopped "
3397 "while stabilizing threads\n",
3398 target_pid_to_str (ptid_of (current_thread)));
3399 debug_exit ();
3400 }
3401
3402 return ptid_of (current_thread);
3403 }
3404 }
3405 }
3406 }
3407
3408 /* Check whether GDB would be interested in this event. */
3409
3410 /* Check if GDB is interested in this syscall. */
3411 if (WIFSTOPPED (w)
3412 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3413 && !gdb_catch_this_syscall_p (event_child))
3414 {
3415 if (debug_threads)
3416 {
3417 debug_printf ("Ignored syscall for LWP %ld.\n",
3418 lwpid_of (current_thread));
3419 }
3420
3421 linux_resume_one_lwp (event_child, event_child->stepping,
3422 0, NULL);
3423
3424 if (debug_threads)
3425 debug_exit ();
3426 return ignore_event (ourstatus);
3427 }
3428
3429 /* If GDB is not interested in this signal, don't stop other
3430 threads, and don't report it to GDB. Just resume the inferior
3431 right away. We do this for threading-related signals as well as
3432 any that GDB specifically requested we ignore. But never ignore
3433 SIGSTOP if we sent it ourselves, and do not ignore signals when
3434 stepping - they may require special handling to skip the signal
3435 handler. Also never ignore signals that could be caused by a
3436 breakpoint. */
3437 if (WIFSTOPPED (w)
3438 && current_thread->last_resume_kind != resume_step
3439 && (
3440 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3441 (current_process ()->priv->thread_db != NULL
3442 && (WSTOPSIG (w) == __SIGRTMIN
3443 || WSTOPSIG (w) == __SIGRTMIN + 1))
3444 ||
3445 #endif
3446 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3447 && !(WSTOPSIG (w) == SIGSTOP
3448 && current_thread->last_resume_kind == resume_stop)
3449 && !linux_wstatus_maybe_breakpoint (w))))
3450 {
3451 siginfo_t info, *info_p;
3452
3453 if (debug_threads)
3454 debug_printf ("Ignored signal %d for LWP %ld.\n",
3455 WSTOPSIG (w), lwpid_of (current_thread));
3456
3457 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3458 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3459 info_p = &info;
3460 else
3461 info_p = NULL;
3462
3463 if (step_over_finished)
3464 {
3465 /* We cancelled this thread's step-over above. We still
3466 need to unsuspend all other LWPs, and set them back
3467 running again while the signal handler runs. */
3468 unsuspend_all_lwps (event_child);
3469
3470 /* Enqueue the pending signal info so that proceed_all_lwps
3471 doesn't lose it. */
3472 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3473
3474 proceed_all_lwps ();
3475 }
3476 else
3477 {
3478 linux_resume_one_lwp (event_child, event_child->stepping,
3479 WSTOPSIG (w), info_p);
3480 }
3481
3482 if (debug_threads)
3483 debug_exit ();
3484
3485 return ignore_event (ourstatus);
3486 }
3487
3488 /* Note that all addresses are always "out of the step range" when
3489 there's no range to begin with. */
3490 in_step_range = lwp_in_step_range (event_child);
3491
3492 /* If GDB wanted this thread to single step, and the thread is out
3493 of the step range, we always want to report the SIGTRAP, and let
3494 GDB handle it. Watchpoints should always be reported. So should
3495 signals we can't explain. A SIGTRAP we can't explain could be a
3496 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3497 do, we're be able to handle GDB breakpoints on top of internal
3498 breakpoints, by handling the internal breakpoint and still
3499 reporting the event to GDB. If we don't, we're out of luck, GDB
3500 won't see the breakpoint hit. If we see a single-step event but
3501 the thread should be continuing, don't pass the trap to gdb.
3502 That indicates that we had previously finished a single-step but
3503 left the single-step pending -- see
3504 complete_ongoing_step_over. */
3505 report_to_gdb = (!maybe_internal_trap
3506 || (current_thread->last_resume_kind == resume_step
3507 && !in_step_range)
3508 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3509 || (!in_step_range
3510 && !bp_explains_trap
3511 && !trace_event
3512 && !step_over_finished
3513 && !(current_thread->last_resume_kind == resume_continue
3514 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3515 || (gdb_breakpoint_here (event_child->stop_pc)
3516 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3517 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3518 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3519
3520 run_breakpoint_commands (event_child->stop_pc);
3521
3522 /* We found no reason GDB would want us to stop. We either hit one
3523 of our own breakpoints, or finished an internal step GDB
3524 shouldn't know about. */
3525 if (!report_to_gdb)
3526 {
3527 if (debug_threads)
3528 {
3529 if (bp_explains_trap)
3530 debug_printf ("Hit a gdbserver breakpoint.\n");
3531 if (step_over_finished)
3532 debug_printf ("Step-over finished.\n");
3533 if (trace_event)
3534 debug_printf ("Tracepoint event.\n");
3535 if (lwp_in_step_range (event_child))
3536 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3537 paddress (event_child->stop_pc),
3538 paddress (event_child->step_range_start),
3539 paddress (event_child->step_range_end));
3540 }
3541
3542 /* We're not reporting this breakpoint to GDB, so apply the
3543 decr_pc_after_break adjustment to the inferior's regcache
3544 ourselves. */
3545
3546 if (the_low_target.set_pc != NULL)
3547 {
3548 struct regcache *regcache
3549 = get_thread_regcache (current_thread, 1);
3550 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3551 }
3552
3553 if (step_over_finished)
3554 {
3555 /* If we have finished stepping over a breakpoint, we've
3556 stopped and suspended all LWPs momentarily except the
3557 stepping one. This is where we resume them all again.
3558 We're going to keep waiting, so use proceed, which
3559 handles stepping over the next breakpoint. */
3560 unsuspend_all_lwps (event_child);
3561 }
3562 else
3563 {
3564 /* Remove the single-step breakpoints if any. Note that
3565 there isn't single-step breakpoint if we finished stepping
3566 over. */
3567 if (can_software_single_step ()
3568 && has_single_step_breakpoints (current_thread))
3569 {
3570 stop_all_lwps (0, event_child);
3571 delete_single_step_breakpoints (current_thread);
3572 unstop_all_lwps (0, event_child);
3573 }
3574 }
3575
3576 if (debug_threads)
3577 debug_printf ("proceeding all threads.\n");
3578 proceed_all_lwps ();
3579
3580 if (debug_threads)
3581 debug_exit ();
3582
3583 return ignore_event (ourstatus);
3584 }
3585
3586 if (debug_threads)
3587 {
3588 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3589 {
3590 std::string str
3591 = target_waitstatus_to_string (&event_child->waitstatus);
3592
3593 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3594 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3595 }
3596 if (current_thread->last_resume_kind == resume_step)
3597 {
3598 if (event_child->step_range_start == event_child->step_range_end)
3599 debug_printf ("GDB wanted to single-step, reporting event.\n");
3600 else if (!lwp_in_step_range (event_child))
3601 debug_printf ("Out of step range, reporting event.\n");
3602 }
3603 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3604 debug_printf ("Stopped by watchpoint.\n");
3605 else if (gdb_breakpoint_here (event_child->stop_pc))
3606 debug_printf ("Stopped by GDB breakpoint.\n");
3607 if (debug_threads)
3608 debug_printf ("Hit a non-gdbserver trap event.\n");
3609 }
3610
3611 /* Alright, we're going to report a stop. */
3612
3613 /* Remove single-step breakpoints. */
3614 if (can_software_single_step ())
3615 {
3616 /* Remove single-step breakpoints or not. It it is true, stop all
3617 lwps, so that other threads won't hit the breakpoint in the
3618 staled memory. */
3619 int remove_single_step_breakpoints_p = 0;
3620
3621 if (non_stop)
3622 {
3623 remove_single_step_breakpoints_p
3624 = has_single_step_breakpoints (current_thread);
3625 }
3626 else
3627 {
3628 /* In all-stop, a stop reply cancels all previous resume
3629 requests. Delete all single-step breakpoints. */
3630
3631 find_thread ([&] (thread_info *thread) {
3632 if (has_single_step_breakpoints (thread))
3633 {
3634 remove_single_step_breakpoints_p = 1;
3635 return true;
3636 }
3637
3638 return false;
3639 });
3640 }
3641
3642 if (remove_single_step_breakpoints_p)
3643 {
3644 /* If we remove single-step breakpoints from memory, stop all lwps,
3645 so that other threads won't hit the breakpoint in the staled
3646 memory. */
3647 stop_all_lwps (0, event_child);
3648
3649 if (non_stop)
3650 {
3651 gdb_assert (has_single_step_breakpoints (current_thread));
3652 delete_single_step_breakpoints (current_thread);
3653 }
3654 else
3655 {
3656 for_each_thread ([] (thread_info *thread){
3657 if (has_single_step_breakpoints (thread))
3658 delete_single_step_breakpoints (thread);
3659 });
3660 }
3661
3662 unstop_all_lwps (0, event_child);
3663 }
3664 }
3665
3666 if (!stabilizing_threads)
3667 {
3668 /* In all-stop, stop all threads. */
3669 if (!non_stop)
3670 stop_all_lwps (0, NULL);
3671
3672 if (step_over_finished)
3673 {
3674 if (!non_stop)
3675 {
3676 /* If we were doing a step-over, all other threads but
3677 the stepping one had been paused in start_step_over,
3678 with their suspend counts incremented. We don't want
3679 to do a full unstop/unpause, because we're in
3680 all-stop mode (so we want threads stopped), but we
3681 still need to unsuspend the other threads, to
3682 decrement their `suspended' count back. */
3683 unsuspend_all_lwps (event_child);
3684 }
3685 else
3686 {
3687 /* If we just finished a step-over, then all threads had
3688 been momentarily paused. In all-stop, that's fine,
3689 we want threads stopped by now anyway. In non-stop,
3690 we need to re-resume threads that GDB wanted to be
3691 running. */
3692 unstop_all_lwps (1, event_child);
3693 }
3694 }
3695
3696 /* If we're not waiting for a specific LWP, choose an event LWP
3697 from among those that have had events. Giving equal priority
3698 to all LWPs that have had events helps prevent
3699 starvation. */
3700 if (ptid == minus_one_ptid)
3701 {
3702 event_child->status_pending_p = 1;
3703 event_child->status_pending = w;
3704
3705 select_event_lwp (&event_child);
3706
3707 /* current_thread and event_child must stay in sync. */
3708 current_thread = get_lwp_thread (event_child);
3709
3710 event_child->status_pending_p = 0;
3711 w = event_child->status_pending;
3712 }
3713
3714
3715 /* Stabilize threads (move out of jump pads). */
3716 if (!non_stop)
3717 stabilize_threads ();
3718 }
3719 else
3720 {
3721 /* If we just finished a step-over, then all threads had been
3722 momentarily paused. In all-stop, that's fine, we want
3723 threads stopped by now anyway. In non-stop, we need to
3724 re-resume threads that GDB wanted to be running. */
3725 if (step_over_finished)
3726 unstop_all_lwps (1, event_child);
3727 }
3728
3729 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3730 {
3731 /* If the reported event is an exit, fork, vfork or exec, let
3732 GDB know. */
3733
3734 /* Break the unreported fork relationship chain. */
3735 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3736 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3737 {
3738 event_child->fork_relative->fork_relative = NULL;
3739 event_child->fork_relative = NULL;
3740 }
3741
3742 *ourstatus = event_child->waitstatus;
3743 /* Clear the event lwp's waitstatus since we handled it already. */
3744 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3745 }
3746 else
3747 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3748
3749 /* Now that we've selected our final event LWP, un-adjust its PC if
3750 it was a software breakpoint, and the client doesn't know we can
3751 adjust the breakpoint ourselves. */
3752 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3753 && !cs.swbreak_feature)
3754 {
3755 int decr_pc = the_low_target.decr_pc_after_break;
3756
3757 if (decr_pc != 0)
3758 {
3759 struct regcache *regcache
3760 = get_thread_regcache (current_thread, 1);
3761 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3762 }
3763 }
3764
3765 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3766 {
3767 get_syscall_trapinfo (event_child,
3768 &ourstatus->value.syscall_number);
3769 ourstatus->kind = event_child->syscall_state;
3770 }
3771 else if (current_thread->last_resume_kind == resume_stop
3772 && WSTOPSIG (w) == SIGSTOP)
3773 {
3774 /* A thread that has been requested to stop by GDB with vCont;t,
3775 and it stopped cleanly, so report as SIG0. The use of
3776 SIGSTOP is an implementation detail. */
3777 ourstatus->value.sig = GDB_SIGNAL_0;
3778 }
3779 else if (current_thread->last_resume_kind == resume_stop
3780 && WSTOPSIG (w) != SIGSTOP)
3781 {
3782 /* A thread that has been requested to stop by GDB with vCont;t,
3783 but, it stopped for other reasons. */
3784 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3785 }
3786 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3787 {
3788 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3789 }
3790
3791 gdb_assert (step_over_bkpt == null_ptid);
3792
3793 if (debug_threads)
3794 {
3795 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3796 target_pid_to_str (ptid_of (current_thread)),
3797 ourstatus->kind, ourstatus->value.sig);
3798 debug_exit ();
3799 }
3800
3801 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3802 return filter_exit_event (event_child, ourstatus);
3803
3804 return ptid_of (current_thread);
3805 }
3806
3807 /* Get rid of any pending event in the pipe. */
3808 static void
3809 async_file_flush (void)
3810 {
3811 int ret;
3812 char buf;
3813
3814 do
3815 ret = read (linux_event_pipe[0], &buf, 1);
3816 while (ret >= 0 || (ret == -1 && errno == EINTR));
3817 }
3818
3819 /* Put something in the pipe, so the event loop wakes up. */
3820 static void
3821 async_file_mark (void)
3822 {
3823 int ret;
3824
3825 async_file_flush ();
3826
3827 do
3828 ret = write (linux_event_pipe[1], "+", 1);
3829 while (ret == 0 || (ret == -1 && errno == EINTR));
3830
3831 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3832 be awakened anyway. */
3833 }
3834
3835 ptid_t
3836 linux_process_target::wait (ptid_t ptid,
3837 target_waitstatus *ourstatus,
3838 int target_options)
3839 {
3840 ptid_t event_ptid;
3841
3842 /* Flush the async file first. */
3843 if (target_is_async_p ())
3844 async_file_flush ();
3845
3846 do
3847 {
3848 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3849 }
3850 while ((target_options & TARGET_WNOHANG) == 0
3851 && event_ptid == null_ptid
3852 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3853
3854 /* If at least one stop was reported, there may be more. A single
3855 SIGCHLD can signal more than one child stop. */
3856 if (target_is_async_p ()
3857 && (target_options & TARGET_WNOHANG) != 0
3858 && event_ptid != null_ptid)
3859 async_file_mark ();
3860
3861 return event_ptid;
3862 }
3863
3864 /* Send a signal to an LWP. */
3865
3866 static int
3867 kill_lwp (unsigned long lwpid, int signo)
3868 {
3869 int ret;
3870
3871 errno = 0;
3872 ret = syscall (__NR_tkill, lwpid, signo);
3873 if (errno == ENOSYS)
3874 {
3875 /* If tkill fails, then we are not using nptl threads, a
3876 configuration we no longer support. */
3877 perror_with_name (("tkill"));
3878 }
3879 return ret;
3880 }
3881
3882 void
3883 linux_stop_lwp (struct lwp_info *lwp)
3884 {
3885 send_sigstop (lwp);
3886 }
3887
3888 static void
3889 send_sigstop (struct lwp_info *lwp)
3890 {
3891 int pid;
3892
3893 pid = lwpid_of (get_lwp_thread (lwp));
3894
3895 /* If we already have a pending stop signal for this process, don't
3896 send another. */
3897 if (lwp->stop_expected)
3898 {
3899 if (debug_threads)
3900 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3901
3902 return;
3903 }
3904
3905 if (debug_threads)
3906 debug_printf ("Sending sigstop to lwp %d\n", pid);
3907
3908 lwp->stop_expected = 1;
3909 kill_lwp (pid, SIGSTOP);
3910 }
3911
3912 static void
3913 send_sigstop (thread_info *thread, lwp_info *except)
3914 {
3915 struct lwp_info *lwp = get_thread_lwp (thread);
3916
3917 /* Ignore EXCEPT. */
3918 if (lwp == except)
3919 return;
3920
3921 if (lwp->stopped)
3922 return;
3923
3924 send_sigstop (lwp);
3925 }
3926
3927 /* Increment the suspend count of an LWP, and stop it, if not stopped
3928 yet. */
3929 static void
3930 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3931 {
3932 struct lwp_info *lwp = get_thread_lwp (thread);
3933
3934 /* Ignore EXCEPT. */
3935 if (lwp == except)
3936 return;
3937
3938 lwp_suspended_inc (lwp);
3939
3940 send_sigstop (thread, except);
3941 }
3942
3943 static void
3944 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3945 {
3946 /* Store the exit status for later. */
3947 lwp->status_pending_p = 1;
3948 lwp->status_pending = wstat;
3949
3950 /* Store in waitstatus as well, as there's nothing else to process
3951 for this event. */
3952 if (WIFEXITED (wstat))
3953 {
3954 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3955 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3956 }
3957 else if (WIFSIGNALED (wstat))
3958 {
3959 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3960 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3961 }
3962
3963 /* Prevent trying to stop it. */
3964 lwp->stopped = 1;
3965
3966 /* No further stops are expected from a dead lwp. */
3967 lwp->stop_expected = 0;
3968 }
3969
3970 /* Return true if LWP has exited already, and has a pending exit event
3971 to report to GDB. */
3972
3973 static int
3974 lwp_is_marked_dead (struct lwp_info *lwp)
3975 {
3976 return (lwp->status_pending_p
3977 && (WIFEXITED (lwp->status_pending)
3978 || WIFSIGNALED (lwp->status_pending)));
3979 }
3980
3981 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3982
3983 static void
3984 wait_for_sigstop (void)
3985 {
3986 struct thread_info *saved_thread;
3987 ptid_t saved_tid;
3988 int wstat;
3989 int ret;
3990
3991 saved_thread = current_thread;
3992 if (saved_thread != NULL)
3993 saved_tid = saved_thread->id;
3994 else
3995 saved_tid = null_ptid; /* avoid bogus unused warning */
3996
3997 if (debug_threads)
3998 debug_printf ("wait_for_sigstop: pulling events\n");
3999
4000 /* Passing NULL_PTID as filter indicates we want all events to be
4001 left pending. Eventually this returns when there are no
4002 unwaited-for children left. */
4003 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4004 &wstat, __WALL);
4005 gdb_assert (ret == -1);
4006
4007 if (saved_thread == NULL || mythread_alive (saved_tid))
4008 current_thread = saved_thread;
4009 else
4010 {
4011 if (debug_threads)
4012 debug_printf ("Previously current thread died.\n");
4013
4014 /* We can't change the current inferior behind GDB's back,
4015 otherwise, a subsequent command may apply to the wrong
4016 process. */
4017 current_thread = NULL;
4018 }
4019 }
4020
4021 /* Returns true if THREAD is stopped in a jump pad, and we can't
4022 move it out, because we need to report the stop event to GDB. For
4023 example, if the user puts a breakpoint in the jump pad, it's
4024 because she wants to debug it. */
4025
4026 static bool
4027 stuck_in_jump_pad_callback (thread_info *thread)
4028 {
4029 struct lwp_info *lwp = get_thread_lwp (thread);
4030
4031 if (lwp->suspended != 0)
4032 {
4033 internal_error (__FILE__, __LINE__,
4034 "LWP %ld is suspended, suspended=%d\n",
4035 lwpid_of (thread), lwp->suspended);
4036 }
4037 gdb_assert (lwp->stopped);
4038
4039 /* Allow debugging the jump pad, gdb_collect, etc.. */
4040 return (supports_fast_tracepoints ()
4041 && agent_loaded_p ()
4042 && (gdb_breakpoint_here (lwp->stop_pc)
4043 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4044 || thread->last_resume_kind == resume_step)
4045 && (linux_fast_tracepoint_collecting (lwp, NULL)
4046 != fast_tpoint_collect_result::not_collecting));
4047 }
4048
4049 static void
4050 move_out_of_jump_pad_callback (thread_info *thread)
4051 {
4052 struct thread_info *saved_thread;
4053 struct lwp_info *lwp = get_thread_lwp (thread);
4054 int *wstat;
4055
4056 if (lwp->suspended != 0)
4057 {
4058 internal_error (__FILE__, __LINE__,
4059 "LWP %ld is suspended, suspended=%d\n",
4060 lwpid_of (thread), lwp->suspended);
4061 }
4062 gdb_assert (lwp->stopped);
4063
4064 /* For gdb_breakpoint_here. */
4065 saved_thread = current_thread;
4066 current_thread = thread;
4067
4068 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4069
4070 /* Allow debugging the jump pad, gdb_collect, etc. */
4071 if (!gdb_breakpoint_here (lwp->stop_pc)
4072 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4073 && thread->last_resume_kind != resume_step
4074 && maybe_move_out_of_jump_pad (lwp, wstat))
4075 {
4076 if (debug_threads)
4077 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4078 lwpid_of (thread));
4079
4080 if (wstat)
4081 {
4082 lwp->status_pending_p = 0;
4083 enqueue_one_deferred_signal (lwp, wstat);
4084
4085 if (debug_threads)
4086 debug_printf ("Signal %d for LWP %ld deferred "
4087 "(in jump pad)\n",
4088 WSTOPSIG (*wstat), lwpid_of (thread));
4089 }
4090
4091 linux_resume_one_lwp (lwp, 0, 0, NULL);
4092 }
4093 else
4094 lwp_suspended_inc (lwp);
4095
4096 current_thread = saved_thread;
4097 }
4098
4099 static bool
4100 lwp_running (thread_info *thread)
4101 {
4102 struct lwp_info *lwp = get_thread_lwp (thread);
4103
4104 if (lwp_is_marked_dead (lwp))
4105 return false;
4106
4107 return !lwp->stopped;
4108 }
4109
4110 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4111 If SUSPEND, then also increase the suspend count of every LWP,
4112 except EXCEPT. */
4113
4114 static void
4115 stop_all_lwps (int suspend, struct lwp_info *except)
4116 {
4117 /* Should not be called recursively. */
4118 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4119
4120 if (debug_threads)
4121 {
4122 debug_enter ();
4123 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4124 suspend ? "stop-and-suspend" : "stop",
4125 except != NULL
4126 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4127 : "none");
4128 }
4129
4130 stopping_threads = (suspend
4131 ? STOPPING_AND_SUSPENDING_THREADS
4132 : STOPPING_THREADS);
4133
4134 if (suspend)
4135 for_each_thread ([&] (thread_info *thread)
4136 {
4137 suspend_and_send_sigstop (thread, except);
4138 });
4139 else
4140 for_each_thread ([&] (thread_info *thread)
4141 {
4142 send_sigstop (thread, except);
4143 });
4144
4145 wait_for_sigstop ();
4146 stopping_threads = NOT_STOPPING_THREADS;
4147
4148 if (debug_threads)
4149 {
4150 debug_printf ("stop_all_lwps done, setting stopping_threads "
4151 "back to !stopping\n");
4152 debug_exit ();
4153 }
4154 }
4155
4156 /* Enqueue one signal in the chain of signals which need to be
4157 delivered to this process on next resume. */
4158
4159 static void
4160 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4161 {
4162 struct pending_signals *p_sig = XNEW (struct pending_signals);
4163
4164 p_sig->prev = lwp->pending_signals;
4165 p_sig->signal = signal;
4166 if (info == NULL)
4167 memset (&p_sig->info, 0, sizeof (siginfo_t));
4168 else
4169 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4170 lwp->pending_signals = p_sig;
4171 }
4172
4173 /* Install breakpoints for software single stepping. */
4174
4175 static void
4176 install_software_single_step_breakpoints (struct lwp_info *lwp)
4177 {
4178 struct thread_info *thread = get_lwp_thread (lwp);
4179 struct regcache *regcache = get_thread_regcache (thread, 1);
4180
4181 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4182
4183 current_thread = thread;
4184 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4185
4186 for (CORE_ADDR pc : next_pcs)
4187 set_single_step_breakpoint (pc, current_ptid);
4188 }
4189
4190 /* Single step via hardware or software single step.
4191 Return 1 if hardware single stepping, 0 if software single stepping
4192 or can't single step. */
4193
4194 static int
4195 single_step (struct lwp_info* lwp)
4196 {
4197 int step = 0;
4198
4199 if (can_hardware_single_step ())
4200 {
4201 step = 1;
4202 }
4203 else if (can_software_single_step ())
4204 {
4205 install_software_single_step_breakpoints (lwp);
4206 step = 0;
4207 }
4208 else
4209 {
4210 if (debug_threads)
4211 debug_printf ("stepping is not implemented on this target");
4212 }
4213
4214 return step;
4215 }
4216
4217 /* The signal can be delivered to the inferior if we are not trying to
4218 finish a fast tracepoint collect. Since signal can be delivered in
4219 the step-over, the program may go to signal handler and trap again
4220 after return from the signal handler. We can live with the spurious
4221 double traps. */
4222
4223 static int
4224 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4225 {
4226 return (lwp->collecting_fast_tracepoint
4227 == fast_tpoint_collect_result::not_collecting);
4228 }
4229
4230 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4231 SIGNAL is nonzero, give it that signal. */
4232
4233 static void
4234 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4235 int step, int signal, siginfo_t *info)
4236 {
4237 struct thread_info *thread = get_lwp_thread (lwp);
4238 struct thread_info *saved_thread;
4239 int ptrace_request;
4240 struct process_info *proc = get_thread_process (thread);
4241
4242 /* Note that target description may not be initialised
4243 (proc->tdesc == NULL) at this point because the program hasn't
4244 stopped at the first instruction yet. It means GDBserver skips
4245 the extra traps from the wrapper program (see option --wrapper).
4246 Code in this function that requires register access should be
4247 guarded by proc->tdesc == NULL or something else. */
4248
4249 if (lwp->stopped == 0)
4250 return;
4251
4252 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4253
4254 fast_tpoint_collect_result fast_tp_collecting
4255 = lwp->collecting_fast_tracepoint;
4256
4257 gdb_assert (!stabilizing_threads
4258 || (fast_tp_collecting
4259 != fast_tpoint_collect_result::not_collecting));
4260
4261 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4262 user used the "jump" command, or "set $pc = foo"). */
4263 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4264 {
4265 /* Collecting 'while-stepping' actions doesn't make sense
4266 anymore. */
4267 release_while_stepping_state_list (thread);
4268 }
4269
4270 /* If we have pending signals or status, and a new signal, enqueue the
4271 signal. Also enqueue the signal if it can't be delivered to the
4272 inferior right now. */
4273 if (signal != 0
4274 && (lwp->status_pending_p
4275 || lwp->pending_signals != NULL
4276 || !lwp_signal_can_be_delivered (lwp)))
4277 {
4278 enqueue_pending_signal (lwp, signal, info);
4279
4280 /* Postpone any pending signal. It was enqueued above. */
4281 signal = 0;
4282 }
4283
4284 if (lwp->status_pending_p)
4285 {
4286 if (debug_threads)
4287 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4288 " has pending status\n",
4289 lwpid_of (thread), step ? "step" : "continue",
4290 lwp->stop_expected ? "expected" : "not expected");
4291 return;
4292 }
4293
4294 saved_thread = current_thread;
4295 current_thread = thread;
4296
4297 /* This bit needs some thinking about. If we get a signal that
4298 we must report while a single-step reinsert is still pending,
4299 we often end up resuming the thread. It might be better to
4300 (ew) allow a stack of pending events; then we could be sure that
4301 the reinsert happened right away and not lose any signals.
4302
4303 Making this stack would also shrink the window in which breakpoints are
4304 uninserted (see comment in linux_wait_for_lwp) but not enough for
4305 complete correctness, so it won't solve that problem. It may be
4306 worthwhile just to solve this one, however. */
4307 if (lwp->bp_reinsert != 0)
4308 {
4309 if (debug_threads)
4310 debug_printf (" pending reinsert at 0x%s\n",
4311 paddress (lwp->bp_reinsert));
4312
4313 if (can_hardware_single_step ())
4314 {
4315 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4316 {
4317 if (step == 0)
4318 warning ("BAD - reinserting but not stepping.");
4319 if (lwp->suspended)
4320 warning ("BAD - reinserting and suspended(%d).",
4321 lwp->suspended);
4322 }
4323 }
4324
4325 step = maybe_hw_step (thread);
4326 }
4327
4328 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4329 {
4330 if (debug_threads)
4331 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4332 " (exit-jump-pad-bkpt)\n",
4333 lwpid_of (thread));
4334 }
4335 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4336 {
4337 if (debug_threads)
4338 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4339 " single-stepping\n",
4340 lwpid_of (thread));
4341
4342 if (can_hardware_single_step ())
4343 step = 1;
4344 else
4345 {
4346 internal_error (__FILE__, __LINE__,
4347 "moving out of jump pad single-stepping"
4348 " not implemented on this target");
4349 }
4350 }
4351
4352 /* If we have while-stepping actions in this thread set it stepping.
4353 If we have a signal to deliver, it may or may not be set to
4354 SIG_IGN, we don't know. Assume so, and allow collecting
4355 while-stepping into a signal handler. A possible smart thing to
4356 do would be to set an internal breakpoint at the signal return
4357 address, continue, and carry on catching this while-stepping
4358 action only when that breakpoint is hit. A future
4359 enhancement. */
4360 if (thread->while_stepping != NULL)
4361 {
4362 if (debug_threads)
4363 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4364 lwpid_of (thread));
4365
4366 step = single_step (lwp);
4367 }
4368
4369 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4370 {
4371 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4372
4373 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4374
4375 if (debug_threads)
4376 {
4377 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4378 (long) lwp->stop_pc);
4379 }
4380 }
4381
4382 /* If we have pending signals, consume one if it can be delivered to
4383 the inferior. */
4384 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4385 {
4386 struct pending_signals **p_sig;
4387
4388 p_sig = &lwp->pending_signals;
4389 while ((*p_sig)->prev != NULL)
4390 p_sig = &(*p_sig)->prev;
4391
4392 signal = (*p_sig)->signal;
4393 if ((*p_sig)->info.si_signo != 0)
4394 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4395 &(*p_sig)->info);
4396
4397 free (*p_sig);
4398 *p_sig = NULL;
4399 }
4400
4401 if (debug_threads)
4402 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4403 lwpid_of (thread), step ? "step" : "continue", signal,
4404 lwp->stop_expected ? "expected" : "not expected");
4405
4406 if (the_low_target.prepare_to_resume != NULL)
4407 the_low_target.prepare_to_resume (lwp);
4408
4409 regcache_invalidate_thread (thread);
4410 errno = 0;
4411 lwp->stepping = step;
4412 if (step)
4413 ptrace_request = PTRACE_SINGLESTEP;
4414 else if (gdb_catching_syscalls_p (lwp))
4415 ptrace_request = PTRACE_SYSCALL;
4416 else
4417 ptrace_request = PTRACE_CONT;
4418 ptrace (ptrace_request,
4419 lwpid_of (thread),
4420 (PTRACE_TYPE_ARG3) 0,
4421 /* Coerce to a uintptr_t first to avoid potential gcc warning
4422 of coercing an 8 byte integer to a 4 byte pointer. */
4423 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4424
4425 current_thread = saved_thread;
4426 if (errno)
4427 perror_with_name ("resuming thread");
4428
4429 /* Successfully resumed. Clear state that no longer makes sense,
4430 and mark the LWP as running. Must not do this before resuming
4431 otherwise if that fails other code will be confused. E.g., we'd
4432 later try to stop the LWP and hang forever waiting for a stop
4433 status. Note that we must not throw after this is cleared,
4434 otherwise handle_zombie_lwp_error would get confused. */
4435 lwp->stopped = 0;
4436 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4437 }
4438
4439 /* Called when we try to resume a stopped LWP and that errors out. If
4440 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4441 or about to become), discard the error, clear any pending status
4442 the LWP may have, and return true (we'll collect the exit status
4443 soon enough). Otherwise, return false. */
4444
4445 static int
4446 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4447 {
4448 struct thread_info *thread = get_lwp_thread (lp);
4449
4450 /* If we get an error after resuming the LWP successfully, we'd
4451 confuse !T state for the LWP being gone. */
4452 gdb_assert (lp->stopped);
4453
4454 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4455 because even if ptrace failed with ESRCH, the tracee may be "not
4456 yet fully dead", but already refusing ptrace requests. In that
4457 case the tracee has 'R (Running)' state for a little bit
4458 (observed in Linux 3.18). See also the note on ESRCH in the
4459 ptrace(2) man page. Instead, check whether the LWP has any state
4460 other than ptrace-stopped. */
4461
4462 /* Don't assume anything if /proc/PID/status can't be read. */
4463 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4464 {
4465 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4466 lp->status_pending_p = 0;
4467 return 1;
4468 }
4469 return 0;
4470 }
4471
4472 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4473 disappears while we try to resume it. */
4474
4475 static void
4476 linux_resume_one_lwp (struct lwp_info *lwp,
4477 int step, int signal, siginfo_t *info)
4478 {
4479 try
4480 {
4481 linux_resume_one_lwp_throw (lwp, step, signal, info);
4482 }
4483 catch (const gdb_exception_error &ex)
4484 {
4485 if (!check_ptrace_stopped_lwp_gone (lwp))
4486 throw;
4487 }
4488 }
4489
4490 /* This function is called once per thread via for_each_thread.
4491 We look up which resume request applies to THREAD and mark it with a
4492 pointer to the appropriate resume request.
4493
4494 This algorithm is O(threads * resume elements), but resume elements
4495 is small (and will remain small at least until GDB supports thread
4496 suspension). */
4497
4498 static void
4499 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4500 {
4501 struct lwp_info *lwp = get_thread_lwp (thread);
4502
4503 for (int ndx = 0; ndx < n; ndx++)
4504 {
4505 ptid_t ptid = resume[ndx].thread;
4506 if (ptid == minus_one_ptid
4507 || ptid == thread->id
4508 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4509 of PID'. */
4510 || (ptid.pid () == pid_of (thread)
4511 && (ptid.is_pid ()
4512 || ptid.lwp () == -1)))
4513 {
4514 if (resume[ndx].kind == resume_stop
4515 && thread->last_resume_kind == resume_stop)
4516 {
4517 if (debug_threads)
4518 debug_printf ("already %s LWP %ld at GDB's request\n",
4519 (thread->last_status.kind
4520 == TARGET_WAITKIND_STOPPED)
4521 ? "stopped"
4522 : "stopping",
4523 lwpid_of (thread));
4524
4525 continue;
4526 }
4527
4528 /* Ignore (wildcard) resume requests for already-resumed
4529 threads. */
4530 if (resume[ndx].kind != resume_stop
4531 && thread->last_resume_kind != resume_stop)
4532 {
4533 if (debug_threads)
4534 debug_printf ("already %s LWP %ld at GDB's request\n",
4535 (thread->last_resume_kind
4536 == resume_step)
4537 ? "stepping"
4538 : "continuing",
4539 lwpid_of (thread));
4540 continue;
4541 }
4542
4543 /* Don't let wildcard resumes resume fork children that GDB
4544 does not yet know are new fork children. */
4545 if (lwp->fork_relative != NULL)
4546 {
4547 struct lwp_info *rel = lwp->fork_relative;
4548
4549 if (rel->status_pending_p
4550 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4551 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4552 {
4553 if (debug_threads)
4554 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4555 lwpid_of (thread));
4556 continue;
4557 }
4558 }
4559
4560 /* If the thread has a pending event that has already been
4561 reported to GDBserver core, but GDB has not pulled the
4562 event out of the vStopped queue yet, likewise, ignore the
4563 (wildcard) resume request. */
4564 if (in_queued_stop_replies (thread->id))
4565 {
4566 if (debug_threads)
4567 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4568 lwpid_of (thread));
4569 continue;
4570 }
4571
4572 lwp->resume = &resume[ndx];
4573 thread->last_resume_kind = lwp->resume->kind;
4574
4575 lwp->step_range_start = lwp->resume->step_range_start;
4576 lwp->step_range_end = lwp->resume->step_range_end;
4577
4578 /* If we had a deferred signal to report, dequeue one now.
4579 This can happen if LWP gets more than one signal while
4580 trying to get out of a jump pad. */
4581 if (lwp->stopped
4582 && !lwp->status_pending_p
4583 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4584 {
4585 lwp->status_pending_p = 1;
4586
4587 if (debug_threads)
4588 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4589 "leaving status pending.\n",
4590 WSTOPSIG (lwp->status_pending),
4591 lwpid_of (thread));
4592 }
4593
4594 return;
4595 }
4596 }
4597
4598 /* No resume action for this thread. */
4599 lwp->resume = NULL;
4600 }
4601
4602 /* find_thread callback for linux_resume. Return true if this lwp has an
4603 interesting status pending. */
4604
4605 static bool
4606 resume_status_pending_p (thread_info *thread)
4607 {
4608 struct lwp_info *lwp = get_thread_lwp (thread);
4609
4610 /* LWPs which will not be resumed are not interesting, because
4611 we might not wait for them next time through linux_wait. */
4612 if (lwp->resume == NULL)
4613 return false;
4614
4615 return thread_still_has_status_pending_p (thread);
4616 }
4617
4618 /* Return 1 if this lwp that GDB wants running is stopped at an
4619 internal breakpoint that we need to step over. It assumes that any
4620 required STOP_PC adjustment has already been propagated to the
4621 inferior's regcache. */
4622
4623 static bool
4624 need_step_over_p (thread_info *thread)
4625 {
4626 struct lwp_info *lwp = get_thread_lwp (thread);
4627 struct thread_info *saved_thread;
4628 CORE_ADDR pc;
4629 struct process_info *proc = get_thread_process (thread);
4630
4631 /* GDBserver is skipping the extra traps from the wrapper program,
4632 don't have to do step over. */
4633 if (proc->tdesc == NULL)
4634 return false;
4635
4636 /* LWPs which will not be resumed are not interesting, because we
4637 might not wait for them next time through linux_wait. */
4638
4639 if (!lwp->stopped)
4640 {
4641 if (debug_threads)
4642 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4643 lwpid_of (thread));
4644 return false;
4645 }
4646
4647 if (thread->last_resume_kind == resume_stop)
4648 {
4649 if (debug_threads)
4650 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4651 " stopped\n",
4652 lwpid_of (thread));
4653 return false;
4654 }
4655
4656 gdb_assert (lwp->suspended >= 0);
4657
4658 if (lwp->suspended)
4659 {
4660 if (debug_threads)
4661 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4662 lwpid_of (thread));
4663 return false;
4664 }
4665
4666 if (lwp->status_pending_p)
4667 {
4668 if (debug_threads)
4669 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4670 " status.\n",
4671 lwpid_of (thread));
4672 return false;
4673 }
4674
4675 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4676 or we have. */
4677 pc = get_pc (lwp);
4678
4679 /* If the PC has changed since we stopped, then don't do anything,
4680 and let the breakpoint/tracepoint be hit. This happens if, for
4681 instance, GDB handled the decr_pc_after_break subtraction itself,
4682 GDB is OOL stepping this thread, or the user has issued a "jump"
4683 command, or poked thread's registers herself. */
4684 if (pc != lwp->stop_pc)
4685 {
4686 if (debug_threads)
4687 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4688 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4689 lwpid_of (thread),
4690 paddress (lwp->stop_pc), paddress (pc));
4691 return false;
4692 }
4693
4694 /* On software single step target, resume the inferior with signal
4695 rather than stepping over. */
4696 if (can_software_single_step ()
4697 && lwp->pending_signals != NULL
4698 && lwp_signal_can_be_delivered (lwp))
4699 {
4700 if (debug_threads)
4701 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4702 " signals.\n",
4703 lwpid_of (thread));
4704
4705 return false;
4706 }
4707
4708 saved_thread = current_thread;
4709 current_thread = thread;
4710
4711 /* We can only step over breakpoints we know about. */
4712 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4713 {
4714 /* Don't step over a breakpoint that GDB expects to hit
4715 though. If the condition is being evaluated on the target's side
4716 and it evaluate to false, step over this breakpoint as well. */
4717 if (gdb_breakpoint_here (pc)
4718 && gdb_condition_true_at_breakpoint (pc)
4719 && gdb_no_commands_at_breakpoint (pc))
4720 {
4721 if (debug_threads)
4722 debug_printf ("Need step over [LWP %ld]? yes, but found"
4723 " GDB breakpoint at 0x%s; skipping step over\n",
4724 lwpid_of (thread), paddress (pc));
4725
4726 current_thread = saved_thread;
4727 return false;
4728 }
4729 else
4730 {
4731 if (debug_threads)
4732 debug_printf ("Need step over [LWP %ld]? yes, "
4733 "found breakpoint at 0x%s\n",
4734 lwpid_of (thread), paddress (pc));
4735
4736 /* We've found an lwp that needs stepping over --- return 1 so
4737 that find_thread stops looking. */
4738 current_thread = saved_thread;
4739
4740 return true;
4741 }
4742 }
4743
4744 current_thread = saved_thread;
4745
4746 if (debug_threads)
4747 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4748 " at 0x%s\n",
4749 lwpid_of (thread), paddress (pc));
4750
4751 return false;
4752 }
4753
4754 /* Start a step-over operation on LWP. When LWP stopped at a
4755 breakpoint, to make progress, we need to remove the breakpoint out
4756 of the way. If we let other threads run while we do that, they may
4757 pass by the breakpoint location and miss hitting it. To avoid
4758 that, a step-over momentarily stops all threads while LWP is
4759 single-stepped by either hardware or software while the breakpoint
4760 is temporarily uninserted from the inferior. When the single-step
4761 finishes, we reinsert the breakpoint, and let all threads that are
4762 supposed to be running, run again. */
4763
4764 static int
4765 start_step_over (struct lwp_info *lwp)
4766 {
4767 struct thread_info *thread = get_lwp_thread (lwp);
4768 struct thread_info *saved_thread;
4769 CORE_ADDR pc;
4770 int step;
4771
4772 if (debug_threads)
4773 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4774 lwpid_of (thread));
4775
4776 stop_all_lwps (1, lwp);
4777
4778 if (lwp->suspended != 0)
4779 {
4780 internal_error (__FILE__, __LINE__,
4781 "LWP %ld suspended=%d\n", lwpid_of (thread),
4782 lwp->suspended);
4783 }
4784
4785 if (debug_threads)
4786 debug_printf ("Done stopping all threads for step-over.\n");
4787
4788 /* Note, we should always reach here with an already adjusted PC,
4789 either by GDB (if we're resuming due to GDB's request), or by our
4790 caller, if we just finished handling an internal breakpoint GDB
4791 shouldn't care about. */
4792 pc = get_pc (lwp);
4793
4794 saved_thread = current_thread;
4795 current_thread = thread;
4796
4797 lwp->bp_reinsert = pc;
4798 uninsert_breakpoints_at (pc);
4799 uninsert_fast_tracepoint_jumps_at (pc);
4800
4801 step = single_step (lwp);
4802
4803 current_thread = saved_thread;
4804
4805 linux_resume_one_lwp (lwp, step, 0, NULL);
4806
4807 /* Require next event from this LWP. */
4808 step_over_bkpt = thread->id;
4809 return 1;
4810 }
4811
4812 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4813 start_step_over, if still there, and delete any single-step
4814 breakpoints we've set, on non hardware single-step targets. */
4815
4816 static int
4817 finish_step_over (struct lwp_info *lwp)
4818 {
4819 if (lwp->bp_reinsert != 0)
4820 {
4821 struct thread_info *saved_thread = current_thread;
4822
4823 if (debug_threads)
4824 debug_printf ("Finished step over.\n");
4825
4826 current_thread = get_lwp_thread (lwp);
4827
4828 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4829 may be no breakpoint to reinsert there by now. */
4830 reinsert_breakpoints_at (lwp->bp_reinsert);
4831 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4832
4833 lwp->bp_reinsert = 0;
4834
4835 /* Delete any single-step breakpoints. No longer needed. We
4836 don't have to worry about other threads hitting this trap,
4837 and later not being able to explain it, because we were
4838 stepping over a breakpoint, and we hold all threads but
4839 LWP stopped while doing that. */
4840 if (!can_hardware_single_step ())
4841 {
4842 gdb_assert (has_single_step_breakpoints (current_thread));
4843 delete_single_step_breakpoints (current_thread);
4844 }
4845
4846 step_over_bkpt = null_ptid;
4847 current_thread = saved_thread;
4848 return 1;
4849 }
4850 else
4851 return 0;
4852 }
4853
4854 /* If there's a step over in progress, wait until all threads stop
4855 (that is, until the stepping thread finishes its step), and
4856 unsuspend all lwps. The stepping thread ends with its status
4857 pending, which is processed later when we get back to processing
4858 events. */
4859
4860 static void
4861 complete_ongoing_step_over (void)
4862 {
4863 if (step_over_bkpt != null_ptid)
4864 {
4865 struct lwp_info *lwp;
4866 int wstat;
4867 int ret;
4868
4869 if (debug_threads)
4870 debug_printf ("detach: step over in progress, finish it first\n");
4871
4872 /* Passing NULL_PTID as filter indicates we want all events to
4873 be left pending. Eventually this returns when there are no
4874 unwaited-for children left. */
4875 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4876 &wstat, __WALL);
4877 gdb_assert (ret == -1);
4878
4879 lwp = find_lwp_pid (step_over_bkpt);
4880 if (lwp != NULL)
4881 finish_step_over (lwp);
4882 step_over_bkpt = null_ptid;
4883 unsuspend_all_lwps (lwp);
4884 }
4885 }
4886
4887 /* This function is called once per thread. We check the thread's resume
4888 request, which will tell us whether to resume, step, or leave the thread
4889 stopped; and what signal, if any, it should be sent.
4890
4891 For threads which we aren't explicitly told otherwise, we preserve
4892 the stepping flag; this is used for stepping over gdbserver-placed
4893 breakpoints.
4894
4895 If pending_flags was set in any thread, we queue any needed
4896 signals, since we won't actually resume. We already have a pending
4897 event to report, so we don't need to preserve any step requests;
4898 they should be re-issued if necessary. */
4899
4900 static void
4901 linux_resume_one_thread (thread_info *thread, bool leave_all_stopped)
4902 {
4903 struct lwp_info *lwp = get_thread_lwp (thread);
4904 int leave_pending;
4905
4906 if (lwp->resume == NULL)
4907 return;
4908
4909 if (lwp->resume->kind == resume_stop)
4910 {
4911 if (debug_threads)
4912 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4913
4914 if (!lwp->stopped)
4915 {
4916 if (debug_threads)
4917 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4918
4919 /* Stop the thread, and wait for the event asynchronously,
4920 through the event loop. */
4921 send_sigstop (lwp);
4922 }
4923 else
4924 {
4925 if (debug_threads)
4926 debug_printf ("already stopped LWP %ld\n",
4927 lwpid_of (thread));
4928
4929 /* The LWP may have been stopped in an internal event that
4930 was not meant to be notified back to GDB (e.g., gdbserver
4931 breakpoint), so we should be reporting a stop event in
4932 this case too. */
4933
4934 /* If the thread already has a pending SIGSTOP, this is a
4935 no-op. Otherwise, something later will presumably resume
4936 the thread and this will cause it to cancel any pending
4937 operation, due to last_resume_kind == resume_stop. If
4938 the thread already has a pending status to report, we
4939 will still report it the next time we wait - see
4940 status_pending_p_callback. */
4941
4942 /* If we already have a pending signal to report, then
4943 there's no need to queue a SIGSTOP, as this means we're
4944 midway through moving the LWP out of the jumppad, and we
4945 will report the pending signal as soon as that is
4946 finished. */
4947 if (lwp->pending_signals_to_report == NULL)
4948 send_sigstop (lwp);
4949 }
4950
4951 /* For stop requests, we're done. */
4952 lwp->resume = NULL;
4953 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4954 return;
4955 }
4956
4957 /* If this thread which is about to be resumed has a pending status,
4958 then don't resume it - we can just report the pending status.
4959 Likewise if it is suspended, because e.g., another thread is
4960 stepping past a breakpoint. Make sure to queue any signals that
4961 would otherwise be sent. In all-stop mode, we do this decision
4962 based on if *any* thread has a pending status. If there's a
4963 thread that needs the step-over-breakpoint dance, then don't
4964 resume any other thread but that particular one. */
4965 leave_pending = (lwp->suspended
4966 || lwp->status_pending_p
4967 || leave_all_stopped);
4968
4969 /* If we have a new signal, enqueue the signal. */
4970 if (lwp->resume->sig != 0)
4971 {
4972 siginfo_t info, *info_p;
4973
4974 /* If this is the same signal we were previously stopped by,
4975 make sure to queue its siginfo. */
4976 if (WIFSTOPPED (lwp->last_status)
4977 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4978 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4979 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4980 info_p = &info;
4981 else
4982 info_p = NULL;
4983
4984 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4985 }
4986
4987 if (!leave_pending)
4988 {
4989 if (debug_threads)
4990 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4991
4992 proceed_one_lwp (thread, NULL);
4993 }
4994 else
4995 {
4996 if (debug_threads)
4997 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4998 }
4999
5000 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5001 lwp->resume = NULL;
5002 }
5003
5004 void
5005 linux_process_target::resume (thread_resume *resume_info, size_t n)
5006 {
5007 struct thread_info *need_step_over = NULL;
5008
5009 if (debug_threads)
5010 {
5011 debug_enter ();
5012 debug_printf ("linux_resume:\n");
5013 }
5014
5015 for_each_thread ([&] (thread_info *thread)
5016 {
5017 linux_set_resume_request (thread, resume_info, n);
5018 });
5019
5020 /* If there is a thread which would otherwise be resumed, which has
5021 a pending status, then don't resume any threads - we can just
5022 report the pending status. Make sure to queue any signals that
5023 would otherwise be sent. In non-stop mode, we'll apply this
5024 logic to each thread individually. We consume all pending events
5025 before considering to start a step-over (in all-stop). */
5026 bool any_pending = false;
5027 if (!non_stop)
5028 any_pending = find_thread (resume_status_pending_p) != NULL;
5029
5030 /* If there is a thread which would otherwise be resumed, which is
5031 stopped at a breakpoint that needs stepping over, then don't
5032 resume any threads - have it step over the breakpoint with all
5033 other threads stopped, then resume all threads again. Make sure
5034 to queue any signals that would otherwise be delivered or
5035 queued. */
5036 if (!any_pending && supports_breakpoints ())
5037 need_step_over = find_thread (need_step_over_p);
5038
5039 bool leave_all_stopped = (need_step_over != NULL || any_pending);
5040
5041 if (debug_threads)
5042 {
5043 if (need_step_over != NULL)
5044 debug_printf ("Not resuming all, need step over\n");
5045 else if (any_pending)
5046 debug_printf ("Not resuming, all-stop and found "
5047 "an LWP with pending status\n");
5048 else
5049 debug_printf ("Resuming, no pending status or step over needed\n");
5050 }
5051
5052 /* Even if we're leaving threads stopped, queue all signals we'd
5053 otherwise deliver. */
5054 for_each_thread ([&] (thread_info *thread)
5055 {
5056 linux_resume_one_thread (thread, leave_all_stopped);
5057 });
5058
5059 if (need_step_over)
5060 start_step_over (get_thread_lwp (need_step_over));
5061
5062 if (debug_threads)
5063 {
5064 debug_printf ("linux_resume done\n");
5065 debug_exit ();
5066 }
5067
5068 /* We may have events that were pending that can/should be sent to
5069 the client now. Trigger a linux_wait call. */
5070 if (target_is_async_p ())
5071 async_file_mark ();
5072 }
5073
5074 /* This function is called once per thread. We check the thread's
5075 last resume request, which will tell us whether to resume, step, or
5076 leave the thread stopped. Any signal the client requested to be
5077 delivered has already been enqueued at this point.
5078
5079 If any thread that GDB wants running is stopped at an internal
5080 breakpoint that needs stepping over, we start a step-over operation
5081 on that particular thread, and leave all others stopped. */
5082
5083 static void
5084 proceed_one_lwp (thread_info *thread, lwp_info *except)
5085 {
5086 struct lwp_info *lwp = get_thread_lwp (thread);
5087 int step;
5088
5089 if (lwp == except)
5090 return;
5091
5092 if (debug_threads)
5093 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5094
5095 if (!lwp->stopped)
5096 {
5097 if (debug_threads)
5098 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5099 return;
5100 }
5101
5102 if (thread->last_resume_kind == resume_stop
5103 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5104 {
5105 if (debug_threads)
5106 debug_printf (" client wants LWP to remain %ld stopped\n",
5107 lwpid_of (thread));
5108 return;
5109 }
5110
5111 if (lwp->status_pending_p)
5112 {
5113 if (debug_threads)
5114 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5115 lwpid_of (thread));
5116 return;
5117 }
5118
5119 gdb_assert (lwp->suspended >= 0);
5120
5121 if (lwp->suspended)
5122 {
5123 if (debug_threads)
5124 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5125 return;
5126 }
5127
5128 if (thread->last_resume_kind == resume_stop
5129 && lwp->pending_signals_to_report == NULL
5130 && (lwp->collecting_fast_tracepoint
5131 == fast_tpoint_collect_result::not_collecting))
5132 {
5133 /* We haven't reported this LWP as stopped yet (otherwise, the
5134 last_status.kind check above would catch it, and we wouldn't
5135 reach here. This LWP may have been momentarily paused by a
5136 stop_all_lwps call while handling for example, another LWP's
5137 step-over. In that case, the pending expected SIGSTOP signal
5138 that was queued at vCont;t handling time will have already
5139 been consumed by wait_for_sigstop, and so we need to requeue
5140 another one here. Note that if the LWP already has a SIGSTOP
5141 pending, this is a no-op. */
5142
5143 if (debug_threads)
5144 debug_printf ("Client wants LWP %ld to stop. "
5145 "Making sure it has a SIGSTOP pending\n",
5146 lwpid_of (thread));
5147
5148 send_sigstop (lwp);
5149 }
5150
5151 if (thread->last_resume_kind == resume_step)
5152 {
5153 if (debug_threads)
5154 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5155 lwpid_of (thread));
5156
5157 /* If resume_step is requested by GDB, install single-step
5158 breakpoints when the thread is about to be actually resumed if
5159 the single-step breakpoints weren't removed. */
5160 if (can_software_single_step ()
5161 && !has_single_step_breakpoints (thread))
5162 install_software_single_step_breakpoints (lwp);
5163
5164 step = maybe_hw_step (thread);
5165 }
5166 else if (lwp->bp_reinsert != 0)
5167 {
5168 if (debug_threads)
5169 debug_printf (" stepping LWP %ld, reinsert set\n",
5170 lwpid_of (thread));
5171
5172 step = maybe_hw_step (thread);
5173 }
5174 else
5175 step = 0;
5176
5177 linux_resume_one_lwp (lwp, step, 0, NULL);
5178 }
5179
5180 static void
5181 unsuspend_and_proceed_one_lwp (thread_info *thread, lwp_info *except)
5182 {
5183 struct lwp_info *lwp = get_thread_lwp (thread);
5184
5185 if (lwp == except)
5186 return;
5187
5188 lwp_suspended_decr (lwp);
5189
5190 proceed_one_lwp (thread, except);
5191 }
5192
5193 /* When we finish a step-over, set threads running again. If there's
5194 another thread that may need a step-over, now's the time to start
5195 it. Eventually, we'll move all threads past their breakpoints. */
5196
5197 static void
5198 proceed_all_lwps (void)
5199 {
5200 struct thread_info *need_step_over;
5201
5202 /* If there is a thread which would otherwise be resumed, which is
5203 stopped at a breakpoint that needs stepping over, then don't
5204 resume any threads - have it step over the breakpoint with all
5205 other threads stopped, then resume all threads again. */
5206
5207 if (supports_breakpoints ())
5208 {
5209 need_step_over = find_thread (need_step_over_p);
5210
5211 if (need_step_over != NULL)
5212 {
5213 if (debug_threads)
5214 debug_printf ("proceed_all_lwps: found "
5215 "thread %ld needing a step-over\n",
5216 lwpid_of (need_step_over));
5217
5218 start_step_over (get_thread_lwp (need_step_over));
5219 return;
5220 }
5221 }
5222
5223 if (debug_threads)
5224 debug_printf ("Proceeding, no step-over needed\n");
5225
5226 for_each_thread ([] (thread_info *thread)
5227 {
5228 proceed_one_lwp (thread, NULL);
5229 });
5230 }
5231
5232 /* Stopped LWPs that the client wanted to be running, that don't have
5233 pending statuses, are set to run again, except for EXCEPT, if not
5234 NULL. This undoes a stop_all_lwps call. */
5235
5236 static void
5237 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5238 {
5239 if (debug_threads)
5240 {
5241 debug_enter ();
5242 if (except)
5243 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5244 lwpid_of (get_lwp_thread (except)));
5245 else
5246 debug_printf ("unstopping all lwps\n");
5247 }
5248
5249 if (unsuspend)
5250 for_each_thread ([&] (thread_info *thread)
5251 {
5252 unsuspend_and_proceed_one_lwp (thread, except);
5253 });
5254 else
5255 for_each_thread ([&] (thread_info *thread)
5256 {
5257 proceed_one_lwp (thread, except);
5258 });
5259
5260 if (debug_threads)
5261 {
5262 debug_printf ("unstop_all_lwps done\n");
5263 debug_exit ();
5264 }
5265 }
5266
5267
5268 #ifdef HAVE_LINUX_REGSETS
5269
5270 #define use_linux_regsets 1
5271
5272 /* Returns true if REGSET has been disabled. */
5273
5274 static int
5275 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5276 {
5277 return (info->disabled_regsets != NULL
5278 && info->disabled_regsets[regset - info->regsets]);
5279 }
5280
5281 /* Disable REGSET. */
5282
5283 static void
5284 disable_regset (struct regsets_info *info, struct regset_info *regset)
5285 {
5286 int dr_offset;
5287
5288 dr_offset = regset - info->regsets;
5289 if (info->disabled_regsets == NULL)
5290 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5291 info->disabled_regsets[dr_offset] = 1;
5292 }
5293
5294 static int
5295 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5296 struct regcache *regcache)
5297 {
5298 struct regset_info *regset;
5299 int saw_general_regs = 0;
5300 int pid;
5301 struct iovec iov;
5302
5303 pid = lwpid_of (current_thread);
5304 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5305 {
5306 void *buf, *data;
5307 int nt_type, res;
5308
5309 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5310 continue;
5311
5312 buf = xmalloc (regset->size);
5313
5314 nt_type = regset->nt_type;
5315 if (nt_type)
5316 {
5317 iov.iov_base = buf;
5318 iov.iov_len = regset->size;
5319 data = (void *) &iov;
5320 }
5321 else
5322 data = buf;
5323
5324 #ifndef __sparc__
5325 res = ptrace (regset->get_request, pid,
5326 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5327 #else
5328 res = ptrace (regset->get_request, pid, data, nt_type);
5329 #endif
5330 if (res < 0)
5331 {
5332 if (errno == EIO
5333 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5334 {
5335 /* If we get EIO on a regset, or an EINVAL and the regset is
5336 optional, do not try it again for this process mode. */
5337 disable_regset (regsets_info, regset);
5338 }
5339 else if (errno == ENODATA)
5340 {
5341 /* ENODATA may be returned if the regset is currently
5342 not "active". This can happen in normal operation,
5343 so suppress the warning in this case. */
5344 }
5345 else if (errno == ESRCH)
5346 {
5347 /* At this point, ESRCH should mean the process is
5348 already gone, in which case we simply ignore attempts
5349 to read its registers. */
5350 }
5351 else
5352 {
5353 char s[256];
5354 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5355 pid);
5356 perror (s);
5357 }
5358 }
5359 else
5360 {
5361 if (regset->type == GENERAL_REGS)
5362 saw_general_regs = 1;
5363 regset->store_function (regcache, buf);
5364 }
5365 free (buf);
5366 }
5367 if (saw_general_regs)
5368 return 0;
5369 else
5370 return 1;
5371 }
5372
5373 static int
5374 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5375 struct regcache *regcache)
5376 {
5377 struct regset_info *regset;
5378 int saw_general_regs = 0;
5379 int pid;
5380 struct iovec iov;
5381
5382 pid = lwpid_of (current_thread);
5383 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5384 {
5385 void *buf, *data;
5386 int nt_type, res;
5387
5388 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5389 || regset->fill_function == NULL)
5390 continue;
5391
5392 buf = xmalloc (regset->size);
5393
5394 /* First fill the buffer with the current register set contents,
5395 in case there are any items in the kernel's regset that are
5396 not in gdbserver's regcache. */
5397
5398 nt_type = regset->nt_type;
5399 if (nt_type)
5400 {
5401 iov.iov_base = buf;
5402 iov.iov_len = regset->size;
5403 data = (void *) &iov;
5404 }
5405 else
5406 data = buf;
5407
5408 #ifndef __sparc__
5409 res = ptrace (regset->get_request, pid,
5410 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5411 #else
5412 res = ptrace (regset->get_request, pid, data, nt_type);
5413 #endif
5414
5415 if (res == 0)
5416 {
5417 /* Then overlay our cached registers on that. */
5418 regset->fill_function (regcache, buf);
5419
5420 /* Only now do we write the register set. */
5421 #ifndef __sparc__
5422 res = ptrace (regset->set_request, pid,
5423 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5424 #else
5425 res = ptrace (regset->set_request, pid, data, nt_type);
5426 #endif
5427 }
5428
5429 if (res < 0)
5430 {
5431 if (errno == EIO
5432 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5433 {
5434 /* If we get EIO on a regset, or an EINVAL and the regset is
5435 optional, do not try it again for this process mode. */
5436 disable_regset (regsets_info, regset);
5437 }
5438 else if (errno == ESRCH)
5439 {
5440 /* At this point, ESRCH should mean the process is
5441 already gone, in which case we simply ignore attempts
5442 to change its registers. See also the related
5443 comment in linux_resume_one_lwp. */
5444 free (buf);
5445 return 0;
5446 }
5447 else
5448 {
5449 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5450 }
5451 }
5452 else if (regset->type == GENERAL_REGS)
5453 saw_general_regs = 1;
5454 free (buf);
5455 }
5456 if (saw_general_regs)
5457 return 0;
5458 else
5459 return 1;
5460 }
5461
5462 #else /* !HAVE_LINUX_REGSETS */
5463
5464 #define use_linux_regsets 0
5465 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5466 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5467
5468 #endif
5469
5470 /* Return 1 if register REGNO is supported by one of the regset ptrace
5471 calls or 0 if it has to be transferred individually. */
5472
5473 static int
5474 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5475 {
5476 unsigned char mask = 1 << (regno % 8);
5477 size_t index = regno / 8;
5478
5479 return (use_linux_regsets
5480 && (regs_info->regset_bitmap == NULL
5481 || (regs_info->regset_bitmap[index] & mask) != 0));
5482 }
5483
5484 #ifdef HAVE_LINUX_USRREGS
5485
5486 static int
5487 register_addr (const struct usrregs_info *usrregs, int regnum)
5488 {
5489 int addr;
5490
5491 if (regnum < 0 || regnum >= usrregs->num_regs)
5492 error ("Invalid register number %d.", regnum);
5493
5494 addr = usrregs->regmap[regnum];
5495
5496 return addr;
5497 }
5498
5499 /* Fetch one register. */
5500 static void
5501 fetch_register (const struct usrregs_info *usrregs,
5502 struct regcache *regcache, int regno)
5503 {
5504 CORE_ADDR regaddr;
5505 int i, size;
5506 char *buf;
5507 int pid;
5508
5509 if (regno >= usrregs->num_regs)
5510 return;
5511 if ((*the_low_target.cannot_fetch_register) (regno))
5512 return;
5513
5514 regaddr = register_addr (usrregs, regno);
5515 if (regaddr == -1)
5516 return;
5517
5518 size = ((register_size (regcache->tdesc, regno)
5519 + sizeof (PTRACE_XFER_TYPE) - 1)
5520 & -sizeof (PTRACE_XFER_TYPE));
5521 buf = (char *) alloca (size);
5522
5523 pid = lwpid_of (current_thread);
5524 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5525 {
5526 errno = 0;
5527 *(PTRACE_XFER_TYPE *) (buf + i) =
5528 ptrace (PTRACE_PEEKUSER, pid,
5529 /* Coerce to a uintptr_t first to avoid potential gcc warning
5530 of coercing an 8 byte integer to a 4 byte pointer. */
5531 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5532 regaddr += sizeof (PTRACE_XFER_TYPE);
5533 if (errno != 0)
5534 {
5535 /* Mark register REGNO unavailable. */
5536 supply_register (regcache, regno, NULL);
5537 return;
5538 }
5539 }
5540
5541 if (the_low_target.supply_ptrace_register)
5542 the_low_target.supply_ptrace_register (regcache, regno, buf);
5543 else
5544 supply_register (regcache, regno, buf);
5545 }
5546
5547 /* Store one register. */
5548 static void
5549 store_register (const struct usrregs_info *usrregs,
5550 struct regcache *regcache, int regno)
5551 {
5552 CORE_ADDR regaddr;
5553 int i, size;
5554 char *buf;
5555 int pid;
5556
5557 if (regno >= usrregs->num_regs)
5558 return;
5559 if ((*the_low_target.cannot_store_register) (regno))
5560 return;
5561
5562 regaddr = register_addr (usrregs, regno);
5563 if (regaddr == -1)
5564 return;
5565
5566 size = ((register_size (regcache->tdesc, regno)
5567 + sizeof (PTRACE_XFER_TYPE) - 1)
5568 & -sizeof (PTRACE_XFER_TYPE));
5569 buf = (char *) alloca (size);
5570 memset (buf, 0, size);
5571
5572 if (the_low_target.collect_ptrace_register)
5573 the_low_target.collect_ptrace_register (regcache, regno, buf);
5574 else
5575 collect_register (regcache, regno, buf);
5576
5577 pid = lwpid_of (current_thread);
5578 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5579 {
5580 errno = 0;
5581 ptrace (PTRACE_POKEUSER, pid,
5582 /* Coerce to a uintptr_t first to avoid potential gcc warning
5583 about coercing an 8 byte integer to a 4 byte pointer. */
5584 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5585 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5586 if (errno != 0)
5587 {
5588 /* At this point, ESRCH should mean the process is
5589 already gone, in which case we simply ignore attempts
5590 to change its registers. See also the related
5591 comment in linux_resume_one_lwp. */
5592 if (errno == ESRCH)
5593 return;
5594
5595 if ((*the_low_target.cannot_store_register) (regno) == 0)
5596 error ("writing register %d: %s", regno, safe_strerror (errno));
5597 }
5598 regaddr += sizeof (PTRACE_XFER_TYPE);
5599 }
5600 }
5601
5602 /* Fetch all registers, or just one, from the child process.
5603 If REGNO is -1, do this for all registers, skipping any that are
5604 assumed to have been retrieved by regsets_fetch_inferior_registers,
5605 unless ALL is non-zero.
5606 Otherwise, REGNO specifies which register (so we can save time). */
5607 static void
5608 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5609 struct regcache *regcache, int regno, int all)
5610 {
5611 struct usrregs_info *usr = regs_info->usrregs;
5612
5613 if (regno == -1)
5614 {
5615 for (regno = 0; regno < usr->num_regs; regno++)
5616 if (all || !linux_register_in_regsets (regs_info, regno))
5617 fetch_register (usr, regcache, regno);
5618 }
5619 else
5620 fetch_register (usr, regcache, regno);
5621 }
5622
5623 /* Store our register values back into the inferior.
5624 If REGNO is -1, do this for all registers, skipping any that are
5625 assumed to have been saved by regsets_store_inferior_registers,
5626 unless ALL is non-zero.
5627 Otherwise, REGNO specifies which register (so we can save time). */
5628 static void
5629 usr_store_inferior_registers (const struct regs_info *regs_info,
5630 struct regcache *regcache, int regno, int all)
5631 {
5632 struct usrregs_info *usr = regs_info->usrregs;
5633
5634 if (regno == -1)
5635 {
5636 for (regno = 0; regno < usr->num_regs; regno++)
5637 if (all || !linux_register_in_regsets (regs_info, regno))
5638 store_register (usr, regcache, regno);
5639 }
5640 else
5641 store_register (usr, regcache, regno);
5642 }
5643
5644 #else /* !HAVE_LINUX_USRREGS */
5645
5646 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5647 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5648
5649 #endif
5650
5651
5652 void
5653 linux_process_target::fetch_registers (regcache *regcache, int regno)
5654 {
5655 int use_regsets;
5656 int all = 0;
5657 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5658
5659 if (regno == -1)
5660 {
5661 if (the_low_target.fetch_register != NULL
5662 && regs_info->usrregs != NULL)
5663 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5664 (*the_low_target.fetch_register) (regcache, regno);
5665
5666 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5667 if (regs_info->usrregs != NULL)
5668 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5669 }
5670 else
5671 {
5672 if (the_low_target.fetch_register != NULL
5673 && (*the_low_target.fetch_register) (regcache, regno))
5674 return;
5675
5676 use_regsets = linux_register_in_regsets (regs_info, regno);
5677 if (use_regsets)
5678 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5679 regcache);
5680 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5681 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5682 }
5683 }
5684
5685 void
5686 linux_process_target::store_registers (regcache *regcache, int regno)
5687 {
5688 int use_regsets;
5689 int all = 0;
5690 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5691
5692 if (regno == -1)
5693 {
5694 all = regsets_store_inferior_registers (regs_info->regsets_info,
5695 regcache);
5696 if (regs_info->usrregs != NULL)
5697 usr_store_inferior_registers (regs_info, regcache, regno, all);
5698 }
5699 else
5700 {
5701 use_regsets = linux_register_in_regsets (regs_info, regno);
5702 if (use_regsets)
5703 all = regsets_store_inferior_registers (regs_info->regsets_info,
5704 regcache);
5705 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5706 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5707 }
5708 }
5709
5710
5711 /* A wrapper for the read_memory target op. */
5712
5713 static int
5714 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5715 {
5716 return the_target->pt->read_memory (memaddr, myaddr, len);
5717 }
5718
5719 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5720 to debugger memory starting at MYADDR. */
5721
5722 int
5723 linux_process_target::read_memory (CORE_ADDR memaddr,
5724 unsigned char *myaddr, int len)
5725 {
5726 int pid = lwpid_of (current_thread);
5727 PTRACE_XFER_TYPE *buffer;
5728 CORE_ADDR addr;
5729 int count;
5730 char filename[64];
5731 int i;
5732 int ret;
5733 int fd;
5734
5735 /* Try using /proc. Don't bother for one word. */
5736 if (len >= 3 * sizeof (long))
5737 {
5738 int bytes;
5739
5740 /* We could keep this file open and cache it - possibly one per
5741 thread. That requires some juggling, but is even faster. */
5742 sprintf (filename, "/proc/%d/mem", pid);
5743 fd = open (filename, O_RDONLY | O_LARGEFILE);
5744 if (fd == -1)
5745 goto no_proc;
5746
5747 /* If pread64 is available, use it. It's faster if the kernel
5748 supports it (only one syscall), and it's 64-bit safe even on
5749 32-bit platforms (for instance, SPARC debugging a SPARC64
5750 application). */
5751 #ifdef HAVE_PREAD64
5752 bytes = pread64 (fd, myaddr, len, memaddr);
5753 #else
5754 bytes = -1;
5755 if (lseek (fd, memaddr, SEEK_SET) != -1)
5756 bytes = read (fd, myaddr, len);
5757 #endif
5758
5759 close (fd);
5760 if (bytes == len)
5761 return 0;
5762
5763 /* Some data was read, we'll try to get the rest with ptrace. */
5764 if (bytes > 0)
5765 {
5766 memaddr += bytes;
5767 myaddr += bytes;
5768 len -= bytes;
5769 }
5770 }
5771
5772 no_proc:
5773 /* Round starting address down to longword boundary. */
5774 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5775 /* Round ending address up; get number of longwords that makes. */
5776 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5777 / sizeof (PTRACE_XFER_TYPE));
5778 /* Allocate buffer of that many longwords. */
5779 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5780
5781 /* Read all the longwords */
5782 errno = 0;
5783 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5784 {
5785 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5786 about coercing an 8 byte integer to a 4 byte pointer. */
5787 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5788 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5789 (PTRACE_TYPE_ARG4) 0);
5790 if (errno)
5791 break;
5792 }
5793 ret = errno;
5794
5795 /* Copy appropriate bytes out of the buffer. */
5796 if (i > 0)
5797 {
5798 i *= sizeof (PTRACE_XFER_TYPE);
5799 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5800 memcpy (myaddr,
5801 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5802 i < len ? i : len);
5803 }
5804
5805 return ret;
5806 }
5807
5808 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5809 memory at MEMADDR. On failure (cannot write to the inferior)
5810 returns the value of errno. Always succeeds if LEN is zero. */
5811
5812 int
5813 linux_process_target::write_memory (CORE_ADDR memaddr,
5814 const unsigned char *myaddr, int len)
5815 {
5816 int i;
5817 /* Round starting address down to longword boundary. */
5818 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5819 /* Round ending address up; get number of longwords that makes. */
5820 int count
5821 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5822 / sizeof (PTRACE_XFER_TYPE);
5823
5824 /* Allocate buffer of that many longwords. */
5825 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5826
5827 int pid = lwpid_of (current_thread);
5828
5829 if (len == 0)
5830 {
5831 /* Zero length write always succeeds. */
5832 return 0;
5833 }
5834
5835 if (debug_threads)
5836 {
5837 /* Dump up to four bytes. */
5838 char str[4 * 2 + 1];
5839 char *p = str;
5840 int dump = len < 4 ? len : 4;
5841
5842 for (i = 0; i < dump; i++)
5843 {
5844 sprintf (p, "%02x", myaddr[i]);
5845 p += 2;
5846 }
5847 *p = '\0';
5848
5849 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5850 str, (long) memaddr, pid);
5851 }
5852
5853 /* Fill start and end extra bytes of buffer with existing memory data. */
5854
5855 errno = 0;
5856 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5857 about coercing an 8 byte integer to a 4 byte pointer. */
5858 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5859 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5860 (PTRACE_TYPE_ARG4) 0);
5861 if (errno)
5862 return errno;
5863
5864 if (count > 1)
5865 {
5866 errno = 0;
5867 buffer[count - 1]
5868 = ptrace (PTRACE_PEEKTEXT, pid,
5869 /* Coerce to a uintptr_t first to avoid potential gcc warning
5870 about coercing an 8 byte integer to a 4 byte pointer. */
5871 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5872 * sizeof (PTRACE_XFER_TYPE)),
5873 (PTRACE_TYPE_ARG4) 0);
5874 if (errno)
5875 return errno;
5876 }
5877
5878 /* Copy data to be written over corresponding part of buffer. */
5879
5880 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5881 myaddr, len);
5882
5883 /* Write the entire buffer. */
5884
5885 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5886 {
5887 errno = 0;
5888 ptrace (PTRACE_POKETEXT, pid,
5889 /* Coerce to a uintptr_t first to avoid potential gcc warning
5890 about coercing an 8 byte integer to a 4 byte pointer. */
5891 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5892 (PTRACE_TYPE_ARG4) buffer[i]);
5893 if (errno)
5894 return errno;
5895 }
5896
5897 return 0;
5898 }
5899
5900 void
5901 linux_process_target::look_up_symbols ()
5902 {
5903 #ifdef USE_THREAD_DB
5904 struct process_info *proc = current_process ();
5905
5906 if (proc->priv->thread_db != NULL)
5907 return;
5908
5909 thread_db_init ();
5910 #endif
5911 }
5912
5913 void
5914 linux_process_target::request_interrupt ()
5915 {
5916 /* Send a SIGINT to the process group. This acts just like the user
5917 typed a ^C on the controlling terminal. */
5918 ::kill (-signal_pid, SIGINT);
5919 }
5920
5921 bool
5922 linux_process_target::supports_read_auxv ()
5923 {
5924 return true;
5925 }
5926
5927 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5928 to debugger memory starting at MYADDR. */
5929
5930 int
5931 linux_process_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr,
5932 unsigned int len)
5933 {
5934 char filename[PATH_MAX];
5935 int fd, n;
5936 int pid = lwpid_of (current_thread);
5937
5938 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5939
5940 fd = open (filename, O_RDONLY);
5941 if (fd < 0)
5942 return -1;
5943
5944 if (offset != (CORE_ADDR) 0
5945 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5946 n = -1;
5947 else
5948 n = read (fd, myaddr, len);
5949
5950 close (fd);
5951
5952 return n;
5953 }
5954
5955 /* These breakpoint and watchpoint related wrapper functions simply
5956 pass on the function call if the target has registered a
5957 corresponding function. */
5958
5959 bool
5960 linux_process_target::supports_z_point_type (char z_type)
5961 {
5962 return (the_low_target.supports_z_point_type != NULL
5963 && the_low_target.supports_z_point_type (z_type));
5964 }
5965
5966 int
5967 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5968 int size, raw_breakpoint *bp)
5969 {
5970 if (type == raw_bkpt_type_sw)
5971 return insert_memory_breakpoint (bp);
5972 else if (the_low_target.insert_point != NULL)
5973 return the_low_target.insert_point (type, addr, size, bp);
5974 else
5975 /* Unsupported (see target.h). */
5976 return 1;
5977 }
5978
5979 int
5980 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5981 int size, raw_breakpoint *bp)
5982 {
5983 if (type == raw_bkpt_type_sw)
5984 return remove_memory_breakpoint (bp);
5985 else if (the_low_target.remove_point != NULL)
5986 return the_low_target.remove_point (type, addr, size, bp);
5987 else
5988 /* Unsupported (see target.h). */
5989 return 1;
5990 }
5991
5992 /* Implement the stopped_by_sw_breakpoint target_ops
5993 method. */
5994
5995 bool
5996 linux_process_target::stopped_by_sw_breakpoint ()
5997 {
5998 struct lwp_info *lwp = get_thread_lwp (current_thread);
5999
6000 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6001 }
6002
6003 /* Implement the supports_stopped_by_sw_breakpoint target_ops
6004 method. */
6005
6006 bool
6007 linux_process_target::supports_stopped_by_sw_breakpoint ()
6008 {
6009 return USE_SIGTRAP_SIGINFO;
6010 }
6011
6012 /* Implement the stopped_by_hw_breakpoint target_ops
6013 method. */
6014
6015 bool
6016 linux_process_target::stopped_by_hw_breakpoint ()
6017 {
6018 struct lwp_info *lwp = get_thread_lwp (current_thread);
6019
6020 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6021 }
6022
6023 /* Implement the supports_stopped_by_hw_breakpoint target_ops
6024 method. */
6025
6026 bool
6027 linux_process_target::supports_stopped_by_hw_breakpoint ()
6028 {
6029 return USE_SIGTRAP_SIGINFO;
6030 }
6031
6032 /* Implement the supports_hardware_single_step target_ops method. */
6033
6034 bool
6035 linux_process_target::supports_hardware_single_step ()
6036 {
6037 return can_hardware_single_step ();
6038 }
6039
6040 static int
6041 linux_supports_software_single_step (void)
6042 {
6043 return can_software_single_step ();
6044 }
6045
6046 bool
6047 linux_process_target::stopped_by_watchpoint ()
6048 {
6049 struct lwp_info *lwp = get_thread_lwp (current_thread);
6050
6051 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6052 }
6053
6054 CORE_ADDR
6055 linux_process_target::stopped_data_address ()
6056 {
6057 struct lwp_info *lwp = get_thread_lwp (current_thread);
6058
6059 return lwp->stopped_data_address;
6060 }
6061
6062 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6063 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6064 && defined(PT_TEXT_END_ADDR)
6065
6066 /* This is only used for targets that define PT_TEXT_ADDR,
6067 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6068 the target has different ways of acquiring this information, like
6069 loadmaps. */
6070
6071 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6072 to tell gdb about. */
6073
6074 static int
6075 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6076 {
6077 unsigned long text, text_end, data;
6078 int pid = lwpid_of (current_thread);
6079
6080 errno = 0;
6081
6082 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6083 (PTRACE_TYPE_ARG4) 0);
6084 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6085 (PTRACE_TYPE_ARG4) 0);
6086 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6087 (PTRACE_TYPE_ARG4) 0);
6088
6089 if (errno == 0)
6090 {
6091 /* Both text and data offsets produced at compile-time (and so
6092 used by gdb) are relative to the beginning of the program,
6093 with the data segment immediately following the text segment.
6094 However, the actual runtime layout in memory may put the data
6095 somewhere else, so when we send gdb a data base-address, we
6096 use the real data base address and subtract the compile-time
6097 data base-address from it (which is just the length of the
6098 text segment). BSS immediately follows data in both
6099 cases. */
6100 *text_p = text;
6101 *data_p = data - (text_end - text);
6102
6103 return 1;
6104 }
6105 return 0;
6106 }
6107 #endif
6108
6109 static int
6110 linux_qxfer_osdata (const char *annex,
6111 unsigned char *readbuf, unsigned const char *writebuf,
6112 CORE_ADDR offset, int len)
6113 {
6114 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6115 }
6116
6117 /* Convert a native/host siginfo object, into/from the siginfo in the
6118 layout of the inferiors' architecture. */
6119
6120 static void
6121 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6122 {
6123 int done = 0;
6124
6125 if (the_low_target.siginfo_fixup != NULL)
6126 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6127
6128 /* If there was no callback, or the callback didn't do anything,
6129 then just do a straight memcpy. */
6130 if (!done)
6131 {
6132 if (direction == 1)
6133 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6134 else
6135 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6136 }
6137 }
6138
6139 static int
6140 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6141 unsigned const char *writebuf, CORE_ADDR offset, int len)
6142 {
6143 int pid;
6144 siginfo_t siginfo;
6145 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6146
6147 if (current_thread == NULL)
6148 return -1;
6149
6150 pid = lwpid_of (current_thread);
6151
6152 if (debug_threads)
6153 debug_printf ("%s siginfo for lwp %d.\n",
6154 readbuf != NULL ? "Reading" : "Writing",
6155 pid);
6156
6157 if (offset >= sizeof (siginfo))
6158 return -1;
6159
6160 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6161 return -1;
6162
6163 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6164 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6165 inferior with a 64-bit GDBSERVER should look the same as debugging it
6166 with a 32-bit GDBSERVER, we need to convert it. */
6167 siginfo_fixup (&siginfo, inf_siginfo, 0);
6168
6169 if (offset + len > sizeof (siginfo))
6170 len = sizeof (siginfo) - offset;
6171
6172 if (readbuf != NULL)
6173 memcpy (readbuf, inf_siginfo + offset, len);
6174 else
6175 {
6176 memcpy (inf_siginfo + offset, writebuf, len);
6177
6178 /* Convert back to ptrace layout before flushing it out. */
6179 siginfo_fixup (&siginfo, inf_siginfo, 1);
6180
6181 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6182 return -1;
6183 }
6184
6185 return len;
6186 }
6187
6188 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6189 so we notice when children change state; as the handler for the
6190 sigsuspend in my_waitpid. */
6191
6192 static void
6193 sigchld_handler (int signo)
6194 {
6195 int old_errno = errno;
6196
6197 if (debug_threads)
6198 {
6199 do
6200 {
6201 /* Use the async signal safe debug function. */
6202 if (debug_write ("sigchld_handler\n",
6203 sizeof ("sigchld_handler\n") - 1) < 0)
6204 break; /* just ignore */
6205 } while (0);
6206 }
6207
6208 if (target_is_async_p ())
6209 async_file_mark (); /* trigger a linux_wait */
6210
6211 errno = old_errno;
6212 }
6213
6214 static int
6215 linux_supports_non_stop (void)
6216 {
6217 return 1;
6218 }
6219
6220 static int
6221 linux_async (int enable)
6222 {
6223 int previous = target_is_async_p ();
6224
6225 if (debug_threads)
6226 debug_printf ("linux_async (%d), previous=%d\n",
6227 enable, previous);
6228
6229 if (previous != enable)
6230 {
6231 sigset_t mask;
6232 sigemptyset (&mask);
6233 sigaddset (&mask, SIGCHLD);
6234
6235 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6236
6237 if (enable)
6238 {
6239 if (pipe (linux_event_pipe) == -1)
6240 {
6241 linux_event_pipe[0] = -1;
6242 linux_event_pipe[1] = -1;
6243 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6244
6245 warning ("creating event pipe failed.");
6246 return previous;
6247 }
6248
6249 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6250 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6251
6252 /* Register the event loop handler. */
6253 add_file_handler (linux_event_pipe[0],
6254 handle_target_event, NULL);
6255
6256 /* Always trigger a linux_wait. */
6257 async_file_mark ();
6258 }
6259 else
6260 {
6261 delete_file_handler (linux_event_pipe[0]);
6262
6263 close (linux_event_pipe[0]);
6264 close (linux_event_pipe[1]);
6265 linux_event_pipe[0] = -1;
6266 linux_event_pipe[1] = -1;
6267 }
6268
6269 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6270 }
6271
6272 return previous;
6273 }
6274
6275 static int
6276 linux_start_non_stop (int nonstop)
6277 {
6278 /* Register or unregister from event-loop accordingly. */
6279 linux_async (nonstop);
6280
6281 if (target_is_async_p () != (nonstop != 0))
6282 return -1;
6283
6284 return 0;
6285 }
6286
6287 static int
6288 linux_supports_multi_process (void)
6289 {
6290 return 1;
6291 }
6292
6293 /* Check if fork events are supported. */
6294
6295 static int
6296 linux_supports_fork_events (void)
6297 {
6298 return linux_supports_tracefork ();
6299 }
6300
6301 /* Check if vfork events are supported. */
6302
6303 static int
6304 linux_supports_vfork_events (void)
6305 {
6306 return linux_supports_tracefork ();
6307 }
6308
6309 /* Check if exec events are supported. */
6310
6311 static int
6312 linux_supports_exec_events (void)
6313 {
6314 return linux_supports_traceexec ();
6315 }
6316
6317 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6318 ptrace flags for all inferiors. This is in case the new GDB connection
6319 doesn't support the same set of events that the previous one did. */
6320
6321 static void
6322 linux_handle_new_gdb_connection (void)
6323 {
6324 /* Request that all the lwps reset their ptrace options. */
6325 for_each_thread ([] (thread_info *thread)
6326 {
6327 struct lwp_info *lwp = get_thread_lwp (thread);
6328
6329 if (!lwp->stopped)
6330 {
6331 /* Stop the lwp so we can modify its ptrace options. */
6332 lwp->must_set_ptrace_flags = 1;
6333 linux_stop_lwp (lwp);
6334 }
6335 else
6336 {
6337 /* Already stopped; go ahead and set the ptrace options. */
6338 struct process_info *proc = find_process_pid (pid_of (thread));
6339 int options = linux_low_ptrace_options (proc->attached);
6340
6341 linux_enable_event_reporting (lwpid_of (thread), options);
6342 lwp->must_set_ptrace_flags = 0;
6343 }
6344 });
6345 }
6346
6347 static int
6348 linux_supports_disable_randomization (void)
6349 {
6350 #ifdef HAVE_PERSONALITY
6351 return 1;
6352 #else
6353 return 0;
6354 #endif
6355 }
6356
6357 static int
6358 linux_supports_agent (void)
6359 {
6360 return 1;
6361 }
6362
6363 static int
6364 linux_supports_range_stepping (void)
6365 {
6366 if (can_software_single_step ())
6367 return 1;
6368 if (*the_low_target.supports_range_stepping == NULL)
6369 return 0;
6370
6371 return (*the_low_target.supports_range_stepping) ();
6372 }
6373
6374 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6375 struct target_loadseg
6376 {
6377 /* Core address to which the segment is mapped. */
6378 Elf32_Addr addr;
6379 /* VMA recorded in the program header. */
6380 Elf32_Addr p_vaddr;
6381 /* Size of this segment in memory. */
6382 Elf32_Word p_memsz;
6383 };
6384
6385 # if defined PT_GETDSBT
6386 struct target_loadmap
6387 {
6388 /* Protocol version number, must be zero. */
6389 Elf32_Word version;
6390 /* Pointer to the DSBT table, its size, and the DSBT index. */
6391 unsigned *dsbt_table;
6392 unsigned dsbt_size, dsbt_index;
6393 /* Number of segments in this map. */
6394 Elf32_Word nsegs;
6395 /* The actual memory map. */
6396 struct target_loadseg segs[/*nsegs*/];
6397 };
6398 # define LINUX_LOADMAP PT_GETDSBT
6399 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6400 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6401 # else
6402 struct target_loadmap
6403 {
6404 /* Protocol version number, must be zero. */
6405 Elf32_Half version;
6406 /* Number of segments in this map. */
6407 Elf32_Half nsegs;
6408 /* The actual memory map. */
6409 struct target_loadseg segs[/*nsegs*/];
6410 };
6411 # define LINUX_LOADMAP PTRACE_GETFDPIC
6412 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6413 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6414 # endif
6415
6416 static int
6417 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6418 unsigned char *myaddr, unsigned int len)
6419 {
6420 int pid = lwpid_of (current_thread);
6421 int addr = -1;
6422 struct target_loadmap *data = NULL;
6423 unsigned int actual_length, copy_length;
6424
6425 if (strcmp (annex, "exec") == 0)
6426 addr = (int) LINUX_LOADMAP_EXEC;
6427 else if (strcmp (annex, "interp") == 0)
6428 addr = (int) LINUX_LOADMAP_INTERP;
6429 else
6430 return -1;
6431
6432 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6433 return -1;
6434
6435 if (data == NULL)
6436 return -1;
6437
6438 actual_length = sizeof (struct target_loadmap)
6439 + sizeof (struct target_loadseg) * data->nsegs;
6440
6441 if (offset < 0 || offset > actual_length)
6442 return -1;
6443
6444 copy_length = actual_length - offset < len ? actual_length - offset : len;
6445 memcpy (myaddr, (char *) data + offset, copy_length);
6446 return copy_length;
6447 }
6448 #else
6449 # define linux_read_loadmap NULL
6450 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6451
6452 static void
6453 linux_process_qsupported (char **features, int count)
6454 {
6455 if (the_low_target.process_qsupported != NULL)
6456 the_low_target.process_qsupported (features, count);
6457 }
6458
6459 static int
6460 linux_supports_catch_syscall (void)
6461 {
6462 return (the_low_target.get_syscall_trapinfo != NULL
6463 && linux_supports_tracesysgood ());
6464 }
6465
6466 static int
6467 linux_get_ipa_tdesc_idx (void)
6468 {
6469 if (the_low_target.get_ipa_tdesc_idx == NULL)
6470 return 0;
6471
6472 return (*the_low_target.get_ipa_tdesc_idx) ();
6473 }
6474
6475 static int
6476 linux_supports_tracepoints (void)
6477 {
6478 if (*the_low_target.supports_tracepoints == NULL)
6479 return 0;
6480
6481 return (*the_low_target.supports_tracepoints) ();
6482 }
6483
6484 static CORE_ADDR
6485 linux_read_pc (struct regcache *regcache)
6486 {
6487 if (the_low_target.get_pc == NULL)
6488 return 0;
6489
6490 return (*the_low_target.get_pc) (regcache);
6491 }
6492
6493 static void
6494 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6495 {
6496 gdb_assert (the_low_target.set_pc != NULL);
6497
6498 (*the_low_target.set_pc) (regcache, pc);
6499 }
6500
6501 static int
6502 linux_thread_stopped (struct thread_info *thread)
6503 {
6504 return get_thread_lwp (thread)->stopped;
6505 }
6506
6507 /* This exposes stop-all-threads functionality to other modules. */
6508
6509 static void
6510 linux_pause_all (int freeze)
6511 {
6512 stop_all_lwps (freeze, NULL);
6513 }
6514
6515 /* This exposes unstop-all-threads functionality to other gdbserver
6516 modules. */
6517
6518 static void
6519 linux_unpause_all (int unfreeze)
6520 {
6521 unstop_all_lwps (unfreeze, NULL);
6522 }
6523
6524 int
6525 linux_process_target::prepare_to_access_memory ()
6526 {
6527 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6528 running LWP. */
6529 if (non_stop)
6530 linux_pause_all (1);
6531 return 0;
6532 }
6533
6534 void
6535 linux_process_target::done_accessing_memory ()
6536 {
6537 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6538 running LWP. */
6539 if (non_stop)
6540 linux_unpause_all (1);
6541 }
6542
6543 static int
6544 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6545 CORE_ADDR collector,
6546 CORE_ADDR lockaddr,
6547 ULONGEST orig_size,
6548 CORE_ADDR *jump_entry,
6549 CORE_ADDR *trampoline,
6550 ULONGEST *trampoline_size,
6551 unsigned char *jjump_pad_insn,
6552 ULONGEST *jjump_pad_insn_size,
6553 CORE_ADDR *adjusted_insn_addr,
6554 CORE_ADDR *adjusted_insn_addr_end,
6555 char *err)
6556 {
6557 return (*the_low_target.install_fast_tracepoint_jump_pad)
6558 (tpoint, tpaddr, collector, lockaddr, orig_size,
6559 jump_entry, trampoline, trampoline_size,
6560 jjump_pad_insn, jjump_pad_insn_size,
6561 adjusted_insn_addr, adjusted_insn_addr_end,
6562 err);
6563 }
6564
6565 static struct emit_ops *
6566 linux_emit_ops (void)
6567 {
6568 if (the_low_target.emit_ops != NULL)
6569 return (*the_low_target.emit_ops) ();
6570 else
6571 return NULL;
6572 }
6573
6574 static int
6575 linux_get_min_fast_tracepoint_insn_len (void)
6576 {
6577 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6578 }
6579
6580 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6581
6582 static int
6583 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6584 CORE_ADDR *phdr_memaddr, int *num_phdr)
6585 {
6586 char filename[PATH_MAX];
6587 int fd;
6588 const int auxv_size = is_elf64
6589 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6590 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6591
6592 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6593
6594 fd = open (filename, O_RDONLY);
6595 if (fd < 0)
6596 return 1;
6597
6598 *phdr_memaddr = 0;
6599 *num_phdr = 0;
6600 while (read (fd, buf, auxv_size) == auxv_size
6601 && (*phdr_memaddr == 0 || *num_phdr == 0))
6602 {
6603 if (is_elf64)
6604 {
6605 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6606
6607 switch (aux->a_type)
6608 {
6609 case AT_PHDR:
6610 *phdr_memaddr = aux->a_un.a_val;
6611 break;
6612 case AT_PHNUM:
6613 *num_phdr = aux->a_un.a_val;
6614 break;
6615 }
6616 }
6617 else
6618 {
6619 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6620
6621 switch (aux->a_type)
6622 {
6623 case AT_PHDR:
6624 *phdr_memaddr = aux->a_un.a_val;
6625 break;
6626 case AT_PHNUM:
6627 *num_phdr = aux->a_un.a_val;
6628 break;
6629 }
6630 }
6631 }
6632
6633 close (fd);
6634
6635 if (*phdr_memaddr == 0 || *num_phdr == 0)
6636 {
6637 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6638 "phdr_memaddr = %ld, phdr_num = %d",
6639 (long) *phdr_memaddr, *num_phdr);
6640 return 2;
6641 }
6642
6643 return 0;
6644 }
6645
6646 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6647
6648 static CORE_ADDR
6649 get_dynamic (const int pid, const int is_elf64)
6650 {
6651 CORE_ADDR phdr_memaddr, relocation;
6652 int num_phdr, i;
6653 unsigned char *phdr_buf;
6654 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6655
6656 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6657 return 0;
6658
6659 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6660 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6661
6662 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6663 return 0;
6664
6665 /* Compute relocation: it is expected to be 0 for "regular" executables,
6666 non-zero for PIE ones. */
6667 relocation = -1;
6668 for (i = 0; relocation == -1 && i < num_phdr; i++)
6669 if (is_elf64)
6670 {
6671 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6672
6673 if (p->p_type == PT_PHDR)
6674 relocation = phdr_memaddr - p->p_vaddr;
6675 }
6676 else
6677 {
6678 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6679
6680 if (p->p_type == PT_PHDR)
6681 relocation = phdr_memaddr - p->p_vaddr;
6682 }
6683
6684 if (relocation == -1)
6685 {
6686 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6687 any real world executables, including PIE executables, have always
6688 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6689 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6690 or present DT_DEBUG anyway (fpc binaries are statically linked).
6691
6692 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6693
6694 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6695
6696 return 0;
6697 }
6698
6699 for (i = 0; i < num_phdr; i++)
6700 {
6701 if (is_elf64)
6702 {
6703 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6704
6705 if (p->p_type == PT_DYNAMIC)
6706 return p->p_vaddr + relocation;
6707 }
6708 else
6709 {
6710 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6711
6712 if (p->p_type == PT_DYNAMIC)
6713 return p->p_vaddr + relocation;
6714 }
6715 }
6716
6717 return 0;
6718 }
6719
6720 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6721 can be 0 if the inferior does not yet have the library list initialized.
6722 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6723 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6724
6725 static CORE_ADDR
6726 get_r_debug (const int pid, const int is_elf64)
6727 {
6728 CORE_ADDR dynamic_memaddr;
6729 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6730 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6731 CORE_ADDR map = -1;
6732
6733 dynamic_memaddr = get_dynamic (pid, is_elf64);
6734 if (dynamic_memaddr == 0)
6735 return map;
6736
6737 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6738 {
6739 if (is_elf64)
6740 {
6741 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6742 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6743 union
6744 {
6745 Elf64_Xword map;
6746 unsigned char buf[sizeof (Elf64_Xword)];
6747 }
6748 rld_map;
6749 #endif
6750 #ifdef DT_MIPS_RLD_MAP
6751 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6752 {
6753 if (linux_read_memory (dyn->d_un.d_val,
6754 rld_map.buf, sizeof (rld_map.buf)) == 0)
6755 return rld_map.map;
6756 else
6757 break;
6758 }
6759 #endif /* DT_MIPS_RLD_MAP */
6760 #ifdef DT_MIPS_RLD_MAP_REL
6761 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6762 {
6763 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6764 rld_map.buf, sizeof (rld_map.buf)) == 0)
6765 return rld_map.map;
6766 else
6767 break;
6768 }
6769 #endif /* DT_MIPS_RLD_MAP_REL */
6770
6771 if (dyn->d_tag == DT_DEBUG && map == -1)
6772 map = dyn->d_un.d_val;
6773
6774 if (dyn->d_tag == DT_NULL)
6775 break;
6776 }
6777 else
6778 {
6779 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6780 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6781 union
6782 {
6783 Elf32_Word map;
6784 unsigned char buf[sizeof (Elf32_Word)];
6785 }
6786 rld_map;
6787 #endif
6788 #ifdef DT_MIPS_RLD_MAP
6789 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6790 {
6791 if (linux_read_memory (dyn->d_un.d_val,
6792 rld_map.buf, sizeof (rld_map.buf)) == 0)
6793 return rld_map.map;
6794 else
6795 break;
6796 }
6797 #endif /* DT_MIPS_RLD_MAP */
6798 #ifdef DT_MIPS_RLD_MAP_REL
6799 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6800 {
6801 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6802 rld_map.buf, sizeof (rld_map.buf)) == 0)
6803 return rld_map.map;
6804 else
6805 break;
6806 }
6807 #endif /* DT_MIPS_RLD_MAP_REL */
6808
6809 if (dyn->d_tag == DT_DEBUG && map == -1)
6810 map = dyn->d_un.d_val;
6811
6812 if (dyn->d_tag == DT_NULL)
6813 break;
6814 }
6815
6816 dynamic_memaddr += dyn_size;
6817 }
6818
6819 return map;
6820 }
6821
6822 /* Read one pointer from MEMADDR in the inferior. */
6823
6824 static int
6825 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6826 {
6827 int ret;
6828
6829 /* Go through a union so this works on either big or little endian
6830 hosts, when the inferior's pointer size is smaller than the size
6831 of CORE_ADDR. It is assumed the inferior's endianness is the
6832 same of the superior's. */
6833 union
6834 {
6835 CORE_ADDR core_addr;
6836 unsigned int ui;
6837 unsigned char uc;
6838 } addr;
6839
6840 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6841 if (ret == 0)
6842 {
6843 if (ptr_size == sizeof (CORE_ADDR))
6844 *ptr = addr.core_addr;
6845 else if (ptr_size == sizeof (unsigned int))
6846 *ptr = addr.ui;
6847 else
6848 gdb_assert_not_reached ("unhandled pointer size");
6849 }
6850 return ret;
6851 }
6852
6853 struct link_map_offsets
6854 {
6855 /* Offset and size of r_debug.r_version. */
6856 int r_version_offset;
6857
6858 /* Offset and size of r_debug.r_map. */
6859 int r_map_offset;
6860
6861 /* Offset to l_addr field in struct link_map. */
6862 int l_addr_offset;
6863
6864 /* Offset to l_name field in struct link_map. */
6865 int l_name_offset;
6866
6867 /* Offset to l_ld field in struct link_map. */
6868 int l_ld_offset;
6869
6870 /* Offset to l_next field in struct link_map. */
6871 int l_next_offset;
6872
6873 /* Offset to l_prev field in struct link_map. */
6874 int l_prev_offset;
6875 };
6876
6877 /* Construct qXfer:libraries-svr4:read reply. */
6878
6879 static int
6880 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6881 unsigned const char *writebuf,
6882 CORE_ADDR offset, int len)
6883 {
6884 struct process_info_private *const priv = current_process ()->priv;
6885 char filename[PATH_MAX];
6886 int pid, is_elf64;
6887
6888 static const struct link_map_offsets lmo_32bit_offsets =
6889 {
6890 0, /* r_version offset. */
6891 4, /* r_debug.r_map offset. */
6892 0, /* l_addr offset in link_map. */
6893 4, /* l_name offset in link_map. */
6894 8, /* l_ld offset in link_map. */
6895 12, /* l_next offset in link_map. */
6896 16 /* l_prev offset in link_map. */
6897 };
6898
6899 static const struct link_map_offsets lmo_64bit_offsets =
6900 {
6901 0, /* r_version offset. */
6902 8, /* r_debug.r_map offset. */
6903 0, /* l_addr offset in link_map. */
6904 8, /* l_name offset in link_map. */
6905 16, /* l_ld offset in link_map. */
6906 24, /* l_next offset in link_map. */
6907 32 /* l_prev offset in link_map. */
6908 };
6909 const struct link_map_offsets *lmo;
6910 unsigned int machine;
6911 int ptr_size;
6912 CORE_ADDR lm_addr = 0, lm_prev = 0;
6913 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6914 int header_done = 0;
6915
6916 if (writebuf != NULL)
6917 return -2;
6918 if (readbuf == NULL)
6919 return -1;
6920
6921 pid = lwpid_of (current_thread);
6922 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6923 is_elf64 = elf_64_file_p (filename, &machine);
6924 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6925 ptr_size = is_elf64 ? 8 : 4;
6926
6927 while (annex[0] != '\0')
6928 {
6929 const char *sep;
6930 CORE_ADDR *addrp;
6931 int name_len;
6932
6933 sep = strchr (annex, '=');
6934 if (sep == NULL)
6935 break;
6936
6937 name_len = sep - annex;
6938 if (name_len == 5 && startswith (annex, "start"))
6939 addrp = &lm_addr;
6940 else if (name_len == 4 && startswith (annex, "prev"))
6941 addrp = &lm_prev;
6942 else
6943 {
6944 annex = strchr (sep, ';');
6945 if (annex == NULL)
6946 break;
6947 annex++;
6948 continue;
6949 }
6950
6951 annex = decode_address_to_semicolon (addrp, sep + 1);
6952 }
6953
6954 if (lm_addr == 0)
6955 {
6956 int r_version = 0;
6957
6958 if (priv->r_debug == 0)
6959 priv->r_debug = get_r_debug (pid, is_elf64);
6960
6961 /* We failed to find DT_DEBUG. Such situation will not change
6962 for this inferior - do not retry it. Report it to GDB as
6963 E01, see for the reasons at the GDB solib-svr4.c side. */
6964 if (priv->r_debug == (CORE_ADDR) -1)
6965 return -1;
6966
6967 if (priv->r_debug != 0)
6968 {
6969 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6970 (unsigned char *) &r_version,
6971 sizeof (r_version)) != 0
6972 || r_version != 1)
6973 {
6974 warning ("unexpected r_debug version %d", r_version);
6975 }
6976 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6977 &lm_addr, ptr_size) != 0)
6978 {
6979 warning ("unable to read r_map from 0x%lx",
6980 (long) priv->r_debug + lmo->r_map_offset);
6981 }
6982 }
6983 }
6984
6985 std::string document = "<library-list-svr4 version=\"1.0\"";
6986
6987 while (lm_addr
6988 && read_one_ptr (lm_addr + lmo->l_name_offset,
6989 &l_name, ptr_size) == 0
6990 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6991 &l_addr, ptr_size) == 0
6992 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6993 &l_ld, ptr_size) == 0
6994 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6995 &l_prev, ptr_size) == 0
6996 && read_one_ptr (lm_addr + lmo->l_next_offset,
6997 &l_next, ptr_size) == 0)
6998 {
6999 unsigned char libname[PATH_MAX];
7000
7001 if (lm_prev != l_prev)
7002 {
7003 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7004 (long) lm_prev, (long) l_prev);
7005 break;
7006 }
7007
7008 /* Ignore the first entry even if it has valid name as the first entry
7009 corresponds to the main executable. The first entry should not be
7010 skipped if the dynamic loader was loaded late by a static executable
7011 (see solib-svr4.c parameter ignore_first). But in such case the main
7012 executable does not have PT_DYNAMIC present and this function already
7013 exited above due to failed get_r_debug. */
7014 if (lm_prev == 0)
7015 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7016 else
7017 {
7018 /* Not checking for error because reading may stop before
7019 we've got PATH_MAX worth of characters. */
7020 libname[0] = '\0';
7021 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7022 libname[sizeof (libname) - 1] = '\0';
7023 if (libname[0] != '\0')
7024 {
7025 if (!header_done)
7026 {
7027 /* Terminate `<library-list-svr4'. */
7028 document += '>';
7029 header_done = 1;
7030 }
7031
7032 string_appendf (document, "<library name=\"");
7033 xml_escape_text_append (&document, (char *) libname);
7034 string_appendf (document, "\" lm=\"0x%lx\" "
7035 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7036 (unsigned long) lm_addr, (unsigned long) l_addr,
7037 (unsigned long) l_ld);
7038 }
7039 }
7040
7041 lm_prev = lm_addr;
7042 lm_addr = l_next;
7043 }
7044
7045 if (!header_done)
7046 {
7047 /* Empty list; terminate `<library-list-svr4'. */
7048 document += "/>";
7049 }
7050 else
7051 document += "</library-list-svr4>";
7052
7053 int document_len = document.length ();
7054 if (offset < document_len)
7055 document_len -= offset;
7056 else
7057 document_len = 0;
7058 if (len > document_len)
7059 len = document_len;
7060
7061 memcpy (readbuf, document.data () + offset, len);
7062
7063 return len;
7064 }
7065
7066 #ifdef HAVE_LINUX_BTRACE
7067
7068 /* See to_disable_btrace target method. */
7069
7070 static int
7071 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7072 {
7073 enum btrace_error err;
7074
7075 err = linux_disable_btrace (tinfo);
7076 return (err == BTRACE_ERR_NONE ? 0 : -1);
7077 }
7078
7079 /* Encode an Intel Processor Trace configuration. */
7080
7081 static void
7082 linux_low_encode_pt_config (struct buffer *buffer,
7083 const struct btrace_data_pt_config *config)
7084 {
7085 buffer_grow_str (buffer, "<pt-config>\n");
7086
7087 switch (config->cpu.vendor)
7088 {
7089 case CV_INTEL:
7090 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7091 "model=\"%u\" stepping=\"%u\"/>\n",
7092 config->cpu.family, config->cpu.model,
7093 config->cpu.stepping);
7094 break;
7095
7096 default:
7097 break;
7098 }
7099
7100 buffer_grow_str (buffer, "</pt-config>\n");
7101 }
7102
7103 /* Encode a raw buffer. */
7104
7105 static void
7106 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7107 unsigned int size)
7108 {
7109 if (size == 0)
7110 return;
7111
7112 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7113 buffer_grow_str (buffer, "<raw>\n");
7114
7115 while (size-- > 0)
7116 {
7117 char elem[2];
7118
7119 elem[0] = tohex ((*data >> 4) & 0xf);
7120 elem[1] = tohex (*data++ & 0xf);
7121
7122 buffer_grow (buffer, elem, 2);
7123 }
7124
7125 buffer_grow_str (buffer, "</raw>\n");
7126 }
7127
7128 /* See to_read_btrace target method. */
7129
7130 static int
7131 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7132 enum btrace_read_type type)
7133 {
7134 struct btrace_data btrace;
7135 enum btrace_error err;
7136
7137 err = linux_read_btrace (&btrace, tinfo, type);
7138 if (err != BTRACE_ERR_NONE)
7139 {
7140 if (err == BTRACE_ERR_OVERFLOW)
7141 buffer_grow_str0 (buffer, "E.Overflow.");
7142 else
7143 buffer_grow_str0 (buffer, "E.Generic Error.");
7144
7145 return -1;
7146 }
7147
7148 switch (btrace.format)
7149 {
7150 case BTRACE_FORMAT_NONE:
7151 buffer_grow_str0 (buffer, "E.No Trace.");
7152 return -1;
7153
7154 case BTRACE_FORMAT_BTS:
7155 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7156 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7157
7158 for (const btrace_block &block : *btrace.variant.bts.blocks)
7159 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7160 paddress (block.begin), paddress (block.end));
7161
7162 buffer_grow_str0 (buffer, "</btrace>\n");
7163 break;
7164
7165 case BTRACE_FORMAT_PT:
7166 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7167 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7168 buffer_grow_str (buffer, "<pt>\n");
7169
7170 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7171
7172 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7173 btrace.variant.pt.size);
7174
7175 buffer_grow_str (buffer, "</pt>\n");
7176 buffer_grow_str0 (buffer, "</btrace>\n");
7177 break;
7178
7179 default:
7180 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7181 return -1;
7182 }
7183
7184 return 0;
7185 }
7186
7187 /* See to_btrace_conf target method. */
7188
7189 static int
7190 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7191 struct buffer *buffer)
7192 {
7193 const struct btrace_config *conf;
7194
7195 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7196 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7197
7198 conf = linux_btrace_conf (tinfo);
7199 if (conf != NULL)
7200 {
7201 switch (conf->format)
7202 {
7203 case BTRACE_FORMAT_NONE:
7204 break;
7205
7206 case BTRACE_FORMAT_BTS:
7207 buffer_xml_printf (buffer, "<bts");
7208 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7209 buffer_xml_printf (buffer, " />\n");
7210 break;
7211
7212 case BTRACE_FORMAT_PT:
7213 buffer_xml_printf (buffer, "<pt");
7214 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7215 buffer_xml_printf (buffer, "/>\n");
7216 break;
7217 }
7218 }
7219
7220 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7221 return 0;
7222 }
7223 #endif /* HAVE_LINUX_BTRACE */
7224
7225 /* See nat/linux-nat.h. */
7226
7227 ptid_t
7228 current_lwp_ptid (void)
7229 {
7230 return ptid_of (current_thread);
7231 }
7232
7233 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7234
7235 static int
7236 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7237 {
7238 if (the_low_target.breakpoint_kind_from_pc != NULL)
7239 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7240 else
7241 return default_breakpoint_kind_from_pc (pcptr);
7242 }
7243
7244 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7245
7246 static const gdb_byte *
7247 linux_sw_breakpoint_from_kind (int kind, int *size)
7248 {
7249 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7250
7251 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7252 }
7253
7254 /* Implementation of the target_ops method
7255 "breakpoint_kind_from_current_state". */
7256
7257 static int
7258 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7259 {
7260 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7261 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7262 else
7263 return linux_breakpoint_kind_from_pc (pcptr);
7264 }
7265
7266 /* Default implementation of linux_target_ops method "set_pc" for
7267 32-bit pc register which is literally named "pc". */
7268
7269 void
7270 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7271 {
7272 uint32_t newpc = pc;
7273
7274 supply_register_by_name (regcache, "pc", &newpc);
7275 }
7276
7277 /* Default implementation of linux_target_ops method "get_pc" for
7278 32-bit pc register which is literally named "pc". */
7279
7280 CORE_ADDR
7281 linux_get_pc_32bit (struct regcache *regcache)
7282 {
7283 uint32_t pc;
7284
7285 collect_register_by_name (regcache, "pc", &pc);
7286 if (debug_threads)
7287 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7288 return pc;
7289 }
7290
7291 /* Default implementation of linux_target_ops method "set_pc" for
7292 64-bit pc register which is literally named "pc". */
7293
7294 void
7295 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7296 {
7297 uint64_t newpc = pc;
7298
7299 supply_register_by_name (regcache, "pc", &newpc);
7300 }
7301
7302 /* Default implementation of linux_target_ops method "get_pc" for
7303 64-bit pc register which is literally named "pc". */
7304
7305 CORE_ADDR
7306 linux_get_pc_64bit (struct regcache *regcache)
7307 {
7308 uint64_t pc;
7309
7310 collect_register_by_name (regcache, "pc", &pc);
7311 if (debug_threads)
7312 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7313 return pc;
7314 }
7315
7316 /* See linux-low.h. */
7317
7318 int
7319 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7320 {
7321 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7322 int offset = 0;
7323
7324 gdb_assert (wordsize == 4 || wordsize == 8);
7325
7326 while (the_target->pt->read_auxv (offset, data, 2 * wordsize) == 2 * wordsize)
7327 {
7328 if (wordsize == 4)
7329 {
7330 uint32_t *data_p = (uint32_t *) data;
7331 if (data_p[0] == match)
7332 {
7333 *valp = data_p[1];
7334 return 1;
7335 }
7336 }
7337 else
7338 {
7339 uint64_t *data_p = (uint64_t *) data;
7340 if (data_p[0] == match)
7341 {
7342 *valp = data_p[1];
7343 return 1;
7344 }
7345 }
7346
7347 offset += 2 * wordsize;
7348 }
7349
7350 return 0;
7351 }
7352
7353 /* See linux-low.h. */
7354
7355 CORE_ADDR
7356 linux_get_hwcap (int wordsize)
7357 {
7358 CORE_ADDR hwcap = 0;
7359 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7360 return hwcap;
7361 }
7362
7363 /* See linux-low.h. */
7364
7365 CORE_ADDR
7366 linux_get_hwcap2 (int wordsize)
7367 {
7368 CORE_ADDR hwcap2 = 0;
7369 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7370 return hwcap2;
7371 }
7372
7373 /* The linux target ops object. */
7374
7375 static linux_process_target the_linux_target;
7376
7377 static process_stratum_target linux_target_ops = {
7378 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7379 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7380 && defined(PT_TEXT_END_ADDR)
7381 linux_read_offsets,
7382 #else
7383 NULL,
7384 #endif
7385 #ifdef USE_THREAD_DB
7386 thread_db_get_tls_address,
7387 #else
7388 NULL,
7389 #endif
7390 hostio_last_error_from_errno,
7391 linux_qxfer_osdata,
7392 linux_xfer_siginfo,
7393 linux_supports_non_stop,
7394 linux_async,
7395 linux_start_non_stop,
7396 linux_supports_multi_process,
7397 linux_supports_fork_events,
7398 linux_supports_vfork_events,
7399 linux_supports_exec_events,
7400 linux_handle_new_gdb_connection,
7401 #ifdef USE_THREAD_DB
7402 thread_db_handle_monitor_command,
7403 #else
7404 NULL,
7405 #endif
7406 linux_common_core_of_thread,
7407 linux_read_loadmap,
7408 linux_process_qsupported,
7409 linux_supports_tracepoints,
7410 linux_read_pc,
7411 linux_write_pc,
7412 linux_thread_stopped,
7413 NULL,
7414 linux_pause_all,
7415 linux_unpause_all,
7416 linux_stabilize_threads,
7417 linux_install_fast_tracepoint_jump_pad,
7418 linux_emit_ops,
7419 linux_supports_disable_randomization,
7420 linux_get_min_fast_tracepoint_insn_len,
7421 linux_qxfer_libraries_svr4,
7422 linux_supports_agent,
7423 #ifdef HAVE_LINUX_BTRACE
7424 linux_enable_btrace,
7425 linux_low_disable_btrace,
7426 linux_low_read_btrace,
7427 linux_low_btrace_conf,
7428 #else
7429 NULL,
7430 NULL,
7431 NULL,
7432 NULL,
7433 #endif
7434 linux_supports_range_stepping,
7435 linux_proc_pid_to_exec_file,
7436 linux_mntns_open_cloexec,
7437 linux_mntns_unlink,
7438 linux_mntns_readlink,
7439 linux_breakpoint_kind_from_pc,
7440 linux_sw_breakpoint_from_kind,
7441 linux_proc_tid_get_name,
7442 linux_breakpoint_kind_from_current_state,
7443 linux_supports_software_single_step,
7444 linux_supports_catch_syscall,
7445 linux_get_ipa_tdesc_idx,
7446 #if USE_THREAD_DB
7447 thread_db_thread_handle,
7448 #else
7449 NULL,
7450 #endif
7451 &the_linux_target,
7452 };
7453
7454 #ifdef HAVE_LINUX_REGSETS
7455 void
7456 initialize_regsets_info (struct regsets_info *info)
7457 {
7458 for (info->num_regsets = 0;
7459 info->regsets[info->num_regsets].size >= 0;
7460 info->num_regsets++)
7461 ;
7462 }
7463 #endif
7464
7465 void
7466 initialize_low (void)
7467 {
7468 struct sigaction sigchld_action;
7469
7470 memset (&sigchld_action, 0, sizeof (sigchld_action));
7471 set_target_ops (&linux_target_ops);
7472
7473 linux_ptrace_init_warnings ();
7474 linux_proc_init_warnings ();
7475
7476 sigchld_action.sa_handler = sigchld_handler;
7477 sigemptyset (&sigchld_action.sa_mask);
7478 sigchld_action.sa_flags = SA_RESTART;
7479 sigaction (SIGCHLD, &sigchld_action, NULL);
7480
7481 initialize_low_arch ();
7482
7483 linux_check_ptrace_features ();
7484 }
This page took 0.183897 seconds and 4 git commands to generate.