1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
4 This file is part of GDB.
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
34 #include <sys/ioctl.h>
37 #include <sys/syscall.h>
41 #include <sys/types.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
49 #include "gdbsupport/common-inferior.h"
50 #include "nat/fork-inferior.h"
51 #include "gdbsupport/environ.h"
52 #include "gdbsupport/gdb-sigmask.h"
53 #include "gdbsupport/scoped_restore.h"
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
61 #include "nat/linux-namespaces.h"
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #define PT_TEXT_ADDR 220
92 #define PT_TEXT_END_ADDR 224
93 #define PT_DATA_ADDR 228
94 /* These are still undefined in 3.10 kernels. */
95 #elif defined(__TMS320C6X__)
96 #define PT_TEXT_ADDR (0x10000*4)
97 #define PT_DATA_ADDR (0x10004*4)
98 #define PT_TEXT_END_ADDR (0x10008*4)
102 #if (defined(__UCLIBC__) \
103 && defined(HAS_NOMMU) \
104 && defined(PT_TEXT_ADDR) \
105 && defined(PT_DATA_ADDR) \
106 && defined(PT_TEXT_END_ADDR))
107 #define SUPPORTS_READ_OFFSETS
110 #ifdef HAVE_LINUX_BTRACE
111 # include "nat/linux-btrace.h"
112 # include "gdbsupport/btrace-common.h"
115 #ifndef HAVE_ELF32_AUXV_T
116 /* Copied from glibc's elf.h. */
119 uint32_t a_type
; /* Entry type */
122 uint32_t a_val
; /* Integer value */
123 /* We use to have pointer elements added here. We cannot do that,
124 though, since it does not work when using 32-bit definitions
125 on 64-bit platforms and vice versa. */
130 #ifndef HAVE_ELF64_AUXV_T
131 /* Copied from glibc's elf.h. */
134 uint64_t a_type
; /* Entry type */
137 uint64_t a_val
; /* Integer value */
138 /* We use to have pointer elements added here. We cannot do that,
139 though, since it does not work when using 32-bit definitions
140 on 64-bit platforms and vice versa. */
145 /* Does the current host support PTRACE_GETREGSET? */
146 int have_ptrace_getregset
= -1;
150 /* See nat/linux-nat.h. */
153 ptid_of_lwp (struct lwp_info
*lwp
)
155 return ptid_of (get_lwp_thread (lwp
));
158 /* See nat/linux-nat.h. */
161 lwp_set_arch_private_info (struct lwp_info
*lwp
,
162 struct arch_lwp_info
*info
)
164 lwp
->arch_private
= info
;
167 /* See nat/linux-nat.h. */
169 struct arch_lwp_info
*
170 lwp_arch_private_info (struct lwp_info
*lwp
)
172 return lwp
->arch_private
;
175 /* See nat/linux-nat.h. */
178 lwp_is_stopped (struct lwp_info
*lwp
)
183 /* See nat/linux-nat.h. */
185 enum target_stop_reason
186 lwp_stop_reason (struct lwp_info
*lwp
)
188 return lwp
->stop_reason
;
191 /* See nat/linux-nat.h. */
194 lwp_is_stepping (struct lwp_info
*lwp
)
196 return lwp
->stepping
;
199 /* A list of all unknown processes which receive stop signals. Some
200 other process will presumably claim each of these as forked
201 children momentarily. */
203 struct simple_pid_list
205 /* The process ID. */
208 /* The status as reported by waitpid. */
212 struct simple_pid_list
*next
;
214 struct simple_pid_list
*stopped_pids
;
216 /* Trivial list manipulation functions to keep track of a list of new
217 stopped processes. */
220 add_to_pid_list (struct simple_pid_list
**listp
, int pid
, int status
)
222 struct simple_pid_list
*new_pid
= XNEW (struct simple_pid_list
);
225 new_pid
->status
= status
;
226 new_pid
->next
= *listp
;
231 pull_pid_from_list (struct simple_pid_list
**listp
, int pid
, int *statusp
)
233 struct simple_pid_list
**p
;
235 for (p
= listp
; *p
!= NULL
; p
= &(*p
)->next
)
236 if ((*p
)->pid
== pid
)
238 struct simple_pid_list
*next
= (*p
)->next
;
240 *statusp
= (*p
)->status
;
248 enum stopping_threads_kind
250 /* Not stopping threads presently. */
251 NOT_STOPPING_THREADS
,
253 /* Stopping threads. */
256 /* Stopping and suspending threads. */
257 STOPPING_AND_SUSPENDING_THREADS
260 /* This is set while stop_all_lwps is in effect. */
261 enum stopping_threads_kind stopping_threads
= NOT_STOPPING_THREADS
;
263 /* FIXME make into a target method? */
264 int using_threads
= 1;
266 /* True if we're presently stabilizing threads (moving them out of
268 static int stabilizing_threads
;
270 static void linux_resume_one_lwp (struct lwp_info
*lwp
,
271 int step
, int signal
, siginfo_t
*info
);
272 static void stop_all_lwps (int suspend
, struct lwp_info
*except
);
273 static void unstop_all_lwps (int unsuspend
, struct lwp_info
*except
);
274 static void unsuspend_all_lwps (struct lwp_info
*except
);
275 static int linux_wait_for_event_filtered (ptid_t wait_ptid
, ptid_t filter_ptid
,
276 int *wstat
, int options
);
277 static int linux_wait_for_event (ptid_t ptid
, int *wstat
, int options
);
278 static struct lwp_info
*add_lwp (ptid_t ptid
);
279 static void mark_lwp_dead (struct lwp_info
*lwp
, int wstat
);
280 static int lwp_is_marked_dead (struct lwp_info
*lwp
);
281 static void proceed_all_lwps (void);
282 static int finish_step_over (struct lwp_info
*lwp
);
283 static int kill_lwp (unsigned long lwpid
, int signo
);
284 static void enqueue_pending_signal (struct lwp_info
*lwp
, int signal
, siginfo_t
*info
);
285 static void complete_ongoing_step_over (void);
286 static int linux_low_ptrace_options (int attached
);
287 static int check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
);
288 static void proceed_one_lwp (thread_info
*thread
, lwp_info
*except
);
290 /* When the event-loop is doing a step-over, this points at the thread
292 ptid_t step_over_bkpt
;
294 /* True if the low target can hardware single-step. */
297 can_hardware_single_step (void)
299 if (the_low_target
.supports_hardware_single_step
!= NULL
)
300 return the_low_target
.supports_hardware_single_step ();
305 /* True if the low target can software single-step. Such targets
306 implement the GET_NEXT_PCS callback. */
309 can_software_single_step (void)
311 return (the_low_target
.get_next_pcs
!= NULL
);
314 /* True if the low target supports memory breakpoints. If so, we'll
315 have a GET_PC implementation. */
318 supports_breakpoints (void)
320 return (the_low_target
.get_pc
!= NULL
);
323 /* Returns true if this target can support fast tracepoints. This
324 does not mean that the in-process agent has been loaded in the
328 supports_fast_tracepoints (void)
330 return the_low_target
.install_fast_tracepoint_jump_pad
!= NULL
;
333 /* True if LWP is stopped in its stepping range. */
336 lwp_in_step_range (struct lwp_info
*lwp
)
338 CORE_ADDR pc
= lwp
->stop_pc
;
340 return (pc
>= lwp
->step_range_start
&& pc
< lwp
->step_range_end
);
343 struct pending_signals
347 struct pending_signals
*prev
;
350 /* The read/write ends of the pipe registered as waitable file in the
352 static int linux_event_pipe
[2] = { -1, -1 };
354 /* True if we're currently in async mode. */
355 #define target_is_async_p() (linux_event_pipe[0] != -1)
357 static void send_sigstop (struct lwp_info
*lwp
);
358 static void wait_for_sigstop (void);
360 /* Return non-zero if HEADER is a 64-bit ELF file. */
363 elf_64_header_p (const Elf64_Ehdr
*header
, unsigned int *machine
)
365 if (header
->e_ident
[EI_MAG0
] == ELFMAG0
366 && header
->e_ident
[EI_MAG1
] == ELFMAG1
367 && header
->e_ident
[EI_MAG2
] == ELFMAG2
368 && header
->e_ident
[EI_MAG3
] == ELFMAG3
)
370 *machine
= header
->e_machine
;
371 return header
->e_ident
[EI_CLASS
] == ELFCLASS64
;
378 /* Return non-zero if FILE is a 64-bit ELF file,
379 zero if the file is not a 64-bit ELF file,
380 and -1 if the file is not accessible or doesn't exist. */
383 elf_64_file_p (const char *file
, unsigned int *machine
)
388 fd
= open (file
, O_RDONLY
);
392 if (read (fd
, &header
, sizeof (header
)) != sizeof (header
))
399 return elf_64_header_p (&header
, machine
);
402 /* Accepts an integer PID; Returns true if the executable PID is
403 running is a 64-bit ELF file.. */
406 linux_pid_exe_is_elf_64_file (int pid
, unsigned int *machine
)
410 sprintf (file
, "/proc/%d/exe", pid
);
411 return elf_64_file_p (file
, machine
);
415 delete_lwp (struct lwp_info
*lwp
)
417 struct thread_info
*thr
= get_lwp_thread (lwp
);
420 debug_printf ("deleting %ld\n", lwpid_of (thr
));
424 if (the_low_target
.delete_thread
!= NULL
)
425 the_low_target
.delete_thread (lwp
->arch_private
);
427 gdb_assert (lwp
->arch_private
== NULL
);
432 /* Add a process to the common process list, and set its private
435 static struct process_info
*
436 linux_add_process (int pid
, int attached
)
438 struct process_info
*proc
;
440 proc
= add_process (pid
, attached
);
441 proc
->priv
= XCNEW (struct process_info_private
);
443 if (the_low_target
.new_process
!= NULL
)
444 proc
->priv
->arch_private
= the_low_target
.new_process ();
449 static CORE_ADDR
get_pc (struct lwp_info
*lwp
);
451 /* Call the target arch_setup function on the current thread. */
454 linux_arch_setup (void)
456 the_low_target
.arch_setup ();
459 /* Call the target arch_setup function on THREAD. */
462 linux_arch_setup_thread (struct thread_info
*thread
)
464 struct thread_info
*saved_thread
;
466 saved_thread
= current_thread
;
467 current_thread
= thread
;
471 current_thread
= saved_thread
;
474 /* Handle a GNU/Linux extended wait response. If we see a clone,
475 fork, or vfork event, we need to add the new LWP to our list
476 (and return 0 so as not to report the trap to higher layers).
477 If we see an exec event, we will modify ORIG_EVENT_LWP to point
478 to a new LWP representing the new program. */
481 handle_extended_wait (struct lwp_info
**orig_event_lwp
, int wstat
)
483 client_state
&cs
= get_client_state ();
484 struct lwp_info
*event_lwp
= *orig_event_lwp
;
485 int event
= linux_ptrace_get_extended_event (wstat
);
486 struct thread_info
*event_thr
= get_lwp_thread (event_lwp
);
487 struct lwp_info
*new_lwp
;
489 gdb_assert (event_lwp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
);
491 /* All extended events we currently use are mid-syscall. Only
492 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
493 you have to be using PTRACE_SEIZE to get that. */
494 event_lwp
->syscall_state
= TARGET_WAITKIND_SYSCALL_ENTRY
;
496 if ((event
== PTRACE_EVENT_FORK
) || (event
== PTRACE_EVENT_VFORK
)
497 || (event
== PTRACE_EVENT_CLONE
))
500 unsigned long new_pid
;
503 /* Get the pid of the new lwp. */
504 ptrace (PTRACE_GETEVENTMSG
, lwpid_of (event_thr
), (PTRACE_TYPE_ARG3
) 0,
507 /* If we haven't already seen the new PID stop, wait for it now. */
508 if (!pull_pid_from_list (&stopped_pids
, new_pid
, &status
))
510 /* The new child has a pending SIGSTOP. We can't affect it until it
511 hits the SIGSTOP, but we're already attached. */
513 ret
= my_waitpid (new_pid
, &status
, __WALL
);
516 perror_with_name ("waiting for new child");
517 else if (ret
!= new_pid
)
518 warning ("wait returned unexpected PID %d", ret
);
519 else if (!WIFSTOPPED (status
))
520 warning ("wait returned unexpected status 0x%x", status
);
523 if (event
== PTRACE_EVENT_FORK
|| event
== PTRACE_EVENT_VFORK
)
525 struct process_info
*parent_proc
;
526 struct process_info
*child_proc
;
527 struct lwp_info
*child_lwp
;
528 struct thread_info
*child_thr
;
529 struct target_desc
*tdesc
;
531 ptid
= ptid_t (new_pid
, new_pid
, 0);
535 debug_printf ("HEW: Got fork event from LWP %ld, "
537 ptid_of (event_thr
).lwp (),
541 /* Add the new process to the tables and clone the breakpoint
542 lists of the parent. We need to do this even if the new process
543 will be detached, since we will need the process object and the
544 breakpoints to remove any breakpoints from memory when we
545 detach, and the client side will access registers. */
546 child_proc
= linux_add_process (new_pid
, 0);
547 gdb_assert (child_proc
!= NULL
);
548 child_lwp
= add_lwp (ptid
);
549 gdb_assert (child_lwp
!= NULL
);
550 child_lwp
->stopped
= 1;
551 child_lwp
->must_set_ptrace_flags
= 1;
552 child_lwp
->status_pending_p
= 0;
553 child_thr
= get_lwp_thread (child_lwp
);
554 child_thr
->last_resume_kind
= resume_stop
;
555 child_thr
->last_status
.kind
= TARGET_WAITKIND_STOPPED
;
557 /* If we're suspending all threads, leave this one suspended
558 too. If the fork/clone parent is stepping over a breakpoint,
559 all other threads have been suspended already. Leave the
560 child suspended too. */
561 if (stopping_threads
== STOPPING_AND_SUSPENDING_THREADS
562 || event_lwp
->bp_reinsert
!= 0)
565 debug_printf ("HEW: leaving child suspended\n");
566 child_lwp
->suspended
= 1;
569 parent_proc
= get_thread_process (event_thr
);
570 child_proc
->attached
= parent_proc
->attached
;
572 if (event_lwp
->bp_reinsert
!= 0
573 && can_software_single_step ()
574 && event
== PTRACE_EVENT_VFORK
)
576 /* If we leave single-step breakpoints there, child will
577 hit it, so uninsert single-step breakpoints from parent
578 (and child). Once vfork child is done, reinsert
579 them back to parent. */
580 uninsert_single_step_breakpoints (event_thr
);
583 clone_all_breakpoints (child_thr
, event_thr
);
585 tdesc
= allocate_target_description ();
586 copy_target_description (tdesc
, parent_proc
->tdesc
);
587 child_proc
->tdesc
= tdesc
;
589 /* Clone arch-specific process data. */
590 if (the_low_target
.new_fork
!= NULL
)
591 the_low_target
.new_fork (parent_proc
, child_proc
);
593 /* Save fork info in the parent thread. */
594 if (event
== PTRACE_EVENT_FORK
)
595 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_FORKED
;
596 else if (event
== PTRACE_EVENT_VFORK
)
597 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_VFORKED
;
599 event_lwp
->waitstatus
.value
.related_pid
= ptid
;
601 /* The status_pending field contains bits denoting the
602 extended event, so when the pending event is handled,
603 the handler will look at lwp->waitstatus. */
604 event_lwp
->status_pending_p
= 1;
605 event_lwp
->status_pending
= wstat
;
607 /* Link the threads until the parent event is passed on to
609 event_lwp
->fork_relative
= child_lwp
;
610 child_lwp
->fork_relative
= event_lwp
;
612 /* If the parent thread is doing step-over with single-step
613 breakpoints, the list of single-step breakpoints are cloned
614 from the parent's. Remove them from the child process.
615 In case of vfork, we'll reinsert them back once vforked
617 if (event_lwp
->bp_reinsert
!= 0
618 && can_software_single_step ())
620 /* The child process is forked and stopped, so it is safe
621 to access its memory without stopping all other threads
622 from other processes. */
623 delete_single_step_breakpoints (child_thr
);
625 gdb_assert (has_single_step_breakpoints (event_thr
));
626 gdb_assert (!has_single_step_breakpoints (child_thr
));
629 /* Report the event. */
634 debug_printf ("HEW: Got clone event "
635 "from LWP %ld, new child is LWP %ld\n",
636 lwpid_of (event_thr
), new_pid
);
638 ptid
= ptid_t (pid_of (event_thr
), new_pid
, 0);
639 new_lwp
= add_lwp (ptid
);
641 /* Either we're going to immediately resume the new thread
642 or leave it stopped. linux_resume_one_lwp is a nop if it
643 thinks the thread is currently running, so set this first
644 before calling linux_resume_one_lwp. */
645 new_lwp
->stopped
= 1;
647 /* If we're suspending all threads, leave this one suspended
648 too. If the fork/clone parent is stepping over a breakpoint,
649 all other threads have been suspended already. Leave the
650 child suspended too. */
651 if (stopping_threads
== STOPPING_AND_SUSPENDING_THREADS
652 || event_lwp
->bp_reinsert
!= 0)
653 new_lwp
->suspended
= 1;
655 /* Normally we will get the pending SIGSTOP. But in some cases
656 we might get another signal delivered to the group first.
657 If we do get another signal, be sure not to lose it. */
658 if (WSTOPSIG (status
) != SIGSTOP
)
660 new_lwp
->stop_expected
= 1;
661 new_lwp
->status_pending_p
= 1;
662 new_lwp
->status_pending
= status
;
664 else if (cs
.report_thread_events
)
666 new_lwp
->waitstatus
.kind
= TARGET_WAITKIND_THREAD_CREATED
;
667 new_lwp
->status_pending_p
= 1;
668 new_lwp
->status_pending
= status
;
672 thread_db_notice_clone (event_thr
, ptid
);
675 /* Don't report the event. */
678 else if (event
== PTRACE_EVENT_VFORK_DONE
)
680 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_VFORK_DONE
;
682 if (event_lwp
->bp_reinsert
!= 0 && can_software_single_step ())
684 reinsert_single_step_breakpoints (event_thr
);
686 gdb_assert (has_single_step_breakpoints (event_thr
));
689 /* Report the event. */
692 else if (event
== PTRACE_EVENT_EXEC
&& cs
.report_exec_events
)
694 struct process_info
*proc
;
695 std::vector
<int> syscalls_to_catch
;
701 debug_printf ("HEW: Got exec event from LWP %ld\n",
702 lwpid_of (event_thr
));
705 /* Get the event ptid. */
706 event_ptid
= ptid_of (event_thr
);
707 event_pid
= event_ptid
.pid ();
709 /* Save the syscall list from the execing process. */
710 proc
= get_thread_process (event_thr
);
711 syscalls_to_catch
= std::move (proc
->syscalls_to_catch
);
713 /* Delete the execing process and all its threads. */
714 the_target
->pt
->mourn (proc
);
715 current_thread
= NULL
;
717 /* Create a new process/lwp/thread. */
718 proc
= linux_add_process (event_pid
, 0);
719 event_lwp
= add_lwp (event_ptid
);
720 event_thr
= get_lwp_thread (event_lwp
);
721 gdb_assert (current_thread
== event_thr
);
722 linux_arch_setup_thread (event_thr
);
724 /* Set the event status. */
725 event_lwp
->waitstatus
.kind
= TARGET_WAITKIND_EXECD
;
726 event_lwp
->waitstatus
.value
.execd_pathname
727 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr
)));
729 /* Mark the exec status as pending. */
730 event_lwp
->stopped
= 1;
731 event_lwp
->status_pending_p
= 1;
732 event_lwp
->status_pending
= wstat
;
733 event_thr
->last_resume_kind
= resume_continue
;
734 event_thr
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
736 /* Update syscall state in the new lwp, effectively mid-syscall too. */
737 event_lwp
->syscall_state
= TARGET_WAITKIND_SYSCALL_ENTRY
;
739 /* Restore the list to catch. Don't rely on the client, which is free
740 to avoid sending a new list when the architecture doesn't change.
741 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
742 proc
->syscalls_to_catch
= std::move (syscalls_to_catch
);
744 /* Report the event. */
745 *orig_event_lwp
= event_lwp
;
749 internal_error (__FILE__
, __LINE__
, _("unknown ptrace event %d"), event
);
752 /* Return the PC as read from the regcache of LWP, without any
756 get_pc (struct lwp_info
*lwp
)
758 struct thread_info
*saved_thread
;
759 struct regcache
*regcache
;
762 if (the_low_target
.get_pc
== NULL
)
765 saved_thread
= current_thread
;
766 current_thread
= get_lwp_thread (lwp
);
768 regcache
= get_thread_regcache (current_thread
, 1);
769 pc
= (*the_low_target
.get_pc
) (regcache
);
772 debug_printf ("pc is 0x%lx\n", (long) pc
);
774 current_thread
= saved_thread
;
778 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
779 Fill *SYSNO with the syscall nr trapped. */
782 get_syscall_trapinfo (struct lwp_info
*lwp
, int *sysno
)
784 struct thread_info
*saved_thread
;
785 struct regcache
*regcache
;
787 if (the_low_target
.get_syscall_trapinfo
== NULL
)
789 /* If we cannot get the syscall trapinfo, report an unknown
790 system call number. */
791 *sysno
= UNKNOWN_SYSCALL
;
795 saved_thread
= current_thread
;
796 current_thread
= get_lwp_thread (lwp
);
798 regcache
= get_thread_regcache (current_thread
, 1);
799 (*the_low_target
.get_syscall_trapinfo
) (regcache
, sysno
);
802 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno
);
804 current_thread
= saved_thread
;
807 static int check_stopped_by_watchpoint (struct lwp_info
*child
);
809 /* Called when the LWP stopped for a signal/trap. If it stopped for a
810 trap check what caused it (breakpoint, watchpoint, trace, etc.),
811 and save the result in the LWP's stop_reason field. If it stopped
812 for a breakpoint, decrement the PC if necessary on the lwp's
813 architecture. Returns true if we now have the LWP's stop PC. */
816 save_stop_reason (struct lwp_info
*lwp
)
819 CORE_ADDR sw_breakpoint_pc
;
820 struct thread_info
*saved_thread
;
821 #if USE_SIGTRAP_SIGINFO
825 if (the_low_target
.get_pc
== NULL
)
829 sw_breakpoint_pc
= pc
- the_low_target
.decr_pc_after_break
;
831 /* breakpoint_at reads from the current thread. */
832 saved_thread
= current_thread
;
833 current_thread
= get_lwp_thread (lwp
);
835 #if USE_SIGTRAP_SIGINFO
836 if (ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
837 (PTRACE_TYPE_ARG3
) 0, &siginfo
) == 0)
839 if (siginfo
.si_signo
== SIGTRAP
)
841 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
)
842 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
844 /* The si_code is ambiguous on this arch -- check debug
846 if (!check_stopped_by_watchpoint (lwp
))
847 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
849 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo
.si_code
))
851 /* If we determine the LWP stopped for a SW breakpoint,
852 trust it. Particularly don't check watchpoint
853 registers, because at least on s390, we'd find
854 stopped-by-watchpoint as long as there's a watchpoint
856 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
858 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo
.si_code
))
860 /* This can indicate either a hardware breakpoint or
861 hardware watchpoint. Check debug registers. */
862 if (!check_stopped_by_watchpoint (lwp
))
863 lwp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
865 else if (siginfo
.si_code
== TRAP_TRACE
)
867 /* We may have single stepped an instruction that
868 triggered a watchpoint. In that case, on some
869 architectures (such as x86), instead of TRAP_HWBKPT,
870 si_code indicates TRAP_TRACE, and we need to check
871 the debug registers separately. */
872 if (!check_stopped_by_watchpoint (lwp
))
873 lwp
->stop_reason
= TARGET_STOPPED_BY_SINGLE_STEP
;
878 /* We may have just stepped a breakpoint instruction. E.g., in
879 non-stop mode, GDB first tells the thread A to step a range, and
880 then the user inserts a breakpoint inside the range. In that
881 case we need to report the breakpoint PC. */
882 if ((!lwp
->stepping
|| lwp
->stop_pc
== sw_breakpoint_pc
)
883 && (*the_low_target
.breakpoint_at
) (sw_breakpoint_pc
))
884 lwp
->stop_reason
= TARGET_STOPPED_BY_SW_BREAKPOINT
;
886 if (hardware_breakpoint_inserted_here (pc
))
887 lwp
->stop_reason
= TARGET_STOPPED_BY_HW_BREAKPOINT
;
889 if (lwp
->stop_reason
== TARGET_STOPPED_BY_NO_REASON
)
890 check_stopped_by_watchpoint (lwp
);
893 if (lwp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
)
897 struct thread_info
*thr
= get_lwp_thread (lwp
);
899 debug_printf ("CSBB: %s stopped by software breakpoint\n",
900 target_pid_to_str (ptid_of (thr
)));
903 /* Back up the PC if necessary. */
904 if (pc
!= sw_breakpoint_pc
)
906 struct regcache
*regcache
907 = get_thread_regcache (current_thread
, 1);
908 (*the_low_target
.set_pc
) (regcache
, sw_breakpoint_pc
);
911 /* Update this so we record the correct stop PC below. */
912 pc
= sw_breakpoint_pc
;
914 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
)
918 struct thread_info
*thr
= get_lwp_thread (lwp
);
920 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
921 target_pid_to_str (ptid_of (thr
)));
924 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
)
928 struct thread_info
*thr
= get_lwp_thread (lwp
);
930 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
931 target_pid_to_str (ptid_of (thr
)));
934 else if (lwp
->stop_reason
== TARGET_STOPPED_BY_SINGLE_STEP
)
938 struct thread_info
*thr
= get_lwp_thread (lwp
);
940 debug_printf ("CSBB: %s stopped by trace\n",
941 target_pid_to_str (ptid_of (thr
)));
946 current_thread
= saved_thread
;
950 static struct lwp_info
*
951 add_lwp (ptid_t ptid
)
953 struct lwp_info
*lwp
;
955 lwp
= XCNEW (struct lwp_info
);
957 lwp
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
959 lwp
->thread
= add_thread (ptid
, lwp
);
961 if (the_low_target
.new_thread
!= NULL
)
962 the_low_target
.new_thread (lwp
);
967 /* Callback to be used when calling fork_inferior, responsible for
968 actually initiating the tracing of the inferior. */
973 if (ptrace (PTRACE_TRACEME
, 0, (PTRACE_TYPE_ARG3
) 0,
974 (PTRACE_TYPE_ARG4
) 0) < 0)
975 trace_start_error_with_name ("ptrace");
977 if (setpgid (0, 0) < 0)
978 trace_start_error_with_name ("setpgid");
980 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
981 stdout to stderr so that inferior i/o doesn't corrupt the connection.
982 Also, redirect stdin to /dev/null. */
983 if (remote_connection_is_stdio ())
986 trace_start_error_with_name ("close");
987 if (open ("/dev/null", O_RDONLY
) < 0)
988 trace_start_error_with_name ("open");
990 trace_start_error_with_name ("dup2");
991 if (write (2, "stdin/stdout redirected\n",
992 sizeof ("stdin/stdout redirected\n") - 1) < 0)
994 /* Errors ignored. */;
999 /* Start an inferior process and returns its pid.
1000 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
1001 are its arguments. */
1004 linux_process_target::create_inferior (const char *program
,
1005 const std::vector
<char *> &program_args
)
1007 client_state
&cs
= get_client_state ();
1008 struct lwp_info
*new_lwp
;
1013 maybe_disable_address_space_randomization restore_personality
1014 (cs
.disable_randomization
);
1015 std::string str_program_args
= stringify_argv (program_args
);
1017 pid
= fork_inferior (program
,
1018 str_program_args
.c_str (),
1019 get_environ ()->envp (), linux_ptrace_fun
,
1020 NULL
, NULL
, NULL
, NULL
);
1023 linux_add_process (pid
, 0);
1025 ptid
= ptid_t (pid
, pid
, 0);
1026 new_lwp
= add_lwp (ptid
);
1027 new_lwp
->must_set_ptrace_flags
= 1;
1029 post_fork_inferior (pid
, program
);
1034 /* Implement the post_create_inferior target_ops method. */
1037 linux_process_target::post_create_inferior ()
1039 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
1041 linux_arch_setup ();
1043 if (lwp
->must_set_ptrace_flags
)
1045 struct process_info
*proc
= current_process ();
1046 int options
= linux_low_ptrace_options (proc
->attached
);
1048 linux_enable_event_reporting (lwpid_of (current_thread
), options
);
1049 lwp
->must_set_ptrace_flags
= 0;
1053 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1057 linux_attach_lwp (ptid_t ptid
)
1059 struct lwp_info
*new_lwp
;
1060 int lwpid
= ptid
.lwp ();
1062 if (ptrace (PTRACE_ATTACH
, lwpid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0)
1066 new_lwp
= add_lwp (ptid
);
1068 /* We need to wait for SIGSTOP before being able to make the next
1069 ptrace call on this LWP. */
1070 new_lwp
->must_set_ptrace_flags
= 1;
1072 if (linux_proc_pid_is_stopped (lwpid
))
1075 debug_printf ("Attached to a stopped process\n");
1077 /* The process is definitely stopped. It is in a job control
1078 stop, unless the kernel predates the TASK_STOPPED /
1079 TASK_TRACED distinction, in which case it might be in a
1080 ptrace stop. Make sure it is in a ptrace stop; from there we
1081 can kill it, signal it, et cetera.
1083 First make sure there is a pending SIGSTOP. Since we are
1084 already attached, the process can not transition from stopped
1085 to running without a PTRACE_CONT; so we know this signal will
1086 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1087 probably already in the queue (unless this kernel is old
1088 enough to use TASK_STOPPED for ptrace stops); but since
1089 SIGSTOP is not an RT signal, it can only be queued once. */
1090 kill_lwp (lwpid
, SIGSTOP
);
1092 /* Finally, resume the stopped process. This will deliver the
1093 SIGSTOP (or a higher priority signal, just like normal
1094 PTRACE_ATTACH), which we'll catch later on. */
1095 ptrace (PTRACE_CONT
, lwpid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0);
1098 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1099 brings it to a halt.
1101 There are several cases to consider here:
1103 1) gdbserver has already attached to the process and is being notified
1104 of a new thread that is being created.
1105 In this case we should ignore that SIGSTOP and resume the
1106 process. This is handled below by setting stop_expected = 1,
1107 and the fact that add_thread sets last_resume_kind ==
1110 2) This is the first thread (the process thread), and we're attaching
1111 to it via attach_inferior.
1112 In this case we want the process thread to stop.
1113 This is handled by having linux_attach set last_resume_kind ==
1114 resume_stop after we return.
1116 If the pid we are attaching to is also the tgid, we attach to and
1117 stop all the existing threads. Otherwise, we attach to pid and
1118 ignore any other threads in the same group as this pid.
1120 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1122 In this case we want the thread to stop.
1123 FIXME: This case is currently not properly handled.
1124 We should wait for the SIGSTOP but don't. Things work apparently
1125 because enough time passes between when we ptrace (ATTACH) and when
1126 gdb makes the next ptrace call on the thread.
1128 On the other hand, if we are currently trying to stop all threads, we
1129 should treat the new thread as if we had sent it a SIGSTOP. This works
1130 because we are guaranteed that the add_lwp call above added us to the
1131 end of the list, and so the new thread has not yet reached
1132 wait_for_sigstop (but will). */
1133 new_lwp
->stop_expected
= 1;
1138 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1139 already attached. Returns true if a new LWP is found, false
1143 attach_proc_task_lwp_callback (ptid_t ptid
)
1145 /* Is this a new thread? */
1146 if (find_thread_ptid (ptid
) == NULL
)
1148 int lwpid
= ptid
.lwp ();
1152 debug_printf ("Found new lwp %d\n", lwpid
);
1154 err
= linux_attach_lwp (ptid
);
1156 /* Be quiet if we simply raced with the thread exiting. EPERM
1157 is returned if the thread's task still exists, and is marked
1158 as exited or zombie, as well as other conditions, so in that
1159 case, confirm the status in /proc/PID/status. */
1161 || (err
== EPERM
&& linux_proc_pid_is_gone (lwpid
)))
1165 debug_printf ("Cannot attach to lwp %d: "
1166 "thread is gone (%d: %s)\n",
1167 lwpid
, err
, safe_strerror (err
));
1173 = linux_ptrace_attach_fail_reason_string (ptid
, err
);
1175 warning (_("Cannot attach to lwp %d: %s"), lwpid
, reason
.c_str ());
1183 static void async_file_mark (void);
1185 /* Attach to PID. If PID is the tgid, attach to it and all
1189 linux_process_target::attach (unsigned long pid
)
1191 struct process_info
*proc
;
1192 struct thread_info
*initial_thread
;
1193 ptid_t ptid
= ptid_t (pid
, pid
, 0);
1196 proc
= linux_add_process (pid
, 1);
1198 /* Attach to PID. We will check for other threads
1200 err
= linux_attach_lwp (ptid
);
1203 remove_process (proc
);
1205 std::string reason
= linux_ptrace_attach_fail_reason_string (ptid
, err
);
1206 error ("Cannot attach to process %ld: %s", pid
, reason
.c_str ());
1209 /* Don't ignore the initial SIGSTOP if we just attached to this
1210 process. It will be collected by wait shortly. */
1211 initial_thread
= find_thread_ptid (ptid_t (pid
, pid
, 0));
1212 initial_thread
->last_resume_kind
= resume_stop
;
1214 /* We must attach to every LWP. If /proc is mounted, use that to
1215 find them now. On the one hand, the inferior may be using raw
1216 clone instead of using pthreads. On the other hand, even if it
1217 is using pthreads, GDB may not be connected yet (thread_db needs
1218 to do symbol lookups, through qSymbol). Also, thread_db walks
1219 structures in the inferior's address space to find the list of
1220 threads/LWPs, and those structures may well be corrupted. Note
1221 that once thread_db is loaded, we'll still use it to list threads
1222 and associate pthread info with each LWP. */
1223 linux_proc_attach_tgid_threads (pid
, attach_proc_task_lwp_callback
);
1225 /* GDB will shortly read the xml target description for this
1226 process, to figure out the process' architecture. But the target
1227 description is only filled in when the first process/thread in
1228 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1229 that now, otherwise, if GDB is fast enough, it could read the
1230 target description _before_ that initial stop. */
1233 struct lwp_info
*lwp
;
1235 ptid_t pid_ptid
= ptid_t (pid
);
1237 lwpid
= linux_wait_for_event_filtered (pid_ptid
, pid_ptid
,
1239 gdb_assert (lwpid
> 0);
1241 lwp
= find_lwp_pid (ptid_t (lwpid
));
1243 if (!WIFSTOPPED (wstat
) || WSTOPSIG (wstat
) != SIGSTOP
)
1245 lwp
->status_pending_p
= 1;
1246 lwp
->status_pending
= wstat
;
1249 initial_thread
->last_resume_kind
= resume_continue
;
1253 gdb_assert (proc
->tdesc
!= NULL
);
1260 last_thread_of_process_p (int pid
)
1262 bool seen_one
= false;
1264 thread_info
*thread
= find_thread (pid
, [&] (thread_info
*thr_arg
)
1268 /* This is the first thread of this process we see. */
1274 /* This is the second thread of this process we see. */
1279 return thread
== NULL
;
1285 linux_kill_one_lwp (struct lwp_info
*lwp
)
1287 struct thread_info
*thr
= get_lwp_thread (lwp
);
1288 int pid
= lwpid_of (thr
);
1290 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1291 there is no signal context, and ptrace(PTRACE_KILL) (or
1292 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1293 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1294 alternative is to kill with SIGKILL. We only need one SIGKILL
1295 per process, not one for each thread. But since we still support
1296 support debugging programs using raw clone without CLONE_THREAD,
1297 we send one for each thread. For years, we used PTRACE_KILL
1298 only, so we're being a bit paranoid about some old kernels where
1299 PTRACE_KILL might work better (dubious if there are any such, but
1300 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1301 second, and so we're fine everywhere. */
1304 kill_lwp (pid
, SIGKILL
);
1307 int save_errno
= errno
;
1309 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1310 target_pid_to_str (ptid_of (thr
)),
1311 save_errno
? safe_strerror (save_errno
) : "OK");
1315 ptrace (PTRACE_KILL
, pid
, (PTRACE_TYPE_ARG3
) 0, (PTRACE_TYPE_ARG4
) 0);
1318 int save_errno
= errno
;
1320 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1321 target_pid_to_str (ptid_of (thr
)),
1322 save_errno
? safe_strerror (save_errno
) : "OK");
1326 /* Kill LWP and wait for it to die. */
1329 kill_wait_lwp (struct lwp_info
*lwp
)
1331 struct thread_info
*thr
= get_lwp_thread (lwp
);
1332 int pid
= ptid_of (thr
).pid ();
1333 int lwpid
= ptid_of (thr
).lwp ();
1338 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid
, pid
);
1342 linux_kill_one_lwp (lwp
);
1344 /* Make sure it died. Notes:
1346 - The loop is most likely unnecessary.
1348 - We don't use linux_wait_for_event as that could delete lwps
1349 while we're iterating over them. We're not interested in
1350 any pending status at this point, only in making sure all
1351 wait status on the kernel side are collected until the
1354 - We don't use __WALL here as the __WALL emulation relies on
1355 SIGCHLD, and killing a stopped process doesn't generate
1356 one, nor an exit status.
1358 res
= my_waitpid (lwpid
, &wstat
, 0);
1359 if (res
== -1 && errno
== ECHILD
)
1360 res
= my_waitpid (lwpid
, &wstat
, __WCLONE
);
1361 } while (res
> 0 && WIFSTOPPED (wstat
));
1363 /* Even if it was stopped, the child may have already disappeared.
1364 E.g., if it was killed by SIGKILL. */
1365 if (res
< 0 && errno
!= ECHILD
)
1366 perror_with_name ("kill_wait_lwp");
1369 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1370 except the leader. */
1373 kill_one_lwp_callback (thread_info
*thread
, int pid
)
1375 struct lwp_info
*lwp
= get_thread_lwp (thread
);
1377 /* We avoid killing the first thread here, because of a Linux kernel (at
1378 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1379 the children get a chance to be reaped, it will remain a zombie
1382 if (lwpid_of (thread
) == pid
)
1385 debug_printf ("lkop: is last of process %s\n",
1386 target_pid_to_str (thread
->id
));
1390 kill_wait_lwp (lwp
);
1394 linux_process_target::kill (process_info
*process
)
1396 int pid
= process
->pid
;
1398 /* If we're killing a running inferior, make sure it is stopped
1399 first, as PTRACE_KILL will not work otherwise. */
1400 stop_all_lwps (0, NULL
);
1402 for_each_thread (pid
, [&] (thread_info
*thread
)
1404 kill_one_lwp_callback (thread
, pid
);
1407 /* See the comment in linux_kill_one_lwp. We did not kill the first
1408 thread in the list, so do so now. */
1409 lwp_info
*lwp
= find_lwp_pid (ptid_t (pid
));
1414 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1418 kill_wait_lwp (lwp
);
1422 /* Since we presently can only stop all lwps of all processes, we
1423 need to unstop lwps of other processes. */
1424 unstop_all_lwps (0, NULL
);
1428 /* Get pending signal of THREAD, for detaching purposes. This is the
1429 signal the thread last stopped for, which we need to deliver to the
1430 thread when detaching, otherwise, it'd be suppressed/lost. */
1433 get_detach_signal (struct thread_info
*thread
)
1435 client_state
&cs
= get_client_state ();
1436 enum gdb_signal signo
= GDB_SIGNAL_0
;
1438 struct lwp_info
*lp
= get_thread_lwp (thread
);
1440 if (lp
->status_pending_p
)
1441 status
= lp
->status_pending
;
1444 /* If the thread had been suspended by gdbserver, and it stopped
1445 cleanly, then it'll have stopped with SIGSTOP. But we don't
1446 want to deliver that SIGSTOP. */
1447 if (thread
->last_status
.kind
!= TARGET_WAITKIND_STOPPED
1448 || thread
->last_status
.value
.sig
== GDB_SIGNAL_0
)
1451 /* Otherwise, we may need to deliver the signal we
1453 status
= lp
->last_status
;
1456 if (!WIFSTOPPED (status
))
1459 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1460 target_pid_to_str (ptid_of (thread
)));
1464 /* Extended wait statuses aren't real SIGTRAPs. */
1465 if (WSTOPSIG (status
) == SIGTRAP
&& linux_is_extended_waitstatus (status
))
1468 debug_printf ("GPS: lwp %s had stopped with extended "
1469 "status: no pending signal\n",
1470 target_pid_to_str (ptid_of (thread
)));
1474 signo
= gdb_signal_from_host (WSTOPSIG (status
));
1476 if (cs
.program_signals_p
&& !cs
.program_signals
[signo
])
1479 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1480 target_pid_to_str (ptid_of (thread
)),
1481 gdb_signal_to_string (signo
));
1484 else if (!cs
.program_signals_p
1485 /* If we have no way to know which signals GDB does not
1486 want to have passed to the program, assume
1487 SIGTRAP/SIGINT, which is GDB's default. */
1488 && (signo
== GDB_SIGNAL_TRAP
|| signo
== GDB_SIGNAL_INT
))
1491 debug_printf ("GPS: lwp %s had signal %s, "
1492 "but we don't know if we should pass it. "
1493 "Default to not.\n",
1494 target_pid_to_str (ptid_of (thread
)),
1495 gdb_signal_to_string (signo
));
1501 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1502 target_pid_to_str (ptid_of (thread
)),
1503 gdb_signal_to_string (signo
));
1505 return WSTOPSIG (status
);
1509 /* Detach from LWP. */
1512 linux_detach_one_lwp (struct lwp_info
*lwp
)
1514 struct thread_info
*thread
= get_lwp_thread (lwp
);
1518 /* If there is a pending SIGSTOP, get rid of it. */
1519 if (lwp
->stop_expected
)
1522 debug_printf ("Sending SIGCONT to %s\n",
1523 target_pid_to_str (ptid_of (thread
)));
1525 kill_lwp (lwpid_of (thread
), SIGCONT
);
1526 lwp
->stop_expected
= 0;
1529 /* Pass on any pending signal for this thread. */
1530 sig
= get_detach_signal (thread
);
1532 /* Preparing to resume may try to write registers, and fail if the
1533 lwp is zombie. If that happens, ignore the error. We'll handle
1534 it below, when detach fails with ESRCH. */
1537 /* Flush any pending changes to the process's registers. */
1538 regcache_invalidate_thread (thread
);
1540 /* Finally, let it resume. */
1541 if (the_low_target
.prepare_to_resume
!= NULL
)
1542 the_low_target
.prepare_to_resume (lwp
);
1544 catch (const gdb_exception_error
&ex
)
1546 if (!check_ptrace_stopped_lwp_gone (lwp
))
1550 lwpid
= lwpid_of (thread
);
1551 if (ptrace (PTRACE_DETACH
, lwpid
, (PTRACE_TYPE_ARG3
) 0,
1552 (PTRACE_TYPE_ARG4
) (long) sig
) < 0)
1554 int save_errno
= errno
;
1556 /* We know the thread exists, so ESRCH must mean the lwp is
1557 zombie. This can happen if one of the already-detached
1558 threads exits the whole thread group. In that case we're
1559 still attached, and must reap the lwp. */
1560 if (save_errno
== ESRCH
)
1564 ret
= my_waitpid (lwpid
, &status
, __WALL
);
1567 warning (_("Couldn't reap LWP %d while detaching: %s"),
1568 lwpid
, safe_strerror (errno
));
1570 else if (!WIFEXITED (status
) && !WIFSIGNALED (status
))
1572 warning (_("Reaping LWP %d while detaching "
1573 "returned unexpected status 0x%x"),
1579 error (_("Can't detach %s: %s"),
1580 target_pid_to_str (ptid_of (thread
)),
1581 safe_strerror (save_errno
));
1584 else if (debug_threads
)
1586 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1587 target_pid_to_str (ptid_of (thread
)),
1594 /* Callback for for_each_thread. Detaches from non-leader threads of a
1598 linux_detach_lwp_callback (thread_info
*thread
)
1600 /* We don't actually detach from the thread group leader just yet.
1601 If the thread group exits, we must reap the zombie clone lwps
1602 before we're able to reap the leader. */
1603 if (thread
->id
.pid () == thread
->id
.lwp ())
1606 lwp_info
*lwp
= get_thread_lwp (thread
);
1607 linux_detach_one_lwp (lwp
);
1611 linux_process_target::detach (process_info
*process
)
1613 struct lwp_info
*main_lwp
;
1615 /* As there's a step over already in progress, let it finish first,
1616 otherwise nesting a stabilize_threads operation on top gets real
1618 complete_ongoing_step_over ();
1620 /* Stop all threads before detaching. First, ptrace requires that
1621 the thread is stopped to successfully detach. Second, thread_db
1622 may need to uninstall thread event breakpoints from memory, which
1623 only works with a stopped process anyway. */
1624 stop_all_lwps (0, NULL
);
1626 #ifdef USE_THREAD_DB
1627 thread_db_detach (process
);
1630 /* Stabilize threads (move out of jump pads). */
1631 stabilize_threads ();
1633 /* Detach from the clone lwps first. If the thread group exits just
1634 while we're detaching, we must reap the clone lwps before we're
1635 able to reap the leader. */
1636 for_each_thread (process
->pid
, linux_detach_lwp_callback
);
1638 main_lwp
= find_lwp_pid (ptid_t (process
->pid
));
1639 linux_detach_one_lwp (main_lwp
);
1643 /* Since we presently can only stop all lwps of all processes, we
1644 need to unstop lwps of other processes. */
1645 unstop_all_lwps (0, NULL
);
1649 /* Remove all LWPs that belong to process PROC from the lwp list. */
1652 linux_process_target::mourn (process_info
*process
)
1654 struct process_info_private
*priv
;
1656 #ifdef USE_THREAD_DB
1657 thread_db_mourn (process
);
1660 for_each_thread (process
->pid
, [] (thread_info
*thread
)
1662 delete_lwp (get_thread_lwp (thread
));
1665 /* Freeing all private data. */
1666 priv
= process
->priv
;
1667 if (the_low_target
.delete_process
!= NULL
)
1668 the_low_target
.delete_process (priv
->arch_private
);
1670 gdb_assert (priv
->arch_private
== NULL
);
1672 process
->priv
= NULL
;
1674 remove_process (process
);
1678 linux_process_target::join (int pid
)
1683 ret
= my_waitpid (pid
, &status
, 0);
1684 if (WIFEXITED (status
) || WIFSIGNALED (status
))
1686 } while (ret
!= -1 || errno
!= ECHILD
);
1689 /* Return true if the given thread is still alive. */
1692 linux_process_target::thread_alive (ptid_t ptid
)
1694 struct lwp_info
*lwp
= find_lwp_pid (ptid
);
1696 /* We assume we always know if a thread exits. If a whole process
1697 exited but we still haven't been able to report it to GDB, we'll
1698 hold on to the last lwp of the dead process. */
1700 return !lwp_is_marked_dead (lwp
);
1705 /* Return 1 if this lwp still has an interesting status pending. If
1706 not (e.g., it had stopped for a breakpoint that is gone), return
1710 thread_still_has_status_pending_p (struct thread_info
*thread
)
1712 struct lwp_info
*lp
= get_thread_lwp (thread
);
1714 if (!lp
->status_pending_p
)
1717 if (thread
->last_resume_kind
!= resume_stop
1718 && (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
1719 || lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
))
1721 struct thread_info
*saved_thread
;
1725 gdb_assert (lp
->last_status
!= 0);
1729 saved_thread
= current_thread
;
1730 current_thread
= thread
;
1732 if (pc
!= lp
->stop_pc
)
1735 debug_printf ("PC of %ld changed\n",
1740 #if !USE_SIGTRAP_SIGINFO
1741 else if (lp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
1742 && !(*the_low_target
.breakpoint_at
) (pc
))
1745 debug_printf ("previous SW breakpoint of %ld gone\n",
1749 else if (lp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
1750 && !hardware_breakpoint_inserted_here (pc
))
1753 debug_printf ("previous HW breakpoint of %ld gone\n",
1759 current_thread
= saved_thread
;
1764 debug_printf ("discarding pending breakpoint status\n");
1765 lp
->status_pending_p
= 0;
1773 /* Returns true if LWP is resumed from the client's perspective. */
1776 lwp_resumed (struct lwp_info
*lwp
)
1778 struct thread_info
*thread
= get_lwp_thread (lwp
);
1780 if (thread
->last_resume_kind
!= resume_stop
)
1783 /* Did gdb send us a `vCont;t', but we haven't reported the
1784 corresponding stop to gdb yet? If so, the thread is still
1785 resumed/running from gdb's perspective. */
1786 if (thread
->last_resume_kind
== resume_stop
1787 && thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
)
1793 /* Return true if this lwp has an interesting status pending. */
1795 status_pending_p_callback (thread_info
*thread
, ptid_t ptid
)
1797 struct lwp_info
*lp
= get_thread_lwp (thread
);
1799 /* Check if we're only interested in events from a specific process
1800 or a specific LWP. */
1801 if (!thread
->id
.matches (ptid
))
1804 if (!lwp_resumed (lp
))
1807 if (lp
->status_pending_p
1808 && !thread_still_has_status_pending_p (thread
))
1810 linux_resume_one_lwp (lp
, lp
->stepping
, GDB_SIGNAL_0
, NULL
);
1814 return lp
->status_pending_p
;
1818 find_lwp_pid (ptid_t ptid
)
1820 thread_info
*thread
= find_thread ([&] (thread_info
*thr_arg
)
1822 int lwp
= ptid
.lwp () != 0 ? ptid
.lwp () : ptid
.pid ();
1823 return thr_arg
->id
.lwp () == lwp
;
1829 return get_thread_lwp (thread
);
1832 /* Return the number of known LWPs in the tgid given by PID. */
1839 for_each_thread (pid
, [&] (thread_info
*thread
)
1847 /* See nat/linux-nat.h. */
1850 iterate_over_lwps (ptid_t filter
,
1851 gdb::function_view
<iterate_over_lwps_ftype
> callback
)
1853 thread_info
*thread
= find_thread (filter
, [&] (thread_info
*thr_arg
)
1855 lwp_info
*lwp
= get_thread_lwp (thr_arg
);
1857 return callback (lwp
);
1863 return get_thread_lwp (thread
);
1866 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1867 their exits until all other threads in the group have exited. */
1870 check_zombie_leaders (void)
1872 for_each_process ([] (process_info
*proc
) {
1873 pid_t leader_pid
= pid_of (proc
);
1874 struct lwp_info
*leader_lp
;
1876 leader_lp
= find_lwp_pid (ptid_t (leader_pid
));
1879 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1880 "num_lwps=%d, zombie=%d\n",
1881 leader_pid
, leader_lp
!= NULL
, num_lwps (leader_pid
),
1882 linux_proc_pid_is_zombie (leader_pid
));
1884 if (leader_lp
!= NULL
&& !leader_lp
->stopped
1885 /* Check if there are other threads in the group, as we may
1886 have raced with the inferior simply exiting. */
1887 && !last_thread_of_process_p (leader_pid
)
1888 && linux_proc_pid_is_zombie (leader_pid
))
1890 /* A leader zombie can mean one of two things:
1892 - It exited, and there's an exit status pending
1893 available, or only the leader exited (not the whole
1894 program). In the latter case, we can't waitpid the
1895 leader's exit status until all other threads are gone.
1897 - There are 3 or more threads in the group, and a thread
1898 other than the leader exec'd. On an exec, the Linux
1899 kernel destroys all other threads (except the execing
1900 one) in the thread group, and resets the execing thread's
1901 tid to the tgid. No exit notification is sent for the
1902 execing thread -- from the ptracer's perspective, it
1903 appears as though the execing thread just vanishes.
1904 Until we reap all other threads except the leader and the
1905 execing thread, the leader will be zombie, and the
1906 execing thread will be in `D (disc sleep)'. As soon as
1907 all other threads are reaped, the execing thread changes
1908 it's tid to the tgid, and the previous (zombie) leader
1909 vanishes, giving place to the "new" leader. We could try
1910 distinguishing the exit and exec cases, by waiting once
1911 more, and seeing if something comes out, but it doesn't
1912 sound useful. The previous leader _does_ go away, and
1913 we'll re-add the new one once we see the exec event
1914 (which is just the same as what would happen if the
1915 previous leader did exit voluntarily before some other
1919 debug_printf ("CZL: Thread group leader %d zombie "
1920 "(it exited, or another thread execd).\n",
1923 delete_lwp (leader_lp
);
1928 /* Callback for `find_thread'. Returns the first LWP that is not
1932 not_stopped_callback (thread_info
*thread
, ptid_t filter
)
1934 if (!thread
->id
.matches (filter
))
1937 lwp_info
*lwp
= get_thread_lwp (thread
);
1939 return !lwp
->stopped
;
1942 /* Increment LWP's suspend count. */
1945 lwp_suspended_inc (struct lwp_info
*lwp
)
1949 if (debug_threads
&& lwp
->suspended
> 4)
1951 struct thread_info
*thread
= get_lwp_thread (lwp
);
1953 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1954 " suspended=%d\n", lwpid_of (thread
), lwp
->suspended
);
1958 /* Decrement LWP's suspend count. */
1961 lwp_suspended_decr (struct lwp_info
*lwp
)
1965 if (lwp
->suspended
< 0)
1967 struct thread_info
*thread
= get_lwp_thread (lwp
);
1969 internal_error (__FILE__
, __LINE__
,
1970 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread
),
1975 /* This function should only be called if the LWP got a SIGTRAP.
1977 Handle any tracepoint steps or hits. Return true if a tracepoint
1978 event was handled, 0 otherwise. */
1981 handle_tracepoints (struct lwp_info
*lwp
)
1983 struct thread_info
*tinfo
= get_lwp_thread (lwp
);
1984 int tpoint_related_event
= 0;
1986 gdb_assert (lwp
->suspended
== 0);
1988 /* If this tracepoint hit causes a tracing stop, we'll immediately
1989 uninsert tracepoints. To do this, we temporarily pause all
1990 threads, unpatch away, and then unpause threads. We need to make
1991 sure the unpausing doesn't resume LWP too. */
1992 lwp_suspended_inc (lwp
);
1994 /* And we need to be sure that any all-threads-stopping doesn't try
1995 to move threads out of the jump pads, as it could deadlock the
1996 inferior (LWP could be in the jump pad, maybe even holding the
1999 /* Do any necessary step collect actions. */
2000 tpoint_related_event
|= tracepoint_finished_step (tinfo
, lwp
->stop_pc
);
2002 tpoint_related_event
|= handle_tracepoint_bkpts (tinfo
, lwp
->stop_pc
);
2004 /* See if we just hit a tracepoint and do its main collect
2006 tpoint_related_event
|= tracepoint_was_hit (tinfo
, lwp
->stop_pc
);
2008 lwp_suspended_decr (lwp
);
2010 gdb_assert (lwp
->suspended
== 0);
2011 gdb_assert (!stabilizing_threads
2012 || (lwp
->collecting_fast_tracepoint
2013 != fast_tpoint_collect_result::not_collecting
));
2015 if (tpoint_related_event
)
2018 debug_printf ("got a tracepoint event\n");
2025 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2026 collection status. */
2028 static fast_tpoint_collect_result
2029 linux_fast_tracepoint_collecting (struct lwp_info
*lwp
,
2030 struct fast_tpoint_collect_status
*status
)
2032 CORE_ADDR thread_area
;
2033 struct thread_info
*thread
= get_lwp_thread (lwp
);
2035 if (the_low_target
.get_thread_area
== NULL
)
2036 return fast_tpoint_collect_result::not_collecting
;
2038 /* Get the thread area address. This is used to recognize which
2039 thread is which when tracing with the in-process agent library.
2040 We don't read anything from the address, and treat it as opaque;
2041 it's the address itself that we assume is unique per-thread. */
2042 if ((*the_low_target
.get_thread_area
) (lwpid_of (thread
), &thread_area
) == -1)
2043 return fast_tpoint_collect_result::not_collecting
;
2045 return fast_tracepoint_collecting (thread_area
, lwp
->stop_pc
, status
);
2048 /* The reason we resume in the caller, is because we want to be able
2049 to pass lwp->status_pending as WSTAT, and we need to clear
2050 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2051 refuses to resume. */
2054 maybe_move_out_of_jump_pad (struct lwp_info
*lwp
, int *wstat
)
2056 struct thread_info
*saved_thread
;
2058 saved_thread
= current_thread
;
2059 current_thread
= get_lwp_thread (lwp
);
2062 || (WIFSTOPPED (*wstat
) && WSTOPSIG (*wstat
) != SIGTRAP
))
2063 && supports_fast_tracepoints ()
2064 && agent_loaded_p ())
2066 struct fast_tpoint_collect_status status
;
2069 debug_printf ("Checking whether LWP %ld needs to move out of the "
2071 lwpid_of (current_thread
));
2073 fast_tpoint_collect_result r
2074 = linux_fast_tracepoint_collecting (lwp
, &status
);
2077 || (WSTOPSIG (*wstat
) != SIGILL
2078 && WSTOPSIG (*wstat
) != SIGFPE
2079 && WSTOPSIG (*wstat
) != SIGSEGV
2080 && WSTOPSIG (*wstat
) != SIGBUS
))
2082 lwp
->collecting_fast_tracepoint
= r
;
2084 if (r
!= fast_tpoint_collect_result::not_collecting
)
2086 if (r
== fast_tpoint_collect_result::before_insn
2087 && lwp
->exit_jump_pad_bkpt
== NULL
)
2089 /* Haven't executed the original instruction yet.
2090 Set breakpoint there, and wait till it's hit,
2091 then single-step until exiting the jump pad. */
2092 lwp
->exit_jump_pad_bkpt
2093 = set_breakpoint_at (status
.adjusted_insn_addr
, NULL
);
2097 debug_printf ("Checking whether LWP %ld needs to move out of "
2098 "the jump pad...it does\n",
2099 lwpid_of (current_thread
));
2100 current_thread
= saved_thread
;
2107 /* If we get a synchronous signal while collecting, *and*
2108 while executing the (relocated) original instruction,
2109 reset the PC to point at the tpoint address, before
2110 reporting to GDB. Otherwise, it's an IPA lib bug: just
2111 report the signal to GDB, and pray for the best. */
2113 lwp
->collecting_fast_tracepoint
2114 = fast_tpoint_collect_result::not_collecting
;
2116 if (r
!= fast_tpoint_collect_result::not_collecting
2117 && (status
.adjusted_insn_addr
<= lwp
->stop_pc
2118 && lwp
->stop_pc
< status
.adjusted_insn_addr_end
))
2121 struct regcache
*regcache
;
2123 /* The si_addr on a few signals references the address
2124 of the faulting instruction. Adjust that as
2126 if ((WSTOPSIG (*wstat
) == SIGILL
2127 || WSTOPSIG (*wstat
) == SIGFPE
2128 || WSTOPSIG (*wstat
) == SIGBUS
2129 || WSTOPSIG (*wstat
) == SIGSEGV
)
2130 && ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
2131 (PTRACE_TYPE_ARG3
) 0, &info
) == 0
2132 /* Final check just to make sure we don't clobber
2133 the siginfo of non-kernel-sent signals. */
2134 && (uintptr_t) info
.si_addr
== lwp
->stop_pc
)
2136 info
.si_addr
= (void *) (uintptr_t) status
.tpoint_addr
;
2137 ptrace (PTRACE_SETSIGINFO
, lwpid_of (current_thread
),
2138 (PTRACE_TYPE_ARG3
) 0, &info
);
2141 regcache
= get_thread_regcache (current_thread
, 1);
2142 (*the_low_target
.set_pc
) (regcache
, status
.tpoint_addr
);
2143 lwp
->stop_pc
= status
.tpoint_addr
;
2145 /* Cancel any fast tracepoint lock this thread was
2147 force_unlock_trace_buffer ();
2150 if (lwp
->exit_jump_pad_bkpt
!= NULL
)
2153 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2154 "stopping all threads momentarily.\n");
2156 stop_all_lwps (1, lwp
);
2158 delete_breakpoint (lwp
->exit_jump_pad_bkpt
);
2159 lwp
->exit_jump_pad_bkpt
= NULL
;
2161 unstop_all_lwps (1, lwp
);
2163 gdb_assert (lwp
->suspended
>= 0);
2169 debug_printf ("Checking whether LWP %ld needs to move out of the "
2171 lwpid_of (current_thread
));
2173 current_thread
= saved_thread
;
2177 /* Enqueue one signal in the "signals to report later when out of the
2181 enqueue_one_deferred_signal (struct lwp_info
*lwp
, int *wstat
)
2183 struct pending_signals
*p_sig
;
2184 struct thread_info
*thread
= get_lwp_thread (lwp
);
2187 debug_printf ("Deferring signal %d for LWP %ld.\n",
2188 WSTOPSIG (*wstat
), lwpid_of (thread
));
2192 struct pending_signals
*sig
;
2194 for (sig
= lwp
->pending_signals_to_report
;
2197 debug_printf (" Already queued %d\n",
2200 debug_printf (" (no more currently queued signals)\n");
2203 /* Don't enqueue non-RT signals if they are already in the deferred
2204 queue. (SIGSTOP being the easiest signal to see ending up here
2206 if (WSTOPSIG (*wstat
) < __SIGRTMIN
)
2208 struct pending_signals
*sig
;
2210 for (sig
= lwp
->pending_signals_to_report
;
2214 if (sig
->signal
== WSTOPSIG (*wstat
))
2217 debug_printf ("Not requeuing already queued non-RT signal %d"
2226 p_sig
= XCNEW (struct pending_signals
);
2227 p_sig
->prev
= lwp
->pending_signals_to_report
;
2228 p_sig
->signal
= WSTOPSIG (*wstat
);
2230 ptrace (PTRACE_GETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
2233 lwp
->pending_signals_to_report
= p_sig
;
2236 /* Dequeue one signal from the "signals to report later when out of
2237 the jump pad" list. */
2240 dequeue_one_deferred_signal (struct lwp_info
*lwp
, int *wstat
)
2242 struct thread_info
*thread
= get_lwp_thread (lwp
);
2244 if (lwp
->pending_signals_to_report
!= NULL
)
2246 struct pending_signals
**p_sig
;
2248 p_sig
= &lwp
->pending_signals_to_report
;
2249 while ((*p_sig
)->prev
!= NULL
)
2250 p_sig
= &(*p_sig
)->prev
;
2252 *wstat
= W_STOPCODE ((*p_sig
)->signal
);
2253 if ((*p_sig
)->info
.si_signo
!= 0)
2254 ptrace (PTRACE_SETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
2260 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2261 WSTOPSIG (*wstat
), lwpid_of (thread
));
2265 struct pending_signals
*sig
;
2267 for (sig
= lwp
->pending_signals_to_report
;
2270 debug_printf (" Still queued %d\n",
2273 debug_printf (" (no more queued signals)\n");
2282 /* Fetch the possibly triggered data watchpoint info and store it in
2285 On some archs, like x86, that use debug registers to set
2286 watchpoints, it's possible that the way to know which watched
2287 address trapped, is to check the register that is used to select
2288 which address to watch. Problem is, between setting the watchpoint
2289 and reading back which data address trapped, the user may change
2290 the set of watchpoints, and, as a consequence, GDB changes the
2291 debug registers in the inferior. To avoid reading back a stale
2292 stopped-data-address when that happens, we cache in LP the fact
2293 that a watchpoint trapped, and the corresponding data address, as
2294 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2295 registers meanwhile, we have the cached data we can rely on. */
2298 check_stopped_by_watchpoint (struct lwp_info
*child
)
2300 if (the_low_target
.stopped_by_watchpoint
!= NULL
)
2302 struct thread_info
*saved_thread
;
2304 saved_thread
= current_thread
;
2305 current_thread
= get_lwp_thread (child
);
2307 if (the_low_target
.stopped_by_watchpoint ())
2309 child
->stop_reason
= TARGET_STOPPED_BY_WATCHPOINT
;
2311 if (the_low_target
.stopped_data_address
!= NULL
)
2312 child
->stopped_data_address
2313 = the_low_target
.stopped_data_address ();
2315 child
->stopped_data_address
= 0;
2318 current_thread
= saved_thread
;
2321 return child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
2324 /* Return the ptrace options that we want to try to enable. */
2327 linux_low_ptrace_options (int attached
)
2329 client_state
&cs
= get_client_state ();
2333 options
|= PTRACE_O_EXITKILL
;
2335 if (cs
.report_fork_events
)
2336 options
|= PTRACE_O_TRACEFORK
;
2338 if (cs
.report_vfork_events
)
2339 options
|= (PTRACE_O_TRACEVFORK
| PTRACE_O_TRACEVFORKDONE
);
2341 if (cs
.report_exec_events
)
2342 options
|= PTRACE_O_TRACEEXEC
;
2344 options
|= PTRACE_O_TRACESYSGOOD
;
2349 /* Do low-level handling of the event, and check if we should go on
2350 and pass it to caller code. Return the affected lwp if we are, or
2353 static struct lwp_info
*
2354 linux_low_filter_event (int lwpid
, int wstat
)
2356 client_state
&cs
= get_client_state ();
2357 struct lwp_info
*child
;
2358 struct thread_info
*thread
;
2359 int have_stop_pc
= 0;
2361 child
= find_lwp_pid (ptid_t (lwpid
));
2363 /* Check for stop events reported by a process we didn't already
2364 know about - anything not already in our LWP list.
2366 If we're expecting to receive stopped processes after
2367 fork, vfork, and clone events, then we'll just add the
2368 new one to our list and go back to waiting for the event
2369 to be reported - the stopped process might be returned
2370 from waitpid before or after the event is.
2372 But note the case of a non-leader thread exec'ing after the
2373 leader having exited, and gone from our lists (because
2374 check_zombie_leaders deleted it). The non-leader thread
2375 changes its tid to the tgid. */
2377 if (WIFSTOPPED (wstat
) && child
== NULL
&& WSTOPSIG (wstat
) == SIGTRAP
2378 && linux_ptrace_get_extended_event (wstat
) == PTRACE_EVENT_EXEC
)
2382 /* A multi-thread exec after we had seen the leader exiting. */
2385 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2386 "after exec.\n", lwpid
);
2389 child_ptid
= ptid_t (lwpid
, lwpid
, 0);
2390 child
= add_lwp (child_ptid
);
2392 current_thread
= child
->thread
;
2395 /* If we didn't find a process, one of two things presumably happened:
2396 - A process we started and then detached from has exited. Ignore it.
2397 - A process we are controlling has forked and the new child's stop
2398 was reported to us by the kernel. Save its PID. */
2399 if (child
== NULL
&& WIFSTOPPED (wstat
))
2401 add_to_pid_list (&stopped_pids
, lwpid
, wstat
);
2404 else if (child
== NULL
)
2407 thread
= get_lwp_thread (child
);
2411 child
->last_status
= wstat
;
2413 /* Check if the thread has exited. */
2414 if ((WIFEXITED (wstat
) || WIFSIGNALED (wstat
)))
2417 debug_printf ("LLFE: %d exited.\n", lwpid
);
2419 if (finish_step_over (child
))
2421 /* Unsuspend all other LWPs, and set them back running again. */
2422 unsuspend_all_lwps (child
);
2425 /* If there is at least one more LWP, then the exit signal was
2426 not the end of the debugged application and should be
2427 ignored, unless GDB wants to hear about thread exits. */
2428 if (cs
.report_thread_events
2429 || last_thread_of_process_p (pid_of (thread
)))
2431 /* Since events are serialized to GDB core, and we can't
2432 report this one right now. Leave the status pending for
2433 the next time we're able to report it. */
2434 mark_lwp_dead (child
, wstat
);
2444 gdb_assert (WIFSTOPPED (wstat
));
2446 if (WIFSTOPPED (wstat
))
2448 struct process_info
*proc
;
2450 /* Architecture-specific setup after inferior is running. */
2451 proc
= find_process_pid (pid_of (thread
));
2452 if (proc
->tdesc
== NULL
)
2456 /* This needs to happen after we have attached to the
2457 inferior and it is stopped for the first time, but
2458 before we access any inferior registers. */
2459 linux_arch_setup_thread (thread
);
2463 /* The process is started, but GDBserver will do
2464 architecture-specific setup after the program stops at
2465 the first instruction. */
2466 child
->status_pending_p
= 1;
2467 child
->status_pending
= wstat
;
2473 if (WIFSTOPPED (wstat
) && child
->must_set_ptrace_flags
)
2475 struct process_info
*proc
= find_process_pid (pid_of (thread
));
2476 int options
= linux_low_ptrace_options (proc
->attached
);
2478 linux_enable_event_reporting (lwpid
, options
);
2479 child
->must_set_ptrace_flags
= 0;
2482 /* Always update syscall_state, even if it will be filtered later. */
2483 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SYSCALL_SIGTRAP
)
2485 child
->syscall_state
2486 = (child
->syscall_state
== TARGET_WAITKIND_SYSCALL_ENTRY
2487 ? TARGET_WAITKIND_SYSCALL_RETURN
2488 : TARGET_WAITKIND_SYSCALL_ENTRY
);
2492 /* Almost all other ptrace-stops are known to be outside of system
2493 calls, with further exceptions in handle_extended_wait. */
2494 child
->syscall_state
= TARGET_WAITKIND_IGNORE
;
2497 /* Be careful to not overwrite stop_pc until save_stop_reason is
2499 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SIGTRAP
2500 && linux_is_extended_waitstatus (wstat
))
2502 child
->stop_pc
= get_pc (child
);
2503 if (handle_extended_wait (&child
, wstat
))
2505 /* The event has been handled, so just return without
2511 if (linux_wstatus_maybe_breakpoint (wstat
))
2513 if (save_stop_reason (child
))
2518 child
->stop_pc
= get_pc (child
);
2520 if (WIFSTOPPED (wstat
) && WSTOPSIG (wstat
) == SIGSTOP
2521 && child
->stop_expected
)
2524 debug_printf ("Expected stop.\n");
2525 child
->stop_expected
= 0;
2527 if (thread
->last_resume_kind
== resume_stop
)
2529 /* We want to report the stop to the core. Treat the
2530 SIGSTOP as a normal event. */
2532 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2533 target_pid_to_str (ptid_of (thread
)));
2535 else if (stopping_threads
!= NOT_STOPPING_THREADS
)
2537 /* Stopping threads. We don't want this SIGSTOP to end up
2540 debug_printf ("LLW: SIGSTOP caught for %s "
2541 "while stopping threads.\n",
2542 target_pid_to_str (ptid_of (thread
)));
2547 /* This is a delayed SIGSTOP. Filter out the event. */
2549 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2550 child
->stepping
? "step" : "continue",
2551 target_pid_to_str (ptid_of (thread
)));
2553 linux_resume_one_lwp (child
, child
->stepping
, 0, NULL
);
2558 child
->status_pending_p
= 1;
2559 child
->status_pending
= wstat
;
2563 /* Return true if THREAD is doing hardware single step. */
2566 maybe_hw_step (struct thread_info
*thread
)
2568 if (can_hardware_single_step ())
2572 /* GDBserver must insert single-step breakpoint for software
2574 gdb_assert (has_single_step_breakpoints (thread
));
2579 /* Resume LWPs that are currently stopped without any pending status
2580 to report, but are resumed from the core's perspective. */
2583 resume_stopped_resumed_lwps (thread_info
*thread
)
2585 struct lwp_info
*lp
= get_thread_lwp (thread
);
2589 && !lp
->status_pending_p
2590 && thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
)
2594 if (thread
->last_resume_kind
== resume_step
)
2595 step
= maybe_hw_step (thread
);
2598 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2599 target_pid_to_str (ptid_of (thread
)),
2600 paddress (lp
->stop_pc
),
2603 linux_resume_one_lwp (lp
, step
, GDB_SIGNAL_0
, NULL
);
2607 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2608 match FILTER_PTID (leaving others pending). The PTIDs can be:
2609 minus_one_ptid, to specify any child; a pid PTID, specifying all
2610 lwps of a thread group; or a PTID representing a single lwp. Store
2611 the stop status through the status pointer WSTAT. OPTIONS is
2612 passed to the waitpid call. Return 0 if no event was found and
2613 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2614 was found. Return the PID of the stopped child otherwise. */
2617 linux_wait_for_event_filtered (ptid_t wait_ptid
, ptid_t filter_ptid
,
2618 int *wstatp
, int options
)
2620 struct thread_info
*event_thread
;
2621 struct lwp_info
*event_child
, *requested_child
;
2622 sigset_t block_mask
, prev_mask
;
2625 /* N.B. event_thread points to the thread_info struct that contains
2626 event_child. Keep them in sync. */
2627 event_thread
= NULL
;
2629 requested_child
= NULL
;
2631 /* Check for a lwp with a pending status. */
2633 if (filter_ptid
== minus_one_ptid
|| filter_ptid
.is_pid ())
2635 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2637 return status_pending_p_callback (thread
, filter_ptid
);
2640 if (event_thread
!= NULL
)
2641 event_child
= get_thread_lwp (event_thread
);
2642 if (debug_threads
&& event_thread
)
2643 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread
));
2645 else if (filter_ptid
!= null_ptid
)
2647 requested_child
= find_lwp_pid (filter_ptid
);
2649 if (stopping_threads
== NOT_STOPPING_THREADS
2650 && requested_child
->status_pending_p
2651 && (requested_child
->collecting_fast_tracepoint
2652 != fast_tpoint_collect_result::not_collecting
))
2654 enqueue_one_deferred_signal (requested_child
,
2655 &requested_child
->status_pending
);
2656 requested_child
->status_pending_p
= 0;
2657 requested_child
->status_pending
= 0;
2658 linux_resume_one_lwp (requested_child
, 0, 0, NULL
);
2661 if (requested_child
->suspended
2662 && requested_child
->status_pending_p
)
2664 internal_error (__FILE__
, __LINE__
,
2665 "requesting an event out of a"
2666 " suspended child?");
2669 if (requested_child
->status_pending_p
)
2671 event_child
= requested_child
;
2672 event_thread
= get_lwp_thread (event_child
);
2676 if (event_child
!= NULL
)
2679 debug_printf ("Got an event from pending child %ld (%04x)\n",
2680 lwpid_of (event_thread
), event_child
->status_pending
);
2681 *wstatp
= event_child
->status_pending
;
2682 event_child
->status_pending_p
= 0;
2683 event_child
->status_pending
= 0;
2684 current_thread
= event_thread
;
2685 return lwpid_of (event_thread
);
2688 /* But if we don't find a pending event, we'll have to wait.
2690 We only enter this loop if no process has a pending wait status.
2691 Thus any action taken in response to a wait status inside this
2692 loop is responding as soon as we detect the status, not after any
2695 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2696 all signals while here. */
2697 sigfillset (&block_mask
);
2698 gdb_sigmask (SIG_BLOCK
, &block_mask
, &prev_mask
);
2700 /* Always pull all events out of the kernel. We'll randomly select
2701 an event LWP out of all that have events, to prevent
2703 while (event_child
== NULL
)
2707 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2710 - If the thread group leader exits while other threads in the
2711 thread group still exist, waitpid(TGID, ...) hangs. That
2712 waitpid won't return an exit status until the other threads
2713 in the group are reaped.
2715 - When a non-leader thread execs, that thread just vanishes
2716 without reporting an exit (so we'd hang if we waited for it
2717 explicitly in that case). The exec event is reported to
2720 ret
= my_waitpid (-1, wstatp
, options
| WNOHANG
);
2723 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2724 ret
, errno
? safe_strerror (errno
) : "ERRNO-OK");
2730 debug_printf ("LLW: waitpid %ld received %s\n",
2731 (long) ret
, status_to_str (*wstatp
));
2734 /* Filter all events. IOW, leave all events pending. We'll
2735 randomly select an event LWP out of all that have events
2737 linux_low_filter_event (ret
, *wstatp
);
2738 /* Retry until nothing comes out of waitpid. A single
2739 SIGCHLD can indicate more than one child stopped. */
2743 /* Now that we've pulled all events out of the kernel, resume
2744 LWPs that don't have an interesting event to report. */
2745 if (stopping_threads
== NOT_STOPPING_THREADS
)
2746 for_each_thread (resume_stopped_resumed_lwps
);
2748 /* ... and find an LWP with a status to report to the core, if
2750 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2752 return status_pending_p_callback (thread
, filter_ptid
);
2755 if (event_thread
!= NULL
)
2757 event_child
= get_thread_lwp (event_thread
);
2758 *wstatp
= event_child
->status_pending
;
2759 event_child
->status_pending_p
= 0;
2760 event_child
->status_pending
= 0;
2764 /* Check for zombie thread group leaders. Those can't be reaped
2765 until all other threads in the thread group are. */
2766 check_zombie_leaders ();
2768 auto not_stopped
= [&] (thread_info
*thread
)
2770 return not_stopped_callback (thread
, wait_ptid
);
2773 /* If there are no resumed children left in the set of LWPs we
2774 want to wait for, bail. We can't just block in
2775 waitpid/sigsuspend, because lwps might have been left stopped
2776 in trace-stop state, and we'd be stuck forever waiting for
2777 their status to change (which would only happen if we resumed
2778 them). Even if WNOHANG is set, this return code is preferred
2779 over 0 (below), as it is more detailed. */
2780 if (find_thread (not_stopped
) == NULL
)
2783 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2784 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2788 /* No interesting event to report to the caller. */
2789 if ((options
& WNOHANG
))
2792 debug_printf ("WNOHANG set, no event found\n");
2794 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2798 /* Block until we get an event reported with SIGCHLD. */
2800 debug_printf ("sigsuspend'ing\n");
2802 sigsuspend (&prev_mask
);
2803 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2807 gdb_sigmask (SIG_SETMASK
, &prev_mask
, NULL
);
2809 current_thread
= event_thread
;
2811 return lwpid_of (event_thread
);
2814 /* Wait for an event from child(ren) PTID. PTIDs can be:
2815 minus_one_ptid, to specify any child; a pid PTID, specifying all
2816 lwps of a thread group; or a PTID representing a single lwp. Store
2817 the stop status through the status pointer WSTAT. OPTIONS is
2818 passed to the waitpid call. Return 0 if no event was found and
2819 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2820 was found. Return the PID of the stopped child otherwise. */
2823 linux_wait_for_event (ptid_t ptid
, int *wstatp
, int options
)
2825 return linux_wait_for_event_filtered (ptid
, ptid
, wstatp
, options
);
2828 /* Select one LWP out of those that have events pending. */
2831 select_event_lwp (struct lwp_info
**orig_lp
)
2833 struct thread_info
*event_thread
= NULL
;
2835 /* In all-stop, give preference to the LWP that is being
2836 single-stepped. There will be at most one, and it's the LWP that
2837 the core is most interested in. If we didn't do this, then we'd
2838 have to handle pending step SIGTRAPs somehow in case the core
2839 later continues the previously-stepped thread, otherwise we'd
2840 report the pending SIGTRAP, and the core, not having stepped the
2841 thread, wouldn't understand what the trap was for, and therefore
2842 would report it to the user as a random signal. */
2845 event_thread
= find_thread ([] (thread_info
*thread
)
2847 lwp_info
*lp
= get_thread_lwp (thread
);
2849 return (thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
2850 && thread
->last_resume_kind
== resume_step
2851 && lp
->status_pending_p
);
2854 if (event_thread
!= NULL
)
2857 debug_printf ("SEL: Select single-step %s\n",
2858 target_pid_to_str (ptid_of (event_thread
)));
2861 if (event_thread
== NULL
)
2863 /* No single-stepping LWP. Select one at random, out of those
2864 which have had events. */
2866 event_thread
= find_thread_in_random ([&] (thread_info
*thread
)
2868 lwp_info
*lp
= get_thread_lwp (thread
);
2870 /* Only resumed LWPs that have an event pending. */
2871 return (thread
->last_status
.kind
== TARGET_WAITKIND_IGNORE
2872 && lp
->status_pending_p
);
2876 if (event_thread
!= NULL
)
2878 struct lwp_info
*event_lp
= get_thread_lwp (event_thread
);
2880 /* Switch the event LWP. */
2881 *orig_lp
= event_lp
;
2885 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2889 unsuspend_all_lwps (struct lwp_info
*except
)
2891 for_each_thread ([&] (thread_info
*thread
)
2893 lwp_info
*lwp
= get_thread_lwp (thread
);
2896 lwp_suspended_decr (lwp
);
2900 static void move_out_of_jump_pad_callback (thread_info
*thread
);
2901 static bool stuck_in_jump_pad_callback (thread_info
*thread
);
2902 static bool lwp_running (thread_info
*thread
);
2903 static ptid_t
linux_wait_1 (ptid_t ptid
,
2904 struct target_waitstatus
*ourstatus
,
2905 int target_options
);
2907 /* Stabilize threads (move out of jump pads).
2909 If a thread is midway collecting a fast tracepoint, we need to
2910 finish the collection and move it out of the jump pad before
2911 reporting the signal.
2913 This avoids recursion while collecting (when a signal arrives
2914 midway, and the signal handler itself collects), which would trash
2915 the trace buffer. In case the user set a breakpoint in a signal
2916 handler, this avoids the backtrace showing the jump pad, etc..
2917 Most importantly, there are certain things we can't do safely if
2918 threads are stopped in a jump pad (or in its callee's). For
2921 - starting a new trace run. A thread still collecting the
2922 previous run, could trash the trace buffer when resumed. The trace
2923 buffer control structures would have been reset but the thread had
2924 no way to tell. The thread could even midway memcpy'ing to the
2925 buffer, which would mean that when resumed, it would clobber the
2926 trace buffer that had been set for a new run.
2928 - we can't rewrite/reuse the jump pads for new tracepoints
2929 safely. Say you do tstart while a thread is stopped midway while
2930 collecting. When the thread is later resumed, it finishes the
2931 collection, and returns to the jump pad, to execute the original
2932 instruction that was under the tracepoint jump at the time the
2933 older run had been started. If the jump pad had been rewritten
2934 since for something else in the new run, the thread would now
2935 execute the wrong / random instructions. */
2938 linux_stabilize_threads (void)
2940 thread_info
*thread_stuck
= find_thread (stuck_in_jump_pad_callback
);
2942 if (thread_stuck
!= NULL
)
2945 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2946 lwpid_of (thread_stuck
));
2950 thread_info
*saved_thread
= current_thread
;
2952 stabilizing_threads
= 1;
2955 for_each_thread (move_out_of_jump_pad_callback
);
2957 /* Loop until all are stopped out of the jump pads. */
2958 while (find_thread (lwp_running
) != NULL
)
2960 struct target_waitstatus ourstatus
;
2961 struct lwp_info
*lwp
;
2964 /* Note that we go through the full wait even loop. While
2965 moving threads out of jump pad, we need to be able to step
2966 over internal breakpoints and such. */
2967 linux_wait_1 (minus_one_ptid
, &ourstatus
, 0);
2969 if (ourstatus
.kind
== TARGET_WAITKIND_STOPPED
)
2971 lwp
= get_thread_lwp (current_thread
);
2974 lwp_suspended_inc (lwp
);
2976 if (ourstatus
.value
.sig
!= GDB_SIGNAL_0
2977 || current_thread
->last_resume_kind
== resume_stop
)
2979 wstat
= W_STOPCODE (gdb_signal_to_host (ourstatus
.value
.sig
));
2980 enqueue_one_deferred_signal (lwp
, &wstat
);
2985 unsuspend_all_lwps (NULL
);
2987 stabilizing_threads
= 0;
2989 current_thread
= saved_thread
;
2993 thread_stuck
= find_thread (stuck_in_jump_pad_callback
);
2995 if (thread_stuck
!= NULL
)
2996 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2997 lwpid_of (thread_stuck
));
3001 /* Convenience function that is called when the kernel reports an
3002 event that is not passed out to GDB. */
3005 ignore_event (struct target_waitstatus
*ourstatus
)
3007 /* If we got an event, there may still be others, as a single
3008 SIGCHLD can indicate more than one child stopped. This forces
3009 another target_wait call. */
3012 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3016 /* Convenience function that is called when the kernel reports an exit
3017 event. This decides whether to report the event to GDB as a
3018 process exit event, a thread exit event, or to suppress the
3022 filter_exit_event (struct lwp_info
*event_child
,
3023 struct target_waitstatus
*ourstatus
)
3025 client_state
&cs
= get_client_state ();
3026 struct thread_info
*thread
= get_lwp_thread (event_child
);
3027 ptid_t ptid
= ptid_of (thread
);
3029 if (!last_thread_of_process_p (pid_of (thread
)))
3031 if (cs
.report_thread_events
)
3032 ourstatus
->kind
= TARGET_WAITKIND_THREAD_EXITED
;
3034 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3036 delete_lwp (event_child
);
3041 /* Returns 1 if GDB is interested in any event_child syscalls. */
3044 gdb_catching_syscalls_p (struct lwp_info
*event_child
)
3046 struct thread_info
*thread
= get_lwp_thread (event_child
);
3047 struct process_info
*proc
= get_thread_process (thread
);
3049 return !proc
->syscalls_to_catch
.empty ();
3052 /* Returns 1 if GDB is interested in the event_child syscall.
3053 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3056 gdb_catch_this_syscall_p (struct lwp_info
*event_child
)
3059 struct thread_info
*thread
= get_lwp_thread (event_child
);
3060 struct process_info
*proc
= get_thread_process (thread
);
3062 if (proc
->syscalls_to_catch
.empty ())
3065 if (proc
->syscalls_to_catch
[0] == ANY_SYSCALL
)
3068 get_syscall_trapinfo (event_child
, &sysno
);
3070 for (int iter
: proc
->syscalls_to_catch
)
3077 /* Wait for process, returns status. */
3080 linux_wait_1 (ptid_t ptid
,
3081 struct target_waitstatus
*ourstatus
, int target_options
)
3083 client_state
&cs
= get_client_state ();
3085 struct lwp_info
*event_child
;
3088 int step_over_finished
;
3089 int bp_explains_trap
;
3090 int maybe_internal_trap
;
3099 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid
));
3102 /* Translate generic target options into linux options. */
3104 if (target_options
& TARGET_WNOHANG
)
3107 bp_explains_trap
= 0;
3110 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3112 auto status_pending_p_any
= [&] (thread_info
*thread
)
3114 return status_pending_p_callback (thread
, minus_one_ptid
);
3117 auto not_stopped
= [&] (thread_info
*thread
)
3119 return not_stopped_callback (thread
, minus_one_ptid
);
3122 /* Find a resumed LWP, if any. */
3123 if (find_thread (status_pending_p_any
) != NULL
)
3125 else if (find_thread (not_stopped
) != NULL
)
3130 if (step_over_bkpt
== null_ptid
)
3131 pid
= linux_wait_for_event (ptid
, &w
, options
);
3135 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3136 target_pid_to_str (step_over_bkpt
));
3137 pid
= linux_wait_for_event (step_over_bkpt
, &w
, options
& ~WNOHANG
);
3140 if (pid
== 0 || (pid
== -1 && !any_resumed
))
3142 gdb_assert (target_options
& TARGET_WNOHANG
);
3146 debug_printf ("linux_wait_1 ret = null_ptid, "
3147 "TARGET_WAITKIND_IGNORE\n");
3151 ourstatus
->kind
= TARGET_WAITKIND_IGNORE
;
3158 debug_printf ("linux_wait_1 ret = null_ptid, "
3159 "TARGET_WAITKIND_NO_RESUMED\n");
3163 ourstatus
->kind
= TARGET_WAITKIND_NO_RESUMED
;
3167 event_child
= get_thread_lwp (current_thread
);
3169 /* linux_wait_for_event only returns an exit status for the last
3170 child of a process. Report it. */
3171 if (WIFEXITED (w
) || WIFSIGNALED (w
))
3175 ourstatus
->kind
= TARGET_WAITKIND_EXITED
;
3176 ourstatus
->value
.integer
= WEXITSTATUS (w
);
3180 debug_printf ("linux_wait_1 ret = %s, exited with "
3182 target_pid_to_str (ptid_of (current_thread
)),
3189 ourstatus
->kind
= TARGET_WAITKIND_SIGNALLED
;
3190 ourstatus
->value
.sig
= gdb_signal_from_host (WTERMSIG (w
));
3194 debug_printf ("linux_wait_1 ret = %s, terminated with "
3196 target_pid_to_str (ptid_of (current_thread
)),
3202 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
)
3203 return filter_exit_event (event_child
, ourstatus
);
3205 return ptid_of (current_thread
);
3208 /* If step-over executes a breakpoint instruction, in the case of a
3209 hardware single step it means a gdb/gdbserver breakpoint had been
3210 planted on top of a permanent breakpoint, in the case of a software
3211 single step it may just mean that gdbserver hit the reinsert breakpoint.
3212 The PC has been adjusted by save_stop_reason to point at
3213 the breakpoint address.
3214 So in the case of the hardware single step advance the PC manually
3215 past the breakpoint and in the case of software single step advance only
3216 if it's not the single_step_breakpoint we are hitting.
3217 This avoids that a program would keep trapping a permanent breakpoint
3219 if (step_over_bkpt
!= null_ptid
3220 && event_child
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
3221 && (event_child
->stepping
3222 || !single_step_breakpoint_inserted_here (event_child
->stop_pc
)))
3224 int increment_pc
= 0;
3225 int breakpoint_kind
= 0;
3226 CORE_ADDR stop_pc
= event_child
->stop_pc
;
3229 the_target
->breakpoint_kind_from_current_state (&stop_pc
);
3230 the_target
->sw_breakpoint_from_kind (breakpoint_kind
, &increment_pc
);
3234 debug_printf ("step-over for %s executed software breakpoint\n",
3235 target_pid_to_str (ptid_of (current_thread
)));
3238 if (increment_pc
!= 0)
3240 struct regcache
*regcache
3241 = get_thread_regcache (current_thread
, 1);
3243 event_child
->stop_pc
+= increment_pc
;
3244 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
);
3246 if (!(*the_low_target
.breakpoint_at
) (event_child
->stop_pc
))
3247 event_child
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
3251 /* If this event was not handled before, and is not a SIGTRAP, we
3252 report it. SIGILL and SIGSEGV are also treated as traps in case
3253 a breakpoint is inserted at the current PC. If this target does
3254 not support internal breakpoints at all, we also report the
3255 SIGTRAP without further processing; it's of no concern to us. */
3257 = (supports_breakpoints ()
3258 && (WSTOPSIG (w
) == SIGTRAP
3259 || ((WSTOPSIG (w
) == SIGILL
3260 || WSTOPSIG (w
) == SIGSEGV
)
3261 && (*the_low_target
.breakpoint_at
) (event_child
->stop_pc
))));
3263 if (maybe_internal_trap
)
3265 /* Handle anything that requires bookkeeping before deciding to
3266 report the event or continue waiting. */
3268 /* First check if we can explain the SIGTRAP with an internal
3269 breakpoint, or if we should possibly report the event to GDB.
3270 Do this before anything that may remove or insert a
3272 bp_explains_trap
= breakpoint_inserted_here (event_child
->stop_pc
);
3274 /* We have a SIGTRAP, possibly a step-over dance has just
3275 finished. If so, tweak the state machine accordingly,
3276 reinsert breakpoints and delete any single-step
3278 step_over_finished
= finish_step_over (event_child
);
3280 /* Now invoke the callbacks of any internal breakpoints there. */
3281 check_breakpoints (event_child
->stop_pc
);
3283 /* Handle tracepoint data collecting. This may overflow the
3284 trace buffer, and cause a tracing stop, removing
3286 trace_event
= handle_tracepoints (event_child
);
3288 if (bp_explains_trap
)
3291 debug_printf ("Hit a gdbserver breakpoint.\n");
3296 /* We have some other signal, possibly a step-over dance was in
3297 progress, and it should be cancelled too. */
3298 step_over_finished
= finish_step_over (event_child
);
3301 /* We have all the data we need. Either report the event to GDB, or
3302 resume threads and keep waiting for more. */
3304 /* If we're collecting a fast tracepoint, finish the collection and
3305 move out of the jump pad before delivering a signal. See
3306 linux_stabilize_threads. */
3309 && WSTOPSIG (w
) != SIGTRAP
3310 && supports_fast_tracepoints ()
3311 && agent_loaded_p ())
3314 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3315 "to defer or adjust it.\n",
3316 WSTOPSIG (w
), lwpid_of (current_thread
));
3318 /* Allow debugging the jump pad itself. */
3319 if (current_thread
->last_resume_kind
!= resume_step
3320 && maybe_move_out_of_jump_pad (event_child
, &w
))
3322 enqueue_one_deferred_signal (event_child
, &w
);
3325 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3326 WSTOPSIG (w
), lwpid_of (current_thread
));
3328 linux_resume_one_lwp (event_child
, 0, 0, NULL
);
3332 return ignore_event (ourstatus
);
3336 if (event_child
->collecting_fast_tracepoint
3337 != fast_tpoint_collect_result::not_collecting
)
3340 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3341 "Check if we're already there.\n",
3342 lwpid_of (current_thread
),
3343 (int) event_child
->collecting_fast_tracepoint
);
3347 event_child
->collecting_fast_tracepoint
3348 = linux_fast_tracepoint_collecting (event_child
, NULL
);
3350 if (event_child
->collecting_fast_tracepoint
3351 != fast_tpoint_collect_result::before_insn
)
3353 /* No longer need this breakpoint. */
3354 if (event_child
->exit_jump_pad_bkpt
!= NULL
)
3357 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3358 "stopping all threads momentarily.\n");
3360 /* Other running threads could hit this breakpoint.
3361 We don't handle moribund locations like GDB does,
3362 instead we always pause all threads when removing
3363 breakpoints, so that any step-over or
3364 decr_pc_after_break adjustment is always taken
3365 care of while the breakpoint is still
3367 stop_all_lwps (1, event_child
);
3369 delete_breakpoint (event_child
->exit_jump_pad_bkpt
);
3370 event_child
->exit_jump_pad_bkpt
= NULL
;
3372 unstop_all_lwps (1, event_child
);
3374 gdb_assert (event_child
->suspended
>= 0);
3378 if (event_child
->collecting_fast_tracepoint
3379 == fast_tpoint_collect_result::not_collecting
)
3382 debug_printf ("fast tracepoint finished "
3383 "collecting successfully.\n");
3385 /* We may have a deferred signal to report. */
3386 if (dequeue_one_deferred_signal (event_child
, &w
))
3389 debug_printf ("dequeued one signal.\n");
3394 debug_printf ("no deferred signals.\n");
3396 if (stabilizing_threads
)
3398 ourstatus
->kind
= TARGET_WAITKIND_STOPPED
;
3399 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3403 debug_printf ("linux_wait_1 ret = %s, stopped "
3404 "while stabilizing threads\n",
3405 target_pid_to_str (ptid_of (current_thread
)));
3409 return ptid_of (current_thread
);
3415 /* Check whether GDB would be interested in this event. */
3417 /* Check if GDB is interested in this syscall. */
3419 && WSTOPSIG (w
) == SYSCALL_SIGTRAP
3420 && !gdb_catch_this_syscall_p (event_child
))
3424 debug_printf ("Ignored syscall for LWP %ld.\n",
3425 lwpid_of (current_thread
));
3428 linux_resume_one_lwp (event_child
, event_child
->stepping
,
3433 return ignore_event (ourstatus
);
3436 /* If GDB is not interested in this signal, don't stop other
3437 threads, and don't report it to GDB. Just resume the inferior
3438 right away. We do this for threading-related signals as well as
3439 any that GDB specifically requested we ignore. But never ignore
3440 SIGSTOP if we sent it ourselves, and do not ignore signals when
3441 stepping - they may require special handling to skip the signal
3442 handler. Also never ignore signals that could be caused by a
3445 && current_thread
->last_resume_kind
!= resume_step
3447 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3448 (current_process ()->priv
->thread_db
!= NULL
3449 && (WSTOPSIG (w
) == __SIGRTMIN
3450 || WSTOPSIG (w
) == __SIGRTMIN
+ 1))
3453 (cs
.pass_signals
[gdb_signal_from_host (WSTOPSIG (w
))]
3454 && !(WSTOPSIG (w
) == SIGSTOP
3455 && current_thread
->last_resume_kind
== resume_stop
)
3456 && !linux_wstatus_maybe_breakpoint (w
))))
3458 siginfo_t info
, *info_p
;
3461 debug_printf ("Ignored signal %d for LWP %ld.\n",
3462 WSTOPSIG (w
), lwpid_of (current_thread
));
3464 if (ptrace (PTRACE_GETSIGINFO
, lwpid_of (current_thread
),
3465 (PTRACE_TYPE_ARG3
) 0, &info
) == 0)
3470 if (step_over_finished
)
3472 /* We cancelled this thread's step-over above. We still
3473 need to unsuspend all other LWPs, and set them back
3474 running again while the signal handler runs. */
3475 unsuspend_all_lwps (event_child
);
3477 /* Enqueue the pending signal info so that proceed_all_lwps
3479 enqueue_pending_signal (event_child
, WSTOPSIG (w
), info_p
);
3481 proceed_all_lwps ();
3485 linux_resume_one_lwp (event_child
, event_child
->stepping
,
3486 WSTOPSIG (w
), info_p
);
3492 return ignore_event (ourstatus
);
3495 /* Note that all addresses are always "out of the step range" when
3496 there's no range to begin with. */
3497 in_step_range
= lwp_in_step_range (event_child
);
3499 /* If GDB wanted this thread to single step, and the thread is out
3500 of the step range, we always want to report the SIGTRAP, and let
3501 GDB handle it. Watchpoints should always be reported. So should
3502 signals we can't explain. A SIGTRAP we can't explain could be a
3503 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3504 do, we're be able to handle GDB breakpoints on top of internal
3505 breakpoints, by handling the internal breakpoint and still
3506 reporting the event to GDB. If we don't, we're out of luck, GDB
3507 won't see the breakpoint hit. If we see a single-step event but
3508 the thread should be continuing, don't pass the trap to gdb.
3509 That indicates that we had previously finished a single-step but
3510 left the single-step pending -- see
3511 complete_ongoing_step_over. */
3512 report_to_gdb
= (!maybe_internal_trap
3513 || (current_thread
->last_resume_kind
== resume_step
3515 || event_child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
3517 && !bp_explains_trap
3519 && !step_over_finished
3520 && !(current_thread
->last_resume_kind
== resume_continue
3521 && event_child
->stop_reason
== TARGET_STOPPED_BY_SINGLE_STEP
))
3522 || (gdb_breakpoint_here (event_child
->stop_pc
)
3523 && gdb_condition_true_at_breakpoint (event_child
->stop_pc
)
3524 && gdb_no_commands_at_breakpoint (event_child
->stop_pc
))
3525 || event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
);
3527 run_breakpoint_commands (event_child
->stop_pc
);
3529 /* We found no reason GDB would want us to stop. We either hit one
3530 of our own breakpoints, or finished an internal step GDB
3531 shouldn't know about. */
3536 if (bp_explains_trap
)
3537 debug_printf ("Hit a gdbserver breakpoint.\n");
3538 if (step_over_finished
)
3539 debug_printf ("Step-over finished.\n");
3541 debug_printf ("Tracepoint event.\n");
3542 if (lwp_in_step_range (event_child
))
3543 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3544 paddress (event_child
->stop_pc
),
3545 paddress (event_child
->step_range_start
),
3546 paddress (event_child
->step_range_end
));
3549 /* We're not reporting this breakpoint to GDB, so apply the
3550 decr_pc_after_break adjustment to the inferior's regcache
3553 if (the_low_target
.set_pc
!= NULL
)
3555 struct regcache
*regcache
3556 = get_thread_regcache (current_thread
, 1);
3557 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
);
3560 if (step_over_finished
)
3562 /* If we have finished stepping over a breakpoint, we've
3563 stopped and suspended all LWPs momentarily except the
3564 stepping one. This is where we resume them all again.
3565 We're going to keep waiting, so use proceed, which
3566 handles stepping over the next breakpoint. */
3567 unsuspend_all_lwps (event_child
);
3571 /* Remove the single-step breakpoints if any. Note that
3572 there isn't single-step breakpoint if we finished stepping
3574 if (can_software_single_step ()
3575 && has_single_step_breakpoints (current_thread
))
3577 stop_all_lwps (0, event_child
);
3578 delete_single_step_breakpoints (current_thread
);
3579 unstop_all_lwps (0, event_child
);
3584 debug_printf ("proceeding all threads.\n");
3585 proceed_all_lwps ();
3590 return ignore_event (ourstatus
);
3595 if (event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3598 = target_waitstatus_to_string (&event_child
->waitstatus
);
3600 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3601 lwpid_of (get_lwp_thread (event_child
)), str
.c_str ());
3603 if (current_thread
->last_resume_kind
== resume_step
)
3605 if (event_child
->step_range_start
== event_child
->step_range_end
)
3606 debug_printf ("GDB wanted to single-step, reporting event.\n");
3607 else if (!lwp_in_step_range (event_child
))
3608 debug_printf ("Out of step range, reporting event.\n");
3610 if (event_child
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
)
3611 debug_printf ("Stopped by watchpoint.\n");
3612 else if (gdb_breakpoint_here (event_child
->stop_pc
))
3613 debug_printf ("Stopped by GDB breakpoint.\n");
3615 debug_printf ("Hit a non-gdbserver trap event.\n");
3618 /* Alright, we're going to report a stop. */
3620 /* Remove single-step breakpoints. */
3621 if (can_software_single_step ())
3623 /* Remove single-step breakpoints or not. It it is true, stop all
3624 lwps, so that other threads won't hit the breakpoint in the
3626 int remove_single_step_breakpoints_p
= 0;
3630 remove_single_step_breakpoints_p
3631 = has_single_step_breakpoints (current_thread
);
3635 /* In all-stop, a stop reply cancels all previous resume
3636 requests. Delete all single-step breakpoints. */
3638 find_thread ([&] (thread_info
*thread
) {
3639 if (has_single_step_breakpoints (thread
))
3641 remove_single_step_breakpoints_p
= 1;
3649 if (remove_single_step_breakpoints_p
)
3651 /* If we remove single-step breakpoints from memory, stop all lwps,
3652 so that other threads won't hit the breakpoint in the staled
3654 stop_all_lwps (0, event_child
);
3658 gdb_assert (has_single_step_breakpoints (current_thread
));
3659 delete_single_step_breakpoints (current_thread
);
3663 for_each_thread ([] (thread_info
*thread
){
3664 if (has_single_step_breakpoints (thread
))
3665 delete_single_step_breakpoints (thread
);
3669 unstop_all_lwps (0, event_child
);
3673 if (!stabilizing_threads
)
3675 /* In all-stop, stop all threads. */
3677 stop_all_lwps (0, NULL
);
3679 if (step_over_finished
)
3683 /* If we were doing a step-over, all other threads but
3684 the stepping one had been paused in start_step_over,
3685 with their suspend counts incremented. We don't want
3686 to do a full unstop/unpause, because we're in
3687 all-stop mode (so we want threads stopped), but we
3688 still need to unsuspend the other threads, to
3689 decrement their `suspended' count back. */
3690 unsuspend_all_lwps (event_child
);
3694 /* If we just finished a step-over, then all threads had
3695 been momentarily paused. In all-stop, that's fine,
3696 we want threads stopped by now anyway. In non-stop,
3697 we need to re-resume threads that GDB wanted to be
3699 unstop_all_lwps (1, event_child
);
3703 /* If we're not waiting for a specific LWP, choose an event LWP
3704 from among those that have had events. Giving equal priority
3705 to all LWPs that have had events helps prevent
3707 if (ptid
== minus_one_ptid
)
3709 event_child
->status_pending_p
= 1;
3710 event_child
->status_pending
= w
;
3712 select_event_lwp (&event_child
);
3714 /* current_thread and event_child must stay in sync. */
3715 current_thread
= get_lwp_thread (event_child
);
3717 event_child
->status_pending_p
= 0;
3718 w
= event_child
->status_pending
;
3722 /* Stabilize threads (move out of jump pads). */
3724 stabilize_threads ();
3728 /* If we just finished a step-over, then all threads had been
3729 momentarily paused. In all-stop, that's fine, we want
3730 threads stopped by now anyway. In non-stop, we need to
3731 re-resume threads that GDB wanted to be running. */
3732 if (step_over_finished
)
3733 unstop_all_lwps (1, event_child
);
3736 if (event_child
->waitstatus
.kind
!= TARGET_WAITKIND_IGNORE
)
3738 /* If the reported event is an exit, fork, vfork or exec, let
3741 /* Break the unreported fork relationship chain. */
3742 if (event_child
->waitstatus
.kind
== TARGET_WAITKIND_FORKED
3743 || event_child
->waitstatus
.kind
== TARGET_WAITKIND_VFORKED
)
3745 event_child
->fork_relative
->fork_relative
= NULL
;
3746 event_child
->fork_relative
= NULL
;
3749 *ourstatus
= event_child
->waitstatus
;
3750 /* Clear the event lwp's waitstatus since we handled it already. */
3751 event_child
->waitstatus
.kind
= TARGET_WAITKIND_IGNORE
;
3754 ourstatus
->kind
= TARGET_WAITKIND_STOPPED
;
3756 /* Now that we've selected our final event LWP, un-adjust its PC if
3757 it was a software breakpoint, and the client doesn't know we can
3758 adjust the breakpoint ourselves. */
3759 if (event_child
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
3760 && !cs
.swbreak_feature
)
3762 int decr_pc
= the_low_target
.decr_pc_after_break
;
3766 struct regcache
*regcache
3767 = get_thread_regcache (current_thread
, 1);
3768 (*the_low_target
.set_pc
) (regcache
, event_child
->stop_pc
+ decr_pc
);
3772 if (WSTOPSIG (w
) == SYSCALL_SIGTRAP
)
3774 get_syscall_trapinfo (event_child
,
3775 &ourstatus
->value
.syscall_number
);
3776 ourstatus
->kind
= event_child
->syscall_state
;
3778 else if (current_thread
->last_resume_kind
== resume_stop
3779 && WSTOPSIG (w
) == SIGSTOP
)
3781 /* A thread that has been requested to stop by GDB with vCont;t,
3782 and it stopped cleanly, so report as SIG0. The use of
3783 SIGSTOP is an implementation detail. */
3784 ourstatus
->value
.sig
= GDB_SIGNAL_0
;
3786 else if (current_thread
->last_resume_kind
== resume_stop
3787 && WSTOPSIG (w
) != SIGSTOP
)
3789 /* A thread that has been requested to stop by GDB with vCont;t,
3790 but, it stopped for other reasons. */
3791 ourstatus
->value
.sig
= gdb_signal_from_host (WSTOPSIG (w
));
3793 else if (ourstatus
->kind
== TARGET_WAITKIND_STOPPED
)
3795 ourstatus
->value
.sig
= gdb_signal_from_host (WSTOPSIG (w
));
3798 gdb_assert (step_over_bkpt
== null_ptid
);
3802 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3803 target_pid_to_str (ptid_of (current_thread
)),
3804 ourstatus
->kind
, ourstatus
->value
.sig
);
3808 if (ourstatus
->kind
== TARGET_WAITKIND_EXITED
)
3809 return filter_exit_event (event_child
, ourstatus
);
3811 return ptid_of (current_thread
);
3814 /* Get rid of any pending event in the pipe. */
3816 async_file_flush (void)
3822 ret
= read (linux_event_pipe
[0], &buf
, 1);
3823 while (ret
>= 0 || (ret
== -1 && errno
== EINTR
));
3826 /* Put something in the pipe, so the event loop wakes up. */
3828 async_file_mark (void)
3832 async_file_flush ();
3835 ret
= write (linux_event_pipe
[1], "+", 1);
3836 while (ret
== 0 || (ret
== -1 && errno
== EINTR
));
3838 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3839 be awakened anyway. */
3843 linux_process_target::wait (ptid_t ptid
,
3844 target_waitstatus
*ourstatus
,
3849 /* Flush the async file first. */
3850 if (target_is_async_p ())
3851 async_file_flush ();
3855 event_ptid
= linux_wait_1 (ptid
, ourstatus
, target_options
);
3857 while ((target_options
& TARGET_WNOHANG
) == 0
3858 && event_ptid
== null_ptid
3859 && ourstatus
->kind
== TARGET_WAITKIND_IGNORE
);
3861 /* If at least one stop was reported, there may be more. A single
3862 SIGCHLD can signal more than one child stop. */
3863 if (target_is_async_p ()
3864 && (target_options
& TARGET_WNOHANG
) != 0
3865 && event_ptid
!= null_ptid
)
3871 /* Send a signal to an LWP. */
3874 kill_lwp (unsigned long lwpid
, int signo
)
3879 ret
= syscall (__NR_tkill
, lwpid
, signo
);
3880 if (errno
== ENOSYS
)
3882 /* If tkill fails, then we are not using nptl threads, a
3883 configuration we no longer support. */
3884 perror_with_name (("tkill"));
3890 linux_stop_lwp (struct lwp_info
*lwp
)
3896 send_sigstop (struct lwp_info
*lwp
)
3900 pid
= lwpid_of (get_lwp_thread (lwp
));
3902 /* If we already have a pending stop signal for this process, don't
3904 if (lwp
->stop_expected
)
3907 debug_printf ("Have pending sigstop for lwp %d\n", pid
);
3913 debug_printf ("Sending sigstop to lwp %d\n", pid
);
3915 lwp
->stop_expected
= 1;
3916 kill_lwp (pid
, SIGSTOP
);
3920 send_sigstop (thread_info
*thread
, lwp_info
*except
)
3922 struct lwp_info
*lwp
= get_thread_lwp (thread
);
3924 /* Ignore EXCEPT. */
3934 /* Increment the suspend count of an LWP, and stop it, if not stopped
3937 suspend_and_send_sigstop (thread_info
*thread
, lwp_info
*except
)
3939 struct lwp_info
*lwp
= get_thread_lwp (thread
);
3941 /* Ignore EXCEPT. */
3945 lwp_suspended_inc (lwp
);
3947 send_sigstop (thread
, except
);
3951 mark_lwp_dead (struct lwp_info
*lwp
, int wstat
)
3953 /* Store the exit status for later. */
3954 lwp
->status_pending_p
= 1;
3955 lwp
->status_pending
= wstat
;
3957 /* Store in waitstatus as well, as there's nothing else to process
3959 if (WIFEXITED (wstat
))
3961 lwp
->waitstatus
.kind
= TARGET_WAITKIND_EXITED
;
3962 lwp
->waitstatus
.value
.integer
= WEXITSTATUS (wstat
);
3964 else if (WIFSIGNALED (wstat
))
3966 lwp
->waitstatus
.kind
= TARGET_WAITKIND_SIGNALLED
;
3967 lwp
->waitstatus
.value
.sig
= gdb_signal_from_host (WTERMSIG (wstat
));
3970 /* Prevent trying to stop it. */
3973 /* No further stops are expected from a dead lwp. */
3974 lwp
->stop_expected
= 0;
3977 /* Return true if LWP has exited already, and has a pending exit event
3978 to report to GDB. */
3981 lwp_is_marked_dead (struct lwp_info
*lwp
)
3983 return (lwp
->status_pending_p
3984 && (WIFEXITED (lwp
->status_pending
)
3985 || WIFSIGNALED (lwp
->status_pending
)));
3988 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3991 wait_for_sigstop (void)
3993 struct thread_info
*saved_thread
;
3998 saved_thread
= current_thread
;
3999 if (saved_thread
!= NULL
)
4000 saved_tid
= saved_thread
->id
;
4002 saved_tid
= null_ptid
; /* avoid bogus unused warning */
4005 debug_printf ("wait_for_sigstop: pulling events\n");
4007 /* Passing NULL_PTID as filter indicates we want all events to be
4008 left pending. Eventually this returns when there are no
4009 unwaited-for children left. */
4010 ret
= linux_wait_for_event_filtered (minus_one_ptid
, null_ptid
,
4012 gdb_assert (ret
== -1);
4014 if (saved_thread
== NULL
|| mythread_alive (saved_tid
))
4015 current_thread
= saved_thread
;
4019 debug_printf ("Previously current thread died.\n");
4021 /* We can't change the current inferior behind GDB's back,
4022 otherwise, a subsequent command may apply to the wrong
4024 current_thread
= NULL
;
4028 /* Returns true if THREAD is stopped in a jump pad, and we can't
4029 move it out, because we need to report the stop event to GDB. For
4030 example, if the user puts a breakpoint in the jump pad, it's
4031 because she wants to debug it. */
4034 stuck_in_jump_pad_callback (thread_info
*thread
)
4036 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4038 if (lwp
->suspended
!= 0)
4040 internal_error (__FILE__
, __LINE__
,
4041 "LWP %ld is suspended, suspended=%d\n",
4042 lwpid_of (thread
), lwp
->suspended
);
4044 gdb_assert (lwp
->stopped
);
4046 /* Allow debugging the jump pad, gdb_collect, etc.. */
4047 return (supports_fast_tracepoints ()
4048 && agent_loaded_p ()
4049 && (gdb_breakpoint_here (lwp
->stop_pc
)
4050 || lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
4051 || thread
->last_resume_kind
== resume_step
)
4052 && (linux_fast_tracepoint_collecting (lwp
, NULL
)
4053 != fast_tpoint_collect_result::not_collecting
));
4057 move_out_of_jump_pad_callback (thread_info
*thread
)
4059 struct thread_info
*saved_thread
;
4060 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4063 if (lwp
->suspended
!= 0)
4065 internal_error (__FILE__
, __LINE__
,
4066 "LWP %ld is suspended, suspended=%d\n",
4067 lwpid_of (thread
), lwp
->suspended
);
4069 gdb_assert (lwp
->stopped
);
4071 /* For gdb_breakpoint_here. */
4072 saved_thread
= current_thread
;
4073 current_thread
= thread
;
4075 wstat
= lwp
->status_pending_p
? &lwp
->status_pending
: NULL
;
4077 /* Allow debugging the jump pad, gdb_collect, etc. */
4078 if (!gdb_breakpoint_here (lwp
->stop_pc
)
4079 && lwp
->stop_reason
!= TARGET_STOPPED_BY_WATCHPOINT
4080 && thread
->last_resume_kind
!= resume_step
4081 && maybe_move_out_of_jump_pad (lwp
, wstat
))
4084 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4089 lwp
->status_pending_p
= 0;
4090 enqueue_one_deferred_signal (lwp
, wstat
);
4093 debug_printf ("Signal %d for LWP %ld deferred "
4095 WSTOPSIG (*wstat
), lwpid_of (thread
));
4098 linux_resume_one_lwp (lwp
, 0, 0, NULL
);
4101 lwp_suspended_inc (lwp
);
4103 current_thread
= saved_thread
;
4107 lwp_running (thread_info
*thread
)
4109 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4111 if (lwp_is_marked_dead (lwp
))
4114 return !lwp
->stopped
;
4117 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4118 If SUSPEND, then also increase the suspend count of every LWP,
4122 stop_all_lwps (int suspend
, struct lwp_info
*except
)
4124 /* Should not be called recursively. */
4125 gdb_assert (stopping_threads
== NOT_STOPPING_THREADS
);
4130 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4131 suspend
? "stop-and-suspend" : "stop",
4133 ? target_pid_to_str (ptid_of (get_lwp_thread (except
)))
4137 stopping_threads
= (suspend
4138 ? STOPPING_AND_SUSPENDING_THREADS
4139 : STOPPING_THREADS
);
4142 for_each_thread ([&] (thread_info
*thread
)
4144 suspend_and_send_sigstop (thread
, except
);
4147 for_each_thread ([&] (thread_info
*thread
)
4149 send_sigstop (thread
, except
);
4152 wait_for_sigstop ();
4153 stopping_threads
= NOT_STOPPING_THREADS
;
4157 debug_printf ("stop_all_lwps done, setting stopping_threads "
4158 "back to !stopping\n");
4163 /* Enqueue one signal in the chain of signals which need to be
4164 delivered to this process on next resume. */
4167 enqueue_pending_signal (struct lwp_info
*lwp
, int signal
, siginfo_t
*info
)
4169 struct pending_signals
*p_sig
= XNEW (struct pending_signals
);
4171 p_sig
->prev
= lwp
->pending_signals
;
4172 p_sig
->signal
= signal
;
4174 memset (&p_sig
->info
, 0, sizeof (siginfo_t
));
4176 memcpy (&p_sig
->info
, info
, sizeof (siginfo_t
));
4177 lwp
->pending_signals
= p_sig
;
4180 /* Install breakpoints for software single stepping. */
4183 install_software_single_step_breakpoints (struct lwp_info
*lwp
)
4185 struct thread_info
*thread
= get_lwp_thread (lwp
);
4186 struct regcache
*regcache
= get_thread_regcache (thread
, 1);
4188 scoped_restore save_current_thread
= make_scoped_restore (¤t_thread
);
4190 current_thread
= thread
;
4191 std::vector
<CORE_ADDR
> next_pcs
= the_low_target
.get_next_pcs (regcache
);
4193 for (CORE_ADDR pc
: next_pcs
)
4194 set_single_step_breakpoint (pc
, current_ptid
);
4197 /* Single step via hardware or software single step.
4198 Return 1 if hardware single stepping, 0 if software single stepping
4199 or can't single step. */
4202 single_step (struct lwp_info
* lwp
)
4206 if (can_hardware_single_step ())
4210 else if (can_software_single_step ())
4212 install_software_single_step_breakpoints (lwp
);
4218 debug_printf ("stepping is not implemented on this target");
4224 /* The signal can be delivered to the inferior if we are not trying to
4225 finish a fast tracepoint collect. Since signal can be delivered in
4226 the step-over, the program may go to signal handler and trap again
4227 after return from the signal handler. We can live with the spurious
4231 lwp_signal_can_be_delivered (struct lwp_info
*lwp
)
4233 return (lwp
->collecting_fast_tracepoint
4234 == fast_tpoint_collect_result::not_collecting
);
4237 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4238 SIGNAL is nonzero, give it that signal. */
4241 linux_resume_one_lwp_throw (struct lwp_info
*lwp
,
4242 int step
, int signal
, siginfo_t
*info
)
4244 struct thread_info
*thread
= get_lwp_thread (lwp
);
4245 struct thread_info
*saved_thread
;
4247 struct process_info
*proc
= get_thread_process (thread
);
4249 /* Note that target description may not be initialised
4250 (proc->tdesc == NULL) at this point because the program hasn't
4251 stopped at the first instruction yet. It means GDBserver skips
4252 the extra traps from the wrapper program (see option --wrapper).
4253 Code in this function that requires register access should be
4254 guarded by proc->tdesc == NULL or something else. */
4256 if (lwp
->stopped
== 0)
4259 gdb_assert (lwp
->waitstatus
.kind
== TARGET_WAITKIND_IGNORE
);
4261 fast_tpoint_collect_result fast_tp_collecting
4262 = lwp
->collecting_fast_tracepoint
;
4264 gdb_assert (!stabilizing_threads
4265 || (fast_tp_collecting
4266 != fast_tpoint_collect_result::not_collecting
));
4268 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4269 user used the "jump" command, or "set $pc = foo"). */
4270 if (thread
->while_stepping
!= NULL
&& lwp
->stop_pc
!= get_pc (lwp
))
4272 /* Collecting 'while-stepping' actions doesn't make sense
4274 release_while_stepping_state_list (thread
);
4277 /* If we have pending signals or status, and a new signal, enqueue the
4278 signal. Also enqueue the signal if it can't be delivered to the
4279 inferior right now. */
4281 && (lwp
->status_pending_p
4282 || lwp
->pending_signals
!= NULL
4283 || !lwp_signal_can_be_delivered (lwp
)))
4285 enqueue_pending_signal (lwp
, signal
, info
);
4287 /* Postpone any pending signal. It was enqueued above. */
4291 if (lwp
->status_pending_p
)
4294 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4295 " has pending status\n",
4296 lwpid_of (thread
), step
? "step" : "continue",
4297 lwp
->stop_expected
? "expected" : "not expected");
4301 saved_thread
= current_thread
;
4302 current_thread
= thread
;
4304 /* This bit needs some thinking about. If we get a signal that
4305 we must report while a single-step reinsert is still pending,
4306 we often end up resuming the thread. It might be better to
4307 (ew) allow a stack of pending events; then we could be sure that
4308 the reinsert happened right away and not lose any signals.
4310 Making this stack would also shrink the window in which breakpoints are
4311 uninserted (see comment in linux_wait_for_lwp) but not enough for
4312 complete correctness, so it won't solve that problem. It may be
4313 worthwhile just to solve this one, however. */
4314 if (lwp
->bp_reinsert
!= 0)
4317 debug_printf (" pending reinsert at 0x%s\n",
4318 paddress (lwp
->bp_reinsert
));
4320 if (can_hardware_single_step ())
4322 if (fast_tp_collecting
== fast_tpoint_collect_result::not_collecting
)
4325 warning ("BAD - reinserting but not stepping.");
4327 warning ("BAD - reinserting and suspended(%d).",
4332 step
= maybe_hw_step (thread
);
4335 if (fast_tp_collecting
== fast_tpoint_collect_result::before_insn
)
4338 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4339 " (exit-jump-pad-bkpt)\n",
4342 else if (fast_tp_collecting
== fast_tpoint_collect_result::at_insn
)
4345 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4346 " single-stepping\n",
4349 if (can_hardware_single_step ())
4353 internal_error (__FILE__
, __LINE__
,
4354 "moving out of jump pad single-stepping"
4355 " not implemented on this target");
4359 /* If we have while-stepping actions in this thread set it stepping.
4360 If we have a signal to deliver, it may or may not be set to
4361 SIG_IGN, we don't know. Assume so, and allow collecting
4362 while-stepping into a signal handler. A possible smart thing to
4363 do would be to set an internal breakpoint at the signal return
4364 address, continue, and carry on catching this while-stepping
4365 action only when that breakpoint is hit. A future
4367 if (thread
->while_stepping
!= NULL
)
4370 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4373 step
= single_step (lwp
);
4376 if (proc
->tdesc
!= NULL
&& the_low_target
.get_pc
!= NULL
)
4378 struct regcache
*regcache
= get_thread_regcache (current_thread
, 1);
4380 lwp
->stop_pc
= (*the_low_target
.get_pc
) (regcache
);
4384 debug_printf (" %s from pc 0x%lx\n", step
? "step" : "continue",
4385 (long) lwp
->stop_pc
);
4389 /* If we have pending signals, consume one if it can be delivered to
4391 if (lwp
->pending_signals
!= NULL
&& lwp_signal_can_be_delivered (lwp
))
4393 struct pending_signals
**p_sig
;
4395 p_sig
= &lwp
->pending_signals
;
4396 while ((*p_sig
)->prev
!= NULL
)
4397 p_sig
= &(*p_sig
)->prev
;
4399 signal
= (*p_sig
)->signal
;
4400 if ((*p_sig
)->info
.si_signo
!= 0)
4401 ptrace (PTRACE_SETSIGINFO
, lwpid_of (thread
), (PTRACE_TYPE_ARG3
) 0,
4409 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4410 lwpid_of (thread
), step
? "step" : "continue", signal
,
4411 lwp
->stop_expected
? "expected" : "not expected");
4413 if (the_low_target
.prepare_to_resume
!= NULL
)
4414 the_low_target
.prepare_to_resume (lwp
);
4416 regcache_invalidate_thread (thread
);
4418 lwp
->stepping
= step
;
4420 ptrace_request
= PTRACE_SINGLESTEP
;
4421 else if (gdb_catching_syscalls_p (lwp
))
4422 ptrace_request
= PTRACE_SYSCALL
;
4424 ptrace_request
= PTRACE_CONT
;
4425 ptrace (ptrace_request
,
4427 (PTRACE_TYPE_ARG3
) 0,
4428 /* Coerce to a uintptr_t first to avoid potential gcc warning
4429 of coercing an 8 byte integer to a 4 byte pointer. */
4430 (PTRACE_TYPE_ARG4
) (uintptr_t) signal
);
4432 current_thread
= saved_thread
;
4434 perror_with_name ("resuming thread");
4436 /* Successfully resumed. Clear state that no longer makes sense,
4437 and mark the LWP as running. Must not do this before resuming
4438 otherwise if that fails other code will be confused. E.g., we'd
4439 later try to stop the LWP and hang forever waiting for a stop
4440 status. Note that we must not throw after this is cleared,
4441 otherwise handle_zombie_lwp_error would get confused. */
4443 lwp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
4446 /* Called when we try to resume a stopped LWP and that errors out. If
4447 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4448 or about to become), discard the error, clear any pending status
4449 the LWP may have, and return true (we'll collect the exit status
4450 soon enough). Otherwise, return false. */
4453 check_ptrace_stopped_lwp_gone (struct lwp_info
*lp
)
4455 struct thread_info
*thread
= get_lwp_thread (lp
);
4457 /* If we get an error after resuming the LWP successfully, we'd
4458 confuse !T state for the LWP being gone. */
4459 gdb_assert (lp
->stopped
);
4461 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4462 because even if ptrace failed with ESRCH, the tracee may be "not
4463 yet fully dead", but already refusing ptrace requests. In that
4464 case the tracee has 'R (Running)' state for a little bit
4465 (observed in Linux 3.18). See also the note on ESRCH in the
4466 ptrace(2) man page. Instead, check whether the LWP has any state
4467 other than ptrace-stopped. */
4469 /* Don't assume anything if /proc/PID/status can't be read. */
4470 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread
)) == 0)
4472 lp
->stop_reason
= TARGET_STOPPED_BY_NO_REASON
;
4473 lp
->status_pending_p
= 0;
4479 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4480 disappears while we try to resume it. */
4483 linux_resume_one_lwp (struct lwp_info
*lwp
,
4484 int step
, int signal
, siginfo_t
*info
)
4488 linux_resume_one_lwp_throw (lwp
, step
, signal
, info
);
4490 catch (const gdb_exception_error
&ex
)
4492 if (!check_ptrace_stopped_lwp_gone (lwp
))
4497 /* This function is called once per thread via for_each_thread.
4498 We look up which resume request applies to THREAD and mark it with a
4499 pointer to the appropriate resume request.
4501 This algorithm is O(threads * resume elements), but resume elements
4502 is small (and will remain small at least until GDB supports thread
4506 linux_set_resume_request (thread_info
*thread
, thread_resume
*resume
, size_t n
)
4508 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4510 for (int ndx
= 0; ndx
< n
; ndx
++)
4512 ptid_t ptid
= resume
[ndx
].thread
;
4513 if (ptid
== minus_one_ptid
4514 || ptid
== thread
->id
4515 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4517 || (ptid
.pid () == pid_of (thread
)
4519 || ptid
.lwp () == -1)))
4521 if (resume
[ndx
].kind
== resume_stop
4522 && thread
->last_resume_kind
== resume_stop
)
4525 debug_printf ("already %s LWP %ld at GDB's request\n",
4526 (thread
->last_status
.kind
4527 == TARGET_WAITKIND_STOPPED
)
4535 /* Ignore (wildcard) resume requests for already-resumed
4537 if (resume
[ndx
].kind
!= resume_stop
4538 && thread
->last_resume_kind
!= resume_stop
)
4541 debug_printf ("already %s LWP %ld at GDB's request\n",
4542 (thread
->last_resume_kind
4550 /* Don't let wildcard resumes resume fork children that GDB
4551 does not yet know are new fork children. */
4552 if (lwp
->fork_relative
!= NULL
)
4554 struct lwp_info
*rel
= lwp
->fork_relative
;
4556 if (rel
->status_pending_p
4557 && (rel
->waitstatus
.kind
== TARGET_WAITKIND_FORKED
4558 || rel
->waitstatus
.kind
== TARGET_WAITKIND_VFORKED
))
4561 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4567 /* If the thread has a pending event that has already been
4568 reported to GDBserver core, but GDB has not pulled the
4569 event out of the vStopped queue yet, likewise, ignore the
4570 (wildcard) resume request. */
4571 if (in_queued_stop_replies (thread
->id
))
4574 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4579 lwp
->resume
= &resume
[ndx
];
4580 thread
->last_resume_kind
= lwp
->resume
->kind
;
4582 lwp
->step_range_start
= lwp
->resume
->step_range_start
;
4583 lwp
->step_range_end
= lwp
->resume
->step_range_end
;
4585 /* If we had a deferred signal to report, dequeue one now.
4586 This can happen if LWP gets more than one signal while
4587 trying to get out of a jump pad. */
4589 && !lwp
->status_pending_p
4590 && dequeue_one_deferred_signal (lwp
, &lwp
->status_pending
))
4592 lwp
->status_pending_p
= 1;
4595 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4596 "leaving status pending.\n",
4597 WSTOPSIG (lwp
->status_pending
),
4605 /* No resume action for this thread. */
4609 /* find_thread callback for linux_resume. Return true if this lwp has an
4610 interesting status pending. */
4613 resume_status_pending_p (thread_info
*thread
)
4615 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4617 /* LWPs which will not be resumed are not interesting, because
4618 we might not wait for them next time through linux_wait. */
4619 if (lwp
->resume
== NULL
)
4622 return thread_still_has_status_pending_p (thread
);
4625 /* Return 1 if this lwp that GDB wants running is stopped at an
4626 internal breakpoint that we need to step over. It assumes that any
4627 required STOP_PC adjustment has already been propagated to the
4628 inferior's regcache. */
4631 need_step_over_p (thread_info
*thread
)
4633 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4634 struct thread_info
*saved_thread
;
4636 struct process_info
*proc
= get_thread_process (thread
);
4638 /* GDBserver is skipping the extra traps from the wrapper program,
4639 don't have to do step over. */
4640 if (proc
->tdesc
== NULL
)
4643 /* LWPs which will not be resumed are not interesting, because we
4644 might not wait for them next time through linux_wait. */
4649 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4654 if (thread
->last_resume_kind
== resume_stop
)
4657 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4663 gdb_assert (lwp
->suspended
>= 0);
4668 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4673 if (lwp
->status_pending_p
)
4676 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4682 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4686 /* If the PC has changed since we stopped, then don't do anything,
4687 and let the breakpoint/tracepoint be hit. This happens if, for
4688 instance, GDB handled the decr_pc_after_break subtraction itself,
4689 GDB is OOL stepping this thread, or the user has issued a "jump"
4690 command, or poked thread's registers herself. */
4691 if (pc
!= lwp
->stop_pc
)
4694 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4695 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4697 paddress (lwp
->stop_pc
), paddress (pc
));
4701 /* On software single step target, resume the inferior with signal
4702 rather than stepping over. */
4703 if (can_software_single_step ()
4704 && lwp
->pending_signals
!= NULL
4705 && lwp_signal_can_be_delivered (lwp
))
4708 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4715 saved_thread
= current_thread
;
4716 current_thread
= thread
;
4718 /* We can only step over breakpoints we know about. */
4719 if (breakpoint_here (pc
) || fast_tracepoint_jump_here (pc
))
4721 /* Don't step over a breakpoint that GDB expects to hit
4722 though. If the condition is being evaluated on the target's side
4723 and it evaluate to false, step over this breakpoint as well. */
4724 if (gdb_breakpoint_here (pc
)
4725 && gdb_condition_true_at_breakpoint (pc
)
4726 && gdb_no_commands_at_breakpoint (pc
))
4729 debug_printf ("Need step over [LWP %ld]? yes, but found"
4730 " GDB breakpoint at 0x%s; skipping step over\n",
4731 lwpid_of (thread
), paddress (pc
));
4733 current_thread
= saved_thread
;
4739 debug_printf ("Need step over [LWP %ld]? yes, "
4740 "found breakpoint at 0x%s\n",
4741 lwpid_of (thread
), paddress (pc
));
4743 /* We've found an lwp that needs stepping over --- return 1 so
4744 that find_thread stops looking. */
4745 current_thread
= saved_thread
;
4751 current_thread
= saved_thread
;
4754 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4756 lwpid_of (thread
), paddress (pc
));
4761 /* Start a step-over operation on LWP. When LWP stopped at a
4762 breakpoint, to make progress, we need to remove the breakpoint out
4763 of the way. If we let other threads run while we do that, they may
4764 pass by the breakpoint location and miss hitting it. To avoid
4765 that, a step-over momentarily stops all threads while LWP is
4766 single-stepped by either hardware or software while the breakpoint
4767 is temporarily uninserted from the inferior. When the single-step
4768 finishes, we reinsert the breakpoint, and let all threads that are
4769 supposed to be running, run again. */
4772 start_step_over (struct lwp_info
*lwp
)
4774 struct thread_info
*thread
= get_lwp_thread (lwp
);
4775 struct thread_info
*saved_thread
;
4780 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4783 stop_all_lwps (1, lwp
);
4785 if (lwp
->suspended
!= 0)
4787 internal_error (__FILE__
, __LINE__
,
4788 "LWP %ld suspended=%d\n", lwpid_of (thread
),
4793 debug_printf ("Done stopping all threads for step-over.\n");
4795 /* Note, we should always reach here with an already adjusted PC,
4796 either by GDB (if we're resuming due to GDB's request), or by our
4797 caller, if we just finished handling an internal breakpoint GDB
4798 shouldn't care about. */
4801 saved_thread
= current_thread
;
4802 current_thread
= thread
;
4804 lwp
->bp_reinsert
= pc
;
4805 uninsert_breakpoints_at (pc
);
4806 uninsert_fast_tracepoint_jumps_at (pc
);
4808 step
= single_step (lwp
);
4810 current_thread
= saved_thread
;
4812 linux_resume_one_lwp (lwp
, step
, 0, NULL
);
4814 /* Require next event from this LWP. */
4815 step_over_bkpt
= thread
->id
;
4819 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4820 start_step_over, if still there, and delete any single-step
4821 breakpoints we've set, on non hardware single-step targets. */
4824 finish_step_over (struct lwp_info
*lwp
)
4826 if (lwp
->bp_reinsert
!= 0)
4828 struct thread_info
*saved_thread
= current_thread
;
4831 debug_printf ("Finished step over.\n");
4833 current_thread
= get_lwp_thread (lwp
);
4835 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4836 may be no breakpoint to reinsert there by now. */
4837 reinsert_breakpoints_at (lwp
->bp_reinsert
);
4838 reinsert_fast_tracepoint_jumps_at (lwp
->bp_reinsert
);
4840 lwp
->bp_reinsert
= 0;
4842 /* Delete any single-step breakpoints. No longer needed. We
4843 don't have to worry about other threads hitting this trap,
4844 and later not being able to explain it, because we were
4845 stepping over a breakpoint, and we hold all threads but
4846 LWP stopped while doing that. */
4847 if (!can_hardware_single_step ())
4849 gdb_assert (has_single_step_breakpoints (current_thread
));
4850 delete_single_step_breakpoints (current_thread
);
4853 step_over_bkpt
= null_ptid
;
4854 current_thread
= saved_thread
;
4861 /* If there's a step over in progress, wait until all threads stop
4862 (that is, until the stepping thread finishes its step), and
4863 unsuspend all lwps. The stepping thread ends with its status
4864 pending, which is processed later when we get back to processing
4868 complete_ongoing_step_over (void)
4870 if (step_over_bkpt
!= null_ptid
)
4872 struct lwp_info
*lwp
;
4877 debug_printf ("detach: step over in progress, finish it first\n");
4879 /* Passing NULL_PTID as filter indicates we want all events to
4880 be left pending. Eventually this returns when there are no
4881 unwaited-for children left. */
4882 ret
= linux_wait_for_event_filtered (minus_one_ptid
, null_ptid
,
4884 gdb_assert (ret
== -1);
4886 lwp
= find_lwp_pid (step_over_bkpt
);
4888 finish_step_over (lwp
);
4889 step_over_bkpt
= null_ptid
;
4890 unsuspend_all_lwps (lwp
);
4894 /* This function is called once per thread. We check the thread's resume
4895 request, which will tell us whether to resume, step, or leave the thread
4896 stopped; and what signal, if any, it should be sent.
4898 For threads which we aren't explicitly told otherwise, we preserve
4899 the stepping flag; this is used for stepping over gdbserver-placed
4902 If pending_flags was set in any thread, we queue any needed
4903 signals, since we won't actually resume. We already have a pending
4904 event to report, so we don't need to preserve any step requests;
4905 they should be re-issued if necessary. */
4908 linux_resume_one_thread (thread_info
*thread
, bool leave_all_stopped
)
4910 struct lwp_info
*lwp
= get_thread_lwp (thread
);
4913 if (lwp
->resume
== NULL
)
4916 if (lwp
->resume
->kind
== resume_stop
)
4919 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread
));
4924 debug_printf ("stopping LWP %ld\n", lwpid_of (thread
));
4926 /* Stop the thread, and wait for the event asynchronously,
4927 through the event loop. */
4933 debug_printf ("already stopped LWP %ld\n",
4936 /* The LWP may have been stopped in an internal event that
4937 was not meant to be notified back to GDB (e.g., gdbserver
4938 breakpoint), so we should be reporting a stop event in
4941 /* If the thread already has a pending SIGSTOP, this is a
4942 no-op. Otherwise, something later will presumably resume
4943 the thread and this will cause it to cancel any pending
4944 operation, due to last_resume_kind == resume_stop. If
4945 the thread already has a pending status to report, we
4946 will still report it the next time we wait - see
4947 status_pending_p_callback. */
4949 /* If we already have a pending signal to report, then
4950 there's no need to queue a SIGSTOP, as this means we're
4951 midway through moving the LWP out of the jumppad, and we
4952 will report the pending signal as soon as that is
4954 if (lwp
->pending_signals_to_report
== NULL
)
4958 /* For stop requests, we're done. */
4960 thread
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
4964 /* If this thread which is about to be resumed has a pending status,
4965 then don't resume it - we can just report the pending status.
4966 Likewise if it is suspended, because e.g., another thread is
4967 stepping past a breakpoint. Make sure to queue any signals that
4968 would otherwise be sent. In all-stop mode, we do this decision
4969 based on if *any* thread has a pending status. If there's a
4970 thread that needs the step-over-breakpoint dance, then don't
4971 resume any other thread but that particular one. */
4972 leave_pending
= (lwp
->suspended
4973 || lwp
->status_pending_p
4974 || leave_all_stopped
);
4976 /* If we have a new signal, enqueue the signal. */
4977 if (lwp
->resume
->sig
!= 0)
4979 siginfo_t info
, *info_p
;
4981 /* If this is the same signal we were previously stopped by,
4982 make sure to queue its siginfo. */
4983 if (WIFSTOPPED (lwp
->last_status
)
4984 && WSTOPSIG (lwp
->last_status
) == lwp
->resume
->sig
4985 && ptrace (PTRACE_GETSIGINFO
, lwpid_of (thread
),
4986 (PTRACE_TYPE_ARG3
) 0, &info
) == 0)
4991 enqueue_pending_signal (lwp
, lwp
->resume
->sig
, info_p
);
4997 debug_printf ("resuming LWP %ld\n", lwpid_of (thread
));
4999 proceed_one_lwp (thread
, NULL
);
5004 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread
));
5007 thread
->last_status
.kind
= TARGET_WAITKIND_IGNORE
;
5012 linux_process_target::resume (thread_resume
*resume_info
, size_t n
)
5014 struct thread_info
*need_step_over
= NULL
;
5019 debug_printf ("linux_resume:\n");
5022 for_each_thread ([&] (thread_info
*thread
)
5024 linux_set_resume_request (thread
, resume_info
, n
);
5027 /* If there is a thread which would otherwise be resumed, which has
5028 a pending status, then don't resume any threads - we can just
5029 report the pending status. Make sure to queue any signals that
5030 would otherwise be sent. In non-stop mode, we'll apply this
5031 logic to each thread individually. We consume all pending events
5032 before considering to start a step-over (in all-stop). */
5033 bool any_pending
= false;
5035 any_pending
= find_thread (resume_status_pending_p
) != NULL
;
5037 /* If there is a thread which would otherwise be resumed, which is
5038 stopped at a breakpoint that needs stepping over, then don't
5039 resume any threads - have it step over the breakpoint with all
5040 other threads stopped, then resume all threads again. Make sure
5041 to queue any signals that would otherwise be delivered or
5043 if (!any_pending
&& supports_breakpoints ())
5044 need_step_over
= find_thread (need_step_over_p
);
5046 bool leave_all_stopped
= (need_step_over
!= NULL
|| any_pending
);
5050 if (need_step_over
!= NULL
)
5051 debug_printf ("Not resuming all, need step over\n");
5052 else if (any_pending
)
5053 debug_printf ("Not resuming, all-stop and found "
5054 "an LWP with pending status\n");
5056 debug_printf ("Resuming, no pending status or step over needed\n");
5059 /* Even if we're leaving threads stopped, queue all signals we'd
5060 otherwise deliver. */
5061 for_each_thread ([&] (thread_info
*thread
)
5063 linux_resume_one_thread (thread
, leave_all_stopped
);
5067 start_step_over (get_thread_lwp (need_step_over
));
5071 debug_printf ("linux_resume done\n");
5075 /* We may have events that were pending that can/should be sent to
5076 the client now. Trigger a linux_wait call. */
5077 if (target_is_async_p ())
5081 /* This function is called once per thread. We check the thread's
5082 last resume request, which will tell us whether to resume, step, or
5083 leave the thread stopped. Any signal the client requested to be
5084 delivered has already been enqueued at this point.
5086 If any thread that GDB wants running is stopped at an internal
5087 breakpoint that needs stepping over, we start a step-over operation
5088 on that particular thread, and leave all others stopped. */
5091 proceed_one_lwp (thread_info
*thread
, lwp_info
*except
)
5093 struct lwp_info
*lwp
= get_thread_lwp (thread
);
5100 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread
));
5105 debug_printf (" LWP %ld already running\n", lwpid_of (thread
));
5109 if (thread
->last_resume_kind
== resume_stop
5110 && thread
->last_status
.kind
!= TARGET_WAITKIND_IGNORE
)
5113 debug_printf (" client wants LWP to remain %ld stopped\n",
5118 if (lwp
->status_pending_p
)
5121 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5126 gdb_assert (lwp
->suspended
>= 0);
5131 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread
));
5135 if (thread
->last_resume_kind
== resume_stop
5136 && lwp
->pending_signals_to_report
== NULL
5137 && (lwp
->collecting_fast_tracepoint
5138 == fast_tpoint_collect_result::not_collecting
))
5140 /* We haven't reported this LWP as stopped yet (otherwise, the
5141 last_status.kind check above would catch it, and we wouldn't
5142 reach here. This LWP may have been momentarily paused by a
5143 stop_all_lwps call while handling for example, another LWP's
5144 step-over. In that case, the pending expected SIGSTOP signal
5145 that was queued at vCont;t handling time will have already
5146 been consumed by wait_for_sigstop, and so we need to requeue
5147 another one here. Note that if the LWP already has a SIGSTOP
5148 pending, this is a no-op. */
5151 debug_printf ("Client wants LWP %ld to stop. "
5152 "Making sure it has a SIGSTOP pending\n",
5158 if (thread
->last_resume_kind
== resume_step
)
5161 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5164 /* If resume_step is requested by GDB, install single-step
5165 breakpoints when the thread is about to be actually resumed if
5166 the single-step breakpoints weren't removed. */
5167 if (can_software_single_step ()
5168 && !has_single_step_breakpoints (thread
))
5169 install_software_single_step_breakpoints (lwp
);
5171 step
= maybe_hw_step (thread
);
5173 else if (lwp
->bp_reinsert
!= 0)
5176 debug_printf (" stepping LWP %ld, reinsert set\n",
5179 step
= maybe_hw_step (thread
);
5184 linux_resume_one_lwp (lwp
, step
, 0, NULL
);
5188 unsuspend_and_proceed_one_lwp (thread_info
*thread
, lwp_info
*except
)
5190 struct lwp_info
*lwp
= get_thread_lwp (thread
);
5195 lwp_suspended_decr (lwp
);
5197 proceed_one_lwp (thread
, except
);
5200 /* When we finish a step-over, set threads running again. If there's
5201 another thread that may need a step-over, now's the time to start
5202 it. Eventually, we'll move all threads past their breakpoints. */
5205 proceed_all_lwps (void)
5207 struct thread_info
*need_step_over
;
5209 /* If there is a thread which would otherwise be resumed, which is
5210 stopped at a breakpoint that needs stepping over, then don't
5211 resume any threads - have it step over the breakpoint with all
5212 other threads stopped, then resume all threads again. */
5214 if (supports_breakpoints ())
5216 need_step_over
= find_thread (need_step_over_p
);
5218 if (need_step_over
!= NULL
)
5221 debug_printf ("proceed_all_lwps: found "
5222 "thread %ld needing a step-over\n",
5223 lwpid_of (need_step_over
));
5225 start_step_over (get_thread_lwp (need_step_over
));
5231 debug_printf ("Proceeding, no step-over needed\n");
5233 for_each_thread ([] (thread_info
*thread
)
5235 proceed_one_lwp (thread
, NULL
);
5239 /* Stopped LWPs that the client wanted to be running, that don't have
5240 pending statuses, are set to run again, except for EXCEPT, if not
5241 NULL. This undoes a stop_all_lwps call. */
5244 unstop_all_lwps (int unsuspend
, struct lwp_info
*except
)
5250 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5251 lwpid_of (get_lwp_thread (except
)));
5253 debug_printf ("unstopping all lwps\n");
5257 for_each_thread ([&] (thread_info
*thread
)
5259 unsuspend_and_proceed_one_lwp (thread
, except
);
5262 for_each_thread ([&] (thread_info
*thread
)
5264 proceed_one_lwp (thread
, except
);
5269 debug_printf ("unstop_all_lwps done\n");
5275 #ifdef HAVE_LINUX_REGSETS
5277 #define use_linux_regsets 1
5279 /* Returns true if REGSET has been disabled. */
5282 regset_disabled (struct regsets_info
*info
, struct regset_info
*regset
)
5284 return (info
->disabled_regsets
!= NULL
5285 && info
->disabled_regsets
[regset
- info
->regsets
]);
5288 /* Disable REGSET. */
5291 disable_regset (struct regsets_info
*info
, struct regset_info
*regset
)
5295 dr_offset
= regset
- info
->regsets
;
5296 if (info
->disabled_regsets
== NULL
)
5297 info
->disabled_regsets
= (char *) xcalloc (1, info
->num_regsets
);
5298 info
->disabled_regsets
[dr_offset
] = 1;
5302 regsets_fetch_inferior_registers (struct regsets_info
*regsets_info
,
5303 struct regcache
*regcache
)
5305 struct regset_info
*regset
;
5306 int saw_general_regs
= 0;
5310 pid
= lwpid_of (current_thread
);
5311 for (regset
= regsets_info
->regsets
; regset
->size
>= 0; regset
++)
5316 if (regset
->size
== 0 || regset_disabled (regsets_info
, regset
))
5319 buf
= xmalloc (regset
->size
);
5321 nt_type
= regset
->nt_type
;
5325 iov
.iov_len
= regset
->size
;
5326 data
= (void *) &iov
;
5332 res
= ptrace (regset
->get_request
, pid
,
5333 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5335 res
= ptrace (regset
->get_request
, pid
, data
, nt_type
);
5340 || (errno
== EINVAL
&& regset
->type
== OPTIONAL_REGS
))
5342 /* If we get EIO on a regset, or an EINVAL and the regset is
5343 optional, do not try it again for this process mode. */
5344 disable_regset (regsets_info
, regset
);
5346 else if (errno
== ENODATA
)
5348 /* ENODATA may be returned if the regset is currently
5349 not "active". This can happen in normal operation,
5350 so suppress the warning in this case. */
5352 else if (errno
== ESRCH
)
5354 /* At this point, ESRCH should mean the process is
5355 already gone, in which case we simply ignore attempts
5356 to read its registers. */
5361 sprintf (s
, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5368 if (regset
->type
== GENERAL_REGS
)
5369 saw_general_regs
= 1;
5370 regset
->store_function (regcache
, buf
);
5374 if (saw_general_regs
)
5381 regsets_store_inferior_registers (struct regsets_info
*regsets_info
,
5382 struct regcache
*regcache
)
5384 struct regset_info
*regset
;
5385 int saw_general_regs
= 0;
5389 pid
= lwpid_of (current_thread
);
5390 for (regset
= regsets_info
->regsets
; regset
->size
>= 0; regset
++)
5395 if (regset
->size
== 0 || regset_disabled (regsets_info
, regset
)
5396 || regset
->fill_function
== NULL
)
5399 buf
= xmalloc (regset
->size
);
5401 /* First fill the buffer with the current register set contents,
5402 in case there are any items in the kernel's regset that are
5403 not in gdbserver's regcache. */
5405 nt_type
= regset
->nt_type
;
5409 iov
.iov_len
= regset
->size
;
5410 data
= (void *) &iov
;
5416 res
= ptrace (regset
->get_request
, pid
,
5417 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5419 res
= ptrace (regset
->get_request
, pid
, data
, nt_type
);
5424 /* Then overlay our cached registers on that. */
5425 regset
->fill_function (regcache
, buf
);
5427 /* Only now do we write the register set. */
5429 res
= ptrace (regset
->set_request
, pid
,
5430 (PTRACE_TYPE_ARG3
) (long) nt_type
, data
);
5432 res
= ptrace (regset
->set_request
, pid
, data
, nt_type
);
5439 || (errno
== EINVAL
&& regset
->type
== OPTIONAL_REGS
))
5441 /* If we get EIO on a regset, or an EINVAL and the regset is
5442 optional, do not try it again for this process mode. */
5443 disable_regset (regsets_info
, regset
);
5445 else if (errno
== ESRCH
)
5447 /* At this point, ESRCH should mean the process is
5448 already gone, in which case we simply ignore attempts
5449 to change its registers. See also the related
5450 comment in linux_resume_one_lwp. */
5456 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5459 else if (regset
->type
== GENERAL_REGS
)
5460 saw_general_regs
= 1;
5463 if (saw_general_regs
)
5469 #else /* !HAVE_LINUX_REGSETS */
5471 #define use_linux_regsets 0
5472 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5473 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5477 /* Return 1 if register REGNO is supported by one of the regset ptrace
5478 calls or 0 if it has to be transferred individually. */
5481 linux_register_in_regsets (const struct regs_info
*regs_info
, int regno
)
5483 unsigned char mask
= 1 << (regno
% 8);
5484 size_t index
= regno
/ 8;
5486 return (use_linux_regsets
5487 && (regs_info
->regset_bitmap
== NULL
5488 || (regs_info
->regset_bitmap
[index
] & mask
) != 0));
5491 #ifdef HAVE_LINUX_USRREGS
5494 register_addr (const struct usrregs_info
*usrregs
, int regnum
)
5498 if (regnum
< 0 || regnum
>= usrregs
->num_regs
)
5499 error ("Invalid register number %d.", regnum
);
5501 addr
= usrregs
->regmap
[regnum
];
5506 /* Fetch one register. */
5508 fetch_register (const struct usrregs_info
*usrregs
,
5509 struct regcache
*regcache
, int regno
)
5516 if (regno
>= usrregs
->num_regs
)
5518 if ((*the_low_target
.cannot_fetch_register
) (regno
))
5521 regaddr
= register_addr (usrregs
, regno
);
5525 size
= ((register_size (regcache
->tdesc
, regno
)
5526 + sizeof (PTRACE_XFER_TYPE
) - 1)
5527 & -sizeof (PTRACE_XFER_TYPE
));
5528 buf
= (char *) alloca (size
);
5530 pid
= lwpid_of (current_thread
);
5531 for (i
= 0; i
< size
; i
+= sizeof (PTRACE_XFER_TYPE
))
5534 *(PTRACE_XFER_TYPE
*) (buf
+ i
) =
5535 ptrace (PTRACE_PEEKUSER
, pid
,
5536 /* Coerce to a uintptr_t first to avoid potential gcc warning
5537 of coercing an 8 byte integer to a 4 byte pointer. */
5538 (PTRACE_TYPE_ARG3
) (uintptr_t) regaddr
, (PTRACE_TYPE_ARG4
) 0);
5539 regaddr
+= sizeof (PTRACE_XFER_TYPE
);
5542 /* Mark register REGNO unavailable. */
5543 supply_register (regcache
, regno
, NULL
);
5548 if (the_low_target
.supply_ptrace_register
)
5549 the_low_target
.supply_ptrace_register (regcache
, regno
, buf
);
5551 supply_register (regcache
, regno
, buf
);
5554 /* Store one register. */
5556 store_register (const struct usrregs_info
*usrregs
,
5557 struct regcache
*regcache
, int regno
)
5564 if (regno
>= usrregs
->num_regs
)
5566 if ((*the_low_target
.cannot_store_register
) (regno
))
5569 regaddr
= register_addr (usrregs
, regno
);
5573 size
= ((register_size (regcache
->tdesc
, regno
)
5574 + sizeof (PTRACE_XFER_TYPE
) - 1)
5575 & -sizeof (PTRACE_XFER_TYPE
));
5576 buf
= (char *) alloca (size
);
5577 memset (buf
, 0, size
);
5579 if (the_low_target
.collect_ptrace_register
)
5580 the_low_target
.collect_ptrace_register (regcache
, regno
, buf
);
5582 collect_register (regcache
, regno
, buf
);
5584 pid
= lwpid_of (current_thread
);
5585 for (i
= 0; i
< size
; i
+= sizeof (PTRACE_XFER_TYPE
))
5588 ptrace (PTRACE_POKEUSER
, pid
,
5589 /* Coerce to a uintptr_t first to avoid potential gcc warning
5590 about coercing an 8 byte integer to a 4 byte pointer. */
5591 (PTRACE_TYPE_ARG3
) (uintptr_t) regaddr
,
5592 (PTRACE_TYPE_ARG4
) *(PTRACE_XFER_TYPE
*) (buf
+ i
));
5595 /* At this point, ESRCH should mean the process is
5596 already gone, in which case we simply ignore attempts
5597 to change its registers. See also the related
5598 comment in linux_resume_one_lwp. */
5602 if ((*the_low_target
.cannot_store_register
) (regno
) == 0)
5603 error ("writing register %d: %s", regno
, safe_strerror (errno
));
5605 regaddr
+= sizeof (PTRACE_XFER_TYPE
);
5609 /* Fetch all registers, or just one, from the child process.
5610 If REGNO is -1, do this for all registers, skipping any that are
5611 assumed to have been retrieved by regsets_fetch_inferior_registers,
5612 unless ALL is non-zero.
5613 Otherwise, REGNO specifies which register (so we can save time). */
5615 usr_fetch_inferior_registers (const struct regs_info
*regs_info
,
5616 struct regcache
*regcache
, int regno
, int all
)
5618 struct usrregs_info
*usr
= regs_info
->usrregs
;
5622 for (regno
= 0; regno
< usr
->num_regs
; regno
++)
5623 if (all
|| !linux_register_in_regsets (regs_info
, regno
))
5624 fetch_register (usr
, regcache
, regno
);
5627 fetch_register (usr
, regcache
, regno
);
5630 /* Store our register values back into the inferior.
5631 If REGNO is -1, do this for all registers, skipping any that are
5632 assumed to have been saved by regsets_store_inferior_registers,
5633 unless ALL is non-zero.
5634 Otherwise, REGNO specifies which register (so we can save time). */
5636 usr_store_inferior_registers (const struct regs_info
*regs_info
,
5637 struct regcache
*regcache
, int regno
, int all
)
5639 struct usrregs_info
*usr
= regs_info
->usrregs
;
5643 for (regno
= 0; regno
< usr
->num_regs
; regno
++)
5644 if (all
|| !linux_register_in_regsets (regs_info
, regno
))
5645 store_register (usr
, regcache
, regno
);
5648 store_register (usr
, regcache
, regno
);
5651 #else /* !HAVE_LINUX_USRREGS */
5653 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5654 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5660 linux_process_target::fetch_registers (regcache
*regcache
, int regno
)
5664 const struct regs_info
*regs_info
= (*the_low_target
.regs_info
) ();
5668 if (the_low_target
.fetch_register
!= NULL
5669 && regs_info
->usrregs
!= NULL
)
5670 for (regno
= 0; regno
< regs_info
->usrregs
->num_regs
; regno
++)
5671 (*the_low_target
.fetch_register
) (regcache
, regno
);
5673 all
= regsets_fetch_inferior_registers (regs_info
->regsets_info
, regcache
);
5674 if (regs_info
->usrregs
!= NULL
)
5675 usr_fetch_inferior_registers (regs_info
, regcache
, -1, all
);
5679 if (the_low_target
.fetch_register
!= NULL
5680 && (*the_low_target
.fetch_register
) (regcache
, regno
))
5683 use_regsets
= linux_register_in_regsets (regs_info
, regno
);
5685 all
= regsets_fetch_inferior_registers (regs_info
->regsets_info
,
5687 if ((!use_regsets
|| all
) && regs_info
->usrregs
!= NULL
)
5688 usr_fetch_inferior_registers (regs_info
, regcache
, regno
, 1);
5693 linux_process_target::store_registers (regcache
*regcache
, int regno
)
5697 const struct regs_info
*regs_info
= (*the_low_target
.regs_info
) ();
5701 all
= regsets_store_inferior_registers (regs_info
->regsets_info
,
5703 if (regs_info
->usrregs
!= NULL
)
5704 usr_store_inferior_registers (regs_info
, regcache
, regno
, all
);
5708 use_regsets
= linux_register_in_regsets (regs_info
, regno
);
5710 all
= regsets_store_inferior_registers (regs_info
->regsets_info
,
5712 if ((!use_regsets
|| all
) && regs_info
->usrregs
!= NULL
)
5713 usr_store_inferior_registers (regs_info
, regcache
, regno
, 1);
5718 /* A wrapper for the read_memory target op. */
5721 linux_read_memory (CORE_ADDR memaddr
, unsigned char *myaddr
, int len
)
5723 return the_target
->pt
->read_memory (memaddr
, myaddr
, len
);
5726 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5727 to debugger memory starting at MYADDR. */
5730 linux_process_target::read_memory (CORE_ADDR memaddr
,
5731 unsigned char *myaddr
, int len
)
5733 int pid
= lwpid_of (current_thread
);
5734 PTRACE_XFER_TYPE
*buffer
;
5742 /* Try using /proc. Don't bother for one word. */
5743 if (len
>= 3 * sizeof (long))
5747 /* We could keep this file open and cache it - possibly one per
5748 thread. That requires some juggling, but is even faster. */
5749 sprintf (filename
, "/proc/%d/mem", pid
);
5750 fd
= open (filename
, O_RDONLY
| O_LARGEFILE
);
5754 /* If pread64 is available, use it. It's faster if the kernel
5755 supports it (only one syscall), and it's 64-bit safe even on
5756 32-bit platforms (for instance, SPARC debugging a SPARC64
5759 bytes
= pread64 (fd
, myaddr
, len
, memaddr
);
5762 if (lseek (fd
, memaddr
, SEEK_SET
) != -1)
5763 bytes
= read (fd
, myaddr
, len
);
5770 /* Some data was read, we'll try to get the rest with ptrace. */
5780 /* Round starting address down to longword boundary. */
5781 addr
= memaddr
& -(CORE_ADDR
) sizeof (PTRACE_XFER_TYPE
);
5782 /* Round ending address up; get number of longwords that makes. */
5783 count
= ((((memaddr
+ len
) - addr
) + sizeof (PTRACE_XFER_TYPE
) - 1)
5784 / sizeof (PTRACE_XFER_TYPE
));
5785 /* Allocate buffer of that many longwords. */
5786 buffer
= XALLOCAVEC (PTRACE_XFER_TYPE
, count
);
5788 /* Read all the longwords */
5790 for (i
= 0; i
< count
; i
++, addr
+= sizeof (PTRACE_XFER_TYPE
))
5792 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5793 about coercing an 8 byte integer to a 4 byte pointer. */
5794 buffer
[i
] = ptrace (PTRACE_PEEKTEXT
, pid
,
5795 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5796 (PTRACE_TYPE_ARG4
) 0);
5802 /* Copy appropriate bytes out of the buffer. */
5805 i
*= sizeof (PTRACE_XFER_TYPE
);
5806 i
-= memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1);
5808 (char *) buffer
+ (memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1)),
5815 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5816 memory at MEMADDR. On failure (cannot write to the inferior)
5817 returns the value of errno. Always succeeds if LEN is zero. */
5820 linux_process_target::write_memory (CORE_ADDR memaddr
,
5821 const unsigned char *myaddr
, int len
)
5824 /* Round starting address down to longword boundary. */
5825 CORE_ADDR addr
= memaddr
& -(CORE_ADDR
) sizeof (PTRACE_XFER_TYPE
);
5826 /* Round ending address up; get number of longwords that makes. */
5828 = (((memaddr
+ len
) - addr
) + sizeof (PTRACE_XFER_TYPE
) - 1)
5829 / sizeof (PTRACE_XFER_TYPE
);
5831 /* Allocate buffer of that many longwords. */
5832 PTRACE_XFER_TYPE
*buffer
= XALLOCAVEC (PTRACE_XFER_TYPE
, count
);
5834 int pid
= lwpid_of (current_thread
);
5838 /* Zero length write always succeeds. */
5844 /* Dump up to four bytes. */
5845 char str
[4 * 2 + 1];
5847 int dump
= len
< 4 ? len
: 4;
5849 for (i
= 0; i
< dump
; i
++)
5851 sprintf (p
, "%02x", myaddr
[i
]);
5856 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5857 str
, (long) memaddr
, pid
);
5860 /* Fill start and end extra bytes of buffer with existing memory data. */
5863 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5864 about coercing an 8 byte integer to a 4 byte pointer. */
5865 buffer
[0] = ptrace (PTRACE_PEEKTEXT
, pid
,
5866 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5867 (PTRACE_TYPE_ARG4
) 0);
5875 = ptrace (PTRACE_PEEKTEXT
, pid
,
5876 /* Coerce to a uintptr_t first to avoid potential gcc warning
5877 about coercing an 8 byte integer to a 4 byte pointer. */
5878 (PTRACE_TYPE_ARG3
) (uintptr_t) (addr
+ (count
- 1)
5879 * sizeof (PTRACE_XFER_TYPE
)),
5880 (PTRACE_TYPE_ARG4
) 0);
5885 /* Copy data to be written over corresponding part of buffer. */
5887 memcpy ((char *) buffer
+ (memaddr
& (sizeof (PTRACE_XFER_TYPE
) - 1)),
5890 /* Write the entire buffer. */
5892 for (i
= 0; i
< count
; i
++, addr
+= sizeof (PTRACE_XFER_TYPE
))
5895 ptrace (PTRACE_POKETEXT
, pid
,
5896 /* Coerce to a uintptr_t first to avoid potential gcc warning
5897 about coercing an 8 byte integer to a 4 byte pointer. */
5898 (PTRACE_TYPE_ARG3
) (uintptr_t) addr
,
5899 (PTRACE_TYPE_ARG4
) buffer
[i
]);
5908 linux_process_target::look_up_symbols ()
5910 #ifdef USE_THREAD_DB
5911 struct process_info
*proc
= current_process ();
5913 if (proc
->priv
->thread_db
!= NULL
)
5921 linux_process_target::request_interrupt ()
5923 /* Send a SIGINT to the process group. This acts just like the user
5924 typed a ^C on the controlling terminal. */
5925 ::kill (-signal_pid
, SIGINT
);
5929 linux_process_target::supports_read_auxv ()
5934 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5935 to debugger memory starting at MYADDR. */
5938 linux_process_target::read_auxv (CORE_ADDR offset
, unsigned char *myaddr
,
5941 char filename
[PATH_MAX
];
5943 int pid
= lwpid_of (current_thread
);
5945 xsnprintf (filename
, sizeof filename
, "/proc/%d/auxv", pid
);
5947 fd
= open (filename
, O_RDONLY
);
5951 if (offset
!= (CORE_ADDR
) 0
5952 && lseek (fd
, (off_t
) offset
, SEEK_SET
) != (off_t
) offset
)
5955 n
= read (fd
, myaddr
, len
);
5962 /* These breakpoint and watchpoint related wrapper functions simply
5963 pass on the function call if the target has registered a
5964 corresponding function. */
5967 linux_process_target::supports_z_point_type (char z_type
)
5969 return (the_low_target
.supports_z_point_type
!= NULL
5970 && the_low_target
.supports_z_point_type (z_type
));
5974 linux_process_target::insert_point (enum raw_bkpt_type type
, CORE_ADDR addr
,
5975 int size
, raw_breakpoint
*bp
)
5977 if (type
== raw_bkpt_type_sw
)
5978 return insert_memory_breakpoint (bp
);
5979 else if (the_low_target
.insert_point
!= NULL
)
5980 return the_low_target
.insert_point (type
, addr
, size
, bp
);
5982 /* Unsupported (see target.h). */
5987 linux_process_target::remove_point (enum raw_bkpt_type type
, CORE_ADDR addr
,
5988 int size
, raw_breakpoint
*bp
)
5990 if (type
== raw_bkpt_type_sw
)
5991 return remove_memory_breakpoint (bp
);
5992 else if (the_low_target
.remove_point
!= NULL
)
5993 return the_low_target
.remove_point (type
, addr
, size
, bp
);
5995 /* Unsupported (see target.h). */
5999 /* Implement the stopped_by_sw_breakpoint target_ops
6003 linux_process_target::stopped_by_sw_breakpoint ()
6005 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6007 return (lwp
->stop_reason
== TARGET_STOPPED_BY_SW_BREAKPOINT
);
6010 /* Implement the supports_stopped_by_sw_breakpoint target_ops
6014 linux_process_target::supports_stopped_by_sw_breakpoint ()
6016 return USE_SIGTRAP_SIGINFO
;
6019 /* Implement the stopped_by_hw_breakpoint target_ops
6023 linux_process_target::stopped_by_hw_breakpoint ()
6025 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6027 return (lwp
->stop_reason
== TARGET_STOPPED_BY_HW_BREAKPOINT
);
6030 /* Implement the supports_stopped_by_hw_breakpoint target_ops
6034 linux_process_target::supports_stopped_by_hw_breakpoint ()
6036 return USE_SIGTRAP_SIGINFO
;
6039 /* Implement the supports_hardware_single_step target_ops method. */
6042 linux_process_target::supports_hardware_single_step ()
6044 return can_hardware_single_step ();
6048 linux_supports_software_single_step (void)
6050 return can_software_single_step ();
6054 linux_process_target::stopped_by_watchpoint ()
6056 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6058 return lwp
->stop_reason
== TARGET_STOPPED_BY_WATCHPOINT
;
6062 linux_process_target::stopped_data_address ()
6064 struct lwp_info
*lwp
= get_thread_lwp (current_thread
);
6066 return lwp
->stopped_data_address
;
6069 /* This is only used for targets that define PT_TEXT_ADDR,
6070 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6071 the target has different ways of acquiring this information, like
6075 linux_process_target::supports_read_offsets ()
6077 #ifdef SUPPORTS_READ_OFFSETS
6084 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6085 to tell gdb about. */
6088 linux_process_target::read_offsets (CORE_ADDR
*text_p
, CORE_ADDR
*data_p
)
6090 #ifdef SUPPORTS_READ_OFFSETS
6091 unsigned long text
, text_end
, data
;
6092 int pid
= lwpid_of (current_thread
);
6096 text
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_TEXT_ADDR
,
6097 (PTRACE_TYPE_ARG4
) 0);
6098 text_end
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_TEXT_END_ADDR
,
6099 (PTRACE_TYPE_ARG4
) 0);
6100 data
= ptrace (PTRACE_PEEKUSER
, pid
, (PTRACE_TYPE_ARG3
) PT_DATA_ADDR
,
6101 (PTRACE_TYPE_ARG4
) 0);
6105 /* Both text and data offsets produced at compile-time (and so
6106 used by gdb) are relative to the beginning of the program,
6107 with the data segment immediately following the text segment.
6108 However, the actual runtime layout in memory may put the data
6109 somewhere else, so when we send gdb a data base-address, we
6110 use the real data base address and subtract the compile-time
6111 data base-address from it (which is just the length of the
6112 text segment). BSS immediately follows data in both
6115 *data_p
= data
- (text_end
- text
);
6121 gdb_assert_not_reached ("target op read_offsets not supported");
6126 linux_process_target::supports_get_tls_address ()
6128 #ifdef USE_THREAD_DB
6136 linux_process_target::get_tls_address (thread_info
*thread
,
6138 CORE_ADDR load_module
,
6141 #ifdef USE_THREAD_DB
6142 return thread_db_get_tls_address (thread
, offset
, load_module
, address
);
6149 linux_process_target::supports_qxfer_osdata ()
6155 linux_process_target::qxfer_osdata (const char *annex
,
6156 unsigned char *readbuf
,
6157 unsigned const char *writebuf
,
6158 CORE_ADDR offset
, int len
)
6160 return linux_common_xfer_osdata (annex
, readbuf
, offset
, len
);
6163 /* Convert a native/host siginfo object, into/from the siginfo in the
6164 layout of the inferiors' architecture. */
6167 siginfo_fixup (siginfo_t
*siginfo
, gdb_byte
*inf_siginfo
, int direction
)
6171 if (the_low_target
.siginfo_fixup
!= NULL
)
6172 done
= the_low_target
.siginfo_fixup (siginfo
, inf_siginfo
, direction
);
6174 /* If there was no callback, or the callback didn't do anything,
6175 then just do a straight memcpy. */
6179 memcpy (siginfo
, inf_siginfo
, sizeof (siginfo_t
));
6181 memcpy (inf_siginfo
, siginfo
, sizeof (siginfo_t
));
6186 linux_process_target::supports_qxfer_siginfo ()
6192 linux_process_target::qxfer_siginfo (const char *annex
,
6193 unsigned char *readbuf
,
6194 unsigned const char *writebuf
,
6195 CORE_ADDR offset
, int len
)
6199 gdb_byte inf_siginfo
[sizeof (siginfo_t
)];
6201 if (current_thread
== NULL
)
6204 pid
= lwpid_of (current_thread
);
6207 debug_printf ("%s siginfo for lwp %d.\n",
6208 readbuf
!= NULL
? "Reading" : "Writing",
6211 if (offset
>= sizeof (siginfo
))
6214 if (ptrace (PTRACE_GETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
) != 0)
6217 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6218 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6219 inferior with a 64-bit GDBSERVER should look the same as debugging it
6220 with a 32-bit GDBSERVER, we need to convert it. */
6221 siginfo_fixup (&siginfo
, inf_siginfo
, 0);
6223 if (offset
+ len
> sizeof (siginfo
))
6224 len
= sizeof (siginfo
) - offset
;
6226 if (readbuf
!= NULL
)
6227 memcpy (readbuf
, inf_siginfo
+ offset
, len
);
6230 memcpy (inf_siginfo
+ offset
, writebuf
, len
);
6232 /* Convert back to ptrace layout before flushing it out. */
6233 siginfo_fixup (&siginfo
, inf_siginfo
, 1);
6235 if (ptrace (PTRACE_SETSIGINFO
, pid
, (PTRACE_TYPE_ARG3
) 0, &siginfo
) != 0)
6242 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6243 so we notice when children change state; as the handler for the
6244 sigsuspend in my_waitpid. */
6247 sigchld_handler (int signo
)
6249 int old_errno
= errno
;
6255 /* Use the async signal safe debug function. */
6256 if (debug_write ("sigchld_handler\n",
6257 sizeof ("sigchld_handler\n") - 1) < 0)
6258 break; /* just ignore */
6262 if (target_is_async_p ())
6263 async_file_mark (); /* trigger a linux_wait */
6269 linux_process_target::supports_non_stop ()
6275 linux_process_target::async (bool enable
)
6277 bool previous
= target_is_async_p ();
6280 debug_printf ("linux_async (%d), previous=%d\n",
6283 if (previous
!= enable
)
6286 sigemptyset (&mask
);
6287 sigaddset (&mask
, SIGCHLD
);
6289 gdb_sigmask (SIG_BLOCK
, &mask
, NULL
);
6293 if (pipe (linux_event_pipe
) == -1)
6295 linux_event_pipe
[0] = -1;
6296 linux_event_pipe
[1] = -1;
6297 gdb_sigmask (SIG_UNBLOCK
, &mask
, NULL
);
6299 warning ("creating event pipe failed.");
6303 fcntl (linux_event_pipe
[0], F_SETFL
, O_NONBLOCK
);
6304 fcntl (linux_event_pipe
[1], F_SETFL
, O_NONBLOCK
);
6306 /* Register the event loop handler. */
6307 add_file_handler (linux_event_pipe
[0],
6308 handle_target_event
, NULL
);
6310 /* Always trigger a linux_wait. */
6315 delete_file_handler (linux_event_pipe
[0]);
6317 close (linux_event_pipe
[0]);
6318 close (linux_event_pipe
[1]);
6319 linux_event_pipe
[0] = -1;
6320 linux_event_pipe
[1] = -1;
6323 gdb_sigmask (SIG_UNBLOCK
, &mask
, NULL
);
6330 linux_process_target::start_non_stop (bool nonstop
)
6332 /* Register or unregister from event-loop accordingly. */
6333 target_async (nonstop
);
6335 if (target_is_async_p () != (nonstop
!= false))
6342 linux_process_target::supports_multi_process ()
6347 /* Check if fork events are supported. */
6350 linux_process_target::supports_fork_events ()
6352 return linux_supports_tracefork ();
6355 /* Check if vfork events are supported. */
6358 linux_process_target::supports_vfork_events ()
6360 return linux_supports_tracefork ();
6363 /* Check if exec events are supported. */
6366 linux_process_target::supports_exec_events ()
6368 return linux_supports_traceexec ();
6371 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6372 ptrace flags for all inferiors. This is in case the new GDB connection
6373 doesn't support the same set of events that the previous one did. */
6376 linux_handle_new_gdb_connection (void)
6378 /* Request that all the lwps reset their ptrace options. */
6379 for_each_thread ([] (thread_info
*thread
)
6381 struct lwp_info
*lwp
= get_thread_lwp (thread
);
6385 /* Stop the lwp so we can modify its ptrace options. */
6386 lwp
->must_set_ptrace_flags
= 1;
6387 linux_stop_lwp (lwp
);
6391 /* Already stopped; go ahead and set the ptrace options. */
6392 struct process_info
*proc
= find_process_pid (pid_of (thread
));
6393 int options
= linux_low_ptrace_options (proc
->attached
);
6395 linux_enable_event_reporting (lwpid_of (thread
), options
);
6396 lwp
->must_set_ptrace_flags
= 0;
6402 linux_supports_disable_randomization (void)
6404 #ifdef HAVE_PERSONALITY
6412 linux_supports_agent (void)
6418 linux_supports_range_stepping (void)
6420 if (can_software_single_step ())
6422 if (*the_low_target
.supports_range_stepping
== NULL
)
6425 return (*the_low_target
.supports_range_stepping
) ();
6428 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6429 struct target_loadseg
6431 /* Core address to which the segment is mapped. */
6433 /* VMA recorded in the program header. */
6435 /* Size of this segment in memory. */
6439 # if defined PT_GETDSBT
6440 struct target_loadmap
6442 /* Protocol version number, must be zero. */
6444 /* Pointer to the DSBT table, its size, and the DSBT index. */
6445 unsigned *dsbt_table
;
6446 unsigned dsbt_size
, dsbt_index
;
6447 /* Number of segments in this map. */
6449 /* The actual memory map. */
6450 struct target_loadseg segs
[/*nsegs*/];
6452 # define LINUX_LOADMAP PT_GETDSBT
6453 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6454 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6456 struct target_loadmap
6458 /* Protocol version number, must be zero. */
6460 /* Number of segments in this map. */
6462 /* The actual memory map. */
6463 struct target_loadseg segs
[/*nsegs*/];
6465 # define LINUX_LOADMAP PTRACE_GETFDPIC
6466 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6467 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6471 linux_read_loadmap (const char *annex
, CORE_ADDR offset
,
6472 unsigned char *myaddr
, unsigned int len
)
6474 int pid
= lwpid_of (current_thread
);
6476 struct target_loadmap
*data
= NULL
;
6477 unsigned int actual_length
, copy_length
;
6479 if (strcmp (annex
, "exec") == 0)
6480 addr
= (int) LINUX_LOADMAP_EXEC
;
6481 else if (strcmp (annex
, "interp") == 0)
6482 addr
= (int) LINUX_LOADMAP_INTERP
;
6486 if (ptrace (LINUX_LOADMAP
, pid
, addr
, &data
) != 0)
6492 actual_length
= sizeof (struct target_loadmap
)
6493 + sizeof (struct target_loadseg
) * data
->nsegs
;
6495 if (offset
< 0 || offset
> actual_length
)
6498 copy_length
= actual_length
- offset
< len
? actual_length
- offset
: len
;
6499 memcpy (myaddr
, (char *) data
+ offset
, copy_length
);
6503 # define linux_read_loadmap NULL
6504 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6507 linux_process_qsupported (char **features
, int count
)
6509 if (the_low_target
.process_qsupported
!= NULL
)
6510 the_low_target
.process_qsupported (features
, count
);
6514 linux_supports_catch_syscall (void)
6516 return (the_low_target
.get_syscall_trapinfo
!= NULL
6517 && linux_supports_tracesysgood ());
6521 linux_get_ipa_tdesc_idx (void)
6523 if (the_low_target
.get_ipa_tdesc_idx
== NULL
)
6526 return (*the_low_target
.get_ipa_tdesc_idx
) ();
6530 linux_supports_tracepoints (void)
6532 if (*the_low_target
.supports_tracepoints
== NULL
)
6535 return (*the_low_target
.supports_tracepoints
) ();
6539 linux_read_pc (struct regcache
*regcache
)
6541 if (the_low_target
.get_pc
== NULL
)
6544 return (*the_low_target
.get_pc
) (regcache
);
6548 linux_write_pc (struct regcache
*regcache
, CORE_ADDR pc
)
6550 gdb_assert (the_low_target
.set_pc
!= NULL
);
6552 (*the_low_target
.set_pc
) (regcache
, pc
);
6556 linux_thread_stopped (struct thread_info
*thread
)
6558 return get_thread_lwp (thread
)->stopped
;
6561 /* This exposes stop-all-threads functionality to other modules. */
6564 linux_pause_all (int freeze
)
6566 stop_all_lwps (freeze
, NULL
);
6569 /* This exposes unstop-all-threads functionality to other gdbserver
6573 linux_unpause_all (int unfreeze
)
6575 unstop_all_lwps (unfreeze
, NULL
);
6579 linux_process_target::prepare_to_access_memory ()
6581 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6584 linux_pause_all (1);
6589 linux_process_target::done_accessing_memory ()
6591 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6594 linux_unpause_all (1);
6598 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint
, CORE_ADDR tpaddr
,
6599 CORE_ADDR collector
,
6602 CORE_ADDR
*jump_entry
,
6603 CORE_ADDR
*trampoline
,
6604 ULONGEST
*trampoline_size
,
6605 unsigned char *jjump_pad_insn
,
6606 ULONGEST
*jjump_pad_insn_size
,
6607 CORE_ADDR
*adjusted_insn_addr
,
6608 CORE_ADDR
*adjusted_insn_addr_end
,
6611 return (*the_low_target
.install_fast_tracepoint_jump_pad
)
6612 (tpoint
, tpaddr
, collector
, lockaddr
, orig_size
,
6613 jump_entry
, trampoline
, trampoline_size
,
6614 jjump_pad_insn
, jjump_pad_insn_size
,
6615 adjusted_insn_addr
, adjusted_insn_addr_end
,
6619 static struct emit_ops
*
6620 linux_emit_ops (void)
6622 if (the_low_target
.emit_ops
!= NULL
)
6623 return (*the_low_target
.emit_ops
) ();
6629 linux_get_min_fast_tracepoint_insn_len (void)
6631 return (*the_low_target
.get_min_fast_tracepoint_insn_len
) ();
6634 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6637 get_phdr_phnum_from_proc_auxv (const int pid
, const int is_elf64
,
6638 CORE_ADDR
*phdr_memaddr
, int *num_phdr
)
6640 char filename
[PATH_MAX
];
6642 const int auxv_size
= is_elf64
6643 ? sizeof (Elf64_auxv_t
) : sizeof (Elf32_auxv_t
);
6644 char buf
[sizeof (Elf64_auxv_t
)]; /* The larger of the two. */
6646 xsnprintf (filename
, sizeof filename
, "/proc/%d/auxv", pid
);
6648 fd
= open (filename
, O_RDONLY
);
6654 while (read (fd
, buf
, auxv_size
) == auxv_size
6655 && (*phdr_memaddr
== 0 || *num_phdr
== 0))
6659 Elf64_auxv_t
*const aux
= (Elf64_auxv_t
*) buf
;
6661 switch (aux
->a_type
)
6664 *phdr_memaddr
= aux
->a_un
.a_val
;
6667 *num_phdr
= aux
->a_un
.a_val
;
6673 Elf32_auxv_t
*const aux
= (Elf32_auxv_t
*) buf
;
6675 switch (aux
->a_type
)
6678 *phdr_memaddr
= aux
->a_un
.a_val
;
6681 *num_phdr
= aux
->a_un
.a_val
;
6689 if (*phdr_memaddr
== 0 || *num_phdr
== 0)
6691 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6692 "phdr_memaddr = %ld, phdr_num = %d",
6693 (long) *phdr_memaddr
, *num_phdr
);
6700 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6703 get_dynamic (const int pid
, const int is_elf64
)
6705 CORE_ADDR phdr_memaddr
, relocation
;
6707 unsigned char *phdr_buf
;
6708 const int phdr_size
= is_elf64
? sizeof (Elf64_Phdr
) : sizeof (Elf32_Phdr
);
6710 if (get_phdr_phnum_from_proc_auxv (pid
, is_elf64
, &phdr_memaddr
, &num_phdr
))
6713 gdb_assert (num_phdr
< 100); /* Basic sanity check. */
6714 phdr_buf
= (unsigned char *) alloca (num_phdr
* phdr_size
);
6716 if (linux_read_memory (phdr_memaddr
, phdr_buf
, num_phdr
* phdr_size
))
6719 /* Compute relocation: it is expected to be 0 for "regular" executables,
6720 non-zero for PIE ones. */
6722 for (i
= 0; relocation
== -1 && i
< num_phdr
; i
++)
6725 Elf64_Phdr
*const p
= (Elf64_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6727 if (p
->p_type
== PT_PHDR
)
6728 relocation
= phdr_memaddr
- p
->p_vaddr
;
6732 Elf32_Phdr
*const p
= (Elf32_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6734 if (p
->p_type
== PT_PHDR
)
6735 relocation
= phdr_memaddr
- p
->p_vaddr
;
6738 if (relocation
== -1)
6740 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6741 any real world executables, including PIE executables, have always
6742 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6743 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6744 or present DT_DEBUG anyway (fpc binaries are statically linked).
6746 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6748 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6753 for (i
= 0; i
< num_phdr
; i
++)
6757 Elf64_Phdr
*const p
= (Elf64_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6759 if (p
->p_type
== PT_DYNAMIC
)
6760 return p
->p_vaddr
+ relocation
;
6764 Elf32_Phdr
*const p
= (Elf32_Phdr
*) (phdr_buf
+ i
* phdr_size
);
6766 if (p
->p_type
== PT_DYNAMIC
)
6767 return p
->p_vaddr
+ relocation
;
6774 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6775 can be 0 if the inferior does not yet have the library list initialized.
6776 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6777 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6780 get_r_debug (const int pid
, const int is_elf64
)
6782 CORE_ADDR dynamic_memaddr
;
6783 const int dyn_size
= is_elf64
? sizeof (Elf64_Dyn
) : sizeof (Elf32_Dyn
);
6784 unsigned char buf
[sizeof (Elf64_Dyn
)]; /* The larger of the two. */
6787 dynamic_memaddr
= get_dynamic (pid
, is_elf64
);
6788 if (dynamic_memaddr
== 0)
6791 while (linux_read_memory (dynamic_memaddr
, buf
, dyn_size
) == 0)
6795 Elf64_Dyn
*const dyn
= (Elf64_Dyn
*) buf
;
6796 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6800 unsigned char buf
[sizeof (Elf64_Xword
)];
6804 #ifdef DT_MIPS_RLD_MAP
6805 if (dyn
->d_tag
== DT_MIPS_RLD_MAP
)
6807 if (linux_read_memory (dyn
->d_un
.d_val
,
6808 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6813 #endif /* DT_MIPS_RLD_MAP */
6814 #ifdef DT_MIPS_RLD_MAP_REL
6815 if (dyn
->d_tag
== DT_MIPS_RLD_MAP_REL
)
6817 if (linux_read_memory (dyn
->d_un
.d_val
+ dynamic_memaddr
,
6818 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6823 #endif /* DT_MIPS_RLD_MAP_REL */
6825 if (dyn
->d_tag
== DT_DEBUG
&& map
== -1)
6826 map
= dyn
->d_un
.d_val
;
6828 if (dyn
->d_tag
== DT_NULL
)
6833 Elf32_Dyn
*const dyn
= (Elf32_Dyn
*) buf
;
6834 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6838 unsigned char buf
[sizeof (Elf32_Word
)];
6842 #ifdef DT_MIPS_RLD_MAP
6843 if (dyn
->d_tag
== DT_MIPS_RLD_MAP
)
6845 if (linux_read_memory (dyn
->d_un
.d_val
,
6846 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6851 #endif /* DT_MIPS_RLD_MAP */
6852 #ifdef DT_MIPS_RLD_MAP_REL
6853 if (dyn
->d_tag
== DT_MIPS_RLD_MAP_REL
)
6855 if (linux_read_memory (dyn
->d_un
.d_val
+ dynamic_memaddr
,
6856 rld_map
.buf
, sizeof (rld_map
.buf
)) == 0)
6861 #endif /* DT_MIPS_RLD_MAP_REL */
6863 if (dyn
->d_tag
== DT_DEBUG
&& map
== -1)
6864 map
= dyn
->d_un
.d_val
;
6866 if (dyn
->d_tag
== DT_NULL
)
6870 dynamic_memaddr
+= dyn_size
;
6876 /* Read one pointer from MEMADDR in the inferior. */
6879 read_one_ptr (CORE_ADDR memaddr
, CORE_ADDR
*ptr
, int ptr_size
)
6883 /* Go through a union so this works on either big or little endian
6884 hosts, when the inferior's pointer size is smaller than the size
6885 of CORE_ADDR. It is assumed the inferior's endianness is the
6886 same of the superior's. */
6889 CORE_ADDR core_addr
;
6894 ret
= linux_read_memory (memaddr
, &addr
.uc
, ptr_size
);
6897 if (ptr_size
== sizeof (CORE_ADDR
))
6898 *ptr
= addr
.core_addr
;
6899 else if (ptr_size
== sizeof (unsigned int))
6902 gdb_assert_not_reached ("unhandled pointer size");
6907 struct link_map_offsets
6909 /* Offset and size of r_debug.r_version. */
6910 int r_version_offset
;
6912 /* Offset and size of r_debug.r_map. */
6915 /* Offset to l_addr field in struct link_map. */
6918 /* Offset to l_name field in struct link_map. */
6921 /* Offset to l_ld field in struct link_map. */
6924 /* Offset to l_next field in struct link_map. */
6927 /* Offset to l_prev field in struct link_map. */
6931 /* Construct qXfer:libraries-svr4:read reply. */
6934 linux_qxfer_libraries_svr4 (const char *annex
, unsigned char *readbuf
,
6935 unsigned const char *writebuf
,
6936 CORE_ADDR offset
, int len
)
6938 struct process_info_private
*const priv
= current_process ()->priv
;
6939 char filename
[PATH_MAX
];
6942 static const struct link_map_offsets lmo_32bit_offsets
=
6944 0, /* r_version offset. */
6945 4, /* r_debug.r_map offset. */
6946 0, /* l_addr offset in link_map. */
6947 4, /* l_name offset in link_map. */
6948 8, /* l_ld offset in link_map. */
6949 12, /* l_next offset in link_map. */
6950 16 /* l_prev offset in link_map. */
6953 static const struct link_map_offsets lmo_64bit_offsets
=
6955 0, /* r_version offset. */
6956 8, /* r_debug.r_map offset. */
6957 0, /* l_addr offset in link_map. */
6958 8, /* l_name offset in link_map. */
6959 16, /* l_ld offset in link_map. */
6960 24, /* l_next offset in link_map. */
6961 32 /* l_prev offset in link_map. */
6963 const struct link_map_offsets
*lmo
;
6964 unsigned int machine
;
6966 CORE_ADDR lm_addr
= 0, lm_prev
= 0;
6967 CORE_ADDR l_name
, l_addr
, l_ld
, l_next
, l_prev
;
6968 int header_done
= 0;
6970 if (writebuf
!= NULL
)
6972 if (readbuf
== NULL
)
6975 pid
= lwpid_of (current_thread
);
6976 xsnprintf (filename
, sizeof filename
, "/proc/%d/exe", pid
);
6977 is_elf64
= elf_64_file_p (filename
, &machine
);
6978 lmo
= is_elf64
? &lmo_64bit_offsets
: &lmo_32bit_offsets
;
6979 ptr_size
= is_elf64
? 8 : 4;
6981 while (annex
[0] != '\0')
6987 sep
= strchr (annex
, '=');
6991 name_len
= sep
- annex
;
6992 if (name_len
== 5 && startswith (annex
, "start"))
6994 else if (name_len
== 4 && startswith (annex
, "prev"))
6998 annex
= strchr (sep
, ';');
7005 annex
= decode_address_to_semicolon (addrp
, sep
+ 1);
7012 if (priv
->r_debug
== 0)
7013 priv
->r_debug
= get_r_debug (pid
, is_elf64
);
7015 /* We failed to find DT_DEBUG. Such situation will not change
7016 for this inferior - do not retry it. Report it to GDB as
7017 E01, see for the reasons at the GDB solib-svr4.c side. */
7018 if (priv
->r_debug
== (CORE_ADDR
) -1)
7021 if (priv
->r_debug
!= 0)
7023 if (linux_read_memory (priv
->r_debug
+ lmo
->r_version_offset
,
7024 (unsigned char *) &r_version
,
7025 sizeof (r_version
)) != 0
7028 warning ("unexpected r_debug version %d", r_version
);
7030 else if (read_one_ptr (priv
->r_debug
+ lmo
->r_map_offset
,
7031 &lm_addr
, ptr_size
) != 0)
7033 warning ("unable to read r_map from 0x%lx",
7034 (long) priv
->r_debug
+ lmo
->r_map_offset
);
7039 std::string document
= "<library-list-svr4 version=\"1.0\"";
7042 && read_one_ptr (lm_addr
+ lmo
->l_name_offset
,
7043 &l_name
, ptr_size
) == 0
7044 && read_one_ptr (lm_addr
+ lmo
->l_addr_offset
,
7045 &l_addr
, ptr_size
) == 0
7046 && read_one_ptr (lm_addr
+ lmo
->l_ld_offset
,
7047 &l_ld
, ptr_size
) == 0
7048 && read_one_ptr (lm_addr
+ lmo
->l_prev_offset
,
7049 &l_prev
, ptr_size
) == 0
7050 && read_one_ptr (lm_addr
+ lmo
->l_next_offset
,
7051 &l_next
, ptr_size
) == 0)
7053 unsigned char libname
[PATH_MAX
];
7055 if (lm_prev
!= l_prev
)
7057 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7058 (long) lm_prev
, (long) l_prev
);
7062 /* Ignore the first entry even if it has valid name as the first entry
7063 corresponds to the main executable. The first entry should not be
7064 skipped if the dynamic loader was loaded late by a static executable
7065 (see solib-svr4.c parameter ignore_first). But in such case the main
7066 executable does not have PT_DYNAMIC present and this function already
7067 exited above due to failed get_r_debug. */
7069 string_appendf (document
, " main-lm=\"0x%lx\"", (unsigned long) lm_addr
);
7072 /* Not checking for error because reading may stop before
7073 we've got PATH_MAX worth of characters. */
7075 linux_read_memory (l_name
, libname
, sizeof (libname
) - 1);
7076 libname
[sizeof (libname
) - 1] = '\0';
7077 if (libname
[0] != '\0')
7081 /* Terminate `<library-list-svr4'. */
7086 string_appendf (document
, "<library name=\"");
7087 xml_escape_text_append (&document
, (char *) libname
);
7088 string_appendf (document
, "\" lm=\"0x%lx\" "
7089 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7090 (unsigned long) lm_addr
, (unsigned long) l_addr
,
7091 (unsigned long) l_ld
);
7101 /* Empty list; terminate `<library-list-svr4'. */
7105 document
+= "</library-list-svr4>";
7107 int document_len
= document
.length ();
7108 if (offset
< document_len
)
7109 document_len
-= offset
;
7112 if (len
> document_len
)
7115 memcpy (readbuf
, document
.data () + offset
, len
);
7120 #ifdef HAVE_LINUX_BTRACE
7122 /* See to_disable_btrace target method. */
7125 linux_low_disable_btrace (struct btrace_target_info
*tinfo
)
7127 enum btrace_error err
;
7129 err
= linux_disable_btrace (tinfo
);
7130 return (err
== BTRACE_ERR_NONE
? 0 : -1);
7133 /* Encode an Intel Processor Trace configuration. */
7136 linux_low_encode_pt_config (struct buffer
*buffer
,
7137 const struct btrace_data_pt_config
*config
)
7139 buffer_grow_str (buffer
, "<pt-config>\n");
7141 switch (config
->cpu
.vendor
)
7144 buffer_xml_printf (buffer
, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7145 "model=\"%u\" stepping=\"%u\"/>\n",
7146 config
->cpu
.family
, config
->cpu
.model
,
7147 config
->cpu
.stepping
);
7154 buffer_grow_str (buffer
, "</pt-config>\n");
7157 /* Encode a raw buffer. */
7160 linux_low_encode_raw (struct buffer
*buffer
, const gdb_byte
*data
,
7166 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7167 buffer_grow_str (buffer
, "<raw>\n");
7173 elem
[0] = tohex ((*data
>> 4) & 0xf);
7174 elem
[1] = tohex (*data
++ & 0xf);
7176 buffer_grow (buffer
, elem
, 2);
7179 buffer_grow_str (buffer
, "</raw>\n");
7182 /* See to_read_btrace target method. */
7185 linux_low_read_btrace (struct btrace_target_info
*tinfo
, struct buffer
*buffer
,
7186 enum btrace_read_type type
)
7188 struct btrace_data btrace
;
7189 enum btrace_error err
;
7191 err
= linux_read_btrace (&btrace
, tinfo
, type
);
7192 if (err
!= BTRACE_ERR_NONE
)
7194 if (err
== BTRACE_ERR_OVERFLOW
)
7195 buffer_grow_str0 (buffer
, "E.Overflow.");
7197 buffer_grow_str0 (buffer
, "E.Generic Error.");
7202 switch (btrace
.format
)
7204 case BTRACE_FORMAT_NONE
:
7205 buffer_grow_str0 (buffer
, "E.No Trace.");
7208 case BTRACE_FORMAT_BTS
:
7209 buffer_grow_str (buffer
, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7210 buffer_grow_str (buffer
, "<btrace version=\"1.0\">\n");
7212 for (const btrace_block
&block
: *btrace
.variant
.bts
.blocks
)
7213 buffer_xml_printf (buffer
, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7214 paddress (block
.begin
), paddress (block
.end
));
7216 buffer_grow_str0 (buffer
, "</btrace>\n");
7219 case BTRACE_FORMAT_PT
:
7220 buffer_grow_str (buffer
, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7221 buffer_grow_str (buffer
, "<btrace version=\"1.0\">\n");
7222 buffer_grow_str (buffer
, "<pt>\n");
7224 linux_low_encode_pt_config (buffer
, &btrace
.variant
.pt
.config
);
7226 linux_low_encode_raw (buffer
, btrace
.variant
.pt
.data
,
7227 btrace
.variant
.pt
.size
);
7229 buffer_grow_str (buffer
, "</pt>\n");
7230 buffer_grow_str0 (buffer
, "</btrace>\n");
7234 buffer_grow_str0 (buffer
, "E.Unsupported Trace Format.");
7241 /* See to_btrace_conf target method. */
7244 linux_low_btrace_conf (const struct btrace_target_info
*tinfo
,
7245 struct buffer
*buffer
)
7247 const struct btrace_config
*conf
;
7249 buffer_grow_str (buffer
, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7250 buffer_grow_str (buffer
, "<btrace-conf version=\"1.0\">\n");
7252 conf
= linux_btrace_conf (tinfo
);
7255 switch (conf
->format
)
7257 case BTRACE_FORMAT_NONE
:
7260 case BTRACE_FORMAT_BTS
:
7261 buffer_xml_printf (buffer
, "<bts");
7262 buffer_xml_printf (buffer
, " size=\"0x%x\"", conf
->bts
.size
);
7263 buffer_xml_printf (buffer
, " />\n");
7266 case BTRACE_FORMAT_PT
:
7267 buffer_xml_printf (buffer
, "<pt");
7268 buffer_xml_printf (buffer
, " size=\"0x%x\"", conf
->pt
.size
);
7269 buffer_xml_printf (buffer
, "/>\n");
7274 buffer_grow_str0 (buffer
, "</btrace-conf>\n");
7277 #endif /* HAVE_LINUX_BTRACE */
7279 /* See nat/linux-nat.h. */
7282 current_lwp_ptid (void)
7284 return ptid_of (current_thread
);
7287 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7290 linux_breakpoint_kind_from_pc (CORE_ADDR
*pcptr
)
7292 if (the_low_target
.breakpoint_kind_from_pc
!= NULL
)
7293 return (*the_low_target
.breakpoint_kind_from_pc
) (pcptr
);
7295 return default_breakpoint_kind_from_pc (pcptr
);
7298 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7300 static const gdb_byte
*
7301 linux_sw_breakpoint_from_kind (int kind
, int *size
)
7303 gdb_assert (the_low_target
.sw_breakpoint_from_kind
!= NULL
);
7305 return (*the_low_target
.sw_breakpoint_from_kind
) (kind
, size
);
7308 /* Implementation of the target_ops method
7309 "breakpoint_kind_from_current_state". */
7312 linux_breakpoint_kind_from_current_state (CORE_ADDR
*pcptr
)
7314 if (the_low_target
.breakpoint_kind_from_current_state
!= NULL
)
7315 return (*the_low_target
.breakpoint_kind_from_current_state
) (pcptr
);
7317 return linux_breakpoint_kind_from_pc (pcptr
);
7320 /* Default implementation of linux_target_ops method "set_pc" for
7321 32-bit pc register which is literally named "pc". */
7324 linux_set_pc_32bit (struct regcache
*regcache
, CORE_ADDR pc
)
7326 uint32_t newpc
= pc
;
7328 supply_register_by_name (regcache
, "pc", &newpc
);
7331 /* Default implementation of linux_target_ops method "get_pc" for
7332 32-bit pc register which is literally named "pc". */
7335 linux_get_pc_32bit (struct regcache
*regcache
)
7339 collect_register_by_name (regcache
, "pc", &pc
);
7341 debug_printf ("stop pc is 0x%" PRIx32
"\n", pc
);
7345 /* Default implementation of linux_target_ops method "set_pc" for
7346 64-bit pc register which is literally named "pc". */
7349 linux_set_pc_64bit (struct regcache
*regcache
, CORE_ADDR pc
)
7351 uint64_t newpc
= pc
;
7353 supply_register_by_name (regcache
, "pc", &newpc
);
7356 /* Default implementation of linux_target_ops method "get_pc" for
7357 64-bit pc register which is literally named "pc". */
7360 linux_get_pc_64bit (struct regcache
*regcache
)
7364 collect_register_by_name (regcache
, "pc", &pc
);
7366 debug_printf ("stop pc is 0x%" PRIx64
"\n", pc
);
7370 /* See linux-low.h. */
7373 linux_get_auxv (int wordsize
, CORE_ADDR match
, CORE_ADDR
*valp
)
7375 gdb_byte
*data
= (gdb_byte
*) alloca (2 * wordsize
);
7378 gdb_assert (wordsize
== 4 || wordsize
== 8);
7380 while (the_target
->pt
->read_auxv (offset
, data
, 2 * wordsize
) == 2 * wordsize
)
7384 uint32_t *data_p
= (uint32_t *) data
;
7385 if (data_p
[0] == match
)
7393 uint64_t *data_p
= (uint64_t *) data
;
7394 if (data_p
[0] == match
)
7401 offset
+= 2 * wordsize
;
7407 /* See linux-low.h. */
7410 linux_get_hwcap (int wordsize
)
7412 CORE_ADDR hwcap
= 0;
7413 linux_get_auxv (wordsize
, AT_HWCAP
, &hwcap
);
7417 /* See linux-low.h. */
7420 linux_get_hwcap2 (int wordsize
)
7422 CORE_ADDR hwcap2
= 0;
7423 linux_get_auxv (wordsize
, AT_HWCAP2
, &hwcap2
);
7427 /* The linux target ops object. */
7429 static linux_process_target the_linux_target
;
7431 static process_stratum_target linux_target_ops
= {
7432 linux_handle_new_gdb_connection
,
7433 #ifdef USE_THREAD_DB
7434 thread_db_handle_monitor_command
,
7438 linux_common_core_of_thread
,
7440 linux_process_qsupported
,
7441 linux_supports_tracepoints
,
7444 linux_thread_stopped
,
7448 linux_stabilize_threads
,
7449 linux_install_fast_tracepoint_jump_pad
,
7451 linux_supports_disable_randomization
,
7452 linux_get_min_fast_tracepoint_insn_len
,
7453 linux_qxfer_libraries_svr4
,
7454 linux_supports_agent
,
7455 #ifdef HAVE_LINUX_BTRACE
7456 linux_enable_btrace
,
7457 linux_low_disable_btrace
,
7458 linux_low_read_btrace
,
7459 linux_low_btrace_conf
,
7466 linux_supports_range_stepping
,
7467 linux_proc_pid_to_exec_file
,
7468 linux_mntns_open_cloexec
,
7470 linux_mntns_readlink
,
7471 linux_breakpoint_kind_from_pc
,
7472 linux_sw_breakpoint_from_kind
,
7473 linux_proc_tid_get_name
,
7474 linux_breakpoint_kind_from_current_state
,
7475 linux_supports_software_single_step
,
7476 linux_supports_catch_syscall
,
7477 linux_get_ipa_tdesc_idx
,
7479 thread_db_thread_handle
,
7486 #ifdef HAVE_LINUX_REGSETS
7488 initialize_regsets_info (struct regsets_info
*info
)
7490 for (info
->num_regsets
= 0;
7491 info
->regsets
[info
->num_regsets
].size
>= 0;
7492 info
->num_regsets
++)
7498 initialize_low (void)
7500 struct sigaction sigchld_action
;
7502 memset (&sigchld_action
, 0, sizeof (sigchld_action
));
7503 set_target_ops (&linux_target_ops
);
7505 linux_ptrace_init_warnings ();
7506 linux_proc_init_warnings ();
7508 sigchld_action
.sa_handler
= sigchld_handler
;
7509 sigemptyset (&sigchld_action
.sa_mask
);
7510 sigchld_action
.sa_flags
= SA_RESTART
;
7511 sigaction (SIGCHLD
, &sigchld_action
, NULL
);
7513 initialize_low_arch ();
7515 linux_check_ptrace_features ();