1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
34 #include <sys/ioctl.h>
37 #include <sys/syscall.h>
41 #include <sys/types.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
50 #include "gdbsupport/common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "gdbsupport/environ.h"
53 #include "gdbsupport/gdb-sigmask.h"
54 #include "gdbsupport/scoped_restore.h"
56 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
57 then ELFMAG0 will have been defined. If it didn't get included by
58 gdb_proc_service.h then including it will likely introduce a duplicate
59 definition of elf_fpregset_t. */
62 #include "nat/linux-namespaces.h"
64 #ifdef HAVE_PERSONALITY
65 # include <sys/personality.h>
66 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
67 # define ADDR_NO_RANDOMIZE 0x0040000
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 # include "gdbsupport/btrace-common.h"
108 #ifndef HAVE_ELF32_AUXV_T
109 /* Copied from glibc's elf.h. */
112 uint32_t a_type
; /* Entry type */
115 uint32_t a_val
; /* Integer value */
116 /* We use to have pointer elements added here. We cannot do that,
117 though, since it does not work when using 32-bit definitions
118 on 64-bit platforms and vice versa. */
123 #ifndef HAVE_ELF64_AUXV_T
124 /* Copied from glibc's elf.h. */
127 uint64_t a_type
; /* Entry type */
130 uint64_t a_val
; /* Integer value */
131 /* We use to have pointer elements added here. We cannot do that,
132 though, since it does not work when using 32-bit definitions
133 on 64-bit platforms and vice versa. */
138 /* Does the current host support PTRACE_GETREGSET? */
139 int have_ptrace_getregset
= -1;
143 /* See nat/linux-nat.h. */
146 ptid_of_lwp (struct lwp_info
*lwp
)
148 return ptid_of (get_lwp_thread (lwp
));
151 /* See nat/linux-nat.h. */
154 lwp_set_arch_private_info (struct lwp_info
*lwp
,
155 struct arch_lwp_info
*info
)
157 lwp
->arch_private
= info
;
160 /* See nat/linux-nat.h. */
162 struct arch_lwp_info
*
163 lwp_arch_private_info (struct lwp_info
*lwp
)
165 return lwp
->arch_private
;
168 /* See nat/linux-nat.h. */
171 lwp_is_stopped (struct lwp_info
*lwp
)
176 /* See nat/linux-nat.h. */
178 enum target_stop_reason
179 lwp_stop_reason (struct lwp_info
*lwp
)
181 return lwp
->stop_reason
;
184 /* See nat/linux-nat.h. */
187 lwp_is_stepping (struct lwp_info
*lwp
)
189 return lwp
->stepping
;
192 /* A list of all unknown processes which receive stop signals. Some
193 other process will presumably claim each of these as forked
194 children momentarily. */
196 struct simple_pid_list
198 /* The process ID. */
201 /* The status as reported by waitpid. */
205 struct simple_pid_list
*next
;
207 struct simple_pid_list
*stopped_pids
;
209 /* Trivial list manipulation functions to keep track of a list of new
210 stopped processes. */
213 add_to_pid_list (struct simple_pid_list
**listp
, int pid
, int status
)
215 struct simple_pid_list
*new_pid
= XNEW (struct simple_pid_list
);
218 new_pid
->status
= status
;
219 new_pid
->next
= *listp
;
224 pull_pid_from_list (struct simple_pid_list
**listp
, int pid
, int *statusp
)
226 struct simple_pid_list
**p
;
228 for (p
= listp
; *p
!= NULL
; p
= &(*p
)->next
)
229 if ((*p
)->pid
== pid
)
231 struct simple_pid_list
*next
= (*p
)->next
;
233 *statusp
= (*p
)->status
;
241 enum stopping_threads_kind
243 /* Not stopping threads presently. */
244 NOT_STOPPING_THREADS
,
246 /* Stopping threads. */
249 /* Stopping and suspending threads. */
250 STOPPING_AND_SUSPENDING_THREADS
253 /* This is set while stop_all_lwps is in effect. */
254 enum stopping_threads_kind stopping_threads
= NOT_STOPPING_THREADS
;
256 /* FIXME make into a target method? */
257 int using_threads
= 1;
259 /* True if we're presently stabilizing threads (moving them out of
261 static int stabilizing_threads
;
263 static void linux_resume_one_lwp (struct lwp_info
*lwp
,
264 int step
, int signal
, siginfo_t
*info
);
265 static void stop_all_lwps (int suspend
, struct lwp_info
*except
);
266 static void unstop_all_lwps (int unsuspend
, struct lwp_info
*except
);
267 static void unsuspend_all_lwps (struct lwp_info
*except
);
268 static int linux_wait_for_event_filtered (ptid_t wait_ptid
, ptid_t filter_ptid
,
269 int *wstat
, int options
);
270 static int linux_wait_for_event (ptid_t ptid
, int *wstat
, int options
);
271 static struct lwp_info
*add_lwp (ptid_t ptid
);
272 static void mark_lwp_dead (struct lwp_info
*lwp
, int wstat
);
273 static int lwp_is_marked_dead (struct lwp_info
*lwp
);
274 static void proceed_all_lwps (void);
275 static int finish_step_over (struct lwp_info
*lwp
);
276 static int kill_lwp (unsigned long lwpid
, int signo
);
277 static void enqueue_pending_signal (struct lwp_info
*lwp
, int signal
, siginfo_t
*info
);
278 static void complete_ongoing_step_over (void);
279 static int linux_low_ptrace_options (int attached
);
280 static int check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
);
281 static void proceed_one_lwp (thread_info
*thread
, lwp_info
*except
);
283 /* When the event-loop is doing a step-over, this points at the thread
285 ptid_t step_over_bkpt
;
287 /* True if the low target can hardware single-step. */
290 can_hardware_single_step (void)
292 if (the_low_target
.supports_hardware_single_step
!= NULL
)
293 return the_low_target
.supports_hardware_single_step ();
298 /* True if the low target can software single-step. Such targets
299 implement the GET_NEXT_PCS callback. */
302 can_software_single_step (void)
304 return (the_low_target
.get_next_pcs
!= NULL
);
307 /* True if the low target supports memory breakpoints. If so, we'll
308 have a GET_PC implementation. */
311 supports_breakpoints (void)
313 return (the_low_target
.get_pc
!= NULL
);
316 /* Returns true if this target can support fast tracepoints. This
317 does not mean that the in-process agent has been loaded in the
321 supports_fast_tracepoints (void)
323 return the_low_target
.install_fast_tracepoint_jump_pad
!= NULL
;
326 /* True if LWP is stopped in its stepping range. */
329 lwp_in_step_range (struct lwp_info
*lwp
)
331 CORE_ADDR pc
= lwp
->stop_pc
;
333 return (pc
>= lwp
->step_range_start
&& pc
< lwp
->step_range_end
);
336 struct pending_signals
340 struct pending_signals
*prev
;
343 /* The read/write ends of the pipe registered as waitable file in the
345 static int linux_event_pipe
[2] = { -1, -1 };
347 /* True if we're currently in async mode. */
348 #define target_is_async_p() (linux_event_pipe[0] != -1)
350 static void send_sigstop (struct lwp_info
*lwp
);
351 static void wait_for_sigstop (void);
353 /* Return non-zero if HEADER is a 64-bit ELF file. */
356 elf_64_header_p (const Elf64_Ehdr
*header
, unsigned int *machine
)
358 if (header
->e_ident
[EI_MAG0
] == ELFMAG0
359 && header
->e_ident
[EI_MAG1
] == ELFMAG1
360 && header
->e_ident
[EI_MAG2
] == ELFMAG2
361 && header
->e_ident
[EI_MAG3
] == ELFMAG3
)
363 *machine
= header
->e_machine
;
364 return header
->e_ident
[EI_CLASS
] == ELFCLASS64
;
371 /* Return non-zero if FILE is a 64-bit ELF file,
372 zero if the file is not a 64-bit ELF file,
373 and -1 if the file is not accessible or doesn't exist. */
376 elf_64_file_p (const char *file
, unsigned int *machine
)
381 fd
= open (file
, O_RDONLY
);
385 if (read (fd
, &header
, sizeof (header
)) != sizeof (header
))
392 return elf_64_header_p (&header
, machine
);
395 /* Accepts an integer PID; Returns true if the executable PID is
396 running is a 64-bit ELF file.. */
399 linux_pid_exe_is_elf_64_file (int pid
, unsigned int *machine
)
403 sprintf (file
, "/proc/%d/exe", pid
);
404 return elf_64_file_p (file
, machine
);
408 delete_lwp (struct lwp_info
*lwp
)
410 struct thread_info
*thr
= get_lwp_thread (lwp
);
413 debug_printf ("deleting %ld\n", lwpid_of (thr
));
417 if (the_low_target
.delete_thread
!= NULL
)
418 the_low_target
.delete_thread (lwp
->arch_private
);
420 gdb_assert (lwp
->arch_private
== NULL
);
425 /* Add a process to the common process list, and set its private
428 static struct process_info
*
429 linux_add_process (int pid
, int attached
)
431 struct process_info
*proc
;
433 proc
= add_process (pid
, attached
);
434 proc
->priv
= XCNEW (struct process_info_private
);
436 if (the_low_target
.new_process
!= NULL
)
437 proc
->priv
->arch_private
= the_low_target
.new_process ();
442 static CORE_ADDR
get_pc (struct lwp_info
*lwp
);
444 /* Call the target arch_setup function on the current thread. */
447 linux_arch_setup (void)
449 the_low_target
.arch_setup ();
452 /* Call the target arch_setup function on THREAD. */
455 linux_arch_setup_thread (struct thread_info
*thread
)
457 struct thread_info
*saved_thread
;
459 saved_thread
= current_thread
;
460 current_thread
= thread
;
464 current_thread
= saved_thread
;
467 /* Handle a GNU/Linux extended wait response. If we see a clone,
468 fork, or vfork event, we need to add the new LWP to our list
469 (and return 0 so as not to report the trap to higher layers).
470 If we see an exec event, we will modify ORIG_EVENT_LWP to point
471 to a new LWP representing the new program. */
474 handle_extended_wait (struct lwp_info
**orig_event_lwp
, int wstat
)
476 client_state
&cs
= get_client_state ();
477 struct lwp_info
*event_lwp
= *orig_event_lwp
;
478 int event
= linux_ptrace_get_extended_event (wstat
);
479 struct thread_info
*event_thr
= get_lwp_thread (event_lwp
);
480 struct lwp_info
*new_lwp
;
482 gdb_assert (event_lwp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
);
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp
->syscall_state
= TARGET_WAITKIND_SYSCALL_ENTRY
;
489 if ((event
== PTRACE_EVENT_FORK
) || (event
== PTRACE_EVENT_VFORK
)
490 || (event
== PTRACE_EVENT_CLONE
))
493 unsigned long new_pid
;
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG
, lwpid_of (event_thr
), (PTRACE_TYPE_ARG3
) 0,
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids
, new_pid
, &status
))
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
506 ret
= my_waitpid (new_pid
, &status
, __WALL
);
509 perror_with_name ("waiting for new child");
510 else if (ret
!= new_pid
)
511 warning ("wait returned unexpected PID %d", ret
);
512 else if (!WIFSTOPPED (status
))
513 warning ("wait returned unexpected status 0x%x", status
);
516 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
)
518 struct process_info
*parent_proc
;
519 struct process_info
*child_proc
;
520 struct lwp_info
*child_lwp
;
521 struct thread_info
*child_thr
;
522 struct target_desc
*tdesc
;
524 ptid
= ptid_t (new_pid
, new_pid
, 0);
528 debug_printf ("HEW: Got fork event from LWP %ld, "
530 ptid_of (event_thr
).lwp (),
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc
= linux_add_process (new_pid
, 0);
540 gdb_assert (child_proc
!= NULL
);
541 child_lwp
= add_lwp (ptid
);
542 gdb_assert (child_lwp
!= NULL
);
543 child_lwp
->stopped
= 1;
544 child_lwp
->must_set_ptrace_flags
= 1;
545 child_lwp
->status_pending_p
= 0;
546 child_thr
= get_lwp_thread (child_lwp
);
547 child_thr
->last_resume_kind
= resume_stop
;
548 child_thr
->last_status
.kind
= TARGET_WAITKIND_STOPPED
;
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads
== STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp
->bp_reinsert
!= 0)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp
->suspended
= 1;
562 parent_proc
= get_thread_process (event_thr
);
563 child_proc
->attached
= parent_proc
->attached
;
565 if (event_lwp
->bp_reinsert
!= 0
566 && can_software_single_step ()
567 && event
== PTRACE_EVENT_VFORK
)
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr
);
576 clone_all_breakpoints (child_thr
, event_thr
);
578 tdesc
= allocate_target_description ();
579 copy_target_description (tdesc
, parent_proc
->tdesc
);
580 child_proc
->tdesc
= tdesc
;
582 /* Clone arch-specific process data. */
583 if (the_low_target
.new_fork
!= NULL
)
584 the_low_target
.new_fork (parent_proc
, child_proc
);
586 /* Save fork info in the parent thread. */
587 if (event
== PTRACE_EVENT_FORK
)
588 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_FORKED
;
589 else if (event
== PTRACE_EVENT_VFORK
)
590 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_VFORKED
;
592 event_lwp
->waitstatus
.value
.related_pid
= ptid
;
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp
->status_pending_p
= 1;
598 event_lwp
->status_pending
= wstat
;
600 /* Link the threads until the parent event is passed on to
602 event_lwp
->fork_relative
= child_lwp
;
603 child_lwp
->fork_relative
= event_lwp
;
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
610 if (event_lwp
->bp_reinsert
!= 0
611 && can_software_single_step ())
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr
);
618 gdb_assert (has_single_step_breakpoints (event_thr
));
619 gdb_assert (!has_single_step_breakpoints (child_thr
));
622 /* Report the event. */
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr
), new_pid
);
631 ptid
= ptid_t (pid_of (event_thr
), new_pid
, 0);
632 new_lwp
= add_lwp (ptid
);
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp
->stopped
= 1;
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads
== STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp
->bp_reinsert
!= 0)
646 new_lwp
->suspended
= 1;
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status
) != SIGSTOP
)
653 new_lwp
->stop_expected
= 1;
654 new_lwp
->status_pending_p
= 1;
655 new_lwp
->status_pending
= status
;
657 else if (cs
.report_thread_events
)
659 new_lwp
->waitstatus
.kind
= TARGET_WAITKIND_THREAD_CREATED
;
660 new_lwp
->status_pending_p
= 1;
661 new_lwp
->status_pending
= status
;
665 thread_db_notice_clone (event_thr
, ptid
);
668 /* Don't report the event. */
671 else if (event
== PTRACE_EVENT_VFORK_DONE
)
673 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_VFORK_DONE
;
675 if (event_lwp
->bp_reinsert
!= 0 && can_software_single_step ())
677 reinsert_single_step_breakpoints (event_thr
);
679 gdb_assert (has_single_step_breakpoints (event_thr
));
682 /* Report the event. */
685 else if (event
== PTRACE_EVENT_EXEC
&& cs
.report_exec_events
)
687 struct process_info
*proc
;
688 std::vector
<int> syscalls_to_catch
;
694 debug_printf ("HEW: Got exec event from LWP %ld\n",
695 lwpid_of (event_thr
));
698 /* Get the event ptid. */
699 event_ptid
= ptid_of (event_thr
);
700 event_pid
= event_ptid
.pid ();
702 /* Save the syscall list from the execing process. */
703 proc
= get_thread_process (event_thr
);
704 syscalls_to_catch
= std::move (proc
->syscalls_to_catch
);
706 /* Delete the execing process and all its threads. */
707 the_target
->pt
->mourn (proc
);
708 current_thread
= NULL
;
710 /* Create a new process/lwp/thread. */
711 proc
= linux_add_process (event_pid
, 0);
712 event_lwp
= add_lwp (event_ptid
);
713 event_thr
= get_lwp_thread (event_lwp
);
714 gdb_assert (current_thread
== event_thr
);
715 linux_arch_setup_thread (event_thr
);
717 /* Set the event status. */
718 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_EXECD
;
719 event_lwp
->waitstatus
.value
.execd_pathname
720 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr
)));
722 /* Mark the exec status as pending. */
723 event_lwp
->stopped
= 1;
724 event_lwp
->status_pending_p
= 1;
725 event_lwp
->status_pending
= wstat
;
726 event_thr
->last_resume_kind
= resume_continue
;
727 event_thr
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
729 /* Update syscall state in the new lwp, effectively mid-syscall too. */
730 event_lwp
->syscall_state
= TARGET_WAITKIND_SYSCALL_ENTRY
;
732 /* Restore the list to catch. Don't rely on the client, which is free
733 to avoid sending a new list when the architecture doesn't change.
734 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
735 proc
->syscalls_to_catch
= std::move (syscalls_to_catch
);
737 /* Report the event. */
738 *orig_event_lwp
= event_lwp
;
742 internal_error (__FILE__
, __LINE__
, _("unknown ptrace event %d"), event
);
745 /* Return the PC as read from the regcache of LWP, without any
749 get_pc (struct lwp_info
*lwp
)
751 struct thread_info
*saved_thread
;
752 struct regcache
*regcache
;
755 if (the_low_target
.get_pc
== NULL
)
758 saved_thread
= current_thread
;
759 current_thread
= get_lwp_thread (lwp
);
761 regcache
= get_thread_regcache (current_thread
, 1);
762 pc
= (*the_low_target
.get_pc
) (regcache
);
765 debug_printf ("pc is 0x%lx\n", (long) pc
);
767 current_thread
= saved_thread
;
771 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
772 Fill *SYSNO with the syscall nr trapped. */
775 get_syscall_trapinfo (struct lwp_info
*lwp
, int *sysno
)
777 struct thread_info
*saved_thread
;
778 struct regcache
*regcache
;
780 if (the_low_target
.get_syscall_trapinfo
== NULL
)
782 /* If we cannot get the syscall trapinfo, report an unknown
783 system call number. */
784 *sysno
= UNKNOWN_SYSCALL
;
788 saved_thread
= current_thread
;
789 current_thread
= get_lwp_thread (lwp
);
791 regcache
= get_thread_regcache (current_thread
, 1);
792 (*the_low_target
.get_syscall_trapinfo
) (regcache
, sysno
);
795 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno
);
797 current_thread
= saved_thread
;
800 static int check_stopped_by_watchpoint (struct lwp_info
*child
);
802 /* Called when the LWP stopped for a signal/trap. If it stopped for a
803 trap check what caused it (breakpoint, watchpoint, trace, etc.),
804 and save the result in the LWP's stop_reason field. If it stopped
805 for a breakpoint, decrement the PC if necessary on the lwp's
806 architecture. Returns true if we now have the LWP's stop PC. */
809 save_stop_reason (struct lwp_info
*lwp
)
812 CORE_ADDR sw_breakpoint_pc
;
813 struct thread_info
*saved_thread
;
814 #if USE_SIGTRAP_SIGINFO
818 if (the_low_target
.get_pc
== NULL
)
822 sw_breakpoint_pc
= pc
- the_low_target
.decr_pc_after_break
;
824 /* breakpoint_at reads from the current thread. */
825 saved_thread
= current_thread
;
826 current_thread
= get_lwp_thread (lwp
);
828 #if USE_SIGTRAP_SIGINFO
829 if (ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
830 (PTRACE_TYPE_ARG3
) 0, &siginfo
) == 0)
832 if (siginfo
.si_signo
== SIGTRAP
)
834 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
)
835 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
837 /* The si_code is ambiguous on this arch -- check debug
839 if (!check_stopped_by_watchpoint (lwp
))
840 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
842 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
))
844 /* If we determine the LWP stopped for a SW breakpoint,
845 trust it. Particularly don't check watchpoint
846 registers, because at least on s390, we'd find
847 stopped-by-watchpoint as long as there's a watchpoint
849 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
851 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
853 /* This can indicate either a hardware breakpoint or
854 hardware watchpoint. Check debug registers. */
855 if (!check_stopped_by_watchpoint (lwp
))
856 lwp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
858 else if (siginfo
.si_code
== TRAP_TRACE
)
860 /* We may have single stepped an instruction that
861 triggered a watchpoint. In that case, on some
862 architectures (such as x86), instead of TRAP_HWBKPT,
863 si_code indicates TRAP_TRACE, and we need to check
864 the debug registers separately. */
865 if (!check_stopped_by_watchpoint (lwp
))
866 lwp
->stop_reason
= TARGET_STOPPED_BY_SINGLE_STEP
;
871 /* We may have just stepped a breakpoint instruction. E.g., in
872 non-stop mode, GDB first tells the thread A to step a range, and
873 then the user inserts a breakpoint inside the range. In that
874 case we need to report the breakpoint PC. */
875 if ((!lwp
->stepping
|| lwp
->stop_pc
== sw_breakpoint_pc
)
876 && (*the_low_target
.breakpoint_at
) (sw_breakpoint_pc
))
877 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
879 if (hardware_breakpoint_inserted_here (pc
))
880 lwp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
882 if (lwp
->stop_reason
== TARGET_STOPPED_BY_NO_REASON
)
883 check_stopped_by_watchpoint (lwp
);
886 if (lwp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
)
890 struct thread_info
*thr
= get_lwp_thread (lwp
);
892 debug_printf ("CSBB: %s stopped by software breakpoint\n",
893 target_pid_to_str (ptid_of (thr
)));
896 /* Back up the PC if necessary. */
897 if (pc
!= sw_breakpoint_pc
)
899 struct regcache
*regcache
900 = get_thread_regcache (current_thread
, 1);
901 (*the_low_target
.set_pc
) (regcache
, sw_breakpoint_pc
);
904 /* Update this so we record the correct stop PC below. */
905 pc
= sw_breakpoint_pc
;
907 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
)
911 struct thread_info
*thr
= get_lwp_thread (lwp
);
913 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
914 target_pid_to_str (ptid_of (thr
)));
917 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
)
921 struct thread_info
*thr
= get_lwp_thread (lwp
);
923 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
924 target_pid_to_str (ptid_of (thr
)));
927 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_SINGLE_STEP
)
931 struct thread_info
*thr
= get_lwp_thread (lwp
);
933 debug_printf ("CSBB: %s stopped by trace\n",
934 target_pid_to_str (ptid_of (thr
)));
939 current_thread
= saved_thread
;
943 static struct lwp_info
*
944 add_lwp (ptid_t ptid
)
946 struct lwp_info
*lwp
;
948 lwp
= XCNEW (struct lwp_info
);
950 lwp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
952 lwp
->thread
= add_thread (ptid
, lwp
);
954 if (the_low_target
.new_thread
!= NULL
)
955 the_low_target
.new_thread (lwp
);
960 /* Callback to be used when calling fork_inferior, responsible for
961 actually initiating the tracing of the inferior. */
966 if (ptrace (PTRACE_TRACEME
, 0, (PTRACE_TYPE_ARG3
) 0,
967 (PTRACE_TYPE_ARG4
) 0) < 0)
968 trace_start_error_with_name ("ptrace");
970 if (setpgid (0, 0) < 0)
971 trace_start_error_with_name ("setpgid");
973 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
974 stdout to stderr so that inferior i/o doesn't corrupt the connection.
975 Also, redirect stdin to /dev/null. */
976 if (remote_connection_is_stdio ())
979 trace_start_error_with_name ("close");
980 if (open ("/dev/null", O_RDONLY
) < 0)
981 trace_start_error_with_name ("open");
983 trace_start_error_with_name ("dup2");
984 if (write (2, "stdin/stdout redirected\n",
985 sizeof ("stdin/stdout redirected\n") - 1) < 0)
987 /* Errors ignored. */;
992 /* Start an inferior process and returns its pid.
993 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
994 are its arguments. */
997 linux_process_target::create_inferior (const char *program
,
998 const std::vector
<char *> &program_args
)
1000 client_state
&cs
= get_client_state ();
1001 struct lwp_info
*new_lwp
;
1006 maybe_disable_address_space_randomization restore_personality
1007 (cs
.disable_randomization
);
1008 std::string str_program_args
= stringify_argv (program_args
);
1010 pid
= fork_inferior (program
,
1011 str_program_args
.c_str (),
1012 get_environ ()->envp (), linux_ptrace_fun
,
1013 NULL
, NULL
, NULL
, NULL
);
1016 linux_add_process (pid
, 0);
1018 ptid
= ptid_t (pid
, pid
, 0);
1019 new_lwp
= add_lwp (ptid
);
1020 new_lwp
->must_set_ptrace_flags
= 1;
1022 post_fork_inferior (pid
, program
);
1027 /* Implement the post_create_inferior target_ops method. */
1030 linux_process_target::post_create_inferior ()
1032 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
1034 linux_arch_setup ();
1036 if (lwp
->must_set_ptrace_flags
)
1038 struct process_info
*proc
= current_process ();
1039 int options
= linux_low_ptrace_options (proc
->attached
);
1041 linux_enable_event_reporting (lwpid_of (current_thread
), options
);
1042 lwp
->must_set_ptrace_flags
= 0;
1046 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1050 linux_attach_lwp (ptid_t ptid
)
1052 struct lwp_info
*new_lwp
;
1053 int lwpid
= ptid
.lwp ();
1055 if (ptrace (PTRACE_ATTACH
, lwpid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0)
1059 new_lwp
= add_lwp (ptid
);
1061 /* We need to wait for SIGSTOP before being able to make the next
1062 ptrace call on this LWP. */
1063 new_lwp
->must_set_ptrace_flags
= 1;
1065 if (linux_proc_pid_is_stopped (lwpid
))
1068 debug_printf ("Attached to a stopped process\n");
1070 /* The process is definitely stopped. It is in a job control
1071 stop, unless the kernel predates the TASK_STOPPED /
1072 TASK_TRACED distinction, in which case it might be in a
1073 ptrace stop. Make sure it is in a ptrace stop; from there we
1074 can kill it, signal it, et cetera.
1076 First make sure there is a pending SIGSTOP. Since we are
1077 already attached, the process can not transition from stopped
1078 to running without a PTRACE_CONT; so we know this signal will
1079 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1080 probably already in the queue (unless this kernel is old
1081 enough to use TASK_STOPPED for ptrace stops); but since
1082 SIGSTOP is not an RT signal, it can only be queued once. */
1083 kill_lwp (lwpid
, SIGSTOP
);
1085 /* Finally, resume the stopped process. This will deliver the
1086 SIGSTOP (or a higher priority signal, just like normal
1087 PTRACE_ATTACH), which we'll catch later on. */
1088 ptrace (PTRACE_CONT
, lwpid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0);
1091 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1092 brings it to a halt.
1094 There are several cases to consider here:
1096 1) gdbserver has already attached to the process and is being notified
1097 of a new thread that is being created.
1098 In this case we should ignore that SIGSTOP and resume the
1099 process. This is handled below by setting stop_expected = 1,
1100 and the fact that add_thread sets last_resume_kind ==
1103 2) This is the first thread (the process thread), and we're attaching
1104 to it via attach_inferior.
1105 In this case we want the process thread to stop.
1106 This is handled by having linux_attach set last_resume_kind ==
1107 resume_stop after we return.
1109 If the pid we are attaching to is also the tgid, we attach to and
1110 stop all the existing threads. Otherwise, we attach to pid and
1111 ignore any other threads in the same group as this pid.
1113 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1115 In this case we want the thread to stop.
1116 FIXME: This case is currently not properly handled.
1117 We should wait for the SIGSTOP but don't. Things work apparently
1118 because enough time passes between when we ptrace (ATTACH) and when
1119 gdb makes the next ptrace call on the thread.
1121 On the other hand, if we are currently trying to stop all threads, we
1122 should treat the new thread as if we had sent it a SIGSTOP. This works
1123 because we are guaranteed that the add_lwp call above added us to the
1124 end of the list, and so the new thread has not yet reached
1125 wait_for_sigstop (but will). */
1126 new_lwp
->stop_expected
= 1;
1131 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1132 already attached. Returns true if a new LWP is found, false
1136 attach_proc_task_lwp_callback (ptid_t ptid
)
1138 /* Is this a new thread? */
1139 if (find_thread_ptid (ptid
) == NULL
)
1141 int lwpid
= ptid
.lwp ();
1145 debug_printf ("Found new lwp %d\n", lwpid
);
1147 err
= linux_attach_lwp (ptid
);
1149 /* Be quiet if we simply raced with the thread exiting. EPERM
1150 is returned if the thread's task still exists, and is marked
1151 as exited or zombie, as well as other conditions, so in that
1152 case, confirm the status in /proc/PID/status. */
1154 || (err
== EPERM
&& linux_proc_pid_is_gone (lwpid
)))
1158 debug_printf ("Cannot attach to lwp %d: "
1159 "thread is gone (%d: %s)\n",
1160 lwpid
, err
, safe_strerror (err
));
1166 = linux_ptrace_attach_fail_reason_string (ptid
, err
);
1168 warning (_("Cannot attach to lwp %d: %s"), lwpid
, reason
.c_str ());
1176 static void async_file_mark (void);
1178 /* Attach to PID. If PID is the tgid, attach to it and all
1182 linux_process_target::attach (unsigned long pid
)
1184 struct process_info
*proc
;
1185 struct thread_info
*initial_thread
;
1186 ptid_t ptid
= ptid_t (pid
, pid
, 0);
1189 proc
= linux_add_process (pid
, 1);
1191 /* Attach to PID. We will check for other threads
1193 err
= linux_attach_lwp (ptid
);
1196 remove_process (proc
);
1198 std::string reason
= linux_ptrace_attach_fail_reason_string (ptid
, err
);
1199 error ("Cannot attach to process %ld: %s", pid
, reason
.c_str ());
1202 /* Don't ignore the initial SIGSTOP if we just attached to this
1203 process. It will be collected by wait shortly. */
1204 initial_thread
= find_thread_ptid (ptid_t (pid
, pid
, 0));
1205 initial_thread
->last_resume_kind
= resume_stop
;
1207 /* We must attach to every LWP. If /proc is mounted, use that to
1208 find them now. On the one hand, the inferior may be using raw
1209 clone instead of using pthreads. On the other hand, even if it
1210 is using pthreads, GDB may not be connected yet (thread_db needs
1211 to do symbol lookups, through qSymbol). Also, thread_db walks
1212 structures in the inferior's address space to find the list of
1213 threads/LWPs, and those structures may well be corrupted. Note
1214 that once thread_db is loaded, we'll still use it to list threads
1215 and associate pthread info with each LWP. */
1216 linux_proc_attach_tgid_threads (pid
, attach_proc_task_lwp_callback
);
1218 /* GDB will shortly read the xml target description for this
1219 process, to figure out the process' architecture. But the target
1220 description is only filled in when the first process/thread in
1221 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1222 that now, otherwise, if GDB is fast enough, it could read the
1223 target description _before_ that initial stop. */
1226 struct lwp_info
*lwp
;
1228 ptid_t pid_ptid
= ptid_t (pid
);
1230 lwpid
= linux_wait_for_event_filtered (pid_ptid
, pid_ptid
,
1232 gdb_assert (lwpid
> 0);
1234 lwp
= find_lwp_pid (ptid_t (lwpid
));
1236 if (!WIFSTOPPED (wstat
) || WSTOPSIG (wstat
) != SIGSTOP
)
1238 lwp
->status_pending_p
= 1;
1239 lwp
->status_pending
= wstat
;
1242 initial_thread
->last_resume_kind
= resume_continue
;
1246 gdb_assert (proc
->tdesc
!= NULL
);
1253 last_thread_of_process_p (int pid
)
1255 bool seen_one
= false;
1257 thread_info
*thread
= find_thread (pid
, [&] (thread_info
*thr_arg
)
1261 /* This is the first thread of this process we see. */
1267 /* This is the second thread of this process we see. */
1272 return thread
== NULL
;
1278 linux_kill_one_lwp (struct lwp_info
*lwp
)
1280 struct thread_info
*thr
= get_lwp_thread (lwp
);
1281 int pid
= lwpid_of (thr
);
1283 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1284 there is no signal context, and ptrace(PTRACE_KILL) (or
1285 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1286 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1287 alternative is to kill with SIGKILL. We only need one SIGKILL
1288 per process, not one for each thread. But since we still support
1289 support debugging programs using raw clone without CLONE_THREAD,
1290 we send one for each thread. For years, we used PTRACE_KILL
1291 only, so we're being a bit paranoid about some old kernels where
1292 PTRACE_KILL might work better (dubious if there are any such, but
1293 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1294 second, and so we're fine everywhere. */
1297 kill_lwp (pid
, SIGKILL
);
1300 int save_errno
= errno
;
1302 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1303 target_pid_to_str (ptid_of (thr
)),
1304 save_errno
? safe_strerror (save_errno
) : "OK");
1308 ptrace (PTRACE_KILL
, pid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0);
1311 int save_errno
= errno
;
1313 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1314 target_pid_to_str (ptid_of (thr
)),
1315 save_errno
? safe_strerror (save_errno
) : "OK");
1319 /* Kill LWP and wait for it to die. */
1322 kill_wait_lwp (struct lwp_info
*lwp
)
1324 struct thread_info
*thr
= get_lwp_thread (lwp
);
1325 int pid
= ptid_of (thr
).pid ();
1326 int lwpid
= ptid_of (thr
).lwp ();
1331 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid
, pid
);
1335 linux_kill_one_lwp (lwp
);
1337 /* Make sure it died. Notes:
1339 - The loop is most likely unnecessary.
1341 - We don't use linux_wait_for_event as that could delete lwps
1342 while we're iterating over them. We're not interested in
1343 any pending status at this point, only in making sure all
1344 wait status on the kernel side are collected until the
1347 - We don't use __WALL here as the __WALL emulation relies on
1348 SIGCHLD, and killing a stopped process doesn't generate
1349 one, nor an exit status.
1351 res
= my_waitpid (lwpid
, &wstat
, 0);
1352 if (res
== -1 && errno
== ECHILD
)
1353 res
= my_waitpid (lwpid
, &wstat
, __WCLONE
);
1354 } while (res
> 0 && WIFSTOPPED (wstat
));
1356 /* Even if it was stopped, the child may have already disappeared.
1357 E.g., if it was killed by SIGKILL. */
1358 if (res
< 0 && errno
!= ECHILD
)
1359 perror_with_name ("kill_wait_lwp");
1362 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1363 except the leader. */
1366 kill_one_lwp_callback (thread_info
*thread
, int pid
)
1368 struct lwp_info
*lwp
= get_thread_lwp (thread
);
1370 /* We avoid killing the first thread here, because of a Linux kernel (at
1371 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1372 the children get a chance to be reaped, it will remain a zombie
1375 if (lwpid_of (thread
) == pid
)
1378 debug_printf ("lkop: is last of process %s\n",
1379 target_pid_to_str (thread
->id
));
1383 kill_wait_lwp (lwp
);
1387 linux_process_target::kill (process_info
*process
)
1389 int pid
= process
->pid
;
1391 /* If we're killing a running inferior, make sure it is stopped
1392 first, as PTRACE_KILL will not work otherwise. */
1393 stop_all_lwps (0, NULL
);
1395 for_each_thread (pid
, [&] (thread_info
*thread
)
1397 kill_one_lwp_callback (thread
, pid
);
1400 /* See the comment in linux_kill_one_lwp. We did not kill the first
1401 thread in the list, so do so now. */
1402 lwp_info
*lwp
= find_lwp_pid (ptid_t (pid
));
1407 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1411 kill_wait_lwp (lwp
);
1415 /* Since we presently can only stop all lwps of all processes, we
1416 need to unstop lwps of other processes. */
1417 unstop_all_lwps (0, NULL
);
1421 /* Get pending signal of THREAD, for detaching purposes. This is the
1422 signal the thread last stopped for, which we need to deliver to the
1423 thread when detaching, otherwise, it'd be suppressed/lost. */
1426 get_detach_signal (struct thread_info
*thread
)
1428 client_state
&cs
= get_client_state ();
1429 enum gdb_signal signo
= GDB_SIGNAL_0
;
1431 struct lwp_info
*lp
= get_thread_lwp (thread
);
1433 if (lp
->status_pending_p
)
1434 status
= lp
->status_pending
;
1437 /* If the thread had been suspended by gdbserver, and it stopped
1438 cleanly, then it'll have stopped with SIGSTOP. But we don't
1439 want to deliver that SIGSTOP. */
1440 if (thread
->last_status
.kind
!= TARGET_WAITKIND_STOPPED
1441 || thread
->last_status
.value
.sig
== GDB_SIGNAL_0
)
1444 /* Otherwise, we may need to deliver the signal we
1446 status
= lp
->last_status
;
1449 if (!WIFSTOPPED (status
))
1452 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1453 target_pid_to_str (ptid_of (thread
)));
1457 /* Extended wait statuses aren't real SIGTRAPs. */
1458 if (WSTOPSIG (status
) == SIGTRAP
&& linux_is_extended_waitstatus (status
))
1461 debug_printf ("GPS: lwp %s had stopped with extended "
1462 "status: no pending signal\n",
1463 target_pid_to_str (ptid_of (thread
)));
1467 signo
= gdb_signal_from_host (WSTOPSIG (status
));
1469 if (cs
.program_signals_p
&& !cs
.program_signals
[signo
])
1472 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1473 target_pid_to_str (ptid_of (thread
)),
1474 gdb_signal_to_string (signo
));
1477 else if (!cs
.program_signals_p
1478 /* If we have no way to know which signals GDB does not
1479 want to have passed to the program, assume
1480 SIGTRAP/SIGINT, which is GDB's default. */
1481 && (signo
== GDB_SIGNAL_TRAP
|| signo
== GDB_SIGNAL_INT
))
1484 debug_printf ("GPS: lwp %s had signal %s, "
1485 "but we don't know if we should pass it. "
1486 "Default to not.\n",
1487 target_pid_to_str (ptid_of (thread
)),
1488 gdb_signal_to_string (signo
));
1494 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1495 target_pid_to_str (ptid_of (thread
)),
1496 gdb_signal_to_string (signo
));
1498 return WSTOPSIG (status
);
1502 /* Detach from LWP. */
1505 linux_detach_one_lwp (struct lwp_info
*lwp
)
1507 struct thread_info
*thread
= get_lwp_thread (lwp
);
1511 /* If there is a pending SIGSTOP, get rid of it. */
1512 if (lwp
->stop_expected
)
1515 debug_printf ("Sending SIGCONT to %s\n",
1516 target_pid_to_str (ptid_of (thread
)));
1518 kill_lwp (lwpid_of (thread
), SIGCONT
);
1519 lwp
->stop_expected
= 0;
1522 /* Pass on any pending signal for this thread. */
1523 sig
= get_detach_signal (thread
);
1525 /* Preparing to resume may try to write registers, and fail if the
1526 lwp is zombie. If that happens, ignore the error. We'll handle
1527 it below, when detach fails with ESRCH. */
1530 /* Flush any pending changes to the process's registers. */
1531 regcache_invalidate_thread (thread
);
1533 /* Finally, let it resume. */
1534 if (the_low_target
.prepare_to_resume
!= NULL
)
1535 the_low_target
.prepare_to_resume (lwp
);
1537 catch (const gdb_exception_error
&ex
)
1539 if (!check_ptrace_stopped_lwp_gone (lwp
))
1543 lwpid
= lwpid_of (thread
);
1544 if (ptrace (PTRACE_DETACH
, lwpid
, (PTRACE_TYPE_ARG3
) 0,
1545 (PTRACE_TYPE_ARG4
) (long) sig
) < 0)
1547 int save_errno
= errno
;
1549 /* We know the thread exists, so ESRCH must mean the lwp is
1550 zombie. This can happen if one of the already-detached
1551 threads exits the whole thread group. In that case we're
1552 still attached, and must reap the lwp. */
1553 if (save_errno
== ESRCH
)
1557 ret
= my_waitpid (lwpid
, &status
, __WALL
);
1560 warning (_("Couldn't reap LWP %d while detaching: %s"),
1561 lwpid
, safe_strerror (errno
));
1563 else if (!WIFEXITED (status
) && !WIFSIGNALED (status
))
1565 warning (_("Reaping LWP %d while detaching "
1566 "returned unexpected status 0x%x"),
1572 error (_("Can't detach %s: %s"),
1573 target_pid_to_str (ptid_of (thread
)),
1574 safe_strerror (save_errno
));
1577 else if (debug_threads
)
1579 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1580 target_pid_to_str (ptid_of (thread
)),
1587 /* Callback for for_each_thread. Detaches from non-leader threads of a
1591 linux_detach_lwp_callback (thread_info
*thread
)
1593 /* We don't actually detach from the thread group leader just yet.
1594 If the thread group exits, we must reap the zombie clone lwps
1595 before we're able to reap the leader. */
1596 if (thread
->id
.pid () == thread
->id
.lwp ())
1599 lwp_info
*lwp
= get_thread_lwp (thread
);
1600 linux_detach_one_lwp (lwp
);
1604 linux_process_target::detach (process_info
*process
)
1606 struct lwp_info
*main_lwp
;
1608 /* As there's a step over already in progress, let it finish first,
1609 otherwise nesting a stabilize_threads operation on top gets real
1611 complete_ongoing_step_over ();
1613 /* Stop all threads before detaching. First, ptrace requires that
1614 the thread is stopped to successfully detach. Second, thread_db
1615 may need to uninstall thread event breakpoints from memory, which
1616 only works with a stopped process anyway. */
1617 stop_all_lwps (0, NULL
);
1619 #ifdef USE_THREAD_DB
1620 thread_db_detach (process
);
1623 /* Stabilize threads (move out of jump pads). */
1624 stabilize_threads ();
1626 /* Detach from the clone lwps first. If the thread group exits just
1627 while we're detaching, we must reap the clone lwps before we're
1628 able to reap the leader. */
1629 for_each_thread (process
->pid
, linux_detach_lwp_callback
);
1631 main_lwp
= find_lwp_pid (ptid_t (process
->pid
));
1632 linux_detach_one_lwp (main_lwp
);
1636 /* Since we presently can only stop all lwps of all processes, we
1637 need to unstop lwps of other processes. */
1638 unstop_all_lwps (0, NULL
);
1642 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645 linux_process_target::mourn (process_info
*process
)
1647 struct process_info_private
*priv
;
1649 #ifdef USE_THREAD_DB
1650 thread_db_mourn (process
);
1653 for_each_thread (process
->pid
, [] (thread_info
*thread
)
1655 delete_lwp (get_thread_lwp (thread
));
1658 /* Freeing all private data. */
1659 priv
= process
->priv
;
1660 if (the_low_target
.delete_process
!= NULL
)
1661 the_low_target
.delete_process (priv
->arch_private
);
1663 gdb_assert (priv
->arch_private
== NULL
);
1665 process
->priv
= NULL
;
1667 remove_process (process
);
1671 linux_process_target::join (int pid
)
1676 ret
= my_waitpid (pid
, &status
, 0);
1677 if (WIFEXITED (status
) || WIFSIGNALED (status
))
1679 } while (ret
!= -1 || errno
!= ECHILD
);
1682 /* Return true if the given thread is still alive. */
1685 linux_process_target::thread_alive (ptid_t ptid
)
1687 struct lwp_info
*lwp
= find_lwp_pid (ptid
);
1689 /* We assume we always know if a thread exits. If a whole process
1690 exited but we still haven't been able to report it to GDB, we'll
1691 hold on to the last lwp of the dead process. */
1693 return !lwp_is_marked_dead (lwp
);
1698 /* Return 1 if this lwp still has an interesting status pending. If
1699 not (e.g., it had stopped for a breakpoint that is gone), return
1703 thread_still_has_status_pending_p (struct thread_info
*thread
)
1705 struct lwp_info
*lp
= get_thread_lwp (thread
);
1707 if (!lp
->status_pending_p
)
1710 if (thread
->last_resume_kind
!= resume_stop
1711 && (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
1712 || lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
))
1714 struct thread_info
*saved_thread
;
1718 gdb_assert (lp
->last_status
!= 0);
1722 saved_thread
= current_thread
;
1723 current_thread
= thread
;
1725 if (pc
!= lp
->stop_pc
)
1728 debug_printf ("PC of %ld changed\n",
1733 #if !USE_SIGTRAP_SIGINFO
1734 else if (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
1735 && !(*the_low_target
.breakpoint_at
) (pc
))
1738 debug_printf ("previous SW breakpoint of %ld gone\n",
1742 else if (lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
1743 && !hardware_breakpoint_inserted_here (pc
))
1746 debug_printf ("previous HW breakpoint of %ld gone\n",
1752 current_thread
= saved_thread
;
1757 debug_printf ("discarding pending breakpoint status\n");
1758 lp
->status_pending_p
= 0;
1766 /* Returns true if LWP is resumed from the client's perspective. */
1769 lwp_resumed (struct lwp_info
*lwp
)
1771 struct thread_info
*thread
= get_lwp_thread (lwp
);
1773 if (thread
->last_resume_kind
!= resume_stop
)
1776 /* Did gdb send us a `vCont;t', but we haven't reported the
1777 corresponding stop to gdb yet? If so, the thread is still
1778 resumed/running from gdb's perspective. */
1779 if (thread
->last_resume_kind
== resume_stop
1780 && thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
)
1786 /* Return true if this lwp has an interesting status pending. */
1788 status_pending_p_callback (thread_info
*thread
, ptid_t ptid
)
1790 struct lwp_info
*lp
= get_thread_lwp (thread
);
1792 /* Check if we're only interested in events from a specific process
1793 or a specific LWP. */
1794 if (!thread
->id
.matches (ptid
))
1797 if (!lwp_resumed (lp
))
1800 if (lp
->status_pending_p
1801 && !thread_still_has_status_pending_p (thread
))
1803 linux_resume_one_lwp (lp
, lp
->stepping
, GDB_SIGNAL_0
, NULL
);
1807 return lp
->status_pending_p
;
1811 find_lwp_pid (ptid_t ptid
)
1813 thread_info
*thread
= find_thread ([&] (thread_info
*thr_arg
)
1815 int lwp
= ptid
.lwp () != 0 ? ptid
.lwp () : ptid
.pid ();
1816 return thr_arg
->id
.lwp () == lwp
;
1822 return get_thread_lwp (thread
);
1825 /* Return the number of known LWPs in the tgid given by PID. */
1832 for_each_thread (pid
, [&] (thread_info
*thread
)
1840 /* See nat/linux-nat.h. */
1843 iterate_over_lwps (ptid_t filter
,
1844 gdb::function_view
<iterate_over_lwps_ftype
> callback
)
1846 thread_info
*thread
= find_thread (filter
, [&] (thread_info
*thr_arg
)
1848 lwp_info
*lwp
= get_thread_lwp (thr_arg
);
1850 return callback (lwp
);
1856 return get_thread_lwp (thread
);
1859 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1860 their exits until all other threads in the group have exited. */
1863 check_zombie_leaders (void)
1865 for_each_process ([] (process_info
*proc
) {
1866 pid_t leader_pid
= pid_of (proc
);
1867 struct lwp_info
*leader_lp
;
1869 leader_lp
= find_lwp_pid (ptid_t (leader_pid
));
1872 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1873 "num_lwps=%d, zombie=%d\n",
1874 leader_pid
, leader_lp
!= NULL
, num_lwps (leader_pid
),
1875 linux_proc_pid_is_zombie (leader_pid
));
1877 if (leader_lp
!= NULL
&& !leader_lp
->stopped
1878 /* Check if there are other threads in the group, as we may
1879 have raced with the inferior simply exiting. */
1880 && !last_thread_of_process_p (leader_pid
)
1881 && linux_proc_pid_is_zombie (leader_pid
))
1883 /* A leader zombie can mean one of two things:
1885 - It exited, and there's an exit status pending
1886 available, or only the leader exited (not the whole
1887 program). In the latter case, we can't waitpid the
1888 leader's exit status until all other threads are gone.
1890 - There are 3 or more threads in the group, and a thread
1891 other than the leader exec'd. On an exec, the Linux
1892 kernel destroys all other threads (except the execing
1893 one) in the thread group, and resets the execing thread's
1894 tid to the tgid. No exit notification is sent for the
1895 execing thread -- from the ptracer's perspective, it
1896 appears as though the execing thread just vanishes.
1897 Until we reap all other threads except the leader and the
1898 execing thread, the leader will be zombie, and the
1899 execing thread will be in `D (disc sleep)'. As soon as
1900 all other threads are reaped, the execing thread changes
1901 it's tid to the tgid, and the previous (zombie) leader
1902 vanishes, giving place to the "new" leader. We could try
1903 distinguishing the exit and exec cases, by waiting once
1904 more, and seeing if something comes out, but it doesn't
1905 sound useful. The previous leader _does_ go away, and
1906 we'll re-add the new one once we see the exec event
1907 (which is just the same as what would happen if the
1908 previous leader did exit voluntarily before some other
1912 debug_printf ("CZL: Thread group leader %d zombie "
1913 "(it exited, or another thread execd).\n",
1916 delete_lwp (leader_lp
);
1921 /* Callback for `find_thread'. Returns the first LWP that is not
1925 not_stopped_callback (thread_info
*thread
, ptid_t filter
)
1927 if (!thread
->id
.matches (filter
))
1930 lwp_info
*lwp
= get_thread_lwp (thread
);
1932 return !lwp
->stopped
;
1935 /* Increment LWP's suspend count. */
1938 lwp_suspended_inc (struct lwp_info
*lwp
)
1942 if (debug_threads
&& lwp
->suspended
> 4)
1944 struct thread_info
*thread
= get_lwp_thread (lwp
);
1946 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1947 " suspended=%d\n", lwpid_of (thread
), lwp
->suspended
);
1951 /* Decrement LWP's suspend count. */
1954 lwp_suspended_decr (struct lwp_info
*lwp
)
1958 if (lwp
->suspended
< 0)
1960 struct thread_info
*thread
= get_lwp_thread (lwp
);
1962 internal_error (__FILE__
, __LINE__
,
1963 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread
),
1968 /* This function should only be called if the LWP got a SIGTRAP.
1970 Handle any tracepoint steps or hits. Return true if a tracepoint
1971 event was handled, 0 otherwise. */
1974 handle_tracepoints (struct lwp_info
*lwp
)
1976 struct thread_info
*tinfo
= get_lwp_thread (lwp
);
1977 int tpoint_related_event
= 0;
1979 gdb_assert (lwp
->suspended
== 0);
1981 /* If this tracepoint hit causes a tracing stop, we'll immediately
1982 uninsert tracepoints. To do this, we temporarily pause all
1983 threads, unpatch away, and then unpause threads. We need to make
1984 sure the unpausing doesn't resume LWP too. */
1985 lwp_suspended_inc (lwp
);
1987 /* And we need to be sure that any all-threads-stopping doesn't try
1988 to move threads out of the jump pads, as it could deadlock the
1989 inferior (LWP could be in the jump pad, maybe even holding the
1992 /* Do any necessary step collect actions. */
1993 tpoint_related_event
|= tracepoint_finished_step (tinfo
, lwp
->stop_pc
);
1995 tpoint_related_event
|= handle_tracepoint_bkpts (tinfo
, lwp
->stop_pc
);
1997 /* See if we just hit a tracepoint and do its main collect
1999 tpoint_related_event
|= tracepoint_was_hit (tinfo
, lwp
->stop_pc
);
2001 lwp_suspended_decr (lwp
);
2003 gdb_assert (lwp
->suspended
== 0);
2004 gdb_assert (!stabilizing_threads
2005 || (lwp
->collecting_fast_tracepoint
2006 != fast_tpoint_collect_result::not_collecting
));
2008 if (tpoint_related_event
)
2011 debug_printf ("got a tracepoint event\n");
2018 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2019 collection status. */
2021 static fast_tpoint_collect_result
2022 linux_fast_tracepoint_collecting (struct lwp_info
*lwp
,
2023 struct fast_tpoint_collect_status
*status
)
2025 CORE_ADDR thread_area
;
2026 struct thread_info
*thread
= get_lwp_thread (lwp
);
2028 if (the_low_target
.get_thread_area
== NULL
)
2029 return fast_tpoint_collect_result::not_collecting
;
2031 /* Get the thread area address. This is used to recognize which
2032 thread is which when tracing with the in-process agent library.
2033 We don't read anything from the address, and treat it as opaque;
2034 it's the address itself that we assume is unique per-thread. */
2035 if ((*the_low_target
.get_thread_area
) (lwpid_of (thread
), &thread_area
) == -1)
2036 return fast_tpoint_collect_result::not_collecting
;
2038 return fast_tracepoint_collecting (thread_area
, lwp
->stop_pc
, status
);
2041 /* The reason we resume in the caller, is because we want to be able
2042 to pass lwp->status_pending as WSTAT, and we need to clear
2043 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2044 refuses to resume. */
2047 maybe_move_out_of_jump_pad (struct lwp_info
*lwp
, int *wstat
)
2049 struct thread_info
*saved_thread
;
2051 saved_thread
= current_thread
;
2052 current_thread
= get_lwp_thread (lwp
);
2055 || (WIFSTOPPED (*wstat
) && WSTOPSIG (*wstat
) != SIGTRAP
))
2056 && supports_fast_tracepoints ()
2057 && agent_loaded_p ())
2059 struct fast_tpoint_collect_status status
;
2062 debug_printf ("Checking whether LWP %ld needs to move out of the "
2064 lwpid_of (current_thread
));
2066 fast_tpoint_collect_result r
2067 = linux_fast_tracepoint_collecting (lwp
, &status
);
2070 || (WSTOPSIG (*wstat
) != SIGILL
2071 && WSTOPSIG (*wstat
) != SIGFPE
2072 && WSTOPSIG (*wstat
) != SIGSEGV
2073 && WSTOPSIG (*wstat
) != SIGBUS
))
2075 lwp
->collecting_fast_tracepoint
= r
;
2077 if (r
!= fast_tpoint_collect_result::not_collecting
)
2079 if (r
== fast_tpoint_collect_result::before_insn
2080 && lwp
->exit_jump_pad_bkpt
== NULL
)
2082 /* Haven't executed the original instruction yet.
2083 Set breakpoint there, and wait till it's hit,
2084 then single-step until exiting the jump pad. */
2085 lwp
->exit_jump_pad_bkpt
2086 = set_breakpoint_at (status
.adjusted_insn_addr
, NULL
);
2090 debug_printf ("Checking whether LWP %ld needs to move out of "
2091 "the jump pad...it does\n",
2092 lwpid_of (current_thread
));
2093 current_thread
= saved_thread
;
2100 /* If we get a synchronous signal while collecting, *and*
2101 while executing the (relocated) original instruction,
2102 reset the PC to point at the tpoint address, before
2103 reporting to GDB. Otherwise, it's an IPA lib bug: just
2104 report the signal to GDB, and pray for the best. */
2106 lwp
->collecting_fast_tracepoint
2107 = fast_tpoint_collect_result::not_collecting
;
2109 if (r
!= fast_tpoint_collect_result::not_collecting
2110 && (status
.adjusted_insn_addr
<= lwp
->stop_pc
2111 && lwp
->stop_pc
< status
.adjusted_insn_addr_end
))
2114 struct regcache
*regcache
;
2116 /* The si_addr on a few signals references the address
2117 of the faulting instruction. Adjust that as
2119 if ((WSTOPSIG (*wstat
) == SIGILL
2120 || WSTOPSIG (*wstat
) == SIGFPE
2121 || WSTOPSIG (*wstat
) == SIGBUS
2122 || WSTOPSIG (*wstat
) == SIGSEGV
)
2123 && ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
2124 (PTRACE_TYPE_ARG3
) 0, &info
) == 0
2125 /* Final check just to make sure we don't clobber
2126 the siginfo of non-kernel-sent signals. */
2127 && (uintptr_t) info
.si_addr
== lwp
->stop_pc
)
2129 info
.si_addr
= (void *) (uintptr_t) status
.tpoint_addr
;
2130 ptrace (PTRACE_SETSIGINFO
, lwpid_of (current_thread
),
2131 (PTRACE_TYPE_ARG3
) 0, &info
);
2134 regcache
= get_thread_regcache (current_thread
, 1);
2135 (*the_low_target
.set_pc
) (regcache
, status
.tpoint_addr
);
2136 lwp
->stop_pc
= status
.tpoint_addr
;
2138 /* Cancel any fast tracepoint lock this thread was
2140 force_unlock_trace_buffer ();
2143 if (lwp
->exit_jump_pad_bkpt
!= NULL
)
2146 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2147 "stopping all threads momentarily.\n");
2149 stop_all_lwps (1, lwp
);
2151 delete_breakpoint (lwp
->exit_jump_pad_bkpt
);
2152 lwp
->exit_jump_pad_bkpt
= NULL
;
2154 unstop_all_lwps (1, lwp
);
2156 gdb_assert (lwp
->suspended
>= 0);
2162 debug_printf ("Checking whether LWP %ld needs to move out of the "
2164 lwpid_of (current_thread
));
2166 current_thread
= saved_thread
;
2170 /* Enqueue one signal in the "signals to report later when out of the
2174 enqueue_one_deferred_signal (struct lwp_info
*lwp
, int *wstat
)
2176 struct pending_signals
*p_sig
;
2177 struct thread_info
*thread
= get_lwp_thread (lwp
);
2180 debug_printf ("Deferring signal %d for LWP %ld.\n",
2181 WSTOPSIG (*wstat
), lwpid_of (thread
));
2185 struct pending_signals
*sig
;
2187 for (sig
= lwp
->pending_signals_to_report
;
2190 debug_printf (" Already queued %d\n",
2193 debug_printf (" (no more currently queued signals)\n");
2196 /* Don't enqueue non-RT signals if they are already in the deferred
2197 queue. (SIGSTOP being the easiest signal to see ending up here
2199 if (WSTOPSIG (*wstat
) < __SIGRTMIN
)
2201 struct pending_signals
*sig
;
2203 for (sig
= lwp
->pending_signals_to_report
;
2207 if (sig
->signal
== WSTOPSIG (*wstat
))
2210 debug_printf ("Not requeuing already queued non-RT signal %d"
2219 p_sig
= XCNEW (struct pending_signals
);
2220 p_sig
->prev
= lwp
->pending_signals_to_report
;
2221 p_sig
->signal
= WSTOPSIG (*wstat
);
2223 ptrace (PTRACE_GETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
2226 lwp
->pending_signals_to_report
= p_sig
;
2229 /* Dequeue one signal from the "signals to report later when out of
2230 the jump pad" list. */
2233 dequeue_one_deferred_signal (struct lwp_info
*lwp
, int *wstat
)
2235 struct thread_info
*thread
= get_lwp_thread (lwp
);
2237 if (lwp
->pending_signals_to_report
!= NULL
)
2239 struct pending_signals
**p_sig
;
2241 p_sig
= &lwp
->pending_signals_to_report
;
2242 while ((*p_sig
)->prev
!= NULL
)
2243 p_sig
= &(*p_sig
)->prev
;
2245 *wstat
= W_STOPCODE ((*p_sig
)->signal
);
2246 if ((*p_sig
)->info
.si_signo
!= 0)
2247 ptrace (PTRACE_SETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
2253 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2254 WSTOPSIG (*wstat
), lwpid_of (thread
));
2258 struct pending_signals
*sig
;
2260 for (sig
= lwp
->pending_signals_to_report
;
2263 debug_printf (" Still queued %d\n",
2266 debug_printf (" (no more queued signals)\n");
2275 /* Fetch the possibly triggered data watchpoint info and store it in
2278 On some archs, like x86, that use debug registers to set
2279 watchpoints, it's possible that the way to know which watched
2280 address trapped, is to check the register that is used to select
2281 which address to watch. Problem is, between setting the watchpoint
2282 and reading back which data address trapped, the user may change
2283 the set of watchpoints, and, as a consequence, GDB changes the
2284 debug registers in the inferior. To avoid reading back a stale
2285 stopped-data-address when that happens, we cache in LP the fact
2286 that a watchpoint trapped, and the corresponding data address, as
2287 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2288 registers meanwhile, we have the cached data we can rely on. */
2291 check_stopped_by_watchpoint (struct lwp_info
*child
)
2293 if (the_low_target
.stopped_by_watchpoint
!= NULL
)
2295 struct thread_info
*saved_thread
;
2297 saved_thread
= current_thread
;
2298 current_thread
= get_lwp_thread (child
);
2300 if (the_low_target
.stopped_by_watchpoint ())
2302 child
->stop_reason
= TARGET_STOPPED_BY_WATCHPOINT
;
2304 if (the_low_target
.stopped_data_address
!= NULL
)
2305 child
->stopped_data_address
2306 = the_low_target
.stopped_data_address ();
2308 child
->stopped_data_address
= 0;
2311 current_thread
= saved_thread
;
2314 return child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
2317 /* Return the ptrace options that we want to try to enable. */
2320 linux_low_ptrace_options (int attached
)
2322 client_state
&cs
= get_client_state ();
2326 options
|= PTRACE_O_EXITKILL
;
2328 if (cs
.report_fork_events
)
2329 options
|= PTRACE_O_TRACEFORK
;
2331 if (cs
.report_vfork_events
)
2332 options
|= (PTRACE_O_TRACEVFORK
| PTRACE_O_TRACEVFORKDONE
);
2334 if (cs
.report_exec_events
)
2335 options
|= PTRACE_O_TRACEEXEC
;
2337 options
|= PTRACE_O_TRACESYSGOOD
;
2342 /* Do low-level handling of the event, and check if we should go on
2343 and pass it to caller code. Return the affected lwp if we are, or
2346 static struct lwp_info
*
2347 linux_low_filter_event (int lwpid
, int wstat
)
2349 client_state
&cs
= get_client_state ();
2350 struct lwp_info
*child
;
2351 struct thread_info
*thread
;
2352 int have_stop_pc
= 0;
2354 child
= find_lwp_pid (ptid_t (lwpid
));
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2370 if (WIFSTOPPED (wstat
) && child
== NULL
&& WSTOPSIG (wstat
) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat
) == PTRACE_EVENT_EXEC
)
2375 /* A multi-thread exec after we had seen the leader exiting. */
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid
);
2382 child_ptid
= ptid_t (lwpid
, lwpid
, 0);
2383 child
= add_lwp (child_ptid
);
2385 current_thread
= child
->thread
;
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child
== NULL
&& WIFSTOPPED (wstat
))
2394 add_to_pid_list (&stopped_pids
, lwpid
, wstat
);
2397 else if (child
== NULL
)
2400 thread
= get_lwp_thread (child
);
2404 child
->last_status
= wstat
;
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat
) || WIFSIGNALED (wstat
)))
2410 debug_printf ("LLFE: %d exited.\n", lwpid
);
2412 if (finish_step_over (child
))
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child
);
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (cs
.report_thread_events
2422 || last_thread_of_process_p (pid_of (thread
)))
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child
, wstat
);
2437 gdb_assert (WIFSTOPPED (wstat
));
2439 if (WIFSTOPPED (wstat
))
2441 struct process_info
*proc
;
2443 /* Architecture-specific setup after inferior is running. */
2444 proc
= find_process_pid (pid_of (thread
));
2445 if (proc
->tdesc
== NULL
)
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread
);
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child
->status_pending_p
= 1;
2460 child
->status_pending
= wstat
;
2466 if (WIFSTOPPED (wstat
) && child
->must_set_ptrace_flags
)
2468 struct process_info
*proc
= find_process_pid (pid_of (thread
));
2469 int options
= linux_low_ptrace_options (proc
->attached
);
2471 linux_enable_event_reporting (lwpid
, options
);
2472 child
->must_set_ptrace_flags
= 0;
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SYSCALL_SIGTRAP
)
2478 child
->syscall_state
2479 = (child
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY
);
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child
->syscall_state
= TARGET_WAITKIND_IGNORE
;
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2492 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat
))
2495 child
->stop_pc
= get_pc (child
);
2496 if (handle_extended_wait (&child
, wstat
))
2498 /* The event has been handled, so just return without
2504 if (linux_wstatus_maybe_breakpoint (wstat
))
2506 if (save_stop_reason (child
))
2511 child
->stop_pc
= get_pc (child
);
2513 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SIGSTOP
2514 && child
->stop_expected
)
2517 debug_printf ("Expected stop.\n");
2518 child
->stop_expected
= 0;
2520 if (thread
->last_resume_kind
== resume_stop
)
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread
)));
2528 else if (stopping_threads
!= NOT_STOPPING_THREADS
)
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread
)));
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child
->stepping
? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread
)));
2546 linux_resume_one_lwp (child
, child
->stepping
, 0, NULL
);
2551 child
->status_pending_p
= 1;
2552 child
->status_pending
= wstat
;
2556 /* Return true if THREAD is doing hardware single step. */
2559 maybe_hw_step (struct thread_info
*thread
)
2561 if (can_hardware_single_step ())
2565 /* GDBserver must insert single-step breakpoint for software
2567 gdb_assert (has_single_step_breakpoints (thread
));
2572 /* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2576 resume_stopped_resumed_lwps (thread_info
*thread
)
2578 struct lwp_info
*lp
= get_thread_lwp (thread
);
2582 && !lp
->status_pending_p
2583 && thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
)
2587 if (thread
->last_resume_kind
== resume_step
)
2588 step
= maybe_hw_step (thread
);
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread
)),
2593 paddress (lp
->stop_pc
),
2596 linux_resume_one_lwp (lp
, step
, GDB_SIGNAL_0
, NULL
);
2600 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2610 linux_wait_for_event_filtered (ptid_t wait_ptid
, ptid_t filter_ptid
,
2611 int *wstatp
, int options
)
2613 struct thread_info
*event_thread
;
2614 struct lwp_info
*event_child
, *requested_child
;
2615 sigset_t block_mask
, prev_mask
;
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread
= NULL
;
2622 requested_child
= NULL
;
2624 /* Check for a lwp with a pending status. */
2626 if (filter_ptid
== minus_one_ptid
|| filter_ptid
.is_pid ())
2628 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2630 return status_pending_p_callback (thread
, filter_ptid
);
2633 if (event_thread
!= NULL
)
2634 event_child
= get_thread_lwp (event_thread
);
2635 if (debug_threads
&& event_thread
)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread
));
2638 else if (filter_ptid
!= null_ptid
)
2640 requested_child
= find_lwp_pid (filter_ptid
);
2642 if (stopping_threads
== NOT_STOPPING_THREADS
2643 && requested_child
->status_pending_p
2644 && (requested_child
->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting
))
2647 enqueue_one_deferred_signal (requested_child
,
2648 &requested_child
->status_pending
);
2649 requested_child
->status_pending_p
= 0;
2650 requested_child
->status_pending
= 0;
2651 linux_resume_one_lwp (requested_child
, 0, 0, NULL
);
2654 if (requested_child
->suspended
2655 && requested_child
->status_pending_p
)
2657 internal_error (__FILE__
, __LINE__
,
2658 "requesting an event out of a"
2659 " suspended child?");
2662 if (requested_child
->status_pending_p
)
2664 event_child
= requested_child
;
2665 event_thread
= get_lwp_thread (event_child
);
2669 if (event_child
!= NULL
)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread
), event_child
->status_pending
);
2674 *wstatp
= event_child
->status_pending
;
2675 event_child
->status_pending_p
= 0;
2676 event_child
->status_pending
= 0;
2677 current_thread
= event_thread
;
2678 return lwpid_of (event_thread
);
2681 /* But if we don't find a pending event, we'll have to wait.
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask
);
2691 gdb_sigmask (SIG_BLOCK
, &block_mask
, &prev_mask
);
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2696 while (event_child
== NULL
)
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2713 ret
= my_waitpid (-1, wstatp
, options
| WNOHANG
);
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret
, errno
? safe_strerror (errno
) : "ERRNO-OK");
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret
, status_to_str (*wstatp
));
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2730 linux_low_filter_event (ret
, *wstatp
);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads
== NOT_STOPPING_THREADS
)
2739 for_each_thread (resume_stopped_resumed_lwps
);
2741 /* ... and find an LWP with a status to report to the core, if
2743 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2745 return status_pending_p_callback (thread
, filter_ptid
);
2748 if (event_thread
!= NULL
)
2750 event_child
= get_thread_lwp (event_thread
);
2751 *wstatp
= event_child
->status_pending
;
2752 event_child
->status_pending_p
= 0;
2753 event_child
->status_pending
= 0;
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2761 auto not_stopped
= [&] (thread_info
*thread
)
2763 return not_stopped_callback (thread
, wait_ptid
);
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped
) == NULL
)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2781 /* No interesting event to report to the caller. */
2782 if ((options
& WNOHANG
))
2785 debug_printf ("WNOHANG set, no event found\n");
2787 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2791 /* Block until we get an event reported with SIGCHLD. */
2793 debug_printf ("sigsuspend'ing\n");
2795 sigsuspend (&prev_mask
);
2796 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2800 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2802 current_thread
= event_thread
;
2804 return lwpid_of (event_thread
);
2807 /* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2816 linux_wait_for_event (ptid_t ptid
, int *wstatp
, int options
)
2818 return linux_wait_for_event_filtered (ptid
, ptid
, wstatp
, options
);
2821 /* Select one LWP out of those that have events pending. */
2824 select_event_lwp (struct lwp_info
**orig_lp
)
2826 struct thread_info
*event_thread
= NULL
;
2828 /* In all-stop, give preference to the LWP that is being
2829 single-stepped. There will be at most one, and it's the LWP that
2830 the core is most interested in. If we didn't do this, then we'd
2831 have to handle pending step SIGTRAPs somehow in case the core
2832 later continues the previously-stepped thread, otherwise we'd
2833 report the pending SIGTRAP, and the core, not having stepped the
2834 thread, wouldn't understand what the trap was for, and therefore
2835 would report it to the user as a random signal. */
2838 event_thread
= find_thread ([] (thread_info
*thread
)
2840 lwp_info
*lp
= get_thread_lwp (thread
);
2842 return (thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
2843 && thread
->last_resume_kind
== resume_step
2844 && lp
->status_pending_p
);
2847 if (event_thread
!= NULL
)
2850 debug_printf ("SEL: Select single-step %s\n",
2851 target_pid_to_str (ptid_of (event_thread
)));
2854 if (event_thread
== NULL
)
2856 /* No single-stepping LWP. Select one at random, out of those
2857 which have had events. */
2859 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2861 lwp_info
*lp
= get_thread_lwp (thread
);
2863 /* Only resumed LWPs that have an event pending. */
2864 return (thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
2865 && lp
->status_pending_p
);
2869 if (event_thread
!= NULL
)
2871 struct lwp_info
*event_lp
= get_thread_lwp (event_thread
);
2873 /* Switch the event LWP. */
2874 *orig_lp
= event_lp
;
2878 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2882 unsuspend_all_lwps (struct lwp_info
*except
)
2884 for_each_thread ([&] (thread_info
*thread
)
2886 lwp_info
*lwp
= get_thread_lwp (thread
);
2889 lwp_suspended_decr (lwp
);
2893 static void move_out_of_jump_pad_callback (thread_info
*thread
);
2894 static bool stuck_in_jump_pad_callback (thread_info
*thread
);
2895 static bool lwp_running (thread_info
*thread
);
2896 static ptid_t
linux_wait_1 (ptid_t ptid
,
2897 struct target_waitstatus
*ourstatus
,
2898 int target_options
);
2900 /* Stabilize threads (move out of jump pads).
2902 If a thread is midway collecting a fast tracepoint, we need to
2903 finish the collection and move it out of the jump pad before
2904 reporting the signal.
2906 This avoids recursion while collecting (when a signal arrives
2907 midway, and the signal handler itself collects), which would trash
2908 the trace buffer. In case the user set a breakpoint in a signal
2909 handler, this avoids the backtrace showing the jump pad, etc..
2910 Most importantly, there are certain things we can't do safely if
2911 threads are stopped in a jump pad (or in its callee's). For
2914 - starting a new trace run. A thread still collecting the
2915 previous run, could trash the trace buffer when resumed. The trace
2916 buffer control structures would have been reset but the thread had
2917 no way to tell. The thread could even midway memcpy'ing to the
2918 buffer, which would mean that when resumed, it would clobber the
2919 trace buffer that had been set for a new run.
2921 - we can't rewrite/reuse the jump pads for new tracepoints
2922 safely. Say you do tstart while a thread is stopped midway while
2923 collecting. When the thread is later resumed, it finishes the
2924 collection, and returns to the jump pad, to execute the original
2925 instruction that was under the tracepoint jump at the time the
2926 older run had been started. If the jump pad had been rewritten
2927 since for something else in the new run, the thread would now
2928 execute the wrong / random instructions. */
2931 linux_stabilize_threads (void)
2933 thread_info
*thread_stuck
= find_thread (stuck_in_jump_pad_callback
);
2935 if (thread_stuck
!= NULL
)
2938 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2939 lwpid_of (thread_stuck
));
2943 thread_info
*saved_thread
= current_thread
;
2945 stabilizing_threads
= 1;
2948 for_each_thread (move_out_of_jump_pad_callback
);
2950 /* Loop until all are stopped out of the jump pads. */
2951 while (find_thread (lwp_running
) != NULL
)
2953 struct target_waitstatus ourstatus
;
2954 struct lwp_info
*lwp
;
2957 /* Note that we go through the full wait even loop. While
2958 moving threads out of jump pad, we need to be able to step
2959 over internal breakpoints and such. */
2960 linux_wait_1 (minus_one_ptid
, &ourstatus
, 0);
2962 if (ourstatus
.kind
== TARGET_WAITKIND_STOPPED
)
2964 lwp
= get_thread_lwp (current_thread
);
2967 lwp_suspended_inc (lwp
);
2969 if (ourstatus
.value
.sig
!= GDB_SIGNAL_0
2970 || current_thread
->last_resume_kind
== resume_stop
)
2972 wstat
= W_STOPCODE (gdb_signal_to_host (ourstatus
.value
.sig
));
2973 enqueue_one_deferred_signal (lwp
, &wstat
);
2978 unsuspend_all_lwps (NULL
);
2980 stabilizing_threads
= 0;
2982 current_thread
= saved_thread
;
2986 thread_stuck
= find_thread (stuck_in_jump_pad_callback
);
2988 if (thread_stuck
!= NULL
)
2989 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2990 lwpid_of (thread_stuck
));
2994 /* Convenience function that is called when the kernel reports an
2995 event that is not passed out to GDB. */
2998 ignore_event (struct target_waitstatus
*ourstatus
)
3000 /* If we got an event, there may still be others, as a single
3001 SIGCHLD can indicate more than one child stopped. This forces
3002 another target_wait call. */
3005 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3009 /* Convenience function that is called when the kernel reports an exit
3010 event. This decides whether to report the event to GDB as a
3011 process exit event, a thread exit event, or to suppress the
3015 filter_exit_event (struct lwp_info
*event_child
,
3016 struct target_waitstatus
*ourstatus
)
3018 client_state
&cs
= get_client_state ();
3019 struct thread_info
*thread
= get_lwp_thread (event_child
);
3020 ptid_t ptid
= ptid_of (thread
);
3022 if (!last_thread_of_process_p (pid_of (thread
)))
3024 if (cs
.report_thread_events
)
3025 ourstatus
->kind
= TARGET_WAITKIND_THREAD_EXITED
;
3027 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3029 delete_lwp (event_child
);
3034 /* Returns 1 if GDB is interested in any event_child syscalls. */
3037 gdb_catching_syscalls_p (struct lwp_info
*event_child
)
3039 struct thread_info
*thread
= get_lwp_thread (event_child
);
3040 struct process_info
*proc
= get_thread_process (thread
);
3042 return !proc
->syscalls_to_catch
.empty ();
3045 /* Returns 1 if GDB is interested in the event_child syscall.
3046 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3049 gdb_catch_this_syscall_p (struct lwp_info
*event_child
)
3052 struct thread_info
*thread
= get_lwp_thread (event_child
);
3053 struct process_info
*proc
= get_thread_process (thread
);
3055 if (proc
->syscalls_to_catch
.empty ())
3058 if (proc
->syscalls_to_catch
[0] == ANY_SYSCALL
)
3061 get_syscall_trapinfo (event_child
, &sysno
);
3063 for (int iter
: proc
->syscalls_to_catch
)
3070 /* Wait for process, returns status. */
3073 linux_wait_1 (ptid_t ptid
,
3074 struct target_waitstatus
*ourstatus
, int target_options
)
3076 client_state
&cs
= get_client_state ();
3078 struct lwp_info
*event_child
;
3081 int step_over_finished
;
3082 int bp_explains_trap
;
3083 int maybe_internal_trap
;
3092 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid
));
3095 /* Translate generic target options into linux options. */
3097 if (target_options
& TARGET_WNOHANG
)
3100 bp_explains_trap
= 0;
3103 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3105 auto status_pending_p_any
= [&] (thread_info
*thread
)
3107 return status_pending_p_callback (thread
, minus_one_ptid
);
3110 auto not_stopped
= [&] (thread_info
*thread
)
3112 return not_stopped_callback (thread
, minus_one_ptid
);
3115 /* Find a resumed LWP, if any. */
3116 if (find_thread (status_pending_p_any
) != NULL
)
3118 else if (find_thread (not_stopped
) != NULL
)
3123 if (step_over_bkpt
== null_ptid
)
3124 pid
= linux_wait_for_event (ptid
, &w
, options
);
3128 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3129 target_pid_to_str (step_over_bkpt
));
3130 pid
= linux_wait_for_event (step_over_bkpt
, &w
, options
& ~WNOHANG
);
3133 if (pid
== 0 || (pid
== -1 && !any_resumed
))
3135 gdb_assert (target_options
& TARGET_WNOHANG
);
3139 debug_printf ("linux_wait_1 ret = null_ptid, "
3140 "TARGET_WAITKIND_IGNORE\n");
3144 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3151 debug_printf ("linux_wait_1 ret = null_ptid, "
3152 "TARGET_WAITKIND_NO_RESUMED\n");
3156 ourstatus
->kind
= TARGET_WAITKIND_NO_RESUMED
;
3160 event_child
= get_thread_lwp (current_thread
);
3162 /* linux_wait_for_event only returns an exit status for the last
3163 child of a process. Report it. */
3164 if (WIFEXITED (w
) || WIFSIGNALED (w
))
3168 ourstatus
->kind
= TARGET_WAITKIND_EXITED
;
3169 ourstatus
->value
.integer
= WEXITSTATUS (w
);
3173 debug_printf ("linux_wait_1 ret = %s, exited with "
3175 target_pid_to_str (ptid_of (current_thread
)),
3182 ourstatus
->kind
= TARGET_WAITKIND_SIGNALLED
;
3183 ourstatus
->value
.sig
= gdb_signal_from_host (WTERMSIG (w
));
3187 debug_printf ("linux_wait_1 ret = %s, terminated with "
3189 target_pid_to_str (ptid_of (current_thread
)),
3195 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
)
3196 return filter_exit_event (event_child
, ourstatus
);
3198 return ptid_of (current_thread
);
3201 /* If step-over executes a breakpoint instruction, in the case of a
3202 hardware single step it means a gdb/gdbserver breakpoint had been
3203 planted on top of a permanent breakpoint, in the case of a software
3204 single step it may just mean that gdbserver hit the reinsert breakpoint.
3205 The PC has been adjusted by save_stop_reason to point at
3206 the breakpoint address.
3207 So in the case of the hardware single step advance the PC manually
3208 past the breakpoint and in the case of software single step advance only
3209 if it's not the single_step_breakpoint we are hitting.
3210 This avoids that a program would keep trapping a permanent breakpoint
3212 if (step_over_bkpt
!= null_ptid
3213 && event_child
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
3214 && (event_child
->stepping
3215 || !single_step_breakpoint_inserted_here (event_child
->stop_pc
)))
3217 int increment_pc
= 0;
3218 int breakpoint_kind
= 0;
3219 CORE_ADDR stop_pc
= event_child
->stop_pc
;
3222 the_target
->breakpoint_kind_from_current_state (&stop_pc
);
3223 the_target
->sw_breakpoint_from_kind (breakpoint_kind
, &increment_pc
);
3227 debug_printf ("step-over for %s executed software breakpoint\n",
3228 target_pid_to_str (ptid_of (current_thread
)));
3231 if (increment_pc
!= 0)
3233 struct regcache
*regcache
3234 = get_thread_regcache (current_thread
, 1);
3236 event_child
->stop_pc
+= increment_pc
;
3237 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
);
3239 if (!(*the_low_target
.breakpoint_at
) (event_child
->stop_pc
))
3240 event_child
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
3244 /* If this event was not handled before, and is not a SIGTRAP, we
3245 report it. SIGILL and SIGSEGV are also treated as traps in case
3246 a breakpoint is inserted at the current PC. If this target does
3247 not support internal breakpoints at all, we also report the
3248 SIGTRAP without further processing; it's of no concern to us. */
3250 = (supports_breakpoints ()
3251 && (WSTOPSIG (w
) == SIGTRAP
3252 || ((WSTOPSIG (w
) == SIGILL
3253 || WSTOPSIG (w
) == SIGSEGV
)
3254 && (*the_low_target
.breakpoint_at
) (event_child
->stop_pc
))));
3256 if (maybe_internal_trap
)
3258 /* Handle anything that requires bookkeeping before deciding to
3259 report the event or continue waiting. */
3261 /* First check if we can explain the SIGTRAP with an internal
3262 breakpoint, or if we should possibly report the event to GDB.
3263 Do this before anything that may remove or insert a
3265 bp_explains_trap
= breakpoint_inserted_here (event_child
->stop_pc
);
3267 /* We have a SIGTRAP, possibly a step-over dance has just
3268 finished. If so, tweak the state machine accordingly,
3269 reinsert breakpoints and delete any single-step
3271 step_over_finished
= finish_step_over (event_child
);
3273 /* Now invoke the callbacks of any internal breakpoints there. */
3274 check_breakpoints (event_child
->stop_pc
);
3276 /* Handle tracepoint data collecting. This may overflow the
3277 trace buffer, and cause a tracing stop, removing
3279 trace_event
= handle_tracepoints (event_child
);
3281 if (bp_explains_trap
)
3284 debug_printf ("Hit a gdbserver breakpoint.\n");
3289 /* We have some other signal, possibly a step-over dance was in
3290 progress, and it should be cancelled too. */
3291 step_over_finished
= finish_step_over (event_child
);
3294 /* We have all the data we need. Either report the event to GDB, or
3295 resume threads and keep waiting for more. */
3297 /* If we're collecting a fast tracepoint, finish the collection and
3298 move out of the jump pad before delivering a signal. See
3299 linux_stabilize_threads. */
3302 && WSTOPSIG (w
) != SIGTRAP
3303 && supports_fast_tracepoints ()
3304 && agent_loaded_p ())
3307 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3308 "to defer or adjust it.\n",
3309 WSTOPSIG (w
), lwpid_of (current_thread
));
3311 /* Allow debugging the jump pad itself. */
3312 if (current_thread
->last_resume_kind
!= resume_step
3313 && maybe_move_out_of_jump_pad (event_child
, &w
))
3315 enqueue_one_deferred_signal (event_child
, &w
);
3318 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3319 WSTOPSIG (w
), lwpid_of (current_thread
));
3321 linux_resume_one_lwp (event_child
, 0, 0, NULL
);
3325 return ignore_event (ourstatus
);
3329 if (event_child
->collecting_fast_tracepoint
3330 != fast_tpoint_collect_result::not_collecting
)
3333 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3334 "Check if we're already there.\n",
3335 lwpid_of (current_thread
),
3336 (int) event_child
->collecting_fast_tracepoint
);
3340 event_child
->collecting_fast_tracepoint
3341 = linux_fast_tracepoint_collecting (event_child
, NULL
);
3343 if (event_child
->collecting_fast_tracepoint
3344 != fast_tpoint_collect_result::before_insn
)
3346 /* No longer need this breakpoint. */
3347 if (event_child
->exit_jump_pad_bkpt
!= NULL
)
3350 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3351 "stopping all threads momentarily.\n");
3353 /* Other running threads could hit this breakpoint.
3354 We don't handle moribund locations like GDB does,
3355 instead we always pause all threads when removing
3356 breakpoints, so that any step-over or
3357 decr_pc_after_break adjustment is always taken
3358 care of while the breakpoint is still
3360 stop_all_lwps (1, event_child
);
3362 delete_breakpoint (event_child
->exit_jump_pad_bkpt
);
3363 event_child
->exit_jump_pad_bkpt
= NULL
;
3365 unstop_all_lwps (1, event_child
);
3367 gdb_assert (event_child
->suspended
>= 0);
3371 if (event_child
->collecting_fast_tracepoint
3372 == fast_tpoint_collect_result::not_collecting
)
3375 debug_printf ("fast tracepoint finished "
3376 "collecting successfully.\n");
3378 /* We may have a deferred signal to report. */
3379 if (dequeue_one_deferred_signal (event_child
, &w
))
3382 debug_printf ("dequeued one signal.\n");
3387 debug_printf ("no deferred signals.\n");
3389 if (stabilizing_threads
)
3391 ourstatus
->kind
= TARGET_WAITKIND_STOPPED
;
3392 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3396 debug_printf ("linux_wait_1 ret = %s, stopped "
3397 "while stabilizing threads\n",
3398 target_pid_to_str (ptid_of (current_thread
)));
3402 return ptid_of (current_thread
);
3408 /* Check whether GDB would be interested in this event. */
3410 /* Check if GDB is interested in this syscall. */
3412 && WSTOPSIG (w
) == SYSCALL_SIGTRAP
3413 && !gdb_catch_this_syscall_p (event_child
))
3417 debug_printf ("Ignored syscall for LWP %ld.\n",
3418 lwpid_of (current_thread
));
3421 linux_resume_one_lwp (event_child
, event_child
->stepping
,
3426 return ignore_event (ourstatus
);
3429 /* If GDB is not interested in this signal, don't stop other
3430 threads, and don't report it to GDB. Just resume the inferior
3431 right away. We do this for threading-related signals as well as
3432 any that GDB specifically requested we ignore. But never ignore
3433 SIGSTOP if we sent it ourselves, and do not ignore signals when
3434 stepping - they may require special handling to skip the signal
3435 handler. Also never ignore signals that could be caused by a
3438 && current_thread
->last_resume_kind
!= resume_step
3440 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3441 (current_process ()->priv
->thread_db
!= NULL
3442 && (WSTOPSIG (w
) == __SIGRTMIN
3443 || WSTOPSIG (w
) == __SIGRTMIN
+ 1))
3446 (cs
.pass_signals
[gdb_signal_from_host (WSTOPSIG (w
))]
3447 && !(WSTOPSIG (w
) == SIGSTOP
3448 && current_thread
->last_resume_kind
== resume_stop
)
3449 && !linux_wstatus_maybe_breakpoint (w
))))
3451 siginfo_t info
, *info_p
;
3454 debug_printf ("Ignored signal %d for LWP %ld.\n",
3455 WSTOPSIG (w
), lwpid_of (current_thread
));
3457 if (ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
3458 (PTRACE_TYPE_ARG3
) 0, &info
) == 0)
3463 if (step_over_finished
)
3465 /* We cancelled this thread's step-over above. We still
3466 need to unsuspend all other LWPs, and set them back
3467 running again while the signal handler runs. */
3468 unsuspend_all_lwps (event_child
);
3470 /* Enqueue the pending signal info so that proceed_all_lwps
3472 enqueue_pending_signal (event_child
, WSTOPSIG (w
), info_p
);
3474 proceed_all_lwps ();
3478 linux_resume_one_lwp (event_child
, event_child
->stepping
,
3479 WSTOPSIG (w
), info_p
);
3485 return ignore_event (ourstatus
);
3488 /* Note that all addresses are always "out of the step range" when
3489 there's no range to begin with. */
3490 in_step_range
= lwp_in_step_range (event_child
);
3492 /* If GDB wanted this thread to single step, and the thread is out
3493 of the step range, we always want to report the SIGTRAP, and let
3494 GDB handle it. Watchpoints should always be reported. So should
3495 signals we can't explain. A SIGTRAP we can't explain could be a
3496 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3497 do, we're be able to handle GDB breakpoints on top of internal
3498 breakpoints, by handling the internal breakpoint and still
3499 reporting the event to GDB. If we don't, we're out of luck, GDB
3500 won't see the breakpoint hit. If we see a single-step event but
3501 the thread should be continuing, don't pass the trap to gdb.
3502 That indicates that we had previously finished a single-step but
3503 left the single-step pending -- see
3504 complete_ongoing_step_over. */
3505 report_to_gdb
= (!maybe_internal_trap
3506 || (current_thread
->last_resume_kind
== resume_step
3508 || event_child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
3510 && !bp_explains_trap
3512 && !step_over_finished
3513 && !(current_thread
->last_resume_kind
== resume_continue
3514 && event_child
->stop_reason
== TARGET_STOPPED_BY_SINGLE_STEP
))
3515 || (gdb_breakpoint_here (event_child
->stop_pc
)
3516 && gdb_condition_true_at_breakpoint (event_child
->stop_pc
)
3517 && gdb_no_commands_at_breakpoint (event_child
->stop_pc
))
3518 || event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
);
3520 run_breakpoint_commands (event_child
->stop_pc
);
3522 /* We found no reason GDB would want us to stop. We either hit one
3523 of our own breakpoints, or finished an internal step GDB
3524 shouldn't know about. */
3529 if (bp_explains_trap
)
3530 debug_printf ("Hit a gdbserver breakpoint.\n");
3531 if (step_over_finished
)
3532 debug_printf ("Step-over finished.\n");
3534 debug_printf ("Tracepoint event.\n");
3535 if (lwp_in_step_range (event_child
))
3536 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3537 paddress (event_child
->stop_pc
),
3538 paddress (event_child
->step_range_start
),
3539 paddress (event_child
->step_range_end
));
3542 /* We're not reporting this breakpoint to GDB, so apply the
3543 decr_pc_after_break adjustment to the inferior's regcache
3546 if (the_low_target
.set_pc
!= NULL
)
3548 struct regcache
*regcache
3549 = get_thread_regcache (current_thread
, 1);
3550 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
);
3553 if (step_over_finished
)
3555 /* If we have finished stepping over a breakpoint, we've
3556 stopped and suspended all LWPs momentarily except the
3557 stepping one. This is where we resume them all again.
3558 We're going to keep waiting, so use proceed, which
3559 handles stepping over the next breakpoint. */
3560 unsuspend_all_lwps (event_child
);
3564 /* Remove the single-step breakpoints if any. Note that
3565 there isn't single-step breakpoint if we finished stepping
3567 if (can_software_single_step ()
3568 && has_single_step_breakpoints (current_thread
))
3570 stop_all_lwps (0, event_child
);
3571 delete_single_step_breakpoints (current_thread
);
3572 unstop_all_lwps (0, event_child
);
3577 debug_printf ("proceeding all threads.\n");
3578 proceed_all_lwps ();
3583 return ignore_event (ourstatus
);
3588 if (event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3591 = target_waitstatus_to_string (&event_child
->waitstatus
);
3593 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3594 lwpid_of (get_lwp_thread (event_child
)), str
.c_str ());
3596 if (current_thread
->last_resume_kind
== resume_step
)
3598 if (event_child
->step_range_start
== event_child
->step_range_end
)
3599 debug_printf ("GDB wanted to single-step, reporting event.\n");
3600 else if (!lwp_in_step_range (event_child
))
3601 debug_printf ("Out of step range, reporting event.\n");
3603 if (event_child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
)
3604 debug_printf ("Stopped by watchpoint.\n");
3605 else if (gdb_breakpoint_here (event_child
->stop_pc
))
3606 debug_printf ("Stopped by GDB breakpoint.\n");
3608 debug_printf ("Hit a non-gdbserver trap event.\n");
3611 /* Alright, we're going to report a stop. */
3613 /* Remove single-step breakpoints. */
3614 if (can_software_single_step ())
3616 /* Remove single-step breakpoints or not. It it is true, stop all
3617 lwps, so that other threads won't hit the breakpoint in the
3619 int remove_single_step_breakpoints_p
= 0;
3623 remove_single_step_breakpoints_p
3624 = has_single_step_breakpoints (current_thread
);
3628 /* In all-stop, a stop reply cancels all previous resume
3629 requests. Delete all single-step breakpoints. */
3631 find_thread ([&] (thread_info
*thread
) {
3632 if (has_single_step_breakpoints (thread
))
3634 remove_single_step_breakpoints_p
= 1;
3642 if (remove_single_step_breakpoints_p
)
3644 /* If we remove single-step breakpoints from memory, stop all lwps,
3645 so that other threads won't hit the breakpoint in the staled
3647 stop_all_lwps (0, event_child
);
3651 gdb_assert (has_single_step_breakpoints (current_thread
));
3652 delete_single_step_breakpoints (current_thread
);
3656 for_each_thread ([] (thread_info
*thread
){
3657 if (has_single_step_breakpoints (thread
))
3658 delete_single_step_breakpoints (thread
);
3662 unstop_all_lwps (0, event_child
);
3666 if (!stabilizing_threads
)
3668 /* In all-stop, stop all threads. */
3670 stop_all_lwps (0, NULL
);
3672 if (step_over_finished
)
3676 /* If we were doing a step-over, all other threads but
3677 the stepping one had been paused in start_step_over,
3678 with their suspend counts incremented. We don't want
3679 to do a full unstop/unpause, because we're in
3680 all-stop mode (so we want threads stopped), but we
3681 still need to unsuspend the other threads, to
3682 decrement their `suspended' count back. */
3683 unsuspend_all_lwps (event_child
);
3687 /* If we just finished a step-over, then all threads had
3688 been momentarily paused. In all-stop, that's fine,
3689 we want threads stopped by now anyway. In non-stop,
3690 we need to re-resume threads that GDB wanted to be
3692 unstop_all_lwps (1, event_child
);
3696 /* If we're not waiting for a specific LWP, choose an event LWP
3697 from among those that have had events. Giving equal priority
3698 to all LWPs that have had events helps prevent
3700 if (ptid
== minus_one_ptid
)
3702 event_child
->status_pending_p
= 1;
3703 event_child
->status_pending
= w
;
3705 select_event_lwp (&event_child
);
3707 /* current_thread and event_child must stay in sync. */
3708 current_thread
= get_lwp_thread (event_child
);
3710 event_child
->status_pending_p
= 0;
3711 w
= event_child
->status_pending
;
3715 /* Stabilize threads (move out of jump pads). */
3717 stabilize_threads ();
3721 /* If we just finished a step-over, then all threads had been
3722 momentarily paused. In all-stop, that's fine, we want
3723 threads stopped by now anyway. In non-stop, we need to
3724 re-resume threads that GDB wanted to be running. */
3725 if (step_over_finished
)
3726 unstop_all_lwps (1, event_child
);
3729 if (event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3731 /* If the reported event is an exit, fork, vfork or exec, let
3734 /* Break the unreported fork relationship chain. */
3735 if (event_child
->waitstatus
.kind
== TARGET_WAITKIND_FORKED
3736 || event_child
->waitstatus
.kind
== TARGET_WAITKIND_VFORKED
)
3738 event_child
->fork_relative
->fork_relative
= NULL
;
3739 event_child
->fork_relative
= NULL
;
3742 *ourstatus
= event_child
->waitstatus
;
3743 /* Clear the event lwp's waitstatus since we handled it already. */
3744 event_child
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
3747 ourstatus
->kind
= TARGET_WAITKIND_STOPPED
;
3749 /* Now that we've selected our final event LWP, un-adjust its PC if
3750 it was a software breakpoint, and the client doesn't know we can
3751 adjust the breakpoint ourselves. */
3752 if (event_child
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
3753 && !cs
.swbreak_feature
)
3755 int decr_pc
= the_low_target
.decr_pc_after_break
;
3759 struct regcache
*regcache
3760 = get_thread_regcache (current_thread
, 1);
3761 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
+ decr_pc
);
3765 if (WSTOPSIG (w
) == SYSCALL_SIGTRAP
)
3767 get_syscall_trapinfo (event_child
,
3768 &ourstatus
->value
.syscall_number
);
3769 ourstatus
->kind
= event_child
->syscall_state
;
3771 else if (current_thread
->last_resume_kind
== resume_stop
3772 && WSTOPSIG (w
) == SIGSTOP
)
3774 /* A thread that has been requested to stop by GDB with vCont;t,
3775 and it stopped cleanly, so report as SIG0. The use of
3776 SIGSTOP is an implementation detail. */
3777 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3779 else if (current_thread
->last_resume_kind
== resume_stop
3780 && WSTOPSIG (w
) != SIGSTOP
)
3782 /* A thread that has been requested to stop by GDB with vCont;t,
3783 but, it stopped for other reasons. */
3784 ourstatus
->value
.sig
= gdb_signal_from_host (WSTOPSIG (w
));
3786 else if (ourstatus
->kind
== TARGET_WAITKIND_STOPPED
)
3788 ourstatus
->value
.sig
= gdb_signal_from_host (WSTOPSIG (w
));
3791 gdb_assert (step_over_bkpt
== null_ptid
);
3795 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3796 target_pid_to_str (ptid_of (current_thread
)),
3797 ourstatus
->kind
, ourstatus
->value
.sig
);
3801 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
)
3802 return filter_exit_event (event_child
, ourstatus
);
3804 return ptid_of (current_thread
);
3807 /* Get rid of any pending event in the pipe. */
3809 async_file_flush (void)
3815 ret
= read (linux_event_pipe
[0], &buf
, 1);
3816 while (ret
>= 0 || (ret
== -1 && errno
== EINTR
));
3819 /* Put something in the pipe, so the event loop wakes up. */
3821 async_file_mark (void)
3825 async_file_flush ();
3828 ret
= write (linux_event_pipe
[1], "+", 1);
3829 while (ret
== 0 || (ret
== -1 && errno
== EINTR
));
3831 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3832 be awakened anyway. */
3836 linux_process_target::wait (ptid_t ptid
,
3837 target_waitstatus
*ourstatus
,
3842 /* Flush the async file first. */
3843 if (target_is_async_p ())
3844 async_file_flush ();
3848 event_ptid
= linux_wait_1 (ptid
, ourstatus
, target_options
);
3850 while ((target_options
& TARGET_WNOHANG
) == 0
3851 && event_ptid
== null_ptid
3852 && ourstatus
->kind
== TARGET_WAITKIND_IGNORE
);
3854 /* If at least one stop was reported, there may be more. A single
3855 SIGCHLD can signal more than one child stop. */
3856 if (target_is_async_p ()
3857 && (target_options
& TARGET_WNOHANG
) != 0
3858 && event_ptid
!= null_ptid
)
3864 /* Send a signal to an LWP. */
3867 kill_lwp (unsigned long lwpid
, int signo
)
3872 ret
= syscall (__NR_tkill
, lwpid
, signo
);
3873 if (errno
== ENOSYS
)
3875 /* If tkill fails, then we are not using nptl threads, a
3876 configuration we no longer support. */
3877 perror_with_name (("tkill"));
3883 linux_stop_lwp (struct lwp_info
*lwp
)
3889 send_sigstop (struct lwp_info
*lwp
)
3893 pid
= lwpid_of (get_lwp_thread (lwp
));
3895 /* If we already have a pending stop signal for this process, don't
3897 if (lwp
->stop_expected
)
3900 debug_printf ("Have pending sigstop for lwp %d\n", pid
);
3906 debug_printf ("Sending sigstop to lwp %d\n", pid
);
3908 lwp
->stop_expected
= 1;
3909 kill_lwp (pid
, SIGSTOP
);
3913 send_sigstop (thread_info
*thread
, lwp_info
*except
)
3915 struct lwp_info
*lwp
= get_thread_lwp (thread
);
3917 /* Ignore EXCEPT. */
3927 /* Increment the suspend count of an LWP, and stop it, if not stopped
3930 suspend_and_send_sigstop (thread_info
*thread
, lwp_info
*except
)
3932 struct lwp_info
*lwp
= get_thread_lwp (thread
);
3934 /* Ignore EXCEPT. */
3938 lwp_suspended_inc (lwp
);
3940 send_sigstop (thread
, except
);
3944 mark_lwp_dead (struct lwp_info
*lwp
, int wstat
)
3946 /* Store the exit status for later. */
3947 lwp
->status_pending_p
= 1;
3948 lwp
->status_pending
= wstat
;
3950 /* Store in waitstatus as well, as there's nothing else to process
3952 if (WIFEXITED (wstat
))
3954 lwp
->waitstatus
.kind
= TARGET_WAITKIND_EXITED
;
3955 lwp
->waitstatus
.value
.integer
= WEXITSTATUS (wstat
);
3957 else if (WIFSIGNALED (wstat
))
3959 lwp
->waitstatus
.kind
= TARGET_WAITKIND_SIGNALLED
;
3960 lwp
->waitstatus
.value
.sig
= gdb_signal_from_host (WTERMSIG (wstat
));
3963 /* Prevent trying to stop it. */
3966 /* No further stops are expected from a dead lwp. */
3967 lwp
->stop_expected
= 0;
3970 /* Return true if LWP has exited already, and has a pending exit event
3971 to report to GDB. */
3974 lwp_is_marked_dead (struct lwp_info
*lwp
)
3976 return (lwp
->status_pending_p
3977 && (WIFEXITED (lwp
->status_pending
)
3978 || WIFSIGNALED (lwp
->status_pending
)));
3981 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3984 wait_for_sigstop (void)
3986 struct thread_info
*saved_thread
;
3991 saved_thread
= current_thread
;
3992 if (saved_thread
!= NULL
)
3993 saved_tid
= saved_thread
->id
;
3995 saved_tid
= null_ptid
; /* avoid bogus unused warning */
3998 debug_printf ("wait_for_sigstop: pulling events\n");
4000 /* Passing NULL_PTID as filter indicates we want all events to be
4001 left pending. Eventually this returns when there are no
4002 unwaited-for children left. */
4003 ret
= linux_wait_for_event_filtered (minus_one_ptid
, null_ptid
,
4005 gdb_assert (ret
== -1);
4007 if (saved_thread
== NULL
|| mythread_alive (saved_tid
))
4008 current_thread
= saved_thread
;
4012 debug_printf ("Previously current thread died.\n");
4014 /* We can't change the current inferior behind GDB's back,
4015 otherwise, a subsequent command may apply to the wrong
4017 current_thread
= NULL
;
4021 /* Returns true if THREAD is stopped in a jump pad, and we can't
4022 move it out, because we need to report the stop event to GDB. For
4023 example, if the user puts a breakpoint in the jump pad, it's
4024 because she wants to debug it. */
4027 stuck_in_jump_pad_callback (thread_info
*thread
)
4029 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4031 if (lwp
->suspended
!= 0)
4033 internal_error (__FILE__
, __LINE__
,
4034 "LWP %ld is suspended, suspended=%d\n",
4035 lwpid_of (thread
), lwp
->suspended
);
4037 gdb_assert (lwp
->stopped
);
4039 /* Allow debugging the jump pad, gdb_collect, etc.. */
4040 return (supports_fast_tracepoints ()
4041 && agent_loaded_p ()
4042 && (gdb_breakpoint_here (lwp
->stop_pc
)
4043 || lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
4044 || thread
->last_resume_kind
== resume_step
)
4045 && (linux_fast_tracepoint_collecting (lwp
, NULL
)
4046 != fast_tpoint_collect_result::not_collecting
));
4050 move_out_of_jump_pad_callback (thread_info
*thread
)
4052 struct thread_info
*saved_thread
;
4053 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4056 if (lwp
->suspended
!= 0)
4058 internal_error (__FILE__
, __LINE__
,
4059 "LWP %ld is suspended, suspended=%d\n",
4060 lwpid_of (thread
), lwp
->suspended
);
4062 gdb_assert (lwp
->stopped
);
4064 /* For gdb_breakpoint_here. */
4065 saved_thread
= current_thread
;
4066 current_thread
= thread
;
4068 wstat
= lwp
->status_pending_p
? &lwp
->status_pending
: NULL
;
4070 /* Allow debugging the jump pad, gdb_collect, etc. */
4071 if (!gdb_breakpoint_here (lwp
->stop_pc
)
4072 && lwp
->stop_reason
!= TARGET_STOPPED_BY_WATCHPOINT
4073 && thread
->last_resume_kind
!= resume_step
4074 && maybe_move_out_of_jump_pad (lwp
, wstat
))
4077 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4082 lwp
->status_pending_p
= 0;
4083 enqueue_one_deferred_signal (lwp
, wstat
);
4086 debug_printf ("Signal %d for LWP %ld deferred "
4088 WSTOPSIG (*wstat
), lwpid_of (thread
));
4091 linux_resume_one_lwp (lwp
, 0, 0, NULL
);
4094 lwp_suspended_inc (lwp
);
4096 current_thread
= saved_thread
;
4100 lwp_running (thread_info
*thread
)
4102 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4104 if (lwp_is_marked_dead (lwp
))
4107 return !lwp
->stopped
;
4110 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4111 If SUSPEND, then also increase the suspend count of every LWP,
4115 stop_all_lwps (int suspend
, struct lwp_info
*except
)
4117 /* Should not be called recursively. */
4118 gdb_assert (stopping_threads
== NOT_STOPPING_THREADS
);
4123 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4124 suspend
? "stop-and-suspend" : "stop",
4126 ? target_pid_to_str (ptid_of (get_lwp_thread (except
)))
4130 stopping_threads
= (suspend
4131 ? STOPPING_AND_SUSPENDING_THREADS
4132 : STOPPING_THREADS
);
4135 for_each_thread ([&] (thread_info
*thread
)
4137 suspend_and_send_sigstop (thread
, except
);
4140 for_each_thread ([&] (thread_info
*thread
)
4142 send_sigstop (thread
, except
);
4145 wait_for_sigstop ();
4146 stopping_threads
= NOT_STOPPING_THREADS
;
4150 debug_printf ("stop_all_lwps done, setting stopping_threads "
4151 "back to !stopping\n");
4156 /* Enqueue one signal in the chain of signals which need to be
4157 delivered to this process on next resume. */
4160 enqueue_pending_signal (struct lwp_info
*lwp
, int signal
, siginfo_t
*info
)
4162 struct pending_signals
*p_sig
= XNEW (struct pending_signals
);
4164 p_sig
->prev
= lwp
->pending_signals
;
4165 p_sig
->signal
= signal
;
4167 memset (&p_sig
->info
, 0, sizeof (siginfo_t
));
4169 memcpy (&p_sig
->info
, info
, sizeof (siginfo_t
));
4170 lwp
->pending_signals
= p_sig
;
4173 /* Install breakpoints for software single stepping. */
4176 install_software_single_step_breakpoints (struct lwp_info
*lwp
)
4178 struct thread_info
*thread
= get_lwp_thread (lwp
);
4179 struct regcache
*regcache
= get_thread_regcache (thread
, 1);
4181 scoped_restore save_current_thread
= make_scoped_restore (¤t_thread
);
4183 current_thread
= thread
;
4184 std::vector
<CORE_ADDR
> next_pcs
= the_low_target
.get_next_pcs (regcache
);
4186 for (CORE_ADDR pc
: next_pcs
)
4187 set_single_step_breakpoint (pc
, current_ptid
);
4190 /* Single step via hardware or software single step.
4191 Return 1 if hardware single stepping, 0 if software single stepping
4192 or can't single step. */
4195 single_step (struct lwp_info
* lwp
)
4199 if (can_hardware_single_step ())
4203 else if (can_software_single_step ())
4205 install_software_single_step_breakpoints (lwp
);
4211 debug_printf ("stepping is not implemented on this target");
4217 /* The signal can be delivered to the inferior if we are not trying to
4218 finish a fast tracepoint collect. Since signal can be delivered in
4219 the step-over, the program may go to signal handler and trap again
4220 after return from the signal handler. We can live with the spurious
4224 lwp_signal_can_be_delivered (struct lwp_info
*lwp
)
4226 return (lwp
->collecting_fast_tracepoint
4227 == fast_tpoint_collect_result::not_collecting
);
4230 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4231 SIGNAL is nonzero, give it that signal. */
4234 linux_resume_one_lwp_throw (struct lwp_info
*lwp
,
4235 int step
, int signal
, siginfo_t
*info
)
4237 struct thread_info
*thread
= get_lwp_thread (lwp
);
4238 struct thread_info
*saved_thread
;
4240 struct process_info
*proc
= get_thread_process (thread
);
4242 /* Note that target description may not be initialised
4243 (proc->tdesc == NULL) at this point because the program hasn't
4244 stopped at the first instruction yet. It means GDBserver skips
4245 the extra traps from the wrapper program (see option --wrapper).
4246 Code in this function that requires register access should be
4247 guarded by proc->tdesc == NULL or something else. */
4249 if (lwp
->stopped
== 0)
4252 gdb_assert (lwp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
);
4254 fast_tpoint_collect_result fast_tp_collecting
4255 = lwp
->collecting_fast_tracepoint
;
4257 gdb_assert (!stabilizing_threads
4258 || (fast_tp_collecting
4259 != fast_tpoint_collect_result::not_collecting
));
4261 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4262 user used the "jump" command, or "set $pc = foo"). */
4263 if (thread
->while_stepping
!= NULL
&& lwp
->stop_pc
!= get_pc (lwp
))
4265 /* Collecting 'while-stepping' actions doesn't make sense
4267 release_while_stepping_state_list (thread
);
4270 /* If we have pending signals or status, and a new signal, enqueue the
4271 signal. Also enqueue the signal if it can't be delivered to the
4272 inferior right now. */
4274 && (lwp
->status_pending_p
4275 || lwp
->pending_signals
!= NULL
4276 || !lwp_signal_can_be_delivered (lwp
)))
4278 enqueue_pending_signal (lwp
, signal
, info
);
4280 /* Postpone any pending signal. It was enqueued above. */
4284 if (lwp
->status_pending_p
)
4287 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4288 " has pending status\n",
4289 lwpid_of (thread
), step
? "step" : "continue",
4290 lwp
->stop_expected
? "expected" : "not expected");
4294 saved_thread
= current_thread
;
4295 current_thread
= thread
;
4297 /* This bit needs some thinking about. If we get a signal that
4298 we must report while a single-step reinsert is still pending,
4299 we often end up resuming the thread. It might be better to
4300 (ew) allow a stack of pending events; then we could be sure that
4301 the reinsert happened right away and not lose any signals.
4303 Making this stack would also shrink the window in which breakpoints are
4304 uninserted (see comment in linux_wait_for_lwp) but not enough for
4305 complete correctness, so it won't solve that problem. It may be
4306 worthwhile just to solve this one, however. */
4307 if (lwp
->bp_reinsert
!= 0)
4310 debug_printf (" pending reinsert at 0x%s\n",
4311 paddress (lwp
->bp_reinsert
));
4313 if (can_hardware_single_step ())
4315 if (fast_tp_collecting
== fast_tpoint_collect_result::not_collecting
)
4318 warning ("BAD - reinserting but not stepping.");
4320 warning ("BAD - reinserting and suspended(%d).",
4325 step
= maybe_hw_step (thread
);
4328 if (fast_tp_collecting
== fast_tpoint_collect_result::before_insn
)
4331 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4332 " (exit-jump-pad-bkpt)\n",
4335 else if (fast_tp_collecting
== fast_tpoint_collect_result::at_insn
)
4338 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4339 " single-stepping\n",
4342 if (can_hardware_single_step ())
4346 internal_error (__FILE__
, __LINE__
,
4347 "moving out of jump pad single-stepping"
4348 " not implemented on this target");
4352 /* If we have while-stepping actions in this thread set it stepping.
4353 If we have a signal to deliver, it may or may not be set to
4354 SIG_IGN, we don't know. Assume so, and allow collecting
4355 while-stepping into a signal handler. A possible smart thing to
4356 do would be to set an internal breakpoint at the signal return
4357 address, continue, and carry on catching this while-stepping
4358 action only when that breakpoint is hit. A future
4360 if (thread
->while_stepping
!= NULL
)
4363 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4366 step
= single_step (lwp
);
4369 if (proc
->tdesc
!= NULL
&& the_low_target
.get_pc
!= NULL
)
4371 struct regcache
*regcache
= get_thread_regcache (current_thread
, 1);
4373 lwp
->stop_pc
= (*the_low_target
.get_pc
) (regcache
);
4377 debug_printf (" %s from pc 0x%lx\n", step
? "step" : "continue",
4378 (long) lwp
->stop_pc
);
4382 /* If we have pending signals, consume one if it can be delivered to
4384 if (lwp
->pending_signals
!= NULL
&& lwp_signal_can_be_delivered (lwp
))
4386 struct pending_signals
**p_sig
;
4388 p_sig
= &lwp
->pending_signals
;
4389 while ((*p_sig
)->prev
!= NULL
)
4390 p_sig
= &(*p_sig
)->prev
;
4392 signal
= (*p_sig
)->signal
;
4393 if ((*p_sig
)->info
.si_signo
!= 0)
4394 ptrace (PTRACE_SETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
4402 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4403 lwpid_of (thread
), step
? "step" : "continue", signal
,
4404 lwp
->stop_expected
? "expected" : "not expected");
4406 if (the_low_target
.prepare_to_resume
!= NULL
)
4407 the_low_target
.prepare_to_resume (lwp
);
4409 regcache_invalidate_thread (thread
);
4411 lwp
->stepping
= step
;
4413 ptrace_request
= PTRACE_SINGLESTEP
;
4414 else if (gdb_catching_syscalls_p (lwp
))
4415 ptrace_request
= PTRACE_SYSCALL
;
4417 ptrace_request
= PTRACE_CONT
;
4418 ptrace (ptrace_request
,
4420 (PTRACE_TYPE_ARG3
) 0,
4421 /* Coerce to a uintptr_t first to avoid potential gcc warning
4422 of coercing an 8 byte integer to a 4 byte pointer. */
4423 (PTRACE_TYPE_ARG4
) (uintptr_t) signal
);
4425 current_thread
= saved_thread
;
4427 perror_with_name ("resuming thread");
4429 /* Successfully resumed. Clear state that no longer makes sense,
4430 and mark the LWP as running. Must not do this before resuming
4431 otherwise if that fails other code will be confused. E.g., we'd
4432 later try to stop the LWP and hang forever waiting for a stop
4433 status. Note that we must not throw after this is cleared,
4434 otherwise handle_zombie_lwp_error would get confused. */
4436 lwp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
4439 /* Called when we try to resume a stopped LWP and that errors out. If
4440 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4441 or about to become), discard the error, clear any pending status
4442 the LWP may have, and return true (we'll collect the exit status
4443 soon enough). Otherwise, return false. */
4446 check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
)
4448 struct thread_info
*thread
= get_lwp_thread (lp
);
4450 /* If we get an error after resuming the LWP successfully, we'd
4451 confuse !T state for the LWP being gone. */
4452 gdb_assert (lp
->stopped
);
4454 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4455 because even if ptrace failed with ESRCH, the tracee may be "not
4456 yet fully dead", but already refusing ptrace requests. In that
4457 case the tracee has 'R (Running)' state for a little bit
4458 (observed in Linux 3.18). See also the note on ESRCH in the
4459 ptrace(2) man page. Instead, check whether the LWP has any state
4460 other than ptrace-stopped. */
4462 /* Don't assume anything if /proc/PID/status can't be read. */
4463 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread
)) == 0)
4465 lp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
4466 lp
->status_pending_p
= 0;
4472 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4473 disappears while we try to resume it. */
4476 linux_resume_one_lwp (struct lwp_info
*lwp
,
4477 int step
, int signal
, siginfo_t
*info
)
4481 linux_resume_one_lwp_throw (lwp
, step
, signal
, info
);
4483 catch (const gdb_exception_error
&ex
)
4485 if (!check_ptrace_stopped_lwp_gone (lwp
))
4490 /* This function is called once per thread via for_each_thread.
4491 We look up which resume request applies to THREAD and mark it with a
4492 pointer to the appropriate resume request.
4494 This algorithm is O(threads * resume elements), but resume elements
4495 is small (and will remain small at least until GDB supports thread
4499 linux_set_resume_request (thread_info
*thread
, thread_resume
*resume
, size_t n
)
4501 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4503 for (int ndx
= 0; ndx
< n
; ndx
++)
4505 ptid_t ptid
= resume
[ndx
].thread
;
4506 if (ptid
== minus_one_ptid
4507 || ptid
== thread
->id
4508 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4510 || (ptid
.pid () == pid_of (thread
)
4512 || ptid
.lwp () == -1)))
4514 if (resume
[ndx
].kind
== resume_stop
4515 && thread
->last_resume_kind
== resume_stop
)
4518 debug_printf ("already %s LWP %ld at GDB's request\n",
4519 (thread
->last_status
.kind
4520 == TARGET_WAITKIND_STOPPED
)
4528 /* Ignore (wildcard) resume requests for already-resumed
4530 if (resume
[ndx
].kind
!= resume_stop
4531 && thread
->last_resume_kind
!= resume_stop
)
4534 debug_printf ("already %s LWP %ld at GDB's request\n",
4535 (thread
->last_resume_kind
4543 /* Don't let wildcard resumes resume fork children that GDB
4544 does not yet know are new fork children. */
4545 if (lwp
->fork_relative
!= NULL
)
4547 struct lwp_info
*rel
= lwp
->fork_relative
;
4549 if (rel
->status_pending_p
4550 && (rel
->waitstatus
.kind
== TARGET_WAITKIND_FORKED
4551 || rel
->waitstatus
.kind
== TARGET_WAITKIND_VFORKED
))
4554 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4560 /* If the thread has a pending event that has already been
4561 reported to GDBserver core, but GDB has not pulled the
4562 event out of the vStopped queue yet, likewise, ignore the
4563 (wildcard) resume request. */
4564 if (in_queued_stop_replies (thread
->id
))
4567 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4572 lwp
->resume
= &resume
[ndx
];
4573 thread
->last_resume_kind
= lwp
->resume
->kind
;
4575 lwp
->step_range_start
= lwp
->resume
->step_range_start
;
4576 lwp
->step_range_end
= lwp
->resume
->step_range_end
;
4578 /* If we had a deferred signal to report, dequeue one now.
4579 This can happen if LWP gets more than one signal while
4580 trying to get out of a jump pad. */
4582 && !lwp
->status_pending_p
4583 && dequeue_one_deferred_signal (lwp
, &lwp
->status_pending
))
4585 lwp
->status_pending_p
= 1;
4588 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4589 "leaving status pending.\n",
4590 WSTOPSIG (lwp
->status_pending
),
4598 /* No resume action for this thread. */
4602 /* find_thread callback for linux_resume. Return true if this lwp has an
4603 interesting status pending. */
4606 resume_status_pending_p (thread_info
*thread
)
4608 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4610 /* LWPs which will not be resumed are not interesting, because
4611 we might not wait for them next time through linux_wait. */
4612 if (lwp
->resume
== NULL
)
4615 return thread_still_has_status_pending_p (thread
);
4618 /* Return 1 if this lwp that GDB wants running is stopped at an
4619 internal breakpoint that we need to step over. It assumes that any
4620 required STOP_PC adjustment has already been propagated to the
4621 inferior's regcache. */
4624 need_step_over_p (thread_info
*thread
)
4626 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4627 struct thread_info
*saved_thread
;
4629 struct process_info
*proc
= get_thread_process (thread
);
4631 /* GDBserver is skipping the extra traps from the wrapper program,
4632 don't have to do step over. */
4633 if (proc
->tdesc
== NULL
)
4636 /* LWPs which will not be resumed are not interesting, because we
4637 might not wait for them next time through linux_wait. */
4642 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4647 if (thread
->last_resume_kind
== resume_stop
)
4650 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4656 gdb_assert (lwp
->suspended
>= 0);
4661 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4666 if (lwp
->status_pending_p
)
4669 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4675 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4679 /* If the PC has changed since we stopped, then don't do anything,
4680 and let the breakpoint/tracepoint be hit. This happens if, for
4681 instance, GDB handled the decr_pc_after_break subtraction itself,
4682 GDB is OOL stepping this thread, or the user has issued a "jump"
4683 command, or poked thread's registers herself. */
4684 if (pc
!= lwp
->stop_pc
)
4687 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4688 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4690 paddress (lwp
->stop_pc
), paddress (pc
));
4694 /* On software single step target, resume the inferior with signal
4695 rather than stepping over. */
4696 if (can_software_single_step ()
4697 && lwp
->pending_signals
!= NULL
4698 && lwp_signal_can_be_delivered (lwp
))
4701 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4708 saved_thread
= current_thread
;
4709 current_thread
= thread
;
4711 /* We can only step over breakpoints we know about. */
4712 if (breakpoint_here (pc
) || fast_tracepoint_jump_here (pc
))
4714 /* Don't step over a breakpoint that GDB expects to hit
4715 though. If the condition is being evaluated on the target's side
4716 and it evaluate to false, step over this breakpoint as well. */
4717 if (gdb_breakpoint_here (pc
)
4718 && gdb_condition_true_at_breakpoint (pc
)
4719 && gdb_no_commands_at_breakpoint (pc
))
4722 debug_printf ("Need step over [LWP %ld]? yes, but found"
4723 " GDB breakpoint at 0x%s; skipping step over\n",
4724 lwpid_of (thread
), paddress (pc
));
4726 current_thread
= saved_thread
;
4732 debug_printf ("Need step over [LWP %ld]? yes, "
4733 "found breakpoint at 0x%s\n",
4734 lwpid_of (thread
), paddress (pc
));
4736 /* We've found an lwp that needs stepping over --- return 1 so
4737 that find_thread stops looking. */
4738 current_thread
= saved_thread
;
4744 current_thread
= saved_thread
;
4747 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4749 lwpid_of (thread
), paddress (pc
));
4754 /* Start a step-over operation on LWP. When LWP stopped at a
4755 breakpoint, to make progress, we need to remove the breakpoint out
4756 of the way. If we let other threads run while we do that, they may
4757 pass by the breakpoint location and miss hitting it. To avoid
4758 that, a step-over momentarily stops all threads while LWP is
4759 single-stepped by either hardware or software while the breakpoint
4760 is temporarily uninserted from the inferior. When the single-step
4761 finishes, we reinsert the breakpoint, and let all threads that are
4762 supposed to be running, run again. */
4765 start_step_over (struct lwp_info
*lwp
)
4767 struct thread_info
*thread
= get_lwp_thread (lwp
);
4768 struct thread_info
*saved_thread
;
4773 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4776 stop_all_lwps (1, lwp
);
4778 if (lwp
->suspended
!= 0)
4780 internal_error (__FILE__
, __LINE__
,
4781 "LWP %ld suspended=%d\n", lwpid_of (thread
),
4786 debug_printf ("Done stopping all threads for step-over.\n");
4788 /* Note, we should always reach here with an already adjusted PC,
4789 either by GDB (if we're resuming due to GDB's request), or by our
4790 caller, if we just finished handling an internal breakpoint GDB
4791 shouldn't care about. */
4794 saved_thread
= current_thread
;
4795 current_thread
= thread
;
4797 lwp
->bp_reinsert
= pc
;
4798 uninsert_breakpoints_at (pc
);
4799 uninsert_fast_tracepoint_jumps_at (pc
);
4801 step
= single_step (lwp
);
4803 current_thread
= saved_thread
;
4805 linux_resume_one_lwp (lwp
, step
, 0, NULL
);
4807 /* Require next event from this LWP. */
4808 step_over_bkpt
= thread
->id
;
4812 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4813 start_step_over, if still there, and delete any single-step
4814 breakpoints we've set, on non hardware single-step targets. */
4817 finish_step_over (struct lwp_info
*lwp
)
4819 if (lwp
->bp_reinsert
!= 0)
4821 struct thread_info
*saved_thread
= current_thread
;
4824 debug_printf ("Finished step over.\n");
4826 current_thread
= get_lwp_thread (lwp
);
4828 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4829 may be no breakpoint to reinsert there by now. */
4830 reinsert_breakpoints_at (lwp
->bp_reinsert
);
4831 reinsert_fast_tracepoint_jumps_at (lwp
->bp_reinsert
);
4833 lwp
->bp_reinsert
= 0;
4835 /* Delete any single-step breakpoints. No longer needed. We
4836 don't have to worry about other threads hitting this trap,
4837 and later not being able to explain it, because we were
4838 stepping over a breakpoint, and we hold all threads but
4839 LWP stopped while doing that. */
4840 if (!can_hardware_single_step ())
4842 gdb_assert (has_single_step_breakpoints (current_thread
));
4843 delete_single_step_breakpoints (current_thread
);
4846 step_over_bkpt
= null_ptid
;
4847 current_thread
= saved_thread
;
4854 /* If there's a step over in progress, wait until all threads stop
4855 (that is, until the stepping thread finishes its step), and
4856 unsuspend all lwps. The stepping thread ends with its status
4857 pending, which is processed later when we get back to processing
4861 complete_ongoing_step_over (void)
4863 if (step_over_bkpt
!= null_ptid
)
4865 struct lwp_info
*lwp
;
4870 debug_printf ("detach: step over in progress, finish it first\n");
4872 /* Passing NULL_PTID as filter indicates we want all events to
4873 be left pending. Eventually this returns when there are no
4874 unwaited-for children left. */
4875 ret
= linux_wait_for_event_filtered (minus_one_ptid
, null_ptid
,
4877 gdb_assert (ret
== -1);
4879 lwp
= find_lwp_pid (step_over_bkpt
);
4881 finish_step_over (lwp
);
4882 step_over_bkpt
= null_ptid
;
4883 unsuspend_all_lwps (lwp
);
4887 /* This function is called once per thread. We check the thread's resume
4888 request, which will tell us whether to resume, step, or leave the thread
4889 stopped; and what signal, if any, it should be sent.
4891 For threads which we aren't explicitly told otherwise, we preserve
4892 the stepping flag; this is used for stepping over gdbserver-placed
4895 If pending_flags was set in any thread, we queue any needed
4896 signals, since we won't actually resume. We already have a pending
4897 event to report, so we don't need to preserve any step requests;
4898 they should be re-issued if necessary. */
4901 linux_resume_one_thread (thread_info
*thread
, bool leave_all_stopped
)
4903 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4906 if (lwp
->resume
== NULL
)
4909 if (lwp
->resume
->kind
== resume_stop
)
4912 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread
));
4917 debug_printf ("stopping LWP %ld\n", lwpid_of (thread
));
4919 /* Stop the thread, and wait for the event asynchronously,
4920 through the event loop. */
4926 debug_printf ("already stopped LWP %ld\n",
4929 /* The LWP may have been stopped in an internal event that
4930 was not meant to be notified back to GDB (e.g., gdbserver
4931 breakpoint), so we should be reporting a stop event in
4934 /* If the thread already has a pending SIGSTOP, this is a
4935 no-op. Otherwise, something later will presumably resume
4936 the thread and this will cause it to cancel any pending
4937 operation, due to last_resume_kind == resume_stop. If
4938 the thread already has a pending status to report, we
4939 will still report it the next time we wait - see
4940 status_pending_p_callback. */
4942 /* If we already have a pending signal to report, then
4943 there's no need to queue a SIGSTOP, as this means we're
4944 midway through moving the LWP out of the jumppad, and we
4945 will report the pending signal as soon as that is
4947 if (lwp
->pending_signals_to_report
== NULL
)
4951 /* For stop requests, we're done. */
4953 thread
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
4957 /* If this thread which is about to be resumed has a pending status,
4958 then don't resume it - we can just report the pending status.
4959 Likewise if it is suspended, because e.g., another thread is
4960 stepping past a breakpoint. Make sure to queue any signals that
4961 would otherwise be sent. In all-stop mode, we do this decision
4962 based on if *any* thread has a pending status. If there's a
4963 thread that needs the step-over-breakpoint dance, then don't
4964 resume any other thread but that particular one. */
4965 leave_pending
= (lwp
->suspended
4966 || lwp
->status_pending_p
4967 || leave_all_stopped
);
4969 /* If we have a new signal, enqueue the signal. */
4970 if (lwp
->resume
->sig
!= 0)
4972 siginfo_t info
, *info_p
;
4974 /* If this is the same signal we were previously stopped by,
4975 make sure to queue its siginfo. */
4976 if (WIFSTOPPED (lwp
->last_status
)
4977 && WSTOPSIG (lwp
->last_status
) == lwp
->resume
->sig
4978 && ptrace (PTRACE_GETSIGINFO
, lwpid_of (thread
),
4979 (PTRACE_TYPE_ARG3
) 0, &info
) == 0)
4984 enqueue_pending_signal (lwp
, lwp
->resume
->sig
, info_p
);
4990 debug_printf ("resuming LWP %ld\n", lwpid_of (thread
));
4992 proceed_one_lwp (thread
, NULL
);
4997 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread
));
5000 thread
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
5005 linux_process_target::resume (thread_resume
*resume_info
, size_t n
)
5007 struct thread_info
*need_step_over
= NULL
;
5012 debug_printf ("linux_resume:\n");
5015 for_each_thread ([&] (thread_info
*thread
)
5017 linux_set_resume_request (thread
, resume_info
, n
);
5020 /* If there is a thread which would otherwise be resumed, which has
5021 a pending status, then don't resume any threads - we can just
5022 report the pending status. Make sure to queue any signals that
5023 would otherwise be sent. In non-stop mode, we'll apply this
5024 logic to each thread individually. We consume all pending events
5025 before considering to start a step-over (in all-stop). */
5026 bool any_pending
= false;
5028 any_pending
= find_thread (resume_status_pending_p
) != NULL
;
5030 /* If there is a thread which would otherwise be resumed, which is
5031 stopped at a breakpoint that needs stepping over, then don't
5032 resume any threads - have it step over the breakpoint with all
5033 other threads stopped, then resume all threads again. Make sure
5034 to queue any signals that would otherwise be delivered or
5036 if (!any_pending
&& supports_breakpoints ())
5037 need_step_over
= find_thread (need_step_over_p
);
5039 bool leave_all_stopped
= (need_step_over
!= NULL
|| any_pending
);
5043 if (need_step_over
!= NULL
)
5044 debug_printf ("Not resuming all, need step over\n");
5045 else if (any_pending
)
5046 debug_printf ("Not resuming, all-stop and found "
5047 "an LWP with pending status\n");
5049 debug_printf ("Resuming, no pending status or step over needed\n");
5052 /* Even if we're leaving threads stopped, queue all signals we'd
5053 otherwise deliver. */
5054 for_each_thread ([&] (thread_info
*thread
)
5056 linux_resume_one_thread (thread
, leave_all_stopped
);
5060 start_step_over (get_thread_lwp (need_step_over
));
5064 debug_printf ("linux_resume done\n");
5068 /* We may have events that were pending that can/should be sent to
5069 the client now. Trigger a linux_wait call. */
5070 if (target_is_async_p ())
5074 /* This function is called once per thread. We check the thread's
5075 last resume request, which will tell us whether to resume, step, or
5076 leave the thread stopped. Any signal the client requested to be
5077 delivered has already been enqueued at this point.
5079 If any thread that GDB wants running is stopped at an internal
5080 breakpoint that needs stepping over, we start a step-over operation
5081 on that particular thread, and leave all others stopped. */
5084 proceed_one_lwp (thread_info
*thread
, lwp_info
*except
)
5086 struct lwp_info
*lwp
= get_thread_lwp (thread
);
5093 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread
));
5098 debug_printf (" LWP %ld already running\n", lwpid_of (thread
));
5102 if (thread
->last_resume_kind
== resume_stop
5103 && thread
->last_status
.kind
!= TARGET_WAITKIND_IGNORE
)
5106 debug_printf (" client wants LWP to remain %ld stopped\n",
5111 if (lwp
->status_pending_p
)
5114 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5119 gdb_assert (lwp
->suspended
>= 0);
5124 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread
));
5128 if (thread
->last_resume_kind
== resume_stop
5129 && lwp
->pending_signals_to_report
== NULL
5130 && (lwp
->collecting_fast_tracepoint
5131 == fast_tpoint_collect_result::not_collecting
))
5133 /* We haven't reported this LWP as stopped yet (otherwise, the
5134 last_status.kind check above would catch it, and we wouldn't
5135 reach here. This LWP may have been momentarily paused by a
5136 stop_all_lwps call while handling for example, another LWP's
5137 step-over. In that case, the pending expected SIGSTOP signal
5138 that was queued at vCont;t handling time will have already
5139 been consumed by wait_for_sigstop, and so we need to requeue
5140 another one here. Note that if the LWP already has a SIGSTOP
5141 pending, this is a no-op. */
5144 debug_printf ("Client wants LWP %ld to stop. "
5145 "Making sure it has a SIGSTOP pending\n",
5151 if (thread
->last_resume_kind
== resume_step
)
5154 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5157 /* If resume_step is requested by GDB, install single-step
5158 breakpoints when the thread is about to be actually resumed if
5159 the single-step breakpoints weren't removed. */
5160 if (can_software_single_step ()
5161 && !has_single_step_breakpoints (thread
))
5162 install_software_single_step_breakpoints (lwp
);
5164 step
= maybe_hw_step (thread
);
5166 else if (lwp
->bp_reinsert
!= 0)
5169 debug_printf (" stepping LWP %ld, reinsert set\n",
5172 step
= maybe_hw_step (thread
);
5177 linux_resume_one_lwp (lwp
, step
, 0, NULL
);
5181 unsuspend_and_proceed_one_lwp (thread_info
*thread
, lwp_info
*except
)
5183 struct lwp_info
*lwp
= get_thread_lwp (thread
);
5188 lwp_suspended_decr (lwp
);
5190 proceed_one_lwp (thread
, except
);
5193 /* When we finish a step-over, set threads running again. If there's
5194 another thread that may need a step-over, now's the time to start
5195 it. Eventually, we'll move all threads past their breakpoints. */
5198 proceed_all_lwps (void)
5200 struct thread_info
*need_step_over
;
5202 /* If there is a thread which would otherwise be resumed, which is
5203 stopped at a breakpoint that needs stepping over, then don't
5204 resume any threads - have it step over the breakpoint with all
5205 other threads stopped, then resume all threads again. */
5207 if (supports_breakpoints ())
5209 need_step_over
= find_thread (need_step_over_p
);
5211 if (need_step_over
!= NULL
)
5214 debug_printf ("proceed_all_lwps: found "
5215 "thread %ld needing a step-over\n",
5216 lwpid_of (need_step_over
));
5218 start_step_over (get_thread_lwp (need_step_over
));
5224 debug_printf ("Proceeding, no step-over needed\n");
5226 for_each_thread ([] (thread_info
*thread
)
5228 proceed_one_lwp (thread
, NULL
);
5232 /* Stopped LWPs that the client wanted to be running, that don't have
5233 pending statuses, are set to run again, except for EXCEPT, if not
5234 NULL. This undoes a stop_all_lwps call. */
5237 unstop_all_lwps (int unsuspend
, struct lwp_info
*except
)
5243 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5244 lwpid_of (get_lwp_thread (except
)));
5246 debug_printf ("unstopping all lwps\n");
5250 for_each_thread ([&] (thread_info
*thread
)
5252 unsuspend_and_proceed_one_lwp (thread
, except
);
5255 for_each_thread ([&] (thread_info
*thread
)
5257 proceed_one_lwp (thread
, except
);
5262 debug_printf ("unstop_all_lwps done\n");
5268 #ifdef HAVE_LINUX_REGSETS
5270 #define use_linux_regsets 1
5272 /* Returns true if REGSET has been disabled. */
5275 regset_disabled (struct regsets_info
*info
, struct regset_info
*regset
)
5277 return (info
->disabled_regsets
!= NULL
5278 && info
->disabled_regsets
[regset
- info
->regsets
]);
5281 /* Disable REGSET. */
5284 disable_regset (struct regsets_info
*info
, struct regset_info
*regset
)
5288 dr_offset
= regset
- info
->regsets
;
5289 if (info
->disabled_regsets
== NULL
)
5290 info
->disabled_regsets
= (char *) xcalloc (1, info
->num_regsets
);
5291 info
->disabled_regsets
[dr_offset
] = 1;
5295 regsets_fetch_inferior_registers (struct regsets_info
*regsets_info
,
5296 struct regcache
*regcache
)
5298 struct regset_info
*regset
;
5299 int saw_general_regs
= 0;
5303 pid
= lwpid_of (current_thread
);
5304 for (regset
= regsets_info
->regsets
; regset
->size
>= 0; regset
++)
5309 if (regset
->size
== 0 || regset_disabled (regsets_info
, regset
))
5312 buf
= xmalloc (regset
->size
);
5314 nt_type
= regset
->nt_type
;
5318 iov
.iov_len
= regset
->size
;
5319 data
= (void *) &iov
;
5325 res
= ptrace (regset
->get_request
, pid
,
5326 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5328 res
= ptrace (regset
->get_request
, pid
, data
, nt_type
);
5333 || (errno
== EINVAL
&& regset
->type
== OPTIONAL_REGS
))
5335 /* If we get EIO on a regset, or an EINVAL and the regset is
5336 optional, do not try it again for this process mode. */
5337 disable_regset (regsets_info
, regset
);
5339 else if (errno
== ENODATA
)
5341 /* ENODATA may be returned if the regset is currently
5342 not "active". This can happen in normal operation,
5343 so suppress the warning in this case. */
5345 else if (errno
== ESRCH
)
5347 /* At this point, ESRCH should mean the process is
5348 already gone, in which case we simply ignore attempts
5349 to read its registers. */
5354 sprintf (s
, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5361 if (regset
->type
== GENERAL_REGS
)
5362 saw_general_regs
= 1;
5363 regset
->store_function (regcache
, buf
);
5367 if (saw_general_regs
)
5374 regsets_store_inferior_registers (struct regsets_info
*regsets_info
,
5375 struct regcache
*regcache
)
5377 struct regset_info
*regset
;
5378 int saw_general_regs
= 0;
5382 pid
= lwpid_of (current_thread
);
5383 for (regset
= regsets_info
->regsets
; regset
->size
>= 0; regset
++)
5388 if (regset
->size
== 0 || regset_disabled (regsets_info
, regset
)
5389 || regset
->fill_function
== NULL
)
5392 buf
= xmalloc (regset
->size
);
5394 /* First fill the buffer with the current register set contents,
5395 in case there are any items in the kernel's regset that are
5396 not in gdbserver's regcache. */
5398 nt_type
= regset
->nt_type
;
5402 iov
.iov_len
= regset
->size
;
5403 data
= (void *) &iov
;
5409 res
= ptrace (regset
->get_request
, pid
,
5410 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5412 res
= ptrace (regset
->get_request
, pid
, data
, nt_type
);
5417 /* Then overlay our cached registers on that. */
5418 regset
->fill_function (regcache
, buf
);
5420 /* Only now do we write the register set. */
5422 res
= ptrace (regset
->set_request
, pid
,
5423 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5425 res
= ptrace (regset
->set_request
, pid
, data
, nt_type
);
5432 || (errno
== EINVAL
&& regset
->type
== OPTIONAL_REGS
))
5434 /* If we get EIO on a regset, or an EINVAL and the regset is
5435 optional, do not try it again for this process mode. */
5436 disable_regset (regsets_info
, regset
);
5438 else if (errno
== ESRCH
)
5440 /* At this point, ESRCH should mean the process is
5441 already gone, in which case we simply ignore attempts
5442 to change its registers. See also the related
5443 comment in linux_resume_one_lwp. */
5449 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5452 else if (regset
->type
== GENERAL_REGS
)
5453 saw_general_regs
= 1;
5456 if (saw_general_regs
)
5462 #else /* !HAVE_LINUX_REGSETS */
5464 #define use_linux_regsets 0
5465 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5466 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5470 /* Return 1 if register REGNO is supported by one of the regset ptrace
5471 calls or 0 if it has to be transferred individually. */
5474 linux_register_in_regsets (const struct regs_info
*regs_info
, int regno
)
5476 unsigned char mask
= 1 << (regno
% 8);
5477 size_t index
= regno
/ 8;
5479 return (use_linux_regsets
5480 && (regs_info
->regset_bitmap
== NULL
5481 || (regs_info
->regset_bitmap
[index
] & mask
) != 0));
5484 #ifdef HAVE_LINUX_USRREGS
5487 register_addr (const struct usrregs_info
*usrregs
, int regnum
)
5491 if (regnum
< 0 || regnum
>= usrregs
->num_regs
)
5492 error ("Invalid register number %d.", regnum
);
5494 addr
= usrregs
->regmap
[regnum
];
5499 /* Fetch one register. */
5501 fetch_register (const struct usrregs_info
*usrregs
,
5502 struct regcache
*regcache
, int regno
)
5509 if (regno
>= usrregs
->num_regs
)
5511 if ((*the_low_target
.cannot_fetch_register
) (regno
))
5514 regaddr
= register_addr (usrregs
, regno
);
5518 size
= ((register_size (regcache
->tdesc
, regno
)
5519 + sizeof (PTRACE_XFER_TYPE
) - 1)
5520 & -sizeof (PTRACE_XFER_TYPE
));
5521 buf
= (char *) alloca (size
);
5523 pid
= lwpid_of (current_thread
);
5524 for (i
= 0; i
< size
; i
+= sizeof (PTRACE_XFER_TYPE
))
5527 *(PTRACE_XFER_TYPE
*) (buf
+ i
) =
5528 ptrace (PTRACE_PEEKUSER
, pid
,
5529 /* Coerce to a uintptr_t first to avoid potential gcc warning
5530 of coercing an 8 byte integer to a 4 byte pointer. */
5531 (PTRACE_TYPE_ARG3
) (uintptr_t) regaddr
, (PTRACE_TYPE_ARG4
) 0);
5532 regaddr
+= sizeof (PTRACE_XFER_TYPE
);
5535 /* Mark register REGNO unavailable. */
5536 supply_register (regcache
, regno
, NULL
);
5541 if (the_low_target
.supply_ptrace_register
)
5542 the_low_target
.supply_ptrace_register (regcache
, regno
, buf
);
5544 supply_register (regcache
, regno
, buf
);
5547 /* Store one register. */
5549 store_register (const struct usrregs_info
*usrregs
,
5550 struct regcache
*regcache
, int regno
)
5557 if (regno
>= usrregs
->num_regs
)
5559 if ((*the_low_target
.cannot_store_register
) (regno
))
5562 regaddr
= register_addr (usrregs
, regno
);
5566 size
= ((register_size (regcache
->tdesc
, regno
)
5567 + sizeof (PTRACE_XFER_TYPE
) - 1)
5568 & -sizeof (PTRACE_XFER_TYPE
));
5569 buf
= (char *) alloca (size
);
5570 memset (buf
, 0, size
);
5572 if (the_low_target
.collect_ptrace_register
)
5573 the_low_target
.collect_ptrace_register (regcache
, regno
, buf
);
5575 collect_register (regcache
, regno
, buf
);
5577 pid
= lwpid_of (current_thread
);
5578 for (i
= 0; i
< size
; i
+= sizeof (PTRACE_XFER_TYPE
))
5581 ptrace (PTRACE_POKEUSER
, pid
,
5582 /* Coerce to a uintptr_t first to avoid potential gcc warning
5583 about coercing an 8 byte integer to a 4 byte pointer. */
5584 (PTRACE_TYPE_ARG3
) (uintptr_t) regaddr
,
5585 (PTRACE_TYPE_ARG4
) *(PTRACE_XFER_TYPE
*) (buf
+ i
));
5588 /* At this point, ESRCH should mean the process is
5589 already gone, in which case we simply ignore attempts
5590 to change its registers. See also the related
5591 comment in linux_resume_one_lwp. */
5595 if ((*the_low_target
.cannot_store_register
) (regno
) == 0)
5596 error ("writing register %d: %s", regno
, safe_strerror (errno
));
5598 regaddr
+= sizeof (PTRACE_XFER_TYPE
);
5602 /* Fetch all registers, or just one, from the child process.
5603 If REGNO is -1, do this for all registers, skipping any that are
5604 assumed to have been retrieved by regsets_fetch_inferior_registers,
5605 unless ALL is non-zero.
5606 Otherwise, REGNO specifies which register (so we can save time). */
5608 usr_fetch_inferior_registers (const struct regs_info
*regs_info
,
5609 struct regcache
*regcache
, int regno
, int all
)
5611 struct usrregs_info
*usr
= regs_info
->usrregs
;
5615 for (regno
= 0; regno
< usr
->num_regs
; regno
++)
5616 if (all
|| !linux_register_in_regsets (regs_info
, regno
))
5617 fetch_register (usr
, regcache
, regno
);
5620 fetch_register (usr
, regcache
, regno
);
5623 /* Store our register values back into the inferior.
5624 If REGNO is -1, do this for all registers, skipping any that are
5625 assumed to have been saved by regsets_store_inferior_registers,
5626 unless ALL is non-zero.
5627 Otherwise, REGNO specifies which register (so we can save time). */
5629 usr_store_inferior_registers (const struct regs_info
*regs_info
,
5630 struct regcache
*regcache
, int regno
, int all
)
5632 struct usrregs_info
*usr
= regs_info
->usrregs
;
5636 for (regno
= 0; regno
< usr
->num_regs
; regno
++)
5637 if (all
|| !linux_register_in_regsets (regs_info
, regno
))
5638 store_register (usr
, regcache
, regno
);
5641 store_register (usr
, regcache
, regno
);
5644 #else /* !HAVE_LINUX_USRREGS */
5646 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5647 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5653 linux_process_target::fetch_registers (regcache
*regcache
, int regno
)
5657 const struct regs_info
*regs_info
= (*the_low_target
.regs_info
) ();
5661 if (the_low_target
.fetch_register
!= NULL
5662 && regs_info
->usrregs
!= NULL
)
5663 for (regno
= 0; regno
< regs_info
->usrregs
->num_regs
; regno
++)
5664 (*the_low_target
.fetch_register
) (regcache
, regno
);
5666 all
= regsets_fetch_inferior_registers (regs_info
->regsets_info
, regcache
);
5667 if (regs_info
->usrregs
!= NULL
)
5668 usr_fetch_inferior_registers (regs_info
, regcache
, -1, all
);
5672 if (the_low_target
.fetch_register
!= NULL
5673 && (*the_low_target
.fetch_register
) (regcache
, regno
))
5676 use_regsets
= linux_register_in_regsets (regs_info
, regno
);
5678 all
= regsets_fetch_inferior_registers (regs_info
->regsets_info
,
5680 if ((!use_regsets
|| all
) && regs_info
->usrregs
!= NULL
)
5681 usr_fetch_inferior_registers (regs_info
, regcache
, regno
, 1);
5686 linux_process_target::store_registers (regcache
*regcache
, int regno
)
5690 const struct regs_info
*regs_info
= (*the_low_target
.regs_info
) ();
5694 all
= regsets_store_inferior_registers (regs_info
->regsets_info
,
5696 if (regs_info
->usrregs
!= NULL
)
5697 usr_store_inferior_registers (regs_info
, regcache
, regno
, all
);
5701 use_regsets
= linux_register_in_regsets (regs_info
, regno
);
5703 all
= regsets_store_inferior_registers (regs_info
->regsets_info
,
5705 if ((!use_regsets
|| all
) && regs_info
->usrregs
!= NULL
)
5706 usr_store_inferior_registers (regs_info
, regcache
, regno
, 1);
5711 /* A wrapper for the read_memory target op. */
5714 linux_read_memory (CORE_ADDR memaddr
, unsigned char *myaddr
, int len
)
5716 return the_target
->pt
->read_memory (memaddr
, myaddr
, len
);
5719 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5720 to debugger memory starting at MYADDR. */
5723 linux_process_target::read_memory (CORE_ADDR memaddr
,
5724 unsigned char *myaddr
, int len
)
5726 int pid
= lwpid_of (current_thread
);
5727 PTRACE_XFER_TYPE
*buffer
;
5735 /* Try using /proc. Don't bother for one word. */
5736 if (len
>= 3 * sizeof (long))
5740 /* We could keep this file open and cache it - possibly one per
5741 thread. That requires some juggling, but is even faster. */
5742 sprintf (filename
, "/proc/%d/mem", pid
);
5743 fd
= open (filename
, O_RDONLY
| O_LARGEFILE
);
5747 /* If pread64 is available, use it. It's faster if the kernel
5748 supports it (only one syscall), and it's 64-bit safe even on
5749 32-bit platforms (for instance, SPARC debugging a SPARC64
5752 bytes
= pread64 (fd
, myaddr
, len
, memaddr
);
5755 if (lseek (fd
, memaddr
, SEEK_SET
) != -1)
5756 bytes
= read (fd
, myaddr
, len
);
5763 /* Some data was read, we'll try to get the rest with ptrace. */
5773 /* Round starting address down to longword boundary. */
5774 addr
= memaddr
& -(CORE_ADDR
) sizeof (PTRACE_XFER_TYPE
);
5775 /* Round ending address up; get number of longwords that makes. */
5776 count
= ((((memaddr
+ len
) - addr
) + sizeof (PTRACE_XFER_TYPE
) - 1)
5777 / sizeof (PTRACE_XFER_TYPE
));
5778 /* Allocate buffer of that many longwords. */
5779 buffer
= XALLOCAVEC (PTRACE_XFER_TYPE
, count
);
5781 /* Read all the longwords */
5783 for (i
= 0; i
< count
; i
++, addr
+= sizeof (PTRACE_XFER_TYPE
))
5785 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5786 about coercing an 8 byte integer to a 4 byte pointer. */
5787 buffer
[i
] = ptrace (PTRACE_PEEKTEXT
, pid
,
5788 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5789 (PTRACE_TYPE_ARG4
) 0);
5795 /* Copy appropriate bytes out of the buffer. */
5798 i
*= sizeof (PTRACE_XFER_TYPE
);
5799 i
-= memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1);
5801 (char *) buffer
+ (memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1)),
5808 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5809 memory at MEMADDR. On failure (cannot write to the inferior)
5810 returns the value of errno. Always succeeds if LEN is zero. */
5813 linux_process_target::write_memory (CORE_ADDR memaddr
,
5814 const unsigned char *myaddr
, int len
)
5817 /* Round starting address down to longword boundary. */
5818 CORE_ADDR addr
= memaddr
& -(CORE_ADDR
) sizeof (PTRACE_XFER_TYPE
);
5819 /* Round ending address up; get number of longwords that makes. */
5821 = (((memaddr
+ len
) - addr
) + sizeof (PTRACE_XFER_TYPE
) - 1)
5822 / sizeof (PTRACE_XFER_TYPE
);
5824 /* Allocate buffer of that many longwords. */
5825 PTRACE_XFER_TYPE
*buffer
= XALLOCAVEC (PTRACE_XFER_TYPE
, count
);
5827 int pid
= lwpid_of (current_thread
);
5831 /* Zero length write always succeeds. */
5837 /* Dump up to four bytes. */
5838 char str
[4 * 2 + 1];
5840 int dump
= len
< 4 ? len
: 4;
5842 for (i
= 0; i
< dump
; i
++)
5844 sprintf (p
, "%02x", myaddr
[i
]);
5849 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5850 str
, (long) memaddr
, pid
);
5853 /* Fill start and end extra bytes of buffer with existing memory data. */
5856 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5857 about coercing an 8 byte integer to a 4 byte pointer. */
5858 buffer
[0] = ptrace (PTRACE_PEEKTEXT
, pid
,
5859 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5860 (PTRACE_TYPE_ARG4
) 0);
5868 = ptrace (PTRACE_PEEKTEXT
, pid
,
5869 /* Coerce to a uintptr_t first to avoid potential gcc warning
5870 about coercing an 8 byte integer to a 4 byte pointer. */
5871 (PTRACE_TYPE_ARG3
) (uintptr_t) (addr
+ (count
- 1)
5872 * sizeof (PTRACE_XFER_TYPE
)),
5873 (PTRACE_TYPE_ARG4
) 0);
5878 /* Copy data to be written over corresponding part of buffer. */
5880 memcpy ((char *) buffer
+ (memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1)),
5883 /* Write the entire buffer. */
5885 for (i
= 0; i
< count
; i
++, addr
+= sizeof (PTRACE_XFER_TYPE
))
5888 ptrace (PTRACE_POKETEXT
, pid
,
5889 /* Coerce to a uintptr_t first to avoid potential gcc warning
5890 about coercing an 8 byte integer to a 4 byte pointer. */
5891 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5892 (PTRACE_TYPE_ARG4
) buffer
[i
]);
5901 linux_process_target::look_up_symbols ()
5903 #ifdef USE_THREAD_DB
5904 struct process_info
*proc
= current_process ();
5906 if (proc
->priv
->thread_db
!= NULL
)
5914 linux_process_target::request_interrupt ()
5916 /* Send a SIGINT to the process group. This acts just like the user
5917 typed a ^C on the controlling terminal. */
5918 ::kill (-signal_pid
, SIGINT
);
5922 linux_process_target::supports_read_auxv ()
5927 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5928 to debugger memory starting at MYADDR. */
5931 linux_process_target::read_auxv (CORE_ADDR offset
, unsigned char *myaddr
,
5934 char filename
[PATH_MAX
];
5936 int pid
= lwpid_of (current_thread
);
5938 xsnprintf (filename
, sizeof filename
, "/proc/%d/auxv", pid
);
5940 fd
= open (filename
, O_RDONLY
);
5944 if (offset
!= (CORE_ADDR
) 0
5945 && lseek (fd
, (off_t
) offset
, SEEK_SET
) != (off_t
) offset
)
5948 n
= read (fd
, myaddr
, len
);
5955 /* These breakpoint and watchpoint related wrapper functions simply
5956 pass on the function call if the target has registered a
5957 corresponding function. */
5960 linux_process_target::supports_z_point_type (char z_type
)
5962 return (the_low_target
.supports_z_point_type
!= NULL
5963 && the_low_target
.supports_z_point_type (z_type
));
5967 linux_process_target::insert_point (enum raw_bkpt_type type
, CORE_ADDR addr
,
5968 int size
, raw_breakpoint
*bp
)
5970 if (type
== raw_bkpt_type_sw
)
5971 return insert_memory_breakpoint (bp
);
5972 else if (the_low_target
.insert_point
!= NULL
)
5973 return the_low_target
.insert_point (type
, addr
, size
, bp
);
5975 /* Unsupported (see target.h). */
5980 linux_process_target::remove_point (enum raw_bkpt_type type
, CORE_ADDR addr
,
5981 int size
, raw_breakpoint
*bp
)
5983 if (type
== raw_bkpt_type_sw
)
5984 return remove_memory_breakpoint (bp
);
5985 else if (the_low_target
.remove_point
!= NULL
)
5986 return the_low_target
.remove_point (type
, addr
, size
, bp
);
5988 /* Unsupported (see target.h). */
5992 /* Implement the stopped_by_sw_breakpoint target_ops
5996 linux_process_target::stopped_by_sw_breakpoint ()
5998 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6000 return (lwp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
);
6003 /* Implement the supports_stopped_by_sw_breakpoint target_ops
6007 linux_process_target::supports_stopped_by_sw_breakpoint ()
6009 return USE_SIGTRAP_SIGINFO
;
6012 /* Implement the stopped_by_hw_breakpoint target_ops
6016 linux_process_target::stopped_by_hw_breakpoint ()
6018 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6020 return (lwp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
);
6023 /* Implement the supports_stopped_by_hw_breakpoint target_ops
6027 linux_process_target::supports_stopped_by_hw_breakpoint ()
6029 return USE_SIGTRAP_SIGINFO
;
6032 /* Implement the supports_hardware_single_step target_ops method. */
6035 linux_process_target::supports_hardware_single_step ()
6037 return can_hardware_single_step ();
6041 linux_supports_software_single_step (void)
6043 return can_software_single_step ();
6047 linux_process_target::stopped_by_watchpoint ()
6049 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6051 return lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
6055 linux_process_target::stopped_data_address ()
6057 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6059 return lwp
->stopped_data_address
;
6062 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6063 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6064 && defined(PT_TEXT_END_ADDR)
6066 /* This is only used for targets that define PT_TEXT_ADDR,
6067 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6068 the target has different ways of acquiring this information, like
6071 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6072 to tell gdb about. */
6075 linux_read_offsets (CORE_ADDR
*text_p
, CORE_ADDR
*data_p
)
6077 unsigned long text
, text_end
, data
;
6078 int pid
= lwpid_of (current_thread
);
6082 text
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_TEXT_ADDR
,
6083 (PTRACE_TYPE_ARG4
) 0);
6084 text_end
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_TEXT_END_ADDR
,
6085 (PTRACE_TYPE_ARG4
) 0);
6086 data
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_DATA_ADDR
,
6087 (PTRACE_TYPE_ARG4
) 0);
6091 /* Both text and data offsets produced at compile-time (and so
6092 used by gdb) are relative to the beginning of the program,
6093 with the data segment immediately following the text segment.
6094 However, the actual runtime layout in memory may put the data
6095 somewhere else, so when we send gdb a data base-address, we
6096 use the real data base address and subtract the compile-time
6097 data base-address from it (which is just the length of the
6098 text segment). BSS immediately follows data in both
6101 *data_p
= data
- (text_end
- text
);
6110 linux_qxfer_osdata (const char *annex
,
6111 unsigned char *readbuf
, unsigned const char *writebuf
,
6112 CORE_ADDR offset
, int len
)
6114 return linux_common_xfer_osdata (annex
, readbuf
, offset
, len
);
6117 /* Convert a native/host siginfo object, into/from the siginfo in the
6118 layout of the inferiors' architecture. */
6121 siginfo_fixup (siginfo_t
*siginfo
, gdb_byte
*inf_siginfo
, int direction
)
6125 if (the_low_target
.siginfo_fixup
!= NULL
)
6126 done
= the_low_target
.siginfo_fixup (siginfo
, inf_siginfo
, direction
);
6128 /* If there was no callback, or the callback didn't do anything,
6129 then just do a straight memcpy. */
6133 memcpy (siginfo
, inf_siginfo
, sizeof (siginfo_t
));
6135 memcpy (inf_siginfo
, siginfo
, sizeof (siginfo_t
));
6140 linux_xfer_siginfo (const char *annex
, unsigned char *readbuf
,
6141 unsigned const char *writebuf
, CORE_ADDR offset
, int len
)
6145 gdb_byte inf_siginfo
[sizeof (siginfo_t
)];
6147 if (current_thread
== NULL
)
6150 pid
= lwpid_of (current_thread
);
6153 debug_printf ("%s siginfo for lwp %d.\n",
6154 readbuf
!= NULL
? "Reading" : "Writing",
6157 if (offset
>= sizeof (siginfo
))
6160 if (ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
) != 0)
6163 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6164 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6165 inferior with a 64-bit GDBSERVER should look the same as debugging it
6166 with a 32-bit GDBSERVER, we need to convert it. */
6167 siginfo_fixup (&siginfo
, inf_siginfo
, 0);
6169 if (offset
+ len
> sizeof (siginfo
))
6170 len
= sizeof (siginfo
) - offset
;
6172 if (readbuf
!= NULL
)
6173 memcpy (readbuf
, inf_siginfo
+ offset
, len
);
6176 memcpy (inf_siginfo
+ offset
, writebuf
, len
);
6178 /* Convert back to ptrace layout before flushing it out. */
6179 siginfo_fixup (&siginfo
, inf_siginfo
, 1);
6181 if (ptrace (PTRACE_SETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
) != 0)
6188 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6189 so we notice when children change state; as the handler for the
6190 sigsuspend in my_waitpid. */
6193 sigchld_handler (int signo
)
6195 int old_errno
= errno
;
6201 /* Use the async signal safe debug function. */
6202 if (debug_write ("sigchld_handler\n",
6203 sizeof ("sigchld_handler\n") - 1) < 0)
6204 break; /* just ignore */
6208 if (target_is_async_p ())
6209 async_file_mark (); /* trigger a linux_wait */
6215 linux_supports_non_stop (void)
6221 linux_async (int enable
)
6223 int previous
= target_is_async_p ();
6226 debug_printf ("linux_async (%d), previous=%d\n",
6229 if (previous
!= enable
)
6232 sigemptyset (&mask
);
6233 sigaddset (&mask
, SIGCHLD
);
6235 gdb_sigmask (SIG_BLOCK
, &mask
, NULL
);
6239 if (pipe (linux_event_pipe
) == -1)
6241 linux_event_pipe
[0] = -1;
6242 linux_event_pipe
[1] = -1;
6243 gdb_sigmask (SIG_UNBLOCK
, &mask
, NULL
);
6245 warning ("creating event pipe failed.");
6249 fcntl (linux_event_pipe
[0], F_SETFL
, O_NONBLOCK
);
6250 fcntl (linux_event_pipe
[1], F_SETFL
, O_NONBLOCK
);
6252 /* Register the event loop handler. */
6253 add_file_handler (linux_event_pipe
[0],
6254 handle_target_event
, NULL
);
6256 /* Always trigger a linux_wait. */
6261 delete_file_handler (linux_event_pipe
[0]);
6263 close (linux_event_pipe
[0]);
6264 close (linux_event_pipe
[1]);
6265 linux_event_pipe
[0] = -1;
6266 linux_event_pipe
[1] = -1;
6269 gdb_sigmask (SIG_UNBLOCK
, &mask
, NULL
);
6276 linux_start_non_stop (int nonstop
)
6278 /* Register or unregister from event-loop accordingly. */
6279 linux_async (nonstop
);
6281 if (target_is_async_p () != (nonstop
!= 0))
6288 linux_supports_multi_process (void)
6293 /* Check if fork events are supported. */
6296 linux_supports_fork_events (void)
6298 return linux_supports_tracefork ();
6301 /* Check if vfork events are supported. */
6304 linux_supports_vfork_events (void)
6306 return linux_supports_tracefork ();
6309 /* Check if exec events are supported. */
6312 linux_supports_exec_events (void)
6314 return linux_supports_traceexec ();
6317 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6318 ptrace flags for all inferiors. This is in case the new GDB connection
6319 doesn't support the same set of events that the previous one did. */
6322 linux_handle_new_gdb_connection (void)
6324 /* Request that all the lwps reset their ptrace options. */
6325 for_each_thread ([] (thread_info
*thread
)
6327 struct lwp_info
*lwp
= get_thread_lwp (thread
);
6331 /* Stop the lwp so we can modify its ptrace options. */
6332 lwp
->must_set_ptrace_flags
= 1;
6333 linux_stop_lwp (lwp
);
6337 /* Already stopped; go ahead and set the ptrace options. */
6338 struct process_info
*proc
= find_process_pid (pid_of (thread
));
6339 int options
= linux_low_ptrace_options (proc
->attached
);
6341 linux_enable_event_reporting (lwpid_of (thread
), options
);
6342 lwp
->must_set_ptrace_flags
= 0;
6348 linux_supports_disable_randomization (void)
6350 #ifdef HAVE_PERSONALITY
6358 linux_supports_agent (void)
6364 linux_supports_range_stepping (void)
6366 if (can_software_single_step ())
6368 if (*the_low_target
.supports_range_stepping
== NULL
)
6371 return (*the_low_target
.supports_range_stepping
) ();
6374 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6375 struct target_loadseg
6377 /* Core address to which the segment is mapped. */
6379 /* VMA recorded in the program header. */
6381 /* Size of this segment in memory. */
6385 # if defined PT_GETDSBT
6386 struct target_loadmap
6388 /* Protocol version number, must be zero. */
6390 /* Pointer to the DSBT table, its size, and the DSBT index. */
6391 unsigned *dsbt_table
;
6392 unsigned dsbt_size
, dsbt_index
;
6393 /* Number of segments in this map. */
6395 /* The actual memory map. */
6396 struct target_loadseg segs
[/*nsegs*/];
6398 # define LINUX_LOADMAP PT_GETDSBT
6399 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6400 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6402 struct target_loadmap
6404 /* Protocol version number, must be zero. */
6406 /* Number of segments in this map. */
6408 /* The actual memory map. */
6409 struct target_loadseg segs
[/*nsegs*/];
6411 # define LINUX_LOADMAP PTRACE_GETFDPIC
6412 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6413 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6417 linux_read_loadmap (const char *annex
, CORE_ADDR offset
,
6418 unsigned char *myaddr
, unsigned int len
)
6420 int pid
= lwpid_of (current_thread
);
6422 struct target_loadmap
*data
= NULL
;
6423 unsigned int actual_length
, copy_length
;
6425 if (strcmp (annex
, "exec") == 0)
6426 addr
= (int) LINUX_LOADMAP_EXEC
;
6427 else if (strcmp (annex
, "interp") == 0)
6428 addr
= (int) LINUX_LOADMAP_INTERP
;
6432 if (ptrace (LINUX_LOADMAP
, pid
, addr
, &data
) != 0)
6438 actual_length
= sizeof (struct target_loadmap
)
6439 + sizeof (struct target_loadseg
) * data
->nsegs
;
6441 if (offset
< 0 || offset
> actual_length
)
6444 copy_length
= actual_length
- offset
< len
? actual_length
- offset
: len
;
6445 memcpy (myaddr
, (char *) data
+ offset
, copy_length
);
6449 # define linux_read_loadmap NULL
6450 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6453 linux_process_qsupported (char **features
, int count
)
6455 if (the_low_target
.process_qsupported
!= NULL
)
6456 the_low_target
.process_qsupported (features
, count
);
6460 linux_supports_catch_syscall (void)
6462 return (the_low_target
.get_syscall_trapinfo
!= NULL
6463 && linux_supports_tracesysgood ());
6467 linux_get_ipa_tdesc_idx (void)
6469 if (the_low_target
.get_ipa_tdesc_idx
== NULL
)
6472 return (*the_low_target
.get_ipa_tdesc_idx
) ();
6476 linux_supports_tracepoints (void)
6478 if (*the_low_target
.supports_tracepoints
== NULL
)
6481 return (*the_low_target
.supports_tracepoints
) ();
6485 linux_read_pc (struct regcache
*regcache
)
6487 if (the_low_target
.get_pc
== NULL
)
6490 return (*the_low_target
.get_pc
) (regcache
);
6494 linux_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
6496 gdb_assert (the_low_target
.set_pc
!= NULL
);
6498 (*the_low_target
.set_pc
) (regcache
, pc
);
6502 linux_thread_stopped (struct thread_info
*thread
)
6504 return get_thread_lwp (thread
)->stopped
;
6507 /* This exposes stop-all-threads functionality to other modules. */
6510 linux_pause_all (int freeze
)
6512 stop_all_lwps (freeze
, NULL
);
6515 /* This exposes unstop-all-threads functionality to other gdbserver
6519 linux_unpause_all (int unfreeze
)
6521 unstop_all_lwps (unfreeze
, NULL
);
6525 linux_process_target::prepare_to_access_memory ()
6527 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6530 linux_pause_all (1);
6535 linux_process_target::done_accessing_memory ()
6537 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6540 linux_unpause_all (1);
6544 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint
, CORE_ADDR tpaddr
,
6545 CORE_ADDR collector
,
6548 CORE_ADDR
*jump_entry
,
6549 CORE_ADDR
*trampoline
,
6550 ULONGEST
*trampoline_size
,
6551 unsigned char *jjump_pad_insn
,
6552 ULONGEST
*jjump_pad_insn_size
,
6553 CORE_ADDR
*adjusted_insn_addr
,
6554 CORE_ADDR
*adjusted_insn_addr_end
,
6557 return (*the_low_target
.install_fast_tracepoint_jump_pad
)
6558 (tpoint
, tpaddr
, collector
, lockaddr
, orig_size
,
6559 jump_entry
, trampoline
, trampoline_size
,
6560 jjump_pad_insn
, jjump_pad_insn_size
,
6561 adjusted_insn_addr
, adjusted_insn_addr_end
,
6565 static struct emit_ops
*
6566 linux_emit_ops (void)
6568 if (the_low_target
.emit_ops
!= NULL
)
6569 return (*the_low_target
.emit_ops
) ();
6575 linux_get_min_fast_tracepoint_insn_len (void)
6577 return (*the_low_target
.get_min_fast_tracepoint_insn_len
) ();
6580 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6583 get_phdr_phnum_from_proc_auxv (const int pid
, const int is_elf64
,
6584 CORE_ADDR
*phdr_memaddr
, int *num_phdr
)
6586 char filename
[PATH_MAX
];
6588 const int auxv_size
= is_elf64
6589 ? sizeof (Elf64_auxv_t
) : sizeof (Elf32_auxv_t
);
6590 char buf
[sizeof (Elf64_auxv_t
)]; /* The larger of the two. */
6592 xsnprintf (filename
, sizeof filename
, "/proc/%d/auxv", pid
);
6594 fd
= open (filename
, O_RDONLY
);
6600 while (read (fd
, buf
, auxv_size
) == auxv_size
6601 && (*phdr_memaddr
== 0 || *num_phdr
== 0))
6605 Elf64_auxv_t
*const aux
= (Elf64_auxv_t
*) buf
;
6607 switch (aux
->a_type
)
6610 *phdr_memaddr
= aux
->a_un
.a_val
;
6613 *num_phdr
= aux
->a_un
.a_val
;
6619 Elf32_auxv_t
*const aux
= (Elf32_auxv_t
*) buf
;
6621 switch (aux
->a_type
)
6624 *phdr_memaddr
= aux
->a_un
.a_val
;
6627 *num_phdr
= aux
->a_un
.a_val
;
6635 if (*phdr_memaddr
== 0 || *num_phdr
== 0)
6637 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6638 "phdr_memaddr = %ld, phdr_num = %d",
6639 (long) *phdr_memaddr
, *num_phdr
);
6646 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6649 get_dynamic (const int pid
, const int is_elf64
)
6651 CORE_ADDR phdr_memaddr
, relocation
;
6653 unsigned char *phdr_buf
;
6654 const int phdr_size
= is_elf64
? sizeof (Elf64_Phdr
) : sizeof (Elf32_Phdr
);
6656 if (get_phdr_phnum_from_proc_auxv (pid
, is_elf64
, &phdr_memaddr
, &num_phdr
))
6659 gdb_assert (num_phdr
< 100); /* Basic sanity check. */
6660 phdr_buf
= (unsigned char *) alloca (num_phdr
* phdr_size
);
6662 if (linux_read_memory (phdr_memaddr
, phdr_buf
, num_phdr
* phdr_size
))
6665 /* Compute relocation: it is expected to be 0 for "regular" executables,
6666 non-zero for PIE ones. */
6668 for (i
= 0; relocation
== -1 && i
< num_phdr
; i
++)
6671 Elf64_Phdr
*const p
= (Elf64_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6673 if (p
->p_type
== PT_PHDR
)
6674 relocation
= phdr_memaddr
- p
->p_vaddr
;
6678 Elf32_Phdr
*const p
= (Elf32_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6680 if (p
->p_type
== PT_PHDR
)
6681 relocation
= phdr_memaddr
- p
->p_vaddr
;
6684 if (relocation
== -1)
6686 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6687 any real world executables, including PIE executables, have always
6688 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6689 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6690 or present DT_DEBUG anyway (fpc binaries are statically linked).
6692 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6694 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6699 for (i
= 0; i
< num_phdr
; i
++)
6703 Elf64_Phdr
*const p
= (Elf64_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6705 if (p
->p_type
== PT_DYNAMIC
)
6706 return p
->p_vaddr
+ relocation
;
6710 Elf32_Phdr
*const p
= (Elf32_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6712 if (p
->p_type
== PT_DYNAMIC
)
6713 return p
->p_vaddr
+ relocation
;
6720 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6721 can be 0 if the inferior does not yet have the library list initialized.
6722 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6723 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6726 get_r_debug (const int pid
, const int is_elf64
)
6728 CORE_ADDR dynamic_memaddr
;
6729 const int dyn_size
= is_elf64
? sizeof (Elf64_Dyn
) : sizeof (Elf32_Dyn
);
6730 unsigned char buf
[sizeof (Elf64_Dyn
)]; /* The larger of the two. */
6733 dynamic_memaddr
= get_dynamic (pid
, is_elf64
);
6734 if (dynamic_memaddr
== 0)
6737 while (linux_read_memory (dynamic_memaddr
, buf
, dyn_size
) == 0)
6741 Elf64_Dyn
*const dyn
= (Elf64_Dyn
*) buf
;
6742 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6746 unsigned char buf
[sizeof (Elf64_Xword
)];
6750 #ifdef DT_MIPS_RLD_MAP
6751 if (dyn
->d_tag
== DT_MIPS_RLD_MAP
)
6753 if (linux_read_memory (dyn
->d_un
.d_val
,
6754 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6759 #endif /* DT_MIPS_RLD_MAP */
6760 #ifdef DT_MIPS_RLD_MAP_REL
6761 if (dyn
->d_tag
== DT_MIPS_RLD_MAP_REL
)
6763 if (linux_read_memory (dyn
->d_un
.d_val
+ dynamic_memaddr
,
6764 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6769 #endif /* DT_MIPS_RLD_MAP_REL */
6771 if (dyn
->d_tag
== DT_DEBUG
&& map
== -1)
6772 map
= dyn
->d_un
.d_val
;
6774 if (dyn
->d_tag
== DT_NULL
)
6779 Elf32_Dyn
*const dyn
= (Elf32_Dyn
*) buf
;
6780 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6784 unsigned char buf
[sizeof (Elf32_Word
)];
6788 #ifdef DT_MIPS_RLD_MAP
6789 if (dyn
->d_tag
== DT_MIPS_RLD_MAP
)
6791 if (linux_read_memory (dyn
->d_un
.d_val
,
6792 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6797 #endif /* DT_MIPS_RLD_MAP */
6798 #ifdef DT_MIPS_RLD_MAP_REL
6799 if (dyn
->d_tag
== DT_MIPS_RLD_MAP_REL
)
6801 if (linux_read_memory (dyn
->d_un
.d_val
+ dynamic_memaddr
,
6802 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6807 #endif /* DT_MIPS_RLD_MAP_REL */
6809 if (dyn
->d_tag
== DT_DEBUG
&& map
== -1)
6810 map
= dyn
->d_un
.d_val
;
6812 if (dyn
->d_tag
== DT_NULL
)
6816 dynamic_memaddr
+= dyn_size
;
6822 /* Read one pointer from MEMADDR in the inferior. */
6825 read_one_ptr (CORE_ADDR memaddr
, CORE_ADDR
*ptr
, int ptr_size
)
6829 /* Go through a union so this works on either big or little endian
6830 hosts, when the inferior's pointer size is smaller than the size
6831 of CORE_ADDR. It is assumed the inferior's endianness is the
6832 same of the superior's. */
6835 CORE_ADDR core_addr
;
6840 ret
= linux_read_memory (memaddr
, &addr
.uc
, ptr_size
);
6843 if (ptr_size
== sizeof (CORE_ADDR
))
6844 *ptr
= addr
.core_addr
;
6845 else if (ptr_size
== sizeof (unsigned int))
6848 gdb_assert_not_reached ("unhandled pointer size");
6853 struct link_map_offsets
6855 /* Offset and size of r_debug.r_version. */
6856 int r_version_offset
;
6858 /* Offset and size of r_debug.r_map. */
6861 /* Offset to l_addr field in struct link_map. */
6864 /* Offset to l_name field in struct link_map. */
6867 /* Offset to l_ld field in struct link_map. */
6870 /* Offset to l_next field in struct link_map. */
6873 /* Offset to l_prev field in struct link_map. */
6877 /* Construct qXfer:libraries-svr4:read reply. */
6880 linux_qxfer_libraries_svr4 (const char *annex
, unsigned char *readbuf
,
6881 unsigned const char *writebuf
,
6882 CORE_ADDR offset
, int len
)
6884 struct process_info_private
*const priv
= current_process ()->priv
;
6885 char filename
[PATH_MAX
];
6888 static const struct link_map_offsets lmo_32bit_offsets
=
6890 0, /* r_version offset. */
6891 4, /* r_debug.r_map offset. */
6892 0, /* l_addr offset in link_map. */
6893 4, /* l_name offset in link_map. */
6894 8, /* l_ld offset in link_map. */
6895 12, /* l_next offset in link_map. */
6896 16 /* l_prev offset in link_map. */
6899 static const struct link_map_offsets lmo_64bit_offsets
=
6901 0, /* r_version offset. */
6902 8, /* r_debug.r_map offset. */
6903 0, /* l_addr offset in link_map. */
6904 8, /* l_name offset in link_map. */
6905 16, /* l_ld offset in link_map. */
6906 24, /* l_next offset in link_map. */
6907 32 /* l_prev offset in link_map. */
6909 const struct link_map_offsets
*lmo
;
6910 unsigned int machine
;
6912 CORE_ADDR lm_addr
= 0, lm_prev
= 0;
6913 CORE_ADDR l_name
, l_addr
, l_ld
, l_next
, l_prev
;
6914 int header_done
= 0;
6916 if (writebuf
!= NULL
)
6918 if (readbuf
== NULL
)
6921 pid
= lwpid_of (current_thread
);
6922 xsnprintf (filename
, sizeof filename
, "/proc/%d/exe", pid
);
6923 is_elf64
= elf_64_file_p (filename
, &machine
);
6924 lmo
= is_elf64
? &lmo_64bit_offsets
: &lmo_32bit_offsets
;
6925 ptr_size
= is_elf64
? 8 : 4;
6927 while (annex
[0] != '\0')
6933 sep
= strchr (annex
, '=');
6937 name_len
= sep
- annex
;
6938 if (name_len
== 5 && startswith (annex
, "start"))
6940 else if (name_len
== 4 && startswith (annex
, "prev"))
6944 annex
= strchr (sep
, ';');
6951 annex
= decode_address_to_semicolon (addrp
, sep
+ 1);
6958 if (priv
->r_debug
== 0)
6959 priv
->r_debug
= get_r_debug (pid
, is_elf64
);
6961 /* We failed to find DT_DEBUG. Such situation will not change
6962 for this inferior - do not retry it. Report it to GDB as
6963 E01, see for the reasons at the GDB solib-svr4.c side. */
6964 if (priv
->r_debug
== (CORE_ADDR
) -1)
6967 if (priv
->r_debug
!= 0)
6969 if (linux_read_memory (priv
->r_debug
+ lmo
->r_version_offset
,
6970 (unsigned char *) &r_version
,
6971 sizeof (r_version
)) != 0
6974 warning ("unexpected r_debug version %d", r_version
);
6976 else if (read_one_ptr (priv
->r_debug
+ lmo
->r_map_offset
,
6977 &lm_addr
, ptr_size
) != 0)
6979 warning ("unable to read r_map from 0x%lx",
6980 (long) priv
->r_debug
+ lmo
->r_map_offset
);
6985 std::string document
= "<library-list-svr4 version=\"1.0\"";
6988 && read_one_ptr (lm_addr
+ lmo
->l_name_offset
,
6989 &l_name
, ptr_size
) == 0
6990 && read_one_ptr (lm_addr
+ lmo
->l_addr_offset
,
6991 &l_addr
, ptr_size
) == 0
6992 && read_one_ptr (lm_addr
+ lmo
->l_ld_offset
,
6993 &l_ld
, ptr_size
) == 0
6994 && read_one_ptr (lm_addr
+ lmo
->l_prev_offset
,
6995 &l_prev
, ptr_size
) == 0
6996 && read_one_ptr (lm_addr
+ lmo
->l_next_offset
,
6997 &l_next
, ptr_size
) == 0)
6999 unsigned char libname
[PATH_MAX
];
7001 if (lm_prev
!= l_prev
)
7003 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7004 (long) lm_prev
, (long) l_prev
);
7008 /* Ignore the first entry even if it has valid name as the first entry
7009 corresponds to the main executable. The first entry should not be
7010 skipped if the dynamic loader was loaded late by a static executable
7011 (see solib-svr4.c parameter ignore_first). But in such case the main
7012 executable does not have PT_DYNAMIC present and this function already
7013 exited above due to failed get_r_debug. */
7015 string_appendf (document
, " main-lm=\"0x%lx\"", (unsigned long) lm_addr
);
7018 /* Not checking for error because reading may stop before
7019 we've got PATH_MAX worth of characters. */
7021 linux_read_memory (l_name
, libname
, sizeof (libname
) - 1);
7022 libname
[sizeof (libname
) - 1] = '\0';
7023 if (libname
[0] != '\0')
7027 /* Terminate `<library-list-svr4'. */
7032 string_appendf (document
, "<library name=\"");
7033 xml_escape_text_append (&document
, (char *) libname
);
7034 string_appendf (document
, "\" lm=\"0x%lx\" "
7035 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7036 (unsigned long) lm_addr
, (unsigned long) l_addr
,
7037 (unsigned long) l_ld
);
7047 /* Empty list; terminate `<library-list-svr4'. */
7051 document
+= "</library-list-svr4>";
7053 int document_len
= document
.length ();
7054 if (offset
< document_len
)
7055 document_len
-= offset
;
7058 if (len
> document_len
)
7061 memcpy (readbuf
, document
.data () + offset
, len
);
7066 #ifdef HAVE_LINUX_BTRACE
7068 /* See to_disable_btrace target method. */
7071 linux_low_disable_btrace (struct btrace_target_info
*tinfo
)
7073 enum btrace_error err
;
7075 err
= linux_disable_btrace (tinfo
);
7076 return (err
== BTRACE_ERR_NONE
? 0 : -1);
7079 /* Encode an Intel Processor Trace configuration. */
7082 linux_low_encode_pt_config (struct buffer
*buffer
,
7083 const struct btrace_data_pt_config
*config
)
7085 buffer_grow_str (buffer
, "<pt-config>\n");
7087 switch (config
->cpu
.vendor
)
7090 buffer_xml_printf (buffer
, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7091 "model=\"%u\" stepping=\"%u\"/>\n",
7092 config
->cpu
.family
, config
->cpu
.model
,
7093 config
->cpu
.stepping
);
7100 buffer_grow_str (buffer
, "</pt-config>\n");
7103 /* Encode a raw buffer. */
7106 linux_low_encode_raw (struct buffer
*buffer
, const gdb_byte
*data
,
7112 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7113 buffer_grow_str (buffer
, "<raw>\n");
7119 elem
[0] = tohex ((*data
>> 4) & 0xf);
7120 elem
[1] = tohex (*data
++ & 0xf);
7122 buffer_grow (buffer
, elem
, 2);
7125 buffer_grow_str (buffer
, "</raw>\n");
7128 /* See to_read_btrace target method. */
7131 linux_low_read_btrace (struct btrace_target_info
*tinfo
, struct buffer
*buffer
,
7132 enum btrace_read_type type
)
7134 struct btrace_data btrace
;
7135 enum btrace_error err
;
7137 err
= linux_read_btrace (&btrace
, tinfo
, type
);
7138 if (err
!= BTRACE_ERR_NONE
)
7140 if (err
== BTRACE_ERR_OVERFLOW
)
7141 buffer_grow_str0 (buffer
, "E.Overflow.");
7143 buffer_grow_str0 (buffer
, "E.Generic Error.");
7148 switch (btrace
.format
)
7150 case BTRACE_FORMAT_NONE
:
7151 buffer_grow_str0 (buffer
, "E.No Trace.");
7154 case BTRACE_FORMAT_BTS
:
7155 buffer_grow_str (buffer
, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7156 buffer_grow_str (buffer
, "<btrace version=\"1.0\">\n");
7158 for (const btrace_block
&block
: *btrace
.variant
.bts
.blocks
)
7159 buffer_xml_printf (buffer
, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7160 paddress (block
.begin
), paddress (block
.end
));
7162 buffer_grow_str0 (buffer
, "</btrace>\n");
7165 case BTRACE_FORMAT_PT
:
7166 buffer_grow_str (buffer
, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7167 buffer_grow_str (buffer
, "<btrace version=\"1.0\">\n");
7168 buffer_grow_str (buffer
, "<pt>\n");
7170 linux_low_encode_pt_config (buffer
, &btrace
.variant
.pt
.config
);
7172 linux_low_encode_raw (buffer
, btrace
.variant
.pt
.data
,
7173 btrace
.variant
.pt
.size
);
7175 buffer_grow_str (buffer
, "</pt>\n");
7176 buffer_grow_str0 (buffer
, "</btrace>\n");
7180 buffer_grow_str0 (buffer
, "E.Unsupported Trace Format.");
7187 /* See to_btrace_conf target method. */
7190 linux_low_btrace_conf (const struct btrace_target_info
*tinfo
,
7191 struct buffer
*buffer
)
7193 const struct btrace_config
*conf
;
7195 buffer_grow_str (buffer
, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7196 buffer_grow_str (buffer
, "<btrace-conf version=\"1.0\">\n");
7198 conf
= linux_btrace_conf (tinfo
);
7201 switch (conf
->format
)
7203 case BTRACE_FORMAT_NONE
:
7206 case BTRACE_FORMAT_BTS
:
7207 buffer_xml_printf (buffer
, "<bts");
7208 buffer_xml_printf (buffer
, " size=\"0x%x\"", conf
->bts
.size
);
7209 buffer_xml_printf (buffer
, " />\n");
7212 case BTRACE_FORMAT_PT
:
7213 buffer_xml_printf (buffer
, "<pt");
7214 buffer_xml_printf (buffer
, " size=\"0x%x\"", conf
->pt
.size
);
7215 buffer_xml_printf (buffer
, "/>\n");
7220 buffer_grow_str0 (buffer
, "</btrace-conf>\n");
7223 #endif /* HAVE_LINUX_BTRACE */
7225 /* See nat/linux-nat.h. */
7228 current_lwp_ptid (void)
7230 return ptid_of (current_thread
);
7233 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7236 linux_breakpoint_kind_from_pc (CORE_ADDR
*pcptr
)
7238 if (the_low_target
.breakpoint_kind_from_pc
!= NULL
)
7239 return (*the_low_target
.breakpoint_kind_from_pc
) (pcptr
);
7241 return default_breakpoint_kind_from_pc (pcptr
);
7244 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7246 static const gdb_byte
*
7247 linux_sw_breakpoint_from_kind (int kind
, int *size
)
7249 gdb_assert (the_low_target
.sw_breakpoint_from_kind
!= NULL
);
7251 return (*the_low_target
.sw_breakpoint_from_kind
) (kind
, size
);
7254 /* Implementation of the target_ops method
7255 "breakpoint_kind_from_current_state". */
7258 linux_breakpoint_kind_from_current_state (CORE_ADDR
*pcptr
)
7260 if (the_low_target
.breakpoint_kind_from_current_state
!= NULL
)
7261 return (*the_low_target
.breakpoint_kind_from_current_state
) (pcptr
);
7263 return linux_breakpoint_kind_from_pc (pcptr
);
7266 /* Default implementation of linux_target_ops method "set_pc" for
7267 32-bit pc register which is literally named "pc". */
7270 linux_set_pc_32bit (struct regcache
*regcache
, CORE_ADDR pc
)
7272 uint32_t newpc
= pc
;
7274 supply_register_by_name (regcache
, "pc", &newpc
);
7277 /* Default implementation of linux_target_ops method "get_pc" for
7278 32-bit pc register which is literally named "pc". */
7281 linux_get_pc_32bit (struct regcache
*regcache
)
7285 collect_register_by_name (regcache
, "pc", &pc
);
7287 debug_printf ("stop pc is 0x%" PRIx32
"\n", pc
);
7291 /* Default implementation of linux_target_ops method "set_pc" for
7292 64-bit pc register which is literally named "pc". */
7295 linux_set_pc_64bit (struct regcache
*regcache
, CORE_ADDR pc
)
7297 uint64_t newpc
= pc
;
7299 supply_register_by_name (regcache
, "pc", &newpc
);
7302 /* Default implementation of linux_target_ops method "get_pc" for
7303 64-bit pc register which is literally named "pc". */
7306 linux_get_pc_64bit (struct regcache
*regcache
)
7310 collect_register_by_name (regcache
, "pc", &pc
);
7312 debug_printf ("stop pc is 0x%" PRIx64
"\n", pc
);
7316 /* See linux-low.h. */
7319 linux_get_auxv (int wordsize
, CORE_ADDR match
, CORE_ADDR
*valp
)
7321 gdb_byte
*data
= (gdb_byte
*) alloca (2 * wordsize
);
7324 gdb_assert (wordsize
== 4 || wordsize
== 8);
7326 while (the_target
->pt
->read_auxv (offset
, data
, 2 * wordsize
) == 2 * wordsize
)
7330 uint32_t *data_p
= (uint32_t *) data
;
7331 if (data_p
[0] == match
)
7339 uint64_t *data_p
= (uint64_t *) data
;
7340 if (data_p
[0] == match
)
7347 offset
+= 2 * wordsize
;
7353 /* See linux-low.h. */
7356 linux_get_hwcap (int wordsize
)
7358 CORE_ADDR hwcap
= 0;
7359 linux_get_auxv (wordsize
, AT_HWCAP
, &hwcap
);
7363 /* See linux-low.h. */
7366 linux_get_hwcap2 (int wordsize
)
7368 CORE_ADDR hwcap2
= 0;
7369 linux_get_auxv (wordsize
, AT_HWCAP2
, &hwcap2
);
7373 /* The linux target ops object. */
7375 static linux_process_target the_linux_target
;
7377 static process_stratum_target linux_target_ops
= {
7378 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7379 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7380 && defined(PT_TEXT_END_ADDR)
7385 #ifdef USE_THREAD_DB
7386 thread_db_get_tls_address
,
7390 hostio_last_error_from_errno
,
7393 linux_supports_non_stop
,
7395 linux_start_non_stop
,
7396 linux_supports_multi_process
,
7397 linux_supports_fork_events
,
7398 linux_supports_vfork_events
,
7399 linux_supports_exec_events
,
7400 linux_handle_new_gdb_connection
,
7401 #ifdef USE_THREAD_DB
7402 thread_db_handle_monitor_command
,
7406 linux_common_core_of_thread
,
7408 linux_process_qsupported
,
7409 linux_supports_tracepoints
,
7412 linux_thread_stopped
,
7416 linux_stabilize_threads
,
7417 linux_install_fast_tracepoint_jump_pad
,
7419 linux_supports_disable_randomization
,
7420 linux_get_min_fast_tracepoint_insn_len
,
7421 linux_qxfer_libraries_svr4
,
7422 linux_supports_agent
,
7423 #ifdef HAVE_LINUX_BTRACE
7424 linux_enable_btrace
,
7425 linux_low_disable_btrace
,
7426 linux_low_read_btrace
,
7427 linux_low_btrace_conf
,
7434 linux_supports_range_stepping
,
7435 linux_proc_pid_to_exec_file
,
7436 linux_mntns_open_cloexec
,
7438 linux_mntns_readlink
,
7439 linux_breakpoint_kind_from_pc
,
7440 linux_sw_breakpoint_from_kind
,
7441 linux_proc_tid_get_name
,
7442 linux_breakpoint_kind_from_current_state
,
7443 linux_supports_software_single_step
,
7444 linux_supports_catch_syscall
,
7445 linux_get_ipa_tdesc_idx
,
7447 thread_db_thread_handle
,
7454 #ifdef HAVE_LINUX_REGSETS
7456 initialize_regsets_info (struct regsets_info
*info
)
7458 for (info
->num_regsets
= 0;
7459 info
->regsets
[info
->num_regsets
].size
>= 0;
7460 info
->num_regsets
++)
7466 initialize_low (void)
7468 struct sigaction sigchld_action
;
7470 memset (&sigchld_action
, 0, sizeof (sigchld_action
));
7471 set_target_ops (&linux_target_ops
);
7473 linux_ptrace_init_warnings ();
7474 linux_proc_init_warnings ();
7476 sigchld_action
.sa_handler
= sigchld_handler
;
7477 sigemptyset (&sigchld_action
.sa_mask
);
7478 sigchld_action
.sa_flags
= SA_RESTART
;
7479 sigaction (SIGCHLD
, &sigchld_action
, NULL
);
7481 initialize_low_arch ();
7483 linux_check_ptrace_features ();