bde6c767e87e4e8b1d7f4f702a21610429e52df4
[deliverable/binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include <inttypes.h>
49 #include "gdbsupport/common-inferior.h"
50 #include "nat/fork-inferior.h"
51 #include "gdbsupport/environ.h"
52 #include "gdbsupport/gdb-sigmask.h"
53 #include "gdbsupport/scoped_restore.h"
54 #ifndef ELFMAG0
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59 #include <elf.h>
60 #endif
61 #include "nat/linux-namespaces.h"
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 #ifndef AT_HWCAP2
75 #define AT_HWCAP2 26
76 #endif
77
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #if (defined(__UCLIBC__) \
98 && defined(HAS_NOMMU) \
99 && defined(PT_TEXT_ADDR) \
100 && defined(PT_DATA_ADDR) \
101 && defined(PT_TEXT_END_ADDR))
102 #define SUPPORTS_READ_OFFSETS
103 #endif
104
105 #ifdef HAVE_LINUX_BTRACE
106 # include "nat/linux-btrace.h"
107 # include "gdbsupport/btrace-common.h"
108 #endif
109
110 #ifndef HAVE_ELF32_AUXV_T
111 /* Copied from glibc's elf.h. */
112 typedef struct
113 {
114 uint32_t a_type; /* Entry type */
115 union
116 {
117 uint32_t a_val; /* Integer value */
118 /* We use to have pointer elements added here. We cannot do that,
119 though, since it does not work when using 32-bit definitions
120 on 64-bit platforms and vice versa. */
121 } a_un;
122 } Elf32_auxv_t;
123 #endif
124
125 #ifndef HAVE_ELF64_AUXV_T
126 /* Copied from glibc's elf.h. */
127 typedef struct
128 {
129 uint64_t a_type; /* Entry type */
130 union
131 {
132 uint64_t a_val; /* Integer value */
133 /* We use to have pointer elements added here. We cannot do that,
134 though, since it does not work when using 32-bit definitions
135 on 64-bit platforms and vice versa. */
136 } a_un;
137 } Elf64_auxv_t;
138 #endif
139
140 /* Does the current host support PTRACE_GETREGSET? */
141 int have_ptrace_getregset = -1;
142
143 /* LWP accessors. */
144
145 /* See nat/linux-nat.h. */
146
147 ptid_t
148 ptid_of_lwp (struct lwp_info *lwp)
149 {
150 return ptid_of (get_lwp_thread (lwp));
151 }
152
153 /* See nat/linux-nat.h. */
154
155 void
156 lwp_set_arch_private_info (struct lwp_info *lwp,
157 struct arch_lwp_info *info)
158 {
159 lwp->arch_private = info;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 struct arch_lwp_info *
165 lwp_arch_private_info (struct lwp_info *lwp)
166 {
167 return lwp->arch_private;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 int
173 lwp_is_stopped (struct lwp_info *lwp)
174 {
175 return lwp->stopped;
176 }
177
178 /* See nat/linux-nat.h. */
179
180 enum target_stop_reason
181 lwp_stop_reason (struct lwp_info *lwp)
182 {
183 return lwp->stop_reason;
184 }
185
186 /* See nat/linux-nat.h. */
187
188 int
189 lwp_is_stepping (struct lwp_info *lwp)
190 {
191 return lwp->stepping;
192 }
193
194 /* A list of all unknown processes which receive stop signals. Some
195 other process will presumably claim each of these as forked
196 children momentarily. */
197
198 struct simple_pid_list
199 {
200 /* The process ID. */
201 int pid;
202
203 /* The status as reported by waitpid. */
204 int status;
205
206 /* Next in chain. */
207 struct simple_pid_list *next;
208 };
209 struct simple_pid_list *stopped_pids;
210
211 /* Trivial list manipulation functions to keep track of a list of new
212 stopped processes. */
213
214 static void
215 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
216 {
217 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
218
219 new_pid->pid = pid;
220 new_pid->status = status;
221 new_pid->next = *listp;
222 *listp = new_pid;
223 }
224
225 static int
226 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
227 {
228 struct simple_pid_list **p;
229
230 for (p = listp; *p != NULL; p = &(*p)->next)
231 if ((*p)->pid == pid)
232 {
233 struct simple_pid_list *next = (*p)->next;
234
235 *statusp = (*p)->status;
236 xfree (*p);
237 *p = next;
238 return 1;
239 }
240 return 0;
241 }
242
243 enum stopping_threads_kind
244 {
245 /* Not stopping threads presently. */
246 NOT_STOPPING_THREADS,
247
248 /* Stopping threads. */
249 STOPPING_THREADS,
250
251 /* Stopping and suspending threads. */
252 STOPPING_AND_SUSPENDING_THREADS
253 };
254
255 /* This is set while stop_all_lwps is in effect. */
256 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
257
258 /* FIXME make into a target method? */
259 int using_threads = 1;
260
261 /* True if we're presently stabilizing threads (moving them out of
262 jump pads). */
263 static int stabilizing_threads;
264
265 static void unsuspend_all_lwps (struct lwp_info *except);
266 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
267 static int lwp_is_marked_dead (struct lwp_info *lwp);
268 static int kill_lwp (unsigned long lwpid, int signo);
269 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
270 static int linux_low_ptrace_options (int attached);
271 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
272
273 /* When the event-loop is doing a step-over, this points at the thread
274 being stepped. */
275 ptid_t step_over_bkpt;
276
277 bool
278 linux_process_target::low_supports_breakpoints ()
279 {
280 return false;
281 }
282
283 CORE_ADDR
284 linux_process_target::low_get_pc (regcache *regcache)
285 {
286 return 0;
287 }
288
289 void
290 linux_process_target::low_set_pc (regcache *regcache, CORE_ADDR newpc)
291 {
292 gdb_assert_not_reached ("linux target op low_set_pc is not implemented");
293 }
294
295 std::vector<CORE_ADDR>
296 linux_process_target::low_get_next_pcs (regcache *regcache)
297 {
298 gdb_assert_not_reached ("linux target op low_get_next_pcs is not "
299 "implemented");
300 }
301
302 int
303 linux_process_target::low_decr_pc_after_break ()
304 {
305 return 0;
306 }
307
308 /* True if LWP is stopped in its stepping range. */
309
310 static int
311 lwp_in_step_range (struct lwp_info *lwp)
312 {
313 CORE_ADDR pc = lwp->stop_pc;
314
315 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
316 }
317
318 struct pending_signals
319 {
320 int signal;
321 siginfo_t info;
322 struct pending_signals *prev;
323 };
324
325 /* The read/write ends of the pipe registered as waitable file in the
326 event loop. */
327 static int linux_event_pipe[2] = { -1, -1 };
328
329 /* True if we're currently in async mode. */
330 #define target_is_async_p() (linux_event_pipe[0] != -1)
331
332 static void send_sigstop (struct lwp_info *lwp);
333
334 /* Return non-zero if HEADER is a 64-bit ELF file. */
335
336 static int
337 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
338 {
339 if (header->e_ident[EI_MAG0] == ELFMAG0
340 && header->e_ident[EI_MAG1] == ELFMAG1
341 && header->e_ident[EI_MAG2] == ELFMAG2
342 && header->e_ident[EI_MAG3] == ELFMAG3)
343 {
344 *machine = header->e_machine;
345 return header->e_ident[EI_CLASS] == ELFCLASS64;
346
347 }
348 *machine = EM_NONE;
349 return -1;
350 }
351
352 /* Return non-zero if FILE is a 64-bit ELF file,
353 zero if the file is not a 64-bit ELF file,
354 and -1 if the file is not accessible or doesn't exist. */
355
356 static int
357 elf_64_file_p (const char *file, unsigned int *machine)
358 {
359 Elf64_Ehdr header;
360 int fd;
361
362 fd = open (file, O_RDONLY);
363 if (fd < 0)
364 return -1;
365
366 if (read (fd, &header, sizeof (header)) != sizeof (header))
367 {
368 close (fd);
369 return 0;
370 }
371 close (fd);
372
373 return elf_64_header_p (&header, machine);
374 }
375
376 /* Accepts an integer PID; Returns true if the executable PID is
377 running is a 64-bit ELF file.. */
378
379 int
380 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
381 {
382 char file[PATH_MAX];
383
384 sprintf (file, "/proc/%d/exe", pid);
385 return elf_64_file_p (file, machine);
386 }
387
388 void
389 linux_process_target::delete_lwp (lwp_info *lwp)
390 {
391 struct thread_info *thr = get_lwp_thread (lwp);
392
393 if (debug_threads)
394 debug_printf ("deleting %ld\n", lwpid_of (thr));
395
396 remove_thread (thr);
397
398 low_delete_thread (lwp->arch_private);
399
400 free (lwp);
401 }
402
403 void
404 linux_process_target::low_delete_thread (arch_lwp_info *info)
405 {
406 /* Default implementation should be overridden if architecture-specific
407 info is being used. */
408 gdb_assert (info == nullptr);
409 }
410
411 process_info *
412 linux_process_target::add_linux_process (int pid, int attached)
413 {
414 struct process_info *proc;
415
416 proc = add_process (pid, attached);
417 proc->priv = XCNEW (struct process_info_private);
418
419 proc->priv->arch_private = low_new_process ();
420
421 return proc;
422 }
423
424 arch_process_info *
425 linux_process_target::low_new_process ()
426 {
427 return nullptr;
428 }
429
430 void
431 linux_process_target::low_delete_process (arch_process_info *info)
432 {
433 /* Default implementation must be overridden if architecture-specific
434 info exists. */
435 gdb_assert (info == nullptr);
436 }
437
438 void
439 linux_process_target::low_new_fork (process_info *parent, process_info *child)
440 {
441 /* Nop. */
442 }
443
444 void
445 linux_process_target::arch_setup_thread (thread_info *thread)
446 {
447 struct thread_info *saved_thread;
448
449 saved_thread = current_thread;
450 current_thread = thread;
451
452 low_arch_setup ();
453
454 current_thread = saved_thread;
455 }
456
457 int
458 linux_process_target::handle_extended_wait (lwp_info **orig_event_lwp,
459 int wstat)
460 {
461 client_state &cs = get_client_state ();
462 struct lwp_info *event_lwp = *orig_event_lwp;
463 int event = linux_ptrace_get_extended_event (wstat);
464 struct thread_info *event_thr = get_lwp_thread (event_lwp);
465 struct lwp_info *new_lwp;
466
467 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
468
469 /* All extended events we currently use are mid-syscall. Only
470 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
471 you have to be using PTRACE_SEIZE to get that. */
472 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
473
474 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
475 || (event == PTRACE_EVENT_CLONE))
476 {
477 ptid_t ptid;
478 unsigned long new_pid;
479 int ret, status;
480
481 /* Get the pid of the new lwp. */
482 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
483 &new_pid);
484
485 /* If we haven't already seen the new PID stop, wait for it now. */
486 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
487 {
488 /* The new child has a pending SIGSTOP. We can't affect it until it
489 hits the SIGSTOP, but we're already attached. */
490
491 ret = my_waitpid (new_pid, &status, __WALL);
492
493 if (ret == -1)
494 perror_with_name ("waiting for new child");
495 else if (ret != new_pid)
496 warning ("wait returned unexpected PID %d", ret);
497 else if (!WIFSTOPPED (status))
498 warning ("wait returned unexpected status 0x%x", status);
499 }
500
501 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
502 {
503 struct process_info *parent_proc;
504 struct process_info *child_proc;
505 struct lwp_info *child_lwp;
506 struct thread_info *child_thr;
507 struct target_desc *tdesc;
508
509 ptid = ptid_t (new_pid, new_pid, 0);
510
511 if (debug_threads)
512 {
513 debug_printf ("HEW: Got fork event from LWP %ld, "
514 "new child is %d\n",
515 ptid_of (event_thr).lwp (),
516 ptid.pid ());
517 }
518
519 /* Add the new process to the tables and clone the breakpoint
520 lists of the parent. We need to do this even if the new process
521 will be detached, since we will need the process object and the
522 breakpoints to remove any breakpoints from memory when we
523 detach, and the client side will access registers. */
524 child_proc = add_linux_process (new_pid, 0);
525 gdb_assert (child_proc != NULL);
526 child_lwp = add_lwp (ptid);
527 gdb_assert (child_lwp != NULL);
528 child_lwp->stopped = 1;
529 child_lwp->must_set_ptrace_flags = 1;
530 child_lwp->status_pending_p = 0;
531 child_thr = get_lwp_thread (child_lwp);
532 child_thr->last_resume_kind = resume_stop;
533 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
534
535 /* If we're suspending all threads, leave this one suspended
536 too. If the fork/clone parent is stepping over a breakpoint,
537 all other threads have been suspended already. Leave the
538 child suspended too. */
539 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
540 || event_lwp->bp_reinsert != 0)
541 {
542 if (debug_threads)
543 debug_printf ("HEW: leaving child suspended\n");
544 child_lwp->suspended = 1;
545 }
546
547 parent_proc = get_thread_process (event_thr);
548 child_proc->attached = parent_proc->attached;
549
550 if (event_lwp->bp_reinsert != 0
551 && supports_software_single_step ()
552 && event == PTRACE_EVENT_VFORK)
553 {
554 /* If we leave single-step breakpoints there, child will
555 hit it, so uninsert single-step breakpoints from parent
556 (and child). Once vfork child is done, reinsert
557 them back to parent. */
558 uninsert_single_step_breakpoints (event_thr);
559 }
560
561 clone_all_breakpoints (child_thr, event_thr);
562
563 tdesc = allocate_target_description ();
564 copy_target_description (tdesc, parent_proc->tdesc);
565 child_proc->tdesc = tdesc;
566
567 /* Clone arch-specific process data. */
568 low_new_fork (parent_proc, child_proc);
569
570 /* Save fork info in the parent thread. */
571 if (event == PTRACE_EVENT_FORK)
572 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
573 else if (event == PTRACE_EVENT_VFORK)
574 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
575
576 event_lwp->waitstatus.value.related_pid = ptid;
577
578 /* The status_pending field contains bits denoting the
579 extended event, so when the pending event is handled,
580 the handler will look at lwp->waitstatus. */
581 event_lwp->status_pending_p = 1;
582 event_lwp->status_pending = wstat;
583
584 /* Link the threads until the parent event is passed on to
585 higher layers. */
586 event_lwp->fork_relative = child_lwp;
587 child_lwp->fork_relative = event_lwp;
588
589 /* If the parent thread is doing step-over with single-step
590 breakpoints, the list of single-step breakpoints are cloned
591 from the parent's. Remove them from the child process.
592 In case of vfork, we'll reinsert them back once vforked
593 child is done. */
594 if (event_lwp->bp_reinsert != 0
595 && supports_software_single_step ())
596 {
597 /* The child process is forked and stopped, so it is safe
598 to access its memory without stopping all other threads
599 from other processes. */
600 delete_single_step_breakpoints (child_thr);
601
602 gdb_assert (has_single_step_breakpoints (event_thr));
603 gdb_assert (!has_single_step_breakpoints (child_thr));
604 }
605
606 /* Report the event. */
607 return 0;
608 }
609
610 if (debug_threads)
611 debug_printf ("HEW: Got clone event "
612 "from LWP %ld, new child is LWP %ld\n",
613 lwpid_of (event_thr), new_pid);
614
615 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
616 new_lwp = add_lwp (ptid);
617
618 /* Either we're going to immediately resume the new thread
619 or leave it stopped. resume_one_lwp is a nop if it
620 thinks the thread is currently running, so set this first
621 before calling resume_one_lwp. */
622 new_lwp->stopped = 1;
623
624 /* If we're suspending all threads, leave this one suspended
625 too. If the fork/clone parent is stepping over a breakpoint,
626 all other threads have been suspended already. Leave the
627 child suspended too. */
628 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
629 || event_lwp->bp_reinsert != 0)
630 new_lwp->suspended = 1;
631
632 /* Normally we will get the pending SIGSTOP. But in some cases
633 we might get another signal delivered to the group first.
634 If we do get another signal, be sure not to lose it. */
635 if (WSTOPSIG (status) != SIGSTOP)
636 {
637 new_lwp->stop_expected = 1;
638 new_lwp->status_pending_p = 1;
639 new_lwp->status_pending = status;
640 }
641 else if (cs.report_thread_events)
642 {
643 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
644 new_lwp->status_pending_p = 1;
645 new_lwp->status_pending = status;
646 }
647
648 #ifdef USE_THREAD_DB
649 thread_db_notice_clone (event_thr, ptid);
650 #endif
651
652 /* Don't report the event. */
653 return 1;
654 }
655 else if (event == PTRACE_EVENT_VFORK_DONE)
656 {
657 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
658
659 if (event_lwp->bp_reinsert != 0 && supports_software_single_step ())
660 {
661 reinsert_single_step_breakpoints (event_thr);
662
663 gdb_assert (has_single_step_breakpoints (event_thr));
664 }
665
666 /* Report the event. */
667 return 0;
668 }
669 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
670 {
671 struct process_info *proc;
672 std::vector<int> syscalls_to_catch;
673 ptid_t event_ptid;
674 pid_t event_pid;
675
676 if (debug_threads)
677 {
678 debug_printf ("HEW: Got exec event from LWP %ld\n",
679 lwpid_of (event_thr));
680 }
681
682 /* Get the event ptid. */
683 event_ptid = ptid_of (event_thr);
684 event_pid = event_ptid.pid ();
685
686 /* Save the syscall list from the execing process. */
687 proc = get_thread_process (event_thr);
688 syscalls_to_catch = std::move (proc->syscalls_to_catch);
689
690 /* Delete the execing process and all its threads. */
691 mourn (proc);
692 current_thread = NULL;
693
694 /* Create a new process/lwp/thread. */
695 proc = add_linux_process (event_pid, 0);
696 event_lwp = add_lwp (event_ptid);
697 event_thr = get_lwp_thread (event_lwp);
698 gdb_assert (current_thread == event_thr);
699 arch_setup_thread (event_thr);
700
701 /* Set the event status. */
702 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
703 event_lwp->waitstatus.value.execd_pathname
704 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
705
706 /* Mark the exec status as pending. */
707 event_lwp->stopped = 1;
708 event_lwp->status_pending_p = 1;
709 event_lwp->status_pending = wstat;
710 event_thr->last_resume_kind = resume_continue;
711 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
712
713 /* Update syscall state in the new lwp, effectively mid-syscall too. */
714 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
715
716 /* Restore the list to catch. Don't rely on the client, which is free
717 to avoid sending a new list when the architecture doesn't change.
718 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
719 proc->syscalls_to_catch = std::move (syscalls_to_catch);
720
721 /* Report the event. */
722 *orig_event_lwp = event_lwp;
723 return 0;
724 }
725
726 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
727 }
728
729 CORE_ADDR
730 linux_process_target::get_pc (lwp_info *lwp)
731 {
732 struct thread_info *saved_thread;
733 struct regcache *regcache;
734 CORE_ADDR pc;
735
736 if (!low_supports_breakpoints ())
737 return 0;
738
739 saved_thread = current_thread;
740 current_thread = get_lwp_thread (lwp);
741
742 regcache = get_thread_regcache (current_thread, 1);
743 pc = low_get_pc (regcache);
744
745 if (debug_threads)
746 debug_printf ("pc is 0x%lx\n", (long) pc);
747
748 current_thread = saved_thread;
749 return pc;
750 }
751
752 void
753 linux_process_target::get_syscall_trapinfo (lwp_info *lwp, int *sysno)
754 {
755 struct thread_info *saved_thread;
756 struct regcache *regcache;
757
758 saved_thread = current_thread;
759 current_thread = get_lwp_thread (lwp);
760
761 regcache = get_thread_regcache (current_thread, 1);
762 low_get_syscall_trapinfo (regcache, sysno);
763
764 if (debug_threads)
765 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
766
767 current_thread = saved_thread;
768 }
769
770 void
771 linux_process_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
772 {
773 /* By default, report an unknown system call number. */
774 *sysno = UNKNOWN_SYSCALL;
775 }
776
777 bool
778 linux_process_target::save_stop_reason (lwp_info *lwp)
779 {
780 CORE_ADDR pc;
781 CORE_ADDR sw_breakpoint_pc;
782 struct thread_info *saved_thread;
783 #if USE_SIGTRAP_SIGINFO
784 siginfo_t siginfo;
785 #endif
786
787 if (!low_supports_breakpoints ())
788 return false;
789
790 pc = get_pc (lwp);
791 sw_breakpoint_pc = pc - low_decr_pc_after_break ();
792
793 /* breakpoint_at reads from the current thread. */
794 saved_thread = current_thread;
795 current_thread = get_lwp_thread (lwp);
796
797 #if USE_SIGTRAP_SIGINFO
798 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
799 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
800 {
801 if (siginfo.si_signo == SIGTRAP)
802 {
803 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
804 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
805 {
806 /* The si_code is ambiguous on this arch -- check debug
807 registers. */
808 if (!check_stopped_by_watchpoint (lwp))
809 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
810 }
811 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
812 {
813 /* If we determine the LWP stopped for a SW breakpoint,
814 trust it. Particularly don't check watchpoint
815 registers, because at least on s390, we'd find
816 stopped-by-watchpoint as long as there's a watchpoint
817 set. */
818 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
819 }
820 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
821 {
822 /* This can indicate either a hardware breakpoint or
823 hardware watchpoint. Check debug registers. */
824 if (!check_stopped_by_watchpoint (lwp))
825 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
826 }
827 else if (siginfo.si_code == TRAP_TRACE)
828 {
829 /* We may have single stepped an instruction that
830 triggered a watchpoint. In that case, on some
831 architectures (such as x86), instead of TRAP_HWBKPT,
832 si_code indicates TRAP_TRACE, and we need to check
833 the debug registers separately. */
834 if (!check_stopped_by_watchpoint (lwp))
835 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
836 }
837 }
838 }
839 #else
840 /* We may have just stepped a breakpoint instruction. E.g., in
841 non-stop mode, GDB first tells the thread A to step a range, and
842 then the user inserts a breakpoint inside the range. In that
843 case we need to report the breakpoint PC. */
844 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
845 && low_breakpoint_at (sw_breakpoint_pc))
846 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
847
848 if (hardware_breakpoint_inserted_here (pc))
849 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
850
851 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
852 check_stopped_by_watchpoint (lwp);
853 #endif
854
855 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
856 {
857 if (debug_threads)
858 {
859 struct thread_info *thr = get_lwp_thread (lwp);
860
861 debug_printf ("CSBB: %s stopped by software breakpoint\n",
862 target_pid_to_str (ptid_of (thr)));
863 }
864
865 /* Back up the PC if necessary. */
866 if (pc != sw_breakpoint_pc)
867 {
868 struct regcache *regcache
869 = get_thread_regcache (current_thread, 1);
870 low_set_pc (regcache, sw_breakpoint_pc);
871 }
872
873 /* Update this so we record the correct stop PC below. */
874 pc = sw_breakpoint_pc;
875 }
876 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
877 {
878 if (debug_threads)
879 {
880 struct thread_info *thr = get_lwp_thread (lwp);
881
882 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
883 target_pid_to_str (ptid_of (thr)));
884 }
885 }
886 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
887 {
888 if (debug_threads)
889 {
890 struct thread_info *thr = get_lwp_thread (lwp);
891
892 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
893 target_pid_to_str (ptid_of (thr)));
894 }
895 }
896 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
897 {
898 if (debug_threads)
899 {
900 struct thread_info *thr = get_lwp_thread (lwp);
901
902 debug_printf ("CSBB: %s stopped by trace\n",
903 target_pid_to_str (ptid_of (thr)));
904 }
905 }
906
907 lwp->stop_pc = pc;
908 current_thread = saved_thread;
909 return true;
910 }
911
912 lwp_info *
913 linux_process_target::add_lwp (ptid_t ptid)
914 {
915 struct lwp_info *lwp;
916
917 lwp = XCNEW (struct lwp_info);
918
919 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
920
921 lwp->thread = add_thread (ptid, lwp);
922
923 low_new_thread (lwp);
924
925 return lwp;
926 }
927
928 void
929 linux_process_target::low_new_thread (lwp_info *info)
930 {
931 /* Nop. */
932 }
933
934 /* Callback to be used when calling fork_inferior, responsible for
935 actually initiating the tracing of the inferior. */
936
937 static void
938 linux_ptrace_fun ()
939 {
940 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
941 (PTRACE_TYPE_ARG4) 0) < 0)
942 trace_start_error_with_name ("ptrace");
943
944 if (setpgid (0, 0) < 0)
945 trace_start_error_with_name ("setpgid");
946
947 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
948 stdout to stderr so that inferior i/o doesn't corrupt the connection.
949 Also, redirect stdin to /dev/null. */
950 if (remote_connection_is_stdio ())
951 {
952 if (close (0) < 0)
953 trace_start_error_with_name ("close");
954 if (open ("/dev/null", O_RDONLY) < 0)
955 trace_start_error_with_name ("open");
956 if (dup2 (2, 1) < 0)
957 trace_start_error_with_name ("dup2");
958 if (write (2, "stdin/stdout redirected\n",
959 sizeof ("stdin/stdout redirected\n") - 1) < 0)
960 {
961 /* Errors ignored. */;
962 }
963 }
964 }
965
966 /* Start an inferior process and returns its pid.
967 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
968 are its arguments. */
969
970 int
971 linux_process_target::create_inferior (const char *program,
972 const std::vector<char *> &program_args)
973 {
974 client_state &cs = get_client_state ();
975 struct lwp_info *new_lwp;
976 int pid;
977 ptid_t ptid;
978
979 {
980 maybe_disable_address_space_randomization restore_personality
981 (cs.disable_randomization);
982 std::string str_program_args = construct_inferior_arguments (program_args);
983
984 pid = fork_inferior (program,
985 str_program_args.c_str (),
986 get_environ ()->envp (), linux_ptrace_fun,
987 NULL, NULL, NULL, NULL);
988 }
989
990 add_linux_process (pid, 0);
991
992 ptid = ptid_t (pid, pid, 0);
993 new_lwp = add_lwp (ptid);
994 new_lwp->must_set_ptrace_flags = 1;
995
996 post_fork_inferior (pid, program);
997
998 return pid;
999 }
1000
1001 /* Implement the post_create_inferior target_ops method. */
1002
1003 void
1004 linux_process_target::post_create_inferior ()
1005 {
1006 struct lwp_info *lwp = get_thread_lwp (current_thread);
1007
1008 low_arch_setup ();
1009
1010 if (lwp->must_set_ptrace_flags)
1011 {
1012 struct process_info *proc = current_process ();
1013 int options = linux_low_ptrace_options (proc->attached);
1014
1015 linux_enable_event_reporting (lwpid_of (current_thread), options);
1016 lwp->must_set_ptrace_flags = 0;
1017 }
1018 }
1019
1020 int
1021 linux_process_target::attach_lwp (ptid_t ptid)
1022 {
1023 struct lwp_info *new_lwp;
1024 int lwpid = ptid.lwp ();
1025
1026 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1027 != 0)
1028 return errno;
1029
1030 new_lwp = add_lwp (ptid);
1031
1032 /* We need to wait for SIGSTOP before being able to make the next
1033 ptrace call on this LWP. */
1034 new_lwp->must_set_ptrace_flags = 1;
1035
1036 if (linux_proc_pid_is_stopped (lwpid))
1037 {
1038 if (debug_threads)
1039 debug_printf ("Attached to a stopped process\n");
1040
1041 /* The process is definitely stopped. It is in a job control
1042 stop, unless the kernel predates the TASK_STOPPED /
1043 TASK_TRACED distinction, in which case it might be in a
1044 ptrace stop. Make sure it is in a ptrace stop; from there we
1045 can kill it, signal it, et cetera.
1046
1047 First make sure there is a pending SIGSTOP. Since we are
1048 already attached, the process can not transition from stopped
1049 to running without a PTRACE_CONT; so we know this signal will
1050 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1051 probably already in the queue (unless this kernel is old
1052 enough to use TASK_STOPPED for ptrace stops); but since
1053 SIGSTOP is not an RT signal, it can only be queued once. */
1054 kill_lwp (lwpid, SIGSTOP);
1055
1056 /* Finally, resume the stopped process. This will deliver the
1057 SIGSTOP (or a higher priority signal, just like normal
1058 PTRACE_ATTACH), which we'll catch later on. */
1059 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1060 }
1061
1062 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1063 brings it to a halt.
1064
1065 There are several cases to consider here:
1066
1067 1) gdbserver has already attached to the process and is being notified
1068 of a new thread that is being created.
1069 In this case we should ignore that SIGSTOP and resume the
1070 process. This is handled below by setting stop_expected = 1,
1071 and the fact that add_thread sets last_resume_kind ==
1072 resume_continue.
1073
1074 2) This is the first thread (the process thread), and we're attaching
1075 to it via attach_inferior.
1076 In this case we want the process thread to stop.
1077 This is handled by having linux_attach set last_resume_kind ==
1078 resume_stop after we return.
1079
1080 If the pid we are attaching to is also the tgid, we attach to and
1081 stop all the existing threads. Otherwise, we attach to pid and
1082 ignore any other threads in the same group as this pid.
1083
1084 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1085 existing threads.
1086 In this case we want the thread to stop.
1087 FIXME: This case is currently not properly handled.
1088 We should wait for the SIGSTOP but don't. Things work apparently
1089 because enough time passes between when we ptrace (ATTACH) and when
1090 gdb makes the next ptrace call on the thread.
1091
1092 On the other hand, if we are currently trying to stop all threads, we
1093 should treat the new thread as if we had sent it a SIGSTOP. This works
1094 because we are guaranteed that the add_lwp call above added us to the
1095 end of the list, and so the new thread has not yet reached
1096 wait_for_sigstop (but will). */
1097 new_lwp->stop_expected = 1;
1098
1099 return 0;
1100 }
1101
1102 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1103 already attached. Returns true if a new LWP is found, false
1104 otherwise. */
1105
1106 static int
1107 attach_proc_task_lwp_callback (ptid_t ptid)
1108 {
1109 /* Is this a new thread? */
1110 if (find_thread_ptid (ptid) == NULL)
1111 {
1112 int lwpid = ptid.lwp ();
1113 int err;
1114
1115 if (debug_threads)
1116 debug_printf ("Found new lwp %d\n", lwpid);
1117
1118 err = the_linux_target->attach_lwp (ptid);
1119
1120 /* Be quiet if we simply raced with the thread exiting. EPERM
1121 is returned if the thread's task still exists, and is marked
1122 as exited or zombie, as well as other conditions, so in that
1123 case, confirm the status in /proc/PID/status. */
1124 if (err == ESRCH
1125 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1126 {
1127 if (debug_threads)
1128 {
1129 debug_printf ("Cannot attach to lwp %d: "
1130 "thread is gone (%d: %s)\n",
1131 lwpid, err, safe_strerror (err));
1132 }
1133 }
1134 else if (err != 0)
1135 {
1136 std::string reason
1137 = linux_ptrace_attach_fail_reason_string (ptid, err);
1138
1139 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1140 }
1141
1142 return 1;
1143 }
1144 return 0;
1145 }
1146
1147 static void async_file_mark (void);
1148
1149 /* Attach to PID. If PID is the tgid, attach to it and all
1150 of its threads. */
1151
1152 int
1153 linux_process_target::attach (unsigned long pid)
1154 {
1155 struct process_info *proc;
1156 struct thread_info *initial_thread;
1157 ptid_t ptid = ptid_t (pid, pid, 0);
1158 int err;
1159
1160 proc = add_linux_process (pid, 1);
1161
1162 /* Attach to PID. We will check for other threads
1163 soon. */
1164 err = attach_lwp (ptid);
1165 if (err != 0)
1166 {
1167 remove_process (proc);
1168
1169 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1170 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1171 }
1172
1173 /* Don't ignore the initial SIGSTOP if we just attached to this
1174 process. It will be collected by wait shortly. */
1175 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1176 initial_thread->last_resume_kind = resume_stop;
1177
1178 /* We must attach to every LWP. If /proc is mounted, use that to
1179 find them now. On the one hand, the inferior may be using raw
1180 clone instead of using pthreads. On the other hand, even if it
1181 is using pthreads, GDB may not be connected yet (thread_db needs
1182 to do symbol lookups, through qSymbol). Also, thread_db walks
1183 structures in the inferior's address space to find the list of
1184 threads/LWPs, and those structures may well be corrupted. Note
1185 that once thread_db is loaded, we'll still use it to list threads
1186 and associate pthread info with each LWP. */
1187 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1188
1189 /* GDB will shortly read the xml target description for this
1190 process, to figure out the process' architecture. But the target
1191 description is only filled in when the first process/thread in
1192 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1193 that now, otherwise, if GDB is fast enough, it could read the
1194 target description _before_ that initial stop. */
1195 if (non_stop)
1196 {
1197 struct lwp_info *lwp;
1198 int wstat, lwpid;
1199 ptid_t pid_ptid = ptid_t (pid);
1200
1201 lwpid = wait_for_event_filtered (pid_ptid, pid_ptid, &wstat, __WALL);
1202 gdb_assert (lwpid > 0);
1203
1204 lwp = find_lwp_pid (ptid_t (lwpid));
1205
1206 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1207 {
1208 lwp->status_pending_p = 1;
1209 lwp->status_pending = wstat;
1210 }
1211
1212 initial_thread->last_resume_kind = resume_continue;
1213
1214 async_file_mark ();
1215
1216 gdb_assert (proc->tdesc != NULL);
1217 }
1218
1219 return 0;
1220 }
1221
1222 static int
1223 last_thread_of_process_p (int pid)
1224 {
1225 bool seen_one = false;
1226
1227 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1228 {
1229 if (!seen_one)
1230 {
1231 /* This is the first thread of this process we see. */
1232 seen_one = true;
1233 return false;
1234 }
1235 else
1236 {
1237 /* This is the second thread of this process we see. */
1238 return true;
1239 }
1240 });
1241
1242 return thread == NULL;
1243 }
1244
1245 /* Kill LWP. */
1246
1247 static void
1248 linux_kill_one_lwp (struct lwp_info *lwp)
1249 {
1250 struct thread_info *thr = get_lwp_thread (lwp);
1251 int pid = lwpid_of (thr);
1252
1253 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1254 there is no signal context, and ptrace(PTRACE_KILL) (or
1255 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1256 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1257 alternative is to kill with SIGKILL. We only need one SIGKILL
1258 per process, not one for each thread. But since we still support
1259 support debugging programs using raw clone without CLONE_THREAD,
1260 we send one for each thread. For years, we used PTRACE_KILL
1261 only, so we're being a bit paranoid about some old kernels where
1262 PTRACE_KILL might work better (dubious if there are any such, but
1263 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1264 second, and so we're fine everywhere. */
1265
1266 errno = 0;
1267 kill_lwp (pid, SIGKILL);
1268 if (debug_threads)
1269 {
1270 int save_errno = errno;
1271
1272 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1273 target_pid_to_str (ptid_of (thr)),
1274 save_errno ? safe_strerror (save_errno) : "OK");
1275 }
1276
1277 errno = 0;
1278 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1279 if (debug_threads)
1280 {
1281 int save_errno = errno;
1282
1283 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1284 target_pid_to_str (ptid_of (thr)),
1285 save_errno ? safe_strerror (save_errno) : "OK");
1286 }
1287 }
1288
1289 /* Kill LWP and wait for it to die. */
1290
1291 static void
1292 kill_wait_lwp (struct lwp_info *lwp)
1293 {
1294 struct thread_info *thr = get_lwp_thread (lwp);
1295 int pid = ptid_of (thr).pid ();
1296 int lwpid = ptid_of (thr).lwp ();
1297 int wstat;
1298 int res;
1299
1300 if (debug_threads)
1301 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1302
1303 do
1304 {
1305 linux_kill_one_lwp (lwp);
1306
1307 /* Make sure it died. Notes:
1308
1309 - The loop is most likely unnecessary.
1310
1311 - We don't use wait_for_event as that could delete lwps
1312 while we're iterating over them. We're not interested in
1313 any pending status at this point, only in making sure all
1314 wait status on the kernel side are collected until the
1315 process is reaped.
1316
1317 - We don't use __WALL here as the __WALL emulation relies on
1318 SIGCHLD, and killing a stopped process doesn't generate
1319 one, nor an exit status.
1320 */
1321 res = my_waitpid (lwpid, &wstat, 0);
1322 if (res == -1 && errno == ECHILD)
1323 res = my_waitpid (lwpid, &wstat, __WCLONE);
1324 } while (res > 0 && WIFSTOPPED (wstat));
1325
1326 /* Even if it was stopped, the child may have already disappeared.
1327 E.g., if it was killed by SIGKILL. */
1328 if (res < 0 && errno != ECHILD)
1329 perror_with_name ("kill_wait_lwp");
1330 }
1331
1332 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1333 except the leader. */
1334
1335 static void
1336 kill_one_lwp_callback (thread_info *thread, int pid)
1337 {
1338 struct lwp_info *lwp = get_thread_lwp (thread);
1339
1340 /* We avoid killing the first thread here, because of a Linux kernel (at
1341 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1342 the children get a chance to be reaped, it will remain a zombie
1343 forever. */
1344
1345 if (lwpid_of (thread) == pid)
1346 {
1347 if (debug_threads)
1348 debug_printf ("lkop: is last of process %s\n",
1349 target_pid_to_str (thread->id));
1350 return;
1351 }
1352
1353 kill_wait_lwp (lwp);
1354 }
1355
1356 int
1357 linux_process_target::kill (process_info *process)
1358 {
1359 int pid = process->pid;
1360
1361 /* If we're killing a running inferior, make sure it is stopped
1362 first, as PTRACE_KILL will not work otherwise. */
1363 stop_all_lwps (0, NULL);
1364
1365 for_each_thread (pid, [&] (thread_info *thread)
1366 {
1367 kill_one_lwp_callback (thread, pid);
1368 });
1369
1370 /* See the comment in linux_kill_one_lwp. We did not kill the first
1371 thread in the list, so do so now. */
1372 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1373
1374 if (lwp == NULL)
1375 {
1376 if (debug_threads)
1377 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1378 pid);
1379 }
1380 else
1381 kill_wait_lwp (lwp);
1382
1383 mourn (process);
1384
1385 /* Since we presently can only stop all lwps of all processes, we
1386 need to unstop lwps of other processes. */
1387 unstop_all_lwps (0, NULL);
1388 return 0;
1389 }
1390
1391 /* Get pending signal of THREAD, for detaching purposes. This is the
1392 signal the thread last stopped for, which we need to deliver to the
1393 thread when detaching, otherwise, it'd be suppressed/lost. */
1394
1395 static int
1396 get_detach_signal (struct thread_info *thread)
1397 {
1398 client_state &cs = get_client_state ();
1399 enum gdb_signal signo = GDB_SIGNAL_0;
1400 int status;
1401 struct lwp_info *lp = get_thread_lwp (thread);
1402
1403 if (lp->status_pending_p)
1404 status = lp->status_pending;
1405 else
1406 {
1407 /* If the thread had been suspended by gdbserver, and it stopped
1408 cleanly, then it'll have stopped with SIGSTOP. But we don't
1409 want to deliver that SIGSTOP. */
1410 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1411 || thread->last_status.value.sig == GDB_SIGNAL_0)
1412 return 0;
1413
1414 /* Otherwise, we may need to deliver the signal we
1415 intercepted. */
1416 status = lp->last_status;
1417 }
1418
1419 if (!WIFSTOPPED (status))
1420 {
1421 if (debug_threads)
1422 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1423 target_pid_to_str (ptid_of (thread)));
1424 return 0;
1425 }
1426
1427 /* Extended wait statuses aren't real SIGTRAPs. */
1428 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1429 {
1430 if (debug_threads)
1431 debug_printf ("GPS: lwp %s had stopped with extended "
1432 "status: no pending signal\n",
1433 target_pid_to_str (ptid_of (thread)));
1434 return 0;
1435 }
1436
1437 signo = gdb_signal_from_host (WSTOPSIG (status));
1438
1439 if (cs.program_signals_p && !cs.program_signals[signo])
1440 {
1441 if (debug_threads)
1442 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1443 target_pid_to_str (ptid_of (thread)),
1444 gdb_signal_to_string (signo));
1445 return 0;
1446 }
1447 else if (!cs.program_signals_p
1448 /* If we have no way to know which signals GDB does not
1449 want to have passed to the program, assume
1450 SIGTRAP/SIGINT, which is GDB's default. */
1451 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1452 {
1453 if (debug_threads)
1454 debug_printf ("GPS: lwp %s had signal %s, "
1455 "but we don't know if we should pass it. "
1456 "Default to not.\n",
1457 target_pid_to_str (ptid_of (thread)),
1458 gdb_signal_to_string (signo));
1459 return 0;
1460 }
1461 else
1462 {
1463 if (debug_threads)
1464 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1465 target_pid_to_str (ptid_of (thread)),
1466 gdb_signal_to_string (signo));
1467
1468 return WSTOPSIG (status);
1469 }
1470 }
1471
1472 void
1473 linux_process_target::detach_one_lwp (lwp_info *lwp)
1474 {
1475 struct thread_info *thread = get_lwp_thread (lwp);
1476 int sig;
1477 int lwpid;
1478
1479 /* If there is a pending SIGSTOP, get rid of it. */
1480 if (lwp->stop_expected)
1481 {
1482 if (debug_threads)
1483 debug_printf ("Sending SIGCONT to %s\n",
1484 target_pid_to_str (ptid_of (thread)));
1485
1486 kill_lwp (lwpid_of (thread), SIGCONT);
1487 lwp->stop_expected = 0;
1488 }
1489
1490 /* Pass on any pending signal for this thread. */
1491 sig = get_detach_signal (thread);
1492
1493 /* Preparing to resume may try to write registers, and fail if the
1494 lwp is zombie. If that happens, ignore the error. We'll handle
1495 it below, when detach fails with ESRCH. */
1496 try
1497 {
1498 /* Flush any pending changes to the process's registers. */
1499 regcache_invalidate_thread (thread);
1500
1501 /* Finally, let it resume. */
1502 low_prepare_to_resume (lwp);
1503 }
1504 catch (const gdb_exception_error &ex)
1505 {
1506 if (!check_ptrace_stopped_lwp_gone (lwp))
1507 throw;
1508 }
1509
1510 lwpid = lwpid_of (thread);
1511 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1512 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1513 {
1514 int save_errno = errno;
1515
1516 /* We know the thread exists, so ESRCH must mean the lwp is
1517 zombie. This can happen if one of the already-detached
1518 threads exits the whole thread group. In that case we're
1519 still attached, and must reap the lwp. */
1520 if (save_errno == ESRCH)
1521 {
1522 int ret, status;
1523
1524 ret = my_waitpid (lwpid, &status, __WALL);
1525 if (ret == -1)
1526 {
1527 warning (_("Couldn't reap LWP %d while detaching: %s"),
1528 lwpid, safe_strerror (errno));
1529 }
1530 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1531 {
1532 warning (_("Reaping LWP %d while detaching "
1533 "returned unexpected status 0x%x"),
1534 lwpid, status);
1535 }
1536 }
1537 else
1538 {
1539 error (_("Can't detach %s: %s"),
1540 target_pid_to_str (ptid_of (thread)),
1541 safe_strerror (save_errno));
1542 }
1543 }
1544 else if (debug_threads)
1545 {
1546 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1547 target_pid_to_str (ptid_of (thread)),
1548 strsignal (sig));
1549 }
1550
1551 delete_lwp (lwp);
1552 }
1553
1554 int
1555 linux_process_target::detach (process_info *process)
1556 {
1557 struct lwp_info *main_lwp;
1558
1559 /* As there's a step over already in progress, let it finish first,
1560 otherwise nesting a stabilize_threads operation on top gets real
1561 messy. */
1562 complete_ongoing_step_over ();
1563
1564 /* Stop all threads before detaching. First, ptrace requires that
1565 the thread is stopped to successfully detach. Second, thread_db
1566 may need to uninstall thread event breakpoints from memory, which
1567 only works with a stopped process anyway. */
1568 stop_all_lwps (0, NULL);
1569
1570 #ifdef USE_THREAD_DB
1571 thread_db_detach (process);
1572 #endif
1573
1574 /* Stabilize threads (move out of jump pads). */
1575 target_stabilize_threads ();
1576
1577 /* Detach from the clone lwps first. If the thread group exits just
1578 while we're detaching, we must reap the clone lwps before we're
1579 able to reap the leader. */
1580 for_each_thread (process->pid, [this] (thread_info *thread)
1581 {
1582 /* We don't actually detach from the thread group leader just yet.
1583 If the thread group exits, we must reap the zombie clone lwps
1584 before we're able to reap the leader. */
1585 if (thread->id.pid () == thread->id.lwp ())
1586 return;
1587
1588 lwp_info *lwp = get_thread_lwp (thread);
1589 detach_one_lwp (lwp);
1590 });
1591
1592 main_lwp = find_lwp_pid (ptid_t (process->pid));
1593 detach_one_lwp (main_lwp);
1594
1595 mourn (process);
1596
1597 /* Since we presently can only stop all lwps of all processes, we
1598 need to unstop lwps of other processes. */
1599 unstop_all_lwps (0, NULL);
1600 return 0;
1601 }
1602
1603 /* Remove all LWPs that belong to process PROC from the lwp list. */
1604
1605 void
1606 linux_process_target::mourn (process_info *process)
1607 {
1608 struct process_info_private *priv;
1609
1610 #ifdef USE_THREAD_DB
1611 thread_db_mourn (process);
1612 #endif
1613
1614 for_each_thread (process->pid, [this] (thread_info *thread)
1615 {
1616 delete_lwp (get_thread_lwp (thread));
1617 });
1618
1619 /* Freeing all private data. */
1620 priv = process->priv;
1621 low_delete_process (priv->arch_private);
1622 free (priv);
1623 process->priv = NULL;
1624
1625 remove_process (process);
1626 }
1627
1628 void
1629 linux_process_target::join (int pid)
1630 {
1631 int status, ret;
1632
1633 do {
1634 ret = my_waitpid (pid, &status, 0);
1635 if (WIFEXITED (status) || WIFSIGNALED (status))
1636 break;
1637 } while (ret != -1 || errno != ECHILD);
1638 }
1639
1640 /* Return true if the given thread is still alive. */
1641
1642 bool
1643 linux_process_target::thread_alive (ptid_t ptid)
1644 {
1645 struct lwp_info *lwp = find_lwp_pid (ptid);
1646
1647 /* We assume we always know if a thread exits. If a whole process
1648 exited but we still haven't been able to report it to GDB, we'll
1649 hold on to the last lwp of the dead process. */
1650 if (lwp != NULL)
1651 return !lwp_is_marked_dead (lwp);
1652 else
1653 return 0;
1654 }
1655
1656 bool
1657 linux_process_target::thread_still_has_status_pending (thread_info *thread)
1658 {
1659 struct lwp_info *lp = get_thread_lwp (thread);
1660
1661 if (!lp->status_pending_p)
1662 return 0;
1663
1664 if (thread->last_resume_kind != resume_stop
1665 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1666 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1667 {
1668 struct thread_info *saved_thread;
1669 CORE_ADDR pc;
1670 int discard = 0;
1671
1672 gdb_assert (lp->last_status != 0);
1673
1674 pc = get_pc (lp);
1675
1676 saved_thread = current_thread;
1677 current_thread = thread;
1678
1679 if (pc != lp->stop_pc)
1680 {
1681 if (debug_threads)
1682 debug_printf ("PC of %ld changed\n",
1683 lwpid_of (thread));
1684 discard = 1;
1685 }
1686
1687 #if !USE_SIGTRAP_SIGINFO
1688 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1689 && !low_breakpoint_at (pc))
1690 {
1691 if (debug_threads)
1692 debug_printf ("previous SW breakpoint of %ld gone\n",
1693 lwpid_of (thread));
1694 discard = 1;
1695 }
1696 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1697 && !hardware_breakpoint_inserted_here (pc))
1698 {
1699 if (debug_threads)
1700 debug_printf ("previous HW breakpoint of %ld gone\n",
1701 lwpid_of (thread));
1702 discard = 1;
1703 }
1704 #endif
1705
1706 current_thread = saved_thread;
1707
1708 if (discard)
1709 {
1710 if (debug_threads)
1711 debug_printf ("discarding pending breakpoint status\n");
1712 lp->status_pending_p = 0;
1713 return 0;
1714 }
1715 }
1716
1717 return 1;
1718 }
1719
1720 /* Returns true if LWP is resumed from the client's perspective. */
1721
1722 static int
1723 lwp_resumed (struct lwp_info *lwp)
1724 {
1725 struct thread_info *thread = get_lwp_thread (lwp);
1726
1727 if (thread->last_resume_kind != resume_stop)
1728 return 1;
1729
1730 /* Did gdb send us a `vCont;t', but we haven't reported the
1731 corresponding stop to gdb yet? If so, the thread is still
1732 resumed/running from gdb's perspective. */
1733 if (thread->last_resume_kind == resume_stop
1734 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1735 return 1;
1736
1737 return 0;
1738 }
1739
1740 bool
1741 linux_process_target::status_pending_p_callback (thread_info *thread,
1742 ptid_t ptid)
1743 {
1744 struct lwp_info *lp = get_thread_lwp (thread);
1745
1746 /* Check if we're only interested in events from a specific process
1747 or a specific LWP. */
1748 if (!thread->id.matches (ptid))
1749 return 0;
1750
1751 if (!lwp_resumed (lp))
1752 return 0;
1753
1754 if (lp->status_pending_p
1755 && !thread_still_has_status_pending (thread))
1756 {
1757 resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1758 return 0;
1759 }
1760
1761 return lp->status_pending_p;
1762 }
1763
1764 struct lwp_info *
1765 find_lwp_pid (ptid_t ptid)
1766 {
1767 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1768 {
1769 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1770 return thr_arg->id.lwp () == lwp;
1771 });
1772
1773 if (thread == NULL)
1774 return NULL;
1775
1776 return get_thread_lwp (thread);
1777 }
1778
1779 /* Return the number of known LWPs in the tgid given by PID. */
1780
1781 static int
1782 num_lwps (int pid)
1783 {
1784 int count = 0;
1785
1786 for_each_thread (pid, [&] (thread_info *thread)
1787 {
1788 count++;
1789 });
1790
1791 return count;
1792 }
1793
1794 /* See nat/linux-nat.h. */
1795
1796 struct lwp_info *
1797 iterate_over_lwps (ptid_t filter,
1798 gdb::function_view<iterate_over_lwps_ftype> callback)
1799 {
1800 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1801 {
1802 lwp_info *lwp = get_thread_lwp (thr_arg);
1803
1804 return callback (lwp);
1805 });
1806
1807 if (thread == NULL)
1808 return NULL;
1809
1810 return get_thread_lwp (thread);
1811 }
1812
1813 void
1814 linux_process_target::check_zombie_leaders ()
1815 {
1816 for_each_process ([this] (process_info *proc) {
1817 pid_t leader_pid = pid_of (proc);
1818 struct lwp_info *leader_lp;
1819
1820 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1821
1822 if (debug_threads)
1823 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1824 "num_lwps=%d, zombie=%d\n",
1825 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1826 linux_proc_pid_is_zombie (leader_pid));
1827
1828 if (leader_lp != NULL && !leader_lp->stopped
1829 /* Check if there are other threads in the group, as we may
1830 have raced with the inferior simply exiting. */
1831 && !last_thread_of_process_p (leader_pid)
1832 && linux_proc_pid_is_zombie (leader_pid))
1833 {
1834 /* A leader zombie can mean one of two things:
1835
1836 - It exited, and there's an exit status pending
1837 available, or only the leader exited (not the whole
1838 program). In the latter case, we can't waitpid the
1839 leader's exit status until all other threads are gone.
1840
1841 - There are 3 or more threads in the group, and a thread
1842 other than the leader exec'd. On an exec, the Linux
1843 kernel destroys all other threads (except the execing
1844 one) in the thread group, and resets the execing thread's
1845 tid to the tgid. No exit notification is sent for the
1846 execing thread -- from the ptracer's perspective, it
1847 appears as though the execing thread just vanishes.
1848 Until we reap all other threads except the leader and the
1849 execing thread, the leader will be zombie, and the
1850 execing thread will be in `D (disc sleep)'. As soon as
1851 all other threads are reaped, the execing thread changes
1852 it's tid to the tgid, and the previous (zombie) leader
1853 vanishes, giving place to the "new" leader. We could try
1854 distinguishing the exit and exec cases, by waiting once
1855 more, and seeing if something comes out, but it doesn't
1856 sound useful. The previous leader _does_ go away, and
1857 we'll re-add the new one once we see the exec event
1858 (which is just the same as what would happen if the
1859 previous leader did exit voluntarily before some other
1860 thread execs). */
1861
1862 if (debug_threads)
1863 debug_printf ("CZL: Thread group leader %d zombie "
1864 "(it exited, or another thread execd).\n",
1865 leader_pid);
1866
1867 delete_lwp (leader_lp);
1868 }
1869 });
1870 }
1871
1872 /* Callback for `find_thread'. Returns the first LWP that is not
1873 stopped. */
1874
1875 static bool
1876 not_stopped_callback (thread_info *thread, ptid_t filter)
1877 {
1878 if (!thread->id.matches (filter))
1879 return false;
1880
1881 lwp_info *lwp = get_thread_lwp (thread);
1882
1883 return !lwp->stopped;
1884 }
1885
1886 /* Increment LWP's suspend count. */
1887
1888 static void
1889 lwp_suspended_inc (struct lwp_info *lwp)
1890 {
1891 lwp->suspended++;
1892
1893 if (debug_threads && lwp->suspended > 4)
1894 {
1895 struct thread_info *thread = get_lwp_thread (lwp);
1896
1897 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1898 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1899 }
1900 }
1901
1902 /* Decrement LWP's suspend count. */
1903
1904 static void
1905 lwp_suspended_decr (struct lwp_info *lwp)
1906 {
1907 lwp->suspended--;
1908
1909 if (lwp->suspended < 0)
1910 {
1911 struct thread_info *thread = get_lwp_thread (lwp);
1912
1913 internal_error (__FILE__, __LINE__,
1914 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1915 lwp->suspended);
1916 }
1917 }
1918
1919 /* This function should only be called if the LWP got a SIGTRAP.
1920
1921 Handle any tracepoint steps or hits. Return true if a tracepoint
1922 event was handled, 0 otherwise. */
1923
1924 static int
1925 handle_tracepoints (struct lwp_info *lwp)
1926 {
1927 struct thread_info *tinfo = get_lwp_thread (lwp);
1928 int tpoint_related_event = 0;
1929
1930 gdb_assert (lwp->suspended == 0);
1931
1932 /* If this tracepoint hit causes a tracing stop, we'll immediately
1933 uninsert tracepoints. To do this, we temporarily pause all
1934 threads, unpatch away, and then unpause threads. We need to make
1935 sure the unpausing doesn't resume LWP too. */
1936 lwp_suspended_inc (lwp);
1937
1938 /* And we need to be sure that any all-threads-stopping doesn't try
1939 to move threads out of the jump pads, as it could deadlock the
1940 inferior (LWP could be in the jump pad, maybe even holding the
1941 lock.) */
1942
1943 /* Do any necessary step collect actions. */
1944 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1945
1946 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1947
1948 /* See if we just hit a tracepoint and do its main collect
1949 actions. */
1950 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1951
1952 lwp_suspended_decr (lwp);
1953
1954 gdb_assert (lwp->suspended == 0);
1955 gdb_assert (!stabilizing_threads
1956 || (lwp->collecting_fast_tracepoint
1957 != fast_tpoint_collect_result::not_collecting));
1958
1959 if (tpoint_related_event)
1960 {
1961 if (debug_threads)
1962 debug_printf ("got a tracepoint event\n");
1963 return 1;
1964 }
1965
1966 return 0;
1967 }
1968
1969 fast_tpoint_collect_result
1970 linux_process_target::linux_fast_tracepoint_collecting
1971 (lwp_info *lwp, fast_tpoint_collect_status *status)
1972 {
1973 CORE_ADDR thread_area;
1974 struct thread_info *thread = get_lwp_thread (lwp);
1975
1976 /* Get the thread area address. This is used to recognize which
1977 thread is which when tracing with the in-process agent library.
1978 We don't read anything from the address, and treat it as opaque;
1979 it's the address itself that we assume is unique per-thread. */
1980 if (low_get_thread_area (lwpid_of (thread), &thread_area) == -1)
1981 return fast_tpoint_collect_result::not_collecting;
1982
1983 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1984 }
1985
1986 int
1987 linux_process_target::low_get_thread_area (int lwpid, CORE_ADDR *addrp)
1988 {
1989 return -1;
1990 }
1991
1992 bool
1993 linux_process_target::maybe_move_out_of_jump_pad (lwp_info *lwp, int *wstat)
1994 {
1995 struct thread_info *saved_thread;
1996
1997 saved_thread = current_thread;
1998 current_thread = get_lwp_thread (lwp);
1999
2000 if ((wstat == NULL
2001 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2002 && supports_fast_tracepoints ()
2003 && agent_loaded_p ())
2004 {
2005 struct fast_tpoint_collect_status status;
2006
2007 if (debug_threads)
2008 debug_printf ("Checking whether LWP %ld needs to move out of the "
2009 "jump pad.\n",
2010 lwpid_of (current_thread));
2011
2012 fast_tpoint_collect_result r
2013 = linux_fast_tracepoint_collecting (lwp, &status);
2014
2015 if (wstat == NULL
2016 || (WSTOPSIG (*wstat) != SIGILL
2017 && WSTOPSIG (*wstat) != SIGFPE
2018 && WSTOPSIG (*wstat) != SIGSEGV
2019 && WSTOPSIG (*wstat) != SIGBUS))
2020 {
2021 lwp->collecting_fast_tracepoint = r;
2022
2023 if (r != fast_tpoint_collect_result::not_collecting)
2024 {
2025 if (r == fast_tpoint_collect_result::before_insn
2026 && lwp->exit_jump_pad_bkpt == NULL)
2027 {
2028 /* Haven't executed the original instruction yet.
2029 Set breakpoint there, and wait till it's hit,
2030 then single-step until exiting the jump pad. */
2031 lwp->exit_jump_pad_bkpt
2032 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2033 }
2034
2035 if (debug_threads)
2036 debug_printf ("Checking whether LWP %ld needs to move out of "
2037 "the jump pad...it does\n",
2038 lwpid_of (current_thread));
2039 current_thread = saved_thread;
2040
2041 return true;
2042 }
2043 }
2044 else
2045 {
2046 /* If we get a synchronous signal while collecting, *and*
2047 while executing the (relocated) original instruction,
2048 reset the PC to point at the tpoint address, before
2049 reporting to GDB. Otherwise, it's an IPA lib bug: just
2050 report the signal to GDB, and pray for the best. */
2051
2052 lwp->collecting_fast_tracepoint
2053 = fast_tpoint_collect_result::not_collecting;
2054
2055 if (r != fast_tpoint_collect_result::not_collecting
2056 && (status.adjusted_insn_addr <= lwp->stop_pc
2057 && lwp->stop_pc < status.adjusted_insn_addr_end))
2058 {
2059 siginfo_t info;
2060 struct regcache *regcache;
2061
2062 /* The si_addr on a few signals references the address
2063 of the faulting instruction. Adjust that as
2064 well. */
2065 if ((WSTOPSIG (*wstat) == SIGILL
2066 || WSTOPSIG (*wstat) == SIGFPE
2067 || WSTOPSIG (*wstat) == SIGBUS
2068 || WSTOPSIG (*wstat) == SIGSEGV)
2069 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2070 (PTRACE_TYPE_ARG3) 0, &info) == 0
2071 /* Final check just to make sure we don't clobber
2072 the siginfo of non-kernel-sent signals. */
2073 && (uintptr_t) info.si_addr == lwp->stop_pc)
2074 {
2075 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2076 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2077 (PTRACE_TYPE_ARG3) 0, &info);
2078 }
2079
2080 regcache = get_thread_regcache (current_thread, 1);
2081 low_set_pc (regcache, status.tpoint_addr);
2082 lwp->stop_pc = status.tpoint_addr;
2083
2084 /* Cancel any fast tracepoint lock this thread was
2085 holding. */
2086 force_unlock_trace_buffer ();
2087 }
2088
2089 if (lwp->exit_jump_pad_bkpt != NULL)
2090 {
2091 if (debug_threads)
2092 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2093 "stopping all threads momentarily.\n");
2094
2095 stop_all_lwps (1, lwp);
2096
2097 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2098 lwp->exit_jump_pad_bkpt = NULL;
2099
2100 unstop_all_lwps (1, lwp);
2101
2102 gdb_assert (lwp->suspended >= 0);
2103 }
2104 }
2105 }
2106
2107 if (debug_threads)
2108 debug_printf ("Checking whether LWP %ld needs to move out of the "
2109 "jump pad...no\n",
2110 lwpid_of (current_thread));
2111
2112 current_thread = saved_thread;
2113 return false;
2114 }
2115
2116 /* Enqueue one signal in the "signals to report later when out of the
2117 jump pad" list. */
2118
2119 static void
2120 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2121 {
2122 struct pending_signals *p_sig;
2123 struct thread_info *thread = get_lwp_thread (lwp);
2124
2125 if (debug_threads)
2126 debug_printf ("Deferring signal %d for LWP %ld.\n",
2127 WSTOPSIG (*wstat), lwpid_of (thread));
2128
2129 if (debug_threads)
2130 {
2131 struct pending_signals *sig;
2132
2133 for (sig = lwp->pending_signals_to_report;
2134 sig != NULL;
2135 sig = sig->prev)
2136 debug_printf (" Already queued %d\n",
2137 sig->signal);
2138
2139 debug_printf (" (no more currently queued signals)\n");
2140 }
2141
2142 /* Don't enqueue non-RT signals if they are already in the deferred
2143 queue. (SIGSTOP being the easiest signal to see ending up here
2144 twice) */
2145 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2146 {
2147 struct pending_signals *sig;
2148
2149 for (sig = lwp->pending_signals_to_report;
2150 sig != NULL;
2151 sig = sig->prev)
2152 {
2153 if (sig->signal == WSTOPSIG (*wstat))
2154 {
2155 if (debug_threads)
2156 debug_printf ("Not requeuing already queued non-RT signal %d"
2157 " for LWP %ld\n",
2158 sig->signal,
2159 lwpid_of (thread));
2160 return;
2161 }
2162 }
2163 }
2164
2165 p_sig = XCNEW (struct pending_signals);
2166 p_sig->prev = lwp->pending_signals_to_report;
2167 p_sig->signal = WSTOPSIG (*wstat);
2168
2169 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2170 &p_sig->info);
2171
2172 lwp->pending_signals_to_report = p_sig;
2173 }
2174
2175 /* Dequeue one signal from the "signals to report later when out of
2176 the jump pad" list. */
2177
2178 static int
2179 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2180 {
2181 struct thread_info *thread = get_lwp_thread (lwp);
2182
2183 if (lwp->pending_signals_to_report != NULL)
2184 {
2185 struct pending_signals **p_sig;
2186
2187 p_sig = &lwp->pending_signals_to_report;
2188 while ((*p_sig)->prev != NULL)
2189 p_sig = &(*p_sig)->prev;
2190
2191 *wstat = W_STOPCODE ((*p_sig)->signal);
2192 if ((*p_sig)->info.si_signo != 0)
2193 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2194 &(*p_sig)->info);
2195 free (*p_sig);
2196 *p_sig = NULL;
2197
2198 if (debug_threads)
2199 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2200 WSTOPSIG (*wstat), lwpid_of (thread));
2201
2202 if (debug_threads)
2203 {
2204 struct pending_signals *sig;
2205
2206 for (sig = lwp->pending_signals_to_report;
2207 sig != NULL;
2208 sig = sig->prev)
2209 debug_printf (" Still queued %d\n",
2210 sig->signal);
2211
2212 debug_printf (" (no more queued signals)\n");
2213 }
2214
2215 return 1;
2216 }
2217
2218 return 0;
2219 }
2220
2221 bool
2222 linux_process_target::check_stopped_by_watchpoint (lwp_info *child)
2223 {
2224 struct thread_info *saved_thread = current_thread;
2225 current_thread = get_lwp_thread (child);
2226
2227 if (low_stopped_by_watchpoint ())
2228 {
2229 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2230 child->stopped_data_address = low_stopped_data_address ();
2231 }
2232
2233 current_thread = saved_thread;
2234
2235 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2236 }
2237
2238 bool
2239 linux_process_target::low_stopped_by_watchpoint ()
2240 {
2241 return false;
2242 }
2243
2244 CORE_ADDR
2245 linux_process_target::low_stopped_data_address ()
2246 {
2247 return 0;
2248 }
2249
2250 /* Return the ptrace options that we want to try to enable. */
2251
2252 static int
2253 linux_low_ptrace_options (int attached)
2254 {
2255 client_state &cs = get_client_state ();
2256 int options = 0;
2257
2258 if (!attached)
2259 options |= PTRACE_O_EXITKILL;
2260
2261 if (cs.report_fork_events)
2262 options |= PTRACE_O_TRACEFORK;
2263
2264 if (cs.report_vfork_events)
2265 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2266
2267 if (cs.report_exec_events)
2268 options |= PTRACE_O_TRACEEXEC;
2269
2270 options |= PTRACE_O_TRACESYSGOOD;
2271
2272 return options;
2273 }
2274
2275 lwp_info *
2276 linux_process_target::filter_event (int lwpid, int wstat)
2277 {
2278 client_state &cs = get_client_state ();
2279 struct lwp_info *child;
2280 struct thread_info *thread;
2281 int have_stop_pc = 0;
2282
2283 child = find_lwp_pid (ptid_t (lwpid));
2284
2285 /* Check for stop events reported by a process we didn't already
2286 know about - anything not already in our LWP list.
2287
2288 If we're expecting to receive stopped processes after
2289 fork, vfork, and clone events, then we'll just add the
2290 new one to our list and go back to waiting for the event
2291 to be reported - the stopped process might be returned
2292 from waitpid before or after the event is.
2293
2294 But note the case of a non-leader thread exec'ing after the
2295 leader having exited, and gone from our lists (because
2296 check_zombie_leaders deleted it). The non-leader thread
2297 changes its tid to the tgid. */
2298
2299 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2300 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2301 {
2302 ptid_t child_ptid;
2303
2304 /* A multi-thread exec after we had seen the leader exiting. */
2305 if (debug_threads)
2306 {
2307 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2308 "after exec.\n", lwpid);
2309 }
2310
2311 child_ptid = ptid_t (lwpid, lwpid, 0);
2312 child = add_lwp (child_ptid);
2313 child->stopped = 1;
2314 current_thread = child->thread;
2315 }
2316
2317 /* If we didn't find a process, one of two things presumably happened:
2318 - A process we started and then detached from has exited. Ignore it.
2319 - A process we are controlling has forked and the new child's stop
2320 was reported to us by the kernel. Save its PID. */
2321 if (child == NULL && WIFSTOPPED (wstat))
2322 {
2323 add_to_pid_list (&stopped_pids, lwpid, wstat);
2324 return NULL;
2325 }
2326 else if (child == NULL)
2327 return NULL;
2328
2329 thread = get_lwp_thread (child);
2330
2331 child->stopped = 1;
2332
2333 child->last_status = wstat;
2334
2335 /* Check if the thread has exited. */
2336 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2337 {
2338 if (debug_threads)
2339 debug_printf ("LLFE: %d exited.\n", lwpid);
2340
2341 if (finish_step_over (child))
2342 {
2343 /* Unsuspend all other LWPs, and set them back running again. */
2344 unsuspend_all_lwps (child);
2345 }
2346
2347 /* If there is at least one more LWP, then the exit signal was
2348 not the end of the debugged application and should be
2349 ignored, unless GDB wants to hear about thread exits. */
2350 if (cs.report_thread_events
2351 || last_thread_of_process_p (pid_of (thread)))
2352 {
2353 /* Since events are serialized to GDB core, and we can't
2354 report this one right now. Leave the status pending for
2355 the next time we're able to report it. */
2356 mark_lwp_dead (child, wstat);
2357 return child;
2358 }
2359 else
2360 {
2361 delete_lwp (child);
2362 return NULL;
2363 }
2364 }
2365
2366 gdb_assert (WIFSTOPPED (wstat));
2367
2368 if (WIFSTOPPED (wstat))
2369 {
2370 struct process_info *proc;
2371
2372 /* Architecture-specific setup after inferior is running. */
2373 proc = find_process_pid (pid_of (thread));
2374 if (proc->tdesc == NULL)
2375 {
2376 if (proc->attached)
2377 {
2378 /* This needs to happen after we have attached to the
2379 inferior and it is stopped for the first time, but
2380 before we access any inferior registers. */
2381 arch_setup_thread (thread);
2382 }
2383 else
2384 {
2385 /* The process is started, but GDBserver will do
2386 architecture-specific setup after the program stops at
2387 the first instruction. */
2388 child->status_pending_p = 1;
2389 child->status_pending = wstat;
2390 return child;
2391 }
2392 }
2393 }
2394
2395 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2396 {
2397 struct process_info *proc = find_process_pid (pid_of (thread));
2398 int options = linux_low_ptrace_options (proc->attached);
2399
2400 linux_enable_event_reporting (lwpid, options);
2401 child->must_set_ptrace_flags = 0;
2402 }
2403
2404 /* Always update syscall_state, even if it will be filtered later. */
2405 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2406 {
2407 child->syscall_state
2408 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2409 ? TARGET_WAITKIND_SYSCALL_RETURN
2410 : TARGET_WAITKIND_SYSCALL_ENTRY);
2411 }
2412 else
2413 {
2414 /* Almost all other ptrace-stops are known to be outside of system
2415 calls, with further exceptions in handle_extended_wait. */
2416 child->syscall_state = TARGET_WAITKIND_IGNORE;
2417 }
2418
2419 /* Be careful to not overwrite stop_pc until save_stop_reason is
2420 called. */
2421 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2422 && linux_is_extended_waitstatus (wstat))
2423 {
2424 child->stop_pc = get_pc (child);
2425 if (handle_extended_wait (&child, wstat))
2426 {
2427 /* The event has been handled, so just return without
2428 reporting it. */
2429 return NULL;
2430 }
2431 }
2432
2433 if (linux_wstatus_maybe_breakpoint (wstat))
2434 {
2435 if (save_stop_reason (child))
2436 have_stop_pc = 1;
2437 }
2438
2439 if (!have_stop_pc)
2440 child->stop_pc = get_pc (child);
2441
2442 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2443 && child->stop_expected)
2444 {
2445 if (debug_threads)
2446 debug_printf ("Expected stop.\n");
2447 child->stop_expected = 0;
2448
2449 if (thread->last_resume_kind == resume_stop)
2450 {
2451 /* We want to report the stop to the core. Treat the
2452 SIGSTOP as a normal event. */
2453 if (debug_threads)
2454 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2455 target_pid_to_str (ptid_of (thread)));
2456 }
2457 else if (stopping_threads != NOT_STOPPING_THREADS)
2458 {
2459 /* Stopping threads. We don't want this SIGSTOP to end up
2460 pending. */
2461 if (debug_threads)
2462 debug_printf ("LLW: SIGSTOP caught for %s "
2463 "while stopping threads.\n",
2464 target_pid_to_str (ptid_of (thread)));
2465 return NULL;
2466 }
2467 else
2468 {
2469 /* This is a delayed SIGSTOP. Filter out the event. */
2470 if (debug_threads)
2471 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2472 child->stepping ? "step" : "continue",
2473 target_pid_to_str (ptid_of (thread)));
2474
2475 resume_one_lwp (child, child->stepping, 0, NULL);
2476 return NULL;
2477 }
2478 }
2479
2480 child->status_pending_p = 1;
2481 child->status_pending = wstat;
2482 return child;
2483 }
2484
2485 bool
2486 linux_process_target::maybe_hw_step (thread_info *thread)
2487 {
2488 if (supports_hardware_single_step ())
2489 return true;
2490 else
2491 {
2492 /* GDBserver must insert single-step breakpoint for software
2493 single step. */
2494 gdb_assert (has_single_step_breakpoints (thread));
2495 return false;
2496 }
2497 }
2498
2499 void
2500 linux_process_target::resume_stopped_resumed_lwps (thread_info *thread)
2501 {
2502 struct lwp_info *lp = get_thread_lwp (thread);
2503
2504 if (lp->stopped
2505 && !lp->suspended
2506 && !lp->status_pending_p
2507 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2508 {
2509 int step = 0;
2510
2511 if (thread->last_resume_kind == resume_step)
2512 step = maybe_hw_step (thread);
2513
2514 if (debug_threads)
2515 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2516 target_pid_to_str (ptid_of (thread)),
2517 paddress (lp->stop_pc),
2518 step);
2519
2520 resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2521 }
2522 }
2523
2524 int
2525 linux_process_target::wait_for_event_filtered (ptid_t wait_ptid,
2526 ptid_t filter_ptid,
2527 int *wstatp, int options)
2528 {
2529 struct thread_info *event_thread;
2530 struct lwp_info *event_child, *requested_child;
2531 sigset_t block_mask, prev_mask;
2532
2533 retry:
2534 /* N.B. event_thread points to the thread_info struct that contains
2535 event_child. Keep them in sync. */
2536 event_thread = NULL;
2537 event_child = NULL;
2538 requested_child = NULL;
2539
2540 /* Check for a lwp with a pending status. */
2541
2542 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2543 {
2544 event_thread = find_thread_in_random ([&] (thread_info *thread)
2545 {
2546 return status_pending_p_callback (thread, filter_ptid);
2547 });
2548
2549 if (event_thread != NULL)
2550 event_child = get_thread_lwp (event_thread);
2551 if (debug_threads && event_thread)
2552 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2553 }
2554 else if (filter_ptid != null_ptid)
2555 {
2556 requested_child = find_lwp_pid (filter_ptid);
2557
2558 if (stopping_threads == NOT_STOPPING_THREADS
2559 && requested_child->status_pending_p
2560 && (requested_child->collecting_fast_tracepoint
2561 != fast_tpoint_collect_result::not_collecting))
2562 {
2563 enqueue_one_deferred_signal (requested_child,
2564 &requested_child->status_pending);
2565 requested_child->status_pending_p = 0;
2566 requested_child->status_pending = 0;
2567 resume_one_lwp (requested_child, 0, 0, NULL);
2568 }
2569
2570 if (requested_child->suspended
2571 && requested_child->status_pending_p)
2572 {
2573 internal_error (__FILE__, __LINE__,
2574 "requesting an event out of a"
2575 " suspended child?");
2576 }
2577
2578 if (requested_child->status_pending_p)
2579 {
2580 event_child = requested_child;
2581 event_thread = get_lwp_thread (event_child);
2582 }
2583 }
2584
2585 if (event_child != NULL)
2586 {
2587 if (debug_threads)
2588 debug_printf ("Got an event from pending child %ld (%04x)\n",
2589 lwpid_of (event_thread), event_child->status_pending);
2590 *wstatp = event_child->status_pending;
2591 event_child->status_pending_p = 0;
2592 event_child->status_pending = 0;
2593 current_thread = event_thread;
2594 return lwpid_of (event_thread);
2595 }
2596
2597 /* But if we don't find a pending event, we'll have to wait.
2598
2599 We only enter this loop if no process has a pending wait status.
2600 Thus any action taken in response to a wait status inside this
2601 loop is responding as soon as we detect the status, not after any
2602 pending events. */
2603
2604 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2605 all signals while here. */
2606 sigfillset (&block_mask);
2607 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2608
2609 /* Always pull all events out of the kernel. We'll randomly select
2610 an event LWP out of all that have events, to prevent
2611 starvation. */
2612 while (event_child == NULL)
2613 {
2614 pid_t ret = 0;
2615
2616 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2617 quirks:
2618
2619 - If the thread group leader exits while other threads in the
2620 thread group still exist, waitpid(TGID, ...) hangs. That
2621 waitpid won't return an exit status until the other threads
2622 in the group are reaped.
2623
2624 - When a non-leader thread execs, that thread just vanishes
2625 without reporting an exit (so we'd hang if we waited for it
2626 explicitly in that case). The exec event is reported to
2627 the TGID pid. */
2628 errno = 0;
2629 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2630
2631 if (debug_threads)
2632 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2633 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2634
2635 if (ret > 0)
2636 {
2637 if (debug_threads)
2638 {
2639 debug_printf ("LLW: waitpid %ld received %s\n",
2640 (long) ret, status_to_str (*wstatp));
2641 }
2642
2643 /* Filter all events. IOW, leave all events pending. We'll
2644 randomly select an event LWP out of all that have events
2645 below. */
2646 filter_event (ret, *wstatp);
2647 /* Retry until nothing comes out of waitpid. A single
2648 SIGCHLD can indicate more than one child stopped. */
2649 continue;
2650 }
2651
2652 /* Now that we've pulled all events out of the kernel, resume
2653 LWPs that don't have an interesting event to report. */
2654 if (stopping_threads == NOT_STOPPING_THREADS)
2655 for_each_thread ([this] (thread_info *thread)
2656 {
2657 resume_stopped_resumed_lwps (thread);
2658 });
2659
2660 /* ... and find an LWP with a status to report to the core, if
2661 any. */
2662 event_thread = find_thread_in_random ([&] (thread_info *thread)
2663 {
2664 return status_pending_p_callback (thread, filter_ptid);
2665 });
2666
2667 if (event_thread != NULL)
2668 {
2669 event_child = get_thread_lwp (event_thread);
2670 *wstatp = event_child->status_pending;
2671 event_child->status_pending_p = 0;
2672 event_child->status_pending = 0;
2673 break;
2674 }
2675
2676 /* Check for zombie thread group leaders. Those can't be reaped
2677 until all other threads in the thread group are. */
2678 check_zombie_leaders ();
2679
2680 auto not_stopped = [&] (thread_info *thread)
2681 {
2682 return not_stopped_callback (thread, wait_ptid);
2683 };
2684
2685 /* If there are no resumed children left in the set of LWPs we
2686 want to wait for, bail. We can't just block in
2687 waitpid/sigsuspend, because lwps might have been left stopped
2688 in trace-stop state, and we'd be stuck forever waiting for
2689 their status to change (which would only happen if we resumed
2690 them). Even if WNOHANG is set, this return code is preferred
2691 over 0 (below), as it is more detailed. */
2692 if (find_thread (not_stopped) == NULL)
2693 {
2694 if (debug_threads)
2695 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2696 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2697 return -1;
2698 }
2699
2700 /* No interesting event to report to the caller. */
2701 if ((options & WNOHANG))
2702 {
2703 if (debug_threads)
2704 debug_printf ("WNOHANG set, no event found\n");
2705
2706 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2707 return 0;
2708 }
2709
2710 /* Block until we get an event reported with SIGCHLD. */
2711 if (debug_threads)
2712 debug_printf ("sigsuspend'ing\n");
2713
2714 sigsuspend (&prev_mask);
2715 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2716 goto retry;
2717 }
2718
2719 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2720
2721 current_thread = event_thread;
2722
2723 return lwpid_of (event_thread);
2724 }
2725
2726 int
2727 linux_process_target::wait_for_event (ptid_t ptid, int *wstatp, int options)
2728 {
2729 return wait_for_event_filtered (ptid, ptid, wstatp, options);
2730 }
2731
2732 /* Select one LWP out of those that have events pending. */
2733
2734 static void
2735 select_event_lwp (struct lwp_info **orig_lp)
2736 {
2737 struct thread_info *event_thread = NULL;
2738
2739 /* In all-stop, give preference to the LWP that is being
2740 single-stepped. There will be at most one, and it's the LWP that
2741 the core is most interested in. If we didn't do this, then we'd
2742 have to handle pending step SIGTRAPs somehow in case the core
2743 later continues the previously-stepped thread, otherwise we'd
2744 report the pending SIGTRAP, and the core, not having stepped the
2745 thread, wouldn't understand what the trap was for, and therefore
2746 would report it to the user as a random signal. */
2747 if (!non_stop)
2748 {
2749 event_thread = find_thread ([] (thread_info *thread)
2750 {
2751 lwp_info *lp = get_thread_lwp (thread);
2752
2753 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2754 && thread->last_resume_kind == resume_step
2755 && lp->status_pending_p);
2756 });
2757
2758 if (event_thread != NULL)
2759 {
2760 if (debug_threads)
2761 debug_printf ("SEL: Select single-step %s\n",
2762 target_pid_to_str (ptid_of (event_thread)));
2763 }
2764 }
2765 if (event_thread == NULL)
2766 {
2767 /* No single-stepping LWP. Select one at random, out of those
2768 which have had events. */
2769
2770 event_thread = find_thread_in_random ([&] (thread_info *thread)
2771 {
2772 lwp_info *lp = get_thread_lwp (thread);
2773
2774 /* Only resumed LWPs that have an event pending. */
2775 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2776 && lp->status_pending_p);
2777 });
2778 }
2779
2780 if (event_thread != NULL)
2781 {
2782 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2783
2784 /* Switch the event LWP. */
2785 *orig_lp = event_lp;
2786 }
2787 }
2788
2789 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2790 NULL. */
2791
2792 static void
2793 unsuspend_all_lwps (struct lwp_info *except)
2794 {
2795 for_each_thread ([&] (thread_info *thread)
2796 {
2797 lwp_info *lwp = get_thread_lwp (thread);
2798
2799 if (lwp != except)
2800 lwp_suspended_decr (lwp);
2801 });
2802 }
2803
2804 static bool lwp_running (thread_info *thread);
2805
2806 /* Stabilize threads (move out of jump pads).
2807
2808 If a thread is midway collecting a fast tracepoint, we need to
2809 finish the collection and move it out of the jump pad before
2810 reporting the signal.
2811
2812 This avoids recursion while collecting (when a signal arrives
2813 midway, and the signal handler itself collects), which would trash
2814 the trace buffer. In case the user set a breakpoint in a signal
2815 handler, this avoids the backtrace showing the jump pad, etc..
2816 Most importantly, there are certain things we can't do safely if
2817 threads are stopped in a jump pad (or in its callee's). For
2818 example:
2819
2820 - starting a new trace run. A thread still collecting the
2821 previous run, could trash the trace buffer when resumed. The trace
2822 buffer control structures would have been reset but the thread had
2823 no way to tell. The thread could even midway memcpy'ing to the
2824 buffer, which would mean that when resumed, it would clobber the
2825 trace buffer that had been set for a new run.
2826
2827 - we can't rewrite/reuse the jump pads for new tracepoints
2828 safely. Say you do tstart while a thread is stopped midway while
2829 collecting. When the thread is later resumed, it finishes the
2830 collection, and returns to the jump pad, to execute the original
2831 instruction that was under the tracepoint jump at the time the
2832 older run had been started. If the jump pad had been rewritten
2833 since for something else in the new run, the thread would now
2834 execute the wrong / random instructions. */
2835
2836 void
2837 linux_process_target::stabilize_threads ()
2838 {
2839 thread_info *thread_stuck = find_thread ([this] (thread_info *thread)
2840 {
2841 return stuck_in_jump_pad (thread);
2842 });
2843
2844 if (thread_stuck != NULL)
2845 {
2846 if (debug_threads)
2847 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2848 lwpid_of (thread_stuck));
2849 return;
2850 }
2851
2852 thread_info *saved_thread = current_thread;
2853
2854 stabilizing_threads = 1;
2855
2856 /* Kick 'em all. */
2857 for_each_thread ([this] (thread_info *thread)
2858 {
2859 move_out_of_jump_pad (thread);
2860 });
2861
2862 /* Loop until all are stopped out of the jump pads. */
2863 while (find_thread (lwp_running) != NULL)
2864 {
2865 struct target_waitstatus ourstatus;
2866 struct lwp_info *lwp;
2867 int wstat;
2868
2869 /* Note that we go through the full wait even loop. While
2870 moving threads out of jump pad, we need to be able to step
2871 over internal breakpoints and such. */
2872 wait_1 (minus_one_ptid, &ourstatus, 0);
2873
2874 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2875 {
2876 lwp = get_thread_lwp (current_thread);
2877
2878 /* Lock it. */
2879 lwp_suspended_inc (lwp);
2880
2881 if (ourstatus.value.sig != GDB_SIGNAL_0
2882 || current_thread->last_resume_kind == resume_stop)
2883 {
2884 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2885 enqueue_one_deferred_signal (lwp, &wstat);
2886 }
2887 }
2888 }
2889
2890 unsuspend_all_lwps (NULL);
2891
2892 stabilizing_threads = 0;
2893
2894 current_thread = saved_thread;
2895
2896 if (debug_threads)
2897 {
2898 thread_stuck = find_thread ([this] (thread_info *thread)
2899 {
2900 return stuck_in_jump_pad (thread);
2901 });
2902
2903 if (thread_stuck != NULL)
2904 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2905 lwpid_of (thread_stuck));
2906 }
2907 }
2908
2909 /* Convenience function that is called when the kernel reports an
2910 event that is not passed out to GDB. */
2911
2912 static ptid_t
2913 ignore_event (struct target_waitstatus *ourstatus)
2914 {
2915 /* If we got an event, there may still be others, as a single
2916 SIGCHLD can indicate more than one child stopped. This forces
2917 another target_wait call. */
2918 async_file_mark ();
2919
2920 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2921 return null_ptid;
2922 }
2923
2924 ptid_t
2925 linux_process_target::filter_exit_event (lwp_info *event_child,
2926 target_waitstatus *ourstatus)
2927 {
2928 client_state &cs = get_client_state ();
2929 struct thread_info *thread = get_lwp_thread (event_child);
2930 ptid_t ptid = ptid_of (thread);
2931
2932 if (!last_thread_of_process_p (pid_of (thread)))
2933 {
2934 if (cs.report_thread_events)
2935 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2936 else
2937 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2938
2939 delete_lwp (event_child);
2940 }
2941 return ptid;
2942 }
2943
2944 /* Returns 1 if GDB is interested in any event_child syscalls. */
2945
2946 static int
2947 gdb_catching_syscalls_p (struct lwp_info *event_child)
2948 {
2949 struct thread_info *thread = get_lwp_thread (event_child);
2950 struct process_info *proc = get_thread_process (thread);
2951
2952 return !proc->syscalls_to_catch.empty ();
2953 }
2954
2955 bool
2956 linux_process_target::gdb_catch_this_syscall (lwp_info *event_child)
2957 {
2958 int sysno;
2959 struct thread_info *thread = get_lwp_thread (event_child);
2960 struct process_info *proc = get_thread_process (thread);
2961
2962 if (proc->syscalls_to_catch.empty ())
2963 return false;
2964
2965 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
2966 return true;
2967
2968 get_syscall_trapinfo (event_child, &sysno);
2969
2970 for (int iter : proc->syscalls_to_catch)
2971 if (iter == sysno)
2972 return true;
2973
2974 return false;
2975 }
2976
2977 ptid_t
2978 linux_process_target::wait_1 (ptid_t ptid, target_waitstatus *ourstatus,
2979 int target_options)
2980 {
2981 client_state &cs = get_client_state ();
2982 int w;
2983 struct lwp_info *event_child;
2984 int options;
2985 int pid;
2986 int step_over_finished;
2987 int bp_explains_trap;
2988 int maybe_internal_trap;
2989 int report_to_gdb;
2990 int trace_event;
2991 int in_step_range;
2992 int any_resumed;
2993
2994 if (debug_threads)
2995 {
2996 debug_enter ();
2997 debug_printf ("wait_1: [%s]\n", target_pid_to_str (ptid));
2998 }
2999
3000 /* Translate generic target options into linux options. */
3001 options = __WALL;
3002 if (target_options & TARGET_WNOHANG)
3003 options |= WNOHANG;
3004
3005 bp_explains_trap = 0;
3006 trace_event = 0;
3007 in_step_range = 0;
3008 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3009
3010 auto status_pending_p_any = [&] (thread_info *thread)
3011 {
3012 return status_pending_p_callback (thread, minus_one_ptid);
3013 };
3014
3015 auto not_stopped = [&] (thread_info *thread)
3016 {
3017 return not_stopped_callback (thread, minus_one_ptid);
3018 };
3019
3020 /* Find a resumed LWP, if any. */
3021 if (find_thread (status_pending_p_any) != NULL)
3022 any_resumed = 1;
3023 else if (find_thread (not_stopped) != NULL)
3024 any_resumed = 1;
3025 else
3026 any_resumed = 0;
3027
3028 if (step_over_bkpt == null_ptid)
3029 pid = wait_for_event (ptid, &w, options);
3030 else
3031 {
3032 if (debug_threads)
3033 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3034 target_pid_to_str (step_over_bkpt));
3035 pid = wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3036 }
3037
3038 if (pid == 0 || (pid == -1 && !any_resumed))
3039 {
3040 gdb_assert (target_options & TARGET_WNOHANG);
3041
3042 if (debug_threads)
3043 {
3044 debug_printf ("wait_1 ret = null_ptid, "
3045 "TARGET_WAITKIND_IGNORE\n");
3046 debug_exit ();
3047 }
3048
3049 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3050 return null_ptid;
3051 }
3052 else if (pid == -1)
3053 {
3054 if (debug_threads)
3055 {
3056 debug_printf ("wait_1 ret = null_ptid, "
3057 "TARGET_WAITKIND_NO_RESUMED\n");
3058 debug_exit ();
3059 }
3060
3061 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3062 return null_ptid;
3063 }
3064
3065 event_child = get_thread_lwp (current_thread);
3066
3067 /* wait_for_event only returns an exit status for the last
3068 child of a process. Report it. */
3069 if (WIFEXITED (w) || WIFSIGNALED (w))
3070 {
3071 if (WIFEXITED (w))
3072 {
3073 ourstatus->kind = TARGET_WAITKIND_EXITED;
3074 ourstatus->value.integer = WEXITSTATUS (w);
3075
3076 if (debug_threads)
3077 {
3078 debug_printf ("wait_1 ret = %s, exited with "
3079 "retcode %d\n",
3080 target_pid_to_str (ptid_of (current_thread)),
3081 WEXITSTATUS (w));
3082 debug_exit ();
3083 }
3084 }
3085 else
3086 {
3087 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3088 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3089
3090 if (debug_threads)
3091 {
3092 debug_printf ("wait_1 ret = %s, terminated with "
3093 "signal %d\n",
3094 target_pid_to_str (ptid_of (current_thread)),
3095 WTERMSIG (w));
3096 debug_exit ();
3097 }
3098 }
3099
3100 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3101 return filter_exit_event (event_child, ourstatus);
3102
3103 return ptid_of (current_thread);
3104 }
3105
3106 /* If step-over executes a breakpoint instruction, in the case of a
3107 hardware single step it means a gdb/gdbserver breakpoint had been
3108 planted on top of a permanent breakpoint, in the case of a software
3109 single step it may just mean that gdbserver hit the reinsert breakpoint.
3110 The PC has been adjusted by save_stop_reason to point at
3111 the breakpoint address.
3112 So in the case of the hardware single step advance the PC manually
3113 past the breakpoint and in the case of software single step advance only
3114 if it's not the single_step_breakpoint we are hitting.
3115 This avoids that a program would keep trapping a permanent breakpoint
3116 forever. */
3117 if (step_over_bkpt != null_ptid
3118 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3119 && (event_child->stepping
3120 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3121 {
3122 int increment_pc = 0;
3123 int breakpoint_kind = 0;
3124 CORE_ADDR stop_pc = event_child->stop_pc;
3125
3126 breakpoint_kind = breakpoint_kind_from_current_state (&stop_pc);
3127 sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3128
3129 if (debug_threads)
3130 {
3131 debug_printf ("step-over for %s executed software breakpoint\n",
3132 target_pid_to_str (ptid_of (current_thread)));
3133 }
3134
3135 if (increment_pc != 0)
3136 {
3137 struct regcache *regcache
3138 = get_thread_regcache (current_thread, 1);
3139
3140 event_child->stop_pc += increment_pc;
3141 low_set_pc (regcache, event_child->stop_pc);
3142
3143 if (!low_breakpoint_at (event_child->stop_pc))
3144 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3145 }
3146 }
3147
3148 /* If this event was not handled before, and is not a SIGTRAP, we
3149 report it. SIGILL and SIGSEGV are also treated as traps in case
3150 a breakpoint is inserted at the current PC. If this target does
3151 not support internal breakpoints at all, we also report the
3152 SIGTRAP without further processing; it's of no concern to us. */
3153 maybe_internal_trap
3154 = (low_supports_breakpoints ()
3155 && (WSTOPSIG (w) == SIGTRAP
3156 || ((WSTOPSIG (w) == SIGILL
3157 || WSTOPSIG (w) == SIGSEGV)
3158 && low_breakpoint_at (event_child->stop_pc))));
3159
3160 if (maybe_internal_trap)
3161 {
3162 /* Handle anything that requires bookkeeping before deciding to
3163 report the event or continue waiting. */
3164
3165 /* First check if we can explain the SIGTRAP with an internal
3166 breakpoint, or if we should possibly report the event to GDB.
3167 Do this before anything that may remove or insert a
3168 breakpoint. */
3169 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3170
3171 /* We have a SIGTRAP, possibly a step-over dance has just
3172 finished. If so, tweak the state machine accordingly,
3173 reinsert breakpoints and delete any single-step
3174 breakpoints. */
3175 step_over_finished = finish_step_over (event_child);
3176
3177 /* Now invoke the callbacks of any internal breakpoints there. */
3178 check_breakpoints (event_child->stop_pc);
3179
3180 /* Handle tracepoint data collecting. This may overflow the
3181 trace buffer, and cause a tracing stop, removing
3182 breakpoints. */
3183 trace_event = handle_tracepoints (event_child);
3184
3185 if (bp_explains_trap)
3186 {
3187 if (debug_threads)
3188 debug_printf ("Hit a gdbserver breakpoint.\n");
3189 }
3190 }
3191 else
3192 {
3193 /* We have some other signal, possibly a step-over dance was in
3194 progress, and it should be cancelled too. */
3195 step_over_finished = finish_step_over (event_child);
3196 }
3197
3198 /* We have all the data we need. Either report the event to GDB, or
3199 resume threads and keep waiting for more. */
3200
3201 /* If we're collecting a fast tracepoint, finish the collection and
3202 move out of the jump pad before delivering a signal. See
3203 linux_stabilize_threads. */
3204
3205 if (WIFSTOPPED (w)
3206 && WSTOPSIG (w) != SIGTRAP
3207 && supports_fast_tracepoints ()
3208 && agent_loaded_p ())
3209 {
3210 if (debug_threads)
3211 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3212 "to defer or adjust it.\n",
3213 WSTOPSIG (w), lwpid_of (current_thread));
3214
3215 /* Allow debugging the jump pad itself. */
3216 if (current_thread->last_resume_kind != resume_step
3217 && maybe_move_out_of_jump_pad (event_child, &w))
3218 {
3219 enqueue_one_deferred_signal (event_child, &w);
3220
3221 if (debug_threads)
3222 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3223 WSTOPSIG (w), lwpid_of (current_thread));
3224
3225 resume_one_lwp (event_child, 0, 0, NULL);
3226
3227 if (debug_threads)
3228 debug_exit ();
3229 return ignore_event (ourstatus);
3230 }
3231 }
3232
3233 if (event_child->collecting_fast_tracepoint
3234 != fast_tpoint_collect_result::not_collecting)
3235 {
3236 if (debug_threads)
3237 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3238 "Check if we're already there.\n",
3239 lwpid_of (current_thread),
3240 (int) event_child->collecting_fast_tracepoint);
3241
3242 trace_event = 1;
3243
3244 event_child->collecting_fast_tracepoint
3245 = linux_fast_tracepoint_collecting (event_child, NULL);
3246
3247 if (event_child->collecting_fast_tracepoint
3248 != fast_tpoint_collect_result::before_insn)
3249 {
3250 /* No longer need this breakpoint. */
3251 if (event_child->exit_jump_pad_bkpt != NULL)
3252 {
3253 if (debug_threads)
3254 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3255 "stopping all threads momentarily.\n");
3256
3257 /* Other running threads could hit this breakpoint.
3258 We don't handle moribund locations like GDB does,
3259 instead we always pause all threads when removing
3260 breakpoints, so that any step-over or
3261 decr_pc_after_break adjustment is always taken
3262 care of while the breakpoint is still
3263 inserted. */
3264 stop_all_lwps (1, event_child);
3265
3266 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3267 event_child->exit_jump_pad_bkpt = NULL;
3268
3269 unstop_all_lwps (1, event_child);
3270
3271 gdb_assert (event_child->suspended >= 0);
3272 }
3273 }
3274
3275 if (event_child->collecting_fast_tracepoint
3276 == fast_tpoint_collect_result::not_collecting)
3277 {
3278 if (debug_threads)
3279 debug_printf ("fast tracepoint finished "
3280 "collecting successfully.\n");
3281
3282 /* We may have a deferred signal to report. */
3283 if (dequeue_one_deferred_signal (event_child, &w))
3284 {
3285 if (debug_threads)
3286 debug_printf ("dequeued one signal.\n");
3287 }
3288 else
3289 {
3290 if (debug_threads)
3291 debug_printf ("no deferred signals.\n");
3292
3293 if (stabilizing_threads)
3294 {
3295 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3296 ourstatus->value.sig = GDB_SIGNAL_0;
3297
3298 if (debug_threads)
3299 {
3300 debug_printf ("wait_1 ret = %s, stopped "
3301 "while stabilizing threads\n",
3302 target_pid_to_str (ptid_of (current_thread)));
3303 debug_exit ();
3304 }
3305
3306 return ptid_of (current_thread);
3307 }
3308 }
3309 }
3310 }
3311
3312 /* Check whether GDB would be interested in this event. */
3313
3314 /* Check if GDB is interested in this syscall. */
3315 if (WIFSTOPPED (w)
3316 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3317 && !gdb_catch_this_syscall (event_child))
3318 {
3319 if (debug_threads)
3320 {
3321 debug_printf ("Ignored syscall for LWP %ld.\n",
3322 lwpid_of (current_thread));
3323 }
3324
3325 resume_one_lwp (event_child, event_child->stepping, 0, NULL);
3326
3327 if (debug_threads)
3328 debug_exit ();
3329 return ignore_event (ourstatus);
3330 }
3331
3332 /* If GDB is not interested in this signal, don't stop other
3333 threads, and don't report it to GDB. Just resume the inferior
3334 right away. We do this for threading-related signals as well as
3335 any that GDB specifically requested we ignore. But never ignore
3336 SIGSTOP if we sent it ourselves, and do not ignore signals when
3337 stepping - they may require special handling to skip the signal
3338 handler. Also never ignore signals that could be caused by a
3339 breakpoint. */
3340 if (WIFSTOPPED (w)
3341 && current_thread->last_resume_kind != resume_step
3342 && (
3343 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3344 (current_process ()->priv->thread_db != NULL
3345 && (WSTOPSIG (w) == __SIGRTMIN
3346 || WSTOPSIG (w) == __SIGRTMIN + 1))
3347 ||
3348 #endif
3349 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3350 && !(WSTOPSIG (w) == SIGSTOP
3351 && current_thread->last_resume_kind == resume_stop)
3352 && !linux_wstatus_maybe_breakpoint (w))))
3353 {
3354 siginfo_t info, *info_p;
3355
3356 if (debug_threads)
3357 debug_printf ("Ignored signal %d for LWP %ld.\n",
3358 WSTOPSIG (w), lwpid_of (current_thread));
3359
3360 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3361 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3362 info_p = &info;
3363 else
3364 info_p = NULL;
3365
3366 if (step_over_finished)
3367 {
3368 /* We cancelled this thread's step-over above. We still
3369 need to unsuspend all other LWPs, and set them back
3370 running again while the signal handler runs. */
3371 unsuspend_all_lwps (event_child);
3372
3373 /* Enqueue the pending signal info so that proceed_all_lwps
3374 doesn't lose it. */
3375 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3376
3377 proceed_all_lwps ();
3378 }
3379 else
3380 {
3381 resume_one_lwp (event_child, event_child->stepping,
3382 WSTOPSIG (w), info_p);
3383 }
3384
3385 if (debug_threads)
3386 debug_exit ();
3387
3388 return ignore_event (ourstatus);
3389 }
3390
3391 /* Note that all addresses are always "out of the step range" when
3392 there's no range to begin with. */
3393 in_step_range = lwp_in_step_range (event_child);
3394
3395 /* If GDB wanted this thread to single step, and the thread is out
3396 of the step range, we always want to report the SIGTRAP, and let
3397 GDB handle it. Watchpoints should always be reported. So should
3398 signals we can't explain. A SIGTRAP we can't explain could be a
3399 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3400 do, we're be able to handle GDB breakpoints on top of internal
3401 breakpoints, by handling the internal breakpoint and still
3402 reporting the event to GDB. If we don't, we're out of luck, GDB
3403 won't see the breakpoint hit. If we see a single-step event but
3404 the thread should be continuing, don't pass the trap to gdb.
3405 That indicates that we had previously finished a single-step but
3406 left the single-step pending -- see
3407 complete_ongoing_step_over. */
3408 report_to_gdb = (!maybe_internal_trap
3409 || (current_thread->last_resume_kind == resume_step
3410 && !in_step_range)
3411 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3412 || (!in_step_range
3413 && !bp_explains_trap
3414 && !trace_event
3415 && !step_over_finished
3416 && !(current_thread->last_resume_kind == resume_continue
3417 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3418 || (gdb_breakpoint_here (event_child->stop_pc)
3419 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3420 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3421 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3422
3423 run_breakpoint_commands (event_child->stop_pc);
3424
3425 /* We found no reason GDB would want us to stop. We either hit one
3426 of our own breakpoints, or finished an internal step GDB
3427 shouldn't know about. */
3428 if (!report_to_gdb)
3429 {
3430 if (debug_threads)
3431 {
3432 if (bp_explains_trap)
3433 debug_printf ("Hit a gdbserver breakpoint.\n");
3434 if (step_over_finished)
3435 debug_printf ("Step-over finished.\n");
3436 if (trace_event)
3437 debug_printf ("Tracepoint event.\n");
3438 if (lwp_in_step_range (event_child))
3439 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3440 paddress (event_child->stop_pc),
3441 paddress (event_child->step_range_start),
3442 paddress (event_child->step_range_end));
3443 }
3444
3445 /* We're not reporting this breakpoint to GDB, so apply the
3446 decr_pc_after_break adjustment to the inferior's regcache
3447 ourselves. */
3448
3449 if (low_supports_breakpoints ())
3450 {
3451 struct regcache *regcache
3452 = get_thread_regcache (current_thread, 1);
3453 low_set_pc (regcache, event_child->stop_pc);
3454 }
3455
3456 if (step_over_finished)
3457 {
3458 /* If we have finished stepping over a breakpoint, we've
3459 stopped and suspended all LWPs momentarily except the
3460 stepping one. This is where we resume them all again.
3461 We're going to keep waiting, so use proceed, which
3462 handles stepping over the next breakpoint. */
3463 unsuspend_all_lwps (event_child);
3464 }
3465 else
3466 {
3467 /* Remove the single-step breakpoints if any. Note that
3468 there isn't single-step breakpoint if we finished stepping
3469 over. */
3470 if (supports_software_single_step ()
3471 && has_single_step_breakpoints (current_thread))
3472 {
3473 stop_all_lwps (0, event_child);
3474 delete_single_step_breakpoints (current_thread);
3475 unstop_all_lwps (0, event_child);
3476 }
3477 }
3478
3479 if (debug_threads)
3480 debug_printf ("proceeding all threads.\n");
3481 proceed_all_lwps ();
3482
3483 if (debug_threads)
3484 debug_exit ();
3485
3486 return ignore_event (ourstatus);
3487 }
3488
3489 if (debug_threads)
3490 {
3491 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3492 {
3493 std::string str
3494 = target_waitstatus_to_string (&event_child->waitstatus);
3495
3496 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3497 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3498 }
3499 if (current_thread->last_resume_kind == resume_step)
3500 {
3501 if (event_child->step_range_start == event_child->step_range_end)
3502 debug_printf ("GDB wanted to single-step, reporting event.\n");
3503 else if (!lwp_in_step_range (event_child))
3504 debug_printf ("Out of step range, reporting event.\n");
3505 }
3506 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3507 debug_printf ("Stopped by watchpoint.\n");
3508 else if (gdb_breakpoint_here (event_child->stop_pc))
3509 debug_printf ("Stopped by GDB breakpoint.\n");
3510 if (debug_threads)
3511 debug_printf ("Hit a non-gdbserver trap event.\n");
3512 }
3513
3514 /* Alright, we're going to report a stop. */
3515
3516 /* Remove single-step breakpoints. */
3517 if (supports_software_single_step ())
3518 {
3519 /* Remove single-step breakpoints or not. It it is true, stop all
3520 lwps, so that other threads won't hit the breakpoint in the
3521 staled memory. */
3522 int remove_single_step_breakpoints_p = 0;
3523
3524 if (non_stop)
3525 {
3526 remove_single_step_breakpoints_p
3527 = has_single_step_breakpoints (current_thread);
3528 }
3529 else
3530 {
3531 /* In all-stop, a stop reply cancels all previous resume
3532 requests. Delete all single-step breakpoints. */
3533
3534 find_thread ([&] (thread_info *thread) {
3535 if (has_single_step_breakpoints (thread))
3536 {
3537 remove_single_step_breakpoints_p = 1;
3538 return true;
3539 }
3540
3541 return false;
3542 });
3543 }
3544
3545 if (remove_single_step_breakpoints_p)
3546 {
3547 /* If we remove single-step breakpoints from memory, stop all lwps,
3548 so that other threads won't hit the breakpoint in the staled
3549 memory. */
3550 stop_all_lwps (0, event_child);
3551
3552 if (non_stop)
3553 {
3554 gdb_assert (has_single_step_breakpoints (current_thread));
3555 delete_single_step_breakpoints (current_thread);
3556 }
3557 else
3558 {
3559 for_each_thread ([] (thread_info *thread){
3560 if (has_single_step_breakpoints (thread))
3561 delete_single_step_breakpoints (thread);
3562 });
3563 }
3564
3565 unstop_all_lwps (0, event_child);
3566 }
3567 }
3568
3569 if (!stabilizing_threads)
3570 {
3571 /* In all-stop, stop all threads. */
3572 if (!non_stop)
3573 stop_all_lwps (0, NULL);
3574
3575 if (step_over_finished)
3576 {
3577 if (!non_stop)
3578 {
3579 /* If we were doing a step-over, all other threads but
3580 the stepping one had been paused in start_step_over,
3581 with their suspend counts incremented. We don't want
3582 to do a full unstop/unpause, because we're in
3583 all-stop mode (so we want threads stopped), but we
3584 still need to unsuspend the other threads, to
3585 decrement their `suspended' count back. */
3586 unsuspend_all_lwps (event_child);
3587 }
3588 else
3589 {
3590 /* If we just finished a step-over, then all threads had
3591 been momentarily paused. In all-stop, that's fine,
3592 we want threads stopped by now anyway. In non-stop,
3593 we need to re-resume threads that GDB wanted to be
3594 running. */
3595 unstop_all_lwps (1, event_child);
3596 }
3597 }
3598
3599 /* If we're not waiting for a specific LWP, choose an event LWP
3600 from among those that have had events. Giving equal priority
3601 to all LWPs that have had events helps prevent
3602 starvation. */
3603 if (ptid == minus_one_ptid)
3604 {
3605 event_child->status_pending_p = 1;
3606 event_child->status_pending = w;
3607
3608 select_event_lwp (&event_child);
3609
3610 /* current_thread and event_child must stay in sync. */
3611 current_thread = get_lwp_thread (event_child);
3612
3613 event_child->status_pending_p = 0;
3614 w = event_child->status_pending;
3615 }
3616
3617
3618 /* Stabilize threads (move out of jump pads). */
3619 if (!non_stop)
3620 target_stabilize_threads ();
3621 }
3622 else
3623 {
3624 /* If we just finished a step-over, then all threads had been
3625 momentarily paused. In all-stop, that's fine, we want
3626 threads stopped by now anyway. In non-stop, we need to
3627 re-resume threads that GDB wanted to be running. */
3628 if (step_over_finished)
3629 unstop_all_lwps (1, event_child);
3630 }
3631
3632 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3633 {
3634 /* If the reported event is an exit, fork, vfork or exec, let
3635 GDB know. */
3636
3637 /* Break the unreported fork relationship chain. */
3638 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3639 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3640 {
3641 event_child->fork_relative->fork_relative = NULL;
3642 event_child->fork_relative = NULL;
3643 }
3644
3645 *ourstatus = event_child->waitstatus;
3646 /* Clear the event lwp's waitstatus since we handled it already. */
3647 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3648 }
3649 else
3650 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3651
3652 /* Now that we've selected our final event LWP, un-adjust its PC if
3653 it was a software breakpoint, and the client doesn't know we can
3654 adjust the breakpoint ourselves. */
3655 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3656 && !cs.swbreak_feature)
3657 {
3658 int decr_pc = low_decr_pc_after_break ();
3659
3660 if (decr_pc != 0)
3661 {
3662 struct regcache *regcache
3663 = get_thread_regcache (current_thread, 1);
3664 low_set_pc (regcache, event_child->stop_pc + decr_pc);
3665 }
3666 }
3667
3668 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3669 {
3670 get_syscall_trapinfo (event_child,
3671 &ourstatus->value.syscall_number);
3672 ourstatus->kind = event_child->syscall_state;
3673 }
3674 else if (current_thread->last_resume_kind == resume_stop
3675 && WSTOPSIG (w) == SIGSTOP)
3676 {
3677 /* A thread that has been requested to stop by GDB with vCont;t,
3678 and it stopped cleanly, so report as SIG0. The use of
3679 SIGSTOP is an implementation detail. */
3680 ourstatus->value.sig = GDB_SIGNAL_0;
3681 }
3682 else if (current_thread->last_resume_kind == resume_stop
3683 && WSTOPSIG (w) != SIGSTOP)
3684 {
3685 /* A thread that has been requested to stop by GDB with vCont;t,
3686 but, it stopped for other reasons. */
3687 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3688 }
3689 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3690 {
3691 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3692 }
3693
3694 gdb_assert (step_over_bkpt == null_ptid);
3695
3696 if (debug_threads)
3697 {
3698 debug_printf ("wait_1 ret = %s, %d, %d\n",
3699 target_pid_to_str (ptid_of (current_thread)),
3700 ourstatus->kind, ourstatus->value.sig);
3701 debug_exit ();
3702 }
3703
3704 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3705 return filter_exit_event (event_child, ourstatus);
3706
3707 return ptid_of (current_thread);
3708 }
3709
3710 /* Get rid of any pending event in the pipe. */
3711 static void
3712 async_file_flush (void)
3713 {
3714 int ret;
3715 char buf;
3716
3717 do
3718 ret = read (linux_event_pipe[0], &buf, 1);
3719 while (ret >= 0 || (ret == -1 && errno == EINTR));
3720 }
3721
3722 /* Put something in the pipe, so the event loop wakes up. */
3723 static void
3724 async_file_mark (void)
3725 {
3726 int ret;
3727
3728 async_file_flush ();
3729
3730 do
3731 ret = write (linux_event_pipe[1], "+", 1);
3732 while (ret == 0 || (ret == -1 && errno == EINTR));
3733
3734 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3735 be awakened anyway. */
3736 }
3737
3738 ptid_t
3739 linux_process_target::wait (ptid_t ptid,
3740 target_waitstatus *ourstatus,
3741 int target_options)
3742 {
3743 ptid_t event_ptid;
3744
3745 /* Flush the async file first. */
3746 if (target_is_async_p ())
3747 async_file_flush ();
3748
3749 do
3750 {
3751 event_ptid = wait_1 (ptid, ourstatus, target_options);
3752 }
3753 while ((target_options & TARGET_WNOHANG) == 0
3754 && event_ptid == null_ptid
3755 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3756
3757 /* If at least one stop was reported, there may be more. A single
3758 SIGCHLD can signal more than one child stop. */
3759 if (target_is_async_p ()
3760 && (target_options & TARGET_WNOHANG) != 0
3761 && event_ptid != null_ptid)
3762 async_file_mark ();
3763
3764 return event_ptid;
3765 }
3766
3767 /* Send a signal to an LWP. */
3768
3769 static int
3770 kill_lwp (unsigned long lwpid, int signo)
3771 {
3772 int ret;
3773
3774 errno = 0;
3775 ret = syscall (__NR_tkill, lwpid, signo);
3776 if (errno == ENOSYS)
3777 {
3778 /* If tkill fails, then we are not using nptl threads, a
3779 configuration we no longer support. */
3780 perror_with_name (("tkill"));
3781 }
3782 return ret;
3783 }
3784
3785 void
3786 linux_stop_lwp (struct lwp_info *lwp)
3787 {
3788 send_sigstop (lwp);
3789 }
3790
3791 static void
3792 send_sigstop (struct lwp_info *lwp)
3793 {
3794 int pid;
3795
3796 pid = lwpid_of (get_lwp_thread (lwp));
3797
3798 /* If we already have a pending stop signal for this process, don't
3799 send another. */
3800 if (lwp->stop_expected)
3801 {
3802 if (debug_threads)
3803 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3804
3805 return;
3806 }
3807
3808 if (debug_threads)
3809 debug_printf ("Sending sigstop to lwp %d\n", pid);
3810
3811 lwp->stop_expected = 1;
3812 kill_lwp (pid, SIGSTOP);
3813 }
3814
3815 static void
3816 send_sigstop (thread_info *thread, lwp_info *except)
3817 {
3818 struct lwp_info *lwp = get_thread_lwp (thread);
3819
3820 /* Ignore EXCEPT. */
3821 if (lwp == except)
3822 return;
3823
3824 if (lwp->stopped)
3825 return;
3826
3827 send_sigstop (lwp);
3828 }
3829
3830 /* Increment the suspend count of an LWP, and stop it, if not stopped
3831 yet. */
3832 static void
3833 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3834 {
3835 struct lwp_info *lwp = get_thread_lwp (thread);
3836
3837 /* Ignore EXCEPT. */
3838 if (lwp == except)
3839 return;
3840
3841 lwp_suspended_inc (lwp);
3842
3843 send_sigstop (thread, except);
3844 }
3845
3846 static void
3847 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3848 {
3849 /* Store the exit status for later. */
3850 lwp->status_pending_p = 1;
3851 lwp->status_pending = wstat;
3852
3853 /* Store in waitstatus as well, as there's nothing else to process
3854 for this event. */
3855 if (WIFEXITED (wstat))
3856 {
3857 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3858 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3859 }
3860 else if (WIFSIGNALED (wstat))
3861 {
3862 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3863 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3864 }
3865
3866 /* Prevent trying to stop it. */
3867 lwp->stopped = 1;
3868
3869 /* No further stops are expected from a dead lwp. */
3870 lwp->stop_expected = 0;
3871 }
3872
3873 /* Return true if LWP has exited already, and has a pending exit event
3874 to report to GDB. */
3875
3876 static int
3877 lwp_is_marked_dead (struct lwp_info *lwp)
3878 {
3879 return (lwp->status_pending_p
3880 && (WIFEXITED (lwp->status_pending)
3881 || WIFSIGNALED (lwp->status_pending)));
3882 }
3883
3884 void
3885 linux_process_target::wait_for_sigstop ()
3886 {
3887 struct thread_info *saved_thread;
3888 ptid_t saved_tid;
3889 int wstat;
3890 int ret;
3891
3892 saved_thread = current_thread;
3893 if (saved_thread != NULL)
3894 saved_tid = saved_thread->id;
3895 else
3896 saved_tid = null_ptid; /* avoid bogus unused warning */
3897
3898 if (debug_threads)
3899 debug_printf ("wait_for_sigstop: pulling events\n");
3900
3901 /* Passing NULL_PTID as filter indicates we want all events to be
3902 left pending. Eventually this returns when there are no
3903 unwaited-for children left. */
3904 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat, __WALL);
3905 gdb_assert (ret == -1);
3906
3907 if (saved_thread == NULL || mythread_alive (saved_tid))
3908 current_thread = saved_thread;
3909 else
3910 {
3911 if (debug_threads)
3912 debug_printf ("Previously current thread died.\n");
3913
3914 /* We can't change the current inferior behind GDB's back,
3915 otherwise, a subsequent command may apply to the wrong
3916 process. */
3917 current_thread = NULL;
3918 }
3919 }
3920
3921 bool
3922 linux_process_target::stuck_in_jump_pad (thread_info *thread)
3923 {
3924 struct lwp_info *lwp = get_thread_lwp (thread);
3925
3926 if (lwp->suspended != 0)
3927 {
3928 internal_error (__FILE__, __LINE__,
3929 "LWP %ld is suspended, suspended=%d\n",
3930 lwpid_of (thread), lwp->suspended);
3931 }
3932 gdb_assert (lwp->stopped);
3933
3934 /* Allow debugging the jump pad, gdb_collect, etc.. */
3935 return (supports_fast_tracepoints ()
3936 && agent_loaded_p ()
3937 && (gdb_breakpoint_here (lwp->stop_pc)
3938 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3939 || thread->last_resume_kind == resume_step)
3940 && (linux_fast_tracepoint_collecting (lwp, NULL)
3941 != fast_tpoint_collect_result::not_collecting));
3942 }
3943
3944 void
3945 linux_process_target::move_out_of_jump_pad (thread_info *thread)
3946 {
3947 struct thread_info *saved_thread;
3948 struct lwp_info *lwp = get_thread_lwp (thread);
3949 int *wstat;
3950
3951 if (lwp->suspended != 0)
3952 {
3953 internal_error (__FILE__, __LINE__,
3954 "LWP %ld is suspended, suspended=%d\n",
3955 lwpid_of (thread), lwp->suspended);
3956 }
3957 gdb_assert (lwp->stopped);
3958
3959 /* For gdb_breakpoint_here. */
3960 saved_thread = current_thread;
3961 current_thread = thread;
3962
3963 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3964
3965 /* Allow debugging the jump pad, gdb_collect, etc. */
3966 if (!gdb_breakpoint_here (lwp->stop_pc)
3967 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3968 && thread->last_resume_kind != resume_step
3969 && maybe_move_out_of_jump_pad (lwp, wstat))
3970 {
3971 if (debug_threads)
3972 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3973 lwpid_of (thread));
3974
3975 if (wstat)
3976 {
3977 lwp->status_pending_p = 0;
3978 enqueue_one_deferred_signal (lwp, wstat);
3979
3980 if (debug_threads)
3981 debug_printf ("Signal %d for LWP %ld deferred "
3982 "(in jump pad)\n",
3983 WSTOPSIG (*wstat), lwpid_of (thread));
3984 }
3985
3986 resume_one_lwp (lwp, 0, 0, NULL);
3987 }
3988 else
3989 lwp_suspended_inc (lwp);
3990
3991 current_thread = saved_thread;
3992 }
3993
3994 static bool
3995 lwp_running (thread_info *thread)
3996 {
3997 struct lwp_info *lwp = get_thread_lwp (thread);
3998
3999 if (lwp_is_marked_dead (lwp))
4000 return false;
4001
4002 return !lwp->stopped;
4003 }
4004
4005 void
4006 linux_process_target::stop_all_lwps (int suspend, lwp_info *except)
4007 {
4008 /* Should not be called recursively. */
4009 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4010
4011 if (debug_threads)
4012 {
4013 debug_enter ();
4014 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4015 suspend ? "stop-and-suspend" : "stop",
4016 except != NULL
4017 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4018 : "none");
4019 }
4020
4021 stopping_threads = (suspend
4022 ? STOPPING_AND_SUSPENDING_THREADS
4023 : STOPPING_THREADS);
4024
4025 if (suspend)
4026 for_each_thread ([&] (thread_info *thread)
4027 {
4028 suspend_and_send_sigstop (thread, except);
4029 });
4030 else
4031 for_each_thread ([&] (thread_info *thread)
4032 {
4033 send_sigstop (thread, except);
4034 });
4035
4036 wait_for_sigstop ();
4037 stopping_threads = NOT_STOPPING_THREADS;
4038
4039 if (debug_threads)
4040 {
4041 debug_printf ("stop_all_lwps done, setting stopping_threads "
4042 "back to !stopping\n");
4043 debug_exit ();
4044 }
4045 }
4046
4047 /* Enqueue one signal in the chain of signals which need to be
4048 delivered to this process on next resume. */
4049
4050 static void
4051 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4052 {
4053 struct pending_signals *p_sig = XNEW (struct pending_signals);
4054
4055 p_sig->prev = lwp->pending_signals;
4056 p_sig->signal = signal;
4057 if (info == NULL)
4058 memset (&p_sig->info, 0, sizeof (siginfo_t));
4059 else
4060 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4061 lwp->pending_signals = p_sig;
4062 }
4063
4064 void
4065 linux_process_target::install_software_single_step_breakpoints (lwp_info *lwp)
4066 {
4067 struct thread_info *thread = get_lwp_thread (lwp);
4068 struct regcache *regcache = get_thread_regcache (thread, 1);
4069
4070 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4071
4072 current_thread = thread;
4073 std::vector<CORE_ADDR> next_pcs = low_get_next_pcs (regcache);
4074
4075 for (CORE_ADDR pc : next_pcs)
4076 set_single_step_breakpoint (pc, current_ptid);
4077 }
4078
4079 int
4080 linux_process_target::single_step (lwp_info* lwp)
4081 {
4082 int step = 0;
4083
4084 if (supports_hardware_single_step ())
4085 {
4086 step = 1;
4087 }
4088 else if (supports_software_single_step ())
4089 {
4090 install_software_single_step_breakpoints (lwp);
4091 step = 0;
4092 }
4093 else
4094 {
4095 if (debug_threads)
4096 debug_printf ("stepping is not implemented on this target");
4097 }
4098
4099 return step;
4100 }
4101
4102 /* The signal can be delivered to the inferior if we are not trying to
4103 finish a fast tracepoint collect. Since signal can be delivered in
4104 the step-over, the program may go to signal handler and trap again
4105 after return from the signal handler. We can live with the spurious
4106 double traps. */
4107
4108 static int
4109 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4110 {
4111 return (lwp->collecting_fast_tracepoint
4112 == fast_tpoint_collect_result::not_collecting);
4113 }
4114
4115 void
4116 linux_process_target::resume_one_lwp_throw (lwp_info *lwp, int step,
4117 int signal, siginfo_t *info)
4118 {
4119 struct thread_info *thread = get_lwp_thread (lwp);
4120 struct thread_info *saved_thread;
4121 int ptrace_request;
4122 struct process_info *proc = get_thread_process (thread);
4123
4124 /* Note that target description may not be initialised
4125 (proc->tdesc == NULL) at this point because the program hasn't
4126 stopped at the first instruction yet. It means GDBserver skips
4127 the extra traps from the wrapper program (see option --wrapper).
4128 Code in this function that requires register access should be
4129 guarded by proc->tdesc == NULL or something else. */
4130
4131 if (lwp->stopped == 0)
4132 return;
4133
4134 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4135
4136 fast_tpoint_collect_result fast_tp_collecting
4137 = lwp->collecting_fast_tracepoint;
4138
4139 gdb_assert (!stabilizing_threads
4140 || (fast_tp_collecting
4141 != fast_tpoint_collect_result::not_collecting));
4142
4143 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4144 user used the "jump" command, or "set $pc = foo"). */
4145 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4146 {
4147 /* Collecting 'while-stepping' actions doesn't make sense
4148 anymore. */
4149 release_while_stepping_state_list (thread);
4150 }
4151
4152 /* If we have pending signals or status, and a new signal, enqueue the
4153 signal. Also enqueue the signal if it can't be delivered to the
4154 inferior right now. */
4155 if (signal != 0
4156 && (lwp->status_pending_p
4157 || lwp->pending_signals != NULL
4158 || !lwp_signal_can_be_delivered (lwp)))
4159 {
4160 enqueue_pending_signal (lwp, signal, info);
4161
4162 /* Postpone any pending signal. It was enqueued above. */
4163 signal = 0;
4164 }
4165
4166 if (lwp->status_pending_p)
4167 {
4168 if (debug_threads)
4169 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4170 " has pending status\n",
4171 lwpid_of (thread), step ? "step" : "continue",
4172 lwp->stop_expected ? "expected" : "not expected");
4173 return;
4174 }
4175
4176 saved_thread = current_thread;
4177 current_thread = thread;
4178
4179 /* This bit needs some thinking about. If we get a signal that
4180 we must report while a single-step reinsert is still pending,
4181 we often end up resuming the thread. It might be better to
4182 (ew) allow a stack of pending events; then we could be sure that
4183 the reinsert happened right away and not lose any signals.
4184
4185 Making this stack would also shrink the window in which breakpoints are
4186 uninserted (see comment in linux_wait_for_lwp) but not enough for
4187 complete correctness, so it won't solve that problem. It may be
4188 worthwhile just to solve this one, however. */
4189 if (lwp->bp_reinsert != 0)
4190 {
4191 if (debug_threads)
4192 debug_printf (" pending reinsert at 0x%s\n",
4193 paddress (lwp->bp_reinsert));
4194
4195 if (supports_hardware_single_step ())
4196 {
4197 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4198 {
4199 if (step == 0)
4200 warning ("BAD - reinserting but not stepping.");
4201 if (lwp->suspended)
4202 warning ("BAD - reinserting and suspended(%d).",
4203 lwp->suspended);
4204 }
4205 }
4206
4207 step = maybe_hw_step (thread);
4208 }
4209
4210 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4211 {
4212 if (debug_threads)
4213 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4214 " (exit-jump-pad-bkpt)\n",
4215 lwpid_of (thread));
4216 }
4217 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4218 {
4219 if (debug_threads)
4220 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4221 " single-stepping\n",
4222 lwpid_of (thread));
4223
4224 if (supports_hardware_single_step ())
4225 step = 1;
4226 else
4227 {
4228 internal_error (__FILE__, __LINE__,
4229 "moving out of jump pad single-stepping"
4230 " not implemented on this target");
4231 }
4232 }
4233
4234 /* If we have while-stepping actions in this thread set it stepping.
4235 If we have a signal to deliver, it may or may not be set to
4236 SIG_IGN, we don't know. Assume so, and allow collecting
4237 while-stepping into a signal handler. A possible smart thing to
4238 do would be to set an internal breakpoint at the signal return
4239 address, continue, and carry on catching this while-stepping
4240 action only when that breakpoint is hit. A future
4241 enhancement. */
4242 if (thread->while_stepping != NULL)
4243 {
4244 if (debug_threads)
4245 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4246 lwpid_of (thread));
4247
4248 step = single_step (lwp);
4249 }
4250
4251 if (proc->tdesc != NULL && low_supports_breakpoints ())
4252 {
4253 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4254
4255 lwp->stop_pc = low_get_pc (regcache);
4256
4257 if (debug_threads)
4258 {
4259 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4260 (long) lwp->stop_pc);
4261 }
4262 }
4263
4264 /* If we have pending signals, consume one if it can be delivered to
4265 the inferior. */
4266 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4267 {
4268 struct pending_signals **p_sig;
4269
4270 p_sig = &lwp->pending_signals;
4271 while ((*p_sig)->prev != NULL)
4272 p_sig = &(*p_sig)->prev;
4273
4274 signal = (*p_sig)->signal;
4275 if ((*p_sig)->info.si_signo != 0)
4276 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4277 &(*p_sig)->info);
4278
4279 free (*p_sig);
4280 *p_sig = NULL;
4281 }
4282
4283 if (debug_threads)
4284 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4285 lwpid_of (thread), step ? "step" : "continue", signal,
4286 lwp->stop_expected ? "expected" : "not expected");
4287
4288 low_prepare_to_resume (lwp);
4289
4290 regcache_invalidate_thread (thread);
4291 errno = 0;
4292 lwp->stepping = step;
4293 if (step)
4294 ptrace_request = PTRACE_SINGLESTEP;
4295 else if (gdb_catching_syscalls_p (lwp))
4296 ptrace_request = PTRACE_SYSCALL;
4297 else
4298 ptrace_request = PTRACE_CONT;
4299 ptrace (ptrace_request,
4300 lwpid_of (thread),
4301 (PTRACE_TYPE_ARG3) 0,
4302 /* Coerce to a uintptr_t first to avoid potential gcc warning
4303 of coercing an 8 byte integer to a 4 byte pointer. */
4304 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4305
4306 current_thread = saved_thread;
4307 if (errno)
4308 perror_with_name ("resuming thread");
4309
4310 /* Successfully resumed. Clear state that no longer makes sense,
4311 and mark the LWP as running. Must not do this before resuming
4312 otherwise if that fails other code will be confused. E.g., we'd
4313 later try to stop the LWP and hang forever waiting for a stop
4314 status. Note that we must not throw after this is cleared,
4315 otherwise handle_zombie_lwp_error would get confused. */
4316 lwp->stopped = 0;
4317 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4318 }
4319
4320 void
4321 linux_process_target::low_prepare_to_resume (lwp_info *lwp)
4322 {
4323 /* Nop. */
4324 }
4325
4326 /* Called when we try to resume a stopped LWP and that errors out. If
4327 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4328 or about to become), discard the error, clear any pending status
4329 the LWP may have, and return true (we'll collect the exit status
4330 soon enough). Otherwise, return false. */
4331
4332 static int
4333 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4334 {
4335 struct thread_info *thread = get_lwp_thread (lp);
4336
4337 /* If we get an error after resuming the LWP successfully, we'd
4338 confuse !T state for the LWP being gone. */
4339 gdb_assert (lp->stopped);
4340
4341 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4342 because even if ptrace failed with ESRCH, the tracee may be "not
4343 yet fully dead", but already refusing ptrace requests. In that
4344 case the tracee has 'R (Running)' state for a little bit
4345 (observed in Linux 3.18). See also the note on ESRCH in the
4346 ptrace(2) man page. Instead, check whether the LWP has any state
4347 other than ptrace-stopped. */
4348
4349 /* Don't assume anything if /proc/PID/status can't be read. */
4350 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4351 {
4352 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4353 lp->status_pending_p = 0;
4354 return 1;
4355 }
4356 return 0;
4357 }
4358
4359 void
4360 linux_process_target::resume_one_lwp (lwp_info *lwp, int step, int signal,
4361 siginfo_t *info)
4362 {
4363 try
4364 {
4365 resume_one_lwp_throw (lwp, step, signal, info);
4366 }
4367 catch (const gdb_exception_error &ex)
4368 {
4369 if (!check_ptrace_stopped_lwp_gone (lwp))
4370 throw;
4371 }
4372 }
4373
4374 /* This function is called once per thread via for_each_thread.
4375 We look up which resume request applies to THREAD and mark it with a
4376 pointer to the appropriate resume request.
4377
4378 This algorithm is O(threads * resume elements), but resume elements
4379 is small (and will remain small at least until GDB supports thread
4380 suspension). */
4381
4382 static void
4383 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4384 {
4385 struct lwp_info *lwp = get_thread_lwp (thread);
4386
4387 for (int ndx = 0; ndx < n; ndx++)
4388 {
4389 ptid_t ptid = resume[ndx].thread;
4390 if (ptid == minus_one_ptid
4391 || ptid == thread->id
4392 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4393 of PID'. */
4394 || (ptid.pid () == pid_of (thread)
4395 && (ptid.is_pid ()
4396 || ptid.lwp () == -1)))
4397 {
4398 if (resume[ndx].kind == resume_stop
4399 && thread->last_resume_kind == resume_stop)
4400 {
4401 if (debug_threads)
4402 debug_printf ("already %s LWP %ld at GDB's request\n",
4403 (thread->last_status.kind
4404 == TARGET_WAITKIND_STOPPED)
4405 ? "stopped"
4406 : "stopping",
4407 lwpid_of (thread));
4408
4409 continue;
4410 }
4411
4412 /* Ignore (wildcard) resume requests for already-resumed
4413 threads. */
4414 if (resume[ndx].kind != resume_stop
4415 && thread->last_resume_kind != resume_stop)
4416 {
4417 if (debug_threads)
4418 debug_printf ("already %s LWP %ld at GDB's request\n",
4419 (thread->last_resume_kind
4420 == resume_step)
4421 ? "stepping"
4422 : "continuing",
4423 lwpid_of (thread));
4424 continue;
4425 }
4426
4427 /* Don't let wildcard resumes resume fork children that GDB
4428 does not yet know are new fork children. */
4429 if (lwp->fork_relative != NULL)
4430 {
4431 struct lwp_info *rel = lwp->fork_relative;
4432
4433 if (rel->status_pending_p
4434 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4435 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4436 {
4437 if (debug_threads)
4438 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4439 lwpid_of (thread));
4440 continue;
4441 }
4442 }
4443
4444 /* If the thread has a pending event that has already been
4445 reported to GDBserver core, but GDB has not pulled the
4446 event out of the vStopped queue yet, likewise, ignore the
4447 (wildcard) resume request. */
4448 if (in_queued_stop_replies (thread->id))
4449 {
4450 if (debug_threads)
4451 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4452 lwpid_of (thread));
4453 continue;
4454 }
4455
4456 lwp->resume = &resume[ndx];
4457 thread->last_resume_kind = lwp->resume->kind;
4458
4459 lwp->step_range_start = lwp->resume->step_range_start;
4460 lwp->step_range_end = lwp->resume->step_range_end;
4461
4462 /* If we had a deferred signal to report, dequeue one now.
4463 This can happen if LWP gets more than one signal while
4464 trying to get out of a jump pad. */
4465 if (lwp->stopped
4466 && !lwp->status_pending_p
4467 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4468 {
4469 lwp->status_pending_p = 1;
4470
4471 if (debug_threads)
4472 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4473 "leaving status pending.\n",
4474 WSTOPSIG (lwp->status_pending),
4475 lwpid_of (thread));
4476 }
4477
4478 return;
4479 }
4480 }
4481
4482 /* No resume action for this thread. */
4483 lwp->resume = NULL;
4484 }
4485
4486 bool
4487 linux_process_target::resume_status_pending (thread_info *thread)
4488 {
4489 struct lwp_info *lwp = get_thread_lwp (thread);
4490
4491 /* LWPs which will not be resumed are not interesting, because
4492 we might not wait for them next time through linux_wait. */
4493 if (lwp->resume == NULL)
4494 return false;
4495
4496 return thread_still_has_status_pending (thread);
4497 }
4498
4499 bool
4500 linux_process_target::thread_needs_step_over (thread_info *thread)
4501 {
4502 struct lwp_info *lwp = get_thread_lwp (thread);
4503 struct thread_info *saved_thread;
4504 CORE_ADDR pc;
4505 struct process_info *proc = get_thread_process (thread);
4506
4507 /* GDBserver is skipping the extra traps from the wrapper program,
4508 don't have to do step over. */
4509 if (proc->tdesc == NULL)
4510 return false;
4511
4512 /* LWPs which will not be resumed are not interesting, because we
4513 might not wait for them next time through linux_wait. */
4514
4515 if (!lwp->stopped)
4516 {
4517 if (debug_threads)
4518 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4519 lwpid_of (thread));
4520 return false;
4521 }
4522
4523 if (thread->last_resume_kind == resume_stop)
4524 {
4525 if (debug_threads)
4526 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4527 " stopped\n",
4528 lwpid_of (thread));
4529 return false;
4530 }
4531
4532 gdb_assert (lwp->suspended >= 0);
4533
4534 if (lwp->suspended)
4535 {
4536 if (debug_threads)
4537 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4538 lwpid_of (thread));
4539 return false;
4540 }
4541
4542 if (lwp->status_pending_p)
4543 {
4544 if (debug_threads)
4545 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4546 " status.\n",
4547 lwpid_of (thread));
4548 return false;
4549 }
4550
4551 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4552 or we have. */
4553 pc = get_pc (lwp);
4554
4555 /* If the PC has changed since we stopped, then don't do anything,
4556 and let the breakpoint/tracepoint be hit. This happens if, for
4557 instance, GDB handled the decr_pc_after_break subtraction itself,
4558 GDB is OOL stepping this thread, or the user has issued a "jump"
4559 command, or poked thread's registers herself. */
4560 if (pc != lwp->stop_pc)
4561 {
4562 if (debug_threads)
4563 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4564 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4565 lwpid_of (thread),
4566 paddress (lwp->stop_pc), paddress (pc));
4567 return false;
4568 }
4569
4570 /* On software single step target, resume the inferior with signal
4571 rather than stepping over. */
4572 if (supports_software_single_step ()
4573 && lwp->pending_signals != NULL
4574 && lwp_signal_can_be_delivered (lwp))
4575 {
4576 if (debug_threads)
4577 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4578 " signals.\n",
4579 lwpid_of (thread));
4580
4581 return false;
4582 }
4583
4584 saved_thread = current_thread;
4585 current_thread = thread;
4586
4587 /* We can only step over breakpoints we know about. */
4588 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4589 {
4590 /* Don't step over a breakpoint that GDB expects to hit
4591 though. If the condition is being evaluated on the target's side
4592 and it evaluate to false, step over this breakpoint as well. */
4593 if (gdb_breakpoint_here (pc)
4594 && gdb_condition_true_at_breakpoint (pc)
4595 && gdb_no_commands_at_breakpoint (pc))
4596 {
4597 if (debug_threads)
4598 debug_printf ("Need step over [LWP %ld]? yes, but found"
4599 " GDB breakpoint at 0x%s; skipping step over\n",
4600 lwpid_of (thread), paddress (pc));
4601
4602 current_thread = saved_thread;
4603 return false;
4604 }
4605 else
4606 {
4607 if (debug_threads)
4608 debug_printf ("Need step over [LWP %ld]? yes, "
4609 "found breakpoint at 0x%s\n",
4610 lwpid_of (thread), paddress (pc));
4611
4612 /* We've found an lwp that needs stepping over --- return 1 so
4613 that find_thread stops looking. */
4614 current_thread = saved_thread;
4615
4616 return true;
4617 }
4618 }
4619
4620 current_thread = saved_thread;
4621
4622 if (debug_threads)
4623 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4624 " at 0x%s\n",
4625 lwpid_of (thread), paddress (pc));
4626
4627 return false;
4628 }
4629
4630 void
4631 linux_process_target::start_step_over (lwp_info *lwp)
4632 {
4633 struct thread_info *thread = get_lwp_thread (lwp);
4634 struct thread_info *saved_thread;
4635 CORE_ADDR pc;
4636 int step;
4637
4638 if (debug_threads)
4639 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4640 lwpid_of (thread));
4641
4642 stop_all_lwps (1, lwp);
4643
4644 if (lwp->suspended != 0)
4645 {
4646 internal_error (__FILE__, __LINE__,
4647 "LWP %ld suspended=%d\n", lwpid_of (thread),
4648 lwp->suspended);
4649 }
4650
4651 if (debug_threads)
4652 debug_printf ("Done stopping all threads for step-over.\n");
4653
4654 /* Note, we should always reach here with an already adjusted PC,
4655 either by GDB (if we're resuming due to GDB's request), or by our
4656 caller, if we just finished handling an internal breakpoint GDB
4657 shouldn't care about. */
4658 pc = get_pc (lwp);
4659
4660 saved_thread = current_thread;
4661 current_thread = thread;
4662
4663 lwp->bp_reinsert = pc;
4664 uninsert_breakpoints_at (pc);
4665 uninsert_fast_tracepoint_jumps_at (pc);
4666
4667 step = single_step (lwp);
4668
4669 current_thread = saved_thread;
4670
4671 resume_one_lwp (lwp, step, 0, NULL);
4672
4673 /* Require next event from this LWP. */
4674 step_over_bkpt = thread->id;
4675 }
4676
4677 bool
4678 linux_process_target::finish_step_over (lwp_info *lwp)
4679 {
4680 if (lwp->bp_reinsert != 0)
4681 {
4682 struct thread_info *saved_thread = current_thread;
4683
4684 if (debug_threads)
4685 debug_printf ("Finished step over.\n");
4686
4687 current_thread = get_lwp_thread (lwp);
4688
4689 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4690 may be no breakpoint to reinsert there by now. */
4691 reinsert_breakpoints_at (lwp->bp_reinsert);
4692 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4693
4694 lwp->bp_reinsert = 0;
4695
4696 /* Delete any single-step breakpoints. No longer needed. We
4697 don't have to worry about other threads hitting this trap,
4698 and later not being able to explain it, because we were
4699 stepping over a breakpoint, and we hold all threads but
4700 LWP stopped while doing that. */
4701 if (!supports_hardware_single_step ())
4702 {
4703 gdb_assert (has_single_step_breakpoints (current_thread));
4704 delete_single_step_breakpoints (current_thread);
4705 }
4706
4707 step_over_bkpt = null_ptid;
4708 current_thread = saved_thread;
4709 return true;
4710 }
4711 else
4712 return false;
4713 }
4714
4715 void
4716 linux_process_target::complete_ongoing_step_over ()
4717 {
4718 if (step_over_bkpt != null_ptid)
4719 {
4720 struct lwp_info *lwp;
4721 int wstat;
4722 int ret;
4723
4724 if (debug_threads)
4725 debug_printf ("detach: step over in progress, finish it first\n");
4726
4727 /* Passing NULL_PTID as filter indicates we want all events to
4728 be left pending. Eventually this returns when there are no
4729 unwaited-for children left. */
4730 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat,
4731 __WALL);
4732 gdb_assert (ret == -1);
4733
4734 lwp = find_lwp_pid (step_over_bkpt);
4735 if (lwp != NULL)
4736 finish_step_over (lwp);
4737 step_over_bkpt = null_ptid;
4738 unsuspend_all_lwps (lwp);
4739 }
4740 }
4741
4742 void
4743 linux_process_target::resume_one_thread (thread_info *thread,
4744 bool leave_all_stopped)
4745 {
4746 struct lwp_info *lwp = get_thread_lwp (thread);
4747 int leave_pending;
4748
4749 if (lwp->resume == NULL)
4750 return;
4751
4752 if (lwp->resume->kind == resume_stop)
4753 {
4754 if (debug_threads)
4755 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4756
4757 if (!lwp->stopped)
4758 {
4759 if (debug_threads)
4760 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4761
4762 /* Stop the thread, and wait for the event asynchronously,
4763 through the event loop. */
4764 send_sigstop (lwp);
4765 }
4766 else
4767 {
4768 if (debug_threads)
4769 debug_printf ("already stopped LWP %ld\n",
4770 lwpid_of (thread));
4771
4772 /* The LWP may have been stopped in an internal event that
4773 was not meant to be notified back to GDB (e.g., gdbserver
4774 breakpoint), so we should be reporting a stop event in
4775 this case too. */
4776
4777 /* If the thread already has a pending SIGSTOP, this is a
4778 no-op. Otherwise, something later will presumably resume
4779 the thread and this will cause it to cancel any pending
4780 operation, due to last_resume_kind == resume_stop. If
4781 the thread already has a pending status to report, we
4782 will still report it the next time we wait - see
4783 status_pending_p_callback. */
4784
4785 /* If we already have a pending signal to report, then
4786 there's no need to queue a SIGSTOP, as this means we're
4787 midway through moving the LWP out of the jumppad, and we
4788 will report the pending signal as soon as that is
4789 finished. */
4790 if (lwp->pending_signals_to_report == NULL)
4791 send_sigstop (lwp);
4792 }
4793
4794 /* For stop requests, we're done. */
4795 lwp->resume = NULL;
4796 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4797 return;
4798 }
4799
4800 /* If this thread which is about to be resumed has a pending status,
4801 then don't resume it - we can just report the pending status.
4802 Likewise if it is suspended, because e.g., another thread is
4803 stepping past a breakpoint. Make sure to queue any signals that
4804 would otherwise be sent. In all-stop mode, we do this decision
4805 based on if *any* thread has a pending status. If there's a
4806 thread that needs the step-over-breakpoint dance, then don't
4807 resume any other thread but that particular one. */
4808 leave_pending = (lwp->suspended
4809 || lwp->status_pending_p
4810 || leave_all_stopped);
4811
4812 /* If we have a new signal, enqueue the signal. */
4813 if (lwp->resume->sig != 0)
4814 {
4815 siginfo_t info, *info_p;
4816
4817 /* If this is the same signal we were previously stopped by,
4818 make sure to queue its siginfo. */
4819 if (WIFSTOPPED (lwp->last_status)
4820 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4821 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4822 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4823 info_p = &info;
4824 else
4825 info_p = NULL;
4826
4827 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4828 }
4829
4830 if (!leave_pending)
4831 {
4832 if (debug_threads)
4833 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4834
4835 proceed_one_lwp (thread, NULL);
4836 }
4837 else
4838 {
4839 if (debug_threads)
4840 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4841 }
4842
4843 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4844 lwp->resume = NULL;
4845 }
4846
4847 void
4848 linux_process_target::resume (thread_resume *resume_info, size_t n)
4849 {
4850 struct thread_info *need_step_over = NULL;
4851
4852 if (debug_threads)
4853 {
4854 debug_enter ();
4855 debug_printf ("linux_resume:\n");
4856 }
4857
4858 for_each_thread ([&] (thread_info *thread)
4859 {
4860 linux_set_resume_request (thread, resume_info, n);
4861 });
4862
4863 /* If there is a thread which would otherwise be resumed, which has
4864 a pending status, then don't resume any threads - we can just
4865 report the pending status. Make sure to queue any signals that
4866 would otherwise be sent. In non-stop mode, we'll apply this
4867 logic to each thread individually. We consume all pending events
4868 before considering to start a step-over (in all-stop). */
4869 bool any_pending = false;
4870 if (!non_stop)
4871 any_pending = find_thread ([this] (thread_info *thread)
4872 {
4873 return resume_status_pending (thread);
4874 }) != nullptr;
4875
4876 /* If there is a thread which would otherwise be resumed, which is
4877 stopped at a breakpoint that needs stepping over, then don't
4878 resume any threads - have it step over the breakpoint with all
4879 other threads stopped, then resume all threads again. Make sure
4880 to queue any signals that would otherwise be delivered or
4881 queued. */
4882 if (!any_pending && low_supports_breakpoints ())
4883 need_step_over = find_thread ([this] (thread_info *thread)
4884 {
4885 return thread_needs_step_over (thread);
4886 });
4887
4888 bool leave_all_stopped = (need_step_over != NULL || any_pending);
4889
4890 if (debug_threads)
4891 {
4892 if (need_step_over != NULL)
4893 debug_printf ("Not resuming all, need step over\n");
4894 else if (any_pending)
4895 debug_printf ("Not resuming, all-stop and found "
4896 "an LWP with pending status\n");
4897 else
4898 debug_printf ("Resuming, no pending status or step over needed\n");
4899 }
4900
4901 /* Even if we're leaving threads stopped, queue all signals we'd
4902 otherwise deliver. */
4903 for_each_thread ([&] (thread_info *thread)
4904 {
4905 resume_one_thread (thread, leave_all_stopped);
4906 });
4907
4908 if (need_step_over)
4909 start_step_over (get_thread_lwp (need_step_over));
4910
4911 if (debug_threads)
4912 {
4913 debug_printf ("linux_resume done\n");
4914 debug_exit ();
4915 }
4916
4917 /* We may have events that were pending that can/should be sent to
4918 the client now. Trigger a linux_wait call. */
4919 if (target_is_async_p ())
4920 async_file_mark ();
4921 }
4922
4923 void
4924 linux_process_target::proceed_one_lwp (thread_info *thread, lwp_info *except)
4925 {
4926 struct lwp_info *lwp = get_thread_lwp (thread);
4927 int step;
4928
4929 if (lwp == except)
4930 return;
4931
4932 if (debug_threads)
4933 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4934
4935 if (!lwp->stopped)
4936 {
4937 if (debug_threads)
4938 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4939 return;
4940 }
4941
4942 if (thread->last_resume_kind == resume_stop
4943 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4944 {
4945 if (debug_threads)
4946 debug_printf (" client wants LWP to remain %ld stopped\n",
4947 lwpid_of (thread));
4948 return;
4949 }
4950
4951 if (lwp->status_pending_p)
4952 {
4953 if (debug_threads)
4954 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4955 lwpid_of (thread));
4956 return;
4957 }
4958
4959 gdb_assert (lwp->suspended >= 0);
4960
4961 if (lwp->suspended)
4962 {
4963 if (debug_threads)
4964 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4965 return;
4966 }
4967
4968 if (thread->last_resume_kind == resume_stop
4969 && lwp->pending_signals_to_report == NULL
4970 && (lwp->collecting_fast_tracepoint
4971 == fast_tpoint_collect_result::not_collecting))
4972 {
4973 /* We haven't reported this LWP as stopped yet (otherwise, the
4974 last_status.kind check above would catch it, and we wouldn't
4975 reach here. This LWP may have been momentarily paused by a
4976 stop_all_lwps call while handling for example, another LWP's
4977 step-over. In that case, the pending expected SIGSTOP signal
4978 that was queued at vCont;t handling time will have already
4979 been consumed by wait_for_sigstop, and so we need to requeue
4980 another one here. Note that if the LWP already has a SIGSTOP
4981 pending, this is a no-op. */
4982
4983 if (debug_threads)
4984 debug_printf ("Client wants LWP %ld to stop. "
4985 "Making sure it has a SIGSTOP pending\n",
4986 lwpid_of (thread));
4987
4988 send_sigstop (lwp);
4989 }
4990
4991 if (thread->last_resume_kind == resume_step)
4992 {
4993 if (debug_threads)
4994 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4995 lwpid_of (thread));
4996
4997 /* If resume_step is requested by GDB, install single-step
4998 breakpoints when the thread is about to be actually resumed if
4999 the single-step breakpoints weren't removed. */
5000 if (supports_software_single_step ()
5001 && !has_single_step_breakpoints (thread))
5002 install_software_single_step_breakpoints (lwp);
5003
5004 step = maybe_hw_step (thread);
5005 }
5006 else if (lwp->bp_reinsert != 0)
5007 {
5008 if (debug_threads)
5009 debug_printf (" stepping LWP %ld, reinsert set\n",
5010 lwpid_of (thread));
5011
5012 step = maybe_hw_step (thread);
5013 }
5014 else
5015 step = 0;
5016
5017 resume_one_lwp (lwp, step, 0, NULL);
5018 }
5019
5020 void
5021 linux_process_target::unsuspend_and_proceed_one_lwp (thread_info *thread,
5022 lwp_info *except)
5023 {
5024 struct lwp_info *lwp = get_thread_lwp (thread);
5025
5026 if (lwp == except)
5027 return;
5028
5029 lwp_suspended_decr (lwp);
5030
5031 proceed_one_lwp (thread, except);
5032 }
5033
5034 void
5035 linux_process_target::proceed_all_lwps ()
5036 {
5037 struct thread_info *need_step_over;
5038
5039 /* If there is a thread which would otherwise be resumed, which is
5040 stopped at a breakpoint that needs stepping over, then don't
5041 resume any threads - have it step over the breakpoint with all
5042 other threads stopped, then resume all threads again. */
5043
5044 if (low_supports_breakpoints ())
5045 {
5046 need_step_over = find_thread ([this] (thread_info *thread)
5047 {
5048 return thread_needs_step_over (thread);
5049 });
5050
5051 if (need_step_over != NULL)
5052 {
5053 if (debug_threads)
5054 debug_printf ("proceed_all_lwps: found "
5055 "thread %ld needing a step-over\n",
5056 lwpid_of (need_step_over));
5057
5058 start_step_over (get_thread_lwp (need_step_over));
5059 return;
5060 }
5061 }
5062
5063 if (debug_threads)
5064 debug_printf ("Proceeding, no step-over needed\n");
5065
5066 for_each_thread ([this] (thread_info *thread)
5067 {
5068 proceed_one_lwp (thread, NULL);
5069 });
5070 }
5071
5072 void
5073 linux_process_target::unstop_all_lwps (int unsuspend, lwp_info *except)
5074 {
5075 if (debug_threads)
5076 {
5077 debug_enter ();
5078 if (except)
5079 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5080 lwpid_of (get_lwp_thread (except)));
5081 else
5082 debug_printf ("unstopping all lwps\n");
5083 }
5084
5085 if (unsuspend)
5086 for_each_thread ([&] (thread_info *thread)
5087 {
5088 unsuspend_and_proceed_one_lwp (thread, except);
5089 });
5090 else
5091 for_each_thread ([&] (thread_info *thread)
5092 {
5093 proceed_one_lwp (thread, except);
5094 });
5095
5096 if (debug_threads)
5097 {
5098 debug_printf ("unstop_all_lwps done\n");
5099 debug_exit ();
5100 }
5101 }
5102
5103
5104 #ifdef HAVE_LINUX_REGSETS
5105
5106 #define use_linux_regsets 1
5107
5108 /* Returns true if REGSET has been disabled. */
5109
5110 static int
5111 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5112 {
5113 return (info->disabled_regsets != NULL
5114 && info->disabled_regsets[regset - info->regsets]);
5115 }
5116
5117 /* Disable REGSET. */
5118
5119 static void
5120 disable_regset (struct regsets_info *info, struct regset_info *regset)
5121 {
5122 int dr_offset;
5123
5124 dr_offset = regset - info->regsets;
5125 if (info->disabled_regsets == NULL)
5126 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5127 info->disabled_regsets[dr_offset] = 1;
5128 }
5129
5130 static int
5131 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5132 struct regcache *regcache)
5133 {
5134 struct regset_info *regset;
5135 int saw_general_regs = 0;
5136 int pid;
5137 struct iovec iov;
5138
5139 pid = lwpid_of (current_thread);
5140 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5141 {
5142 void *buf, *data;
5143 int nt_type, res;
5144
5145 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5146 continue;
5147
5148 buf = xmalloc (regset->size);
5149
5150 nt_type = regset->nt_type;
5151 if (nt_type)
5152 {
5153 iov.iov_base = buf;
5154 iov.iov_len = regset->size;
5155 data = (void *) &iov;
5156 }
5157 else
5158 data = buf;
5159
5160 #ifndef __sparc__
5161 res = ptrace (regset->get_request, pid,
5162 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5163 #else
5164 res = ptrace (regset->get_request, pid, data, nt_type);
5165 #endif
5166 if (res < 0)
5167 {
5168 if (errno == EIO
5169 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5170 {
5171 /* If we get EIO on a regset, or an EINVAL and the regset is
5172 optional, do not try it again for this process mode. */
5173 disable_regset (regsets_info, regset);
5174 }
5175 else if (errno == ENODATA)
5176 {
5177 /* ENODATA may be returned if the regset is currently
5178 not "active". This can happen in normal operation,
5179 so suppress the warning in this case. */
5180 }
5181 else if (errno == ESRCH)
5182 {
5183 /* At this point, ESRCH should mean the process is
5184 already gone, in which case we simply ignore attempts
5185 to read its registers. */
5186 }
5187 else
5188 {
5189 char s[256];
5190 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5191 pid);
5192 perror (s);
5193 }
5194 }
5195 else
5196 {
5197 if (regset->type == GENERAL_REGS)
5198 saw_general_regs = 1;
5199 regset->store_function (regcache, buf);
5200 }
5201 free (buf);
5202 }
5203 if (saw_general_regs)
5204 return 0;
5205 else
5206 return 1;
5207 }
5208
5209 static int
5210 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5211 struct regcache *regcache)
5212 {
5213 struct regset_info *regset;
5214 int saw_general_regs = 0;
5215 int pid;
5216 struct iovec iov;
5217
5218 pid = lwpid_of (current_thread);
5219 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5220 {
5221 void *buf, *data;
5222 int nt_type, res;
5223
5224 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5225 || regset->fill_function == NULL)
5226 continue;
5227
5228 buf = xmalloc (regset->size);
5229
5230 /* First fill the buffer with the current register set contents,
5231 in case there are any items in the kernel's regset that are
5232 not in gdbserver's regcache. */
5233
5234 nt_type = regset->nt_type;
5235 if (nt_type)
5236 {
5237 iov.iov_base = buf;
5238 iov.iov_len = regset->size;
5239 data = (void *) &iov;
5240 }
5241 else
5242 data = buf;
5243
5244 #ifndef __sparc__
5245 res = ptrace (regset->get_request, pid,
5246 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5247 #else
5248 res = ptrace (regset->get_request, pid, data, nt_type);
5249 #endif
5250
5251 if (res == 0)
5252 {
5253 /* Then overlay our cached registers on that. */
5254 regset->fill_function (regcache, buf);
5255
5256 /* Only now do we write the register set. */
5257 #ifndef __sparc__
5258 res = ptrace (regset->set_request, pid,
5259 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5260 #else
5261 res = ptrace (regset->set_request, pid, data, nt_type);
5262 #endif
5263 }
5264
5265 if (res < 0)
5266 {
5267 if (errno == EIO
5268 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5269 {
5270 /* If we get EIO on a regset, or an EINVAL and the regset is
5271 optional, do not try it again for this process mode. */
5272 disable_regset (regsets_info, regset);
5273 }
5274 else if (errno == ESRCH)
5275 {
5276 /* At this point, ESRCH should mean the process is
5277 already gone, in which case we simply ignore attempts
5278 to change its registers. See also the related
5279 comment in resume_one_lwp. */
5280 free (buf);
5281 return 0;
5282 }
5283 else
5284 {
5285 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5286 }
5287 }
5288 else if (regset->type == GENERAL_REGS)
5289 saw_general_regs = 1;
5290 free (buf);
5291 }
5292 if (saw_general_regs)
5293 return 0;
5294 else
5295 return 1;
5296 }
5297
5298 #else /* !HAVE_LINUX_REGSETS */
5299
5300 #define use_linux_regsets 0
5301 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5302 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5303
5304 #endif
5305
5306 /* Return 1 if register REGNO is supported by one of the regset ptrace
5307 calls or 0 if it has to be transferred individually. */
5308
5309 static int
5310 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5311 {
5312 unsigned char mask = 1 << (regno % 8);
5313 size_t index = regno / 8;
5314
5315 return (use_linux_regsets
5316 && (regs_info->regset_bitmap == NULL
5317 || (regs_info->regset_bitmap[index] & mask) != 0));
5318 }
5319
5320 #ifdef HAVE_LINUX_USRREGS
5321
5322 static int
5323 register_addr (const struct usrregs_info *usrregs, int regnum)
5324 {
5325 int addr;
5326
5327 if (regnum < 0 || regnum >= usrregs->num_regs)
5328 error ("Invalid register number %d.", regnum);
5329
5330 addr = usrregs->regmap[regnum];
5331
5332 return addr;
5333 }
5334
5335
5336 void
5337 linux_process_target::fetch_register (const usrregs_info *usrregs,
5338 regcache *regcache, int regno)
5339 {
5340 CORE_ADDR regaddr;
5341 int i, size;
5342 char *buf;
5343 int pid;
5344
5345 if (regno >= usrregs->num_regs)
5346 return;
5347 if (low_cannot_fetch_register (regno))
5348 return;
5349
5350 regaddr = register_addr (usrregs, regno);
5351 if (regaddr == -1)
5352 return;
5353
5354 size = ((register_size (regcache->tdesc, regno)
5355 + sizeof (PTRACE_XFER_TYPE) - 1)
5356 & -sizeof (PTRACE_XFER_TYPE));
5357 buf = (char *) alloca (size);
5358
5359 pid = lwpid_of (current_thread);
5360 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5361 {
5362 errno = 0;
5363 *(PTRACE_XFER_TYPE *) (buf + i) =
5364 ptrace (PTRACE_PEEKUSER, pid,
5365 /* Coerce to a uintptr_t first to avoid potential gcc warning
5366 of coercing an 8 byte integer to a 4 byte pointer. */
5367 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5368 regaddr += sizeof (PTRACE_XFER_TYPE);
5369 if (errno != 0)
5370 {
5371 /* Mark register REGNO unavailable. */
5372 supply_register (regcache, regno, NULL);
5373 return;
5374 }
5375 }
5376
5377 low_supply_ptrace_register (regcache, regno, buf);
5378 }
5379
5380 void
5381 linux_process_target::store_register (const usrregs_info *usrregs,
5382 regcache *regcache, int regno)
5383 {
5384 CORE_ADDR regaddr;
5385 int i, size;
5386 char *buf;
5387 int pid;
5388
5389 if (regno >= usrregs->num_regs)
5390 return;
5391 if (low_cannot_store_register (regno))
5392 return;
5393
5394 regaddr = register_addr (usrregs, regno);
5395 if (regaddr == -1)
5396 return;
5397
5398 size = ((register_size (regcache->tdesc, regno)
5399 + sizeof (PTRACE_XFER_TYPE) - 1)
5400 & -sizeof (PTRACE_XFER_TYPE));
5401 buf = (char *) alloca (size);
5402 memset (buf, 0, size);
5403
5404 low_collect_ptrace_register (regcache, regno, buf);
5405
5406 pid = lwpid_of (current_thread);
5407 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5408 {
5409 errno = 0;
5410 ptrace (PTRACE_POKEUSER, pid,
5411 /* Coerce to a uintptr_t first to avoid potential gcc warning
5412 about coercing an 8 byte integer to a 4 byte pointer. */
5413 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5414 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5415 if (errno != 0)
5416 {
5417 /* At this point, ESRCH should mean the process is
5418 already gone, in which case we simply ignore attempts
5419 to change its registers. See also the related
5420 comment in resume_one_lwp. */
5421 if (errno == ESRCH)
5422 return;
5423
5424
5425 if (!low_cannot_store_register (regno))
5426 error ("writing register %d: %s", regno, safe_strerror (errno));
5427 }
5428 regaddr += sizeof (PTRACE_XFER_TYPE);
5429 }
5430 }
5431 #endif /* HAVE_LINUX_USRREGS */
5432
5433 void
5434 linux_process_target::low_collect_ptrace_register (regcache *regcache,
5435 int regno, char *buf)
5436 {
5437 collect_register (regcache, regno, buf);
5438 }
5439
5440 void
5441 linux_process_target::low_supply_ptrace_register (regcache *regcache,
5442 int regno, const char *buf)
5443 {
5444 supply_register (regcache, regno, buf);
5445 }
5446
5447 void
5448 linux_process_target::usr_fetch_inferior_registers (const regs_info *regs_info,
5449 regcache *regcache,
5450 int regno, int all)
5451 {
5452 #ifdef HAVE_LINUX_USRREGS
5453 struct usrregs_info *usr = regs_info->usrregs;
5454
5455 if (regno == -1)
5456 {
5457 for (regno = 0; regno < usr->num_regs; regno++)
5458 if (all || !linux_register_in_regsets (regs_info, regno))
5459 fetch_register (usr, regcache, regno);
5460 }
5461 else
5462 fetch_register (usr, regcache, regno);
5463 #endif
5464 }
5465
5466 void
5467 linux_process_target::usr_store_inferior_registers (const regs_info *regs_info,
5468 regcache *regcache,
5469 int regno, int all)
5470 {
5471 #ifdef HAVE_LINUX_USRREGS
5472 struct usrregs_info *usr = regs_info->usrregs;
5473
5474 if (regno == -1)
5475 {
5476 for (regno = 0; regno < usr->num_regs; regno++)
5477 if (all || !linux_register_in_regsets (regs_info, regno))
5478 store_register (usr, regcache, regno);
5479 }
5480 else
5481 store_register (usr, regcache, regno);
5482 #endif
5483 }
5484
5485 void
5486 linux_process_target::fetch_registers (regcache *regcache, int regno)
5487 {
5488 int use_regsets;
5489 int all = 0;
5490 const regs_info *regs_info = get_regs_info ();
5491
5492 if (regno == -1)
5493 {
5494 if (regs_info->usrregs != NULL)
5495 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5496 low_fetch_register (regcache, regno);
5497
5498 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5499 if (regs_info->usrregs != NULL)
5500 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5501 }
5502 else
5503 {
5504 if (low_fetch_register (regcache, regno))
5505 return;
5506
5507 use_regsets = linux_register_in_regsets (regs_info, regno);
5508 if (use_regsets)
5509 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5510 regcache);
5511 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5512 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5513 }
5514 }
5515
5516 void
5517 linux_process_target::store_registers (regcache *regcache, int regno)
5518 {
5519 int use_regsets;
5520 int all = 0;
5521 const regs_info *regs_info = get_regs_info ();
5522
5523 if (regno == -1)
5524 {
5525 all = regsets_store_inferior_registers (regs_info->regsets_info,
5526 regcache);
5527 if (regs_info->usrregs != NULL)
5528 usr_store_inferior_registers (regs_info, regcache, regno, all);
5529 }
5530 else
5531 {
5532 use_regsets = linux_register_in_regsets (regs_info, regno);
5533 if (use_regsets)
5534 all = regsets_store_inferior_registers (regs_info->regsets_info,
5535 regcache);
5536 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5537 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5538 }
5539 }
5540
5541 bool
5542 linux_process_target::low_fetch_register (regcache *regcache, int regno)
5543 {
5544 return false;
5545 }
5546
5547 /* A wrapper for the read_memory target op. */
5548
5549 static int
5550 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5551 {
5552 return the_target->read_memory (memaddr, myaddr, len);
5553 }
5554
5555 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5556 to debugger memory starting at MYADDR. */
5557
5558 int
5559 linux_process_target::read_memory (CORE_ADDR memaddr,
5560 unsigned char *myaddr, int len)
5561 {
5562 int pid = lwpid_of (current_thread);
5563 PTRACE_XFER_TYPE *buffer;
5564 CORE_ADDR addr;
5565 int count;
5566 char filename[64];
5567 int i;
5568 int ret;
5569 int fd;
5570
5571 /* Try using /proc. Don't bother for one word. */
5572 if (len >= 3 * sizeof (long))
5573 {
5574 int bytes;
5575
5576 /* We could keep this file open and cache it - possibly one per
5577 thread. That requires some juggling, but is even faster. */
5578 sprintf (filename, "/proc/%d/mem", pid);
5579 fd = open (filename, O_RDONLY | O_LARGEFILE);
5580 if (fd == -1)
5581 goto no_proc;
5582
5583 /* If pread64 is available, use it. It's faster if the kernel
5584 supports it (only one syscall), and it's 64-bit safe even on
5585 32-bit platforms (for instance, SPARC debugging a SPARC64
5586 application). */
5587 #ifdef HAVE_PREAD64
5588 bytes = pread64 (fd, myaddr, len, memaddr);
5589 #else
5590 bytes = -1;
5591 if (lseek (fd, memaddr, SEEK_SET) != -1)
5592 bytes = read (fd, myaddr, len);
5593 #endif
5594
5595 close (fd);
5596 if (bytes == len)
5597 return 0;
5598
5599 /* Some data was read, we'll try to get the rest with ptrace. */
5600 if (bytes > 0)
5601 {
5602 memaddr += bytes;
5603 myaddr += bytes;
5604 len -= bytes;
5605 }
5606 }
5607
5608 no_proc:
5609 /* Round starting address down to longword boundary. */
5610 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5611 /* Round ending address up; get number of longwords that makes. */
5612 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5613 / sizeof (PTRACE_XFER_TYPE));
5614 /* Allocate buffer of that many longwords. */
5615 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5616
5617 /* Read all the longwords */
5618 errno = 0;
5619 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5620 {
5621 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5622 about coercing an 8 byte integer to a 4 byte pointer. */
5623 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5624 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5625 (PTRACE_TYPE_ARG4) 0);
5626 if (errno)
5627 break;
5628 }
5629 ret = errno;
5630
5631 /* Copy appropriate bytes out of the buffer. */
5632 if (i > 0)
5633 {
5634 i *= sizeof (PTRACE_XFER_TYPE);
5635 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5636 memcpy (myaddr,
5637 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5638 i < len ? i : len);
5639 }
5640
5641 return ret;
5642 }
5643
5644 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5645 memory at MEMADDR. On failure (cannot write to the inferior)
5646 returns the value of errno. Always succeeds if LEN is zero. */
5647
5648 int
5649 linux_process_target::write_memory (CORE_ADDR memaddr,
5650 const unsigned char *myaddr, int len)
5651 {
5652 int i;
5653 /* Round starting address down to longword boundary. */
5654 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5655 /* Round ending address up; get number of longwords that makes. */
5656 int count
5657 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5658 / sizeof (PTRACE_XFER_TYPE);
5659
5660 /* Allocate buffer of that many longwords. */
5661 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5662
5663 int pid = lwpid_of (current_thread);
5664
5665 if (len == 0)
5666 {
5667 /* Zero length write always succeeds. */
5668 return 0;
5669 }
5670
5671 if (debug_threads)
5672 {
5673 /* Dump up to four bytes. */
5674 char str[4 * 2 + 1];
5675 char *p = str;
5676 int dump = len < 4 ? len : 4;
5677
5678 for (i = 0; i < dump; i++)
5679 {
5680 sprintf (p, "%02x", myaddr[i]);
5681 p += 2;
5682 }
5683 *p = '\0';
5684
5685 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5686 str, (long) memaddr, pid);
5687 }
5688
5689 /* Fill start and end extra bytes of buffer with existing memory data. */
5690
5691 errno = 0;
5692 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5693 about coercing an 8 byte integer to a 4 byte pointer. */
5694 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5695 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5696 (PTRACE_TYPE_ARG4) 0);
5697 if (errno)
5698 return errno;
5699
5700 if (count > 1)
5701 {
5702 errno = 0;
5703 buffer[count - 1]
5704 = ptrace (PTRACE_PEEKTEXT, pid,
5705 /* Coerce to a uintptr_t first to avoid potential gcc warning
5706 about coercing an 8 byte integer to a 4 byte pointer. */
5707 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5708 * sizeof (PTRACE_XFER_TYPE)),
5709 (PTRACE_TYPE_ARG4) 0);
5710 if (errno)
5711 return errno;
5712 }
5713
5714 /* Copy data to be written over corresponding part of buffer. */
5715
5716 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5717 myaddr, len);
5718
5719 /* Write the entire buffer. */
5720
5721 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5722 {
5723 errno = 0;
5724 ptrace (PTRACE_POKETEXT, pid,
5725 /* Coerce to a uintptr_t first to avoid potential gcc warning
5726 about coercing an 8 byte integer to a 4 byte pointer. */
5727 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5728 (PTRACE_TYPE_ARG4) buffer[i]);
5729 if (errno)
5730 return errno;
5731 }
5732
5733 return 0;
5734 }
5735
5736 void
5737 linux_process_target::look_up_symbols ()
5738 {
5739 #ifdef USE_THREAD_DB
5740 struct process_info *proc = current_process ();
5741
5742 if (proc->priv->thread_db != NULL)
5743 return;
5744
5745 thread_db_init ();
5746 #endif
5747 }
5748
5749 void
5750 linux_process_target::request_interrupt ()
5751 {
5752 /* Send a SIGINT to the process group. This acts just like the user
5753 typed a ^C on the controlling terminal. */
5754 ::kill (-signal_pid, SIGINT);
5755 }
5756
5757 bool
5758 linux_process_target::supports_read_auxv ()
5759 {
5760 return true;
5761 }
5762
5763 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5764 to debugger memory starting at MYADDR. */
5765
5766 int
5767 linux_process_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr,
5768 unsigned int len)
5769 {
5770 char filename[PATH_MAX];
5771 int fd, n;
5772 int pid = lwpid_of (current_thread);
5773
5774 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5775
5776 fd = open (filename, O_RDONLY);
5777 if (fd < 0)
5778 return -1;
5779
5780 if (offset != (CORE_ADDR) 0
5781 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5782 n = -1;
5783 else
5784 n = read (fd, myaddr, len);
5785
5786 close (fd);
5787
5788 return n;
5789 }
5790
5791 int
5792 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5793 int size, raw_breakpoint *bp)
5794 {
5795 if (type == raw_bkpt_type_sw)
5796 return insert_memory_breakpoint (bp);
5797 else
5798 return low_insert_point (type, addr, size, bp);
5799 }
5800
5801 int
5802 linux_process_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
5803 int size, raw_breakpoint *bp)
5804 {
5805 /* Unsupported (see target.h). */
5806 return 1;
5807 }
5808
5809 int
5810 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5811 int size, raw_breakpoint *bp)
5812 {
5813 if (type == raw_bkpt_type_sw)
5814 return remove_memory_breakpoint (bp);
5815 else
5816 return low_remove_point (type, addr, size, bp);
5817 }
5818
5819 int
5820 linux_process_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
5821 int size, raw_breakpoint *bp)
5822 {
5823 /* Unsupported (see target.h). */
5824 return 1;
5825 }
5826
5827 /* Implement the stopped_by_sw_breakpoint target_ops
5828 method. */
5829
5830 bool
5831 linux_process_target::stopped_by_sw_breakpoint ()
5832 {
5833 struct lwp_info *lwp = get_thread_lwp (current_thread);
5834
5835 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5836 }
5837
5838 /* Implement the supports_stopped_by_sw_breakpoint target_ops
5839 method. */
5840
5841 bool
5842 linux_process_target::supports_stopped_by_sw_breakpoint ()
5843 {
5844 return USE_SIGTRAP_SIGINFO;
5845 }
5846
5847 /* Implement the stopped_by_hw_breakpoint target_ops
5848 method. */
5849
5850 bool
5851 linux_process_target::stopped_by_hw_breakpoint ()
5852 {
5853 struct lwp_info *lwp = get_thread_lwp (current_thread);
5854
5855 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5856 }
5857
5858 /* Implement the supports_stopped_by_hw_breakpoint target_ops
5859 method. */
5860
5861 bool
5862 linux_process_target::supports_stopped_by_hw_breakpoint ()
5863 {
5864 return USE_SIGTRAP_SIGINFO;
5865 }
5866
5867 /* Implement the supports_hardware_single_step target_ops method. */
5868
5869 bool
5870 linux_process_target::supports_hardware_single_step ()
5871 {
5872 return true;
5873 }
5874
5875 bool
5876 linux_process_target::stopped_by_watchpoint ()
5877 {
5878 struct lwp_info *lwp = get_thread_lwp (current_thread);
5879
5880 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5881 }
5882
5883 CORE_ADDR
5884 linux_process_target::stopped_data_address ()
5885 {
5886 struct lwp_info *lwp = get_thread_lwp (current_thread);
5887
5888 return lwp->stopped_data_address;
5889 }
5890
5891 /* This is only used for targets that define PT_TEXT_ADDR,
5892 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5893 the target has different ways of acquiring this information, like
5894 loadmaps. */
5895
5896 bool
5897 linux_process_target::supports_read_offsets ()
5898 {
5899 #ifdef SUPPORTS_READ_OFFSETS
5900 return true;
5901 #else
5902 return false;
5903 #endif
5904 }
5905
5906 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5907 to tell gdb about. */
5908
5909 int
5910 linux_process_target::read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5911 {
5912 #ifdef SUPPORTS_READ_OFFSETS
5913 unsigned long text, text_end, data;
5914 int pid = lwpid_of (current_thread);
5915
5916 errno = 0;
5917
5918 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5919 (PTRACE_TYPE_ARG4) 0);
5920 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5921 (PTRACE_TYPE_ARG4) 0);
5922 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5923 (PTRACE_TYPE_ARG4) 0);
5924
5925 if (errno == 0)
5926 {
5927 /* Both text and data offsets produced at compile-time (and so
5928 used by gdb) are relative to the beginning of the program,
5929 with the data segment immediately following the text segment.
5930 However, the actual runtime layout in memory may put the data
5931 somewhere else, so when we send gdb a data base-address, we
5932 use the real data base address and subtract the compile-time
5933 data base-address from it (which is just the length of the
5934 text segment). BSS immediately follows data in both
5935 cases. */
5936 *text_p = text;
5937 *data_p = data - (text_end - text);
5938
5939 return 1;
5940 }
5941 return 0;
5942 #else
5943 gdb_assert_not_reached ("target op read_offsets not supported");
5944 #endif
5945 }
5946
5947 bool
5948 linux_process_target::supports_get_tls_address ()
5949 {
5950 #ifdef USE_THREAD_DB
5951 return true;
5952 #else
5953 return false;
5954 #endif
5955 }
5956
5957 int
5958 linux_process_target::get_tls_address (thread_info *thread,
5959 CORE_ADDR offset,
5960 CORE_ADDR load_module,
5961 CORE_ADDR *address)
5962 {
5963 #ifdef USE_THREAD_DB
5964 return thread_db_get_tls_address (thread, offset, load_module, address);
5965 #else
5966 return -1;
5967 #endif
5968 }
5969
5970 bool
5971 linux_process_target::supports_qxfer_osdata ()
5972 {
5973 return true;
5974 }
5975
5976 int
5977 linux_process_target::qxfer_osdata (const char *annex,
5978 unsigned char *readbuf,
5979 unsigned const char *writebuf,
5980 CORE_ADDR offset, int len)
5981 {
5982 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5983 }
5984
5985 void
5986 linux_process_target::siginfo_fixup (siginfo_t *siginfo,
5987 gdb_byte *inf_siginfo, int direction)
5988 {
5989 bool done = low_siginfo_fixup (siginfo, inf_siginfo, direction);
5990
5991 /* If there was no callback, or the callback didn't do anything,
5992 then just do a straight memcpy. */
5993 if (!done)
5994 {
5995 if (direction == 1)
5996 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5997 else
5998 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5999 }
6000 }
6001
6002 bool
6003 linux_process_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
6004 int direction)
6005 {
6006 return false;
6007 }
6008
6009 bool
6010 linux_process_target::supports_qxfer_siginfo ()
6011 {
6012 return true;
6013 }
6014
6015 int
6016 linux_process_target::qxfer_siginfo (const char *annex,
6017 unsigned char *readbuf,
6018 unsigned const char *writebuf,
6019 CORE_ADDR offset, int len)
6020 {
6021 int pid;
6022 siginfo_t siginfo;
6023 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6024
6025 if (current_thread == NULL)
6026 return -1;
6027
6028 pid = lwpid_of (current_thread);
6029
6030 if (debug_threads)
6031 debug_printf ("%s siginfo for lwp %d.\n",
6032 readbuf != NULL ? "Reading" : "Writing",
6033 pid);
6034
6035 if (offset >= sizeof (siginfo))
6036 return -1;
6037
6038 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6039 return -1;
6040
6041 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6042 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6043 inferior with a 64-bit GDBSERVER should look the same as debugging it
6044 with a 32-bit GDBSERVER, we need to convert it. */
6045 siginfo_fixup (&siginfo, inf_siginfo, 0);
6046
6047 if (offset + len > sizeof (siginfo))
6048 len = sizeof (siginfo) - offset;
6049
6050 if (readbuf != NULL)
6051 memcpy (readbuf, inf_siginfo + offset, len);
6052 else
6053 {
6054 memcpy (inf_siginfo + offset, writebuf, len);
6055
6056 /* Convert back to ptrace layout before flushing it out. */
6057 siginfo_fixup (&siginfo, inf_siginfo, 1);
6058
6059 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6060 return -1;
6061 }
6062
6063 return len;
6064 }
6065
6066 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6067 so we notice when children change state; as the handler for the
6068 sigsuspend in my_waitpid. */
6069
6070 static void
6071 sigchld_handler (int signo)
6072 {
6073 int old_errno = errno;
6074
6075 if (debug_threads)
6076 {
6077 do
6078 {
6079 /* Use the async signal safe debug function. */
6080 if (debug_write ("sigchld_handler\n",
6081 sizeof ("sigchld_handler\n") - 1) < 0)
6082 break; /* just ignore */
6083 } while (0);
6084 }
6085
6086 if (target_is_async_p ())
6087 async_file_mark (); /* trigger a linux_wait */
6088
6089 errno = old_errno;
6090 }
6091
6092 bool
6093 linux_process_target::supports_non_stop ()
6094 {
6095 return true;
6096 }
6097
6098 bool
6099 linux_process_target::async (bool enable)
6100 {
6101 bool previous = target_is_async_p ();
6102
6103 if (debug_threads)
6104 debug_printf ("linux_async (%d), previous=%d\n",
6105 enable, previous);
6106
6107 if (previous != enable)
6108 {
6109 sigset_t mask;
6110 sigemptyset (&mask);
6111 sigaddset (&mask, SIGCHLD);
6112
6113 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6114
6115 if (enable)
6116 {
6117 if (pipe (linux_event_pipe) == -1)
6118 {
6119 linux_event_pipe[0] = -1;
6120 linux_event_pipe[1] = -1;
6121 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6122
6123 warning ("creating event pipe failed.");
6124 return previous;
6125 }
6126
6127 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6128 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6129
6130 /* Register the event loop handler. */
6131 add_file_handler (linux_event_pipe[0],
6132 handle_target_event, NULL);
6133
6134 /* Always trigger a linux_wait. */
6135 async_file_mark ();
6136 }
6137 else
6138 {
6139 delete_file_handler (linux_event_pipe[0]);
6140
6141 close (linux_event_pipe[0]);
6142 close (linux_event_pipe[1]);
6143 linux_event_pipe[0] = -1;
6144 linux_event_pipe[1] = -1;
6145 }
6146
6147 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6148 }
6149
6150 return previous;
6151 }
6152
6153 int
6154 linux_process_target::start_non_stop (bool nonstop)
6155 {
6156 /* Register or unregister from event-loop accordingly. */
6157 target_async (nonstop);
6158
6159 if (target_is_async_p () != (nonstop != false))
6160 return -1;
6161
6162 return 0;
6163 }
6164
6165 bool
6166 linux_process_target::supports_multi_process ()
6167 {
6168 return true;
6169 }
6170
6171 /* Check if fork events are supported. */
6172
6173 bool
6174 linux_process_target::supports_fork_events ()
6175 {
6176 return linux_supports_tracefork ();
6177 }
6178
6179 /* Check if vfork events are supported. */
6180
6181 bool
6182 linux_process_target::supports_vfork_events ()
6183 {
6184 return linux_supports_tracefork ();
6185 }
6186
6187 /* Check if exec events are supported. */
6188
6189 bool
6190 linux_process_target::supports_exec_events ()
6191 {
6192 return linux_supports_traceexec ();
6193 }
6194
6195 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6196 ptrace flags for all inferiors. This is in case the new GDB connection
6197 doesn't support the same set of events that the previous one did. */
6198
6199 void
6200 linux_process_target::handle_new_gdb_connection ()
6201 {
6202 /* Request that all the lwps reset their ptrace options. */
6203 for_each_thread ([] (thread_info *thread)
6204 {
6205 struct lwp_info *lwp = get_thread_lwp (thread);
6206
6207 if (!lwp->stopped)
6208 {
6209 /* Stop the lwp so we can modify its ptrace options. */
6210 lwp->must_set_ptrace_flags = 1;
6211 linux_stop_lwp (lwp);
6212 }
6213 else
6214 {
6215 /* Already stopped; go ahead and set the ptrace options. */
6216 struct process_info *proc = find_process_pid (pid_of (thread));
6217 int options = linux_low_ptrace_options (proc->attached);
6218
6219 linux_enable_event_reporting (lwpid_of (thread), options);
6220 lwp->must_set_ptrace_flags = 0;
6221 }
6222 });
6223 }
6224
6225 int
6226 linux_process_target::handle_monitor_command (char *mon)
6227 {
6228 #ifdef USE_THREAD_DB
6229 return thread_db_handle_monitor_command (mon);
6230 #else
6231 return 0;
6232 #endif
6233 }
6234
6235 int
6236 linux_process_target::core_of_thread (ptid_t ptid)
6237 {
6238 return linux_common_core_of_thread (ptid);
6239 }
6240
6241 bool
6242 linux_process_target::supports_disable_randomization ()
6243 {
6244 #ifdef HAVE_PERSONALITY
6245 return true;
6246 #else
6247 return false;
6248 #endif
6249 }
6250
6251 bool
6252 linux_process_target::supports_agent ()
6253 {
6254 return true;
6255 }
6256
6257 bool
6258 linux_process_target::supports_range_stepping ()
6259 {
6260 if (supports_software_single_step ())
6261 return true;
6262
6263 return low_supports_range_stepping ();
6264 }
6265
6266 bool
6267 linux_process_target::low_supports_range_stepping ()
6268 {
6269 return false;
6270 }
6271
6272 bool
6273 linux_process_target::supports_pid_to_exec_file ()
6274 {
6275 return true;
6276 }
6277
6278 char *
6279 linux_process_target::pid_to_exec_file (int pid)
6280 {
6281 return linux_proc_pid_to_exec_file (pid);
6282 }
6283
6284 bool
6285 linux_process_target::supports_multifs ()
6286 {
6287 return true;
6288 }
6289
6290 int
6291 linux_process_target::multifs_open (int pid, const char *filename,
6292 int flags, mode_t mode)
6293 {
6294 return linux_mntns_open_cloexec (pid, filename, flags, mode);
6295 }
6296
6297 int
6298 linux_process_target::multifs_unlink (int pid, const char *filename)
6299 {
6300 return linux_mntns_unlink (pid, filename);
6301 }
6302
6303 ssize_t
6304 linux_process_target::multifs_readlink (int pid, const char *filename,
6305 char *buf, size_t bufsiz)
6306 {
6307 return linux_mntns_readlink (pid, filename, buf, bufsiz);
6308 }
6309
6310 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6311 struct target_loadseg
6312 {
6313 /* Core address to which the segment is mapped. */
6314 Elf32_Addr addr;
6315 /* VMA recorded in the program header. */
6316 Elf32_Addr p_vaddr;
6317 /* Size of this segment in memory. */
6318 Elf32_Word p_memsz;
6319 };
6320
6321 # if defined PT_GETDSBT
6322 struct target_loadmap
6323 {
6324 /* Protocol version number, must be zero. */
6325 Elf32_Word version;
6326 /* Pointer to the DSBT table, its size, and the DSBT index. */
6327 unsigned *dsbt_table;
6328 unsigned dsbt_size, dsbt_index;
6329 /* Number of segments in this map. */
6330 Elf32_Word nsegs;
6331 /* The actual memory map. */
6332 struct target_loadseg segs[/*nsegs*/];
6333 };
6334 # define LINUX_LOADMAP PT_GETDSBT
6335 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6336 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6337 # else
6338 struct target_loadmap
6339 {
6340 /* Protocol version number, must be zero. */
6341 Elf32_Half version;
6342 /* Number of segments in this map. */
6343 Elf32_Half nsegs;
6344 /* The actual memory map. */
6345 struct target_loadseg segs[/*nsegs*/];
6346 };
6347 # define LINUX_LOADMAP PTRACE_GETFDPIC
6348 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6349 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6350 # endif
6351
6352 bool
6353 linux_process_target::supports_read_loadmap ()
6354 {
6355 return true;
6356 }
6357
6358 int
6359 linux_process_target::read_loadmap (const char *annex, CORE_ADDR offset,
6360 unsigned char *myaddr, unsigned int len)
6361 {
6362 int pid = lwpid_of (current_thread);
6363 int addr = -1;
6364 struct target_loadmap *data = NULL;
6365 unsigned int actual_length, copy_length;
6366
6367 if (strcmp (annex, "exec") == 0)
6368 addr = (int) LINUX_LOADMAP_EXEC;
6369 else if (strcmp (annex, "interp") == 0)
6370 addr = (int) LINUX_LOADMAP_INTERP;
6371 else
6372 return -1;
6373
6374 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6375 return -1;
6376
6377 if (data == NULL)
6378 return -1;
6379
6380 actual_length = sizeof (struct target_loadmap)
6381 + sizeof (struct target_loadseg) * data->nsegs;
6382
6383 if (offset < 0 || offset > actual_length)
6384 return -1;
6385
6386 copy_length = actual_length - offset < len ? actual_length - offset : len;
6387 memcpy (myaddr, (char *) data + offset, copy_length);
6388 return copy_length;
6389 }
6390 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6391
6392 bool
6393 linux_process_target::supports_catch_syscall ()
6394 {
6395 return (low_supports_catch_syscall ()
6396 && linux_supports_tracesysgood ());
6397 }
6398
6399 bool
6400 linux_process_target::low_supports_catch_syscall ()
6401 {
6402 return false;
6403 }
6404
6405 CORE_ADDR
6406 linux_process_target::read_pc (regcache *regcache)
6407 {
6408 if (!low_supports_breakpoints ())
6409 return 0;
6410
6411 return low_get_pc (regcache);
6412 }
6413
6414 void
6415 linux_process_target::write_pc (regcache *regcache, CORE_ADDR pc)
6416 {
6417 gdb_assert (low_supports_breakpoints ());
6418
6419 low_set_pc (regcache, pc);
6420 }
6421
6422 bool
6423 linux_process_target::supports_thread_stopped ()
6424 {
6425 return true;
6426 }
6427
6428 bool
6429 linux_process_target::thread_stopped (thread_info *thread)
6430 {
6431 return get_thread_lwp (thread)->stopped;
6432 }
6433
6434 /* This exposes stop-all-threads functionality to other modules. */
6435
6436 void
6437 linux_process_target::pause_all (bool freeze)
6438 {
6439 stop_all_lwps (freeze, NULL);
6440 }
6441
6442 /* This exposes unstop-all-threads functionality to other gdbserver
6443 modules. */
6444
6445 void
6446 linux_process_target::unpause_all (bool unfreeze)
6447 {
6448 unstop_all_lwps (unfreeze, NULL);
6449 }
6450
6451 int
6452 linux_process_target::prepare_to_access_memory ()
6453 {
6454 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6455 running LWP. */
6456 if (non_stop)
6457 target_pause_all (true);
6458 return 0;
6459 }
6460
6461 void
6462 linux_process_target::done_accessing_memory ()
6463 {
6464 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6465 running LWP. */
6466 if (non_stop)
6467 target_unpause_all (true);
6468 }
6469
6470 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6471
6472 static int
6473 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6474 CORE_ADDR *phdr_memaddr, int *num_phdr)
6475 {
6476 char filename[PATH_MAX];
6477 int fd;
6478 const int auxv_size = is_elf64
6479 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6480 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6481
6482 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6483
6484 fd = open (filename, O_RDONLY);
6485 if (fd < 0)
6486 return 1;
6487
6488 *phdr_memaddr = 0;
6489 *num_phdr = 0;
6490 while (read (fd, buf, auxv_size) == auxv_size
6491 && (*phdr_memaddr == 0 || *num_phdr == 0))
6492 {
6493 if (is_elf64)
6494 {
6495 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6496
6497 switch (aux->a_type)
6498 {
6499 case AT_PHDR:
6500 *phdr_memaddr = aux->a_un.a_val;
6501 break;
6502 case AT_PHNUM:
6503 *num_phdr = aux->a_un.a_val;
6504 break;
6505 }
6506 }
6507 else
6508 {
6509 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6510
6511 switch (aux->a_type)
6512 {
6513 case AT_PHDR:
6514 *phdr_memaddr = aux->a_un.a_val;
6515 break;
6516 case AT_PHNUM:
6517 *num_phdr = aux->a_un.a_val;
6518 break;
6519 }
6520 }
6521 }
6522
6523 close (fd);
6524
6525 if (*phdr_memaddr == 0 || *num_phdr == 0)
6526 {
6527 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6528 "phdr_memaddr = %ld, phdr_num = %d",
6529 (long) *phdr_memaddr, *num_phdr);
6530 return 2;
6531 }
6532
6533 return 0;
6534 }
6535
6536 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6537
6538 static CORE_ADDR
6539 get_dynamic (const int pid, const int is_elf64)
6540 {
6541 CORE_ADDR phdr_memaddr, relocation;
6542 int num_phdr, i;
6543 unsigned char *phdr_buf;
6544 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6545
6546 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6547 return 0;
6548
6549 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6550 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6551
6552 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6553 return 0;
6554
6555 /* Compute relocation: it is expected to be 0 for "regular" executables,
6556 non-zero for PIE ones. */
6557 relocation = -1;
6558 for (i = 0; relocation == -1 && i < num_phdr; i++)
6559 if (is_elf64)
6560 {
6561 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6562
6563 if (p->p_type == PT_PHDR)
6564 relocation = phdr_memaddr - p->p_vaddr;
6565 }
6566 else
6567 {
6568 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6569
6570 if (p->p_type == PT_PHDR)
6571 relocation = phdr_memaddr - p->p_vaddr;
6572 }
6573
6574 if (relocation == -1)
6575 {
6576 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6577 any real world executables, including PIE executables, have always
6578 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6579 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6580 or present DT_DEBUG anyway (fpc binaries are statically linked).
6581
6582 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6583
6584 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6585
6586 return 0;
6587 }
6588
6589 for (i = 0; i < num_phdr; i++)
6590 {
6591 if (is_elf64)
6592 {
6593 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6594
6595 if (p->p_type == PT_DYNAMIC)
6596 return p->p_vaddr + relocation;
6597 }
6598 else
6599 {
6600 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6601
6602 if (p->p_type == PT_DYNAMIC)
6603 return p->p_vaddr + relocation;
6604 }
6605 }
6606
6607 return 0;
6608 }
6609
6610 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6611 can be 0 if the inferior does not yet have the library list initialized.
6612 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6613 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6614
6615 static CORE_ADDR
6616 get_r_debug (const int pid, const int is_elf64)
6617 {
6618 CORE_ADDR dynamic_memaddr;
6619 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6620 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6621 CORE_ADDR map = -1;
6622
6623 dynamic_memaddr = get_dynamic (pid, is_elf64);
6624 if (dynamic_memaddr == 0)
6625 return map;
6626
6627 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6628 {
6629 if (is_elf64)
6630 {
6631 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6632 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6633 union
6634 {
6635 Elf64_Xword map;
6636 unsigned char buf[sizeof (Elf64_Xword)];
6637 }
6638 rld_map;
6639 #endif
6640 #ifdef DT_MIPS_RLD_MAP
6641 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6642 {
6643 if (linux_read_memory (dyn->d_un.d_val,
6644 rld_map.buf, sizeof (rld_map.buf)) == 0)
6645 return rld_map.map;
6646 else
6647 break;
6648 }
6649 #endif /* DT_MIPS_RLD_MAP */
6650 #ifdef DT_MIPS_RLD_MAP_REL
6651 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6652 {
6653 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6654 rld_map.buf, sizeof (rld_map.buf)) == 0)
6655 return rld_map.map;
6656 else
6657 break;
6658 }
6659 #endif /* DT_MIPS_RLD_MAP_REL */
6660
6661 if (dyn->d_tag == DT_DEBUG && map == -1)
6662 map = dyn->d_un.d_val;
6663
6664 if (dyn->d_tag == DT_NULL)
6665 break;
6666 }
6667 else
6668 {
6669 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6670 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6671 union
6672 {
6673 Elf32_Word map;
6674 unsigned char buf[sizeof (Elf32_Word)];
6675 }
6676 rld_map;
6677 #endif
6678 #ifdef DT_MIPS_RLD_MAP
6679 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6680 {
6681 if (linux_read_memory (dyn->d_un.d_val,
6682 rld_map.buf, sizeof (rld_map.buf)) == 0)
6683 return rld_map.map;
6684 else
6685 break;
6686 }
6687 #endif /* DT_MIPS_RLD_MAP */
6688 #ifdef DT_MIPS_RLD_MAP_REL
6689 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6690 {
6691 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6692 rld_map.buf, sizeof (rld_map.buf)) == 0)
6693 return rld_map.map;
6694 else
6695 break;
6696 }
6697 #endif /* DT_MIPS_RLD_MAP_REL */
6698
6699 if (dyn->d_tag == DT_DEBUG && map == -1)
6700 map = dyn->d_un.d_val;
6701
6702 if (dyn->d_tag == DT_NULL)
6703 break;
6704 }
6705
6706 dynamic_memaddr += dyn_size;
6707 }
6708
6709 return map;
6710 }
6711
6712 /* Read one pointer from MEMADDR in the inferior. */
6713
6714 static int
6715 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6716 {
6717 int ret;
6718
6719 /* Go through a union so this works on either big or little endian
6720 hosts, when the inferior's pointer size is smaller than the size
6721 of CORE_ADDR. It is assumed the inferior's endianness is the
6722 same of the superior's. */
6723 union
6724 {
6725 CORE_ADDR core_addr;
6726 unsigned int ui;
6727 unsigned char uc;
6728 } addr;
6729
6730 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6731 if (ret == 0)
6732 {
6733 if (ptr_size == sizeof (CORE_ADDR))
6734 *ptr = addr.core_addr;
6735 else if (ptr_size == sizeof (unsigned int))
6736 *ptr = addr.ui;
6737 else
6738 gdb_assert_not_reached ("unhandled pointer size");
6739 }
6740 return ret;
6741 }
6742
6743 bool
6744 linux_process_target::supports_qxfer_libraries_svr4 ()
6745 {
6746 return true;
6747 }
6748
6749 struct link_map_offsets
6750 {
6751 /* Offset and size of r_debug.r_version. */
6752 int r_version_offset;
6753
6754 /* Offset and size of r_debug.r_map. */
6755 int r_map_offset;
6756
6757 /* Offset to l_addr field in struct link_map. */
6758 int l_addr_offset;
6759
6760 /* Offset to l_name field in struct link_map. */
6761 int l_name_offset;
6762
6763 /* Offset to l_ld field in struct link_map. */
6764 int l_ld_offset;
6765
6766 /* Offset to l_next field in struct link_map. */
6767 int l_next_offset;
6768
6769 /* Offset to l_prev field in struct link_map. */
6770 int l_prev_offset;
6771 };
6772
6773 /* Construct qXfer:libraries-svr4:read reply. */
6774
6775 int
6776 linux_process_target::qxfer_libraries_svr4 (const char *annex,
6777 unsigned char *readbuf,
6778 unsigned const char *writebuf,
6779 CORE_ADDR offset, int len)
6780 {
6781 struct process_info_private *const priv = current_process ()->priv;
6782 char filename[PATH_MAX];
6783 int pid, is_elf64;
6784
6785 static const struct link_map_offsets lmo_32bit_offsets =
6786 {
6787 0, /* r_version offset. */
6788 4, /* r_debug.r_map offset. */
6789 0, /* l_addr offset in link_map. */
6790 4, /* l_name offset in link_map. */
6791 8, /* l_ld offset in link_map. */
6792 12, /* l_next offset in link_map. */
6793 16 /* l_prev offset in link_map. */
6794 };
6795
6796 static const struct link_map_offsets lmo_64bit_offsets =
6797 {
6798 0, /* r_version offset. */
6799 8, /* r_debug.r_map offset. */
6800 0, /* l_addr offset in link_map. */
6801 8, /* l_name offset in link_map. */
6802 16, /* l_ld offset in link_map. */
6803 24, /* l_next offset in link_map. */
6804 32 /* l_prev offset in link_map. */
6805 };
6806 const struct link_map_offsets *lmo;
6807 unsigned int machine;
6808 int ptr_size;
6809 CORE_ADDR lm_addr = 0, lm_prev = 0;
6810 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6811 int header_done = 0;
6812
6813 if (writebuf != NULL)
6814 return -2;
6815 if (readbuf == NULL)
6816 return -1;
6817
6818 pid = lwpid_of (current_thread);
6819 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6820 is_elf64 = elf_64_file_p (filename, &machine);
6821 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6822 ptr_size = is_elf64 ? 8 : 4;
6823
6824 while (annex[0] != '\0')
6825 {
6826 const char *sep;
6827 CORE_ADDR *addrp;
6828 int name_len;
6829
6830 sep = strchr (annex, '=');
6831 if (sep == NULL)
6832 break;
6833
6834 name_len = sep - annex;
6835 if (name_len == 5 && startswith (annex, "start"))
6836 addrp = &lm_addr;
6837 else if (name_len == 4 && startswith (annex, "prev"))
6838 addrp = &lm_prev;
6839 else
6840 {
6841 annex = strchr (sep, ';');
6842 if (annex == NULL)
6843 break;
6844 annex++;
6845 continue;
6846 }
6847
6848 annex = decode_address_to_semicolon (addrp, sep + 1);
6849 }
6850
6851 if (lm_addr == 0)
6852 {
6853 int r_version = 0;
6854
6855 if (priv->r_debug == 0)
6856 priv->r_debug = get_r_debug (pid, is_elf64);
6857
6858 /* We failed to find DT_DEBUG. Such situation will not change
6859 for this inferior - do not retry it. Report it to GDB as
6860 E01, see for the reasons at the GDB solib-svr4.c side. */
6861 if (priv->r_debug == (CORE_ADDR) -1)
6862 return -1;
6863
6864 if (priv->r_debug != 0)
6865 {
6866 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6867 (unsigned char *) &r_version,
6868 sizeof (r_version)) != 0
6869 || r_version != 1)
6870 {
6871 warning ("unexpected r_debug version %d", r_version);
6872 }
6873 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6874 &lm_addr, ptr_size) != 0)
6875 {
6876 warning ("unable to read r_map from 0x%lx",
6877 (long) priv->r_debug + lmo->r_map_offset);
6878 }
6879 }
6880 }
6881
6882 std::string document = "<library-list-svr4 version=\"1.0\"";
6883
6884 while (lm_addr
6885 && read_one_ptr (lm_addr + lmo->l_name_offset,
6886 &l_name, ptr_size) == 0
6887 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6888 &l_addr, ptr_size) == 0
6889 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6890 &l_ld, ptr_size) == 0
6891 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6892 &l_prev, ptr_size) == 0
6893 && read_one_ptr (lm_addr + lmo->l_next_offset,
6894 &l_next, ptr_size) == 0)
6895 {
6896 unsigned char libname[PATH_MAX];
6897
6898 if (lm_prev != l_prev)
6899 {
6900 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6901 (long) lm_prev, (long) l_prev);
6902 break;
6903 }
6904
6905 /* Ignore the first entry even if it has valid name as the first entry
6906 corresponds to the main executable. The first entry should not be
6907 skipped if the dynamic loader was loaded late by a static executable
6908 (see solib-svr4.c parameter ignore_first). But in such case the main
6909 executable does not have PT_DYNAMIC present and this function already
6910 exited above due to failed get_r_debug. */
6911 if (lm_prev == 0)
6912 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6913 else
6914 {
6915 /* Not checking for error because reading may stop before
6916 we've got PATH_MAX worth of characters. */
6917 libname[0] = '\0';
6918 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6919 libname[sizeof (libname) - 1] = '\0';
6920 if (libname[0] != '\0')
6921 {
6922 if (!header_done)
6923 {
6924 /* Terminate `<library-list-svr4'. */
6925 document += '>';
6926 header_done = 1;
6927 }
6928
6929 string_appendf (document, "<library name=\"");
6930 xml_escape_text_append (&document, (char *) libname);
6931 string_appendf (document, "\" lm=\"0x%lx\" "
6932 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6933 (unsigned long) lm_addr, (unsigned long) l_addr,
6934 (unsigned long) l_ld);
6935 }
6936 }
6937
6938 lm_prev = lm_addr;
6939 lm_addr = l_next;
6940 }
6941
6942 if (!header_done)
6943 {
6944 /* Empty list; terminate `<library-list-svr4'. */
6945 document += "/>";
6946 }
6947 else
6948 document += "</library-list-svr4>";
6949
6950 int document_len = document.length ();
6951 if (offset < document_len)
6952 document_len -= offset;
6953 else
6954 document_len = 0;
6955 if (len > document_len)
6956 len = document_len;
6957
6958 memcpy (readbuf, document.data () + offset, len);
6959
6960 return len;
6961 }
6962
6963 #ifdef HAVE_LINUX_BTRACE
6964
6965 btrace_target_info *
6966 linux_process_target::enable_btrace (ptid_t ptid,
6967 const btrace_config *conf)
6968 {
6969 return linux_enable_btrace (ptid, conf);
6970 }
6971
6972 /* See to_disable_btrace target method. */
6973
6974 int
6975 linux_process_target::disable_btrace (btrace_target_info *tinfo)
6976 {
6977 enum btrace_error err;
6978
6979 err = linux_disable_btrace (tinfo);
6980 return (err == BTRACE_ERR_NONE ? 0 : -1);
6981 }
6982
6983 /* Encode an Intel Processor Trace configuration. */
6984
6985 static void
6986 linux_low_encode_pt_config (struct buffer *buffer,
6987 const struct btrace_data_pt_config *config)
6988 {
6989 buffer_grow_str (buffer, "<pt-config>\n");
6990
6991 switch (config->cpu.vendor)
6992 {
6993 case CV_INTEL:
6994 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6995 "model=\"%u\" stepping=\"%u\"/>\n",
6996 config->cpu.family, config->cpu.model,
6997 config->cpu.stepping);
6998 break;
6999
7000 default:
7001 break;
7002 }
7003
7004 buffer_grow_str (buffer, "</pt-config>\n");
7005 }
7006
7007 /* Encode a raw buffer. */
7008
7009 static void
7010 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7011 unsigned int size)
7012 {
7013 if (size == 0)
7014 return;
7015
7016 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7017 buffer_grow_str (buffer, "<raw>\n");
7018
7019 while (size-- > 0)
7020 {
7021 char elem[2];
7022
7023 elem[0] = tohex ((*data >> 4) & 0xf);
7024 elem[1] = tohex (*data++ & 0xf);
7025
7026 buffer_grow (buffer, elem, 2);
7027 }
7028
7029 buffer_grow_str (buffer, "</raw>\n");
7030 }
7031
7032 /* See to_read_btrace target method. */
7033
7034 int
7035 linux_process_target::read_btrace (btrace_target_info *tinfo,
7036 buffer *buffer,
7037 enum btrace_read_type type)
7038 {
7039 struct btrace_data btrace;
7040 enum btrace_error err;
7041
7042 err = linux_read_btrace (&btrace, tinfo, type);
7043 if (err != BTRACE_ERR_NONE)
7044 {
7045 if (err == BTRACE_ERR_OVERFLOW)
7046 buffer_grow_str0 (buffer, "E.Overflow.");
7047 else
7048 buffer_grow_str0 (buffer, "E.Generic Error.");
7049
7050 return -1;
7051 }
7052
7053 switch (btrace.format)
7054 {
7055 case BTRACE_FORMAT_NONE:
7056 buffer_grow_str0 (buffer, "E.No Trace.");
7057 return -1;
7058
7059 case BTRACE_FORMAT_BTS:
7060 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7061 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7062
7063 for (const btrace_block &block : *btrace.variant.bts.blocks)
7064 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7065 paddress (block.begin), paddress (block.end));
7066
7067 buffer_grow_str0 (buffer, "</btrace>\n");
7068 break;
7069
7070 case BTRACE_FORMAT_PT:
7071 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7072 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7073 buffer_grow_str (buffer, "<pt>\n");
7074
7075 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7076
7077 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7078 btrace.variant.pt.size);
7079
7080 buffer_grow_str (buffer, "</pt>\n");
7081 buffer_grow_str0 (buffer, "</btrace>\n");
7082 break;
7083
7084 default:
7085 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7086 return -1;
7087 }
7088
7089 return 0;
7090 }
7091
7092 /* See to_btrace_conf target method. */
7093
7094 int
7095 linux_process_target::read_btrace_conf (const btrace_target_info *tinfo,
7096 buffer *buffer)
7097 {
7098 const struct btrace_config *conf;
7099
7100 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7101 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7102
7103 conf = linux_btrace_conf (tinfo);
7104 if (conf != NULL)
7105 {
7106 switch (conf->format)
7107 {
7108 case BTRACE_FORMAT_NONE:
7109 break;
7110
7111 case BTRACE_FORMAT_BTS:
7112 buffer_xml_printf (buffer, "<bts");
7113 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7114 buffer_xml_printf (buffer, " />\n");
7115 break;
7116
7117 case BTRACE_FORMAT_PT:
7118 buffer_xml_printf (buffer, "<pt");
7119 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7120 buffer_xml_printf (buffer, "/>\n");
7121 break;
7122 }
7123 }
7124
7125 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7126 return 0;
7127 }
7128 #endif /* HAVE_LINUX_BTRACE */
7129
7130 /* See nat/linux-nat.h. */
7131
7132 ptid_t
7133 current_lwp_ptid (void)
7134 {
7135 return ptid_of (current_thread);
7136 }
7137
7138 const char *
7139 linux_process_target::thread_name (ptid_t thread)
7140 {
7141 return linux_proc_tid_get_name (thread);
7142 }
7143
7144 #if USE_THREAD_DB
7145 bool
7146 linux_process_target::thread_handle (ptid_t ptid, gdb_byte **handle,
7147 int *handle_len)
7148 {
7149 return thread_db_thread_handle (ptid, handle, handle_len);
7150 }
7151 #endif
7152
7153 /* Default implementation of linux_target_ops method "set_pc" for
7154 32-bit pc register which is literally named "pc". */
7155
7156 void
7157 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7158 {
7159 uint32_t newpc = pc;
7160
7161 supply_register_by_name (regcache, "pc", &newpc);
7162 }
7163
7164 /* Default implementation of linux_target_ops method "get_pc" for
7165 32-bit pc register which is literally named "pc". */
7166
7167 CORE_ADDR
7168 linux_get_pc_32bit (struct regcache *regcache)
7169 {
7170 uint32_t pc;
7171
7172 collect_register_by_name (regcache, "pc", &pc);
7173 if (debug_threads)
7174 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7175 return pc;
7176 }
7177
7178 /* Default implementation of linux_target_ops method "set_pc" for
7179 64-bit pc register which is literally named "pc". */
7180
7181 void
7182 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7183 {
7184 uint64_t newpc = pc;
7185
7186 supply_register_by_name (regcache, "pc", &newpc);
7187 }
7188
7189 /* Default implementation of linux_target_ops method "get_pc" for
7190 64-bit pc register which is literally named "pc". */
7191
7192 CORE_ADDR
7193 linux_get_pc_64bit (struct regcache *regcache)
7194 {
7195 uint64_t pc;
7196
7197 collect_register_by_name (regcache, "pc", &pc);
7198 if (debug_threads)
7199 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7200 return pc;
7201 }
7202
7203 /* See linux-low.h. */
7204
7205 int
7206 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7207 {
7208 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7209 int offset = 0;
7210
7211 gdb_assert (wordsize == 4 || wordsize == 8);
7212
7213 while (the_target->read_auxv (offset, data, 2 * wordsize) == 2 * wordsize)
7214 {
7215 if (wordsize == 4)
7216 {
7217 uint32_t *data_p = (uint32_t *) data;
7218 if (data_p[0] == match)
7219 {
7220 *valp = data_p[1];
7221 return 1;
7222 }
7223 }
7224 else
7225 {
7226 uint64_t *data_p = (uint64_t *) data;
7227 if (data_p[0] == match)
7228 {
7229 *valp = data_p[1];
7230 return 1;
7231 }
7232 }
7233
7234 offset += 2 * wordsize;
7235 }
7236
7237 return 0;
7238 }
7239
7240 /* See linux-low.h. */
7241
7242 CORE_ADDR
7243 linux_get_hwcap (int wordsize)
7244 {
7245 CORE_ADDR hwcap = 0;
7246 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7247 return hwcap;
7248 }
7249
7250 /* See linux-low.h. */
7251
7252 CORE_ADDR
7253 linux_get_hwcap2 (int wordsize)
7254 {
7255 CORE_ADDR hwcap2 = 0;
7256 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7257 return hwcap2;
7258 }
7259
7260 #ifdef HAVE_LINUX_REGSETS
7261 void
7262 initialize_regsets_info (struct regsets_info *info)
7263 {
7264 for (info->num_regsets = 0;
7265 info->regsets[info->num_regsets].size >= 0;
7266 info->num_regsets++)
7267 ;
7268 }
7269 #endif
7270
7271 void
7272 initialize_low (void)
7273 {
7274 struct sigaction sigchld_action;
7275
7276 memset (&sigchld_action, 0, sizeof (sigchld_action));
7277 set_target_ops (the_linux_target);
7278
7279 linux_ptrace_init_warnings ();
7280 linux_proc_init_warnings ();
7281
7282 sigchld_action.sa_handler = sigchld_handler;
7283 sigemptyset (&sigchld_action.sa_mask);
7284 sigchld_action.sa_flags = SA_RESTART;
7285 sigaction (SIGCHLD, &sigchld_action, NULL);
7286
7287 initialize_low_arch ();
7288
7289 linux_check_ptrace_features ();
7290 }
This page took 0.174309 seconds and 3 git commands to generate.