gdb: give names to event loop file handlers
[deliverable/binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include <inttypes.h>
49 #include "gdbsupport/common-inferior.h"
50 #include "nat/fork-inferior.h"
51 #include "gdbsupport/environ.h"
52 #include "gdbsupport/gdb-sigmask.h"
53 #include "gdbsupport/scoped_restore.h"
54 #ifndef ELFMAG0
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59 #include <elf.h>
60 #endif
61 #include "nat/linux-namespaces.h"
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 #ifndef AT_HWCAP2
75 #define AT_HWCAP2 26
76 #endif
77
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* These are still undefined in 3.10 kernels. */
90 #elif defined(__TMS320C6X__)
91 #define PT_TEXT_ADDR (0x10000*4)
92 #define PT_DATA_ADDR (0x10004*4)
93 #define PT_TEXT_END_ADDR (0x10008*4)
94 #endif
95 #endif
96
97 #if (defined(__UCLIBC__) \
98 && defined(HAS_NOMMU) \
99 && defined(PT_TEXT_ADDR) \
100 && defined(PT_DATA_ADDR) \
101 && defined(PT_TEXT_END_ADDR))
102 #define SUPPORTS_READ_OFFSETS
103 #endif
104
105 #ifdef HAVE_LINUX_BTRACE
106 # include "nat/linux-btrace.h"
107 # include "gdbsupport/btrace-common.h"
108 #endif
109
110 #ifndef HAVE_ELF32_AUXV_T
111 /* Copied from glibc's elf.h. */
112 typedef struct
113 {
114 uint32_t a_type; /* Entry type */
115 union
116 {
117 uint32_t a_val; /* Integer value */
118 /* We use to have pointer elements added here. We cannot do that,
119 though, since it does not work when using 32-bit definitions
120 on 64-bit platforms and vice versa. */
121 } a_un;
122 } Elf32_auxv_t;
123 #endif
124
125 #ifndef HAVE_ELF64_AUXV_T
126 /* Copied from glibc's elf.h. */
127 typedef struct
128 {
129 uint64_t a_type; /* Entry type */
130 union
131 {
132 uint64_t a_val; /* Integer value */
133 /* We use to have pointer elements added here. We cannot do that,
134 though, since it does not work when using 32-bit definitions
135 on 64-bit platforms and vice versa. */
136 } a_un;
137 } Elf64_auxv_t;
138 #endif
139
140 /* Does the current host support PTRACE_GETREGSET? */
141 int have_ptrace_getregset = -1;
142
143 /* LWP accessors. */
144
145 /* See nat/linux-nat.h. */
146
147 ptid_t
148 ptid_of_lwp (struct lwp_info *lwp)
149 {
150 return ptid_of (get_lwp_thread (lwp));
151 }
152
153 /* See nat/linux-nat.h. */
154
155 void
156 lwp_set_arch_private_info (struct lwp_info *lwp,
157 struct arch_lwp_info *info)
158 {
159 lwp->arch_private = info;
160 }
161
162 /* See nat/linux-nat.h. */
163
164 struct arch_lwp_info *
165 lwp_arch_private_info (struct lwp_info *lwp)
166 {
167 return lwp->arch_private;
168 }
169
170 /* See nat/linux-nat.h. */
171
172 int
173 lwp_is_stopped (struct lwp_info *lwp)
174 {
175 return lwp->stopped;
176 }
177
178 /* See nat/linux-nat.h. */
179
180 enum target_stop_reason
181 lwp_stop_reason (struct lwp_info *lwp)
182 {
183 return lwp->stop_reason;
184 }
185
186 /* See nat/linux-nat.h. */
187
188 int
189 lwp_is_stepping (struct lwp_info *lwp)
190 {
191 return lwp->stepping;
192 }
193
194 /* A list of all unknown processes which receive stop signals. Some
195 other process will presumably claim each of these as forked
196 children momentarily. */
197
198 struct simple_pid_list
199 {
200 /* The process ID. */
201 int pid;
202
203 /* The status as reported by waitpid. */
204 int status;
205
206 /* Next in chain. */
207 struct simple_pid_list *next;
208 };
209 static struct simple_pid_list *stopped_pids;
210
211 /* Trivial list manipulation functions to keep track of a list of new
212 stopped processes. */
213
214 static void
215 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
216 {
217 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
218
219 new_pid->pid = pid;
220 new_pid->status = status;
221 new_pid->next = *listp;
222 *listp = new_pid;
223 }
224
225 static int
226 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
227 {
228 struct simple_pid_list **p;
229
230 for (p = listp; *p != NULL; p = &(*p)->next)
231 if ((*p)->pid == pid)
232 {
233 struct simple_pid_list *next = (*p)->next;
234
235 *statusp = (*p)->status;
236 xfree (*p);
237 *p = next;
238 return 1;
239 }
240 return 0;
241 }
242
243 enum stopping_threads_kind
244 {
245 /* Not stopping threads presently. */
246 NOT_STOPPING_THREADS,
247
248 /* Stopping threads. */
249 STOPPING_THREADS,
250
251 /* Stopping and suspending threads. */
252 STOPPING_AND_SUSPENDING_THREADS
253 };
254
255 /* This is set while stop_all_lwps is in effect. */
256 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
257
258 /* FIXME make into a target method? */
259 int using_threads = 1;
260
261 /* True if we're presently stabilizing threads (moving them out of
262 jump pads). */
263 static int stabilizing_threads;
264
265 static void unsuspend_all_lwps (struct lwp_info *except);
266 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
267 static int lwp_is_marked_dead (struct lwp_info *lwp);
268 static int kill_lwp (unsigned long lwpid, int signo);
269 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
270 static int linux_low_ptrace_options (int attached);
271 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
272
273 /* When the event-loop is doing a step-over, this points at the thread
274 being stepped. */
275 ptid_t step_over_bkpt;
276
277 bool
278 linux_process_target::low_supports_breakpoints ()
279 {
280 return false;
281 }
282
283 CORE_ADDR
284 linux_process_target::low_get_pc (regcache *regcache)
285 {
286 return 0;
287 }
288
289 void
290 linux_process_target::low_set_pc (regcache *regcache, CORE_ADDR newpc)
291 {
292 gdb_assert_not_reached ("linux target op low_set_pc is not implemented");
293 }
294
295 std::vector<CORE_ADDR>
296 linux_process_target::low_get_next_pcs (regcache *regcache)
297 {
298 gdb_assert_not_reached ("linux target op low_get_next_pcs is not "
299 "implemented");
300 }
301
302 int
303 linux_process_target::low_decr_pc_after_break ()
304 {
305 return 0;
306 }
307
308 /* True if LWP is stopped in its stepping range. */
309
310 static int
311 lwp_in_step_range (struct lwp_info *lwp)
312 {
313 CORE_ADDR pc = lwp->stop_pc;
314
315 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
316 }
317
318 /* The read/write ends of the pipe registered as waitable file in the
319 event loop. */
320 static int linux_event_pipe[2] = { -1, -1 };
321
322 /* True if we're currently in async mode. */
323 #define target_is_async_p() (linux_event_pipe[0] != -1)
324
325 static void send_sigstop (struct lwp_info *lwp);
326
327 /* Return non-zero if HEADER is a 64-bit ELF file. */
328
329 static int
330 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
331 {
332 if (header->e_ident[EI_MAG0] == ELFMAG0
333 && header->e_ident[EI_MAG1] == ELFMAG1
334 && header->e_ident[EI_MAG2] == ELFMAG2
335 && header->e_ident[EI_MAG3] == ELFMAG3)
336 {
337 *machine = header->e_machine;
338 return header->e_ident[EI_CLASS] == ELFCLASS64;
339
340 }
341 *machine = EM_NONE;
342 return -1;
343 }
344
345 /* Return non-zero if FILE is a 64-bit ELF file,
346 zero if the file is not a 64-bit ELF file,
347 and -1 if the file is not accessible or doesn't exist. */
348
349 static int
350 elf_64_file_p (const char *file, unsigned int *machine)
351 {
352 Elf64_Ehdr header;
353 int fd;
354
355 fd = open (file, O_RDONLY);
356 if (fd < 0)
357 return -1;
358
359 if (read (fd, &header, sizeof (header)) != sizeof (header))
360 {
361 close (fd);
362 return 0;
363 }
364 close (fd);
365
366 return elf_64_header_p (&header, machine);
367 }
368
369 /* Accepts an integer PID; Returns true if the executable PID is
370 running is a 64-bit ELF file.. */
371
372 int
373 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
374 {
375 char file[PATH_MAX];
376
377 sprintf (file, "/proc/%d/exe", pid);
378 return elf_64_file_p (file, machine);
379 }
380
381 void
382 linux_process_target::delete_lwp (lwp_info *lwp)
383 {
384 struct thread_info *thr = get_lwp_thread (lwp);
385
386 if (debug_threads)
387 debug_printf ("deleting %ld\n", lwpid_of (thr));
388
389 remove_thread (thr);
390
391 low_delete_thread (lwp->arch_private);
392
393 delete lwp;
394 }
395
396 void
397 linux_process_target::low_delete_thread (arch_lwp_info *info)
398 {
399 /* Default implementation should be overridden if architecture-specific
400 info is being used. */
401 gdb_assert (info == nullptr);
402 }
403
404 process_info *
405 linux_process_target::add_linux_process (int pid, int attached)
406 {
407 struct process_info *proc;
408
409 proc = add_process (pid, attached);
410 proc->priv = XCNEW (struct process_info_private);
411
412 proc->priv->arch_private = low_new_process ();
413
414 return proc;
415 }
416
417 arch_process_info *
418 linux_process_target::low_new_process ()
419 {
420 return nullptr;
421 }
422
423 void
424 linux_process_target::low_delete_process (arch_process_info *info)
425 {
426 /* Default implementation must be overridden if architecture-specific
427 info exists. */
428 gdb_assert (info == nullptr);
429 }
430
431 void
432 linux_process_target::low_new_fork (process_info *parent, process_info *child)
433 {
434 /* Nop. */
435 }
436
437 void
438 linux_process_target::arch_setup_thread (thread_info *thread)
439 {
440 struct thread_info *saved_thread;
441
442 saved_thread = current_thread;
443 current_thread = thread;
444
445 low_arch_setup ();
446
447 current_thread = saved_thread;
448 }
449
450 int
451 linux_process_target::handle_extended_wait (lwp_info **orig_event_lwp,
452 int wstat)
453 {
454 client_state &cs = get_client_state ();
455 struct lwp_info *event_lwp = *orig_event_lwp;
456 int event = linux_ptrace_get_extended_event (wstat);
457 struct thread_info *event_thr = get_lwp_thread (event_lwp);
458 struct lwp_info *new_lwp;
459
460 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
461
462 /* All extended events we currently use are mid-syscall. Only
463 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
464 you have to be using PTRACE_SEIZE to get that. */
465 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
466
467 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
468 || (event == PTRACE_EVENT_CLONE))
469 {
470 ptid_t ptid;
471 unsigned long new_pid;
472 int ret, status;
473
474 /* Get the pid of the new lwp. */
475 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
476 &new_pid);
477
478 /* If we haven't already seen the new PID stop, wait for it now. */
479 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
480 {
481 /* The new child has a pending SIGSTOP. We can't affect it until it
482 hits the SIGSTOP, but we're already attached. */
483
484 ret = my_waitpid (new_pid, &status, __WALL);
485
486 if (ret == -1)
487 perror_with_name ("waiting for new child");
488 else if (ret != new_pid)
489 warning ("wait returned unexpected PID %d", ret);
490 else if (!WIFSTOPPED (status))
491 warning ("wait returned unexpected status 0x%x", status);
492 }
493
494 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
495 {
496 struct process_info *parent_proc;
497 struct process_info *child_proc;
498 struct lwp_info *child_lwp;
499 struct thread_info *child_thr;
500 struct target_desc *tdesc;
501
502 ptid = ptid_t (new_pid, new_pid, 0);
503
504 if (debug_threads)
505 {
506 debug_printf ("HEW: Got fork event from LWP %ld, "
507 "new child is %d\n",
508 ptid_of (event_thr).lwp (),
509 ptid.pid ());
510 }
511
512 /* Add the new process to the tables and clone the breakpoint
513 lists of the parent. We need to do this even if the new process
514 will be detached, since we will need the process object and the
515 breakpoints to remove any breakpoints from memory when we
516 detach, and the client side will access registers. */
517 child_proc = add_linux_process (new_pid, 0);
518 gdb_assert (child_proc != NULL);
519 child_lwp = add_lwp (ptid);
520 gdb_assert (child_lwp != NULL);
521 child_lwp->stopped = 1;
522 child_lwp->must_set_ptrace_flags = 1;
523 child_lwp->status_pending_p = 0;
524 child_thr = get_lwp_thread (child_lwp);
525 child_thr->last_resume_kind = resume_stop;
526 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
527
528 /* If we're suspending all threads, leave this one suspended
529 too. If the fork/clone parent is stepping over a breakpoint,
530 all other threads have been suspended already. Leave the
531 child suspended too. */
532 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
533 || event_lwp->bp_reinsert != 0)
534 {
535 if (debug_threads)
536 debug_printf ("HEW: leaving child suspended\n");
537 child_lwp->suspended = 1;
538 }
539
540 parent_proc = get_thread_process (event_thr);
541 child_proc->attached = parent_proc->attached;
542
543 if (event_lwp->bp_reinsert != 0
544 && supports_software_single_step ()
545 && event == PTRACE_EVENT_VFORK)
546 {
547 /* If we leave single-step breakpoints there, child will
548 hit it, so uninsert single-step breakpoints from parent
549 (and child). Once vfork child is done, reinsert
550 them back to parent. */
551 uninsert_single_step_breakpoints (event_thr);
552 }
553
554 clone_all_breakpoints (child_thr, event_thr);
555
556 tdesc = allocate_target_description ();
557 copy_target_description (tdesc, parent_proc->tdesc);
558 child_proc->tdesc = tdesc;
559
560 /* Clone arch-specific process data. */
561 low_new_fork (parent_proc, child_proc);
562
563 /* Save fork info in the parent thread. */
564 if (event == PTRACE_EVENT_FORK)
565 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
566 else if (event == PTRACE_EVENT_VFORK)
567 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
568
569 event_lwp->waitstatus.value.related_pid = ptid;
570
571 /* The status_pending field contains bits denoting the
572 extended event, so when the pending event is handled,
573 the handler will look at lwp->waitstatus. */
574 event_lwp->status_pending_p = 1;
575 event_lwp->status_pending = wstat;
576
577 /* Link the threads until the parent event is passed on to
578 higher layers. */
579 event_lwp->fork_relative = child_lwp;
580 child_lwp->fork_relative = event_lwp;
581
582 /* If the parent thread is doing step-over with single-step
583 breakpoints, the list of single-step breakpoints are cloned
584 from the parent's. Remove them from the child process.
585 In case of vfork, we'll reinsert them back once vforked
586 child is done. */
587 if (event_lwp->bp_reinsert != 0
588 && supports_software_single_step ())
589 {
590 /* The child process is forked and stopped, so it is safe
591 to access its memory without stopping all other threads
592 from other processes. */
593 delete_single_step_breakpoints (child_thr);
594
595 gdb_assert (has_single_step_breakpoints (event_thr));
596 gdb_assert (!has_single_step_breakpoints (child_thr));
597 }
598
599 /* Report the event. */
600 return 0;
601 }
602
603 if (debug_threads)
604 debug_printf ("HEW: Got clone event "
605 "from LWP %ld, new child is LWP %ld\n",
606 lwpid_of (event_thr), new_pid);
607
608 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
609 new_lwp = add_lwp (ptid);
610
611 /* Either we're going to immediately resume the new thread
612 or leave it stopped. resume_one_lwp is a nop if it
613 thinks the thread is currently running, so set this first
614 before calling resume_one_lwp. */
615 new_lwp->stopped = 1;
616
617 /* If we're suspending all threads, leave this one suspended
618 too. If the fork/clone parent is stepping over a breakpoint,
619 all other threads have been suspended already. Leave the
620 child suspended too. */
621 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
622 || event_lwp->bp_reinsert != 0)
623 new_lwp->suspended = 1;
624
625 /* Normally we will get the pending SIGSTOP. But in some cases
626 we might get another signal delivered to the group first.
627 If we do get another signal, be sure not to lose it. */
628 if (WSTOPSIG (status) != SIGSTOP)
629 {
630 new_lwp->stop_expected = 1;
631 new_lwp->status_pending_p = 1;
632 new_lwp->status_pending = status;
633 }
634 else if (cs.report_thread_events)
635 {
636 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
637 new_lwp->status_pending_p = 1;
638 new_lwp->status_pending = status;
639 }
640
641 #ifdef USE_THREAD_DB
642 thread_db_notice_clone (event_thr, ptid);
643 #endif
644
645 /* Don't report the event. */
646 return 1;
647 }
648 else if (event == PTRACE_EVENT_VFORK_DONE)
649 {
650 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
651
652 if (event_lwp->bp_reinsert != 0 && supports_software_single_step ())
653 {
654 reinsert_single_step_breakpoints (event_thr);
655
656 gdb_assert (has_single_step_breakpoints (event_thr));
657 }
658
659 /* Report the event. */
660 return 0;
661 }
662 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
663 {
664 struct process_info *proc;
665 std::vector<int> syscalls_to_catch;
666 ptid_t event_ptid;
667 pid_t event_pid;
668
669 if (debug_threads)
670 {
671 debug_printf ("HEW: Got exec event from LWP %ld\n",
672 lwpid_of (event_thr));
673 }
674
675 /* Get the event ptid. */
676 event_ptid = ptid_of (event_thr);
677 event_pid = event_ptid.pid ();
678
679 /* Save the syscall list from the execing process. */
680 proc = get_thread_process (event_thr);
681 syscalls_to_catch = std::move (proc->syscalls_to_catch);
682
683 /* Delete the execing process and all its threads. */
684 mourn (proc);
685 current_thread = NULL;
686
687 /* Create a new process/lwp/thread. */
688 proc = add_linux_process (event_pid, 0);
689 event_lwp = add_lwp (event_ptid);
690 event_thr = get_lwp_thread (event_lwp);
691 gdb_assert (current_thread == event_thr);
692 arch_setup_thread (event_thr);
693
694 /* Set the event status. */
695 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
696 event_lwp->waitstatus.value.execd_pathname
697 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
698
699 /* Mark the exec status as pending. */
700 event_lwp->stopped = 1;
701 event_lwp->status_pending_p = 1;
702 event_lwp->status_pending = wstat;
703 event_thr->last_resume_kind = resume_continue;
704 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
705
706 /* Update syscall state in the new lwp, effectively mid-syscall too. */
707 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
708
709 /* Restore the list to catch. Don't rely on the client, which is free
710 to avoid sending a new list when the architecture doesn't change.
711 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
712 proc->syscalls_to_catch = std::move (syscalls_to_catch);
713
714 /* Report the event. */
715 *orig_event_lwp = event_lwp;
716 return 0;
717 }
718
719 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
720 }
721
722 CORE_ADDR
723 linux_process_target::get_pc (lwp_info *lwp)
724 {
725 struct thread_info *saved_thread;
726 struct regcache *regcache;
727 CORE_ADDR pc;
728
729 if (!low_supports_breakpoints ())
730 return 0;
731
732 saved_thread = current_thread;
733 current_thread = get_lwp_thread (lwp);
734
735 regcache = get_thread_regcache (current_thread, 1);
736 pc = low_get_pc (regcache);
737
738 if (debug_threads)
739 debug_printf ("pc is 0x%lx\n", (long) pc);
740
741 current_thread = saved_thread;
742 return pc;
743 }
744
745 void
746 linux_process_target::get_syscall_trapinfo (lwp_info *lwp, int *sysno)
747 {
748 struct thread_info *saved_thread;
749 struct regcache *regcache;
750
751 saved_thread = current_thread;
752 current_thread = get_lwp_thread (lwp);
753
754 regcache = get_thread_regcache (current_thread, 1);
755 low_get_syscall_trapinfo (regcache, sysno);
756
757 if (debug_threads)
758 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
759
760 current_thread = saved_thread;
761 }
762
763 void
764 linux_process_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
765 {
766 /* By default, report an unknown system call number. */
767 *sysno = UNKNOWN_SYSCALL;
768 }
769
770 bool
771 linux_process_target::save_stop_reason (lwp_info *lwp)
772 {
773 CORE_ADDR pc;
774 CORE_ADDR sw_breakpoint_pc;
775 struct thread_info *saved_thread;
776 #if USE_SIGTRAP_SIGINFO
777 siginfo_t siginfo;
778 #endif
779
780 if (!low_supports_breakpoints ())
781 return false;
782
783 pc = get_pc (lwp);
784 sw_breakpoint_pc = pc - low_decr_pc_after_break ();
785
786 /* breakpoint_at reads from the current thread. */
787 saved_thread = current_thread;
788 current_thread = get_lwp_thread (lwp);
789
790 #if USE_SIGTRAP_SIGINFO
791 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
792 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
793 {
794 if (siginfo.si_signo == SIGTRAP)
795 {
796 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
797 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
798 {
799 /* The si_code is ambiguous on this arch -- check debug
800 registers. */
801 if (!check_stopped_by_watchpoint (lwp))
802 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
803 }
804 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
805 {
806 /* If we determine the LWP stopped for a SW breakpoint,
807 trust it. Particularly don't check watchpoint
808 registers, because at least on s390, we'd find
809 stopped-by-watchpoint as long as there's a watchpoint
810 set. */
811 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
812 }
813 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
814 {
815 /* This can indicate either a hardware breakpoint or
816 hardware watchpoint. Check debug registers. */
817 if (!check_stopped_by_watchpoint (lwp))
818 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
819 }
820 else if (siginfo.si_code == TRAP_TRACE)
821 {
822 /* We may have single stepped an instruction that
823 triggered a watchpoint. In that case, on some
824 architectures (such as x86), instead of TRAP_HWBKPT,
825 si_code indicates TRAP_TRACE, and we need to check
826 the debug registers separately. */
827 if (!check_stopped_by_watchpoint (lwp))
828 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
829 }
830 }
831 }
832 #else
833 /* We may have just stepped a breakpoint instruction. E.g., in
834 non-stop mode, GDB first tells the thread A to step a range, and
835 then the user inserts a breakpoint inside the range. In that
836 case we need to report the breakpoint PC. */
837 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
838 && low_breakpoint_at (sw_breakpoint_pc))
839 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
840
841 if (hardware_breakpoint_inserted_here (pc))
842 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
843
844 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
845 check_stopped_by_watchpoint (lwp);
846 #endif
847
848 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
849 {
850 if (debug_threads)
851 {
852 struct thread_info *thr = get_lwp_thread (lwp);
853
854 debug_printf ("CSBB: %s stopped by software breakpoint\n",
855 target_pid_to_str (ptid_of (thr)));
856 }
857
858 /* Back up the PC if necessary. */
859 if (pc != sw_breakpoint_pc)
860 {
861 struct regcache *regcache
862 = get_thread_regcache (current_thread, 1);
863 low_set_pc (regcache, sw_breakpoint_pc);
864 }
865
866 /* Update this so we record the correct stop PC below. */
867 pc = sw_breakpoint_pc;
868 }
869 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
870 {
871 if (debug_threads)
872 {
873 struct thread_info *thr = get_lwp_thread (lwp);
874
875 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
876 target_pid_to_str (ptid_of (thr)));
877 }
878 }
879 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
880 {
881 if (debug_threads)
882 {
883 struct thread_info *thr = get_lwp_thread (lwp);
884
885 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
886 target_pid_to_str (ptid_of (thr)));
887 }
888 }
889 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
890 {
891 if (debug_threads)
892 {
893 struct thread_info *thr = get_lwp_thread (lwp);
894
895 debug_printf ("CSBB: %s stopped by trace\n",
896 target_pid_to_str (ptid_of (thr)));
897 }
898 }
899
900 lwp->stop_pc = pc;
901 current_thread = saved_thread;
902 return true;
903 }
904
905 lwp_info *
906 linux_process_target::add_lwp (ptid_t ptid)
907 {
908 struct lwp_info *lwp;
909
910 lwp = new lwp_info {};
911
912 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
913
914 lwp->thread = add_thread (ptid, lwp);
915
916 low_new_thread (lwp);
917
918 return lwp;
919 }
920
921 void
922 linux_process_target::low_new_thread (lwp_info *info)
923 {
924 /* Nop. */
925 }
926
927 /* Callback to be used when calling fork_inferior, responsible for
928 actually initiating the tracing of the inferior. */
929
930 static void
931 linux_ptrace_fun ()
932 {
933 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
934 (PTRACE_TYPE_ARG4) 0) < 0)
935 trace_start_error_with_name ("ptrace");
936
937 if (setpgid (0, 0) < 0)
938 trace_start_error_with_name ("setpgid");
939
940 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
941 stdout to stderr so that inferior i/o doesn't corrupt the connection.
942 Also, redirect stdin to /dev/null. */
943 if (remote_connection_is_stdio ())
944 {
945 if (close (0) < 0)
946 trace_start_error_with_name ("close");
947 if (open ("/dev/null", O_RDONLY) < 0)
948 trace_start_error_with_name ("open");
949 if (dup2 (2, 1) < 0)
950 trace_start_error_with_name ("dup2");
951 if (write (2, "stdin/stdout redirected\n",
952 sizeof ("stdin/stdout redirected\n") - 1) < 0)
953 {
954 /* Errors ignored. */;
955 }
956 }
957 }
958
959 /* Start an inferior process and returns its pid.
960 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
961 are its arguments. */
962
963 int
964 linux_process_target::create_inferior (const char *program,
965 const std::vector<char *> &program_args)
966 {
967 client_state &cs = get_client_state ();
968 struct lwp_info *new_lwp;
969 int pid;
970 ptid_t ptid;
971
972 {
973 maybe_disable_address_space_randomization restore_personality
974 (cs.disable_randomization);
975 std::string str_program_args = construct_inferior_arguments (program_args);
976
977 pid = fork_inferior (program,
978 str_program_args.c_str (),
979 get_environ ()->envp (), linux_ptrace_fun,
980 NULL, NULL, NULL, NULL);
981 }
982
983 add_linux_process (pid, 0);
984
985 ptid = ptid_t (pid, pid, 0);
986 new_lwp = add_lwp (ptid);
987 new_lwp->must_set_ptrace_flags = 1;
988
989 post_fork_inferior (pid, program);
990
991 return pid;
992 }
993
994 /* Implement the post_create_inferior target_ops method. */
995
996 void
997 linux_process_target::post_create_inferior ()
998 {
999 struct lwp_info *lwp = get_thread_lwp (current_thread);
1000
1001 low_arch_setup ();
1002
1003 if (lwp->must_set_ptrace_flags)
1004 {
1005 struct process_info *proc = current_process ();
1006 int options = linux_low_ptrace_options (proc->attached);
1007
1008 linux_enable_event_reporting (lwpid_of (current_thread), options);
1009 lwp->must_set_ptrace_flags = 0;
1010 }
1011 }
1012
1013 int
1014 linux_process_target::attach_lwp (ptid_t ptid)
1015 {
1016 struct lwp_info *new_lwp;
1017 int lwpid = ptid.lwp ();
1018
1019 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1020 != 0)
1021 return errno;
1022
1023 new_lwp = add_lwp (ptid);
1024
1025 /* We need to wait for SIGSTOP before being able to make the next
1026 ptrace call on this LWP. */
1027 new_lwp->must_set_ptrace_flags = 1;
1028
1029 if (linux_proc_pid_is_stopped (lwpid))
1030 {
1031 if (debug_threads)
1032 debug_printf ("Attached to a stopped process\n");
1033
1034 /* The process is definitely stopped. It is in a job control
1035 stop, unless the kernel predates the TASK_STOPPED /
1036 TASK_TRACED distinction, in which case it might be in a
1037 ptrace stop. Make sure it is in a ptrace stop; from there we
1038 can kill it, signal it, et cetera.
1039
1040 First make sure there is a pending SIGSTOP. Since we are
1041 already attached, the process can not transition from stopped
1042 to running without a PTRACE_CONT; so we know this signal will
1043 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1044 probably already in the queue (unless this kernel is old
1045 enough to use TASK_STOPPED for ptrace stops); but since
1046 SIGSTOP is not an RT signal, it can only be queued once. */
1047 kill_lwp (lwpid, SIGSTOP);
1048
1049 /* Finally, resume the stopped process. This will deliver the
1050 SIGSTOP (or a higher priority signal, just like normal
1051 PTRACE_ATTACH), which we'll catch later on. */
1052 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1053 }
1054
1055 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1056 brings it to a halt.
1057
1058 There are several cases to consider here:
1059
1060 1) gdbserver has already attached to the process and is being notified
1061 of a new thread that is being created.
1062 In this case we should ignore that SIGSTOP and resume the
1063 process. This is handled below by setting stop_expected = 1,
1064 and the fact that add_thread sets last_resume_kind ==
1065 resume_continue.
1066
1067 2) This is the first thread (the process thread), and we're attaching
1068 to it via attach_inferior.
1069 In this case we want the process thread to stop.
1070 This is handled by having linux_attach set last_resume_kind ==
1071 resume_stop after we return.
1072
1073 If the pid we are attaching to is also the tgid, we attach to and
1074 stop all the existing threads. Otherwise, we attach to pid and
1075 ignore any other threads in the same group as this pid.
1076
1077 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1078 existing threads.
1079 In this case we want the thread to stop.
1080 FIXME: This case is currently not properly handled.
1081 We should wait for the SIGSTOP but don't. Things work apparently
1082 because enough time passes between when we ptrace (ATTACH) and when
1083 gdb makes the next ptrace call on the thread.
1084
1085 On the other hand, if we are currently trying to stop all threads, we
1086 should treat the new thread as if we had sent it a SIGSTOP. This works
1087 because we are guaranteed that the add_lwp call above added us to the
1088 end of the list, and so the new thread has not yet reached
1089 wait_for_sigstop (but will). */
1090 new_lwp->stop_expected = 1;
1091
1092 return 0;
1093 }
1094
1095 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1096 already attached. Returns true if a new LWP is found, false
1097 otherwise. */
1098
1099 static int
1100 attach_proc_task_lwp_callback (ptid_t ptid)
1101 {
1102 /* Is this a new thread? */
1103 if (find_thread_ptid (ptid) == NULL)
1104 {
1105 int lwpid = ptid.lwp ();
1106 int err;
1107
1108 if (debug_threads)
1109 debug_printf ("Found new lwp %d\n", lwpid);
1110
1111 err = the_linux_target->attach_lwp (ptid);
1112
1113 /* Be quiet if we simply raced with the thread exiting. EPERM
1114 is returned if the thread's task still exists, and is marked
1115 as exited or zombie, as well as other conditions, so in that
1116 case, confirm the status in /proc/PID/status. */
1117 if (err == ESRCH
1118 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1119 {
1120 if (debug_threads)
1121 {
1122 debug_printf ("Cannot attach to lwp %d: "
1123 "thread is gone (%d: %s)\n",
1124 lwpid, err, safe_strerror (err));
1125 }
1126 }
1127 else if (err != 0)
1128 {
1129 std::string reason
1130 = linux_ptrace_attach_fail_reason_string (ptid, err);
1131
1132 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1133 }
1134
1135 return 1;
1136 }
1137 return 0;
1138 }
1139
1140 static void async_file_mark (void);
1141
1142 /* Attach to PID. If PID is the tgid, attach to it and all
1143 of its threads. */
1144
1145 int
1146 linux_process_target::attach (unsigned long pid)
1147 {
1148 struct process_info *proc;
1149 struct thread_info *initial_thread;
1150 ptid_t ptid = ptid_t (pid, pid, 0);
1151 int err;
1152
1153 proc = add_linux_process (pid, 1);
1154
1155 /* Attach to PID. We will check for other threads
1156 soon. */
1157 err = attach_lwp (ptid);
1158 if (err != 0)
1159 {
1160 remove_process (proc);
1161
1162 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1163 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1164 }
1165
1166 /* Don't ignore the initial SIGSTOP if we just attached to this
1167 process. It will be collected by wait shortly. */
1168 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1169 initial_thread->last_resume_kind = resume_stop;
1170
1171 /* We must attach to every LWP. If /proc is mounted, use that to
1172 find them now. On the one hand, the inferior may be using raw
1173 clone instead of using pthreads. On the other hand, even if it
1174 is using pthreads, GDB may not be connected yet (thread_db needs
1175 to do symbol lookups, through qSymbol). Also, thread_db walks
1176 structures in the inferior's address space to find the list of
1177 threads/LWPs, and those structures may well be corrupted. Note
1178 that once thread_db is loaded, we'll still use it to list threads
1179 and associate pthread info with each LWP. */
1180 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1181
1182 /* GDB will shortly read the xml target description for this
1183 process, to figure out the process' architecture. But the target
1184 description is only filled in when the first process/thread in
1185 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1186 that now, otherwise, if GDB is fast enough, it could read the
1187 target description _before_ that initial stop. */
1188 if (non_stop)
1189 {
1190 struct lwp_info *lwp;
1191 int wstat, lwpid;
1192 ptid_t pid_ptid = ptid_t (pid);
1193
1194 lwpid = wait_for_event_filtered (pid_ptid, pid_ptid, &wstat, __WALL);
1195 gdb_assert (lwpid > 0);
1196
1197 lwp = find_lwp_pid (ptid_t (lwpid));
1198
1199 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1200 {
1201 lwp->status_pending_p = 1;
1202 lwp->status_pending = wstat;
1203 }
1204
1205 initial_thread->last_resume_kind = resume_continue;
1206
1207 async_file_mark ();
1208
1209 gdb_assert (proc->tdesc != NULL);
1210 }
1211
1212 return 0;
1213 }
1214
1215 static int
1216 last_thread_of_process_p (int pid)
1217 {
1218 bool seen_one = false;
1219
1220 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1221 {
1222 if (!seen_one)
1223 {
1224 /* This is the first thread of this process we see. */
1225 seen_one = true;
1226 return false;
1227 }
1228 else
1229 {
1230 /* This is the second thread of this process we see. */
1231 return true;
1232 }
1233 });
1234
1235 return thread == NULL;
1236 }
1237
1238 /* Kill LWP. */
1239
1240 static void
1241 linux_kill_one_lwp (struct lwp_info *lwp)
1242 {
1243 struct thread_info *thr = get_lwp_thread (lwp);
1244 int pid = lwpid_of (thr);
1245
1246 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1247 there is no signal context, and ptrace(PTRACE_KILL) (or
1248 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1249 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1250 alternative is to kill with SIGKILL. We only need one SIGKILL
1251 per process, not one for each thread. But since we still support
1252 support debugging programs using raw clone without CLONE_THREAD,
1253 we send one for each thread. For years, we used PTRACE_KILL
1254 only, so we're being a bit paranoid about some old kernels where
1255 PTRACE_KILL might work better (dubious if there are any such, but
1256 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1257 second, and so we're fine everywhere. */
1258
1259 errno = 0;
1260 kill_lwp (pid, SIGKILL);
1261 if (debug_threads)
1262 {
1263 int save_errno = errno;
1264
1265 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1266 target_pid_to_str (ptid_of (thr)),
1267 save_errno ? safe_strerror (save_errno) : "OK");
1268 }
1269
1270 errno = 0;
1271 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1272 if (debug_threads)
1273 {
1274 int save_errno = errno;
1275
1276 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1277 target_pid_to_str (ptid_of (thr)),
1278 save_errno ? safe_strerror (save_errno) : "OK");
1279 }
1280 }
1281
1282 /* Kill LWP and wait for it to die. */
1283
1284 static void
1285 kill_wait_lwp (struct lwp_info *lwp)
1286 {
1287 struct thread_info *thr = get_lwp_thread (lwp);
1288 int pid = ptid_of (thr).pid ();
1289 int lwpid = ptid_of (thr).lwp ();
1290 int wstat;
1291 int res;
1292
1293 if (debug_threads)
1294 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1295
1296 do
1297 {
1298 linux_kill_one_lwp (lwp);
1299
1300 /* Make sure it died. Notes:
1301
1302 - The loop is most likely unnecessary.
1303
1304 - We don't use wait_for_event as that could delete lwps
1305 while we're iterating over them. We're not interested in
1306 any pending status at this point, only in making sure all
1307 wait status on the kernel side are collected until the
1308 process is reaped.
1309
1310 - We don't use __WALL here as the __WALL emulation relies on
1311 SIGCHLD, and killing a stopped process doesn't generate
1312 one, nor an exit status.
1313 */
1314 res = my_waitpid (lwpid, &wstat, 0);
1315 if (res == -1 && errno == ECHILD)
1316 res = my_waitpid (lwpid, &wstat, __WCLONE);
1317 } while (res > 0 && WIFSTOPPED (wstat));
1318
1319 /* Even if it was stopped, the child may have already disappeared.
1320 E.g., if it was killed by SIGKILL. */
1321 if (res < 0 && errno != ECHILD)
1322 perror_with_name ("kill_wait_lwp");
1323 }
1324
1325 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1326 except the leader. */
1327
1328 static void
1329 kill_one_lwp_callback (thread_info *thread, int pid)
1330 {
1331 struct lwp_info *lwp = get_thread_lwp (thread);
1332
1333 /* We avoid killing the first thread here, because of a Linux kernel (at
1334 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1335 the children get a chance to be reaped, it will remain a zombie
1336 forever. */
1337
1338 if (lwpid_of (thread) == pid)
1339 {
1340 if (debug_threads)
1341 debug_printf ("lkop: is last of process %s\n",
1342 target_pid_to_str (thread->id));
1343 return;
1344 }
1345
1346 kill_wait_lwp (lwp);
1347 }
1348
1349 int
1350 linux_process_target::kill (process_info *process)
1351 {
1352 int pid = process->pid;
1353
1354 /* If we're killing a running inferior, make sure it is stopped
1355 first, as PTRACE_KILL will not work otherwise. */
1356 stop_all_lwps (0, NULL);
1357
1358 for_each_thread (pid, [&] (thread_info *thread)
1359 {
1360 kill_one_lwp_callback (thread, pid);
1361 });
1362
1363 /* See the comment in linux_kill_one_lwp. We did not kill the first
1364 thread in the list, so do so now. */
1365 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1366
1367 if (lwp == NULL)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1371 pid);
1372 }
1373 else
1374 kill_wait_lwp (lwp);
1375
1376 mourn (process);
1377
1378 /* Since we presently can only stop all lwps of all processes, we
1379 need to unstop lwps of other processes. */
1380 unstop_all_lwps (0, NULL);
1381 return 0;
1382 }
1383
1384 /* Get pending signal of THREAD, for detaching purposes. This is the
1385 signal the thread last stopped for, which we need to deliver to the
1386 thread when detaching, otherwise, it'd be suppressed/lost. */
1387
1388 static int
1389 get_detach_signal (struct thread_info *thread)
1390 {
1391 client_state &cs = get_client_state ();
1392 enum gdb_signal signo = GDB_SIGNAL_0;
1393 int status;
1394 struct lwp_info *lp = get_thread_lwp (thread);
1395
1396 if (lp->status_pending_p)
1397 status = lp->status_pending;
1398 else
1399 {
1400 /* If the thread had been suspended by gdbserver, and it stopped
1401 cleanly, then it'll have stopped with SIGSTOP. But we don't
1402 want to deliver that SIGSTOP. */
1403 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1404 || thread->last_status.value.sig == GDB_SIGNAL_0)
1405 return 0;
1406
1407 /* Otherwise, we may need to deliver the signal we
1408 intercepted. */
1409 status = lp->last_status;
1410 }
1411
1412 if (!WIFSTOPPED (status))
1413 {
1414 if (debug_threads)
1415 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1416 target_pid_to_str (ptid_of (thread)));
1417 return 0;
1418 }
1419
1420 /* Extended wait statuses aren't real SIGTRAPs. */
1421 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1422 {
1423 if (debug_threads)
1424 debug_printf ("GPS: lwp %s had stopped with extended "
1425 "status: no pending signal\n",
1426 target_pid_to_str (ptid_of (thread)));
1427 return 0;
1428 }
1429
1430 signo = gdb_signal_from_host (WSTOPSIG (status));
1431
1432 if (cs.program_signals_p && !cs.program_signals[signo])
1433 {
1434 if (debug_threads)
1435 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1436 target_pid_to_str (ptid_of (thread)),
1437 gdb_signal_to_string (signo));
1438 return 0;
1439 }
1440 else if (!cs.program_signals_p
1441 /* If we have no way to know which signals GDB does not
1442 want to have passed to the program, assume
1443 SIGTRAP/SIGINT, which is GDB's default. */
1444 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1445 {
1446 if (debug_threads)
1447 debug_printf ("GPS: lwp %s had signal %s, "
1448 "but we don't know if we should pass it. "
1449 "Default to not.\n",
1450 target_pid_to_str (ptid_of (thread)),
1451 gdb_signal_to_string (signo));
1452 return 0;
1453 }
1454 else
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1458 target_pid_to_str (ptid_of (thread)),
1459 gdb_signal_to_string (signo));
1460
1461 return WSTOPSIG (status);
1462 }
1463 }
1464
1465 void
1466 linux_process_target::detach_one_lwp (lwp_info *lwp)
1467 {
1468 struct thread_info *thread = get_lwp_thread (lwp);
1469 int sig;
1470 int lwpid;
1471
1472 /* If there is a pending SIGSTOP, get rid of it. */
1473 if (lwp->stop_expected)
1474 {
1475 if (debug_threads)
1476 debug_printf ("Sending SIGCONT to %s\n",
1477 target_pid_to_str (ptid_of (thread)));
1478
1479 kill_lwp (lwpid_of (thread), SIGCONT);
1480 lwp->stop_expected = 0;
1481 }
1482
1483 /* Pass on any pending signal for this thread. */
1484 sig = get_detach_signal (thread);
1485
1486 /* Preparing to resume may try to write registers, and fail if the
1487 lwp is zombie. If that happens, ignore the error. We'll handle
1488 it below, when detach fails with ESRCH. */
1489 try
1490 {
1491 /* Flush any pending changes to the process's registers. */
1492 regcache_invalidate_thread (thread);
1493
1494 /* Finally, let it resume. */
1495 low_prepare_to_resume (lwp);
1496 }
1497 catch (const gdb_exception_error &ex)
1498 {
1499 if (!check_ptrace_stopped_lwp_gone (lwp))
1500 throw;
1501 }
1502
1503 lwpid = lwpid_of (thread);
1504 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1505 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1506 {
1507 int save_errno = errno;
1508
1509 /* We know the thread exists, so ESRCH must mean the lwp is
1510 zombie. This can happen if one of the already-detached
1511 threads exits the whole thread group. In that case we're
1512 still attached, and must reap the lwp. */
1513 if (save_errno == ESRCH)
1514 {
1515 int ret, status;
1516
1517 ret = my_waitpid (lwpid, &status, __WALL);
1518 if (ret == -1)
1519 {
1520 warning (_("Couldn't reap LWP %d while detaching: %s"),
1521 lwpid, safe_strerror (errno));
1522 }
1523 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1524 {
1525 warning (_("Reaping LWP %d while detaching "
1526 "returned unexpected status 0x%x"),
1527 lwpid, status);
1528 }
1529 }
1530 else
1531 {
1532 error (_("Can't detach %s: %s"),
1533 target_pid_to_str (ptid_of (thread)),
1534 safe_strerror (save_errno));
1535 }
1536 }
1537 else if (debug_threads)
1538 {
1539 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1540 target_pid_to_str (ptid_of (thread)),
1541 strsignal (sig));
1542 }
1543
1544 delete_lwp (lwp);
1545 }
1546
1547 int
1548 linux_process_target::detach (process_info *process)
1549 {
1550 struct lwp_info *main_lwp;
1551
1552 /* As there's a step over already in progress, let it finish first,
1553 otherwise nesting a stabilize_threads operation on top gets real
1554 messy. */
1555 complete_ongoing_step_over ();
1556
1557 /* Stop all threads before detaching. First, ptrace requires that
1558 the thread is stopped to successfully detach. Second, thread_db
1559 may need to uninstall thread event breakpoints from memory, which
1560 only works with a stopped process anyway. */
1561 stop_all_lwps (0, NULL);
1562
1563 #ifdef USE_THREAD_DB
1564 thread_db_detach (process);
1565 #endif
1566
1567 /* Stabilize threads (move out of jump pads). */
1568 target_stabilize_threads ();
1569
1570 /* Detach from the clone lwps first. If the thread group exits just
1571 while we're detaching, we must reap the clone lwps before we're
1572 able to reap the leader. */
1573 for_each_thread (process->pid, [this] (thread_info *thread)
1574 {
1575 /* We don't actually detach from the thread group leader just yet.
1576 If the thread group exits, we must reap the zombie clone lwps
1577 before we're able to reap the leader. */
1578 if (thread->id.pid () == thread->id.lwp ())
1579 return;
1580
1581 lwp_info *lwp = get_thread_lwp (thread);
1582 detach_one_lwp (lwp);
1583 });
1584
1585 main_lwp = find_lwp_pid (ptid_t (process->pid));
1586 detach_one_lwp (main_lwp);
1587
1588 mourn (process);
1589
1590 /* Since we presently can only stop all lwps of all processes, we
1591 need to unstop lwps of other processes. */
1592 unstop_all_lwps (0, NULL);
1593 return 0;
1594 }
1595
1596 /* Remove all LWPs that belong to process PROC from the lwp list. */
1597
1598 void
1599 linux_process_target::mourn (process_info *process)
1600 {
1601 struct process_info_private *priv;
1602
1603 #ifdef USE_THREAD_DB
1604 thread_db_mourn (process);
1605 #endif
1606
1607 for_each_thread (process->pid, [this] (thread_info *thread)
1608 {
1609 delete_lwp (get_thread_lwp (thread));
1610 });
1611
1612 /* Freeing all private data. */
1613 priv = process->priv;
1614 low_delete_process (priv->arch_private);
1615 free (priv);
1616 process->priv = NULL;
1617
1618 remove_process (process);
1619 }
1620
1621 void
1622 linux_process_target::join (int pid)
1623 {
1624 int status, ret;
1625
1626 do {
1627 ret = my_waitpid (pid, &status, 0);
1628 if (WIFEXITED (status) || WIFSIGNALED (status))
1629 break;
1630 } while (ret != -1 || errno != ECHILD);
1631 }
1632
1633 /* Return true if the given thread is still alive. */
1634
1635 bool
1636 linux_process_target::thread_alive (ptid_t ptid)
1637 {
1638 struct lwp_info *lwp = find_lwp_pid (ptid);
1639
1640 /* We assume we always know if a thread exits. If a whole process
1641 exited but we still haven't been able to report it to GDB, we'll
1642 hold on to the last lwp of the dead process. */
1643 if (lwp != NULL)
1644 return !lwp_is_marked_dead (lwp);
1645 else
1646 return 0;
1647 }
1648
1649 bool
1650 linux_process_target::thread_still_has_status_pending (thread_info *thread)
1651 {
1652 struct lwp_info *lp = get_thread_lwp (thread);
1653
1654 if (!lp->status_pending_p)
1655 return 0;
1656
1657 if (thread->last_resume_kind != resume_stop
1658 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1659 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1660 {
1661 struct thread_info *saved_thread;
1662 CORE_ADDR pc;
1663 int discard = 0;
1664
1665 gdb_assert (lp->last_status != 0);
1666
1667 pc = get_pc (lp);
1668
1669 saved_thread = current_thread;
1670 current_thread = thread;
1671
1672 if (pc != lp->stop_pc)
1673 {
1674 if (debug_threads)
1675 debug_printf ("PC of %ld changed\n",
1676 lwpid_of (thread));
1677 discard = 1;
1678 }
1679
1680 #if !USE_SIGTRAP_SIGINFO
1681 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1682 && !low_breakpoint_at (pc))
1683 {
1684 if (debug_threads)
1685 debug_printf ("previous SW breakpoint of %ld gone\n",
1686 lwpid_of (thread));
1687 discard = 1;
1688 }
1689 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1690 && !hardware_breakpoint_inserted_here (pc))
1691 {
1692 if (debug_threads)
1693 debug_printf ("previous HW breakpoint of %ld gone\n",
1694 lwpid_of (thread));
1695 discard = 1;
1696 }
1697 #endif
1698
1699 current_thread = saved_thread;
1700
1701 if (discard)
1702 {
1703 if (debug_threads)
1704 debug_printf ("discarding pending breakpoint status\n");
1705 lp->status_pending_p = 0;
1706 return 0;
1707 }
1708 }
1709
1710 return 1;
1711 }
1712
1713 /* Returns true if LWP is resumed from the client's perspective. */
1714
1715 static int
1716 lwp_resumed (struct lwp_info *lwp)
1717 {
1718 struct thread_info *thread = get_lwp_thread (lwp);
1719
1720 if (thread->last_resume_kind != resume_stop)
1721 return 1;
1722
1723 /* Did gdb send us a `vCont;t', but we haven't reported the
1724 corresponding stop to gdb yet? If so, the thread is still
1725 resumed/running from gdb's perspective. */
1726 if (thread->last_resume_kind == resume_stop
1727 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1728 return 1;
1729
1730 return 0;
1731 }
1732
1733 bool
1734 linux_process_target::status_pending_p_callback (thread_info *thread,
1735 ptid_t ptid)
1736 {
1737 struct lwp_info *lp = get_thread_lwp (thread);
1738
1739 /* Check if we're only interested in events from a specific process
1740 or a specific LWP. */
1741 if (!thread->id.matches (ptid))
1742 return 0;
1743
1744 if (!lwp_resumed (lp))
1745 return 0;
1746
1747 if (lp->status_pending_p
1748 && !thread_still_has_status_pending (thread))
1749 {
1750 resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1751 return 0;
1752 }
1753
1754 return lp->status_pending_p;
1755 }
1756
1757 struct lwp_info *
1758 find_lwp_pid (ptid_t ptid)
1759 {
1760 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1761 {
1762 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1763 return thr_arg->id.lwp () == lwp;
1764 });
1765
1766 if (thread == NULL)
1767 return NULL;
1768
1769 return get_thread_lwp (thread);
1770 }
1771
1772 /* Return the number of known LWPs in the tgid given by PID. */
1773
1774 static int
1775 num_lwps (int pid)
1776 {
1777 int count = 0;
1778
1779 for_each_thread (pid, [&] (thread_info *thread)
1780 {
1781 count++;
1782 });
1783
1784 return count;
1785 }
1786
1787 /* See nat/linux-nat.h. */
1788
1789 struct lwp_info *
1790 iterate_over_lwps (ptid_t filter,
1791 gdb::function_view<iterate_over_lwps_ftype> callback)
1792 {
1793 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1794 {
1795 lwp_info *lwp = get_thread_lwp (thr_arg);
1796
1797 return callback (lwp);
1798 });
1799
1800 if (thread == NULL)
1801 return NULL;
1802
1803 return get_thread_lwp (thread);
1804 }
1805
1806 void
1807 linux_process_target::check_zombie_leaders ()
1808 {
1809 for_each_process ([this] (process_info *proc) {
1810 pid_t leader_pid = pid_of (proc);
1811 struct lwp_info *leader_lp;
1812
1813 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1814
1815 if (debug_threads)
1816 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1817 "num_lwps=%d, zombie=%d\n",
1818 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1819 linux_proc_pid_is_zombie (leader_pid));
1820
1821 if (leader_lp != NULL && !leader_lp->stopped
1822 /* Check if there are other threads in the group, as we may
1823 have raced with the inferior simply exiting. */
1824 && !last_thread_of_process_p (leader_pid)
1825 && linux_proc_pid_is_zombie (leader_pid))
1826 {
1827 /* A leader zombie can mean one of two things:
1828
1829 - It exited, and there's an exit status pending
1830 available, or only the leader exited (not the whole
1831 program). In the latter case, we can't waitpid the
1832 leader's exit status until all other threads are gone.
1833
1834 - There are 3 or more threads in the group, and a thread
1835 other than the leader exec'd. On an exec, the Linux
1836 kernel destroys all other threads (except the execing
1837 one) in the thread group, and resets the execing thread's
1838 tid to the tgid. No exit notification is sent for the
1839 execing thread -- from the ptracer's perspective, it
1840 appears as though the execing thread just vanishes.
1841 Until we reap all other threads except the leader and the
1842 execing thread, the leader will be zombie, and the
1843 execing thread will be in `D (disc sleep)'. As soon as
1844 all other threads are reaped, the execing thread changes
1845 it's tid to the tgid, and the previous (zombie) leader
1846 vanishes, giving place to the "new" leader. We could try
1847 distinguishing the exit and exec cases, by waiting once
1848 more, and seeing if something comes out, but it doesn't
1849 sound useful. The previous leader _does_ go away, and
1850 we'll re-add the new one once we see the exec event
1851 (which is just the same as what would happen if the
1852 previous leader did exit voluntarily before some other
1853 thread execs). */
1854
1855 if (debug_threads)
1856 debug_printf ("CZL: Thread group leader %d zombie "
1857 "(it exited, or another thread execd).\n",
1858 leader_pid);
1859
1860 delete_lwp (leader_lp);
1861 }
1862 });
1863 }
1864
1865 /* Callback for `find_thread'. Returns the first LWP that is not
1866 stopped. */
1867
1868 static bool
1869 not_stopped_callback (thread_info *thread, ptid_t filter)
1870 {
1871 if (!thread->id.matches (filter))
1872 return false;
1873
1874 lwp_info *lwp = get_thread_lwp (thread);
1875
1876 return !lwp->stopped;
1877 }
1878
1879 /* Increment LWP's suspend count. */
1880
1881 static void
1882 lwp_suspended_inc (struct lwp_info *lwp)
1883 {
1884 lwp->suspended++;
1885
1886 if (debug_threads && lwp->suspended > 4)
1887 {
1888 struct thread_info *thread = get_lwp_thread (lwp);
1889
1890 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1891 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1892 }
1893 }
1894
1895 /* Decrement LWP's suspend count. */
1896
1897 static void
1898 lwp_suspended_decr (struct lwp_info *lwp)
1899 {
1900 lwp->suspended--;
1901
1902 if (lwp->suspended < 0)
1903 {
1904 struct thread_info *thread = get_lwp_thread (lwp);
1905
1906 internal_error (__FILE__, __LINE__,
1907 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1908 lwp->suspended);
1909 }
1910 }
1911
1912 /* This function should only be called if the LWP got a SIGTRAP.
1913
1914 Handle any tracepoint steps or hits. Return true if a tracepoint
1915 event was handled, 0 otherwise. */
1916
1917 static int
1918 handle_tracepoints (struct lwp_info *lwp)
1919 {
1920 struct thread_info *tinfo = get_lwp_thread (lwp);
1921 int tpoint_related_event = 0;
1922
1923 gdb_assert (lwp->suspended == 0);
1924
1925 /* If this tracepoint hit causes a tracing stop, we'll immediately
1926 uninsert tracepoints. To do this, we temporarily pause all
1927 threads, unpatch away, and then unpause threads. We need to make
1928 sure the unpausing doesn't resume LWP too. */
1929 lwp_suspended_inc (lwp);
1930
1931 /* And we need to be sure that any all-threads-stopping doesn't try
1932 to move threads out of the jump pads, as it could deadlock the
1933 inferior (LWP could be in the jump pad, maybe even holding the
1934 lock.) */
1935
1936 /* Do any necessary step collect actions. */
1937 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1938
1939 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1940
1941 /* See if we just hit a tracepoint and do its main collect
1942 actions. */
1943 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1944
1945 lwp_suspended_decr (lwp);
1946
1947 gdb_assert (lwp->suspended == 0);
1948 gdb_assert (!stabilizing_threads
1949 || (lwp->collecting_fast_tracepoint
1950 != fast_tpoint_collect_result::not_collecting));
1951
1952 if (tpoint_related_event)
1953 {
1954 if (debug_threads)
1955 debug_printf ("got a tracepoint event\n");
1956 return 1;
1957 }
1958
1959 return 0;
1960 }
1961
1962 fast_tpoint_collect_result
1963 linux_process_target::linux_fast_tracepoint_collecting
1964 (lwp_info *lwp, fast_tpoint_collect_status *status)
1965 {
1966 CORE_ADDR thread_area;
1967 struct thread_info *thread = get_lwp_thread (lwp);
1968
1969 /* Get the thread area address. This is used to recognize which
1970 thread is which when tracing with the in-process agent library.
1971 We don't read anything from the address, and treat it as opaque;
1972 it's the address itself that we assume is unique per-thread. */
1973 if (low_get_thread_area (lwpid_of (thread), &thread_area) == -1)
1974 return fast_tpoint_collect_result::not_collecting;
1975
1976 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1977 }
1978
1979 int
1980 linux_process_target::low_get_thread_area (int lwpid, CORE_ADDR *addrp)
1981 {
1982 return -1;
1983 }
1984
1985 bool
1986 linux_process_target::maybe_move_out_of_jump_pad (lwp_info *lwp, int *wstat)
1987 {
1988 struct thread_info *saved_thread;
1989
1990 saved_thread = current_thread;
1991 current_thread = get_lwp_thread (lwp);
1992
1993 if ((wstat == NULL
1994 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1995 && supports_fast_tracepoints ()
1996 && agent_loaded_p ())
1997 {
1998 struct fast_tpoint_collect_status status;
1999
2000 if (debug_threads)
2001 debug_printf ("Checking whether LWP %ld needs to move out of the "
2002 "jump pad.\n",
2003 lwpid_of (current_thread));
2004
2005 fast_tpoint_collect_result r
2006 = linux_fast_tracepoint_collecting (lwp, &status);
2007
2008 if (wstat == NULL
2009 || (WSTOPSIG (*wstat) != SIGILL
2010 && WSTOPSIG (*wstat) != SIGFPE
2011 && WSTOPSIG (*wstat) != SIGSEGV
2012 && WSTOPSIG (*wstat) != SIGBUS))
2013 {
2014 lwp->collecting_fast_tracepoint = r;
2015
2016 if (r != fast_tpoint_collect_result::not_collecting)
2017 {
2018 if (r == fast_tpoint_collect_result::before_insn
2019 && lwp->exit_jump_pad_bkpt == NULL)
2020 {
2021 /* Haven't executed the original instruction yet.
2022 Set breakpoint there, and wait till it's hit,
2023 then single-step until exiting the jump pad. */
2024 lwp->exit_jump_pad_bkpt
2025 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2026 }
2027
2028 if (debug_threads)
2029 debug_printf ("Checking whether LWP %ld needs to move out of "
2030 "the jump pad...it does\n",
2031 lwpid_of (current_thread));
2032 current_thread = saved_thread;
2033
2034 return true;
2035 }
2036 }
2037 else
2038 {
2039 /* If we get a synchronous signal while collecting, *and*
2040 while executing the (relocated) original instruction,
2041 reset the PC to point at the tpoint address, before
2042 reporting to GDB. Otherwise, it's an IPA lib bug: just
2043 report the signal to GDB, and pray for the best. */
2044
2045 lwp->collecting_fast_tracepoint
2046 = fast_tpoint_collect_result::not_collecting;
2047
2048 if (r != fast_tpoint_collect_result::not_collecting
2049 && (status.adjusted_insn_addr <= lwp->stop_pc
2050 && lwp->stop_pc < status.adjusted_insn_addr_end))
2051 {
2052 siginfo_t info;
2053 struct regcache *regcache;
2054
2055 /* The si_addr on a few signals references the address
2056 of the faulting instruction. Adjust that as
2057 well. */
2058 if ((WSTOPSIG (*wstat) == SIGILL
2059 || WSTOPSIG (*wstat) == SIGFPE
2060 || WSTOPSIG (*wstat) == SIGBUS
2061 || WSTOPSIG (*wstat) == SIGSEGV)
2062 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2063 (PTRACE_TYPE_ARG3) 0, &info) == 0
2064 /* Final check just to make sure we don't clobber
2065 the siginfo of non-kernel-sent signals. */
2066 && (uintptr_t) info.si_addr == lwp->stop_pc)
2067 {
2068 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2069 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2070 (PTRACE_TYPE_ARG3) 0, &info);
2071 }
2072
2073 regcache = get_thread_regcache (current_thread, 1);
2074 low_set_pc (regcache, status.tpoint_addr);
2075 lwp->stop_pc = status.tpoint_addr;
2076
2077 /* Cancel any fast tracepoint lock this thread was
2078 holding. */
2079 force_unlock_trace_buffer ();
2080 }
2081
2082 if (lwp->exit_jump_pad_bkpt != NULL)
2083 {
2084 if (debug_threads)
2085 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2086 "stopping all threads momentarily.\n");
2087
2088 stop_all_lwps (1, lwp);
2089
2090 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2091 lwp->exit_jump_pad_bkpt = NULL;
2092
2093 unstop_all_lwps (1, lwp);
2094
2095 gdb_assert (lwp->suspended >= 0);
2096 }
2097 }
2098 }
2099
2100 if (debug_threads)
2101 debug_printf ("Checking whether LWP %ld needs to move out of the "
2102 "jump pad...no\n",
2103 lwpid_of (current_thread));
2104
2105 current_thread = saved_thread;
2106 return false;
2107 }
2108
2109 /* Enqueue one signal in the "signals to report later when out of the
2110 jump pad" list. */
2111
2112 static void
2113 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2114 {
2115 struct thread_info *thread = get_lwp_thread (lwp);
2116
2117 if (debug_threads)
2118 debug_printf ("Deferring signal %d for LWP %ld.\n",
2119 WSTOPSIG (*wstat), lwpid_of (thread));
2120
2121 if (debug_threads)
2122 {
2123 for (const auto &sig : lwp->pending_signals_to_report)
2124 debug_printf (" Already queued %d\n",
2125 sig.signal);
2126
2127 debug_printf (" (no more currently queued signals)\n");
2128 }
2129
2130 /* Don't enqueue non-RT signals if they are already in the deferred
2131 queue. (SIGSTOP being the easiest signal to see ending up here
2132 twice) */
2133 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2134 {
2135 for (const auto &sig : lwp->pending_signals_to_report)
2136 {
2137 if (sig.signal == WSTOPSIG (*wstat))
2138 {
2139 if (debug_threads)
2140 debug_printf ("Not requeuing already queued non-RT signal %d"
2141 " for LWP %ld\n",
2142 sig.signal,
2143 lwpid_of (thread));
2144 return;
2145 }
2146 }
2147 }
2148
2149 lwp->pending_signals_to_report.emplace_back (WSTOPSIG (*wstat));
2150
2151 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2152 &lwp->pending_signals_to_report.back ().info);
2153 }
2154
2155 /* Dequeue one signal from the "signals to report later when out of
2156 the jump pad" list. */
2157
2158 static int
2159 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2160 {
2161 struct thread_info *thread = get_lwp_thread (lwp);
2162
2163 if (!lwp->pending_signals_to_report.empty ())
2164 {
2165 const pending_signal &p_sig = lwp->pending_signals_to_report.front ();
2166
2167 *wstat = W_STOPCODE (p_sig.signal);
2168 if (p_sig.info.si_signo != 0)
2169 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2170 &p_sig.info);
2171
2172 lwp->pending_signals_to_report.pop_front ();
2173
2174 if (debug_threads)
2175 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2176 WSTOPSIG (*wstat), lwpid_of (thread));
2177
2178 if (debug_threads)
2179 {
2180 for (const auto &sig : lwp->pending_signals_to_report)
2181 debug_printf (" Still queued %d\n",
2182 sig.signal);
2183
2184 debug_printf (" (no more queued signals)\n");
2185 }
2186
2187 return 1;
2188 }
2189
2190 return 0;
2191 }
2192
2193 bool
2194 linux_process_target::check_stopped_by_watchpoint (lwp_info *child)
2195 {
2196 struct thread_info *saved_thread = current_thread;
2197 current_thread = get_lwp_thread (child);
2198
2199 if (low_stopped_by_watchpoint ())
2200 {
2201 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2202 child->stopped_data_address = low_stopped_data_address ();
2203 }
2204
2205 current_thread = saved_thread;
2206
2207 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2208 }
2209
2210 bool
2211 linux_process_target::low_stopped_by_watchpoint ()
2212 {
2213 return false;
2214 }
2215
2216 CORE_ADDR
2217 linux_process_target::low_stopped_data_address ()
2218 {
2219 return 0;
2220 }
2221
2222 /* Return the ptrace options that we want to try to enable. */
2223
2224 static int
2225 linux_low_ptrace_options (int attached)
2226 {
2227 client_state &cs = get_client_state ();
2228 int options = 0;
2229
2230 if (!attached)
2231 options |= PTRACE_O_EXITKILL;
2232
2233 if (cs.report_fork_events)
2234 options |= PTRACE_O_TRACEFORK;
2235
2236 if (cs.report_vfork_events)
2237 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2238
2239 if (cs.report_exec_events)
2240 options |= PTRACE_O_TRACEEXEC;
2241
2242 options |= PTRACE_O_TRACESYSGOOD;
2243
2244 return options;
2245 }
2246
2247 lwp_info *
2248 linux_process_target::filter_event (int lwpid, int wstat)
2249 {
2250 client_state &cs = get_client_state ();
2251 struct lwp_info *child;
2252 struct thread_info *thread;
2253 int have_stop_pc = 0;
2254
2255 child = find_lwp_pid (ptid_t (lwpid));
2256
2257 /* Check for stop events reported by a process we didn't already
2258 know about - anything not already in our LWP list.
2259
2260 If we're expecting to receive stopped processes after
2261 fork, vfork, and clone events, then we'll just add the
2262 new one to our list and go back to waiting for the event
2263 to be reported - the stopped process might be returned
2264 from waitpid before or after the event is.
2265
2266 But note the case of a non-leader thread exec'ing after the
2267 leader having exited, and gone from our lists (because
2268 check_zombie_leaders deleted it). The non-leader thread
2269 changes its tid to the tgid. */
2270
2271 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2272 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2273 {
2274 ptid_t child_ptid;
2275
2276 /* A multi-thread exec after we had seen the leader exiting. */
2277 if (debug_threads)
2278 {
2279 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2280 "after exec.\n", lwpid);
2281 }
2282
2283 child_ptid = ptid_t (lwpid, lwpid, 0);
2284 child = add_lwp (child_ptid);
2285 child->stopped = 1;
2286 current_thread = child->thread;
2287 }
2288
2289 /* If we didn't find a process, one of two things presumably happened:
2290 - A process we started and then detached from has exited. Ignore it.
2291 - A process we are controlling has forked and the new child's stop
2292 was reported to us by the kernel. Save its PID. */
2293 if (child == NULL && WIFSTOPPED (wstat))
2294 {
2295 add_to_pid_list (&stopped_pids, lwpid, wstat);
2296 return NULL;
2297 }
2298 else if (child == NULL)
2299 return NULL;
2300
2301 thread = get_lwp_thread (child);
2302
2303 child->stopped = 1;
2304
2305 child->last_status = wstat;
2306
2307 /* Check if the thread has exited. */
2308 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2309 {
2310 if (debug_threads)
2311 debug_printf ("LLFE: %d exited.\n", lwpid);
2312
2313 if (finish_step_over (child))
2314 {
2315 /* Unsuspend all other LWPs, and set them back running again. */
2316 unsuspend_all_lwps (child);
2317 }
2318
2319 /* If there is at least one more LWP, then the exit signal was
2320 not the end of the debugged application and should be
2321 ignored, unless GDB wants to hear about thread exits. */
2322 if (cs.report_thread_events
2323 || last_thread_of_process_p (pid_of (thread)))
2324 {
2325 /* Since events are serialized to GDB core, and we can't
2326 report this one right now. Leave the status pending for
2327 the next time we're able to report it. */
2328 mark_lwp_dead (child, wstat);
2329 return child;
2330 }
2331 else
2332 {
2333 delete_lwp (child);
2334 return NULL;
2335 }
2336 }
2337
2338 gdb_assert (WIFSTOPPED (wstat));
2339
2340 if (WIFSTOPPED (wstat))
2341 {
2342 struct process_info *proc;
2343
2344 /* Architecture-specific setup after inferior is running. */
2345 proc = find_process_pid (pid_of (thread));
2346 if (proc->tdesc == NULL)
2347 {
2348 if (proc->attached)
2349 {
2350 /* This needs to happen after we have attached to the
2351 inferior and it is stopped for the first time, but
2352 before we access any inferior registers. */
2353 arch_setup_thread (thread);
2354 }
2355 else
2356 {
2357 /* The process is started, but GDBserver will do
2358 architecture-specific setup after the program stops at
2359 the first instruction. */
2360 child->status_pending_p = 1;
2361 child->status_pending = wstat;
2362 return child;
2363 }
2364 }
2365 }
2366
2367 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2368 {
2369 struct process_info *proc = find_process_pid (pid_of (thread));
2370 int options = linux_low_ptrace_options (proc->attached);
2371
2372 linux_enable_event_reporting (lwpid, options);
2373 child->must_set_ptrace_flags = 0;
2374 }
2375
2376 /* Always update syscall_state, even if it will be filtered later. */
2377 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2378 {
2379 child->syscall_state
2380 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2381 ? TARGET_WAITKIND_SYSCALL_RETURN
2382 : TARGET_WAITKIND_SYSCALL_ENTRY);
2383 }
2384 else
2385 {
2386 /* Almost all other ptrace-stops are known to be outside of system
2387 calls, with further exceptions in handle_extended_wait. */
2388 child->syscall_state = TARGET_WAITKIND_IGNORE;
2389 }
2390
2391 /* Be careful to not overwrite stop_pc until save_stop_reason is
2392 called. */
2393 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2394 && linux_is_extended_waitstatus (wstat))
2395 {
2396 child->stop_pc = get_pc (child);
2397 if (handle_extended_wait (&child, wstat))
2398 {
2399 /* The event has been handled, so just return without
2400 reporting it. */
2401 return NULL;
2402 }
2403 }
2404
2405 if (linux_wstatus_maybe_breakpoint (wstat))
2406 {
2407 if (save_stop_reason (child))
2408 have_stop_pc = 1;
2409 }
2410
2411 if (!have_stop_pc)
2412 child->stop_pc = get_pc (child);
2413
2414 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2415 && child->stop_expected)
2416 {
2417 if (debug_threads)
2418 debug_printf ("Expected stop.\n");
2419 child->stop_expected = 0;
2420
2421 if (thread->last_resume_kind == resume_stop)
2422 {
2423 /* We want to report the stop to the core. Treat the
2424 SIGSTOP as a normal event. */
2425 if (debug_threads)
2426 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2427 target_pid_to_str (ptid_of (thread)));
2428 }
2429 else if (stopping_threads != NOT_STOPPING_THREADS)
2430 {
2431 /* Stopping threads. We don't want this SIGSTOP to end up
2432 pending. */
2433 if (debug_threads)
2434 debug_printf ("LLW: SIGSTOP caught for %s "
2435 "while stopping threads.\n",
2436 target_pid_to_str (ptid_of (thread)));
2437 return NULL;
2438 }
2439 else
2440 {
2441 /* This is a delayed SIGSTOP. Filter out the event. */
2442 if (debug_threads)
2443 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2444 child->stepping ? "step" : "continue",
2445 target_pid_to_str (ptid_of (thread)));
2446
2447 resume_one_lwp (child, child->stepping, 0, NULL);
2448 return NULL;
2449 }
2450 }
2451
2452 child->status_pending_p = 1;
2453 child->status_pending = wstat;
2454 return child;
2455 }
2456
2457 bool
2458 linux_process_target::maybe_hw_step (thread_info *thread)
2459 {
2460 if (supports_hardware_single_step ())
2461 return true;
2462 else
2463 {
2464 /* GDBserver must insert single-step breakpoint for software
2465 single step. */
2466 gdb_assert (has_single_step_breakpoints (thread));
2467 return false;
2468 }
2469 }
2470
2471 void
2472 linux_process_target::resume_stopped_resumed_lwps (thread_info *thread)
2473 {
2474 struct lwp_info *lp = get_thread_lwp (thread);
2475
2476 if (lp->stopped
2477 && !lp->suspended
2478 && !lp->status_pending_p
2479 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2480 {
2481 int step = 0;
2482
2483 if (thread->last_resume_kind == resume_step)
2484 step = maybe_hw_step (thread);
2485
2486 if (debug_threads)
2487 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2488 target_pid_to_str (ptid_of (thread)),
2489 paddress (lp->stop_pc),
2490 step);
2491
2492 resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2493 }
2494 }
2495
2496 int
2497 linux_process_target::wait_for_event_filtered (ptid_t wait_ptid,
2498 ptid_t filter_ptid,
2499 int *wstatp, int options)
2500 {
2501 struct thread_info *event_thread;
2502 struct lwp_info *event_child, *requested_child;
2503 sigset_t block_mask, prev_mask;
2504
2505 retry:
2506 /* N.B. event_thread points to the thread_info struct that contains
2507 event_child. Keep them in sync. */
2508 event_thread = NULL;
2509 event_child = NULL;
2510 requested_child = NULL;
2511
2512 /* Check for a lwp with a pending status. */
2513
2514 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2515 {
2516 event_thread = find_thread_in_random ([&] (thread_info *thread)
2517 {
2518 return status_pending_p_callback (thread, filter_ptid);
2519 });
2520
2521 if (event_thread != NULL)
2522 event_child = get_thread_lwp (event_thread);
2523 if (debug_threads && event_thread)
2524 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2525 }
2526 else if (filter_ptid != null_ptid)
2527 {
2528 requested_child = find_lwp_pid (filter_ptid);
2529
2530 if (stopping_threads == NOT_STOPPING_THREADS
2531 && requested_child->status_pending_p
2532 && (requested_child->collecting_fast_tracepoint
2533 != fast_tpoint_collect_result::not_collecting))
2534 {
2535 enqueue_one_deferred_signal (requested_child,
2536 &requested_child->status_pending);
2537 requested_child->status_pending_p = 0;
2538 requested_child->status_pending = 0;
2539 resume_one_lwp (requested_child, 0, 0, NULL);
2540 }
2541
2542 if (requested_child->suspended
2543 && requested_child->status_pending_p)
2544 {
2545 internal_error (__FILE__, __LINE__,
2546 "requesting an event out of a"
2547 " suspended child?");
2548 }
2549
2550 if (requested_child->status_pending_p)
2551 {
2552 event_child = requested_child;
2553 event_thread = get_lwp_thread (event_child);
2554 }
2555 }
2556
2557 if (event_child != NULL)
2558 {
2559 if (debug_threads)
2560 debug_printf ("Got an event from pending child %ld (%04x)\n",
2561 lwpid_of (event_thread), event_child->status_pending);
2562 *wstatp = event_child->status_pending;
2563 event_child->status_pending_p = 0;
2564 event_child->status_pending = 0;
2565 current_thread = event_thread;
2566 return lwpid_of (event_thread);
2567 }
2568
2569 /* But if we don't find a pending event, we'll have to wait.
2570
2571 We only enter this loop if no process has a pending wait status.
2572 Thus any action taken in response to a wait status inside this
2573 loop is responding as soon as we detect the status, not after any
2574 pending events. */
2575
2576 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2577 all signals while here. */
2578 sigfillset (&block_mask);
2579 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2580
2581 /* Always pull all events out of the kernel. We'll randomly select
2582 an event LWP out of all that have events, to prevent
2583 starvation. */
2584 while (event_child == NULL)
2585 {
2586 pid_t ret = 0;
2587
2588 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2589 quirks:
2590
2591 - If the thread group leader exits while other threads in the
2592 thread group still exist, waitpid(TGID, ...) hangs. That
2593 waitpid won't return an exit status until the other threads
2594 in the group are reaped.
2595
2596 - When a non-leader thread execs, that thread just vanishes
2597 without reporting an exit (so we'd hang if we waited for it
2598 explicitly in that case). The exec event is reported to
2599 the TGID pid. */
2600 errno = 0;
2601 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2602
2603 if (debug_threads)
2604 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2605 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2606
2607 if (ret > 0)
2608 {
2609 if (debug_threads)
2610 {
2611 debug_printf ("LLW: waitpid %ld received %s\n",
2612 (long) ret, status_to_str (*wstatp));
2613 }
2614
2615 /* Filter all events. IOW, leave all events pending. We'll
2616 randomly select an event LWP out of all that have events
2617 below. */
2618 filter_event (ret, *wstatp);
2619 /* Retry until nothing comes out of waitpid. A single
2620 SIGCHLD can indicate more than one child stopped. */
2621 continue;
2622 }
2623
2624 /* Now that we've pulled all events out of the kernel, resume
2625 LWPs that don't have an interesting event to report. */
2626 if (stopping_threads == NOT_STOPPING_THREADS)
2627 for_each_thread ([this] (thread_info *thread)
2628 {
2629 resume_stopped_resumed_lwps (thread);
2630 });
2631
2632 /* ... and find an LWP with a status to report to the core, if
2633 any. */
2634 event_thread = find_thread_in_random ([&] (thread_info *thread)
2635 {
2636 return status_pending_p_callback (thread, filter_ptid);
2637 });
2638
2639 if (event_thread != NULL)
2640 {
2641 event_child = get_thread_lwp (event_thread);
2642 *wstatp = event_child->status_pending;
2643 event_child->status_pending_p = 0;
2644 event_child->status_pending = 0;
2645 break;
2646 }
2647
2648 /* Check for zombie thread group leaders. Those can't be reaped
2649 until all other threads in the thread group are. */
2650 check_zombie_leaders ();
2651
2652 auto not_stopped = [&] (thread_info *thread)
2653 {
2654 return not_stopped_callback (thread, wait_ptid);
2655 };
2656
2657 /* If there are no resumed children left in the set of LWPs we
2658 want to wait for, bail. We can't just block in
2659 waitpid/sigsuspend, because lwps might have been left stopped
2660 in trace-stop state, and we'd be stuck forever waiting for
2661 their status to change (which would only happen if we resumed
2662 them). Even if WNOHANG is set, this return code is preferred
2663 over 0 (below), as it is more detailed. */
2664 if (find_thread (not_stopped) == NULL)
2665 {
2666 if (debug_threads)
2667 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2668 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2669 return -1;
2670 }
2671
2672 /* No interesting event to report to the caller. */
2673 if ((options & WNOHANG))
2674 {
2675 if (debug_threads)
2676 debug_printf ("WNOHANG set, no event found\n");
2677
2678 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2679 return 0;
2680 }
2681
2682 /* Block until we get an event reported with SIGCHLD. */
2683 if (debug_threads)
2684 debug_printf ("sigsuspend'ing\n");
2685
2686 sigsuspend (&prev_mask);
2687 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2688 goto retry;
2689 }
2690
2691 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2692
2693 current_thread = event_thread;
2694
2695 return lwpid_of (event_thread);
2696 }
2697
2698 int
2699 linux_process_target::wait_for_event (ptid_t ptid, int *wstatp, int options)
2700 {
2701 return wait_for_event_filtered (ptid, ptid, wstatp, options);
2702 }
2703
2704 /* Select one LWP out of those that have events pending. */
2705
2706 static void
2707 select_event_lwp (struct lwp_info **orig_lp)
2708 {
2709 struct thread_info *event_thread = NULL;
2710
2711 /* In all-stop, give preference to the LWP that is being
2712 single-stepped. There will be at most one, and it's the LWP that
2713 the core is most interested in. If we didn't do this, then we'd
2714 have to handle pending step SIGTRAPs somehow in case the core
2715 later continues the previously-stepped thread, otherwise we'd
2716 report the pending SIGTRAP, and the core, not having stepped the
2717 thread, wouldn't understand what the trap was for, and therefore
2718 would report it to the user as a random signal. */
2719 if (!non_stop)
2720 {
2721 event_thread = find_thread ([] (thread_info *thread)
2722 {
2723 lwp_info *lp = get_thread_lwp (thread);
2724
2725 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2726 && thread->last_resume_kind == resume_step
2727 && lp->status_pending_p);
2728 });
2729
2730 if (event_thread != NULL)
2731 {
2732 if (debug_threads)
2733 debug_printf ("SEL: Select single-step %s\n",
2734 target_pid_to_str (ptid_of (event_thread)));
2735 }
2736 }
2737 if (event_thread == NULL)
2738 {
2739 /* No single-stepping LWP. Select one at random, out of those
2740 which have had events. */
2741
2742 event_thread = find_thread_in_random ([&] (thread_info *thread)
2743 {
2744 lwp_info *lp = get_thread_lwp (thread);
2745
2746 /* Only resumed LWPs that have an event pending. */
2747 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2748 && lp->status_pending_p);
2749 });
2750 }
2751
2752 if (event_thread != NULL)
2753 {
2754 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2755
2756 /* Switch the event LWP. */
2757 *orig_lp = event_lp;
2758 }
2759 }
2760
2761 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2762 NULL. */
2763
2764 static void
2765 unsuspend_all_lwps (struct lwp_info *except)
2766 {
2767 for_each_thread ([&] (thread_info *thread)
2768 {
2769 lwp_info *lwp = get_thread_lwp (thread);
2770
2771 if (lwp != except)
2772 lwp_suspended_decr (lwp);
2773 });
2774 }
2775
2776 static bool lwp_running (thread_info *thread);
2777
2778 /* Stabilize threads (move out of jump pads).
2779
2780 If a thread is midway collecting a fast tracepoint, we need to
2781 finish the collection and move it out of the jump pad before
2782 reporting the signal.
2783
2784 This avoids recursion while collecting (when a signal arrives
2785 midway, and the signal handler itself collects), which would trash
2786 the trace buffer. In case the user set a breakpoint in a signal
2787 handler, this avoids the backtrace showing the jump pad, etc..
2788 Most importantly, there are certain things we can't do safely if
2789 threads are stopped in a jump pad (or in its callee's). For
2790 example:
2791
2792 - starting a new trace run. A thread still collecting the
2793 previous run, could trash the trace buffer when resumed. The trace
2794 buffer control structures would have been reset but the thread had
2795 no way to tell. The thread could even midway memcpy'ing to the
2796 buffer, which would mean that when resumed, it would clobber the
2797 trace buffer that had been set for a new run.
2798
2799 - we can't rewrite/reuse the jump pads for new tracepoints
2800 safely. Say you do tstart while a thread is stopped midway while
2801 collecting. When the thread is later resumed, it finishes the
2802 collection, and returns to the jump pad, to execute the original
2803 instruction that was under the tracepoint jump at the time the
2804 older run had been started. If the jump pad had been rewritten
2805 since for something else in the new run, the thread would now
2806 execute the wrong / random instructions. */
2807
2808 void
2809 linux_process_target::stabilize_threads ()
2810 {
2811 thread_info *thread_stuck = find_thread ([this] (thread_info *thread)
2812 {
2813 return stuck_in_jump_pad (thread);
2814 });
2815
2816 if (thread_stuck != NULL)
2817 {
2818 if (debug_threads)
2819 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2820 lwpid_of (thread_stuck));
2821 return;
2822 }
2823
2824 thread_info *saved_thread = current_thread;
2825
2826 stabilizing_threads = 1;
2827
2828 /* Kick 'em all. */
2829 for_each_thread ([this] (thread_info *thread)
2830 {
2831 move_out_of_jump_pad (thread);
2832 });
2833
2834 /* Loop until all are stopped out of the jump pads. */
2835 while (find_thread (lwp_running) != NULL)
2836 {
2837 struct target_waitstatus ourstatus;
2838 struct lwp_info *lwp;
2839 int wstat;
2840
2841 /* Note that we go through the full wait even loop. While
2842 moving threads out of jump pad, we need to be able to step
2843 over internal breakpoints and such. */
2844 wait_1 (minus_one_ptid, &ourstatus, 0);
2845
2846 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2847 {
2848 lwp = get_thread_lwp (current_thread);
2849
2850 /* Lock it. */
2851 lwp_suspended_inc (lwp);
2852
2853 if (ourstatus.value.sig != GDB_SIGNAL_0
2854 || current_thread->last_resume_kind == resume_stop)
2855 {
2856 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2857 enqueue_one_deferred_signal (lwp, &wstat);
2858 }
2859 }
2860 }
2861
2862 unsuspend_all_lwps (NULL);
2863
2864 stabilizing_threads = 0;
2865
2866 current_thread = saved_thread;
2867
2868 if (debug_threads)
2869 {
2870 thread_stuck = find_thread ([this] (thread_info *thread)
2871 {
2872 return stuck_in_jump_pad (thread);
2873 });
2874
2875 if (thread_stuck != NULL)
2876 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2877 lwpid_of (thread_stuck));
2878 }
2879 }
2880
2881 /* Convenience function that is called when the kernel reports an
2882 event that is not passed out to GDB. */
2883
2884 static ptid_t
2885 ignore_event (struct target_waitstatus *ourstatus)
2886 {
2887 /* If we got an event, there may still be others, as a single
2888 SIGCHLD can indicate more than one child stopped. This forces
2889 another target_wait call. */
2890 async_file_mark ();
2891
2892 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2893 return null_ptid;
2894 }
2895
2896 ptid_t
2897 linux_process_target::filter_exit_event (lwp_info *event_child,
2898 target_waitstatus *ourstatus)
2899 {
2900 client_state &cs = get_client_state ();
2901 struct thread_info *thread = get_lwp_thread (event_child);
2902 ptid_t ptid = ptid_of (thread);
2903
2904 if (!last_thread_of_process_p (pid_of (thread)))
2905 {
2906 if (cs.report_thread_events)
2907 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2908 else
2909 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2910
2911 delete_lwp (event_child);
2912 }
2913 return ptid;
2914 }
2915
2916 /* Returns 1 if GDB is interested in any event_child syscalls. */
2917
2918 static int
2919 gdb_catching_syscalls_p (struct lwp_info *event_child)
2920 {
2921 struct thread_info *thread = get_lwp_thread (event_child);
2922 struct process_info *proc = get_thread_process (thread);
2923
2924 return !proc->syscalls_to_catch.empty ();
2925 }
2926
2927 bool
2928 linux_process_target::gdb_catch_this_syscall (lwp_info *event_child)
2929 {
2930 int sysno;
2931 struct thread_info *thread = get_lwp_thread (event_child);
2932 struct process_info *proc = get_thread_process (thread);
2933
2934 if (proc->syscalls_to_catch.empty ())
2935 return false;
2936
2937 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
2938 return true;
2939
2940 get_syscall_trapinfo (event_child, &sysno);
2941
2942 for (int iter : proc->syscalls_to_catch)
2943 if (iter == sysno)
2944 return true;
2945
2946 return false;
2947 }
2948
2949 ptid_t
2950 linux_process_target::wait_1 (ptid_t ptid, target_waitstatus *ourstatus,
2951 target_wait_flags target_options)
2952 {
2953 client_state &cs = get_client_state ();
2954 int w;
2955 struct lwp_info *event_child;
2956 int options;
2957 int pid;
2958 int step_over_finished;
2959 int bp_explains_trap;
2960 int maybe_internal_trap;
2961 int report_to_gdb;
2962 int trace_event;
2963 int in_step_range;
2964 int any_resumed;
2965
2966 if (debug_threads)
2967 {
2968 debug_enter ();
2969 debug_printf ("wait_1: [%s]\n", target_pid_to_str (ptid));
2970 }
2971
2972 /* Translate generic target options into linux options. */
2973 options = __WALL;
2974 if (target_options & TARGET_WNOHANG)
2975 options |= WNOHANG;
2976
2977 bp_explains_trap = 0;
2978 trace_event = 0;
2979 in_step_range = 0;
2980 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2981
2982 auto status_pending_p_any = [&] (thread_info *thread)
2983 {
2984 return status_pending_p_callback (thread, minus_one_ptid);
2985 };
2986
2987 auto not_stopped = [&] (thread_info *thread)
2988 {
2989 return not_stopped_callback (thread, minus_one_ptid);
2990 };
2991
2992 /* Find a resumed LWP, if any. */
2993 if (find_thread (status_pending_p_any) != NULL)
2994 any_resumed = 1;
2995 else if (find_thread (not_stopped) != NULL)
2996 any_resumed = 1;
2997 else
2998 any_resumed = 0;
2999
3000 if (step_over_bkpt == null_ptid)
3001 pid = wait_for_event (ptid, &w, options);
3002 else
3003 {
3004 if (debug_threads)
3005 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3006 target_pid_to_str (step_over_bkpt));
3007 pid = wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3008 }
3009
3010 if (pid == 0 || (pid == -1 && !any_resumed))
3011 {
3012 gdb_assert (target_options & TARGET_WNOHANG);
3013
3014 if (debug_threads)
3015 {
3016 debug_printf ("wait_1 ret = null_ptid, "
3017 "TARGET_WAITKIND_IGNORE\n");
3018 debug_exit ();
3019 }
3020
3021 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3022 return null_ptid;
3023 }
3024 else if (pid == -1)
3025 {
3026 if (debug_threads)
3027 {
3028 debug_printf ("wait_1 ret = null_ptid, "
3029 "TARGET_WAITKIND_NO_RESUMED\n");
3030 debug_exit ();
3031 }
3032
3033 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3034 return null_ptid;
3035 }
3036
3037 event_child = get_thread_lwp (current_thread);
3038
3039 /* wait_for_event only returns an exit status for the last
3040 child of a process. Report it. */
3041 if (WIFEXITED (w) || WIFSIGNALED (w))
3042 {
3043 if (WIFEXITED (w))
3044 {
3045 ourstatus->kind = TARGET_WAITKIND_EXITED;
3046 ourstatus->value.integer = WEXITSTATUS (w);
3047
3048 if (debug_threads)
3049 {
3050 debug_printf ("wait_1 ret = %s, exited with "
3051 "retcode %d\n",
3052 target_pid_to_str (ptid_of (current_thread)),
3053 WEXITSTATUS (w));
3054 debug_exit ();
3055 }
3056 }
3057 else
3058 {
3059 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3060 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3061
3062 if (debug_threads)
3063 {
3064 debug_printf ("wait_1 ret = %s, terminated with "
3065 "signal %d\n",
3066 target_pid_to_str (ptid_of (current_thread)),
3067 WTERMSIG (w));
3068 debug_exit ();
3069 }
3070 }
3071
3072 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3073 return filter_exit_event (event_child, ourstatus);
3074
3075 return ptid_of (current_thread);
3076 }
3077
3078 /* If step-over executes a breakpoint instruction, in the case of a
3079 hardware single step it means a gdb/gdbserver breakpoint had been
3080 planted on top of a permanent breakpoint, in the case of a software
3081 single step it may just mean that gdbserver hit the reinsert breakpoint.
3082 The PC has been adjusted by save_stop_reason to point at
3083 the breakpoint address.
3084 So in the case of the hardware single step advance the PC manually
3085 past the breakpoint and in the case of software single step advance only
3086 if it's not the single_step_breakpoint we are hitting.
3087 This avoids that a program would keep trapping a permanent breakpoint
3088 forever. */
3089 if (step_over_bkpt != null_ptid
3090 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3091 && (event_child->stepping
3092 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3093 {
3094 int increment_pc = 0;
3095 int breakpoint_kind = 0;
3096 CORE_ADDR stop_pc = event_child->stop_pc;
3097
3098 breakpoint_kind = breakpoint_kind_from_current_state (&stop_pc);
3099 sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3100
3101 if (debug_threads)
3102 {
3103 debug_printf ("step-over for %s executed software breakpoint\n",
3104 target_pid_to_str (ptid_of (current_thread)));
3105 }
3106
3107 if (increment_pc != 0)
3108 {
3109 struct regcache *regcache
3110 = get_thread_regcache (current_thread, 1);
3111
3112 event_child->stop_pc += increment_pc;
3113 low_set_pc (regcache, event_child->stop_pc);
3114
3115 if (!low_breakpoint_at (event_child->stop_pc))
3116 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3117 }
3118 }
3119
3120 /* If this event was not handled before, and is not a SIGTRAP, we
3121 report it. SIGILL and SIGSEGV are also treated as traps in case
3122 a breakpoint is inserted at the current PC. If this target does
3123 not support internal breakpoints at all, we also report the
3124 SIGTRAP without further processing; it's of no concern to us. */
3125 maybe_internal_trap
3126 = (low_supports_breakpoints ()
3127 && (WSTOPSIG (w) == SIGTRAP
3128 || ((WSTOPSIG (w) == SIGILL
3129 || WSTOPSIG (w) == SIGSEGV)
3130 && low_breakpoint_at (event_child->stop_pc))));
3131
3132 if (maybe_internal_trap)
3133 {
3134 /* Handle anything that requires bookkeeping before deciding to
3135 report the event or continue waiting. */
3136
3137 /* First check if we can explain the SIGTRAP with an internal
3138 breakpoint, or if we should possibly report the event to GDB.
3139 Do this before anything that may remove or insert a
3140 breakpoint. */
3141 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3142
3143 /* We have a SIGTRAP, possibly a step-over dance has just
3144 finished. If so, tweak the state machine accordingly,
3145 reinsert breakpoints and delete any single-step
3146 breakpoints. */
3147 step_over_finished = finish_step_over (event_child);
3148
3149 /* Now invoke the callbacks of any internal breakpoints there. */
3150 check_breakpoints (event_child->stop_pc);
3151
3152 /* Handle tracepoint data collecting. This may overflow the
3153 trace buffer, and cause a tracing stop, removing
3154 breakpoints. */
3155 trace_event = handle_tracepoints (event_child);
3156
3157 if (bp_explains_trap)
3158 {
3159 if (debug_threads)
3160 debug_printf ("Hit a gdbserver breakpoint.\n");
3161 }
3162 }
3163 else
3164 {
3165 /* We have some other signal, possibly a step-over dance was in
3166 progress, and it should be cancelled too. */
3167 step_over_finished = finish_step_over (event_child);
3168 }
3169
3170 /* We have all the data we need. Either report the event to GDB, or
3171 resume threads and keep waiting for more. */
3172
3173 /* If we're collecting a fast tracepoint, finish the collection and
3174 move out of the jump pad before delivering a signal. See
3175 linux_stabilize_threads. */
3176
3177 if (WIFSTOPPED (w)
3178 && WSTOPSIG (w) != SIGTRAP
3179 && supports_fast_tracepoints ()
3180 && agent_loaded_p ())
3181 {
3182 if (debug_threads)
3183 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3184 "to defer or adjust it.\n",
3185 WSTOPSIG (w), lwpid_of (current_thread));
3186
3187 /* Allow debugging the jump pad itself. */
3188 if (current_thread->last_resume_kind != resume_step
3189 && maybe_move_out_of_jump_pad (event_child, &w))
3190 {
3191 enqueue_one_deferred_signal (event_child, &w);
3192
3193 if (debug_threads)
3194 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3195 WSTOPSIG (w), lwpid_of (current_thread));
3196
3197 resume_one_lwp (event_child, 0, 0, NULL);
3198
3199 if (debug_threads)
3200 debug_exit ();
3201 return ignore_event (ourstatus);
3202 }
3203 }
3204
3205 if (event_child->collecting_fast_tracepoint
3206 != fast_tpoint_collect_result::not_collecting)
3207 {
3208 if (debug_threads)
3209 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3210 "Check if we're already there.\n",
3211 lwpid_of (current_thread),
3212 (int) event_child->collecting_fast_tracepoint);
3213
3214 trace_event = 1;
3215
3216 event_child->collecting_fast_tracepoint
3217 = linux_fast_tracepoint_collecting (event_child, NULL);
3218
3219 if (event_child->collecting_fast_tracepoint
3220 != fast_tpoint_collect_result::before_insn)
3221 {
3222 /* No longer need this breakpoint. */
3223 if (event_child->exit_jump_pad_bkpt != NULL)
3224 {
3225 if (debug_threads)
3226 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3227 "stopping all threads momentarily.\n");
3228
3229 /* Other running threads could hit this breakpoint.
3230 We don't handle moribund locations like GDB does,
3231 instead we always pause all threads when removing
3232 breakpoints, so that any step-over or
3233 decr_pc_after_break adjustment is always taken
3234 care of while the breakpoint is still
3235 inserted. */
3236 stop_all_lwps (1, event_child);
3237
3238 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3239 event_child->exit_jump_pad_bkpt = NULL;
3240
3241 unstop_all_lwps (1, event_child);
3242
3243 gdb_assert (event_child->suspended >= 0);
3244 }
3245 }
3246
3247 if (event_child->collecting_fast_tracepoint
3248 == fast_tpoint_collect_result::not_collecting)
3249 {
3250 if (debug_threads)
3251 debug_printf ("fast tracepoint finished "
3252 "collecting successfully.\n");
3253
3254 /* We may have a deferred signal to report. */
3255 if (dequeue_one_deferred_signal (event_child, &w))
3256 {
3257 if (debug_threads)
3258 debug_printf ("dequeued one signal.\n");
3259 }
3260 else
3261 {
3262 if (debug_threads)
3263 debug_printf ("no deferred signals.\n");
3264
3265 if (stabilizing_threads)
3266 {
3267 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3268 ourstatus->value.sig = GDB_SIGNAL_0;
3269
3270 if (debug_threads)
3271 {
3272 debug_printf ("wait_1 ret = %s, stopped "
3273 "while stabilizing threads\n",
3274 target_pid_to_str (ptid_of (current_thread)));
3275 debug_exit ();
3276 }
3277
3278 return ptid_of (current_thread);
3279 }
3280 }
3281 }
3282 }
3283
3284 /* Check whether GDB would be interested in this event. */
3285
3286 /* Check if GDB is interested in this syscall. */
3287 if (WIFSTOPPED (w)
3288 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3289 && !gdb_catch_this_syscall (event_child))
3290 {
3291 if (debug_threads)
3292 {
3293 debug_printf ("Ignored syscall for LWP %ld.\n",
3294 lwpid_of (current_thread));
3295 }
3296
3297 resume_one_lwp (event_child, event_child->stepping, 0, NULL);
3298
3299 if (debug_threads)
3300 debug_exit ();
3301 return ignore_event (ourstatus);
3302 }
3303
3304 /* If GDB is not interested in this signal, don't stop other
3305 threads, and don't report it to GDB. Just resume the inferior
3306 right away. We do this for threading-related signals as well as
3307 any that GDB specifically requested we ignore. But never ignore
3308 SIGSTOP if we sent it ourselves, and do not ignore signals when
3309 stepping - they may require special handling to skip the signal
3310 handler. Also never ignore signals that could be caused by a
3311 breakpoint. */
3312 if (WIFSTOPPED (w)
3313 && current_thread->last_resume_kind != resume_step
3314 && (
3315 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3316 (current_process ()->priv->thread_db != NULL
3317 && (WSTOPSIG (w) == __SIGRTMIN
3318 || WSTOPSIG (w) == __SIGRTMIN + 1))
3319 ||
3320 #endif
3321 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3322 && !(WSTOPSIG (w) == SIGSTOP
3323 && current_thread->last_resume_kind == resume_stop)
3324 && !linux_wstatus_maybe_breakpoint (w))))
3325 {
3326 siginfo_t info, *info_p;
3327
3328 if (debug_threads)
3329 debug_printf ("Ignored signal %d for LWP %ld.\n",
3330 WSTOPSIG (w), lwpid_of (current_thread));
3331
3332 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3333 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3334 info_p = &info;
3335 else
3336 info_p = NULL;
3337
3338 if (step_over_finished)
3339 {
3340 /* We cancelled this thread's step-over above. We still
3341 need to unsuspend all other LWPs, and set them back
3342 running again while the signal handler runs. */
3343 unsuspend_all_lwps (event_child);
3344
3345 /* Enqueue the pending signal info so that proceed_all_lwps
3346 doesn't lose it. */
3347 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3348
3349 proceed_all_lwps ();
3350 }
3351 else
3352 {
3353 resume_one_lwp (event_child, event_child->stepping,
3354 WSTOPSIG (w), info_p);
3355 }
3356
3357 if (debug_threads)
3358 debug_exit ();
3359
3360 return ignore_event (ourstatus);
3361 }
3362
3363 /* Note that all addresses are always "out of the step range" when
3364 there's no range to begin with. */
3365 in_step_range = lwp_in_step_range (event_child);
3366
3367 /* If GDB wanted this thread to single step, and the thread is out
3368 of the step range, we always want to report the SIGTRAP, and let
3369 GDB handle it. Watchpoints should always be reported. So should
3370 signals we can't explain. A SIGTRAP we can't explain could be a
3371 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3372 do, we're be able to handle GDB breakpoints on top of internal
3373 breakpoints, by handling the internal breakpoint and still
3374 reporting the event to GDB. If we don't, we're out of luck, GDB
3375 won't see the breakpoint hit. If we see a single-step event but
3376 the thread should be continuing, don't pass the trap to gdb.
3377 That indicates that we had previously finished a single-step but
3378 left the single-step pending -- see
3379 complete_ongoing_step_over. */
3380 report_to_gdb = (!maybe_internal_trap
3381 || (current_thread->last_resume_kind == resume_step
3382 && !in_step_range)
3383 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3384 || (!in_step_range
3385 && !bp_explains_trap
3386 && !trace_event
3387 && !step_over_finished
3388 && !(current_thread->last_resume_kind == resume_continue
3389 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3390 || (gdb_breakpoint_here (event_child->stop_pc)
3391 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3392 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3393 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3394
3395 run_breakpoint_commands (event_child->stop_pc);
3396
3397 /* We found no reason GDB would want us to stop. We either hit one
3398 of our own breakpoints, or finished an internal step GDB
3399 shouldn't know about. */
3400 if (!report_to_gdb)
3401 {
3402 if (debug_threads)
3403 {
3404 if (bp_explains_trap)
3405 debug_printf ("Hit a gdbserver breakpoint.\n");
3406 if (step_over_finished)
3407 debug_printf ("Step-over finished.\n");
3408 if (trace_event)
3409 debug_printf ("Tracepoint event.\n");
3410 if (lwp_in_step_range (event_child))
3411 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3412 paddress (event_child->stop_pc),
3413 paddress (event_child->step_range_start),
3414 paddress (event_child->step_range_end));
3415 }
3416
3417 /* We're not reporting this breakpoint to GDB, so apply the
3418 decr_pc_after_break adjustment to the inferior's regcache
3419 ourselves. */
3420
3421 if (low_supports_breakpoints ())
3422 {
3423 struct regcache *regcache
3424 = get_thread_regcache (current_thread, 1);
3425 low_set_pc (regcache, event_child->stop_pc);
3426 }
3427
3428 if (step_over_finished)
3429 {
3430 /* If we have finished stepping over a breakpoint, we've
3431 stopped and suspended all LWPs momentarily except the
3432 stepping one. This is where we resume them all again.
3433 We're going to keep waiting, so use proceed, which
3434 handles stepping over the next breakpoint. */
3435 unsuspend_all_lwps (event_child);
3436 }
3437 else
3438 {
3439 /* Remove the single-step breakpoints if any. Note that
3440 there isn't single-step breakpoint if we finished stepping
3441 over. */
3442 if (supports_software_single_step ()
3443 && has_single_step_breakpoints (current_thread))
3444 {
3445 stop_all_lwps (0, event_child);
3446 delete_single_step_breakpoints (current_thread);
3447 unstop_all_lwps (0, event_child);
3448 }
3449 }
3450
3451 if (debug_threads)
3452 debug_printf ("proceeding all threads.\n");
3453 proceed_all_lwps ();
3454
3455 if (debug_threads)
3456 debug_exit ();
3457
3458 return ignore_event (ourstatus);
3459 }
3460
3461 if (debug_threads)
3462 {
3463 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3464 {
3465 std::string str
3466 = target_waitstatus_to_string (&event_child->waitstatus);
3467
3468 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3469 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3470 }
3471 if (current_thread->last_resume_kind == resume_step)
3472 {
3473 if (event_child->step_range_start == event_child->step_range_end)
3474 debug_printf ("GDB wanted to single-step, reporting event.\n");
3475 else if (!lwp_in_step_range (event_child))
3476 debug_printf ("Out of step range, reporting event.\n");
3477 }
3478 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3479 debug_printf ("Stopped by watchpoint.\n");
3480 else if (gdb_breakpoint_here (event_child->stop_pc))
3481 debug_printf ("Stopped by GDB breakpoint.\n");
3482 if (debug_threads)
3483 debug_printf ("Hit a non-gdbserver trap event.\n");
3484 }
3485
3486 /* Alright, we're going to report a stop. */
3487
3488 /* Remove single-step breakpoints. */
3489 if (supports_software_single_step ())
3490 {
3491 /* Remove single-step breakpoints or not. It it is true, stop all
3492 lwps, so that other threads won't hit the breakpoint in the
3493 staled memory. */
3494 int remove_single_step_breakpoints_p = 0;
3495
3496 if (non_stop)
3497 {
3498 remove_single_step_breakpoints_p
3499 = has_single_step_breakpoints (current_thread);
3500 }
3501 else
3502 {
3503 /* In all-stop, a stop reply cancels all previous resume
3504 requests. Delete all single-step breakpoints. */
3505
3506 find_thread ([&] (thread_info *thread) {
3507 if (has_single_step_breakpoints (thread))
3508 {
3509 remove_single_step_breakpoints_p = 1;
3510 return true;
3511 }
3512
3513 return false;
3514 });
3515 }
3516
3517 if (remove_single_step_breakpoints_p)
3518 {
3519 /* If we remove single-step breakpoints from memory, stop all lwps,
3520 so that other threads won't hit the breakpoint in the staled
3521 memory. */
3522 stop_all_lwps (0, event_child);
3523
3524 if (non_stop)
3525 {
3526 gdb_assert (has_single_step_breakpoints (current_thread));
3527 delete_single_step_breakpoints (current_thread);
3528 }
3529 else
3530 {
3531 for_each_thread ([] (thread_info *thread){
3532 if (has_single_step_breakpoints (thread))
3533 delete_single_step_breakpoints (thread);
3534 });
3535 }
3536
3537 unstop_all_lwps (0, event_child);
3538 }
3539 }
3540
3541 if (!stabilizing_threads)
3542 {
3543 /* In all-stop, stop all threads. */
3544 if (!non_stop)
3545 stop_all_lwps (0, NULL);
3546
3547 if (step_over_finished)
3548 {
3549 if (!non_stop)
3550 {
3551 /* If we were doing a step-over, all other threads but
3552 the stepping one had been paused in start_step_over,
3553 with their suspend counts incremented. We don't want
3554 to do a full unstop/unpause, because we're in
3555 all-stop mode (so we want threads stopped), but we
3556 still need to unsuspend the other threads, to
3557 decrement their `suspended' count back. */
3558 unsuspend_all_lwps (event_child);
3559 }
3560 else
3561 {
3562 /* If we just finished a step-over, then all threads had
3563 been momentarily paused. In all-stop, that's fine,
3564 we want threads stopped by now anyway. In non-stop,
3565 we need to re-resume threads that GDB wanted to be
3566 running. */
3567 unstop_all_lwps (1, event_child);
3568 }
3569 }
3570
3571 /* If we're not waiting for a specific LWP, choose an event LWP
3572 from among those that have had events. Giving equal priority
3573 to all LWPs that have had events helps prevent
3574 starvation. */
3575 if (ptid == minus_one_ptid)
3576 {
3577 event_child->status_pending_p = 1;
3578 event_child->status_pending = w;
3579
3580 select_event_lwp (&event_child);
3581
3582 /* current_thread and event_child must stay in sync. */
3583 current_thread = get_lwp_thread (event_child);
3584
3585 event_child->status_pending_p = 0;
3586 w = event_child->status_pending;
3587 }
3588
3589
3590 /* Stabilize threads (move out of jump pads). */
3591 if (!non_stop)
3592 target_stabilize_threads ();
3593 }
3594 else
3595 {
3596 /* If we just finished a step-over, then all threads had been
3597 momentarily paused. In all-stop, that's fine, we want
3598 threads stopped by now anyway. In non-stop, we need to
3599 re-resume threads that GDB wanted to be running. */
3600 if (step_over_finished)
3601 unstop_all_lwps (1, event_child);
3602 }
3603
3604 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3605 {
3606 /* If the reported event is an exit, fork, vfork or exec, let
3607 GDB know. */
3608
3609 /* Break the unreported fork relationship chain. */
3610 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3611 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3612 {
3613 event_child->fork_relative->fork_relative = NULL;
3614 event_child->fork_relative = NULL;
3615 }
3616
3617 *ourstatus = event_child->waitstatus;
3618 /* Clear the event lwp's waitstatus since we handled it already. */
3619 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3620 }
3621 else
3622 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3623
3624 /* Now that we've selected our final event LWP, un-adjust its PC if
3625 it was a software breakpoint, and the client doesn't know we can
3626 adjust the breakpoint ourselves. */
3627 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3628 && !cs.swbreak_feature)
3629 {
3630 int decr_pc = low_decr_pc_after_break ();
3631
3632 if (decr_pc != 0)
3633 {
3634 struct regcache *regcache
3635 = get_thread_regcache (current_thread, 1);
3636 low_set_pc (regcache, event_child->stop_pc + decr_pc);
3637 }
3638 }
3639
3640 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3641 {
3642 get_syscall_trapinfo (event_child,
3643 &ourstatus->value.syscall_number);
3644 ourstatus->kind = event_child->syscall_state;
3645 }
3646 else if (current_thread->last_resume_kind == resume_stop
3647 && WSTOPSIG (w) == SIGSTOP)
3648 {
3649 /* A thread that has been requested to stop by GDB with vCont;t,
3650 and it stopped cleanly, so report as SIG0. The use of
3651 SIGSTOP is an implementation detail. */
3652 ourstatus->value.sig = GDB_SIGNAL_0;
3653 }
3654 else if (current_thread->last_resume_kind == resume_stop
3655 && WSTOPSIG (w) != SIGSTOP)
3656 {
3657 /* A thread that has been requested to stop by GDB with vCont;t,
3658 but, it stopped for other reasons. */
3659 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3660 }
3661 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3662 {
3663 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3664 }
3665
3666 gdb_assert (step_over_bkpt == null_ptid);
3667
3668 if (debug_threads)
3669 {
3670 debug_printf ("wait_1 ret = %s, %d, %d\n",
3671 target_pid_to_str (ptid_of (current_thread)),
3672 ourstatus->kind, ourstatus->value.sig);
3673 debug_exit ();
3674 }
3675
3676 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3677 return filter_exit_event (event_child, ourstatus);
3678
3679 return ptid_of (current_thread);
3680 }
3681
3682 /* Get rid of any pending event in the pipe. */
3683 static void
3684 async_file_flush (void)
3685 {
3686 int ret;
3687 char buf;
3688
3689 do
3690 ret = read (linux_event_pipe[0], &buf, 1);
3691 while (ret >= 0 || (ret == -1 && errno == EINTR));
3692 }
3693
3694 /* Put something in the pipe, so the event loop wakes up. */
3695 static void
3696 async_file_mark (void)
3697 {
3698 int ret;
3699
3700 async_file_flush ();
3701
3702 do
3703 ret = write (linux_event_pipe[1], "+", 1);
3704 while (ret == 0 || (ret == -1 && errno == EINTR));
3705
3706 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3707 be awakened anyway. */
3708 }
3709
3710 ptid_t
3711 linux_process_target::wait (ptid_t ptid,
3712 target_waitstatus *ourstatus,
3713 target_wait_flags target_options)
3714 {
3715 ptid_t event_ptid;
3716
3717 /* Flush the async file first. */
3718 if (target_is_async_p ())
3719 async_file_flush ();
3720
3721 do
3722 {
3723 event_ptid = wait_1 (ptid, ourstatus, target_options);
3724 }
3725 while ((target_options & TARGET_WNOHANG) == 0
3726 && event_ptid == null_ptid
3727 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3728
3729 /* If at least one stop was reported, there may be more. A single
3730 SIGCHLD can signal more than one child stop. */
3731 if (target_is_async_p ()
3732 && (target_options & TARGET_WNOHANG) != 0
3733 && event_ptid != null_ptid)
3734 async_file_mark ();
3735
3736 return event_ptid;
3737 }
3738
3739 /* Send a signal to an LWP. */
3740
3741 static int
3742 kill_lwp (unsigned long lwpid, int signo)
3743 {
3744 int ret;
3745
3746 errno = 0;
3747 ret = syscall (__NR_tkill, lwpid, signo);
3748 if (errno == ENOSYS)
3749 {
3750 /* If tkill fails, then we are not using nptl threads, a
3751 configuration we no longer support. */
3752 perror_with_name (("tkill"));
3753 }
3754 return ret;
3755 }
3756
3757 void
3758 linux_stop_lwp (struct lwp_info *lwp)
3759 {
3760 send_sigstop (lwp);
3761 }
3762
3763 static void
3764 send_sigstop (struct lwp_info *lwp)
3765 {
3766 int pid;
3767
3768 pid = lwpid_of (get_lwp_thread (lwp));
3769
3770 /* If we already have a pending stop signal for this process, don't
3771 send another. */
3772 if (lwp->stop_expected)
3773 {
3774 if (debug_threads)
3775 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3776
3777 return;
3778 }
3779
3780 if (debug_threads)
3781 debug_printf ("Sending sigstop to lwp %d\n", pid);
3782
3783 lwp->stop_expected = 1;
3784 kill_lwp (pid, SIGSTOP);
3785 }
3786
3787 static void
3788 send_sigstop (thread_info *thread, lwp_info *except)
3789 {
3790 struct lwp_info *lwp = get_thread_lwp (thread);
3791
3792 /* Ignore EXCEPT. */
3793 if (lwp == except)
3794 return;
3795
3796 if (lwp->stopped)
3797 return;
3798
3799 send_sigstop (lwp);
3800 }
3801
3802 /* Increment the suspend count of an LWP, and stop it, if not stopped
3803 yet. */
3804 static void
3805 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3806 {
3807 struct lwp_info *lwp = get_thread_lwp (thread);
3808
3809 /* Ignore EXCEPT. */
3810 if (lwp == except)
3811 return;
3812
3813 lwp_suspended_inc (lwp);
3814
3815 send_sigstop (thread, except);
3816 }
3817
3818 static void
3819 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3820 {
3821 /* Store the exit status for later. */
3822 lwp->status_pending_p = 1;
3823 lwp->status_pending = wstat;
3824
3825 /* Store in waitstatus as well, as there's nothing else to process
3826 for this event. */
3827 if (WIFEXITED (wstat))
3828 {
3829 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3830 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3831 }
3832 else if (WIFSIGNALED (wstat))
3833 {
3834 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3835 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3836 }
3837
3838 /* Prevent trying to stop it. */
3839 lwp->stopped = 1;
3840
3841 /* No further stops are expected from a dead lwp. */
3842 lwp->stop_expected = 0;
3843 }
3844
3845 /* Return true if LWP has exited already, and has a pending exit event
3846 to report to GDB. */
3847
3848 static int
3849 lwp_is_marked_dead (struct lwp_info *lwp)
3850 {
3851 return (lwp->status_pending_p
3852 && (WIFEXITED (lwp->status_pending)
3853 || WIFSIGNALED (lwp->status_pending)));
3854 }
3855
3856 void
3857 linux_process_target::wait_for_sigstop ()
3858 {
3859 struct thread_info *saved_thread;
3860 ptid_t saved_tid;
3861 int wstat;
3862 int ret;
3863
3864 saved_thread = current_thread;
3865 if (saved_thread != NULL)
3866 saved_tid = saved_thread->id;
3867 else
3868 saved_tid = null_ptid; /* avoid bogus unused warning */
3869
3870 if (debug_threads)
3871 debug_printf ("wait_for_sigstop: pulling events\n");
3872
3873 /* Passing NULL_PTID as filter indicates we want all events to be
3874 left pending. Eventually this returns when there are no
3875 unwaited-for children left. */
3876 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat, __WALL);
3877 gdb_assert (ret == -1);
3878
3879 if (saved_thread == NULL || mythread_alive (saved_tid))
3880 current_thread = saved_thread;
3881 else
3882 {
3883 if (debug_threads)
3884 debug_printf ("Previously current thread died.\n");
3885
3886 /* We can't change the current inferior behind GDB's back,
3887 otherwise, a subsequent command may apply to the wrong
3888 process. */
3889 current_thread = NULL;
3890 }
3891 }
3892
3893 bool
3894 linux_process_target::stuck_in_jump_pad (thread_info *thread)
3895 {
3896 struct lwp_info *lwp = get_thread_lwp (thread);
3897
3898 if (lwp->suspended != 0)
3899 {
3900 internal_error (__FILE__, __LINE__,
3901 "LWP %ld is suspended, suspended=%d\n",
3902 lwpid_of (thread), lwp->suspended);
3903 }
3904 gdb_assert (lwp->stopped);
3905
3906 /* Allow debugging the jump pad, gdb_collect, etc.. */
3907 return (supports_fast_tracepoints ()
3908 && agent_loaded_p ()
3909 && (gdb_breakpoint_here (lwp->stop_pc)
3910 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3911 || thread->last_resume_kind == resume_step)
3912 && (linux_fast_tracepoint_collecting (lwp, NULL)
3913 != fast_tpoint_collect_result::not_collecting));
3914 }
3915
3916 void
3917 linux_process_target::move_out_of_jump_pad (thread_info *thread)
3918 {
3919 struct thread_info *saved_thread;
3920 struct lwp_info *lwp = get_thread_lwp (thread);
3921 int *wstat;
3922
3923 if (lwp->suspended != 0)
3924 {
3925 internal_error (__FILE__, __LINE__,
3926 "LWP %ld is suspended, suspended=%d\n",
3927 lwpid_of (thread), lwp->suspended);
3928 }
3929 gdb_assert (lwp->stopped);
3930
3931 /* For gdb_breakpoint_here. */
3932 saved_thread = current_thread;
3933 current_thread = thread;
3934
3935 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3936
3937 /* Allow debugging the jump pad, gdb_collect, etc. */
3938 if (!gdb_breakpoint_here (lwp->stop_pc)
3939 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3940 && thread->last_resume_kind != resume_step
3941 && maybe_move_out_of_jump_pad (lwp, wstat))
3942 {
3943 if (debug_threads)
3944 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3945 lwpid_of (thread));
3946
3947 if (wstat)
3948 {
3949 lwp->status_pending_p = 0;
3950 enqueue_one_deferred_signal (lwp, wstat);
3951
3952 if (debug_threads)
3953 debug_printf ("Signal %d for LWP %ld deferred "
3954 "(in jump pad)\n",
3955 WSTOPSIG (*wstat), lwpid_of (thread));
3956 }
3957
3958 resume_one_lwp (lwp, 0, 0, NULL);
3959 }
3960 else
3961 lwp_suspended_inc (lwp);
3962
3963 current_thread = saved_thread;
3964 }
3965
3966 static bool
3967 lwp_running (thread_info *thread)
3968 {
3969 struct lwp_info *lwp = get_thread_lwp (thread);
3970
3971 if (lwp_is_marked_dead (lwp))
3972 return false;
3973
3974 return !lwp->stopped;
3975 }
3976
3977 void
3978 linux_process_target::stop_all_lwps (int suspend, lwp_info *except)
3979 {
3980 /* Should not be called recursively. */
3981 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3982
3983 if (debug_threads)
3984 {
3985 debug_enter ();
3986 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3987 suspend ? "stop-and-suspend" : "stop",
3988 except != NULL
3989 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3990 : "none");
3991 }
3992
3993 stopping_threads = (suspend
3994 ? STOPPING_AND_SUSPENDING_THREADS
3995 : STOPPING_THREADS);
3996
3997 if (suspend)
3998 for_each_thread ([&] (thread_info *thread)
3999 {
4000 suspend_and_send_sigstop (thread, except);
4001 });
4002 else
4003 for_each_thread ([&] (thread_info *thread)
4004 {
4005 send_sigstop (thread, except);
4006 });
4007
4008 wait_for_sigstop ();
4009 stopping_threads = NOT_STOPPING_THREADS;
4010
4011 if (debug_threads)
4012 {
4013 debug_printf ("stop_all_lwps done, setting stopping_threads "
4014 "back to !stopping\n");
4015 debug_exit ();
4016 }
4017 }
4018
4019 /* Enqueue one signal in the chain of signals which need to be
4020 delivered to this process on next resume. */
4021
4022 static void
4023 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4024 {
4025 lwp->pending_signals.emplace_back (signal);
4026 if (info == nullptr)
4027 memset (&lwp->pending_signals.back ().info, 0, sizeof (siginfo_t));
4028 else
4029 lwp->pending_signals.back ().info = *info;
4030 }
4031
4032 void
4033 linux_process_target::install_software_single_step_breakpoints (lwp_info *lwp)
4034 {
4035 struct thread_info *thread = get_lwp_thread (lwp);
4036 struct regcache *regcache = get_thread_regcache (thread, 1);
4037
4038 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4039
4040 current_thread = thread;
4041 std::vector<CORE_ADDR> next_pcs = low_get_next_pcs (regcache);
4042
4043 for (CORE_ADDR pc : next_pcs)
4044 set_single_step_breakpoint (pc, current_ptid);
4045 }
4046
4047 int
4048 linux_process_target::single_step (lwp_info* lwp)
4049 {
4050 int step = 0;
4051
4052 if (supports_hardware_single_step ())
4053 {
4054 step = 1;
4055 }
4056 else if (supports_software_single_step ())
4057 {
4058 install_software_single_step_breakpoints (lwp);
4059 step = 0;
4060 }
4061 else
4062 {
4063 if (debug_threads)
4064 debug_printf ("stepping is not implemented on this target");
4065 }
4066
4067 return step;
4068 }
4069
4070 /* The signal can be delivered to the inferior if we are not trying to
4071 finish a fast tracepoint collect. Since signal can be delivered in
4072 the step-over, the program may go to signal handler and trap again
4073 after return from the signal handler. We can live with the spurious
4074 double traps. */
4075
4076 static int
4077 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4078 {
4079 return (lwp->collecting_fast_tracepoint
4080 == fast_tpoint_collect_result::not_collecting);
4081 }
4082
4083 void
4084 linux_process_target::resume_one_lwp_throw (lwp_info *lwp, int step,
4085 int signal, siginfo_t *info)
4086 {
4087 struct thread_info *thread = get_lwp_thread (lwp);
4088 struct thread_info *saved_thread;
4089 int ptrace_request;
4090 struct process_info *proc = get_thread_process (thread);
4091
4092 /* Note that target description may not be initialised
4093 (proc->tdesc == NULL) at this point because the program hasn't
4094 stopped at the first instruction yet. It means GDBserver skips
4095 the extra traps from the wrapper program (see option --wrapper).
4096 Code in this function that requires register access should be
4097 guarded by proc->tdesc == NULL or something else. */
4098
4099 if (lwp->stopped == 0)
4100 return;
4101
4102 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4103
4104 fast_tpoint_collect_result fast_tp_collecting
4105 = lwp->collecting_fast_tracepoint;
4106
4107 gdb_assert (!stabilizing_threads
4108 || (fast_tp_collecting
4109 != fast_tpoint_collect_result::not_collecting));
4110
4111 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4112 user used the "jump" command, or "set $pc = foo"). */
4113 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4114 {
4115 /* Collecting 'while-stepping' actions doesn't make sense
4116 anymore. */
4117 release_while_stepping_state_list (thread);
4118 }
4119
4120 /* If we have pending signals or status, and a new signal, enqueue the
4121 signal. Also enqueue the signal if it can't be delivered to the
4122 inferior right now. */
4123 if (signal != 0
4124 && (lwp->status_pending_p
4125 || !lwp->pending_signals.empty ()
4126 || !lwp_signal_can_be_delivered (lwp)))
4127 {
4128 enqueue_pending_signal (lwp, signal, info);
4129
4130 /* Postpone any pending signal. It was enqueued above. */
4131 signal = 0;
4132 }
4133
4134 if (lwp->status_pending_p)
4135 {
4136 if (debug_threads)
4137 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4138 " has pending status\n",
4139 lwpid_of (thread), step ? "step" : "continue",
4140 lwp->stop_expected ? "expected" : "not expected");
4141 return;
4142 }
4143
4144 saved_thread = current_thread;
4145 current_thread = thread;
4146
4147 /* This bit needs some thinking about. If we get a signal that
4148 we must report while a single-step reinsert is still pending,
4149 we often end up resuming the thread. It might be better to
4150 (ew) allow a stack of pending events; then we could be sure that
4151 the reinsert happened right away and not lose any signals.
4152
4153 Making this stack would also shrink the window in which breakpoints are
4154 uninserted (see comment in linux_wait_for_lwp) but not enough for
4155 complete correctness, so it won't solve that problem. It may be
4156 worthwhile just to solve this one, however. */
4157 if (lwp->bp_reinsert != 0)
4158 {
4159 if (debug_threads)
4160 debug_printf (" pending reinsert at 0x%s\n",
4161 paddress (lwp->bp_reinsert));
4162
4163 if (supports_hardware_single_step ())
4164 {
4165 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4166 {
4167 if (step == 0)
4168 warning ("BAD - reinserting but not stepping.");
4169 if (lwp->suspended)
4170 warning ("BAD - reinserting and suspended(%d).",
4171 lwp->suspended);
4172 }
4173 }
4174
4175 step = maybe_hw_step (thread);
4176 }
4177
4178 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4179 {
4180 if (debug_threads)
4181 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4182 " (exit-jump-pad-bkpt)\n",
4183 lwpid_of (thread));
4184 }
4185 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4186 {
4187 if (debug_threads)
4188 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4189 " single-stepping\n",
4190 lwpid_of (thread));
4191
4192 if (supports_hardware_single_step ())
4193 step = 1;
4194 else
4195 {
4196 internal_error (__FILE__, __LINE__,
4197 "moving out of jump pad single-stepping"
4198 " not implemented on this target");
4199 }
4200 }
4201
4202 /* If we have while-stepping actions in this thread set it stepping.
4203 If we have a signal to deliver, it may or may not be set to
4204 SIG_IGN, we don't know. Assume so, and allow collecting
4205 while-stepping into a signal handler. A possible smart thing to
4206 do would be to set an internal breakpoint at the signal return
4207 address, continue, and carry on catching this while-stepping
4208 action only when that breakpoint is hit. A future
4209 enhancement. */
4210 if (thread->while_stepping != NULL)
4211 {
4212 if (debug_threads)
4213 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4214 lwpid_of (thread));
4215
4216 step = single_step (lwp);
4217 }
4218
4219 if (proc->tdesc != NULL && low_supports_breakpoints ())
4220 {
4221 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4222
4223 lwp->stop_pc = low_get_pc (regcache);
4224
4225 if (debug_threads)
4226 {
4227 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4228 (long) lwp->stop_pc);
4229 }
4230 }
4231
4232 /* If we have pending signals, consume one if it can be delivered to
4233 the inferior. */
4234 if (!lwp->pending_signals.empty () && lwp_signal_can_be_delivered (lwp))
4235 {
4236 const pending_signal &p_sig = lwp->pending_signals.front ();
4237
4238 signal = p_sig.signal;
4239 if (p_sig.info.si_signo != 0)
4240 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4241 &p_sig.info);
4242
4243 lwp->pending_signals.pop_front ();
4244 }
4245
4246 if (debug_threads)
4247 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4248 lwpid_of (thread), step ? "step" : "continue", signal,
4249 lwp->stop_expected ? "expected" : "not expected");
4250
4251 low_prepare_to_resume (lwp);
4252
4253 regcache_invalidate_thread (thread);
4254 errno = 0;
4255 lwp->stepping = step;
4256 if (step)
4257 ptrace_request = PTRACE_SINGLESTEP;
4258 else if (gdb_catching_syscalls_p (lwp))
4259 ptrace_request = PTRACE_SYSCALL;
4260 else
4261 ptrace_request = PTRACE_CONT;
4262 ptrace (ptrace_request,
4263 lwpid_of (thread),
4264 (PTRACE_TYPE_ARG3) 0,
4265 /* Coerce to a uintptr_t first to avoid potential gcc warning
4266 of coercing an 8 byte integer to a 4 byte pointer. */
4267 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4268
4269 current_thread = saved_thread;
4270 if (errno)
4271 perror_with_name ("resuming thread");
4272
4273 /* Successfully resumed. Clear state that no longer makes sense,
4274 and mark the LWP as running. Must not do this before resuming
4275 otherwise if that fails other code will be confused. E.g., we'd
4276 later try to stop the LWP and hang forever waiting for a stop
4277 status. Note that we must not throw after this is cleared,
4278 otherwise handle_zombie_lwp_error would get confused. */
4279 lwp->stopped = 0;
4280 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4281 }
4282
4283 void
4284 linux_process_target::low_prepare_to_resume (lwp_info *lwp)
4285 {
4286 /* Nop. */
4287 }
4288
4289 /* Called when we try to resume a stopped LWP and that errors out. If
4290 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4291 or about to become), discard the error, clear any pending status
4292 the LWP may have, and return true (we'll collect the exit status
4293 soon enough). Otherwise, return false. */
4294
4295 static int
4296 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4297 {
4298 struct thread_info *thread = get_lwp_thread (lp);
4299
4300 /* If we get an error after resuming the LWP successfully, we'd
4301 confuse !T state for the LWP being gone. */
4302 gdb_assert (lp->stopped);
4303
4304 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4305 because even if ptrace failed with ESRCH, the tracee may be "not
4306 yet fully dead", but already refusing ptrace requests. In that
4307 case the tracee has 'R (Running)' state for a little bit
4308 (observed in Linux 3.18). See also the note on ESRCH in the
4309 ptrace(2) man page. Instead, check whether the LWP has any state
4310 other than ptrace-stopped. */
4311
4312 /* Don't assume anything if /proc/PID/status can't be read. */
4313 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4314 {
4315 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4316 lp->status_pending_p = 0;
4317 return 1;
4318 }
4319 return 0;
4320 }
4321
4322 void
4323 linux_process_target::resume_one_lwp (lwp_info *lwp, int step, int signal,
4324 siginfo_t *info)
4325 {
4326 try
4327 {
4328 resume_one_lwp_throw (lwp, step, signal, info);
4329 }
4330 catch (const gdb_exception_error &ex)
4331 {
4332 if (!check_ptrace_stopped_lwp_gone (lwp))
4333 throw;
4334 }
4335 }
4336
4337 /* This function is called once per thread via for_each_thread.
4338 We look up which resume request applies to THREAD and mark it with a
4339 pointer to the appropriate resume request.
4340
4341 This algorithm is O(threads * resume elements), but resume elements
4342 is small (and will remain small at least until GDB supports thread
4343 suspension). */
4344
4345 static void
4346 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4347 {
4348 struct lwp_info *lwp = get_thread_lwp (thread);
4349
4350 for (int ndx = 0; ndx < n; ndx++)
4351 {
4352 ptid_t ptid = resume[ndx].thread;
4353 if (ptid == minus_one_ptid
4354 || ptid == thread->id
4355 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4356 of PID'. */
4357 || (ptid.pid () == pid_of (thread)
4358 && (ptid.is_pid ()
4359 || ptid.lwp () == -1)))
4360 {
4361 if (resume[ndx].kind == resume_stop
4362 && thread->last_resume_kind == resume_stop)
4363 {
4364 if (debug_threads)
4365 debug_printf ("already %s LWP %ld at GDB's request\n",
4366 (thread->last_status.kind
4367 == TARGET_WAITKIND_STOPPED)
4368 ? "stopped"
4369 : "stopping",
4370 lwpid_of (thread));
4371
4372 continue;
4373 }
4374
4375 /* Ignore (wildcard) resume requests for already-resumed
4376 threads. */
4377 if (resume[ndx].kind != resume_stop
4378 && thread->last_resume_kind != resume_stop)
4379 {
4380 if (debug_threads)
4381 debug_printf ("already %s LWP %ld at GDB's request\n",
4382 (thread->last_resume_kind
4383 == resume_step)
4384 ? "stepping"
4385 : "continuing",
4386 lwpid_of (thread));
4387 continue;
4388 }
4389
4390 /* Don't let wildcard resumes resume fork children that GDB
4391 does not yet know are new fork children. */
4392 if (lwp->fork_relative != NULL)
4393 {
4394 struct lwp_info *rel = lwp->fork_relative;
4395
4396 if (rel->status_pending_p
4397 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4398 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4399 {
4400 if (debug_threads)
4401 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4402 lwpid_of (thread));
4403 continue;
4404 }
4405 }
4406
4407 /* If the thread has a pending event that has already been
4408 reported to GDBserver core, but GDB has not pulled the
4409 event out of the vStopped queue yet, likewise, ignore the
4410 (wildcard) resume request. */
4411 if (in_queued_stop_replies (thread->id))
4412 {
4413 if (debug_threads)
4414 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4415 lwpid_of (thread));
4416 continue;
4417 }
4418
4419 lwp->resume = &resume[ndx];
4420 thread->last_resume_kind = lwp->resume->kind;
4421
4422 lwp->step_range_start = lwp->resume->step_range_start;
4423 lwp->step_range_end = lwp->resume->step_range_end;
4424
4425 /* If we had a deferred signal to report, dequeue one now.
4426 This can happen if LWP gets more than one signal while
4427 trying to get out of a jump pad. */
4428 if (lwp->stopped
4429 && !lwp->status_pending_p
4430 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4431 {
4432 lwp->status_pending_p = 1;
4433
4434 if (debug_threads)
4435 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4436 "leaving status pending.\n",
4437 WSTOPSIG (lwp->status_pending),
4438 lwpid_of (thread));
4439 }
4440
4441 return;
4442 }
4443 }
4444
4445 /* No resume action for this thread. */
4446 lwp->resume = NULL;
4447 }
4448
4449 bool
4450 linux_process_target::resume_status_pending (thread_info *thread)
4451 {
4452 struct lwp_info *lwp = get_thread_lwp (thread);
4453
4454 /* LWPs which will not be resumed are not interesting, because
4455 we might not wait for them next time through linux_wait. */
4456 if (lwp->resume == NULL)
4457 return false;
4458
4459 return thread_still_has_status_pending (thread);
4460 }
4461
4462 bool
4463 linux_process_target::thread_needs_step_over (thread_info *thread)
4464 {
4465 struct lwp_info *lwp = get_thread_lwp (thread);
4466 struct thread_info *saved_thread;
4467 CORE_ADDR pc;
4468 struct process_info *proc = get_thread_process (thread);
4469
4470 /* GDBserver is skipping the extra traps from the wrapper program,
4471 don't have to do step over. */
4472 if (proc->tdesc == NULL)
4473 return false;
4474
4475 /* LWPs which will not be resumed are not interesting, because we
4476 might not wait for them next time through linux_wait. */
4477
4478 if (!lwp->stopped)
4479 {
4480 if (debug_threads)
4481 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4482 lwpid_of (thread));
4483 return false;
4484 }
4485
4486 if (thread->last_resume_kind == resume_stop)
4487 {
4488 if (debug_threads)
4489 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4490 " stopped\n",
4491 lwpid_of (thread));
4492 return false;
4493 }
4494
4495 gdb_assert (lwp->suspended >= 0);
4496
4497 if (lwp->suspended)
4498 {
4499 if (debug_threads)
4500 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4501 lwpid_of (thread));
4502 return false;
4503 }
4504
4505 if (lwp->status_pending_p)
4506 {
4507 if (debug_threads)
4508 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4509 " status.\n",
4510 lwpid_of (thread));
4511 return false;
4512 }
4513
4514 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4515 or we have. */
4516 pc = get_pc (lwp);
4517
4518 /* If the PC has changed since we stopped, then don't do anything,
4519 and let the breakpoint/tracepoint be hit. This happens if, for
4520 instance, GDB handled the decr_pc_after_break subtraction itself,
4521 GDB is OOL stepping this thread, or the user has issued a "jump"
4522 command, or poked thread's registers herself. */
4523 if (pc != lwp->stop_pc)
4524 {
4525 if (debug_threads)
4526 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4527 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4528 lwpid_of (thread),
4529 paddress (lwp->stop_pc), paddress (pc));
4530 return false;
4531 }
4532
4533 /* On software single step target, resume the inferior with signal
4534 rather than stepping over. */
4535 if (supports_software_single_step ()
4536 && !lwp->pending_signals.empty ()
4537 && lwp_signal_can_be_delivered (lwp))
4538 {
4539 if (debug_threads)
4540 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4541 " signals.\n",
4542 lwpid_of (thread));
4543
4544 return false;
4545 }
4546
4547 saved_thread = current_thread;
4548 current_thread = thread;
4549
4550 /* We can only step over breakpoints we know about. */
4551 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4552 {
4553 /* Don't step over a breakpoint that GDB expects to hit
4554 though. If the condition is being evaluated on the target's side
4555 and it evaluate to false, step over this breakpoint as well. */
4556 if (gdb_breakpoint_here (pc)
4557 && gdb_condition_true_at_breakpoint (pc)
4558 && gdb_no_commands_at_breakpoint (pc))
4559 {
4560 if (debug_threads)
4561 debug_printf ("Need step over [LWP %ld]? yes, but found"
4562 " GDB breakpoint at 0x%s; skipping step over\n",
4563 lwpid_of (thread), paddress (pc));
4564
4565 current_thread = saved_thread;
4566 return false;
4567 }
4568 else
4569 {
4570 if (debug_threads)
4571 debug_printf ("Need step over [LWP %ld]? yes, "
4572 "found breakpoint at 0x%s\n",
4573 lwpid_of (thread), paddress (pc));
4574
4575 /* We've found an lwp that needs stepping over --- return 1 so
4576 that find_thread stops looking. */
4577 current_thread = saved_thread;
4578
4579 return true;
4580 }
4581 }
4582
4583 current_thread = saved_thread;
4584
4585 if (debug_threads)
4586 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4587 " at 0x%s\n",
4588 lwpid_of (thread), paddress (pc));
4589
4590 return false;
4591 }
4592
4593 void
4594 linux_process_target::start_step_over (lwp_info *lwp)
4595 {
4596 struct thread_info *thread = get_lwp_thread (lwp);
4597 struct thread_info *saved_thread;
4598 CORE_ADDR pc;
4599 int step;
4600
4601 if (debug_threads)
4602 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4603 lwpid_of (thread));
4604
4605 stop_all_lwps (1, lwp);
4606
4607 if (lwp->suspended != 0)
4608 {
4609 internal_error (__FILE__, __LINE__,
4610 "LWP %ld suspended=%d\n", lwpid_of (thread),
4611 lwp->suspended);
4612 }
4613
4614 if (debug_threads)
4615 debug_printf ("Done stopping all threads for step-over.\n");
4616
4617 /* Note, we should always reach here with an already adjusted PC,
4618 either by GDB (if we're resuming due to GDB's request), or by our
4619 caller, if we just finished handling an internal breakpoint GDB
4620 shouldn't care about. */
4621 pc = get_pc (lwp);
4622
4623 saved_thread = current_thread;
4624 current_thread = thread;
4625
4626 lwp->bp_reinsert = pc;
4627 uninsert_breakpoints_at (pc);
4628 uninsert_fast_tracepoint_jumps_at (pc);
4629
4630 step = single_step (lwp);
4631
4632 current_thread = saved_thread;
4633
4634 resume_one_lwp (lwp, step, 0, NULL);
4635
4636 /* Require next event from this LWP. */
4637 step_over_bkpt = thread->id;
4638 }
4639
4640 bool
4641 linux_process_target::finish_step_over (lwp_info *lwp)
4642 {
4643 if (lwp->bp_reinsert != 0)
4644 {
4645 struct thread_info *saved_thread = current_thread;
4646
4647 if (debug_threads)
4648 debug_printf ("Finished step over.\n");
4649
4650 current_thread = get_lwp_thread (lwp);
4651
4652 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4653 may be no breakpoint to reinsert there by now. */
4654 reinsert_breakpoints_at (lwp->bp_reinsert);
4655 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4656
4657 lwp->bp_reinsert = 0;
4658
4659 /* Delete any single-step breakpoints. No longer needed. We
4660 don't have to worry about other threads hitting this trap,
4661 and later not being able to explain it, because we were
4662 stepping over a breakpoint, and we hold all threads but
4663 LWP stopped while doing that. */
4664 if (!supports_hardware_single_step ())
4665 {
4666 gdb_assert (has_single_step_breakpoints (current_thread));
4667 delete_single_step_breakpoints (current_thread);
4668 }
4669
4670 step_over_bkpt = null_ptid;
4671 current_thread = saved_thread;
4672 return true;
4673 }
4674 else
4675 return false;
4676 }
4677
4678 void
4679 linux_process_target::complete_ongoing_step_over ()
4680 {
4681 if (step_over_bkpt != null_ptid)
4682 {
4683 struct lwp_info *lwp;
4684 int wstat;
4685 int ret;
4686
4687 if (debug_threads)
4688 debug_printf ("detach: step over in progress, finish it first\n");
4689
4690 /* Passing NULL_PTID as filter indicates we want all events to
4691 be left pending. Eventually this returns when there are no
4692 unwaited-for children left. */
4693 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat,
4694 __WALL);
4695 gdb_assert (ret == -1);
4696
4697 lwp = find_lwp_pid (step_over_bkpt);
4698 if (lwp != NULL)
4699 finish_step_over (lwp);
4700 step_over_bkpt = null_ptid;
4701 unsuspend_all_lwps (lwp);
4702 }
4703 }
4704
4705 void
4706 linux_process_target::resume_one_thread (thread_info *thread,
4707 bool leave_all_stopped)
4708 {
4709 struct lwp_info *lwp = get_thread_lwp (thread);
4710 int leave_pending;
4711
4712 if (lwp->resume == NULL)
4713 return;
4714
4715 if (lwp->resume->kind == resume_stop)
4716 {
4717 if (debug_threads)
4718 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4719
4720 if (!lwp->stopped)
4721 {
4722 if (debug_threads)
4723 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4724
4725 /* Stop the thread, and wait for the event asynchronously,
4726 through the event loop. */
4727 send_sigstop (lwp);
4728 }
4729 else
4730 {
4731 if (debug_threads)
4732 debug_printf ("already stopped LWP %ld\n",
4733 lwpid_of (thread));
4734
4735 /* The LWP may have been stopped in an internal event that
4736 was not meant to be notified back to GDB (e.g., gdbserver
4737 breakpoint), so we should be reporting a stop event in
4738 this case too. */
4739
4740 /* If the thread already has a pending SIGSTOP, this is a
4741 no-op. Otherwise, something later will presumably resume
4742 the thread and this will cause it to cancel any pending
4743 operation, due to last_resume_kind == resume_stop. If
4744 the thread already has a pending status to report, we
4745 will still report it the next time we wait - see
4746 status_pending_p_callback. */
4747
4748 /* If we already have a pending signal to report, then
4749 there's no need to queue a SIGSTOP, as this means we're
4750 midway through moving the LWP out of the jumppad, and we
4751 will report the pending signal as soon as that is
4752 finished. */
4753 if (lwp->pending_signals_to_report.empty ())
4754 send_sigstop (lwp);
4755 }
4756
4757 /* For stop requests, we're done. */
4758 lwp->resume = NULL;
4759 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4760 return;
4761 }
4762
4763 /* If this thread which is about to be resumed has a pending status,
4764 then don't resume it - we can just report the pending status.
4765 Likewise if it is suspended, because e.g., another thread is
4766 stepping past a breakpoint. Make sure to queue any signals that
4767 would otherwise be sent. In all-stop mode, we do this decision
4768 based on if *any* thread has a pending status. If there's a
4769 thread that needs the step-over-breakpoint dance, then don't
4770 resume any other thread but that particular one. */
4771 leave_pending = (lwp->suspended
4772 || lwp->status_pending_p
4773 || leave_all_stopped);
4774
4775 /* If we have a new signal, enqueue the signal. */
4776 if (lwp->resume->sig != 0)
4777 {
4778 siginfo_t info, *info_p;
4779
4780 /* If this is the same signal we were previously stopped by,
4781 make sure to queue its siginfo. */
4782 if (WIFSTOPPED (lwp->last_status)
4783 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4784 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4785 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4786 info_p = &info;
4787 else
4788 info_p = NULL;
4789
4790 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4791 }
4792
4793 if (!leave_pending)
4794 {
4795 if (debug_threads)
4796 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4797
4798 proceed_one_lwp (thread, NULL);
4799 }
4800 else
4801 {
4802 if (debug_threads)
4803 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4804 }
4805
4806 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4807 lwp->resume = NULL;
4808 }
4809
4810 void
4811 linux_process_target::resume (thread_resume *resume_info, size_t n)
4812 {
4813 struct thread_info *need_step_over = NULL;
4814
4815 if (debug_threads)
4816 {
4817 debug_enter ();
4818 debug_printf ("linux_resume:\n");
4819 }
4820
4821 for_each_thread ([&] (thread_info *thread)
4822 {
4823 linux_set_resume_request (thread, resume_info, n);
4824 });
4825
4826 /* If there is a thread which would otherwise be resumed, which has
4827 a pending status, then don't resume any threads - we can just
4828 report the pending status. Make sure to queue any signals that
4829 would otherwise be sent. In non-stop mode, we'll apply this
4830 logic to each thread individually. We consume all pending events
4831 before considering to start a step-over (in all-stop). */
4832 bool any_pending = false;
4833 if (!non_stop)
4834 any_pending = find_thread ([this] (thread_info *thread)
4835 {
4836 return resume_status_pending (thread);
4837 }) != nullptr;
4838
4839 /* If there is a thread which would otherwise be resumed, which is
4840 stopped at a breakpoint that needs stepping over, then don't
4841 resume any threads - have it step over the breakpoint with all
4842 other threads stopped, then resume all threads again. Make sure
4843 to queue any signals that would otherwise be delivered or
4844 queued. */
4845 if (!any_pending && low_supports_breakpoints ())
4846 need_step_over = find_thread ([this] (thread_info *thread)
4847 {
4848 return thread_needs_step_over (thread);
4849 });
4850
4851 bool leave_all_stopped = (need_step_over != NULL || any_pending);
4852
4853 if (debug_threads)
4854 {
4855 if (need_step_over != NULL)
4856 debug_printf ("Not resuming all, need step over\n");
4857 else if (any_pending)
4858 debug_printf ("Not resuming, all-stop and found "
4859 "an LWP with pending status\n");
4860 else
4861 debug_printf ("Resuming, no pending status or step over needed\n");
4862 }
4863
4864 /* Even if we're leaving threads stopped, queue all signals we'd
4865 otherwise deliver. */
4866 for_each_thread ([&] (thread_info *thread)
4867 {
4868 resume_one_thread (thread, leave_all_stopped);
4869 });
4870
4871 if (need_step_over)
4872 start_step_over (get_thread_lwp (need_step_over));
4873
4874 if (debug_threads)
4875 {
4876 debug_printf ("linux_resume done\n");
4877 debug_exit ();
4878 }
4879
4880 /* We may have events that were pending that can/should be sent to
4881 the client now. Trigger a linux_wait call. */
4882 if (target_is_async_p ())
4883 async_file_mark ();
4884 }
4885
4886 void
4887 linux_process_target::proceed_one_lwp (thread_info *thread, lwp_info *except)
4888 {
4889 struct lwp_info *lwp = get_thread_lwp (thread);
4890 int step;
4891
4892 if (lwp == except)
4893 return;
4894
4895 if (debug_threads)
4896 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4897
4898 if (!lwp->stopped)
4899 {
4900 if (debug_threads)
4901 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4902 return;
4903 }
4904
4905 if (thread->last_resume_kind == resume_stop
4906 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4907 {
4908 if (debug_threads)
4909 debug_printf (" client wants LWP to remain %ld stopped\n",
4910 lwpid_of (thread));
4911 return;
4912 }
4913
4914 if (lwp->status_pending_p)
4915 {
4916 if (debug_threads)
4917 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4918 lwpid_of (thread));
4919 return;
4920 }
4921
4922 gdb_assert (lwp->suspended >= 0);
4923
4924 if (lwp->suspended)
4925 {
4926 if (debug_threads)
4927 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4928 return;
4929 }
4930
4931 if (thread->last_resume_kind == resume_stop
4932 && lwp->pending_signals_to_report.empty ()
4933 && (lwp->collecting_fast_tracepoint
4934 == fast_tpoint_collect_result::not_collecting))
4935 {
4936 /* We haven't reported this LWP as stopped yet (otherwise, the
4937 last_status.kind check above would catch it, and we wouldn't
4938 reach here. This LWP may have been momentarily paused by a
4939 stop_all_lwps call while handling for example, another LWP's
4940 step-over. In that case, the pending expected SIGSTOP signal
4941 that was queued at vCont;t handling time will have already
4942 been consumed by wait_for_sigstop, and so we need to requeue
4943 another one here. Note that if the LWP already has a SIGSTOP
4944 pending, this is a no-op. */
4945
4946 if (debug_threads)
4947 debug_printf ("Client wants LWP %ld to stop. "
4948 "Making sure it has a SIGSTOP pending\n",
4949 lwpid_of (thread));
4950
4951 send_sigstop (lwp);
4952 }
4953
4954 if (thread->last_resume_kind == resume_step)
4955 {
4956 if (debug_threads)
4957 debug_printf (" stepping LWP %ld, client wants it stepping\n",
4958 lwpid_of (thread));
4959
4960 /* If resume_step is requested by GDB, install single-step
4961 breakpoints when the thread is about to be actually resumed if
4962 the single-step breakpoints weren't removed. */
4963 if (supports_software_single_step ()
4964 && !has_single_step_breakpoints (thread))
4965 install_software_single_step_breakpoints (lwp);
4966
4967 step = maybe_hw_step (thread);
4968 }
4969 else if (lwp->bp_reinsert != 0)
4970 {
4971 if (debug_threads)
4972 debug_printf (" stepping LWP %ld, reinsert set\n",
4973 lwpid_of (thread));
4974
4975 step = maybe_hw_step (thread);
4976 }
4977 else
4978 step = 0;
4979
4980 resume_one_lwp (lwp, step, 0, NULL);
4981 }
4982
4983 void
4984 linux_process_target::unsuspend_and_proceed_one_lwp (thread_info *thread,
4985 lwp_info *except)
4986 {
4987 struct lwp_info *lwp = get_thread_lwp (thread);
4988
4989 if (lwp == except)
4990 return;
4991
4992 lwp_suspended_decr (lwp);
4993
4994 proceed_one_lwp (thread, except);
4995 }
4996
4997 void
4998 linux_process_target::proceed_all_lwps ()
4999 {
5000 struct thread_info *need_step_over;
5001
5002 /* If there is a thread which would otherwise be resumed, which is
5003 stopped at a breakpoint that needs stepping over, then don't
5004 resume any threads - have it step over the breakpoint with all
5005 other threads stopped, then resume all threads again. */
5006
5007 if (low_supports_breakpoints ())
5008 {
5009 need_step_over = find_thread ([this] (thread_info *thread)
5010 {
5011 return thread_needs_step_over (thread);
5012 });
5013
5014 if (need_step_over != NULL)
5015 {
5016 if (debug_threads)
5017 debug_printf ("proceed_all_lwps: found "
5018 "thread %ld needing a step-over\n",
5019 lwpid_of (need_step_over));
5020
5021 start_step_over (get_thread_lwp (need_step_over));
5022 return;
5023 }
5024 }
5025
5026 if (debug_threads)
5027 debug_printf ("Proceeding, no step-over needed\n");
5028
5029 for_each_thread ([this] (thread_info *thread)
5030 {
5031 proceed_one_lwp (thread, NULL);
5032 });
5033 }
5034
5035 void
5036 linux_process_target::unstop_all_lwps (int unsuspend, lwp_info *except)
5037 {
5038 if (debug_threads)
5039 {
5040 debug_enter ();
5041 if (except)
5042 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5043 lwpid_of (get_lwp_thread (except)));
5044 else
5045 debug_printf ("unstopping all lwps\n");
5046 }
5047
5048 if (unsuspend)
5049 for_each_thread ([&] (thread_info *thread)
5050 {
5051 unsuspend_and_proceed_one_lwp (thread, except);
5052 });
5053 else
5054 for_each_thread ([&] (thread_info *thread)
5055 {
5056 proceed_one_lwp (thread, except);
5057 });
5058
5059 if (debug_threads)
5060 {
5061 debug_printf ("unstop_all_lwps done\n");
5062 debug_exit ();
5063 }
5064 }
5065
5066
5067 #ifdef HAVE_LINUX_REGSETS
5068
5069 #define use_linux_regsets 1
5070
5071 /* Returns true if REGSET has been disabled. */
5072
5073 static int
5074 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5075 {
5076 return (info->disabled_regsets != NULL
5077 && info->disabled_regsets[regset - info->regsets]);
5078 }
5079
5080 /* Disable REGSET. */
5081
5082 static void
5083 disable_regset (struct regsets_info *info, struct regset_info *regset)
5084 {
5085 int dr_offset;
5086
5087 dr_offset = regset - info->regsets;
5088 if (info->disabled_regsets == NULL)
5089 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5090 info->disabled_regsets[dr_offset] = 1;
5091 }
5092
5093 static int
5094 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5095 struct regcache *regcache)
5096 {
5097 struct regset_info *regset;
5098 int saw_general_regs = 0;
5099 int pid;
5100 struct iovec iov;
5101
5102 pid = lwpid_of (current_thread);
5103 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5104 {
5105 void *buf, *data;
5106 int nt_type, res;
5107
5108 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5109 continue;
5110
5111 buf = xmalloc (regset->size);
5112
5113 nt_type = regset->nt_type;
5114 if (nt_type)
5115 {
5116 iov.iov_base = buf;
5117 iov.iov_len = regset->size;
5118 data = (void *) &iov;
5119 }
5120 else
5121 data = buf;
5122
5123 #ifndef __sparc__
5124 res = ptrace (regset->get_request, pid,
5125 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5126 #else
5127 res = ptrace (regset->get_request, pid, data, nt_type);
5128 #endif
5129 if (res < 0)
5130 {
5131 if (errno == EIO
5132 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5133 {
5134 /* If we get EIO on a regset, or an EINVAL and the regset is
5135 optional, do not try it again for this process mode. */
5136 disable_regset (regsets_info, regset);
5137 }
5138 else if (errno == ENODATA)
5139 {
5140 /* ENODATA may be returned if the regset is currently
5141 not "active". This can happen in normal operation,
5142 so suppress the warning in this case. */
5143 }
5144 else if (errno == ESRCH)
5145 {
5146 /* At this point, ESRCH should mean the process is
5147 already gone, in which case we simply ignore attempts
5148 to read its registers. */
5149 }
5150 else
5151 {
5152 char s[256];
5153 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5154 pid);
5155 perror (s);
5156 }
5157 }
5158 else
5159 {
5160 if (regset->type == GENERAL_REGS)
5161 saw_general_regs = 1;
5162 regset->store_function (regcache, buf);
5163 }
5164 free (buf);
5165 }
5166 if (saw_general_regs)
5167 return 0;
5168 else
5169 return 1;
5170 }
5171
5172 static int
5173 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5174 struct regcache *regcache)
5175 {
5176 struct regset_info *regset;
5177 int saw_general_regs = 0;
5178 int pid;
5179 struct iovec iov;
5180
5181 pid = lwpid_of (current_thread);
5182 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5183 {
5184 void *buf, *data;
5185 int nt_type, res;
5186
5187 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5188 || regset->fill_function == NULL)
5189 continue;
5190
5191 buf = xmalloc (regset->size);
5192
5193 /* First fill the buffer with the current register set contents,
5194 in case there are any items in the kernel's regset that are
5195 not in gdbserver's regcache. */
5196
5197 nt_type = regset->nt_type;
5198 if (nt_type)
5199 {
5200 iov.iov_base = buf;
5201 iov.iov_len = regset->size;
5202 data = (void *) &iov;
5203 }
5204 else
5205 data = buf;
5206
5207 #ifndef __sparc__
5208 res = ptrace (regset->get_request, pid,
5209 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5210 #else
5211 res = ptrace (regset->get_request, pid, data, nt_type);
5212 #endif
5213
5214 if (res == 0)
5215 {
5216 /* Then overlay our cached registers on that. */
5217 regset->fill_function (regcache, buf);
5218
5219 /* Only now do we write the register set. */
5220 #ifndef __sparc__
5221 res = ptrace (regset->set_request, pid,
5222 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5223 #else
5224 res = ptrace (regset->set_request, pid, data, nt_type);
5225 #endif
5226 }
5227
5228 if (res < 0)
5229 {
5230 if (errno == EIO
5231 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5232 {
5233 /* If we get EIO on a regset, or an EINVAL and the regset is
5234 optional, do not try it again for this process mode. */
5235 disable_regset (regsets_info, regset);
5236 }
5237 else if (errno == ESRCH)
5238 {
5239 /* At this point, ESRCH should mean the process is
5240 already gone, in which case we simply ignore attempts
5241 to change its registers. See also the related
5242 comment in resume_one_lwp. */
5243 free (buf);
5244 return 0;
5245 }
5246 else
5247 {
5248 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5249 }
5250 }
5251 else if (regset->type == GENERAL_REGS)
5252 saw_general_regs = 1;
5253 free (buf);
5254 }
5255 if (saw_general_regs)
5256 return 0;
5257 else
5258 return 1;
5259 }
5260
5261 #else /* !HAVE_LINUX_REGSETS */
5262
5263 #define use_linux_regsets 0
5264 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5265 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5266
5267 #endif
5268
5269 /* Return 1 if register REGNO is supported by one of the regset ptrace
5270 calls or 0 if it has to be transferred individually. */
5271
5272 static int
5273 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5274 {
5275 unsigned char mask = 1 << (regno % 8);
5276 size_t index = regno / 8;
5277
5278 return (use_linux_regsets
5279 && (regs_info->regset_bitmap == NULL
5280 || (regs_info->regset_bitmap[index] & mask) != 0));
5281 }
5282
5283 #ifdef HAVE_LINUX_USRREGS
5284
5285 static int
5286 register_addr (const struct usrregs_info *usrregs, int regnum)
5287 {
5288 int addr;
5289
5290 if (regnum < 0 || regnum >= usrregs->num_regs)
5291 error ("Invalid register number %d.", regnum);
5292
5293 addr = usrregs->regmap[regnum];
5294
5295 return addr;
5296 }
5297
5298
5299 void
5300 linux_process_target::fetch_register (const usrregs_info *usrregs,
5301 regcache *regcache, int regno)
5302 {
5303 CORE_ADDR regaddr;
5304 int i, size;
5305 char *buf;
5306 int pid;
5307
5308 if (regno >= usrregs->num_regs)
5309 return;
5310 if (low_cannot_fetch_register (regno))
5311 return;
5312
5313 regaddr = register_addr (usrregs, regno);
5314 if (regaddr == -1)
5315 return;
5316
5317 size = ((register_size (regcache->tdesc, regno)
5318 + sizeof (PTRACE_XFER_TYPE) - 1)
5319 & -sizeof (PTRACE_XFER_TYPE));
5320 buf = (char *) alloca (size);
5321
5322 pid = lwpid_of (current_thread);
5323 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5324 {
5325 errno = 0;
5326 *(PTRACE_XFER_TYPE *) (buf + i) =
5327 ptrace (PTRACE_PEEKUSER, pid,
5328 /* Coerce to a uintptr_t first to avoid potential gcc warning
5329 of coercing an 8 byte integer to a 4 byte pointer. */
5330 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5331 regaddr += sizeof (PTRACE_XFER_TYPE);
5332 if (errno != 0)
5333 {
5334 /* Mark register REGNO unavailable. */
5335 supply_register (regcache, regno, NULL);
5336 return;
5337 }
5338 }
5339
5340 low_supply_ptrace_register (regcache, regno, buf);
5341 }
5342
5343 void
5344 linux_process_target::store_register (const usrregs_info *usrregs,
5345 regcache *regcache, int regno)
5346 {
5347 CORE_ADDR regaddr;
5348 int i, size;
5349 char *buf;
5350 int pid;
5351
5352 if (regno >= usrregs->num_regs)
5353 return;
5354 if (low_cannot_store_register (regno))
5355 return;
5356
5357 regaddr = register_addr (usrregs, regno);
5358 if (regaddr == -1)
5359 return;
5360
5361 size = ((register_size (regcache->tdesc, regno)
5362 + sizeof (PTRACE_XFER_TYPE) - 1)
5363 & -sizeof (PTRACE_XFER_TYPE));
5364 buf = (char *) alloca (size);
5365 memset (buf, 0, size);
5366
5367 low_collect_ptrace_register (regcache, regno, buf);
5368
5369 pid = lwpid_of (current_thread);
5370 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5371 {
5372 errno = 0;
5373 ptrace (PTRACE_POKEUSER, pid,
5374 /* Coerce to a uintptr_t first to avoid potential gcc warning
5375 about coercing an 8 byte integer to a 4 byte pointer. */
5376 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5377 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5378 if (errno != 0)
5379 {
5380 /* At this point, ESRCH should mean the process is
5381 already gone, in which case we simply ignore attempts
5382 to change its registers. See also the related
5383 comment in resume_one_lwp. */
5384 if (errno == ESRCH)
5385 return;
5386
5387
5388 if (!low_cannot_store_register (regno))
5389 error ("writing register %d: %s", regno, safe_strerror (errno));
5390 }
5391 regaddr += sizeof (PTRACE_XFER_TYPE);
5392 }
5393 }
5394 #endif /* HAVE_LINUX_USRREGS */
5395
5396 void
5397 linux_process_target::low_collect_ptrace_register (regcache *regcache,
5398 int regno, char *buf)
5399 {
5400 collect_register (regcache, regno, buf);
5401 }
5402
5403 void
5404 linux_process_target::low_supply_ptrace_register (regcache *regcache,
5405 int regno, const char *buf)
5406 {
5407 supply_register (regcache, regno, buf);
5408 }
5409
5410 void
5411 linux_process_target::usr_fetch_inferior_registers (const regs_info *regs_info,
5412 regcache *regcache,
5413 int regno, int all)
5414 {
5415 #ifdef HAVE_LINUX_USRREGS
5416 struct usrregs_info *usr = regs_info->usrregs;
5417
5418 if (regno == -1)
5419 {
5420 for (regno = 0; regno < usr->num_regs; regno++)
5421 if (all || !linux_register_in_regsets (regs_info, regno))
5422 fetch_register (usr, regcache, regno);
5423 }
5424 else
5425 fetch_register (usr, regcache, regno);
5426 #endif
5427 }
5428
5429 void
5430 linux_process_target::usr_store_inferior_registers (const regs_info *regs_info,
5431 regcache *regcache,
5432 int regno, int all)
5433 {
5434 #ifdef HAVE_LINUX_USRREGS
5435 struct usrregs_info *usr = regs_info->usrregs;
5436
5437 if (regno == -1)
5438 {
5439 for (regno = 0; regno < usr->num_regs; regno++)
5440 if (all || !linux_register_in_regsets (regs_info, regno))
5441 store_register (usr, regcache, regno);
5442 }
5443 else
5444 store_register (usr, regcache, regno);
5445 #endif
5446 }
5447
5448 void
5449 linux_process_target::fetch_registers (regcache *regcache, int regno)
5450 {
5451 int use_regsets;
5452 int all = 0;
5453 const regs_info *regs_info = get_regs_info ();
5454
5455 if (regno == -1)
5456 {
5457 if (regs_info->usrregs != NULL)
5458 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5459 low_fetch_register (regcache, regno);
5460
5461 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5462 if (regs_info->usrregs != NULL)
5463 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5464 }
5465 else
5466 {
5467 if (low_fetch_register (regcache, regno))
5468 return;
5469
5470 use_regsets = linux_register_in_regsets (regs_info, regno);
5471 if (use_regsets)
5472 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5473 regcache);
5474 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5475 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5476 }
5477 }
5478
5479 void
5480 linux_process_target::store_registers (regcache *regcache, int regno)
5481 {
5482 int use_regsets;
5483 int all = 0;
5484 const regs_info *regs_info = get_regs_info ();
5485
5486 if (regno == -1)
5487 {
5488 all = regsets_store_inferior_registers (regs_info->regsets_info,
5489 regcache);
5490 if (regs_info->usrregs != NULL)
5491 usr_store_inferior_registers (regs_info, regcache, regno, all);
5492 }
5493 else
5494 {
5495 use_regsets = linux_register_in_regsets (regs_info, regno);
5496 if (use_regsets)
5497 all = regsets_store_inferior_registers (regs_info->regsets_info,
5498 regcache);
5499 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5500 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5501 }
5502 }
5503
5504 bool
5505 linux_process_target::low_fetch_register (regcache *regcache, int regno)
5506 {
5507 return false;
5508 }
5509
5510 /* A wrapper for the read_memory target op. */
5511
5512 static int
5513 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5514 {
5515 return the_target->read_memory (memaddr, myaddr, len);
5516 }
5517
5518 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5519 to debugger memory starting at MYADDR. */
5520
5521 int
5522 linux_process_target::read_memory (CORE_ADDR memaddr,
5523 unsigned char *myaddr, int len)
5524 {
5525 int pid = lwpid_of (current_thread);
5526 PTRACE_XFER_TYPE *buffer;
5527 CORE_ADDR addr;
5528 int count;
5529 char filename[64];
5530 int i;
5531 int ret;
5532 int fd;
5533
5534 /* Try using /proc. Don't bother for one word. */
5535 if (len >= 3 * sizeof (long))
5536 {
5537 int bytes;
5538
5539 /* We could keep this file open and cache it - possibly one per
5540 thread. That requires some juggling, but is even faster. */
5541 sprintf (filename, "/proc/%d/mem", pid);
5542 fd = open (filename, O_RDONLY | O_LARGEFILE);
5543 if (fd == -1)
5544 goto no_proc;
5545
5546 /* If pread64 is available, use it. It's faster if the kernel
5547 supports it (only one syscall), and it's 64-bit safe even on
5548 32-bit platforms (for instance, SPARC debugging a SPARC64
5549 application). */
5550 #ifdef HAVE_PREAD64
5551 bytes = pread64 (fd, myaddr, len, memaddr);
5552 #else
5553 bytes = -1;
5554 if (lseek (fd, memaddr, SEEK_SET) != -1)
5555 bytes = read (fd, myaddr, len);
5556 #endif
5557
5558 close (fd);
5559 if (bytes == len)
5560 return 0;
5561
5562 /* Some data was read, we'll try to get the rest with ptrace. */
5563 if (bytes > 0)
5564 {
5565 memaddr += bytes;
5566 myaddr += bytes;
5567 len -= bytes;
5568 }
5569 }
5570
5571 no_proc:
5572 /* Round starting address down to longword boundary. */
5573 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5574 /* Round ending address up; get number of longwords that makes. */
5575 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5576 / sizeof (PTRACE_XFER_TYPE));
5577 /* Allocate buffer of that many longwords. */
5578 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5579
5580 /* Read all the longwords */
5581 errno = 0;
5582 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5583 {
5584 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5585 about coercing an 8 byte integer to a 4 byte pointer. */
5586 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5587 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5588 (PTRACE_TYPE_ARG4) 0);
5589 if (errno)
5590 break;
5591 }
5592 ret = errno;
5593
5594 /* Copy appropriate bytes out of the buffer. */
5595 if (i > 0)
5596 {
5597 i *= sizeof (PTRACE_XFER_TYPE);
5598 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5599 memcpy (myaddr,
5600 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5601 i < len ? i : len);
5602 }
5603
5604 return ret;
5605 }
5606
5607 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5608 memory at MEMADDR. On failure (cannot write to the inferior)
5609 returns the value of errno. Always succeeds if LEN is zero. */
5610
5611 int
5612 linux_process_target::write_memory (CORE_ADDR memaddr,
5613 const unsigned char *myaddr, int len)
5614 {
5615 int i;
5616 /* Round starting address down to longword boundary. */
5617 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5618 /* Round ending address up; get number of longwords that makes. */
5619 int count
5620 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5621 / sizeof (PTRACE_XFER_TYPE);
5622
5623 /* Allocate buffer of that many longwords. */
5624 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5625
5626 int pid = lwpid_of (current_thread);
5627
5628 if (len == 0)
5629 {
5630 /* Zero length write always succeeds. */
5631 return 0;
5632 }
5633
5634 if (debug_threads)
5635 {
5636 /* Dump up to four bytes. */
5637 char str[4 * 2 + 1];
5638 char *p = str;
5639 int dump = len < 4 ? len : 4;
5640
5641 for (i = 0; i < dump; i++)
5642 {
5643 sprintf (p, "%02x", myaddr[i]);
5644 p += 2;
5645 }
5646 *p = '\0';
5647
5648 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5649 str, (long) memaddr, pid);
5650 }
5651
5652 /* Fill start and end extra bytes of buffer with existing memory data. */
5653
5654 errno = 0;
5655 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5656 about coercing an 8 byte integer to a 4 byte pointer. */
5657 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5658 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5659 (PTRACE_TYPE_ARG4) 0);
5660 if (errno)
5661 return errno;
5662
5663 if (count > 1)
5664 {
5665 errno = 0;
5666 buffer[count - 1]
5667 = ptrace (PTRACE_PEEKTEXT, pid,
5668 /* Coerce to a uintptr_t first to avoid potential gcc warning
5669 about coercing an 8 byte integer to a 4 byte pointer. */
5670 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5671 * sizeof (PTRACE_XFER_TYPE)),
5672 (PTRACE_TYPE_ARG4) 0);
5673 if (errno)
5674 return errno;
5675 }
5676
5677 /* Copy data to be written over corresponding part of buffer. */
5678
5679 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5680 myaddr, len);
5681
5682 /* Write the entire buffer. */
5683
5684 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5685 {
5686 errno = 0;
5687 ptrace (PTRACE_POKETEXT, pid,
5688 /* Coerce to a uintptr_t first to avoid potential gcc warning
5689 about coercing an 8 byte integer to a 4 byte pointer. */
5690 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5691 (PTRACE_TYPE_ARG4) buffer[i]);
5692 if (errno)
5693 return errno;
5694 }
5695
5696 return 0;
5697 }
5698
5699 void
5700 linux_process_target::look_up_symbols ()
5701 {
5702 #ifdef USE_THREAD_DB
5703 struct process_info *proc = current_process ();
5704
5705 if (proc->priv->thread_db != NULL)
5706 return;
5707
5708 thread_db_init ();
5709 #endif
5710 }
5711
5712 void
5713 linux_process_target::request_interrupt ()
5714 {
5715 /* Send a SIGINT to the process group. This acts just like the user
5716 typed a ^C on the controlling terminal. */
5717 ::kill (-signal_pid, SIGINT);
5718 }
5719
5720 bool
5721 linux_process_target::supports_read_auxv ()
5722 {
5723 return true;
5724 }
5725
5726 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5727 to debugger memory starting at MYADDR. */
5728
5729 int
5730 linux_process_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr,
5731 unsigned int len)
5732 {
5733 char filename[PATH_MAX];
5734 int fd, n;
5735 int pid = lwpid_of (current_thread);
5736
5737 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5738
5739 fd = open (filename, O_RDONLY);
5740 if (fd < 0)
5741 return -1;
5742
5743 if (offset != (CORE_ADDR) 0
5744 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5745 n = -1;
5746 else
5747 n = read (fd, myaddr, len);
5748
5749 close (fd);
5750
5751 return n;
5752 }
5753
5754 int
5755 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5756 int size, raw_breakpoint *bp)
5757 {
5758 if (type == raw_bkpt_type_sw)
5759 return insert_memory_breakpoint (bp);
5760 else
5761 return low_insert_point (type, addr, size, bp);
5762 }
5763
5764 int
5765 linux_process_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
5766 int size, raw_breakpoint *bp)
5767 {
5768 /* Unsupported (see target.h). */
5769 return 1;
5770 }
5771
5772 int
5773 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5774 int size, raw_breakpoint *bp)
5775 {
5776 if (type == raw_bkpt_type_sw)
5777 return remove_memory_breakpoint (bp);
5778 else
5779 return low_remove_point (type, addr, size, bp);
5780 }
5781
5782 int
5783 linux_process_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
5784 int size, raw_breakpoint *bp)
5785 {
5786 /* Unsupported (see target.h). */
5787 return 1;
5788 }
5789
5790 /* Implement the stopped_by_sw_breakpoint target_ops
5791 method. */
5792
5793 bool
5794 linux_process_target::stopped_by_sw_breakpoint ()
5795 {
5796 struct lwp_info *lwp = get_thread_lwp (current_thread);
5797
5798 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5799 }
5800
5801 /* Implement the supports_stopped_by_sw_breakpoint target_ops
5802 method. */
5803
5804 bool
5805 linux_process_target::supports_stopped_by_sw_breakpoint ()
5806 {
5807 return USE_SIGTRAP_SIGINFO;
5808 }
5809
5810 /* Implement the stopped_by_hw_breakpoint target_ops
5811 method. */
5812
5813 bool
5814 linux_process_target::stopped_by_hw_breakpoint ()
5815 {
5816 struct lwp_info *lwp = get_thread_lwp (current_thread);
5817
5818 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5819 }
5820
5821 /* Implement the supports_stopped_by_hw_breakpoint target_ops
5822 method. */
5823
5824 bool
5825 linux_process_target::supports_stopped_by_hw_breakpoint ()
5826 {
5827 return USE_SIGTRAP_SIGINFO;
5828 }
5829
5830 /* Implement the supports_hardware_single_step target_ops method. */
5831
5832 bool
5833 linux_process_target::supports_hardware_single_step ()
5834 {
5835 return true;
5836 }
5837
5838 bool
5839 linux_process_target::stopped_by_watchpoint ()
5840 {
5841 struct lwp_info *lwp = get_thread_lwp (current_thread);
5842
5843 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5844 }
5845
5846 CORE_ADDR
5847 linux_process_target::stopped_data_address ()
5848 {
5849 struct lwp_info *lwp = get_thread_lwp (current_thread);
5850
5851 return lwp->stopped_data_address;
5852 }
5853
5854 /* This is only used for targets that define PT_TEXT_ADDR,
5855 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5856 the target has different ways of acquiring this information, like
5857 loadmaps. */
5858
5859 bool
5860 linux_process_target::supports_read_offsets ()
5861 {
5862 #ifdef SUPPORTS_READ_OFFSETS
5863 return true;
5864 #else
5865 return false;
5866 #endif
5867 }
5868
5869 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5870 to tell gdb about. */
5871
5872 int
5873 linux_process_target::read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5874 {
5875 #ifdef SUPPORTS_READ_OFFSETS
5876 unsigned long text, text_end, data;
5877 int pid = lwpid_of (current_thread);
5878
5879 errno = 0;
5880
5881 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5882 (PTRACE_TYPE_ARG4) 0);
5883 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5884 (PTRACE_TYPE_ARG4) 0);
5885 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5886 (PTRACE_TYPE_ARG4) 0);
5887
5888 if (errno == 0)
5889 {
5890 /* Both text and data offsets produced at compile-time (and so
5891 used by gdb) are relative to the beginning of the program,
5892 with the data segment immediately following the text segment.
5893 However, the actual runtime layout in memory may put the data
5894 somewhere else, so when we send gdb a data base-address, we
5895 use the real data base address and subtract the compile-time
5896 data base-address from it (which is just the length of the
5897 text segment). BSS immediately follows data in both
5898 cases. */
5899 *text_p = text;
5900 *data_p = data - (text_end - text);
5901
5902 return 1;
5903 }
5904 return 0;
5905 #else
5906 gdb_assert_not_reached ("target op read_offsets not supported");
5907 #endif
5908 }
5909
5910 bool
5911 linux_process_target::supports_get_tls_address ()
5912 {
5913 #ifdef USE_THREAD_DB
5914 return true;
5915 #else
5916 return false;
5917 #endif
5918 }
5919
5920 int
5921 linux_process_target::get_tls_address (thread_info *thread,
5922 CORE_ADDR offset,
5923 CORE_ADDR load_module,
5924 CORE_ADDR *address)
5925 {
5926 #ifdef USE_THREAD_DB
5927 return thread_db_get_tls_address (thread, offset, load_module, address);
5928 #else
5929 return -1;
5930 #endif
5931 }
5932
5933 bool
5934 linux_process_target::supports_qxfer_osdata ()
5935 {
5936 return true;
5937 }
5938
5939 int
5940 linux_process_target::qxfer_osdata (const char *annex,
5941 unsigned char *readbuf,
5942 unsigned const char *writebuf,
5943 CORE_ADDR offset, int len)
5944 {
5945 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5946 }
5947
5948 void
5949 linux_process_target::siginfo_fixup (siginfo_t *siginfo,
5950 gdb_byte *inf_siginfo, int direction)
5951 {
5952 bool done = low_siginfo_fixup (siginfo, inf_siginfo, direction);
5953
5954 /* If there was no callback, or the callback didn't do anything,
5955 then just do a straight memcpy. */
5956 if (!done)
5957 {
5958 if (direction == 1)
5959 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5960 else
5961 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5962 }
5963 }
5964
5965 bool
5966 linux_process_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
5967 int direction)
5968 {
5969 return false;
5970 }
5971
5972 bool
5973 linux_process_target::supports_qxfer_siginfo ()
5974 {
5975 return true;
5976 }
5977
5978 int
5979 linux_process_target::qxfer_siginfo (const char *annex,
5980 unsigned char *readbuf,
5981 unsigned const char *writebuf,
5982 CORE_ADDR offset, int len)
5983 {
5984 int pid;
5985 siginfo_t siginfo;
5986 gdb_byte inf_siginfo[sizeof (siginfo_t)];
5987
5988 if (current_thread == NULL)
5989 return -1;
5990
5991 pid = lwpid_of (current_thread);
5992
5993 if (debug_threads)
5994 debug_printf ("%s siginfo for lwp %d.\n",
5995 readbuf != NULL ? "Reading" : "Writing",
5996 pid);
5997
5998 if (offset >= sizeof (siginfo))
5999 return -1;
6000
6001 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6002 return -1;
6003
6004 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6005 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6006 inferior with a 64-bit GDBSERVER should look the same as debugging it
6007 with a 32-bit GDBSERVER, we need to convert it. */
6008 siginfo_fixup (&siginfo, inf_siginfo, 0);
6009
6010 if (offset + len > sizeof (siginfo))
6011 len = sizeof (siginfo) - offset;
6012
6013 if (readbuf != NULL)
6014 memcpy (readbuf, inf_siginfo + offset, len);
6015 else
6016 {
6017 memcpy (inf_siginfo + offset, writebuf, len);
6018
6019 /* Convert back to ptrace layout before flushing it out. */
6020 siginfo_fixup (&siginfo, inf_siginfo, 1);
6021
6022 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6023 return -1;
6024 }
6025
6026 return len;
6027 }
6028
6029 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6030 so we notice when children change state; as the handler for the
6031 sigsuspend in my_waitpid. */
6032
6033 static void
6034 sigchld_handler (int signo)
6035 {
6036 int old_errno = errno;
6037
6038 if (debug_threads)
6039 {
6040 do
6041 {
6042 /* Use the async signal safe debug function. */
6043 if (debug_write ("sigchld_handler\n",
6044 sizeof ("sigchld_handler\n") - 1) < 0)
6045 break; /* just ignore */
6046 } while (0);
6047 }
6048
6049 if (target_is_async_p ())
6050 async_file_mark (); /* trigger a linux_wait */
6051
6052 errno = old_errno;
6053 }
6054
6055 bool
6056 linux_process_target::supports_non_stop ()
6057 {
6058 return true;
6059 }
6060
6061 bool
6062 linux_process_target::async (bool enable)
6063 {
6064 bool previous = target_is_async_p ();
6065
6066 if (debug_threads)
6067 debug_printf ("linux_async (%d), previous=%d\n",
6068 enable, previous);
6069
6070 if (previous != enable)
6071 {
6072 sigset_t mask;
6073 sigemptyset (&mask);
6074 sigaddset (&mask, SIGCHLD);
6075
6076 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6077
6078 if (enable)
6079 {
6080 if (pipe (linux_event_pipe) == -1)
6081 {
6082 linux_event_pipe[0] = -1;
6083 linux_event_pipe[1] = -1;
6084 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6085
6086 warning ("creating event pipe failed.");
6087 return previous;
6088 }
6089
6090 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6091 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6092
6093 /* Register the event loop handler. */
6094 add_file_handler (linux_event_pipe[0],
6095 handle_target_event, NULL,
6096 "linux-low");
6097
6098 /* Always trigger a linux_wait. */
6099 async_file_mark ();
6100 }
6101 else
6102 {
6103 delete_file_handler (linux_event_pipe[0]);
6104
6105 close (linux_event_pipe[0]);
6106 close (linux_event_pipe[1]);
6107 linux_event_pipe[0] = -1;
6108 linux_event_pipe[1] = -1;
6109 }
6110
6111 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6112 }
6113
6114 return previous;
6115 }
6116
6117 int
6118 linux_process_target::start_non_stop (bool nonstop)
6119 {
6120 /* Register or unregister from event-loop accordingly. */
6121 target_async (nonstop);
6122
6123 if (target_is_async_p () != (nonstop != false))
6124 return -1;
6125
6126 return 0;
6127 }
6128
6129 bool
6130 linux_process_target::supports_multi_process ()
6131 {
6132 return true;
6133 }
6134
6135 /* Check if fork events are supported. */
6136
6137 bool
6138 linux_process_target::supports_fork_events ()
6139 {
6140 return linux_supports_tracefork ();
6141 }
6142
6143 /* Check if vfork events are supported. */
6144
6145 bool
6146 linux_process_target::supports_vfork_events ()
6147 {
6148 return linux_supports_tracefork ();
6149 }
6150
6151 /* Check if exec events are supported. */
6152
6153 bool
6154 linux_process_target::supports_exec_events ()
6155 {
6156 return linux_supports_traceexec ();
6157 }
6158
6159 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6160 ptrace flags for all inferiors. This is in case the new GDB connection
6161 doesn't support the same set of events that the previous one did. */
6162
6163 void
6164 linux_process_target::handle_new_gdb_connection ()
6165 {
6166 /* Request that all the lwps reset their ptrace options. */
6167 for_each_thread ([] (thread_info *thread)
6168 {
6169 struct lwp_info *lwp = get_thread_lwp (thread);
6170
6171 if (!lwp->stopped)
6172 {
6173 /* Stop the lwp so we can modify its ptrace options. */
6174 lwp->must_set_ptrace_flags = 1;
6175 linux_stop_lwp (lwp);
6176 }
6177 else
6178 {
6179 /* Already stopped; go ahead and set the ptrace options. */
6180 struct process_info *proc = find_process_pid (pid_of (thread));
6181 int options = linux_low_ptrace_options (proc->attached);
6182
6183 linux_enable_event_reporting (lwpid_of (thread), options);
6184 lwp->must_set_ptrace_flags = 0;
6185 }
6186 });
6187 }
6188
6189 int
6190 linux_process_target::handle_monitor_command (char *mon)
6191 {
6192 #ifdef USE_THREAD_DB
6193 return thread_db_handle_monitor_command (mon);
6194 #else
6195 return 0;
6196 #endif
6197 }
6198
6199 int
6200 linux_process_target::core_of_thread (ptid_t ptid)
6201 {
6202 return linux_common_core_of_thread (ptid);
6203 }
6204
6205 bool
6206 linux_process_target::supports_disable_randomization ()
6207 {
6208 #ifdef HAVE_PERSONALITY
6209 return true;
6210 #else
6211 return false;
6212 #endif
6213 }
6214
6215 bool
6216 linux_process_target::supports_agent ()
6217 {
6218 return true;
6219 }
6220
6221 bool
6222 linux_process_target::supports_range_stepping ()
6223 {
6224 if (supports_software_single_step ())
6225 return true;
6226
6227 return low_supports_range_stepping ();
6228 }
6229
6230 bool
6231 linux_process_target::low_supports_range_stepping ()
6232 {
6233 return false;
6234 }
6235
6236 bool
6237 linux_process_target::supports_pid_to_exec_file ()
6238 {
6239 return true;
6240 }
6241
6242 char *
6243 linux_process_target::pid_to_exec_file (int pid)
6244 {
6245 return linux_proc_pid_to_exec_file (pid);
6246 }
6247
6248 bool
6249 linux_process_target::supports_multifs ()
6250 {
6251 return true;
6252 }
6253
6254 int
6255 linux_process_target::multifs_open (int pid, const char *filename,
6256 int flags, mode_t mode)
6257 {
6258 return linux_mntns_open_cloexec (pid, filename, flags, mode);
6259 }
6260
6261 int
6262 linux_process_target::multifs_unlink (int pid, const char *filename)
6263 {
6264 return linux_mntns_unlink (pid, filename);
6265 }
6266
6267 ssize_t
6268 linux_process_target::multifs_readlink (int pid, const char *filename,
6269 char *buf, size_t bufsiz)
6270 {
6271 return linux_mntns_readlink (pid, filename, buf, bufsiz);
6272 }
6273
6274 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6275 struct target_loadseg
6276 {
6277 /* Core address to which the segment is mapped. */
6278 Elf32_Addr addr;
6279 /* VMA recorded in the program header. */
6280 Elf32_Addr p_vaddr;
6281 /* Size of this segment in memory. */
6282 Elf32_Word p_memsz;
6283 };
6284
6285 # if defined PT_GETDSBT
6286 struct target_loadmap
6287 {
6288 /* Protocol version number, must be zero. */
6289 Elf32_Word version;
6290 /* Pointer to the DSBT table, its size, and the DSBT index. */
6291 unsigned *dsbt_table;
6292 unsigned dsbt_size, dsbt_index;
6293 /* Number of segments in this map. */
6294 Elf32_Word nsegs;
6295 /* The actual memory map. */
6296 struct target_loadseg segs[/*nsegs*/];
6297 };
6298 # define LINUX_LOADMAP PT_GETDSBT
6299 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6300 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6301 # else
6302 struct target_loadmap
6303 {
6304 /* Protocol version number, must be zero. */
6305 Elf32_Half version;
6306 /* Number of segments in this map. */
6307 Elf32_Half nsegs;
6308 /* The actual memory map. */
6309 struct target_loadseg segs[/*nsegs*/];
6310 };
6311 # define LINUX_LOADMAP PTRACE_GETFDPIC
6312 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6313 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6314 # endif
6315
6316 bool
6317 linux_process_target::supports_read_loadmap ()
6318 {
6319 return true;
6320 }
6321
6322 int
6323 linux_process_target::read_loadmap (const char *annex, CORE_ADDR offset,
6324 unsigned char *myaddr, unsigned int len)
6325 {
6326 int pid = lwpid_of (current_thread);
6327 int addr = -1;
6328 struct target_loadmap *data = NULL;
6329 unsigned int actual_length, copy_length;
6330
6331 if (strcmp (annex, "exec") == 0)
6332 addr = (int) LINUX_LOADMAP_EXEC;
6333 else if (strcmp (annex, "interp") == 0)
6334 addr = (int) LINUX_LOADMAP_INTERP;
6335 else
6336 return -1;
6337
6338 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6339 return -1;
6340
6341 if (data == NULL)
6342 return -1;
6343
6344 actual_length = sizeof (struct target_loadmap)
6345 + sizeof (struct target_loadseg) * data->nsegs;
6346
6347 if (offset < 0 || offset > actual_length)
6348 return -1;
6349
6350 copy_length = actual_length - offset < len ? actual_length - offset : len;
6351 memcpy (myaddr, (char *) data + offset, copy_length);
6352 return copy_length;
6353 }
6354 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6355
6356 bool
6357 linux_process_target::supports_catch_syscall ()
6358 {
6359 return (low_supports_catch_syscall ()
6360 && linux_supports_tracesysgood ());
6361 }
6362
6363 bool
6364 linux_process_target::low_supports_catch_syscall ()
6365 {
6366 return false;
6367 }
6368
6369 CORE_ADDR
6370 linux_process_target::read_pc (regcache *regcache)
6371 {
6372 if (!low_supports_breakpoints ())
6373 return 0;
6374
6375 return low_get_pc (regcache);
6376 }
6377
6378 void
6379 linux_process_target::write_pc (regcache *regcache, CORE_ADDR pc)
6380 {
6381 gdb_assert (low_supports_breakpoints ());
6382
6383 low_set_pc (regcache, pc);
6384 }
6385
6386 bool
6387 linux_process_target::supports_thread_stopped ()
6388 {
6389 return true;
6390 }
6391
6392 bool
6393 linux_process_target::thread_stopped (thread_info *thread)
6394 {
6395 return get_thread_lwp (thread)->stopped;
6396 }
6397
6398 /* This exposes stop-all-threads functionality to other modules. */
6399
6400 void
6401 linux_process_target::pause_all (bool freeze)
6402 {
6403 stop_all_lwps (freeze, NULL);
6404 }
6405
6406 /* This exposes unstop-all-threads functionality to other gdbserver
6407 modules. */
6408
6409 void
6410 linux_process_target::unpause_all (bool unfreeze)
6411 {
6412 unstop_all_lwps (unfreeze, NULL);
6413 }
6414
6415 int
6416 linux_process_target::prepare_to_access_memory ()
6417 {
6418 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6419 running LWP. */
6420 if (non_stop)
6421 target_pause_all (true);
6422 return 0;
6423 }
6424
6425 void
6426 linux_process_target::done_accessing_memory ()
6427 {
6428 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6429 running LWP. */
6430 if (non_stop)
6431 target_unpause_all (true);
6432 }
6433
6434 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6435
6436 static int
6437 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6438 CORE_ADDR *phdr_memaddr, int *num_phdr)
6439 {
6440 char filename[PATH_MAX];
6441 int fd;
6442 const int auxv_size = is_elf64
6443 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6444 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6445
6446 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6447
6448 fd = open (filename, O_RDONLY);
6449 if (fd < 0)
6450 return 1;
6451
6452 *phdr_memaddr = 0;
6453 *num_phdr = 0;
6454 while (read (fd, buf, auxv_size) == auxv_size
6455 && (*phdr_memaddr == 0 || *num_phdr == 0))
6456 {
6457 if (is_elf64)
6458 {
6459 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6460
6461 switch (aux->a_type)
6462 {
6463 case AT_PHDR:
6464 *phdr_memaddr = aux->a_un.a_val;
6465 break;
6466 case AT_PHNUM:
6467 *num_phdr = aux->a_un.a_val;
6468 break;
6469 }
6470 }
6471 else
6472 {
6473 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6474
6475 switch (aux->a_type)
6476 {
6477 case AT_PHDR:
6478 *phdr_memaddr = aux->a_un.a_val;
6479 break;
6480 case AT_PHNUM:
6481 *num_phdr = aux->a_un.a_val;
6482 break;
6483 }
6484 }
6485 }
6486
6487 close (fd);
6488
6489 if (*phdr_memaddr == 0 || *num_phdr == 0)
6490 {
6491 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6492 "phdr_memaddr = %ld, phdr_num = %d",
6493 (long) *phdr_memaddr, *num_phdr);
6494 return 2;
6495 }
6496
6497 return 0;
6498 }
6499
6500 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6501
6502 static CORE_ADDR
6503 get_dynamic (const int pid, const int is_elf64)
6504 {
6505 CORE_ADDR phdr_memaddr, relocation;
6506 int num_phdr, i;
6507 unsigned char *phdr_buf;
6508 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6509
6510 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6511 return 0;
6512
6513 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6514 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6515
6516 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6517 return 0;
6518
6519 /* Compute relocation: it is expected to be 0 for "regular" executables,
6520 non-zero for PIE ones. */
6521 relocation = -1;
6522 for (i = 0; relocation == -1 && i < num_phdr; i++)
6523 if (is_elf64)
6524 {
6525 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6526
6527 if (p->p_type == PT_PHDR)
6528 relocation = phdr_memaddr - p->p_vaddr;
6529 }
6530 else
6531 {
6532 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6533
6534 if (p->p_type == PT_PHDR)
6535 relocation = phdr_memaddr - p->p_vaddr;
6536 }
6537
6538 if (relocation == -1)
6539 {
6540 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6541 any real world executables, including PIE executables, have always
6542 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6543 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6544 or present DT_DEBUG anyway (fpc binaries are statically linked).
6545
6546 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6547
6548 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6549
6550 return 0;
6551 }
6552
6553 for (i = 0; i < num_phdr; i++)
6554 {
6555 if (is_elf64)
6556 {
6557 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6558
6559 if (p->p_type == PT_DYNAMIC)
6560 return p->p_vaddr + relocation;
6561 }
6562 else
6563 {
6564 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6565
6566 if (p->p_type == PT_DYNAMIC)
6567 return p->p_vaddr + relocation;
6568 }
6569 }
6570
6571 return 0;
6572 }
6573
6574 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6575 can be 0 if the inferior does not yet have the library list initialized.
6576 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6577 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6578
6579 static CORE_ADDR
6580 get_r_debug (const int pid, const int is_elf64)
6581 {
6582 CORE_ADDR dynamic_memaddr;
6583 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6584 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6585 CORE_ADDR map = -1;
6586
6587 dynamic_memaddr = get_dynamic (pid, is_elf64);
6588 if (dynamic_memaddr == 0)
6589 return map;
6590
6591 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6592 {
6593 if (is_elf64)
6594 {
6595 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6596 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6597 union
6598 {
6599 Elf64_Xword map;
6600 unsigned char buf[sizeof (Elf64_Xword)];
6601 }
6602 rld_map;
6603 #endif
6604 #ifdef DT_MIPS_RLD_MAP
6605 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6606 {
6607 if (linux_read_memory (dyn->d_un.d_val,
6608 rld_map.buf, sizeof (rld_map.buf)) == 0)
6609 return rld_map.map;
6610 else
6611 break;
6612 }
6613 #endif /* DT_MIPS_RLD_MAP */
6614 #ifdef DT_MIPS_RLD_MAP_REL
6615 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6616 {
6617 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6618 rld_map.buf, sizeof (rld_map.buf)) == 0)
6619 return rld_map.map;
6620 else
6621 break;
6622 }
6623 #endif /* DT_MIPS_RLD_MAP_REL */
6624
6625 if (dyn->d_tag == DT_DEBUG && map == -1)
6626 map = dyn->d_un.d_val;
6627
6628 if (dyn->d_tag == DT_NULL)
6629 break;
6630 }
6631 else
6632 {
6633 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6634 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6635 union
6636 {
6637 Elf32_Word map;
6638 unsigned char buf[sizeof (Elf32_Word)];
6639 }
6640 rld_map;
6641 #endif
6642 #ifdef DT_MIPS_RLD_MAP
6643 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6644 {
6645 if (linux_read_memory (dyn->d_un.d_val,
6646 rld_map.buf, sizeof (rld_map.buf)) == 0)
6647 return rld_map.map;
6648 else
6649 break;
6650 }
6651 #endif /* DT_MIPS_RLD_MAP */
6652 #ifdef DT_MIPS_RLD_MAP_REL
6653 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6654 {
6655 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6656 rld_map.buf, sizeof (rld_map.buf)) == 0)
6657 return rld_map.map;
6658 else
6659 break;
6660 }
6661 #endif /* DT_MIPS_RLD_MAP_REL */
6662
6663 if (dyn->d_tag == DT_DEBUG && map == -1)
6664 map = dyn->d_un.d_val;
6665
6666 if (dyn->d_tag == DT_NULL)
6667 break;
6668 }
6669
6670 dynamic_memaddr += dyn_size;
6671 }
6672
6673 return map;
6674 }
6675
6676 /* Read one pointer from MEMADDR in the inferior. */
6677
6678 static int
6679 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6680 {
6681 int ret;
6682
6683 /* Go through a union so this works on either big or little endian
6684 hosts, when the inferior's pointer size is smaller than the size
6685 of CORE_ADDR. It is assumed the inferior's endianness is the
6686 same of the superior's. */
6687 union
6688 {
6689 CORE_ADDR core_addr;
6690 unsigned int ui;
6691 unsigned char uc;
6692 } addr;
6693
6694 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6695 if (ret == 0)
6696 {
6697 if (ptr_size == sizeof (CORE_ADDR))
6698 *ptr = addr.core_addr;
6699 else if (ptr_size == sizeof (unsigned int))
6700 *ptr = addr.ui;
6701 else
6702 gdb_assert_not_reached ("unhandled pointer size");
6703 }
6704 return ret;
6705 }
6706
6707 bool
6708 linux_process_target::supports_qxfer_libraries_svr4 ()
6709 {
6710 return true;
6711 }
6712
6713 struct link_map_offsets
6714 {
6715 /* Offset and size of r_debug.r_version. */
6716 int r_version_offset;
6717
6718 /* Offset and size of r_debug.r_map. */
6719 int r_map_offset;
6720
6721 /* Offset to l_addr field in struct link_map. */
6722 int l_addr_offset;
6723
6724 /* Offset to l_name field in struct link_map. */
6725 int l_name_offset;
6726
6727 /* Offset to l_ld field in struct link_map. */
6728 int l_ld_offset;
6729
6730 /* Offset to l_next field in struct link_map. */
6731 int l_next_offset;
6732
6733 /* Offset to l_prev field in struct link_map. */
6734 int l_prev_offset;
6735 };
6736
6737 /* Construct qXfer:libraries-svr4:read reply. */
6738
6739 int
6740 linux_process_target::qxfer_libraries_svr4 (const char *annex,
6741 unsigned char *readbuf,
6742 unsigned const char *writebuf,
6743 CORE_ADDR offset, int len)
6744 {
6745 struct process_info_private *const priv = current_process ()->priv;
6746 char filename[PATH_MAX];
6747 int pid, is_elf64;
6748
6749 static const struct link_map_offsets lmo_32bit_offsets =
6750 {
6751 0, /* r_version offset. */
6752 4, /* r_debug.r_map offset. */
6753 0, /* l_addr offset in link_map. */
6754 4, /* l_name offset in link_map. */
6755 8, /* l_ld offset in link_map. */
6756 12, /* l_next offset in link_map. */
6757 16 /* l_prev offset in link_map. */
6758 };
6759
6760 static const struct link_map_offsets lmo_64bit_offsets =
6761 {
6762 0, /* r_version offset. */
6763 8, /* r_debug.r_map offset. */
6764 0, /* l_addr offset in link_map. */
6765 8, /* l_name offset in link_map. */
6766 16, /* l_ld offset in link_map. */
6767 24, /* l_next offset in link_map. */
6768 32 /* l_prev offset in link_map. */
6769 };
6770 const struct link_map_offsets *lmo;
6771 unsigned int machine;
6772 int ptr_size;
6773 CORE_ADDR lm_addr = 0, lm_prev = 0;
6774 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6775 int header_done = 0;
6776
6777 if (writebuf != NULL)
6778 return -2;
6779 if (readbuf == NULL)
6780 return -1;
6781
6782 pid = lwpid_of (current_thread);
6783 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6784 is_elf64 = elf_64_file_p (filename, &machine);
6785 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6786 ptr_size = is_elf64 ? 8 : 4;
6787
6788 while (annex[0] != '\0')
6789 {
6790 const char *sep;
6791 CORE_ADDR *addrp;
6792 int name_len;
6793
6794 sep = strchr (annex, '=');
6795 if (sep == NULL)
6796 break;
6797
6798 name_len = sep - annex;
6799 if (name_len == 5 && startswith (annex, "start"))
6800 addrp = &lm_addr;
6801 else if (name_len == 4 && startswith (annex, "prev"))
6802 addrp = &lm_prev;
6803 else
6804 {
6805 annex = strchr (sep, ';');
6806 if (annex == NULL)
6807 break;
6808 annex++;
6809 continue;
6810 }
6811
6812 annex = decode_address_to_semicolon (addrp, sep + 1);
6813 }
6814
6815 if (lm_addr == 0)
6816 {
6817 int r_version = 0;
6818
6819 if (priv->r_debug == 0)
6820 priv->r_debug = get_r_debug (pid, is_elf64);
6821
6822 /* We failed to find DT_DEBUG. Such situation will not change
6823 for this inferior - do not retry it. Report it to GDB as
6824 E01, see for the reasons at the GDB solib-svr4.c side. */
6825 if (priv->r_debug == (CORE_ADDR) -1)
6826 return -1;
6827
6828 if (priv->r_debug != 0)
6829 {
6830 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6831 (unsigned char *) &r_version,
6832 sizeof (r_version)) != 0
6833 || r_version != 1)
6834 {
6835 warning ("unexpected r_debug version %d", r_version);
6836 }
6837 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6838 &lm_addr, ptr_size) != 0)
6839 {
6840 warning ("unable to read r_map from 0x%lx",
6841 (long) priv->r_debug + lmo->r_map_offset);
6842 }
6843 }
6844 }
6845
6846 std::string document = "<library-list-svr4 version=\"1.0\"";
6847
6848 while (lm_addr
6849 && read_one_ptr (lm_addr + lmo->l_name_offset,
6850 &l_name, ptr_size) == 0
6851 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6852 &l_addr, ptr_size) == 0
6853 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6854 &l_ld, ptr_size) == 0
6855 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6856 &l_prev, ptr_size) == 0
6857 && read_one_ptr (lm_addr + lmo->l_next_offset,
6858 &l_next, ptr_size) == 0)
6859 {
6860 unsigned char libname[PATH_MAX];
6861
6862 if (lm_prev != l_prev)
6863 {
6864 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6865 (long) lm_prev, (long) l_prev);
6866 break;
6867 }
6868
6869 /* Ignore the first entry even if it has valid name as the first entry
6870 corresponds to the main executable. The first entry should not be
6871 skipped if the dynamic loader was loaded late by a static executable
6872 (see solib-svr4.c parameter ignore_first). But in such case the main
6873 executable does not have PT_DYNAMIC present and this function already
6874 exited above due to failed get_r_debug. */
6875 if (lm_prev == 0)
6876 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6877 else
6878 {
6879 /* Not checking for error because reading may stop before
6880 we've got PATH_MAX worth of characters. */
6881 libname[0] = '\0';
6882 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6883 libname[sizeof (libname) - 1] = '\0';
6884 if (libname[0] != '\0')
6885 {
6886 if (!header_done)
6887 {
6888 /* Terminate `<library-list-svr4'. */
6889 document += '>';
6890 header_done = 1;
6891 }
6892
6893 string_appendf (document, "<library name=\"");
6894 xml_escape_text_append (&document, (char *) libname);
6895 string_appendf (document, "\" lm=\"0x%lx\" "
6896 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6897 (unsigned long) lm_addr, (unsigned long) l_addr,
6898 (unsigned long) l_ld);
6899 }
6900 }
6901
6902 lm_prev = lm_addr;
6903 lm_addr = l_next;
6904 }
6905
6906 if (!header_done)
6907 {
6908 /* Empty list; terminate `<library-list-svr4'. */
6909 document += "/>";
6910 }
6911 else
6912 document += "</library-list-svr4>";
6913
6914 int document_len = document.length ();
6915 if (offset < document_len)
6916 document_len -= offset;
6917 else
6918 document_len = 0;
6919 if (len > document_len)
6920 len = document_len;
6921
6922 memcpy (readbuf, document.data () + offset, len);
6923
6924 return len;
6925 }
6926
6927 #ifdef HAVE_LINUX_BTRACE
6928
6929 btrace_target_info *
6930 linux_process_target::enable_btrace (ptid_t ptid,
6931 const btrace_config *conf)
6932 {
6933 return linux_enable_btrace (ptid, conf);
6934 }
6935
6936 /* See to_disable_btrace target method. */
6937
6938 int
6939 linux_process_target::disable_btrace (btrace_target_info *tinfo)
6940 {
6941 enum btrace_error err;
6942
6943 err = linux_disable_btrace (tinfo);
6944 return (err == BTRACE_ERR_NONE ? 0 : -1);
6945 }
6946
6947 /* Encode an Intel Processor Trace configuration. */
6948
6949 static void
6950 linux_low_encode_pt_config (struct buffer *buffer,
6951 const struct btrace_data_pt_config *config)
6952 {
6953 buffer_grow_str (buffer, "<pt-config>\n");
6954
6955 switch (config->cpu.vendor)
6956 {
6957 case CV_INTEL:
6958 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
6959 "model=\"%u\" stepping=\"%u\"/>\n",
6960 config->cpu.family, config->cpu.model,
6961 config->cpu.stepping);
6962 break;
6963
6964 default:
6965 break;
6966 }
6967
6968 buffer_grow_str (buffer, "</pt-config>\n");
6969 }
6970
6971 /* Encode a raw buffer. */
6972
6973 static void
6974 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
6975 unsigned int size)
6976 {
6977 if (size == 0)
6978 return;
6979
6980 /* We use hex encoding - see gdbsupport/rsp-low.h. */
6981 buffer_grow_str (buffer, "<raw>\n");
6982
6983 while (size-- > 0)
6984 {
6985 char elem[2];
6986
6987 elem[0] = tohex ((*data >> 4) & 0xf);
6988 elem[1] = tohex (*data++ & 0xf);
6989
6990 buffer_grow (buffer, elem, 2);
6991 }
6992
6993 buffer_grow_str (buffer, "</raw>\n");
6994 }
6995
6996 /* See to_read_btrace target method. */
6997
6998 int
6999 linux_process_target::read_btrace (btrace_target_info *tinfo,
7000 buffer *buffer,
7001 enum btrace_read_type type)
7002 {
7003 struct btrace_data btrace;
7004 enum btrace_error err;
7005
7006 err = linux_read_btrace (&btrace, tinfo, type);
7007 if (err != BTRACE_ERR_NONE)
7008 {
7009 if (err == BTRACE_ERR_OVERFLOW)
7010 buffer_grow_str0 (buffer, "E.Overflow.");
7011 else
7012 buffer_grow_str0 (buffer, "E.Generic Error.");
7013
7014 return -1;
7015 }
7016
7017 switch (btrace.format)
7018 {
7019 case BTRACE_FORMAT_NONE:
7020 buffer_grow_str0 (buffer, "E.No Trace.");
7021 return -1;
7022
7023 case BTRACE_FORMAT_BTS:
7024 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7025 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7026
7027 for (const btrace_block &block : *btrace.variant.bts.blocks)
7028 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7029 paddress (block.begin), paddress (block.end));
7030
7031 buffer_grow_str0 (buffer, "</btrace>\n");
7032 break;
7033
7034 case BTRACE_FORMAT_PT:
7035 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7036 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7037 buffer_grow_str (buffer, "<pt>\n");
7038
7039 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7040
7041 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7042 btrace.variant.pt.size);
7043
7044 buffer_grow_str (buffer, "</pt>\n");
7045 buffer_grow_str0 (buffer, "</btrace>\n");
7046 break;
7047
7048 default:
7049 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7050 return -1;
7051 }
7052
7053 return 0;
7054 }
7055
7056 /* See to_btrace_conf target method. */
7057
7058 int
7059 linux_process_target::read_btrace_conf (const btrace_target_info *tinfo,
7060 buffer *buffer)
7061 {
7062 const struct btrace_config *conf;
7063
7064 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7065 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7066
7067 conf = linux_btrace_conf (tinfo);
7068 if (conf != NULL)
7069 {
7070 switch (conf->format)
7071 {
7072 case BTRACE_FORMAT_NONE:
7073 break;
7074
7075 case BTRACE_FORMAT_BTS:
7076 buffer_xml_printf (buffer, "<bts");
7077 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7078 buffer_xml_printf (buffer, " />\n");
7079 break;
7080
7081 case BTRACE_FORMAT_PT:
7082 buffer_xml_printf (buffer, "<pt");
7083 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7084 buffer_xml_printf (buffer, "/>\n");
7085 break;
7086 }
7087 }
7088
7089 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7090 return 0;
7091 }
7092 #endif /* HAVE_LINUX_BTRACE */
7093
7094 /* See nat/linux-nat.h. */
7095
7096 ptid_t
7097 current_lwp_ptid (void)
7098 {
7099 return ptid_of (current_thread);
7100 }
7101
7102 const char *
7103 linux_process_target::thread_name (ptid_t thread)
7104 {
7105 return linux_proc_tid_get_name (thread);
7106 }
7107
7108 #if USE_THREAD_DB
7109 bool
7110 linux_process_target::thread_handle (ptid_t ptid, gdb_byte **handle,
7111 int *handle_len)
7112 {
7113 return thread_db_thread_handle (ptid, handle, handle_len);
7114 }
7115 #endif
7116
7117 /* Default implementation of linux_target_ops method "set_pc" for
7118 32-bit pc register which is literally named "pc". */
7119
7120 void
7121 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7122 {
7123 uint32_t newpc = pc;
7124
7125 supply_register_by_name (regcache, "pc", &newpc);
7126 }
7127
7128 /* Default implementation of linux_target_ops method "get_pc" for
7129 32-bit pc register which is literally named "pc". */
7130
7131 CORE_ADDR
7132 linux_get_pc_32bit (struct regcache *regcache)
7133 {
7134 uint32_t pc;
7135
7136 collect_register_by_name (regcache, "pc", &pc);
7137 if (debug_threads)
7138 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7139 return pc;
7140 }
7141
7142 /* Default implementation of linux_target_ops method "set_pc" for
7143 64-bit pc register which is literally named "pc". */
7144
7145 void
7146 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7147 {
7148 uint64_t newpc = pc;
7149
7150 supply_register_by_name (regcache, "pc", &newpc);
7151 }
7152
7153 /* Default implementation of linux_target_ops method "get_pc" for
7154 64-bit pc register which is literally named "pc". */
7155
7156 CORE_ADDR
7157 linux_get_pc_64bit (struct regcache *regcache)
7158 {
7159 uint64_t pc;
7160
7161 collect_register_by_name (regcache, "pc", &pc);
7162 if (debug_threads)
7163 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7164 return pc;
7165 }
7166
7167 /* See linux-low.h. */
7168
7169 int
7170 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7171 {
7172 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7173 int offset = 0;
7174
7175 gdb_assert (wordsize == 4 || wordsize == 8);
7176
7177 while (the_target->read_auxv (offset, data, 2 * wordsize) == 2 * wordsize)
7178 {
7179 if (wordsize == 4)
7180 {
7181 uint32_t *data_p = (uint32_t *) data;
7182 if (data_p[0] == match)
7183 {
7184 *valp = data_p[1];
7185 return 1;
7186 }
7187 }
7188 else
7189 {
7190 uint64_t *data_p = (uint64_t *) data;
7191 if (data_p[0] == match)
7192 {
7193 *valp = data_p[1];
7194 return 1;
7195 }
7196 }
7197
7198 offset += 2 * wordsize;
7199 }
7200
7201 return 0;
7202 }
7203
7204 /* See linux-low.h. */
7205
7206 CORE_ADDR
7207 linux_get_hwcap (int wordsize)
7208 {
7209 CORE_ADDR hwcap = 0;
7210 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7211 return hwcap;
7212 }
7213
7214 /* See linux-low.h. */
7215
7216 CORE_ADDR
7217 linux_get_hwcap2 (int wordsize)
7218 {
7219 CORE_ADDR hwcap2 = 0;
7220 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7221 return hwcap2;
7222 }
7223
7224 #ifdef HAVE_LINUX_REGSETS
7225 void
7226 initialize_regsets_info (struct regsets_info *info)
7227 {
7228 for (info->num_regsets = 0;
7229 info->regsets[info->num_regsets].size >= 0;
7230 info->num_regsets++)
7231 ;
7232 }
7233 #endif
7234
7235 void
7236 initialize_low (void)
7237 {
7238 struct sigaction sigchld_action;
7239
7240 memset (&sigchld_action, 0, sizeof (sigchld_action));
7241 set_target_ops (the_linux_target);
7242
7243 linux_ptrace_init_warnings ();
7244 linux_proc_init_warnings ();
7245
7246 sigchld_action.sa_handler = sigchld_handler;
7247 sigemptyset (&sigchld_action.sa_mask);
7248 sigchld_action.sa_flags = SA_RESTART;
7249 sigaction (SIGCHLD, &sigchld_action, NULL);
7250
7251 initialize_low_arch ();
7252
7253 linux_check_ptrace_features ();
7254 }
This page took 0.175577 seconds and 5 git commands to generate.