[AArch64] Refactor aarch64_make_prologue_cache
[deliverable/binutils-gdb.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
106 is_adrp(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x90000000; }
108
109 static unsigned int
110 aarch64_rm(const Insntype insn)
111 { return aarch64_bits(insn, 16, 5); }
112
113 static unsigned int
114 aarch64_rn(const Insntype insn)
115 { return aarch64_bits(insn, 5, 5); }
116
117 static unsigned int
118 aarch64_rd(const Insntype insn)
119 { return aarch64_bits(insn, 0, 5); }
120
121 static unsigned int
122 aarch64_rt(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
126 aarch64_rt2(const Insntype insn)
127 { return aarch64_bits(insn, 10, 5); }
128
129 static bool
130 aarch64_b(const Insntype insn)
131 { return (insn & 0xFC000000) == 0x14000000; }
132
133 static bool
134 aarch64_bl(const Insntype insn)
135 { return (insn & 0xFC000000) == 0x94000000; }
136
137 static bool
138 aarch64_blr(const Insntype insn)
139 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
140
141 static bool
142 aarch64_br(const Insntype insn)
143 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
144
145 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
146 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
147 static bool
148 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
149
150 static bool
151 aarch64_ldst(Insntype insn)
152 { return (insn & 0x0a000000) == 0x08000000; }
153
154 static bool
155 aarch64_ldst_ex(Insntype insn)
156 { return (insn & 0x3f000000) == 0x08000000; }
157
158 static bool
159 aarch64_ldst_pcrel(Insntype insn)
160 { return (insn & 0x3b000000) == 0x18000000; }
161
162 static bool
163 aarch64_ldst_nap(Insntype insn)
164 { return (insn & 0x3b800000) == 0x28000000; }
165
166 static bool
167 aarch64_ldstp_pi(Insntype insn)
168 { return (insn & 0x3b800000) == 0x28800000; }
169
170 static bool
171 aarch64_ldstp_o(Insntype insn)
172 { return (insn & 0x3b800000) == 0x29000000; }
173
174 static bool
175 aarch64_ldstp_pre(Insntype insn)
176 { return (insn & 0x3b800000) == 0x29800000; }
177
178 static bool
179 aarch64_ldst_ui(Insntype insn)
180 { return (insn & 0x3b200c00) == 0x38000000; }
181
182 static bool
183 aarch64_ldst_piimm(Insntype insn)
184 { return (insn & 0x3b200c00) == 0x38000400; }
185
186 static bool
187 aarch64_ldst_u(Insntype insn)
188 { return (insn & 0x3b200c00) == 0x38000800; }
189
190 static bool
191 aarch64_ldst_preimm(Insntype insn)
192 { return (insn & 0x3b200c00) == 0x38000c00; }
193
194 static bool
195 aarch64_ldst_ro(Insntype insn)
196 { return (insn & 0x3b200c00) == 0x38200800; }
197
198 static bool
199 aarch64_ldst_uimm(Insntype insn)
200 { return (insn & 0x3b000000) == 0x39000000; }
201
202 static bool
203 aarch64_ldst_simd_m(Insntype insn)
204 { return (insn & 0xbfbf0000) == 0x0c000000; }
205
206 static bool
207 aarch64_ldst_simd_m_pi(Insntype insn)
208 { return (insn & 0xbfa00000) == 0x0c800000; }
209
210 static bool
211 aarch64_ldst_simd_s(Insntype insn)
212 { return (insn & 0xbf9f0000) == 0x0d000000; }
213
214 static bool
215 aarch64_ldst_simd_s_pi(Insntype insn)
216 { return (insn & 0xbf800000) == 0x0d800000; }
217
218 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
219 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
220 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
221 // instructions PAIR is TRUE, RT and RT2 are returned.
222 static bool
223 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
224 bool *pair, bool *load)
225 {
226 uint32_t opcode;
227 unsigned int r;
228 uint32_t opc = 0;
229 uint32_t v = 0;
230 uint32_t opc_v = 0;
231
232 /* Bail out quickly if INSN doesn't fall into the the load-store
233 encoding space. */
234 if (!aarch64_ldst (insn))
235 return false;
236
237 *pair = false;
238 *load = false;
239 if (aarch64_ldst_ex (insn))
240 {
241 *rt = aarch64_rt (insn);
242 *rt2 = *rt;
243 if (aarch64_bit (insn, 21) == 1)
244 {
245 *pair = true;
246 *rt2 = aarch64_rt2 (insn);
247 }
248 *load = aarch64_ld (insn);
249 return true;
250 }
251 else if (aarch64_ldst_nap (insn)
252 || aarch64_ldstp_pi (insn)
253 || aarch64_ldstp_o (insn)
254 || aarch64_ldstp_pre (insn))
255 {
256 *pair = true;
257 *rt = aarch64_rt (insn);
258 *rt2 = aarch64_rt2 (insn);
259 *load = aarch64_ld (insn);
260 return true;
261 }
262 else if (aarch64_ldst_pcrel (insn)
263 || aarch64_ldst_ui (insn)
264 || aarch64_ldst_piimm (insn)
265 || aarch64_ldst_u (insn)
266 || aarch64_ldst_preimm (insn)
267 || aarch64_ldst_ro (insn)
268 || aarch64_ldst_uimm (insn))
269 {
270 *rt = aarch64_rt (insn);
271 *rt2 = *rt;
272 if (aarch64_ldst_pcrel (insn))
273 *load = true;
274 opc = aarch64_bits (insn, 22, 2);
275 v = aarch64_bit (insn, 26);
276 opc_v = opc | (v << 2);
277 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
278 || opc_v == 5 || opc_v == 7);
279 return true;
280 }
281 else if (aarch64_ldst_simd_m (insn)
282 || aarch64_ldst_simd_m_pi (insn))
283 {
284 *rt = aarch64_rt (insn);
285 *load = aarch64_bit (insn, 22);
286 opcode = (insn >> 12) & 0xf;
287 switch (opcode)
288 {
289 case 0:
290 case 2:
291 *rt2 = *rt + 3;
292 break;
293
294 case 4:
295 case 6:
296 *rt2 = *rt + 2;
297 break;
298
299 case 7:
300 *rt2 = *rt;
301 break;
302
303 case 8:
304 case 10:
305 *rt2 = *rt + 1;
306 break;
307
308 default:
309 return false;
310 }
311 return true;
312 }
313 else if (aarch64_ldst_simd_s (insn)
314 || aarch64_ldst_simd_s_pi (insn))
315 {
316 *rt = aarch64_rt (insn);
317 r = (insn >> 21) & 1;
318 *load = aarch64_bit (insn, 22);
319 opcode = (insn >> 13) & 0x7;
320 switch (opcode)
321 {
322 case 0:
323 case 2:
324 case 4:
325 *rt2 = *rt + r;
326 break;
327
328 case 1:
329 case 3:
330 case 5:
331 *rt2 = *rt + (r == 0 ? 2 : 3);
332 break;
333
334 case 6:
335 *rt2 = *rt + r;
336 break;
337
338 case 7:
339 *rt2 = *rt + (r == 0 ? 2 : 3);
340 break;
341
342 default:
343 return false;
344 }
345 return true;
346 }
347 return false;
348 } // End of "aarch64_mem_op_p".
349
350 // Return true if INSN is mac insn.
351 static bool
352 aarch64_mac(Insntype insn)
353 { return (insn & 0xff000000) == 0x9b000000; }
354
355 // Return true if INSN is multiply-accumulate.
356 // (This is similar to implementaton in elfnn-aarch64.c.)
357 static bool
358 aarch64_mlxl(Insntype insn)
359 {
360 uint32_t op31 = aarch64_op31(insn);
361 if (aarch64_mac(insn)
362 && (op31 == 0 || op31 == 1 || op31 == 5)
363 /* Exclude MUL instructions which are encoded as a multiple-accumulate
364 with RA = XZR. */
365 && aarch64_ra(insn) != AARCH64_ZR)
366 {
367 return true;
368 }
369 return false;
370 }
371 }; // End of "AArch64_insn_utilities".
372
373
374 // Insn length in byte.
375
376 template<bool big_endian>
377 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
378
379
380 // Zero register encoding - 31.
381
382 template<bool big_endian>
383 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
384
385
386 // Output_data_got_aarch64 class.
387
388 template<int size, bool big_endian>
389 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
390 {
391 public:
392 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
393 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
394 : Output_data_got<size, big_endian>(),
395 symbol_table_(symtab), layout_(layout)
396 { }
397
398 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
399 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
400 // applied in a static link.
401 void
402 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
403 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
404
405
406 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
407 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
408 // relocation that needs to be applied in a static link.
409 void
410 add_static_reloc(unsigned int got_offset, unsigned int r_type,
411 Sized_relobj_file<size, big_endian>* relobj,
412 unsigned int index)
413 {
414 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
415 index));
416 }
417
418
419 protected:
420 // Write out the GOT table.
421 void
422 do_write(Output_file* of) {
423 // The first entry in the GOT is the address of the .dynamic section.
424 gold_assert(this->data_size() >= size / 8);
425 Output_section* dynamic = this->layout_->dynamic_section();
426 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
427 this->replace_constant(0, dynamic_addr);
428 Output_data_got<size, big_endian>::do_write(of);
429
430 // Handling static relocs
431 if (this->static_relocs_.empty())
432 return;
433
434 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
435
436 gold_assert(parameters->doing_static_link());
437 const off_t offset = this->offset();
438 const section_size_type oview_size =
439 convert_to_section_size_type(this->data_size());
440 unsigned char* const oview = of->get_output_view(offset, oview_size);
441
442 Output_segment* tls_segment = this->layout_->tls_segment();
443 gold_assert(tls_segment != NULL);
444
445 AArch64_address aligned_tcb_address =
446 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
447 tls_segment->maximum_alignment());
448
449 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
450 {
451 Static_reloc& reloc(this->static_relocs_[i]);
452 AArch64_address value;
453
454 if (!reloc.symbol_is_global())
455 {
456 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
457 const Symbol_value<size>* psymval =
458 reloc.relobj()->local_symbol(reloc.index());
459
460 // We are doing static linking. Issue an error and skip this
461 // relocation if the symbol is undefined or in a discarded_section.
462 bool is_ordinary;
463 unsigned int shndx = psymval->input_shndx(&is_ordinary);
464 if ((shndx == elfcpp::SHN_UNDEF)
465 || (is_ordinary
466 && shndx != elfcpp::SHN_UNDEF
467 && !object->is_section_included(shndx)
468 && !this->symbol_table_->is_section_folded(object, shndx)))
469 {
470 gold_error(_("undefined or discarded local symbol %u from "
471 " object %s in GOT"),
472 reloc.index(), reloc.relobj()->name().c_str());
473 continue;
474 }
475 value = psymval->value(object, 0);
476 }
477 else
478 {
479 const Symbol* gsym = reloc.symbol();
480 gold_assert(gsym != NULL);
481 if (gsym->is_forwarder())
482 gsym = this->symbol_table_->resolve_forwards(gsym);
483
484 // We are doing static linking. Issue an error and skip this
485 // relocation if the symbol is undefined or in a discarded_section
486 // unless it is a weakly_undefined symbol.
487 if ((gsym->is_defined_in_discarded_section()
488 || gsym->is_undefined())
489 && !gsym->is_weak_undefined())
490 {
491 gold_error(_("undefined or discarded symbol %s in GOT"),
492 gsym->name());
493 continue;
494 }
495
496 if (!gsym->is_weak_undefined())
497 {
498 const Sized_symbol<size>* sym =
499 static_cast<const Sized_symbol<size>*>(gsym);
500 value = sym->value();
501 }
502 else
503 value = 0;
504 }
505
506 unsigned got_offset = reloc.got_offset();
507 gold_assert(got_offset < oview_size);
508
509 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
510 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
511 Valtype x;
512 switch (reloc.r_type())
513 {
514 case elfcpp::R_AARCH64_TLS_DTPREL64:
515 x = value;
516 break;
517 case elfcpp::R_AARCH64_TLS_TPREL64:
518 x = value + aligned_tcb_address;
519 break;
520 default:
521 gold_unreachable();
522 }
523 elfcpp::Swap<size, big_endian>::writeval(wv, x);
524 }
525
526 of->write_output_view(offset, oview_size, oview);
527 }
528
529 private:
530 // Symbol table of the output object.
531 Symbol_table* symbol_table_;
532 // A pointer to the Layout class, so that we can find the .dynamic
533 // section when we write out the GOT section.
534 Layout* layout_;
535
536 // This class represent dynamic relocations that need to be applied by
537 // gold because we are using TLS relocations in a static link.
538 class Static_reloc
539 {
540 public:
541 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
542 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
543 { this->u_.global.symbol = gsym; }
544
545 Static_reloc(unsigned int got_offset, unsigned int r_type,
546 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
547 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
548 {
549 this->u_.local.relobj = relobj;
550 this->u_.local.index = index;
551 }
552
553 // Return the GOT offset.
554 unsigned int
555 got_offset() const
556 { return this->got_offset_; }
557
558 // Relocation type.
559 unsigned int
560 r_type() const
561 { return this->r_type_; }
562
563 // Whether the symbol is global or not.
564 bool
565 symbol_is_global() const
566 { return this->symbol_is_global_; }
567
568 // For a relocation against a global symbol, the global symbol.
569 Symbol*
570 symbol() const
571 {
572 gold_assert(this->symbol_is_global_);
573 return this->u_.global.symbol;
574 }
575
576 // For a relocation against a local symbol, the defining object.
577 Sized_relobj_file<size, big_endian>*
578 relobj() const
579 {
580 gold_assert(!this->symbol_is_global_);
581 return this->u_.local.relobj;
582 }
583
584 // For a relocation against a local symbol, the local symbol index.
585 unsigned int
586 index() const
587 {
588 gold_assert(!this->symbol_is_global_);
589 return this->u_.local.index;
590 }
591
592 private:
593 // GOT offset of the entry to which this relocation is applied.
594 unsigned int got_offset_;
595 // Type of relocation.
596 unsigned int r_type_;
597 // Whether this relocation is against a global symbol.
598 bool symbol_is_global_;
599 // A global or local symbol.
600 union
601 {
602 struct
603 {
604 // For a global symbol, the symbol itself.
605 Symbol* symbol;
606 } global;
607 struct
608 {
609 // For a local symbol, the object defining the symbol.
610 Sized_relobj_file<size, big_endian>* relobj;
611 // For a local symbol, the symbol index.
612 unsigned int index;
613 } local;
614 } u_;
615 }; // End of inner class Static_reloc
616
617 std::vector<Static_reloc> static_relocs_;
618 }; // End of Output_data_got_aarch64
619
620
621 template<int size, bool big_endian>
622 class AArch64_input_section;
623
624
625 template<int size, bool big_endian>
626 class AArch64_output_section;
627
628
629 template<int size, bool big_endian>
630 class AArch64_relobj;
631
632
633 // Stub type enum constants.
634
635 enum
636 {
637 ST_NONE = 0,
638
639 // Using adrp/add pair, 4 insns (including alignment) without mem access,
640 // the fastest stub. This has a limited jump distance, which is tested by
641 // aarch64_valid_for_adrp_p.
642 ST_ADRP_BRANCH = 1,
643
644 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
645 // unlimited in jump distance.
646 ST_LONG_BRANCH_ABS = 2,
647
648 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
649 // mem access, slowest one. Only used in position independent executables.
650 ST_LONG_BRANCH_PCREL = 3,
651
652 // Stub for erratum 843419 handling.
653 ST_E_843419 = 4,
654
655 // Stub for erratum 835769 handling.
656 ST_E_835769 = 5,
657
658 // Number of total stub types.
659 ST_NUMBER = 6
660 };
661
662
663 // Struct that wraps insns for a particular stub. All stub templates are
664 // created/initialized as constants by Stub_template_repertoire.
665
666 template<bool big_endian>
667 struct Stub_template
668 {
669 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
670 const int insn_num;
671 };
672
673
674 // Simple singleton class that creates/initializes/stores all types of stub
675 // templates.
676
677 template<bool big_endian>
678 class Stub_template_repertoire
679 {
680 public:
681 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
682
683 // Single static method to get stub template for a given stub type.
684 static const Stub_template<big_endian>*
685 get_stub_template(int type)
686 {
687 static Stub_template_repertoire<big_endian> singleton;
688 return singleton.stub_templates_[type];
689 }
690
691 private:
692 // Constructor - creates/initializes all stub templates.
693 Stub_template_repertoire();
694 ~Stub_template_repertoire()
695 { }
696
697 // Disallowing copy ctor and copy assignment operator.
698 Stub_template_repertoire(Stub_template_repertoire&);
699 Stub_template_repertoire& operator=(Stub_template_repertoire&);
700
701 // Data that stores all insn templates.
702 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
703 }; // End of "class Stub_template_repertoire".
704
705
706 // Constructor - creates/initilizes all stub templates.
707
708 template<bool big_endian>
709 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
710 {
711 // Insn array definitions.
712 const static Insntype ST_NONE_INSNS[] = {};
713
714 const static Insntype ST_ADRP_BRANCH_INSNS[] =
715 {
716 0x90000010, /* adrp ip0, X */
717 /* ADR_PREL_PG_HI21(X) */
718 0x91000210, /* add ip0, ip0, :lo12:X */
719 /* ADD_ABS_LO12_NC(X) */
720 0xd61f0200, /* br ip0 */
721 0x00000000, /* alignment padding */
722 };
723
724 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
725 {
726 0x58000050, /* ldr ip0, 0x8 */
727 0xd61f0200, /* br ip0 */
728 0x00000000, /* address field */
729 0x00000000, /* address fields */
730 };
731
732 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
733 {
734 0x58000090, /* ldr ip0, 0x10 */
735 0x10000011, /* adr ip1, #0 */
736 0x8b110210, /* add ip0, ip0, ip1 */
737 0xd61f0200, /* br ip0 */
738 0x00000000, /* address field */
739 0x00000000, /* address field */
740 0x00000000, /* alignment padding */
741 0x00000000, /* alignment padding */
742 };
743
744 const static Insntype ST_E_843419_INSNS[] =
745 {
746 0x00000000, /* Placeholder for erratum insn. */
747 0x14000000, /* b <label> */
748 };
749
750 // ST_E_835769 has the same stub template as ST_E_843419.
751 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
752
753 #define install_insn_template(T) \
754 const static Stub_template<big_endian> template_##T = { \
755 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
756 this->stub_templates_[T] = &template_##T
757
758 install_insn_template(ST_NONE);
759 install_insn_template(ST_ADRP_BRANCH);
760 install_insn_template(ST_LONG_BRANCH_ABS);
761 install_insn_template(ST_LONG_BRANCH_PCREL);
762 install_insn_template(ST_E_843419);
763 install_insn_template(ST_E_835769);
764
765 #undef install_insn_template
766 }
767
768
769 // Base class for stubs.
770
771 template<int size, bool big_endian>
772 class Stub_base
773 {
774 public:
775 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
776 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
777
778 static const AArch64_address invalid_address =
779 static_cast<AArch64_address>(-1);
780
781 static const section_offset_type invalid_offset =
782 static_cast<section_offset_type>(-1);
783
784 Stub_base(int type)
785 : destination_address_(invalid_address),
786 offset_(invalid_offset),
787 type_(type)
788 {}
789
790 ~Stub_base()
791 {}
792
793 // Get stub type.
794 int
795 type() const
796 { return this->type_; }
797
798 // Get stub template that provides stub insn information.
799 const Stub_template<big_endian>*
800 stub_template() const
801 {
802 return Stub_template_repertoire<big_endian>::
803 get_stub_template(this->type());
804 }
805
806 // Get destination address.
807 AArch64_address
808 destination_address() const
809 {
810 gold_assert(this->destination_address_ != this->invalid_address);
811 return this->destination_address_;
812 }
813
814 // Set destination address.
815 void
816 set_destination_address(AArch64_address address)
817 {
818 gold_assert(address != this->invalid_address);
819 this->destination_address_ = address;
820 }
821
822 // Reset the destination address.
823 void
824 reset_destination_address()
825 { this->destination_address_ = this->invalid_address; }
826
827 // Get offset of code stub. For Reloc_stub, it is the offset from the
828 // beginning of its containing stub table; for Erratum_stub, it is the offset
829 // from the end of reloc_stubs.
830 section_offset_type
831 offset() const
832 {
833 gold_assert(this->offset_ != this->invalid_offset);
834 return this->offset_;
835 }
836
837 // Set stub offset.
838 void
839 set_offset(section_offset_type offset)
840 { this->offset_ = offset; }
841
842 // Return the stub insn.
843 const Insntype*
844 insns() const
845 { return this->stub_template()->insns; }
846
847 // Return num of stub insns.
848 unsigned int
849 insn_num() const
850 { return this->stub_template()->insn_num; }
851
852 // Get size of the stub.
853 int
854 stub_size() const
855 {
856 return this->insn_num() *
857 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
858 }
859
860 // Write stub to output file.
861 void
862 write(unsigned char* view, section_size_type view_size)
863 { this->do_write(view, view_size); }
864
865 protected:
866 // Abstract method to be implemented by sub-classes.
867 virtual void
868 do_write(unsigned char*, section_size_type) = 0;
869
870 private:
871 // The last insn of a stub is a jump to destination insn. This field records
872 // the destination address.
873 AArch64_address destination_address_;
874 // The stub offset. Note this has difference interpretations between an
875 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
876 // beginning of the containing stub_table, whereas for Erratum_stub, this is
877 // the offset from the end of reloc_stubs.
878 section_offset_type offset_;
879 // Stub type.
880 const int type_;
881 }; // End of "Stub_base".
882
883
884 // Erratum stub class. An erratum stub differs from a reloc stub in that for
885 // each erratum occurrence, we generate an erratum stub. We never share erratum
886 // stubs, whereas for reloc stubs, different branches insns share a single reloc
887 // stub as long as the branch targets are the same. (More to the point, reloc
888 // stubs can be shared because they're used to reach a specific target, whereas
889 // erratum stubs branch back to the original control flow.)
890
891 template<int size, bool big_endian>
892 class Erratum_stub : public Stub_base<size, big_endian>
893 {
894 public:
895 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
896 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
897 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
898 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
899
900 static const int STUB_ADDR_ALIGN;
901
902 static const Insntype invalid_insn = static_cast<Insntype>(-1);
903
904 Erratum_stub(The_aarch64_relobj* relobj, int type,
905 unsigned shndx, unsigned int sh_offset)
906 : Stub_base<size, big_endian>(type), relobj_(relobj),
907 shndx_(shndx), sh_offset_(sh_offset),
908 erratum_insn_(invalid_insn),
909 erratum_address_(this->invalid_address)
910 {}
911
912 ~Erratum_stub() {}
913
914 // Return the object that contains the erratum.
915 The_aarch64_relobj*
916 relobj()
917 { return this->relobj_; }
918
919 // Get section index of the erratum.
920 unsigned int
921 shndx() const
922 { return this->shndx_; }
923
924 // Get section offset of the erratum.
925 unsigned int
926 sh_offset() const
927 { return this->sh_offset_; }
928
929 // Get the erratum insn. This is the insn located at erratum_insn_address.
930 Insntype
931 erratum_insn() const
932 {
933 gold_assert(this->erratum_insn_ != this->invalid_insn);
934 return this->erratum_insn_;
935 }
936
937 // Set the insn that the erratum happens to.
938 void
939 set_erratum_insn(Insntype insn)
940 { this->erratum_insn_ = insn; }
941
942 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
943 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
944 // is no longer the one we want to write out to the stub, update erratum_insn_
945 // with relocated version. Also note that in this case xn must not be "PC", so
946 // it is safe to move the erratum insn from the origin place to the stub. For
947 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
948 // relocation spot (assertion added though).
949 void
950 update_erratum_insn(Insntype insn)
951 {
952 gold_assert(this->erratum_insn_ != this->invalid_insn);
953 switch (this->type())
954 {
955 case ST_E_843419:
956 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
957 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
958 gold_assert(Insn_utilities::aarch64_rd(insn) ==
959 Insn_utilities::aarch64_rd(this->erratum_insn()));
960 gold_assert(Insn_utilities::aarch64_rn(insn) ==
961 Insn_utilities::aarch64_rn(this->erratum_insn()));
962 // Update plain ld/st insn with relocated insn.
963 this->erratum_insn_ = insn;
964 break;
965 case ST_E_835769:
966 gold_assert(insn == this->erratum_insn());
967 break;
968 default:
969 gold_unreachable();
970 }
971 }
972
973
974 // Return the address where an erratum must be done.
975 AArch64_address
976 erratum_address() const
977 {
978 gold_assert(this->erratum_address_ != this->invalid_address);
979 return this->erratum_address_;
980 }
981
982 // Set the address where an erratum must be done.
983 void
984 set_erratum_address(AArch64_address addr)
985 { this->erratum_address_ = addr; }
986
987 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
988 // sh_offset). We do not include 'type' in the calculation, becuase there is
989 // at most one stub type at (obj, shndx, sh_offset).
990 bool
991 operator<(const Erratum_stub<size, big_endian>& k) const
992 {
993 if (this == &k)
994 return false;
995 // We group stubs by relobj.
996 if (this->relobj_ != k.relobj_)
997 return this->relobj_ < k.relobj_;
998 // Then by section index.
999 if (this->shndx_ != k.shndx_)
1000 return this->shndx_ < k.shndx_;
1001 // Lastly by section offset.
1002 return this->sh_offset_ < k.sh_offset_;
1003 }
1004
1005 protected:
1006 virtual void
1007 do_write(unsigned char*, section_size_type);
1008
1009 private:
1010 // The object that needs to be fixed.
1011 The_aarch64_relobj* relobj_;
1012 // The shndx in the object that needs to be fixed.
1013 const unsigned int shndx_;
1014 // The section offset in the obejct that needs to be fixed.
1015 const unsigned int sh_offset_;
1016 // The insn to be fixed.
1017 Insntype erratum_insn_;
1018 // The address of the above insn.
1019 AArch64_address erratum_address_;
1020 }; // End of "Erratum_stub".
1021
1022 template<int size, bool big_endian>
1023 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1024
1025 // Comparator used in set definition.
1026 template<int size, bool big_endian>
1027 struct Erratum_stub_less
1028 {
1029 bool
1030 operator()(const Erratum_stub<size, big_endian>* s1,
1031 const Erratum_stub<size, big_endian>* s2) const
1032 { return *s1 < *s2; }
1033 };
1034
1035 // Erratum_stub implementation for writing stub to output file.
1036
1037 template<int size, bool big_endian>
1038 void
1039 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1040 {
1041 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1042 const Insntype* insns = this->insns();
1043 uint32_t num_insns = this->insn_num();
1044 Insntype* ip = reinterpret_cast<Insntype*>(view);
1045 // For current implemented erratum 843419 and 835769, the first insn in the
1046 // stub is always a copy of the problematic insn (in 843419, the mem access
1047 // insn, in 835769, the mac insn), followed by a jump-back.
1048 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1049 for (uint32_t i = 1; i < num_insns; ++i)
1050 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1051 }
1052
1053
1054 // Reloc stub class.
1055
1056 template<int size, bool big_endian>
1057 class Reloc_stub : public Stub_base<size, big_endian>
1058 {
1059 public:
1060 typedef Reloc_stub<size, big_endian> This;
1061 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1062
1063 // Branch range. This is used to calculate the section group size, as well as
1064 // determine whether a stub is needed.
1065 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1066 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1067
1068 // Constant used to determine if an offset fits in the adrp instruction
1069 // encoding.
1070 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1071 static const int MIN_ADRP_IMM = -(1 << 20);
1072
1073 static const int BYTES_PER_INSN = 4;
1074 static const int STUB_ADDR_ALIGN;
1075
1076 // Determine whether the offset fits in the jump/branch instruction.
1077 static bool
1078 aarch64_valid_branch_offset_p(int64_t offset)
1079 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1080
1081 // Determine whether the offset fits in the adrp immediate field.
1082 static bool
1083 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1084 {
1085 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1086 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1087 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1088 }
1089
1090 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1091 // needed.
1092 static int
1093 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1094 AArch64_address target);
1095
1096 Reloc_stub(int type)
1097 : Stub_base<size, big_endian>(type)
1098 { }
1099
1100 ~Reloc_stub()
1101 { }
1102
1103 // The key class used to index the stub instance in the stub table's stub map.
1104 class Key
1105 {
1106 public:
1107 Key(int type, const Symbol* symbol, const Relobj* relobj,
1108 unsigned int r_sym, int32_t addend)
1109 : type_(type), addend_(addend)
1110 {
1111 if (symbol != NULL)
1112 {
1113 this->r_sym_ = Reloc_stub::invalid_index;
1114 this->u_.symbol = symbol;
1115 }
1116 else
1117 {
1118 gold_assert(relobj != NULL && r_sym != invalid_index);
1119 this->r_sym_ = r_sym;
1120 this->u_.relobj = relobj;
1121 }
1122 }
1123
1124 ~Key()
1125 { }
1126
1127 // Return stub type.
1128 int
1129 type() const
1130 { return this->type_; }
1131
1132 // Return the local symbol index or invalid_index.
1133 unsigned int
1134 r_sym() const
1135 { return this->r_sym_; }
1136
1137 // Return the symbol if there is one.
1138 const Symbol*
1139 symbol() const
1140 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1141
1142 // Return the relobj if there is one.
1143 const Relobj*
1144 relobj() const
1145 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1146
1147 // Whether this equals to another key k.
1148 bool
1149 eq(const Key& k) const
1150 {
1151 return ((this->type_ == k.type_)
1152 && (this->r_sym_ == k.r_sym_)
1153 && ((this->r_sym_ != Reloc_stub::invalid_index)
1154 ? (this->u_.relobj == k.u_.relobj)
1155 : (this->u_.symbol == k.u_.symbol))
1156 && (this->addend_ == k.addend_));
1157 }
1158
1159 // Return a hash value.
1160 size_t
1161 hash_value() const
1162 {
1163 size_t name_hash_value = gold::string_hash<char>(
1164 (this->r_sym_ != Reloc_stub::invalid_index)
1165 ? this->u_.relobj->name().c_str()
1166 : this->u_.symbol->name());
1167 // We only have 4 stub types.
1168 size_t stub_type_hash_value = 0x03 & this->type_;
1169 return (name_hash_value
1170 ^ stub_type_hash_value
1171 ^ ((this->r_sym_ & 0x3fff) << 2)
1172 ^ ((this->addend_ & 0xffff) << 16));
1173 }
1174
1175 // Functors for STL associative containers.
1176 struct hash
1177 {
1178 size_t
1179 operator()(const Key& k) const
1180 { return k.hash_value(); }
1181 };
1182
1183 struct equal_to
1184 {
1185 bool
1186 operator()(const Key& k1, const Key& k2) const
1187 { return k1.eq(k2); }
1188 };
1189
1190 private:
1191 // Stub type.
1192 const int type_;
1193 // If this is a local symbol, this is the index in the defining object.
1194 // Otherwise, it is invalid_index for a global symbol.
1195 unsigned int r_sym_;
1196 // If r_sym_ is an invalid index, this points to a global symbol.
1197 // Otherwise, it points to a relobj. We used the unsized and target
1198 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1199 // Arm_relobj, in order to avoid making the stub class a template
1200 // as most of the stub machinery is endianness-neutral. However, it
1201 // may require a bit of casting done by users of this class.
1202 union
1203 {
1204 const Symbol* symbol;
1205 const Relobj* relobj;
1206 } u_;
1207 // Addend associated with a reloc.
1208 int32_t addend_;
1209 }; // End of inner class Reloc_stub::Key
1210
1211 protected:
1212 // This may be overridden in the child class.
1213 virtual void
1214 do_write(unsigned char*, section_size_type);
1215
1216 private:
1217 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1218 }; // End of Reloc_stub
1219
1220 template<int size, bool big_endian>
1221 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1222
1223 // Write data to output file.
1224
1225 template<int size, bool big_endian>
1226 void
1227 Reloc_stub<size, big_endian>::
1228 do_write(unsigned char* view, section_size_type)
1229 {
1230 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1231 const uint32_t* insns = this->insns();
1232 uint32_t num_insns = this->insn_num();
1233 Insntype* ip = reinterpret_cast<Insntype*>(view);
1234 for (uint32_t i = 0; i < num_insns; ++i)
1235 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1236 }
1237
1238
1239 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1240 // needed.
1241
1242 template<int size, bool big_endian>
1243 inline int
1244 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1245 unsigned int r_type, AArch64_address location, AArch64_address dest)
1246 {
1247 int64_t branch_offset = 0;
1248 switch(r_type)
1249 {
1250 case elfcpp::R_AARCH64_CALL26:
1251 case elfcpp::R_AARCH64_JUMP26:
1252 branch_offset = dest - location;
1253 break;
1254 default:
1255 gold_unreachable();
1256 }
1257
1258 if (aarch64_valid_branch_offset_p(branch_offset))
1259 return ST_NONE;
1260
1261 if (aarch64_valid_for_adrp_p(location, dest))
1262 return ST_ADRP_BRANCH;
1263
1264 if (parameters->options().output_is_position_independent()
1265 && parameters->options().output_is_executable())
1266 return ST_LONG_BRANCH_PCREL;
1267
1268 return ST_LONG_BRANCH_ABS;
1269 }
1270
1271 // A class to hold stubs for the ARM target.
1272
1273 template<int size, bool big_endian>
1274 class Stub_table : public Output_data
1275 {
1276 public:
1277 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1278 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1279 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1280 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1281 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1282 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1283 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1284 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1285 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1286 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1287 typedef Stub_table<size, big_endian> The_stub_table;
1288 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1289 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1290 Reloc_stub_map;
1291 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1292 typedef Relocate_info<size, big_endian> The_relocate_info;
1293
1294 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1295 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1296
1297 Stub_table(The_aarch64_input_section* owner)
1298 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1299 erratum_stubs_size_(0), prev_data_size_(0)
1300 { }
1301
1302 ~Stub_table()
1303 { }
1304
1305 The_aarch64_input_section*
1306 owner() const
1307 { return owner_; }
1308
1309 // Whether this stub table is empty.
1310 bool
1311 empty() const
1312 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1313
1314 // Return the current data size.
1315 off_t
1316 current_data_size() const
1317 { return this->current_data_size_for_child(); }
1318
1319 // Add a STUB using KEY. The caller is responsible for avoiding addition
1320 // if a STUB with the same key has already been added.
1321 void
1322 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1323
1324 // Add an erratum stub into the erratum stub set. The set is ordered by
1325 // (relobj, shndx, sh_offset).
1326 void
1327 add_erratum_stub(The_erratum_stub* stub);
1328
1329 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1330 The_erratum_stub*
1331 find_erratum_stub(The_aarch64_relobj* a64relobj,
1332 unsigned int shndx, unsigned int sh_offset);
1333
1334 // Find all the erratums for a given input section. The return value is a pair
1335 // of iterators [begin, end).
1336 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1337 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1338 unsigned int shndx);
1339
1340 // Compute the erratum stub address.
1341 AArch64_address
1342 erratum_stub_address(The_erratum_stub* stub) const
1343 {
1344 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1345 The_erratum_stub::STUB_ADDR_ALIGN);
1346 r += stub->offset();
1347 return r;
1348 }
1349
1350 // Finalize stubs. No-op here, just for completeness.
1351 void
1352 finalize_stubs()
1353 { }
1354
1355 // Look up a relocation stub using KEY. Return NULL if there is none.
1356 The_reloc_stub*
1357 find_reloc_stub(The_reloc_stub_key& key)
1358 {
1359 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1360 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1361 }
1362
1363 // Relocate stubs in this stub table.
1364 void
1365 relocate_stubs(const The_relocate_info*,
1366 The_target_aarch64*,
1367 Output_section*,
1368 unsigned char*,
1369 AArch64_address,
1370 section_size_type);
1371
1372 // Update data size at the end of a relaxation pass. Return true if data size
1373 // is different from that of the previous relaxation pass.
1374 bool
1375 update_data_size_changed_p()
1376 {
1377 // No addralign changed here.
1378 off_t s = align_address(this->reloc_stubs_size_,
1379 The_erratum_stub::STUB_ADDR_ALIGN)
1380 + this->erratum_stubs_size_;
1381 bool changed = (s != this->prev_data_size_);
1382 this->prev_data_size_ = s;
1383 return changed;
1384 }
1385
1386 protected:
1387 // Write out section contents.
1388 void
1389 do_write(Output_file*);
1390
1391 // Return the required alignment.
1392 uint64_t
1393 do_addralign() const
1394 {
1395 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1396 The_erratum_stub::STUB_ADDR_ALIGN);
1397 }
1398
1399 // Reset address and file offset.
1400 void
1401 do_reset_address_and_file_offset()
1402 { this->set_current_data_size_for_child(this->prev_data_size_); }
1403
1404 // Set final data size.
1405 void
1406 set_final_data_size()
1407 { this->set_data_size(this->current_data_size()); }
1408
1409 private:
1410 // Relocate one stub.
1411 void
1412 relocate_stub(The_reloc_stub*,
1413 const The_relocate_info*,
1414 The_target_aarch64*,
1415 Output_section*,
1416 unsigned char*,
1417 AArch64_address,
1418 section_size_type);
1419
1420 private:
1421 // Owner of this stub table.
1422 The_aarch64_input_section* owner_;
1423 // The relocation stubs.
1424 Reloc_stub_map reloc_stubs_;
1425 // The erratum stubs.
1426 Erratum_stub_set erratum_stubs_;
1427 // Size of reloc stubs.
1428 off_t reloc_stubs_size_;
1429 // Size of erratum stubs.
1430 off_t erratum_stubs_size_;
1431 // data size of this in the previous pass.
1432 off_t prev_data_size_;
1433 }; // End of Stub_table
1434
1435
1436 // Add an erratum stub into the erratum stub set. The set is ordered by
1437 // (relobj, shndx, sh_offset).
1438
1439 template<int size, bool big_endian>
1440 void
1441 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1442 {
1443 std::pair<Erratum_stub_set_iter, bool> ret =
1444 this->erratum_stubs_.insert(stub);
1445 gold_assert(ret.second);
1446 this->erratum_stubs_size_ = align_address(
1447 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1448 stub->set_offset(this->erratum_stubs_size_);
1449 this->erratum_stubs_size_ += stub->stub_size();
1450 }
1451
1452
1453 // Find if such erratum exists for given (obj, shndx, sh_offset).
1454
1455 template<int size, bool big_endian>
1456 Erratum_stub<size, big_endian>*
1457 Stub_table<size, big_endian>::find_erratum_stub(
1458 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1459 {
1460 // A dummy object used as key to search in the set.
1461 The_erratum_stub key(a64relobj, ST_NONE,
1462 shndx, sh_offset);
1463 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1464 if (i != this->erratum_stubs_.end())
1465 {
1466 The_erratum_stub* stub(*i);
1467 gold_assert(stub->erratum_insn() != 0);
1468 return stub;
1469 }
1470 return NULL;
1471 }
1472
1473
1474 // Find all the errata for a given input section. The return value is a pair of
1475 // iterators [begin, end).
1476
1477 template<int size, bool big_endian>
1478 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1479 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1480 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1481 The_aarch64_relobj* a64relobj, unsigned int shndx)
1482 {
1483 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1484 Erratum_stub_set_iter start, end;
1485 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1486 start = this->erratum_stubs_.lower_bound(&low_key);
1487 if (start == this->erratum_stubs_.end())
1488 return Result_pair(this->erratum_stubs_.end(),
1489 this->erratum_stubs_.end());
1490 end = start;
1491 while (end != this->erratum_stubs_.end() &&
1492 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1493 ++end;
1494 return Result_pair(start, end);
1495 }
1496
1497
1498 // Add a STUB using KEY. The caller is responsible for avoiding addition
1499 // if a STUB with the same key has already been added.
1500
1501 template<int size, bool big_endian>
1502 void
1503 Stub_table<size, big_endian>::add_reloc_stub(
1504 The_reloc_stub* stub, const The_reloc_stub_key& key)
1505 {
1506 gold_assert(stub->type() == key.type());
1507 this->reloc_stubs_[key] = stub;
1508
1509 // Assign stub offset early. We can do this because we never remove
1510 // reloc stubs and they are in the beginning of the stub table.
1511 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1512 The_reloc_stub::STUB_ADDR_ALIGN);
1513 stub->set_offset(this->reloc_stubs_size_);
1514 this->reloc_stubs_size_ += stub->stub_size();
1515 }
1516
1517
1518 // Relocate all stubs in this stub table.
1519
1520 template<int size, bool big_endian>
1521 void
1522 Stub_table<size, big_endian>::
1523 relocate_stubs(const The_relocate_info* relinfo,
1524 The_target_aarch64* target_aarch64,
1525 Output_section* output_section,
1526 unsigned char* view,
1527 AArch64_address address,
1528 section_size_type view_size)
1529 {
1530 // "view_size" is the total size of the stub_table.
1531 gold_assert(address == this->address() &&
1532 view_size == static_cast<section_size_type>(this->data_size()));
1533 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1534 p != this->reloc_stubs_.end(); ++p)
1535 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1536 view, address, view_size);
1537
1538 // Just for convenience.
1539 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1540
1541 // Now 'relocate' erratum stubs.
1542 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1543 i != this->erratum_stubs_.end(); ++i)
1544 {
1545 AArch64_address stub_address = this->erratum_stub_address(*i);
1546 // The address of "b" in the stub that is to be "relocated".
1547 AArch64_address stub_b_insn_address;
1548 // Branch offset that is to be filled in "b" insn.
1549 int b_offset = 0;
1550 switch ((*i)->type())
1551 {
1552 case ST_E_843419:
1553 case ST_E_835769:
1554 // The 1st insn of the erratum could be a relocation spot,
1555 // in this case we need to fix it with
1556 // "(*i)->erratum_insn()".
1557 elfcpp::Swap<32, big_endian>::writeval(
1558 view + (stub_address - this->address()),
1559 (*i)->erratum_insn());
1560 // For the erratum, the 2nd insn is a b-insn to be patched
1561 // (relocated).
1562 stub_b_insn_address = stub_address + 1 * BPI;
1563 b_offset = (*i)->destination_address() - stub_b_insn_address;
1564 AArch64_relocate_functions<size, big_endian>::construct_b(
1565 view + (stub_b_insn_address - this->address()),
1566 ((unsigned int)(b_offset)) & 0xfffffff);
1567 break;
1568 default:
1569 gold_unreachable();
1570 break;
1571 }
1572 }
1573 }
1574
1575
1576 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1577
1578 template<int size, bool big_endian>
1579 void
1580 Stub_table<size, big_endian>::
1581 relocate_stub(The_reloc_stub* stub,
1582 const The_relocate_info* relinfo,
1583 The_target_aarch64* target_aarch64,
1584 Output_section* output_section,
1585 unsigned char* view,
1586 AArch64_address address,
1587 section_size_type view_size)
1588 {
1589 // "offset" is the offset from the beginning of the stub_table.
1590 section_size_type offset = stub->offset();
1591 section_size_type stub_size = stub->stub_size();
1592 // "view_size" is the total size of the stub_table.
1593 gold_assert(offset + stub_size <= view_size);
1594
1595 target_aarch64->relocate_stub(stub, relinfo, output_section,
1596 view + offset, address + offset, view_size);
1597 }
1598
1599
1600 // Write out the stubs to file.
1601
1602 template<int size, bool big_endian>
1603 void
1604 Stub_table<size, big_endian>::do_write(Output_file* of)
1605 {
1606 off_t offset = this->offset();
1607 const section_size_type oview_size =
1608 convert_to_section_size_type(this->data_size());
1609 unsigned char* const oview = of->get_output_view(offset, oview_size);
1610
1611 // Write relocation stubs.
1612 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1613 p != this->reloc_stubs_.end(); ++p)
1614 {
1615 The_reloc_stub* stub = p->second;
1616 AArch64_address address = this->address() + stub->offset();
1617 gold_assert(address ==
1618 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1619 stub->write(oview + stub->offset(), stub->stub_size());
1620 }
1621
1622 // Write erratum stubs.
1623 unsigned int erratum_stub_start_offset =
1624 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1625 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1626 p != this->erratum_stubs_.end(); ++p)
1627 {
1628 The_erratum_stub* stub(*p);
1629 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1630 stub->stub_size());
1631 }
1632
1633 of->write_output_view(this->offset(), oview_size, oview);
1634 }
1635
1636
1637 // AArch64_relobj class.
1638
1639 template<int size, bool big_endian>
1640 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1641 {
1642 public:
1643 typedef AArch64_relobj<size, big_endian> This;
1644 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1645 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1646 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1647 typedef Stub_table<size, big_endian> The_stub_table;
1648 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1649 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1650 typedef std::vector<The_stub_table*> Stub_table_list;
1651 static const AArch64_address invalid_address =
1652 static_cast<AArch64_address>(-1);
1653
1654 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1655 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1656 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1657 stub_tables_()
1658 { }
1659
1660 ~AArch64_relobj()
1661 { }
1662
1663 // Return the stub table of the SHNDX-th section if there is one.
1664 The_stub_table*
1665 stub_table(unsigned int shndx) const
1666 {
1667 gold_assert(shndx < this->stub_tables_.size());
1668 return this->stub_tables_[shndx];
1669 }
1670
1671 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1672 void
1673 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1674 {
1675 gold_assert(shndx < this->stub_tables_.size());
1676 this->stub_tables_[shndx] = stub_table;
1677 }
1678
1679 // Entrance to errata scanning.
1680 void
1681 scan_errata(unsigned int shndx,
1682 const elfcpp::Shdr<size, big_endian>&,
1683 Output_section*, const Symbol_table*,
1684 The_target_aarch64*);
1685
1686 // Scan all relocation sections for stub generation.
1687 void
1688 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1689 const Layout*);
1690
1691 // Whether a section is a scannable text section.
1692 bool
1693 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1694 const Output_section*, const Symbol_table*);
1695
1696 // Convert regular input section with index SHNDX to a relaxed section.
1697 void
1698 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1699 {
1700 // The stubs have relocations and we need to process them after writing
1701 // out the stubs. So relocation now must follow section write.
1702 this->set_relocs_must_follow_section_writes();
1703 }
1704
1705 // Structure for mapping symbol position.
1706 struct Mapping_symbol_position
1707 {
1708 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1709 shndx_(shndx), offset_(offset)
1710 {}
1711
1712 // "<" comparator used in ordered_map container.
1713 bool
1714 operator<(const Mapping_symbol_position& p) const
1715 {
1716 return (this->shndx_ < p.shndx_
1717 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1718 }
1719
1720 // Section index.
1721 unsigned int shndx_;
1722
1723 // Section offset.
1724 AArch64_address offset_;
1725 };
1726
1727 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1728
1729 protected:
1730 // Post constructor setup.
1731 void
1732 do_setup()
1733 {
1734 // Call parent's setup method.
1735 Sized_relobj_file<size, big_endian>::do_setup();
1736
1737 // Initialize look-up tables.
1738 this->stub_tables_.resize(this->shnum());
1739 }
1740
1741 virtual void
1742 do_relocate_sections(
1743 const Symbol_table* symtab, const Layout* layout,
1744 const unsigned char* pshdrs, Output_file* of,
1745 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1746
1747 // Count local symbols and (optionally) record mapping info.
1748 virtual void
1749 do_count_local_symbols(Stringpool_template<char>*,
1750 Stringpool_template<char>*);
1751
1752 private:
1753 // Fix all errata in the object.
1754 void
1755 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1756
1757 // Whether a section needs to be scanned for relocation stubs.
1758 bool
1759 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1760 const Relobj::Output_sections&,
1761 const Symbol_table*, const unsigned char*);
1762
1763 // List of stub tables.
1764 Stub_table_list stub_tables_;
1765
1766 // Mapping symbol information sorted by (section index, section_offset).
1767 Mapping_symbol_info mapping_symbol_info_;
1768 }; // End of AArch64_relobj
1769
1770
1771 // Override to record mapping symbol information.
1772 template<int size, bool big_endian>
1773 void
1774 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1775 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1776 {
1777 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1778
1779 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1780 // processing if not fixing erratum.
1781 if (!parameters->options().fix_cortex_a53_843419()
1782 && !parameters->options().fix_cortex_a53_835769())
1783 return;
1784
1785 const unsigned int loccount = this->local_symbol_count();
1786 if (loccount == 0)
1787 return;
1788
1789 // Read the symbol table section header.
1790 const unsigned int symtab_shndx = this->symtab_shndx();
1791 elfcpp::Shdr<size, big_endian>
1792 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1793 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1794
1795 // Read the local symbols.
1796 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1797 gold_assert(loccount == symtabshdr.get_sh_info());
1798 off_t locsize = loccount * sym_size;
1799 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1800 locsize, true, true);
1801
1802 // For mapping symbol processing, we need to read the symbol names.
1803 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1804 if (strtab_shndx >= this->shnum())
1805 {
1806 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1807 return;
1808 }
1809
1810 elfcpp::Shdr<size, big_endian>
1811 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1812 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1813 {
1814 this->error(_("symbol table name section has wrong type: %u"),
1815 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1816 return;
1817 }
1818
1819 const char* pnames =
1820 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1821 strtabshdr.get_sh_size(),
1822 false, false));
1823
1824 // Skip the first dummy symbol.
1825 psyms += sym_size;
1826 typename Sized_relobj_file<size, big_endian>::Local_values*
1827 plocal_values = this->local_values();
1828 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1829 {
1830 elfcpp::Sym<size, big_endian> sym(psyms);
1831 Symbol_value<size>& lv((*plocal_values)[i]);
1832 AArch64_address input_value = lv.input_value();
1833
1834 // Check to see if this is a mapping symbol. AArch64 mapping symbols are
1835 // defined in "ELF for the ARM 64-bit Architecture", Table 4-4, Mapping
1836 // symbols.
1837 // Mapping symbols could be one of the following 4 forms -
1838 // a) $x
1839 // b) $x.<any...>
1840 // c) $d
1841 // d) $d.<any...>
1842 const char* sym_name = pnames + sym.get_st_name();
1843 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1844 && (sym_name[2] == '\0' || sym_name[2] == '.'))
1845 {
1846 bool is_ordinary;
1847 unsigned int input_shndx =
1848 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1849 gold_assert(is_ordinary);
1850
1851 Mapping_symbol_position msp(input_shndx, input_value);
1852 // Insert mapping_symbol_info into map whose ordering is defined by
1853 // (shndx, offset_within_section).
1854 this->mapping_symbol_info_[msp] = sym_name[1];
1855 }
1856 }
1857 }
1858
1859
1860 // Fix all errata in the object.
1861
1862 template<int size, bool big_endian>
1863 void
1864 AArch64_relobj<size, big_endian>::fix_errata(
1865 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1866 {
1867 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1868 unsigned int shnum = this->shnum();
1869 for (unsigned int i = 1; i < shnum; ++i)
1870 {
1871 The_stub_table* stub_table = this->stub_table(i);
1872 if (!stub_table)
1873 continue;
1874 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1875 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1876 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1877 while (p != end)
1878 {
1879 The_erratum_stub* stub = *p;
1880 typename Sized_relobj_file<size, big_endian>::View_size&
1881 pview((*pviews)[i]);
1882
1883 // Double check data before fix.
1884 gold_assert(pview.address + stub->sh_offset()
1885 == stub->erratum_address());
1886
1887 // Update previously recorded erratum insn with relocated
1888 // version.
1889 Insntype* ip =
1890 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1891 Insntype insn_to_fix = ip[0];
1892 stub->update_erratum_insn(insn_to_fix);
1893
1894 // Replace the erratum insn with a branch-to-stub.
1895 AArch64_address stub_address =
1896 stub_table->erratum_stub_address(stub);
1897 unsigned int b_offset = stub_address - stub->erratum_address();
1898 AArch64_relocate_functions<size, big_endian>::construct_b(
1899 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1900 ++p;
1901 }
1902 }
1903 }
1904
1905
1906 // Relocate sections.
1907
1908 template<int size, bool big_endian>
1909 void
1910 AArch64_relobj<size, big_endian>::do_relocate_sections(
1911 const Symbol_table* symtab, const Layout* layout,
1912 const unsigned char* pshdrs, Output_file* of,
1913 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1914 {
1915 // Call parent to relocate sections.
1916 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
1917 pshdrs, of, pviews);
1918
1919 // We do not generate stubs if doing a relocatable link.
1920 if (parameters->options().relocatable())
1921 return;
1922
1923 if (parameters->options().fix_cortex_a53_843419()
1924 || parameters->options().fix_cortex_a53_835769())
1925 this->fix_errata(pviews);
1926
1927 Relocate_info<size, big_endian> relinfo;
1928 relinfo.symtab = symtab;
1929 relinfo.layout = layout;
1930 relinfo.object = this;
1931
1932 // Relocate stub tables.
1933 unsigned int shnum = this->shnum();
1934 The_target_aarch64* target = The_target_aarch64::current_target();
1935
1936 for (unsigned int i = 1; i < shnum; ++i)
1937 {
1938 The_aarch64_input_section* aarch64_input_section =
1939 target->find_aarch64_input_section(this, i);
1940 if (aarch64_input_section != NULL
1941 && aarch64_input_section->is_stub_table_owner()
1942 && !aarch64_input_section->stub_table()->empty())
1943 {
1944 Output_section* os = this->output_section(i);
1945 gold_assert(os != NULL);
1946
1947 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1948 relinfo.reloc_shdr = NULL;
1949 relinfo.data_shndx = i;
1950 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1951
1952 typename Sized_relobj_file<size, big_endian>::View_size&
1953 view_struct = (*pviews)[i];
1954 gold_assert(view_struct.view != NULL);
1955
1956 The_stub_table* stub_table = aarch64_input_section->stub_table();
1957 off_t offset = stub_table->address() - view_struct.address;
1958 unsigned char* view = view_struct.view + offset;
1959 AArch64_address address = stub_table->address();
1960 section_size_type view_size = stub_table->data_size();
1961 stub_table->relocate_stubs(&relinfo, target, os, view, address,
1962 view_size);
1963 }
1964 }
1965 }
1966
1967
1968 // Determine if an input section is scannable for stub processing. SHDR is
1969 // the header of the section and SHNDX is the section index. OS is the output
1970 // section for the input section and SYMTAB is the global symbol table used to
1971 // look up ICF information.
1972
1973 template<int size, bool big_endian>
1974 bool
1975 AArch64_relobj<size, big_endian>::text_section_is_scannable(
1976 const elfcpp::Shdr<size, big_endian>& text_shdr,
1977 unsigned int text_shndx,
1978 const Output_section* os,
1979 const Symbol_table* symtab)
1980 {
1981 // Skip any empty sections, unallocated sections or sections whose
1982 // type are not SHT_PROGBITS.
1983 if (text_shdr.get_sh_size() == 0
1984 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1985 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1986 return false;
1987
1988 // Skip any discarded or ICF'ed sections.
1989 if (os == NULL || symtab->is_section_folded(this, text_shndx))
1990 return false;
1991
1992 // Skip exception frame.
1993 if (strcmp(os->name(), ".eh_frame") == 0)
1994 return false ;
1995
1996 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1997 os->find_relaxed_input_section(this, text_shndx) != NULL);
1998
1999 return true;
2000 }
2001
2002
2003 // Determine if we want to scan the SHNDX-th section for relocation stubs.
2004 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
2005
2006 template<int size, bool big_endian>
2007 bool
2008 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2009 const elfcpp::Shdr<size, big_endian>& shdr,
2010 const Relobj::Output_sections& out_sections,
2011 const Symbol_table* symtab,
2012 const unsigned char* pshdrs)
2013 {
2014 unsigned int sh_type = shdr.get_sh_type();
2015 if (sh_type != elfcpp::SHT_RELA)
2016 return false;
2017
2018 // Ignore empty section.
2019 off_t sh_size = shdr.get_sh_size();
2020 if (sh_size == 0)
2021 return false;
2022
2023 // Ignore reloc section with unexpected symbol table. The
2024 // error will be reported in the final link.
2025 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2026 return false;
2027
2028 gold_assert(sh_type == elfcpp::SHT_RELA);
2029 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2030
2031 // Ignore reloc section with unexpected entsize or uneven size.
2032 // The error will be reported in the final link.
2033 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2034 return false;
2035
2036 // Ignore reloc section with bad info. This error will be
2037 // reported in the final link.
2038 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2039 if (text_shndx >= this->shnum())
2040 return false;
2041
2042 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2043 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2044 text_shndx * shdr_size);
2045 return this->text_section_is_scannable(text_shdr, text_shndx,
2046 out_sections[text_shndx], symtab);
2047 }
2048
2049
2050 // Scan section SHNDX for erratum 843419 and 835769.
2051
2052 template<int size, bool big_endian>
2053 void
2054 AArch64_relobj<size, big_endian>::scan_errata(
2055 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2056 Output_section* os, const Symbol_table* symtab,
2057 The_target_aarch64* target)
2058 {
2059 if (shdr.get_sh_size() == 0
2060 || (shdr.get_sh_flags() &
2061 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2062 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2063 return;
2064
2065 if (!os || symtab->is_section_folded(this, shndx)) return;
2066
2067 AArch64_address output_offset = this->get_output_section_offset(shndx);
2068 AArch64_address output_address;
2069 if (output_offset != invalid_address)
2070 output_address = os->address() + output_offset;
2071 else
2072 {
2073 const Output_relaxed_input_section* poris =
2074 os->find_relaxed_input_section(this, shndx);
2075 if (!poris) return;
2076 output_address = poris->address();
2077 }
2078
2079 section_size_type input_view_size = 0;
2080 const unsigned char* input_view =
2081 this->section_contents(shndx, &input_view_size, false);
2082
2083 Mapping_symbol_position section_start(shndx, 0);
2084 // Find the first mapping symbol record within section shndx.
2085 typename Mapping_symbol_info::const_iterator p =
2086 this->mapping_symbol_info_.lower_bound(section_start);
2087 if (p == this->mapping_symbol_info_.end() || p->first.shndx_ != shndx)
2088 gold_warning(_("cannot scan executable section %u of %s for Cortex-A53 "
2089 "erratum because it has no mapping symbols."),
2090 shndx, this->name().c_str());
2091 while (p != this->mapping_symbol_info_.end() &&
2092 p->first.shndx_ == shndx)
2093 {
2094 typename Mapping_symbol_info::const_iterator prev = p;
2095 ++p;
2096 if (prev->second == 'x')
2097 {
2098 section_size_type span_start =
2099 convert_to_section_size_type(prev->first.offset_);
2100 section_size_type span_end;
2101 if (p != this->mapping_symbol_info_.end()
2102 && p->first.shndx_ == shndx)
2103 span_end = convert_to_section_size_type(p->first.offset_);
2104 else
2105 span_end = convert_to_section_size_type(shdr.get_sh_size());
2106
2107 // Here we do not share the scanning code of both errata. For 843419,
2108 // only the last few insns of each page are examined, which is fast,
2109 // whereas, for 835769, every insn pair needs to be checked.
2110
2111 if (parameters->options().fix_cortex_a53_843419())
2112 target->scan_erratum_843419_span(
2113 this, shndx, span_start, span_end,
2114 const_cast<unsigned char*>(input_view), output_address);
2115
2116 if (parameters->options().fix_cortex_a53_835769())
2117 target->scan_erratum_835769_span(
2118 this, shndx, span_start, span_end,
2119 const_cast<unsigned char*>(input_view), output_address);
2120 }
2121 }
2122 }
2123
2124
2125 // Scan relocations for stub generation.
2126
2127 template<int size, bool big_endian>
2128 void
2129 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2130 The_target_aarch64* target,
2131 const Symbol_table* symtab,
2132 const Layout* layout)
2133 {
2134 unsigned int shnum = this->shnum();
2135 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2136
2137 // Read the section headers.
2138 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2139 shnum * shdr_size,
2140 true, true);
2141
2142 // To speed up processing, we set up hash tables for fast lookup of
2143 // input offsets to output addresses.
2144 this->initialize_input_to_output_maps();
2145
2146 const Relobj::Output_sections& out_sections(this->output_sections());
2147
2148 Relocate_info<size, big_endian> relinfo;
2149 relinfo.symtab = symtab;
2150 relinfo.layout = layout;
2151 relinfo.object = this;
2152
2153 // Do relocation stubs scanning.
2154 const unsigned char* p = pshdrs + shdr_size;
2155 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2156 {
2157 const elfcpp::Shdr<size, big_endian> shdr(p);
2158 if (parameters->options().fix_cortex_a53_843419()
2159 || parameters->options().fix_cortex_a53_835769())
2160 scan_errata(i, shdr, out_sections[i], symtab, target);
2161 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2162 pshdrs))
2163 {
2164 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2165 AArch64_address output_offset =
2166 this->get_output_section_offset(index);
2167 AArch64_address output_address;
2168 if (output_offset != invalid_address)
2169 {
2170 output_address = out_sections[index]->address() + output_offset;
2171 }
2172 else
2173 {
2174 // Currently this only happens for a relaxed section.
2175 const Output_relaxed_input_section* poris =
2176 out_sections[index]->find_relaxed_input_section(this, index);
2177 gold_assert(poris != NULL);
2178 output_address = poris->address();
2179 }
2180
2181 // Get the relocations.
2182 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2183 shdr.get_sh_size(),
2184 true, false);
2185
2186 // Get the section contents.
2187 section_size_type input_view_size = 0;
2188 const unsigned char* input_view =
2189 this->section_contents(index, &input_view_size, false);
2190
2191 relinfo.reloc_shndx = i;
2192 relinfo.data_shndx = index;
2193 unsigned int sh_type = shdr.get_sh_type();
2194 unsigned int reloc_size;
2195 gold_assert (sh_type == elfcpp::SHT_RELA);
2196 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2197
2198 Output_section* os = out_sections[index];
2199 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2200 shdr.get_sh_size() / reloc_size,
2201 os,
2202 output_offset == invalid_address,
2203 input_view, output_address,
2204 input_view_size);
2205 }
2206 }
2207 }
2208
2209
2210 // A class to wrap an ordinary input section containing executable code.
2211
2212 template<int size, bool big_endian>
2213 class AArch64_input_section : public Output_relaxed_input_section
2214 {
2215 public:
2216 typedef Stub_table<size, big_endian> The_stub_table;
2217
2218 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2219 : Output_relaxed_input_section(relobj, shndx, 1),
2220 stub_table_(NULL),
2221 original_contents_(NULL), original_size_(0),
2222 original_addralign_(1)
2223 { }
2224
2225 ~AArch64_input_section()
2226 { delete[] this->original_contents_; }
2227
2228 // Initialize.
2229 void
2230 init();
2231
2232 // Set the stub_table.
2233 void
2234 set_stub_table(The_stub_table* st)
2235 { this->stub_table_ = st; }
2236
2237 // Whether this is a stub table owner.
2238 bool
2239 is_stub_table_owner() const
2240 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2241
2242 // Return the original size of the section.
2243 uint32_t
2244 original_size() const
2245 { return this->original_size_; }
2246
2247 // Return the stub table.
2248 The_stub_table*
2249 stub_table()
2250 { return stub_table_; }
2251
2252 protected:
2253 // Write out this input section.
2254 void
2255 do_write(Output_file*);
2256
2257 // Return required alignment of this.
2258 uint64_t
2259 do_addralign() const
2260 {
2261 if (this->is_stub_table_owner())
2262 return std::max(this->stub_table_->addralign(),
2263 static_cast<uint64_t>(this->original_addralign_));
2264 else
2265 return this->original_addralign_;
2266 }
2267
2268 // Finalize data size.
2269 void
2270 set_final_data_size();
2271
2272 // Reset address and file offset.
2273 void
2274 do_reset_address_and_file_offset();
2275
2276 // Output offset.
2277 bool
2278 do_output_offset(const Relobj* object, unsigned int shndx,
2279 section_offset_type offset,
2280 section_offset_type* poutput) const
2281 {
2282 if ((object == this->relobj())
2283 && (shndx == this->shndx())
2284 && (offset >= 0)
2285 && (offset <=
2286 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2287 {
2288 *poutput = offset;
2289 return true;
2290 }
2291 else
2292 return false;
2293 }
2294
2295 private:
2296 // Copying is not allowed.
2297 AArch64_input_section(const AArch64_input_section&);
2298 AArch64_input_section& operator=(const AArch64_input_section&);
2299
2300 // The relocation stubs.
2301 The_stub_table* stub_table_;
2302 // Original section contents. We have to make a copy here since the file
2303 // containing the original section may not be locked when we need to access
2304 // the contents.
2305 unsigned char* original_contents_;
2306 // Section size of the original input section.
2307 uint32_t original_size_;
2308 // Address alignment of the original input section.
2309 uint32_t original_addralign_;
2310 }; // End of AArch64_input_section
2311
2312
2313 // Finalize data size.
2314
2315 template<int size, bool big_endian>
2316 void
2317 AArch64_input_section<size, big_endian>::set_final_data_size()
2318 {
2319 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2320
2321 if (this->is_stub_table_owner())
2322 {
2323 this->stub_table_->finalize_data_size();
2324 off = align_address(off, this->stub_table_->addralign());
2325 off += this->stub_table_->data_size();
2326 }
2327 this->set_data_size(off);
2328 }
2329
2330
2331 // Reset address and file offset.
2332
2333 template<int size, bool big_endian>
2334 void
2335 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2336 {
2337 // Size of the original input section contents.
2338 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2339
2340 // If this is a stub table owner, account for the stub table size.
2341 if (this->is_stub_table_owner())
2342 {
2343 The_stub_table* stub_table = this->stub_table_;
2344
2345 // Reset the stub table's address and file offset. The
2346 // current data size for child will be updated after that.
2347 stub_table_->reset_address_and_file_offset();
2348 off = align_address(off, stub_table_->addralign());
2349 off += stub_table->current_data_size();
2350 }
2351
2352 this->set_current_data_size(off);
2353 }
2354
2355
2356 // Initialize an Arm_input_section.
2357
2358 template<int size, bool big_endian>
2359 void
2360 AArch64_input_section<size, big_endian>::init()
2361 {
2362 Relobj* relobj = this->relobj();
2363 unsigned int shndx = this->shndx();
2364
2365 // We have to cache original size, alignment and contents to avoid locking
2366 // the original file.
2367 this->original_addralign_ =
2368 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2369
2370 // This is not efficient but we expect only a small number of relaxed
2371 // input sections for stubs.
2372 section_size_type section_size;
2373 const unsigned char* section_contents =
2374 relobj->section_contents(shndx, &section_size, false);
2375 this->original_size_ =
2376 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2377
2378 gold_assert(this->original_contents_ == NULL);
2379 this->original_contents_ = new unsigned char[section_size];
2380 memcpy(this->original_contents_, section_contents, section_size);
2381
2382 // We want to make this look like the original input section after
2383 // output sections are finalized.
2384 Output_section* os = relobj->output_section(shndx);
2385 off_t offset = relobj->output_section_offset(shndx);
2386 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2387 this->set_address(os->address() + offset);
2388 this->set_file_offset(os->offset() + offset);
2389 this->set_current_data_size(this->original_size_);
2390 this->finalize_data_size();
2391 }
2392
2393
2394 // Write data to output file.
2395
2396 template<int size, bool big_endian>
2397 void
2398 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2399 {
2400 // We have to write out the original section content.
2401 gold_assert(this->original_contents_ != NULL);
2402 of->write(this->offset(), this->original_contents_,
2403 this->original_size_);
2404
2405 // If this owns a stub table and it is not empty, write it.
2406 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2407 this->stub_table_->write(of);
2408 }
2409
2410
2411 // Arm output section class. This is defined mainly to add a number of stub
2412 // generation methods.
2413
2414 template<int size, bool big_endian>
2415 class AArch64_output_section : public Output_section
2416 {
2417 public:
2418 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2419 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2420 typedef Stub_table<size, big_endian> The_stub_table;
2421 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2422
2423 public:
2424 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2425 elfcpp::Elf_Xword flags)
2426 : Output_section(name, type, flags)
2427 { }
2428
2429 ~AArch64_output_section() {}
2430
2431 // Group input sections for stub generation.
2432 void
2433 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2434 const Task*);
2435
2436 private:
2437 typedef Output_section::Input_section Input_section;
2438 typedef Output_section::Input_section_list Input_section_list;
2439
2440 // Create a stub group.
2441 void
2442 create_stub_group(Input_section_list::const_iterator,
2443 Input_section_list::const_iterator,
2444 Input_section_list::const_iterator,
2445 The_target_aarch64*,
2446 std::vector<Output_relaxed_input_section*>&,
2447 const Task*);
2448 }; // End of AArch64_output_section
2449
2450
2451 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2452 // the input section that will be the owner of the stub table.
2453
2454 template<int size, bool big_endian> void
2455 AArch64_output_section<size, big_endian>::create_stub_group(
2456 Input_section_list::const_iterator first,
2457 Input_section_list::const_iterator last,
2458 Input_section_list::const_iterator owner,
2459 The_target_aarch64* target,
2460 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2461 const Task* task)
2462 {
2463 // Currently we convert ordinary input sections into relaxed sections only
2464 // at this point.
2465 The_aarch64_input_section* input_section;
2466 if (owner->is_relaxed_input_section())
2467 gold_unreachable();
2468 else
2469 {
2470 gold_assert(owner->is_input_section());
2471 // Create a new relaxed input section. We need to lock the original
2472 // file.
2473 Task_lock_obj<Object> tl(task, owner->relobj());
2474 input_section =
2475 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2476 new_relaxed_sections.push_back(input_section);
2477 }
2478
2479 // Create a stub table.
2480 The_stub_table* stub_table =
2481 target->new_stub_table(input_section);
2482
2483 input_section->set_stub_table(stub_table);
2484
2485 Input_section_list::const_iterator p = first;
2486 // Look for input sections or relaxed input sections in [first ... last].
2487 do
2488 {
2489 if (p->is_input_section() || p->is_relaxed_input_section())
2490 {
2491 // The stub table information for input sections live
2492 // in their objects.
2493 The_aarch64_relobj* aarch64_relobj =
2494 static_cast<The_aarch64_relobj*>(p->relobj());
2495 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2496 }
2497 }
2498 while (p++ != last);
2499 }
2500
2501
2502 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2503 // stub groups. We grow a stub group by adding input section until the size is
2504 // just below GROUP_SIZE. The last input section will be converted into a stub
2505 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2506 // after the stub table, effectively doubling the group size.
2507 //
2508 // This is similar to the group_sections() function in elf32-arm.c but is
2509 // implemented differently.
2510
2511 template<int size, bool big_endian>
2512 void AArch64_output_section<size, big_endian>::group_sections(
2513 section_size_type group_size,
2514 bool stubs_always_after_branch,
2515 Target_aarch64<size, big_endian>* target,
2516 const Task* task)
2517 {
2518 typedef enum
2519 {
2520 NO_GROUP,
2521 FINDING_STUB_SECTION,
2522 HAS_STUB_SECTION
2523 } State;
2524
2525 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2526
2527 State state = NO_GROUP;
2528 section_size_type off = 0;
2529 section_size_type group_begin_offset = 0;
2530 section_size_type group_end_offset = 0;
2531 section_size_type stub_table_end_offset = 0;
2532 Input_section_list::const_iterator group_begin =
2533 this->input_sections().end();
2534 Input_section_list::const_iterator stub_table =
2535 this->input_sections().end();
2536 Input_section_list::const_iterator group_end = this->input_sections().end();
2537 for (Input_section_list::const_iterator p = this->input_sections().begin();
2538 p != this->input_sections().end();
2539 ++p)
2540 {
2541 section_size_type section_begin_offset =
2542 align_address(off, p->addralign());
2543 section_size_type section_end_offset =
2544 section_begin_offset + p->data_size();
2545
2546 // Check to see if we should group the previously seen sections.
2547 switch (state)
2548 {
2549 case NO_GROUP:
2550 break;
2551
2552 case FINDING_STUB_SECTION:
2553 // Adding this section makes the group larger than GROUP_SIZE.
2554 if (section_end_offset - group_begin_offset >= group_size)
2555 {
2556 if (stubs_always_after_branch)
2557 {
2558 gold_assert(group_end != this->input_sections().end());
2559 this->create_stub_group(group_begin, group_end, group_end,
2560 target, new_relaxed_sections,
2561 task);
2562 state = NO_GROUP;
2563 }
2564 else
2565 {
2566 // Input sections up to stub_group_size bytes after the stub
2567 // table can be handled by it too.
2568 state = HAS_STUB_SECTION;
2569 stub_table = group_end;
2570 stub_table_end_offset = group_end_offset;
2571 }
2572 }
2573 break;
2574
2575 case HAS_STUB_SECTION:
2576 // Adding this section makes the post stub-section group larger
2577 // than GROUP_SIZE.
2578 gold_unreachable();
2579 // NOT SUPPORTED YET. For completeness only.
2580 if (section_end_offset - stub_table_end_offset >= group_size)
2581 {
2582 gold_assert(group_end != this->input_sections().end());
2583 this->create_stub_group(group_begin, group_end, stub_table,
2584 target, new_relaxed_sections, task);
2585 state = NO_GROUP;
2586 }
2587 break;
2588
2589 default:
2590 gold_unreachable();
2591 }
2592
2593 // If we see an input section and currently there is no group, start
2594 // a new one. Skip any empty sections. We look at the data size
2595 // instead of calling p->relobj()->section_size() to avoid locking.
2596 if ((p->is_input_section() || p->is_relaxed_input_section())
2597 && (p->data_size() != 0))
2598 {
2599 if (state == NO_GROUP)
2600 {
2601 state = FINDING_STUB_SECTION;
2602 group_begin = p;
2603 group_begin_offset = section_begin_offset;
2604 }
2605
2606 // Keep track of the last input section seen.
2607 group_end = p;
2608 group_end_offset = section_end_offset;
2609 }
2610
2611 off = section_end_offset;
2612 }
2613
2614 // Create a stub group for any ungrouped sections.
2615 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2616 {
2617 gold_assert(group_end != this->input_sections().end());
2618 this->create_stub_group(group_begin, group_end,
2619 (state == FINDING_STUB_SECTION
2620 ? group_end
2621 : stub_table),
2622 target, new_relaxed_sections, task);
2623 }
2624
2625 if (!new_relaxed_sections.empty())
2626 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2627
2628 // Update the section offsets
2629 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2630 {
2631 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2632 new_relaxed_sections[i]->relobj());
2633 unsigned int shndx = new_relaxed_sections[i]->shndx();
2634 // Tell AArch64_relobj that this input section is converted.
2635 relobj->convert_input_section_to_relaxed_section(shndx);
2636 }
2637 } // End of AArch64_output_section::group_sections
2638
2639
2640 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2641
2642
2643 // The aarch64 target class.
2644 // See the ABI at
2645 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2646 template<int size, bool big_endian>
2647 class Target_aarch64 : public Sized_target<size, big_endian>
2648 {
2649 public:
2650 typedef Target_aarch64<size, big_endian> This;
2651 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2652 Reloc_section;
2653 typedef Relocate_info<size, big_endian> The_relocate_info;
2654 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2655 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2656 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2657 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2658 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2659 typedef Stub_table<size, big_endian> The_stub_table;
2660 typedef std::vector<The_stub_table*> Stub_table_list;
2661 typedef typename Stub_table_list::iterator Stub_table_iterator;
2662 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2663 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2664 typedef Unordered_map<Section_id,
2665 AArch64_input_section<size, big_endian>*,
2666 Section_id_hash> AArch64_input_section_map;
2667 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2668 const static int TCB_SIZE = size / 8 * 2;
2669
2670 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2671 : Sized_target<size, big_endian>(info),
2672 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2673 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2674 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2675 got_mod_index_offset_(-1U),
2676 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2677 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2678 { }
2679
2680 // Scan the relocations to determine unreferenced sections for
2681 // garbage collection.
2682 void
2683 gc_process_relocs(Symbol_table* symtab,
2684 Layout* layout,
2685 Sized_relobj_file<size, big_endian>* object,
2686 unsigned int data_shndx,
2687 unsigned int sh_type,
2688 const unsigned char* prelocs,
2689 size_t reloc_count,
2690 Output_section* output_section,
2691 bool needs_special_offset_handling,
2692 size_t local_symbol_count,
2693 const unsigned char* plocal_symbols);
2694
2695 // Scan the relocations to look for symbol adjustments.
2696 void
2697 scan_relocs(Symbol_table* symtab,
2698 Layout* layout,
2699 Sized_relobj_file<size, big_endian>* object,
2700 unsigned int data_shndx,
2701 unsigned int sh_type,
2702 const unsigned char* prelocs,
2703 size_t reloc_count,
2704 Output_section* output_section,
2705 bool needs_special_offset_handling,
2706 size_t local_symbol_count,
2707 const unsigned char* plocal_symbols);
2708
2709 // Finalize the sections.
2710 void
2711 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2712
2713 // Return the value to use for a dynamic which requires special
2714 // treatment.
2715 uint64_t
2716 do_dynsym_value(const Symbol*) const;
2717
2718 // Relocate a section.
2719 void
2720 relocate_section(const Relocate_info<size, big_endian>*,
2721 unsigned int sh_type,
2722 const unsigned char* prelocs,
2723 size_t reloc_count,
2724 Output_section* output_section,
2725 bool needs_special_offset_handling,
2726 unsigned char* view,
2727 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2728 section_size_type view_size,
2729 const Reloc_symbol_changes*);
2730
2731 // Scan the relocs during a relocatable link.
2732 void
2733 scan_relocatable_relocs(Symbol_table* symtab,
2734 Layout* layout,
2735 Sized_relobj_file<size, big_endian>* object,
2736 unsigned int data_shndx,
2737 unsigned int sh_type,
2738 const unsigned char* prelocs,
2739 size_t reloc_count,
2740 Output_section* output_section,
2741 bool needs_special_offset_handling,
2742 size_t local_symbol_count,
2743 const unsigned char* plocal_symbols,
2744 Relocatable_relocs*);
2745
2746 // Relocate a section during a relocatable link.
2747 void
2748 relocate_relocs(
2749 const Relocate_info<size, big_endian>*,
2750 unsigned int sh_type,
2751 const unsigned char* prelocs,
2752 size_t reloc_count,
2753 Output_section* output_section,
2754 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2755 const Relocatable_relocs*,
2756 unsigned char* view,
2757 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2758 section_size_type view_size,
2759 unsigned char* reloc_view,
2760 section_size_type reloc_view_size);
2761
2762 // Return the symbol index to use for a target specific relocation.
2763 // The only target specific relocation is R_AARCH64_TLSDESC for a
2764 // local symbol, which is an absolute reloc.
2765 unsigned int
2766 do_reloc_symbol_index(void*, unsigned int r_type) const
2767 {
2768 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2769 return 0;
2770 }
2771
2772 // Return the addend to use for a target specific relocation.
2773 uint64_t
2774 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2775
2776 // Return the PLT section.
2777 uint64_t
2778 do_plt_address_for_global(const Symbol* gsym) const
2779 { return this->plt_section()->address_for_global(gsym); }
2780
2781 uint64_t
2782 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2783 { return this->plt_section()->address_for_local(relobj, symndx); }
2784
2785 // This function should be defined in targets that can use relocation
2786 // types to determine (implemented in local_reloc_may_be_function_pointer
2787 // and global_reloc_may_be_function_pointer)
2788 // if a function's pointer is taken. ICF uses this in safe mode to only
2789 // fold those functions whose pointer is defintely not taken.
2790 bool
2791 do_can_check_for_function_pointers() const
2792 { return true; }
2793
2794 // Return the number of entries in the PLT.
2795 unsigned int
2796 plt_entry_count() const;
2797
2798 //Return the offset of the first non-reserved PLT entry.
2799 unsigned int
2800 first_plt_entry_offset() const;
2801
2802 // Return the size of each PLT entry.
2803 unsigned int
2804 plt_entry_size() const;
2805
2806 // Create a stub table.
2807 The_stub_table*
2808 new_stub_table(The_aarch64_input_section*);
2809
2810 // Create an aarch64 input section.
2811 The_aarch64_input_section*
2812 new_aarch64_input_section(Relobj*, unsigned int);
2813
2814 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2815 The_aarch64_input_section*
2816 find_aarch64_input_section(Relobj*, unsigned int) const;
2817
2818 // Return the thread control block size.
2819 unsigned int
2820 tcb_size() const { return This::TCB_SIZE; }
2821
2822 // Scan a section for stub generation.
2823 void
2824 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2825 const unsigned char*, size_t, Output_section*,
2826 bool, const unsigned char*,
2827 Address,
2828 section_size_type);
2829
2830 // Scan a relocation section for stub.
2831 template<int sh_type>
2832 void
2833 scan_reloc_section_for_stubs(
2834 const The_relocate_info* relinfo,
2835 const unsigned char* prelocs,
2836 size_t reloc_count,
2837 Output_section* output_section,
2838 bool needs_special_offset_handling,
2839 const unsigned char* view,
2840 Address view_address,
2841 section_size_type);
2842
2843 // Relocate a single stub.
2844 void
2845 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2846 Output_section*, unsigned char*, Address,
2847 section_size_type);
2848
2849 // Get the default AArch64 target.
2850 static This*
2851 current_target()
2852 {
2853 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2854 && parameters->target().get_size() == size
2855 && parameters->target().is_big_endian() == big_endian);
2856 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2857 }
2858
2859
2860 // Scan erratum 843419 for a part of a section.
2861 void
2862 scan_erratum_843419_span(
2863 AArch64_relobj<size, big_endian>*,
2864 unsigned int,
2865 const section_size_type,
2866 const section_size_type,
2867 unsigned char*,
2868 Address);
2869
2870 // Scan erratum 835769 for a part of a section.
2871 void
2872 scan_erratum_835769_span(
2873 AArch64_relobj<size, big_endian>*,
2874 unsigned int,
2875 const section_size_type,
2876 const section_size_type,
2877 unsigned char*,
2878 Address);
2879
2880 protected:
2881 void
2882 do_select_as_default_target()
2883 {
2884 gold_assert(aarch64_reloc_property_table == NULL);
2885 aarch64_reloc_property_table = new AArch64_reloc_property_table();
2886 }
2887
2888 // Add a new reloc argument, returning the index in the vector.
2889 size_t
2890 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
2891 unsigned int r_sym)
2892 {
2893 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
2894 return this->tlsdesc_reloc_info_.size() - 1;
2895 }
2896
2897 virtual Output_data_plt_aarch64<size, big_endian>*
2898 do_make_data_plt(Layout* layout,
2899 Output_data_got_aarch64<size, big_endian>* got,
2900 Output_data_space* got_plt,
2901 Output_data_space* got_irelative)
2902 {
2903 return new Output_data_plt_aarch64_standard<size, big_endian>(
2904 layout, got, got_plt, got_irelative);
2905 }
2906
2907
2908 // do_make_elf_object to override the same function in the base class.
2909 Object*
2910 do_make_elf_object(const std::string&, Input_file*, off_t,
2911 const elfcpp::Ehdr<size, big_endian>&);
2912
2913 Output_data_plt_aarch64<size, big_endian>*
2914 make_data_plt(Layout* layout,
2915 Output_data_got_aarch64<size, big_endian>* got,
2916 Output_data_space* got_plt,
2917 Output_data_space* got_irelative)
2918 {
2919 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
2920 }
2921
2922 // We only need to generate stubs, and hence perform relaxation if we are
2923 // not doing relocatable linking.
2924 virtual bool
2925 do_may_relax() const
2926 { return !parameters->options().relocatable(); }
2927
2928 // Relaxation hook. This is where we do stub generation.
2929 virtual bool
2930 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2931
2932 void
2933 group_sections(Layout* layout,
2934 section_size_type group_size,
2935 bool stubs_always_after_branch,
2936 const Task* task);
2937
2938 void
2939 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
2940 const Sized_symbol<size>*, unsigned int,
2941 const Symbol_value<size>*,
2942 typename elfcpp::Elf_types<size>::Elf_Swxword,
2943 Address Elf_Addr);
2944
2945 // Make an output section.
2946 Output_section*
2947 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2948 elfcpp::Elf_Xword flags)
2949 { return new The_aarch64_output_section(name, type, flags); }
2950
2951 private:
2952 // The class which scans relocations.
2953 class Scan
2954 {
2955 public:
2956 Scan()
2957 : issued_non_pic_error_(false)
2958 { }
2959
2960 inline void
2961 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2962 Sized_relobj_file<size, big_endian>* object,
2963 unsigned int data_shndx,
2964 Output_section* output_section,
2965 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2966 const elfcpp::Sym<size, big_endian>& lsym,
2967 bool is_discarded);
2968
2969 inline void
2970 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2971 Sized_relobj_file<size, big_endian>* object,
2972 unsigned int data_shndx,
2973 Output_section* output_section,
2974 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2975 Symbol* gsym);
2976
2977 inline bool
2978 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2979 Target_aarch64<size, big_endian>* ,
2980 Sized_relobj_file<size, big_endian>* ,
2981 unsigned int ,
2982 Output_section* ,
2983 const elfcpp::Rela<size, big_endian>& ,
2984 unsigned int r_type,
2985 const elfcpp::Sym<size, big_endian>&);
2986
2987 inline bool
2988 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2989 Target_aarch64<size, big_endian>* ,
2990 Sized_relobj_file<size, big_endian>* ,
2991 unsigned int ,
2992 Output_section* ,
2993 const elfcpp::Rela<size, big_endian>& ,
2994 unsigned int r_type,
2995 Symbol* gsym);
2996
2997 private:
2998 static void
2999 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3000 unsigned int r_type);
3001
3002 static void
3003 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3004 unsigned int r_type, Symbol*);
3005
3006 inline bool
3007 possible_function_pointer_reloc(unsigned int r_type);
3008
3009 void
3010 check_non_pic(Relobj*, unsigned int r_type);
3011
3012 bool
3013 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3014 unsigned int r_type);
3015
3016 // Whether we have issued an error about a non-PIC compilation.
3017 bool issued_non_pic_error_;
3018 };
3019
3020 // The class which implements relocation.
3021 class Relocate
3022 {
3023 public:
3024 Relocate()
3025 : skip_call_tls_get_addr_(false)
3026 { }
3027
3028 ~Relocate()
3029 { }
3030
3031 // Do a relocation. Return false if the caller should not issue
3032 // any warnings about this relocation.
3033 inline bool
3034 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
3035 Output_section*,
3036 size_t relnum, const elfcpp::Rela<size, big_endian>&,
3037 unsigned int r_type, const Sized_symbol<size>*,
3038 const Symbol_value<size>*,
3039 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3040 section_size_type);
3041
3042 private:
3043 inline typename AArch64_relocate_functions<size, big_endian>::Status
3044 relocate_tls(const Relocate_info<size, big_endian>*,
3045 Target_aarch64<size, big_endian>*,
3046 size_t,
3047 const elfcpp::Rela<size, big_endian>&,
3048 unsigned int r_type, const Sized_symbol<size>*,
3049 const Symbol_value<size>*,
3050 unsigned char*,
3051 typename elfcpp::Elf_types<size>::Elf_Addr);
3052
3053 inline typename AArch64_relocate_functions<size, big_endian>::Status
3054 tls_gd_to_le(
3055 const Relocate_info<size, big_endian>*,
3056 Target_aarch64<size, big_endian>*,
3057 const elfcpp::Rela<size, big_endian>&,
3058 unsigned int,
3059 unsigned char*,
3060 const Symbol_value<size>*);
3061
3062 inline typename AArch64_relocate_functions<size, big_endian>::Status
3063 tls_ld_to_le(
3064 const Relocate_info<size, big_endian>*,
3065 Target_aarch64<size, big_endian>*,
3066 const elfcpp::Rela<size, big_endian>&,
3067 unsigned int,
3068 unsigned char*,
3069 const Symbol_value<size>*);
3070
3071 inline typename AArch64_relocate_functions<size, big_endian>::Status
3072 tls_ie_to_le(
3073 const Relocate_info<size, big_endian>*,
3074 Target_aarch64<size, big_endian>*,
3075 const elfcpp::Rela<size, big_endian>&,
3076 unsigned int,
3077 unsigned char*,
3078 const Symbol_value<size>*);
3079
3080 inline typename AArch64_relocate_functions<size, big_endian>::Status
3081 tls_desc_gd_to_le(
3082 const Relocate_info<size, big_endian>*,
3083 Target_aarch64<size, big_endian>*,
3084 const elfcpp::Rela<size, big_endian>&,
3085 unsigned int,
3086 unsigned char*,
3087 const Symbol_value<size>*);
3088
3089 inline typename AArch64_relocate_functions<size, big_endian>::Status
3090 tls_desc_gd_to_ie(
3091 const Relocate_info<size, big_endian>*,
3092 Target_aarch64<size, big_endian>*,
3093 const elfcpp::Rela<size, big_endian>&,
3094 unsigned int,
3095 unsigned char*,
3096 const Symbol_value<size>*,
3097 typename elfcpp::Elf_types<size>::Elf_Addr,
3098 typename elfcpp::Elf_types<size>::Elf_Addr);
3099
3100 bool skip_call_tls_get_addr_;
3101
3102 }; // End of class Relocate
3103
3104 // A class which returns the size required for a relocation type,
3105 // used while scanning relocs during a relocatable link.
3106 class Relocatable_size_for_reloc
3107 {
3108 public:
3109 unsigned int
3110 get_size_for_reloc(unsigned int, Relobj*);
3111 };
3112
3113 // Adjust TLS relocation type based on the options and whether this
3114 // is a local symbol.
3115 static tls::Tls_optimization
3116 optimize_tls_reloc(bool is_final, int r_type);
3117
3118 // Get the GOT section, creating it if necessary.
3119 Output_data_got_aarch64<size, big_endian>*
3120 got_section(Symbol_table*, Layout*);
3121
3122 // Get the GOT PLT section.
3123 Output_data_space*
3124 got_plt_section() const
3125 {
3126 gold_assert(this->got_plt_ != NULL);
3127 return this->got_plt_;
3128 }
3129
3130 // Get the GOT section for TLSDESC entries.
3131 Output_data_got<size, big_endian>*
3132 got_tlsdesc_section() const
3133 {
3134 gold_assert(this->got_tlsdesc_ != NULL);
3135 return this->got_tlsdesc_;
3136 }
3137
3138 // Create the PLT section.
3139 void
3140 make_plt_section(Symbol_table* symtab, Layout* layout);
3141
3142 // Create a PLT entry for a global symbol.
3143 void
3144 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3145
3146 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3147 void
3148 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3149 Sized_relobj_file<size, big_endian>* relobj,
3150 unsigned int local_sym_index);
3151
3152 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3153 void
3154 define_tls_base_symbol(Symbol_table*, Layout*);
3155
3156 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3157 void
3158 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3159
3160 // Create a GOT entry for the TLS module index.
3161 unsigned int
3162 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3163 Sized_relobj_file<size, big_endian>* object);
3164
3165 // Get the PLT section.
3166 Output_data_plt_aarch64<size, big_endian>*
3167 plt_section() const
3168 {
3169 gold_assert(this->plt_ != NULL);
3170 return this->plt_;
3171 }
3172
3173 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769.
3174 void create_erratum_stub(
3175 AArch64_relobj<size, big_endian>* relobj,
3176 unsigned int shndx,
3177 section_size_type erratum_insn_offset,
3178 Address erratum_address,
3179 typename Insn_utilities::Insntype erratum_insn,
3180 int erratum_type);
3181
3182 // Return whether this is a 3-insn erratum sequence.
3183 bool is_erratum_843419_sequence(
3184 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3185 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3186 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3187
3188 // Return whether this is a 835769 sequence.
3189 // (Similarly implemented as in elfnn-aarch64.c.)
3190 bool is_erratum_835769_sequence(
3191 typename elfcpp::Swap<32,big_endian>::Valtype,
3192 typename elfcpp::Swap<32,big_endian>::Valtype);
3193
3194 // Get the dynamic reloc section, creating it if necessary.
3195 Reloc_section*
3196 rela_dyn_section(Layout*);
3197
3198 // Get the section to use for TLSDESC relocations.
3199 Reloc_section*
3200 rela_tlsdesc_section(Layout*) const;
3201
3202 // Get the section to use for IRELATIVE relocations.
3203 Reloc_section*
3204 rela_irelative_section(Layout*);
3205
3206 // Add a potential copy relocation.
3207 void
3208 copy_reloc(Symbol_table* symtab, Layout* layout,
3209 Sized_relobj_file<size, big_endian>* object,
3210 unsigned int shndx, Output_section* output_section,
3211 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3212 {
3213 this->copy_relocs_.copy_reloc(symtab, layout,
3214 symtab->get_sized_symbol<size>(sym),
3215 object, shndx, output_section,
3216 reloc, this->rela_dyn_section(layout));
3217 }
3218
3219 // Information about this specific target which we pass to the
3220 // general Target structure.
3221 static const Target::Target_info aarch64_info;
3222
3223 // The types of GOT entries needed for this platform.
3224 // These values are exposed to the ABI in an incremental link.
3225 // Do not renumber existing values without changing the version
3226 // number of the .gnu_incremental_inputs section.
3227 enum Got_type
3228 {
3229 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3230 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3231 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3232 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3233 };
3234
3235 // This type is used as the argument to the target specific
3236 // relocation routines. The only target specific reloc is
3237 // R_AARCh64_TLSDESC against a local symbol.
3238 struct Tlsdesc_info
3239 {
3240 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3241 unsigned int a_r_sym)
3242 : object(a_object), r_sym(a_r_sym)
3243 { }
3244
3245 // The object in which the local symbol is defined.
3246 Sized_relobj_file<size, big_endian>* object;
3247 // The local symbol index in the object.
3248 unsigned int r_sym;
3249 };
3250
3251 // The GOT section.
3252 Output_data_got_aarch64<size, big_endian>* got_;
3253 // The PLT section.
3254 Output_data_plt_aarch64<size, big_endian>* plt_;
3255 // The GOT PLT section.
3256 Output_data_space* got_plt_;
3257 // The GOT section for IRELATIVE relocations.
3258 Output_data_space* got_irelative_;
3259 // The GOT section for TLSDESC relocations.
3260 Output_data_got<size, big_endian>* got_tlsdesc_;
3261 // The _GLOBAL_OFFSET_TABLE_ symbol.
3262 Symbol* global_offset_table_;
3263 // The dynamic reloc section.
3264 Reloc_section* rela_dyn_;
3265 // The section to use for IRELATIVE relocs.
3266 Reloc_section* rela_irelative_;
3267 // Relocs saved to avoid a COPY reloc.
3268 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3269 // Offset of the GOT entry for the TLS module index.
3270 unsigned int got_mod_index_offset_;
3271 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3272 // specific relocation. Here we store the object and local symbol
3273 // index for the relocation.
3274 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3275 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3276 bool tls_base_symbol_defined_;
3277 // List of stub_tables
3278 Stub_table_list stub_tables_;
3279 // Actual stub group size
3280 section_size_type stub_group_size_;
3281 AArch64_input_section_map aarch64_input_section_map_;
3282 }; // End of Target_aarch64
3283
3284
3285 template<>
3286 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3287 {
3288 64, // size
3289 false, // is_big_endian
3290 elfcpp::EM_AARCH64, // machine_code
3291 false, // has_make_symbol
3292 false, // has_resolve
3293 false, // has_code_fill
3294 true, // is_default_stack_executable
3295 true, // can_icf_inline_merge_sections
3296 '\0', // wrap_char
3297 "/lib/ld.so.1", // program interpreter
3298 0x400000, // default_text_segment_address
3299 0x1000, // abi_pagesize (overridable by -z max-page-size)
3300 0x1000, // common_pagesize (overridable by -z common-page-size)
3301 false, // isolate_execinstr
3302 0, // rosegment_gap
3303 elfcpp::SHN_UNDEF, // small_common_shndx
3304 elfcpp::SHN_UNDEF, // large_common_shndx
3305 0, // small_common_section_flags
3306 0, // large_common_section_flags
3307 NULL, // attributes_section
3308 NULL, // attributes_vendor
3309 "_start" // entry_symbol_name
3310 };
3311
3312 template<>
3313 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3314 {
3315 32, // size
3316 false, // is_big_endian
3317 elfcpp::EM_AARCH64, // machine_code
3318 false, // has_make_symbol
3319 false, // has_resolve
3320 false, // has_code_fill
3321 true, // is_default_stack_executable
3322 false, // can_icf_inline_merge_sections
3323 '\0', // wrap_char
3324 "/lib/ld.so.1", // program interpreter
3325 0x400000, // default_text_segment_address
3326 0x1000, // abi_pagesize (overridable by -z max-page-size)
3327 0x1000, // common_pagesize (overridable by -z common-page-size)
3328 false, // isolate_execinstr
3329 0, // rosegment_gap
3330 elfcpp::SHN_UNDEF, // small_common_shndx
3331 elfcpp::SHN_UNDEF, // large_common_shndx
3332 0, // small_common_section_flags
3333 0, // large_common_section_flags
3334 NULL, // attributes_section
3335 NULL, // attributes_vendor
3336 "_start" // entry_symbol_name
3337 };
3338
3339 template<>
3340 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3341 {
3342 64, // size
3343 true, // is_big_endian
3344 elfcpp::EM_AARCH64, // machine_code
3345 false, // has_make_symbol
3346 false, // has_resolve
3347 false, // has_code_fill
3348 true, // is_default_stack_executable
3349 true, // can_icf_inline_merge_sections
3350 '\0', // wrap_char
3351 "/lib/ld.so.1", // program interpreter
3352 0x400000, // default_text_segment_address
3353 0x1000, // abi_pagesize (overridable by -z max-page-size)
3354 0x1000, // common_pagesize (overridable by -z common-page-size)
3355 false, // isolate_execinstr
3356 0, // rosegment_gap
3357 elfcpp::SHN_UNDEF, // small_common_shndx
3358 elfcpp::SHN_UNDEF, // large_common_shndx
3359 0, // small_common_section_flags
3360 0, // large_common_section_flags
3361 NULL, // attributes_section
3362 NULL, // attributes_vendor
3363 "_start" // entry_symbol_name
3364 };
3365
3366 template<>
3367 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3368 {
3369 32, // size
3370 true, // is_big_endian
3371 elfcpp::EM_AARCH64, // machine_code
3372 false, // has_make_symbol
3373 false, // has_resolve
3374 false, // has_code_fill
3375 true, // is_default_stack_executable
3376 false, // can_icf_inline_merge_sections
3377 '\0', // wrap_char
3378 "/lib/ld.so.1", // program interpreter
3379 0x400000, // default_text_segment_address
3380 0x1000, // abi_pagesize (overridable by -z max-page-size)
3381 0x1000, // common_pagesize (overridable by -z common-page-size)
3382 false, // isolate_execinstr
3383 0, // rosegment_gap
3384 elfcpp::SHN_UNDEF, // small_common_shndx
3385 elfcpp::SHN_UNDEF, // large_common_shndx
3386 0, // small_common_section_flags
3387 0, // large_common_section_flags
3388 NULL, // attributes_section
3389 NULL, // attributes_vendor
3390 "_start" // entry_symbol_name
3391 };
3392
3393 // Get the GOT section, creating it if necessary.
3394
3395 template<int size, bool big_endian>
3396 Output_data_got_aarch64<size, big_endian>*
3397 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3398 Layout* layout)
3399 {
3400 if (this->got_ == NULL)
3401 {
3402 gold_assert(symtab != NULL && layout != NULL);
3403
3404 // When using -z now, we can treat .got.plt as a relro section.
3405 // Without -z now, it is modified after program startup by lazy
3406 // PLT relocations.
3407 bool is_got_plt_relro = parameters->options().now();
3408 Output_section_order got_order = (is_got_plt_relro
3409 ? ORDER_RELRO
3410 : ORDER_RELRO_LAST);
3411 Output_section_order got_plt_order = (is_got_plt_relro
3412 ? ORDER_RELRO
3413 : ORDER_NON_RELRO_FIRST);
3414
3415 // Layout of .got and .got.plt sections.
3416 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3417 // ...
3418 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3419 // .gotplt[1] reserved for ld.so (resolver)
3420 // .gotplt[2] reserved
3421
3422 // Generate .got section.
3423 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3424 layout);
3425 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3426 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3427 this->got_, got_order, true);
3428 // The first word of GOT is reserved for the address of .dynamic.
3429 // We put 0 here now. The value will be replaced later in
3430 // Output_data_got_aarch64::do_write.
3431 this->got_->add_constant(0);
3432
3433 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3434 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3435 // even if there is a .got.plt section.
3436 this->global_offset_table_ =
3437 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3438 Symbol_table::PREDEFINED,
3439 this->got_,
3440 0, 0, elfcpp::STT_OBJECT,
3441 elfcpp::STB_LOCAL,
3442 elfcpp::STV_HIDDEN, 0,
3443 false, false);
3444
3445 // Generate .got.plt section.
3446 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3447 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3448 (elfcpp::SHF_ALLOC
3449 | elfcpp::SHF_WRITE),
3450 this->got_plt_, got_plt_order,
3451 is_got_plt_relro);
3452
3453 // The first three entries are reserved.
3454 this->got_plt_->set_current_data_size(
3455 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3456
3457 // If there are any IRELATIVE relocations, they get GOT entries
3458 // in .got.plt after the jump slot entries.
3459 this->got_irelative_ = new Output_data_space(size / 8,
3460 "** GOT IRELATIVE PLT");
3461 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3462 (elfcpp::SHF_ALLOC
3463 | elfcpp::SHF_WRITE),
3464 this->got_irelative_,
3465 got_plt_order,
3466 is_got_plt_relro);
3467
3468 // If there are any TLSDESC relocations, they get GOT entries in
3469 // .got.plt after the jump slot and IRELATIVE entries.
3470 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3471 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3472 (elfcpp::SHF_ALLOC
3473 | elfcpp::SHF_WRITE),
3474 this->got_tlsdesc_,
3475 got_plt_order,
3476 is_got_plt_relro);
3477
3478 if (!is_got_plt_relro)
3479 {
3480 // Those bytes can go into the relro segment.
3481 layout->increase_relro(
3482 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3483 }
3484
3485 }
3486 return this->got_;
3487 }
3488
3489 // Get the dynamic reloc section, creating it if necessary.
3490
3491 template<int size, bool big_endian>
3492 typename Target_aarch64<size, big_endian>::Reloc_section*
3493 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3494 {
3495 if (this->rela_dyn_ == NULL)
3496 {
3497 gold_assert(layout != NULL);
3498 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3499 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3500 elfcpp::SHF_ALLOC, this->rela_dyn_,
3501 ORDER_DYNAMIC_RELOCS, false);
3502 }
3503 return this->rela_dyn_;
3504 }
3505
3506 // Get the section to use for IRELATIVE relocs, creating it if
3507 // necessary. These go in .rela.dyn, but only after all other dynamic
3508 // relocations. They need to follow the other dynamic relocations so
3509 // that they can refer to global variables initialized by those
3510 // relocs.
3511
3512 template<int size, bool big_endian>
3513 typename Target_aarch64<size, big_endian>::Reloc_section*
3514 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3515 {
3516 if (this->rela_irelative_ == NULL)
3517 {
3518 // Make sure we have already created the dynamic reloc section.
3519 this->rela_dyn_section(layout);
3520 this->rela_irelative_ = new Reloc_section(false);
3521 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3522 elfcpp::SHF_ALLOC, this->rela_irelative_,
3523 ORDER_DYNAMIC_RELOCS, false);
3524 gold_assert(this->rela_dyn_->output_section()
3525 == this->rela_irelative_->output_section());
3526 }
3527 return this->rela_irelative_;
3528 }
3529
3530
3531 // do_make_elf_object to override the same function in the base class. We need
3532 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3533 // store backend specific information. Hence we need to have our own ELF object
3534 // creation.
3535
3536 template<int size, bool big_endian>
3537 Object*
3538 Target_aarch64<size, big_endian>::do_make_elf_object(
3539 const std::string& name,
3540 Input_file* input_file,
3541 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3542 {
3543 int et = ehdr.get_e_type();
3544 // ET_EXEC files are valid input for --just-symbols/-R,
3545 // and we treat them as relocatable objects.
3546 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3547 return Sized_target<size, big_endian>::do_make_elf_object(
3548 name, input_file, offset, ehdr);
3549 else if (et == elfcpp::ET_REL)
3550 {
3551 AArch64_relobj<size, big_endian>* obj =
3552 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3553 obj->setup();
3554 return obj;
3555 }
3556 else if (et == elfcpp::ET_DYN)
3557 {
3558 // Keep base implementation.
3559 Sized_dynobj<size, big_endian>* obj =
3560 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3561 obj->setup();
3562 return obj;
3563 }
3564 else
3565 {
3566 gold_error(_("%s: unsupported ELF file type %d"),
3567 name.c_str(), et);
3568 return NULL;
3569 }
3570 }
3571
3572
3573 // Scan a relocation for stub generation.
3574
3575 template<int size, bool big_endian>
3576 void
3577 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3578 const Relocate_info<size, big_endian>* relinfo,
3579 unsigned int r_type,
3580 const Sized_symbol<size>* gsym,
3581 unsigned int r_sym,
3582 const Symbol_value<size>* psymval,
3583 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3584 Address address)
3585 {
3586 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3587 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3588
3589 Symbol_value<size> symval;
3590 if (gsym != NULL)
3591 {
3592 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3593 get_reloc_property(r_type);
3594 if (gsym->use_plt_offset(arp->reference_flags()))
3595 {
3596 // This uses a PLT, change the symbol value.
3597 symval.set_output_value(this->plt_section()->address()
3598 + gsym->plt_offset());
3599 psymval = &symval;
3600 }
3601 else if (gsym->is_undefined())
3602 // There is no need to generate a stub symbol is undefined.
3603 return;
3604 }
3605
3606 // Get the symbol value.
3607 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3608
3609 // Owing to pipelining, the PC relative branches below actually skip
3610 // two instructions when the branch offset is 0.
3611 Address destination = static_cast<Address>(-1);
3612 switch (r_type)
3613 {
3614 case elfcpp::R_AARCH64_CALL26:
3615 case elfcpp::R_AARCH64_JUMP26:
3616 destination = value + addend;
3617 break;
3618 default:
3619 gold_unreachable();
3620 }
3621
3622 int stub_type = The_reloc_stub::
3623 stub_type_for_reloc(r_type, address, destination);
3624 if (stub_type == ST_NONE)
3625 return;
3626
3627 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3628 gold_assert(stub_table != NULL);
3629
3630 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3631 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3632 if (stub == NULL)
3633 {
3634 stub = new The_reloc_stub(stub_type);
3635 stub_table->add_reloc_stub(stub, key);
3636 }
3637 stub->set_destination_address(destination);
3638 } // End of Target_aarch64::scan_reloc_for_stub
3639
3640
3641 // This function scans a relocation section for stub generation.
3642 // The template parameter Relocate must be a class type which provides
3643 // a single function, relocate(), which implements the machine
3644 // specific part of a relocation.
3645
3646 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3647 // SHT_REL or SHT_RELA.
3648
3649 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3650 // of relocs. OUTPUT_SECTION is the output section.
3651 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3652 // mapped to output offsets.
3653
3654 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3655 // VIEW_SIZE is the size. These refer to the input section, unless
3656 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3657 // the output section.
3658
3659 template<int size, bool big_endian>
3660 template<int sh_type>
3661 void inline
3662 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3663 const Relocate_info<size, big_endian>* relinfo,
3664 const unsigned char* prelocs,
3665 size_t reloc_count,
3666 Output_section* /*output_section*/,
3667 bool /*needs_special_offset_handling*/,
3668 const unsigned char* /*view*/,
3669 Address view_address,
3670 section_size_type)
3671 {
3672 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3673
3674 const int reloc_size =
3675 Reloc_types<sh_type,size,big_endian>::reloc_size;
3676 AArch64_relobj<size, big_endian>* object =
3677 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3678 unsigned int local_count = object->local_symbol_count();
3679
3680 gold::Default_comdat_behavior default_comdat_behavior;
3681 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3682
3683 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3684 {
3685 Reltype reloc(prelocs);
3686 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3687 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3688 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3689 if (r_type != elfcpp::R_AARCH64_CALL26
3690 && r_type != elfcpp::R_AARCH64_JUMP26)
3691 continue;
3692
3693 section_offset_type offset =
3694 convert_to_section_size_type(reloc.get_r_offset());
3695
3696 // Get the addend.
3697 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3698 reloc.get_r_addend();
3699
3700 const Sized_symbol<size>* sym;
3701 Symbol_value<size> symval;
3702 const Symbol_value<size> *psymval;
3703 bool is_defined_in_discarded_section;
3704 unsigned int shndx;
3705 if (r_sym < local_count)
3706 {
3707 sym = NULL;
3708 psymval = object->local_symbol(r_sym);
3709
3710 // If the local symbol belongs to a section we are discarding,
3711 // and that section is a debug section, try to find the
3712 // corresponding kept section and map this symbol to its
3713 // counterpart in the kept section. The symbol must not
3714 // correspond to a section we are folding.
3715 bool is_ordinary;
3716 shndx = psymval->input_shndx(&is_ordinary);
3717 is_defined_in_discarded_section =
3718 (is_ordinary
3719 && shndx != elfcpp::SHN_UNDEF
3720 && !object->is_section_included(shndx)
3721 && !relinfo->symtab->is_section_folded(object, shndx));
3722
3723 // We need to compute the would-be final value of this local
3724 // symbol.
3725 if (!is_defined_in_discarded_section)
3726 {
3727 typedef Sized_relobj_file<size, big_endian> ObjType;
3728 typename ObjType::Compute_final_local_value_status status =
3729 object->compute_final_local_value(r_sym, psymval, &symval,
3730 relinfo->symtab);
3731 if (status == ObjType::CFLV_OK)
3732 {
3733 // Currently we cannot handle a branch to a target in
3734 // a merged section. If this is the case, issue an error
3735 // and also free the merge symbol value.
3736 if (!symval.has_output_value())
3737 {
3738 const std::string& section_name =
3739 object->section_name(shndx);
3740 object->error(_("cannot handle branch to local %u "
3741 "in a merged section %s"),
3742 r_sym, section_name.c_str());
3743 }
3744 psymval = &symval;
3745 }
3746 else
3747 {
3748 // We cannot determine the final value.
3749 continue;
3750 }
3751 }
3752 }
3753 else
3754 {
3755 const Symbol* gsym;
3756 gsym = object->global_symbol(r_sym);
3757 gold_assert(gsym != NULL);
3758 if (gsym->is_forwarder())
3759 gsym = relinfo->symtab->resolve_forwards(gsym);
3760
3761 sym = static_cast<const Sized_symbol<size>*>(gsym);
3762 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3763 symval.set_output_symtab_index(sym->symtab_index());
3764 else
3765 symval.set_no_output_symtab_entry();
3766
3767 // We need to compute the would-be final value of this global
3768 // symbol.
3769 const Symbol_table* symtab = relinfo->symtab;
3770 const Sized_symbol<size>* sized_symbol =
3771 symtab->get_sized_symbol<size>(gsym);
3772 Symbol_table::Compute_final_value_status status;
3773 typename elfcpp::Elf_types<size>::Elf_Addr value =
3774 symtab->compute_final_value<size>(sized_symbol, &status);
3775
3776 // Skip this if the symbol has not output section.
3777 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3778 continue;
3779 symval.set_output_value(value);
3780
3781 if (gsym->type() == elfcpp::STT_TLS)
3782 symval.set_is_tls_symbol();
3783 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3784 symval.set_is_ifunc_symbol();
3785 psymval = &symval;
3786
3787 is_defined_in_discarded_section =
3788 (gsym->is_defined_in_discarded_section()
3789 && gsym->is_undefined());
3790 shndx = 0;
3791 }
3792
3793 Symbol_value<size> symval2;
3794 if (is_defined_in_discarded_section)
3795 {
3796 if (comdat_behavior == CB_UNDETERMINED)
3797 {
3798 std::string name = object->section_name(relinfo->data_shndx);
3799 comdat_behavior = default_comdat_behavior.get(name.c_str());
3800 }
3801 if (comdat_behavior == CB_PRETEND)
3802 {
3803 bool found;
3804 typename elfcpp::Elf_types<size>::Elf_Addr value =
3805 object->map_to_kept_section(shndx, &found);
3806 if (found)
3807 symval2.set_output_value(value + psymval->input_value());
3808 else
3809 symval2.set_output_value(0);
3810 }
3811 else
3812 {
3813 if (comdat_behavior == CB_WARNING)
3814 gold_warning_at_location(relinfo, i, offset,
3815 _("relocation refers to discarded "
3816 "section"));
3817 symval2.set_output_value(0);
3818 }
3819 symval2.set_no_output_symtab_entry();
3820 psymval = &symval2;
3821 }
3822
3823 // If symbol is a section symbol, we don't know the actual type of
3824 // destination. Give up.
3825 if (psymval->is_section_symbol())
3826 continue;
3827
3828 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3829 addend, view_address + offset);
3830 } // End of iterating relocs in a section
3831 } // End of Target_aarch64::scan_reloc_section_for_stubs
3832
3833
3834 // Scan an input section for stub generation.
3835
3836 template<int size, bool big_endian>
3837 void
3838 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3839 const Relocate_info<size, big_endian>* relinfo,
3840 unsigned int sh_type,
3841 const unsigned char* prelocs,
3842 size_t reloc_count,
3843 Output_section* output_section,
3844 bool needs_special_offset_handling,
3845 const unsigned char* view,
3846 Address view_address,
3847 section_size_type view_size)
3848 {
3849 gold_assert(sh_type == elfcpp::SHT_RELA);
3850 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3851 relinfo,
3852 prelocs,
3853 reloc_count,
3854 output_section,
3855 needs_special_offset_handling,
3856 view,
3857 view_address,
3858 view_size);
3859 }
3860
3861
3862 // Relocate a single stub.
3863
3864 template<int size, bool big_endian>
3865 void Target_aarch64<size, big_endian>::
3866 relocate_stub(The_reloc_stub* stub,
3867 const The_relocate_info*,
3868 Output_section*,
3869 unsigned char* view,
3870 Address address,
3871 section_size_type)
3872 {
3873 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
3874 typedef typename The_reloc_functions::Status The_reloc_functions_status;
3875 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
3876
3877 Insntype* ip = reinterpret_cast<Insntype*>(view);
3878 int insn_number = stub->insn_num();
3879 const uint32_t* insns = stub->insns();
3880 // Check the insns are really those stub insns.
3881 for (int i = 0; i < insn_number; ++i)
3882 {
3883 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
3884 gold_assert(((uint32_t)insn == insns[i]));
3885 }
3886
3887 Address dest = stub->destination_address();
3888
3889 switch(stub->type())
3890 {
3891 case ST_ADRP_BRANCH:
3892 {
3893 // 1st reloc is ADR_PREL_PG_HI21
3894 The_reloc_functions_status status =
3895 The_reloc_functions::adrp(view, dest, address);
3896 // An error should never arise in the above step. If so, please
3897 // check 'aarch64_valid_for_adrp_p'.
3898 gold_assert(status == The_reloc_functions::STATUS_OKAY);
3899
3900 // 2nd reloc is ADD_ABS_LO12_NC
3901 const AArch64_reloc_property* arp =
3902 aarch64_reloc_property_table->get_reloc_property(
3903 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
3904 gold_assert(arp != NULL);
3905 status = The_reloc_functions::template
3906 rela_general<32>(view + 4, dest, 0, arp);
3907 // An error should never arise, it is an "_NC" relocation.
3908 gold_assert(status == The_reloc_functions::STATUS_OKAY);
3909 }
3910 break;
3911
3912 case ST_LONG_BRANCH_ABS:
3913 // 1st reloc is R_AARCH64_PREL64, at offset 8
3914 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
3915 break;
3916
3917 case ST_LONG_BRANCH_PCREL:
3918 {
3919 // "PC" calculation is the 2nd insn in the stub.
3920 uint64_t offset = dest - (address + 4);
3921 // Offset is placed at offset 4 and 5.
3922 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
3923 }
3924 break;
3925
3926 default:
3927 gold_unreachable();
3928 }
3929 }
3930
3931
3932 // A class to handle the PLT data.
3933 // This is an abstract base class that handles most of the linker details
3934 // but does not know the actual contents of PLT entries. The derived
3935 // classes below fill in those details.
3936
3937 template<int size, bool big_endian>
3938 class Output_data_plt_aarch64 : public Output_section_data
3939 {
3940 public:
3941 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3942 Reloc_section;
3943 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3944
3945 Output_data_plt_aarch64(Layout* layout,
3946 uint64_t addralign,
3947 Output_data_got_aarch64<size, big_endian>* got,
3948 Output_data_space* got_plt,
3949 Output_data_space* got_irelative)
3950 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3951 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
3952 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
3953 { this->init(layout); }
3954
3955 // Initialize the PLT section.
3956 void
3957 init(Layout* layout);
3958
3959 // Add an entry to the PLT.
3960 void
3961 add_entry(Symbol_table*, Layout*, Symbol* gsym);
3962
3963 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
3964 unsigned int
3965 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
3966 Sized_relobj_file<size, big_endian>* relobj,
3967 unsigned int local_sym_index);
3968
3969 // Add the relocation for a PLT entry.
3970 void
3971 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
3972 unsigned int got_offset);
3973
3974 // Add the reserved TLSDESC_PLT entry to the PLT.
3975 void
3976 reserve_tlsdesc_entry(unsigned int got_offset)
3977 { this->tlsdesc_got_offset_ = got_offset; }
3978
3979 // Return true if a TLSDESC_PLT entry has been reserved.
3980 bool
3981 has_tlsdesc_entry() const
3982 { return this->tlsdesc_got_offset_ != -1U; }
3983
3984 // Return the GOT offset for the reserved TLSDESC_PLT entry.
3985 unsigned int
3986 get_tlsdesc_got_offset() const
3987 { return this->tlsdesc_got_offset_; }
3988
3989 // Return the PLT offset of the reserved TLSDESC_PLT entry.
3990 unsigned int
3991 get_tlsdesc_plt_offset() const
3992 {
3993 return (this->first_plt_entry_offset() +
3994 (this->count_ + this->irelative_count_)
3995 * this->get_plt_entry_size());
3996 }
3997
3998 // Return the .rela.plt section data.
3999 Reloc_section*
4000 rela_plt()
4001 { return this->rel_; }
4002
4003 // Return where the TLSDESC relocations should go.
4004 Reloc_section*
4005 rela_tlsdesc(Layout*);
4006
4007 // Return where the IRELATIVE relocations should go in the PLT
4008 // relocations.
4009 Reloc_section*
4010 rela_irelative(Symbol_table*, Layout*);
4011
4012 // Return whether we created a section for IRELATIVE relocations.
4013 bool
4014 has_irelative_section() const
4015 { return this->irelative_rel_ != NULL; }
4016
4017 // Return the number of PLT entries.
4018 unsigned int
4019 entry_count() const
4020 { return this->count_ + this->irelative_count_; }
4021
4022 // Return the offset of the first non-reserved PLT entry.
4023 unsigned int
4024 first_plt_entry_offset() const
4025 { return this->do_first_plt_entry_offset(); }
4026
4027 // Return the size of a PLT entry.
4028 unsigned int
4029 get_plt_entry_size() const
4030 { return this->do_get_plt_entry_size(); }
4031
4032 // Return the reserved tlsdesc entry size.
4033 unsigned int
4034 get_plt_tlsdesc_entry_size() const
4035 { return this->do_get_plt_tlsdesc_entry_size(); }
4036
4037 // Return the PLT address to use for a global symbol.
4038 uint64_t
4039 address_for_global(const Symbol*);
4040
4041 // Return the PLT address to use for a local symbol.
4042 uint64_t
4043 address_for_local(const Relobj*, unsigned int symndx);
4044
4045 protected:
4046 // Fill in the first PLT entry.
4047 void
4048 fill_first_plt_entry(unsigned char* pov,
4049 Address got_address,
4050 Address plt_address)
4051 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4052
4053 // Fill in a normal PLT entry.
4054 void
4055 fill_plt_entry(unsigned char* pov,
4056 Address got_address,
4057 Address plt_address,
4058 unsigned int got_offset,
4059 unsigned int plt_offset)
4060 {
4061 this->do_fill_plt_entry(pov, got_address, plt_address,
4062 got_offset, plt_offset);
4063 }
4064
4065 // Fill in the reserved TLSDESC PLT entry.
4066 void
4067 fill_tlsdesc_entry(unsigned char* pov,
4068 Address gotplt_address,
4069 Address plt_address,
4070 Address got_base,
4071 unsigned int tlsdesc_got_offset,
4072 unsigned int plt_offset)
4073 {
4074 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4075 tlsdesc_got_offset, plt_offset);
4076 }
4077
4078 virtual unsigned int
4079 do_first_plt_entry_offset() const = 0;
4080
4081 virtual unsigned int
4082 do_get_plt_entry_size() const = 0;
4083
4084 virtual unsigned int
4085 do_get_plt_tlsdesc_entry_size() const = 0;
4086
4087 virtual void
4088 do_fill_first_plt_entry(unsigned char* pov,
4089 Address got_addr,
4090 Address plt_addr) = 0;
4091
4092 virtual void
4093 do_fill_plt_entry(unsigned char* pov,
4094 Address got_address,
4095 Address plt_address,
4096 unsigned int got_offset,
4097 unsigned int plt_offset) = 0;
4098
4099 virtual void
4100 do_fill_tlsdesc_entry(unsigned char* pov,
4101 Address gotplt_address,
4102 Address plt_address,
4103 Address got_base,
4104 unsigned int tlsdesc_got_offset,
4105 unsigned int plt_offset) = 0;
4106
4107 void
4108 do_adjust_output_section(Output_section* os);
4109
4110 // Write to a map file.
4111 void
4112 do_print_to_mapfile(Mapfile* mapfile) const
4113 { mapfile->print_output_data(this, _("** PLT")); }
4114
4115 private:
4116 // Set the final size.
4117 void
4118 set_final_data_size();
4119
4120 // Write out the PLT data.
4121 void
4122 do_write(Output_file*);
4123
4124 // The reloc section.
4125 Reloc_section* rel_;
4126
4127 // The TLSDESC relocs, if necessary. These must follow the regular
4128 // PLT relocs.
4129 Reloc_section* tlsdesc_rel_;
4130
4131 // The IRELATIVE relocs, if necessary. These must follow the
4132 // regular PLT relocations.
4133 Reloc_section* irelative_rel_;
4134
4135 // The .got section.
4136 Output_data_got_aarch64<size, big_endian>* got_;
4137
4138 // The .got.plt section.
4139 Output_data_space* got_plt_;
4140
4141 // The part of the .got.plt section used for IRELATIVE relocs.
4142 Output_data_space* got_irelative_;
4143
4144 // The number of PLT entries.
4145 unsigned int count_;
4146
4147 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4148 // follow the regular PLT entries.
4149 unsigned int irelative_count_;
4150
4151 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4152 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4153 // indicates an offset is not allocated.
4154 unsigned int tlsdesc_got_offset_;
4155 };
4156
4157 // Initialize the PLT section.
4158
4159 template<int size, bool big_endian>
4160 void
4161 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4162 {
4163 this->rel_ = new Reloc_section(false);
4164 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4165 elfcpp::SHF_ALLOC, this->rel_,
4166 ORDER_DYNAMIC_PLT_RELOCS, false);
4167 }
4168
4169 template<int size, bool big_endian>
4170 void
4171 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4172 Output_section* os)
4173 {
4174 os->set_entsize(this->get_plt_entry_size());
4175 }
4176
4177 // Add an entry to the PLT.
4178
4179 template<int size, bool big_endian>
4180 void
4181 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4182 Layout* layout, Symbol* gsym)
4183 {
4184 gold_assert(!gsym->has_plt_offset());
4185
4186 unsigned int* pcount;
4187 unsigned int plt_reserved;
4188 Output_section_data_build* got;
4189
4190 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4191 && gsym->can_use_relative_reloc(false))
4192 {
4193 pcount = &this->irelative_count_;
4194 plt_reserved = 0;
4195 got = this->got_irelative_;
4196 }
4197 else
4198 {
4199 pcount = &this->count_;
4200 plt_reserved = this->first_plt_entry_offset();
4201 got = this->got_plt_;
4202 }
4203
4204 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4205 + plt_reserved);
4206
4207 ++*pcount;
4208
4209 section_offset_type got_offset = got->current_data_size();
4210
4211 // Every PLT entry needs a GOT entry which points back to the PLT
4212 // entry (this will be changed by the dynamic linker, normally
4213 // lazily when the function is called).
4214 got->set_current_data_size(got_offset + size / 8);
4215
4216 // Every PLT entry needs a reloc.
4217 this->add_relocation(symtab, layout, gsym, got_offset);
4218
4219 // Note that we don't need to save the symbol. The contents of the
4220 // PLT are independent of which symbols are used. The symbols only
4221 // appear in the relocations.
4222 }
4223
4224 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4225 // the PLT offset.
4226
4227 template<int size, bool big_endian>
4228 unsigned int
4229 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4230 Symbol_table* symtab,
4231 Layout* layout,
4232 Sized_relobj_file<size, big_endian>* relobj,
4233 unsigned int local_sym_index)
4234 {
4235 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4236 ++this->irelative_count_;
4237
4238 section_offset_type got_offset = this->got_irelative_->current_data_size();
4239
4240 // Every PLT entry needs a GOT entry which points back to the PLT
4241 // entry.
4242 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4243
4244 // Every PLT entry needs a reloc.
4245 Reloc_section* rela = this->rela_irelative(symtab, layout);
4246 rela->add_symbolless_local_addend(relobj, local_sym_index,
4247 elfcpp::R_AARCH64_IRELATIVE,
4248 this->got_irelative_, got_offset, 0);
4249
4250 return plt_offset;
4251 }
4252
4253 // Add the relocation for a PLT entry.
4254
4255 template<int size, bool big_endian>
4256 void
4257 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4258 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4259 {
4260 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4261 && gsym->can_use_relative_reloc(false))
4262 {
4263 Reloc_section* rela = this->rela_irelative(symtab, layout);
4264 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4265 this->got_irelative_, got_offset, 0);
4266 }
4267 else
4268 {
4269 gsym->set_needs_dynsym_entry();
4270 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4271 got_offset, 0);
4272 }
4273 }
4274
4275 // Return where the TLSDESC relocations should go, creating it if
4276 // necessary. These follow the JUMP_SLOT relocations.
4277
4278 template<int size, bool big_endian>
4279 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4280 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4281 {
4282 if (this->tlsdesc_rel_ == NULL)
4283 {
4284 this->tlsdesc_rel_ = new Reloc_section(false);
4285 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4286 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4287 ORDER_DYNAMIC_PLT_RELOCS, false);
4288 gold_assert(this->tlsdesc_rel_->output_section()
4289 == this->rel_->output_section());
4290 }
4291 return this->tlsdesc_rel_;
4292 }
4293
4294 // Return where the IRELATIVE relocations should go in the PLT. These
4295 // follow the JUMP_SLOT and the TLSDESC relocations.
4296
4297 template<int size, bool big_endian>
4298 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4299 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4300 Layout* layout)
4301 {
4302 if (this->irelative_rel_ == NULL)
4303 {
4304 // Make sure we have a place for the TLSDESC relocations, in
4305 // case we see any later on.
4306 this->rela_tlsdesc(layout);
4307 this->irelative_rel_ = new Reloc_section(false);
4308 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4309 elfcpp::SHF_ALLOC, this->irelative_rel_,
4310 ORDER_DYNAMIC_PLT_RELOCS, false);
4311 gold_assert(this->irelative_rel_->output_section()
4312 == this->rel_->output_section());
4313
4314 if (parameters->doing_static_link())
4315 {
4316 // A statically linked executable will only have a .rela.plt
4317 // section to hold R_AARCH64_IRELATIVE relocs for
4318 // STT_GNU_IFUNC symbols. The library will use these
4319 // symbols to locate the IRELATIVE relocs at program startup
4320 // time.
4321 symtab->define_in_output_data("__rela_iplt_start", NULL,
4322 Symbol_table::PREDEFINED,
4323 this->irelative_rel_, 0, 0,
4324 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4325 elfcpp::STV_HIDDEN, 0, false, true);
4326 symtab->define_in_output_data("__rela_iplt_end", NULL,
4327 Symbol_table::PREDEFINED,
4328 this->irelative_rel_, 0, 0,
4329 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4330 elfcpp::STV_HIDDEN, 0, true, true);
4331 }
4332 }
4333 return this->irelative_rel_;
4334 }
4335
4336 // Return the PLT address to use for a global symbol.
4337
4338 template<int size, bool big_endian>
4339 uint64_t
4340 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4341 const Symbol* gsym)
4342 {
4343 uint64_t offset = 0;
4344 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4345 && gsym->can_use_relative_reloc(false))
4346 offset = (this->first_plt_entry_offset() +
4347 this->count_ * this->get_plt_entry_size());
4348 return this->address() + offset + gsym->plt_offset();
4349 }
4350
4351 // Return the PLT address to use for a local symbol. These are always
4352 // IRELATIVE relocs.
4353
4354 template<int size, bool big_endian>
4355 uint64_t
4356 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4357 const Relobj* object,
4358 unsigned int r_sym)
4359 {
4360 return (this->address()
4361 + this->first_plt_entry_offset()
4362 + this->count_ * this->get_plt_entry_size()
4363 + object->local_plt_offset(r_sym));
4364 }
4365
4366 // Set the final size.
4367
4368 template<int size, bool big_endian>
4369 void
4370 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4371 {
4372 unsigned int count = this->count_ + this->irelative_count_;
4373 unsigned int extra_size = 0;
4374 if (this->has_tlsdesc_entry())
4375 extra_size += this->get_plt_tlsdesc_entry_size();
4376 this->set_data_size(this->first_plt_entry_offset()
4377 + count * this->get_plt_entry_size()
4378 + extra_size);
4379 }
4380
4381 template<int size, bool big_endian>
4382 class Output_data_plt_aarch64_standard :
4383 public Output_data_plt_aarch64<size, big_endian>
4384 {
4385 public:
4386 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4387 Output_data_plt_aarch64_standard(
4388 Layout* layout,
4389 Output_data_got_aarch64<size, big_endian>* got,
4390 Output_data_space* got_plt,
4391 Output_data_space* got_irelative)
4392 : Output_data_plt_aarch64<size, big_endian>(layout,
4393 size == 32 ? 4 : 8,
4394 got, got_plt,
4395 got_irelative)
4396 { }
4397
4398 protected:
4399 // Return the offset of the first non-reserved PLT entry.
4400 virtual unsigned int
4401 do_first_plt_entry_offset() const
4402 { return this->first_plt_entry_size; }
4403
4404 // Return the size of a PLT entry
4405 virtual unsigned int
4406 do_get_plt_entry_size() const
4407 { return this->plt_entry_size; }
4408
4409 // Return the size of a tlsdesc entry
4410 virtual unsigned int
4411 do_get_plt_tlsdesc_entry_size() const
4412 { return this->plt_tlsdesc_entry_size; }
4413
4414 virtual void
4415 do_fill_first_plt_entry(unsigned char* pov,
4416 Address got_address,
4417 Address plt_address);
4418
4419 virtual void
4420 do_fill_plt_entry(unsigned char* pov,
4421 Address got_address,
4422 Address plt_address,
4423 unsigned int got_offset,
4424 unsigned int plt_offset);
4425
4426 virtual void
4427 do_fill_tlsdesc_entry(unsigned char* pov,
4428 Address gotplt_address,
4429 Address plt_address,
4430 Address got_base,
4431 unsigned int tlsdesc_got_offset,
4432 unsigned int plt_offset);
4433
4434 private:
4435 // The size of the first plt entry size.
4436 static const int first_plt_entry_size = 32;
4437 // The size of the plt entry size.
4438 static const int plt_entry_size = 16;
4439 // The size of the plt tlsdesc entry size.
4440 static const int plt_tlsdesc_entry_size = 32;
4441 // Template for the first PLT entry.
4442 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4443 // Template for subsequent PLT entries.
4444 static const uint32_t plt_entry[plt_entry_size / 4];
4445 // The reserved TLSDESC entry in the PLT for an executable.
4446 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4447 };
4448
4449 // The first entry in the PLT for an executable.
4450
4451 template<>
4452 const uint32_t
4453 Output_data_plt_aarch64_standard<32, false>::
4454 first_plt_entry[first_plt_entry_size / 4] =
4455 {
4456 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4457 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4458 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4459 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4460 0xd61f0220, /* br x17 */
4461 0xd503201f, /* nop */
4462 0xd503201f, /* nop */
4463 0xd503201f, /* nop */
4464 };
4465
4466
4467 template<>
4468 const uint32_t
4469 Output_data_plt_aarch64_standard<32, true>::
4470 first_plt_entry[first_plt_entry_size / 4] =
4471 {
4472 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4473 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4474 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4475 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4476 0xd61f0220, /* br x17 */
4477 0xd503201f, /* nop */
4478 0xd503201f, /* nop */
4479 0xd503201f, /* nop */
4480 };
4481
4482
4483 template<>
4484 const uint32_t
4485 Output_data_plt_aarch64_standard<64, false>::
4486 first_plt_entry[first_plt_entry_size / 4] =
4487 {
4488 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4489 0x90000010, /* adrp x16, PLT_GOT+16 */
4490 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4491 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4492 0xd61f0220, /* br x17 */
4493 0xd503201f, /* nop */
4494 0xd503201f, /* nop */
4495 0xd503201f, /* nop */
4496 };
4497
4498
4499 template<>
4500 const uint32_t
4501 Output_data_plt_aarch64_standard<64, true>::
4502 first_plt_entry[first_plt_entry_size / 4] =
4503 {
4504 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4505 0x90000010, /* adrp x16, PLT_GOT+16 */
4506 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4507 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4508 0xd61f0220, /* br x17 */
4509 0xd503201f, /* nop */
4510 0xd503201f, /* nop */
4511 0xd503201f, /* nop */
4512 };
4513
4514
4515 template<>
4516 const uint32_t
4517 Output_data_plt_aarch64_standard<32, false>::
4518 plt_entry[plt_entry_size / 4] =
4519 {
4520 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4521 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4522 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4523 0xd61f0220, /* br x17. */
4524 };
4525
4526
4527 template<>
4528 const uint32_t
4529 Output_data_plt_aarch64_standard<32, true>::
4530 plt_entry[plt_entry_size / 4] =
4531 {
4532 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4533 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4534 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4535 0xd61f0220, /* br x17. */
4536 };
4537
4538
4539 template<>
4540 const uint32_t
4541 Output_data_plt_aarch64_standard<64, false>::
4542 plt_entry[plt_entry_size / 4] =
4543 {
4544 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4545 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4546 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4547 0xd61f0220, /* br x17. */
4548 };
4549
4550
4551 template<>
4552 const uint32_t
4553 Output_data_plt_aarch64_standard<64, true>::
4554 plt_entry[plt_entry_size / 4] =
4555 {
4556 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4557 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4558 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4559 0xd61f0220, /* br x17. */
4560 };
4561
4562
4563 template<int size, bool big_endian>
4564 void
4565 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4566 unsigned char* pov,
4567 Address got_address,
4568 Address plt_address)
4569 {
4570 // PLT0 of the small PLT looks like this in ELF64 -
4571 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4572 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4573 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4574 // symbol resolver
4575 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4576 // GOTPLT entry for this.
4577 // br x17
4578 // PLT0 will be slightly different in ELF32 due to different got entry
4579 // size.
4580 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4581 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4582
4583 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4584 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4585 // FIXME: This only works for 64bit
4586 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4587 gotplt_2nd_ent, plt_address + 4);
4588
4589 // Fill in R_AARCH64_LDST8_LO12
4590 elfcpp::Swap<32, big_endian>::writeval(
4591 pov + 8,
4592 ((this->first_plt_entry[2] & 0xffc003ff)
4593 | ((gotplt_2nd_ent & 0xff8) << 7)));
4594
4595 // Fill in R_AARCH64_ADD_ABS_LO12
4596 elfcpp::Swap<32, big_endian>::writeval(
4597 pov + 12,
4598 ((this->first_plt_entry[3] & 0xffc003ff)
4599 | ((gotplt_2nd_ent & 0xfff) << 10)));
4600 }
4601
4602
4603 // Subsequent entries in the PLT for an executable.
4604 // FIXME: This only works for 64bit
4605
4606 template<int size, bool big_endian>
4607 void
4608 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4609 unsigned char* pov,
4610 Address got_address,
4611 Address plt_address,
4612 unsigned int got_offset,
4613 unsigned int plt_offset)
4614 {
4615 memcpy(pov, this->plt_entry, this->plt_entry_size);
4616
4617 Address gotplt_entry_address = got_address + got_offset;
4618 Address plt_entry_address = plt_address + plt_offset;
4619
4620 // Fill in R_AARCH64_PCREL_ADR_HI21
4621 AArch64_relocate_functions<size, big_endian>::adrp(
4622 pov,
4623 gotplt_entry_address,
4624 plt_entry_address);
4625
4626 // Fill in R_AARCH64_LDST64_ABS_LO12
4627 elfcpp::Swap<32, big_endian>::writeval(
4628 pov + 4,
4629 ((this->plt_entry[1] & 0xffc003ff)
4630 | ((gotplt_entry_address & 0xff8) << 7)));
4631
4632 // Fill in R_AARCH64_ADD_ABS_LO12
4633 elfcpp::Swap<32, big_endian>::writeval(
4634 pov + 8,
4635 ((this->plt_entry[2] & 0xffc003ff)
4636 | ((gotplt_entry_address & 0xfff) <<10)));
4637
4638 }
4639
4640
4641 template<>
4642 const uint32_t
4643 Output_data_plt_aarch64_standard<32, false>::
4644 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4645 {
4646 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4647 0x90000002, /* adrp x2, 0 */
4648 0x90000003, /* adrp x3, 0 */
4649 0xb9400042, /* ldr w2, [w2, #0] */
4650 0x11000063, /* add w3, w3, 0 */
4651 0xd61f0040, /* br x2 */
4652 0xd503201f, /* nop */
4653 0xd503201f, /* nop */
4654 };
4655
4656 template<>
4657 const uint32_t
4658 Output_data_plt_aarch64_standard<32, true>::
4659 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4660 {
4661 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4662 0x90000002, /* adrp x2, 0 */
4663 0x90000003, /* adrp x3, 0 */
4664 0xb9400042, /* ldr w2, [w2, #0] */
4665 0x11000063, /* add w3, w3, 0 */
4666 0xd61f0040, /* br x2 */
4667 0xd503201f, /* nop */
4668 0xd503201f, /* nop */
4669 };
4670
4671 template<>
4672 const uint32_t
4673 Output_data_plt_aarch64_standard<64, false>::
4674 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4675 {
4676 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4677 0x90000002, /* adrp x2, 0 */
4678 0x90000003, /* adrp x3, 0 */
4679 0xf9400042, /* ldr x2, [x2, #0] */
4680 0x91000063, /* add x3, x3, 0 */
4681 0xd61f0040, /* br x2 */
4682 0xd503201f, /* nop */
4683 0xd503201f, /* nop */
4684 };
4685
4686 template<>
4687 const uint32_t
4688 Output_data_plt_aarch64_standard<64, true>::
4689 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4690 {
4691 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4692 0x90000002, /* adrp x2, 0 */
4693 0x90000003, /* adrp x3, 0 */
4694 0xf9400042, /* ldr x2, [x2, #0] */
4695 0x91000063, /* add x3, x3, 0 */
4696 0xd61f0040, /* br x2 */
4697 0xd503201f, /* nop */
4698 0xd503201f, /* nop */
4699 };
4700
4701 template<int size, bool big_endian>
4702 void
4703 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4704 unsigned char* pov,
4705 Address gotplt_address,
4706 Address plt_address,
4707 Address got_base,
4708 unsigned int tlsdesc_got_offset,
4709 unsigned int plt_offset)
4710 {
4711 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4712
4713 // move DT_TLSDESC_GOT address into x2
4714 // move .got.plt address into x3
4715 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4716 Address plt_entry_address = plt_address + plt_offset;
4717
4718 // R_AARCH64_ADR_PREL_PG_HI21
4719 AArch64_relocate_functions<size, big_endian>::adrp(
4720 pov + 4,
4721 tlsdesc_got_entry,
4722 plt_entry_address + 4);
4723
4724 // R_AARCH64_ADR_PREL_PG_HI21
4725 AArch64_relocate_functions<size, big_endian>::adrp(
4726 pov + 8,
4727 gotplt_address,
4728 plt_entry_address + 8);
4729
4730 // R_AARCH64_LDST64_ABS_LO12
4731 elfcpp::Swap<32, big_endian>::writeval(
4732 pov + 12,
4733 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4734 | ((tlsdesc_got_entry & 0xff8) << 7)));
4735
4736 // R_AARCH64_ADD_ABS_LO12
4737 elfcpp::Swap<32, big_endian>::writeval(
4738 pov + 16,
4739 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4740 | ((gotplt_address & 0xfff) << 10)));
4741 }
4742
4743 // Write out the PLT. This uses the hand-coded instructions above,
4744 // and adjusts them as needed. This is specified by the AMD64 ABI.
4745
4746 template<int size, bool big_endian>
4747 void
4748 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4749 {
4750 const off_t offset = this->offset();
4751 const section_size_type oview_size =
4752 convert_to_section_size_type(this->data_size());
4753 unsigned char* const oview = of->get_output_view(offset, oview_size);
4754
4755 const off_t got_file_offset = this->got_plt_->offset();
4756 gold_assert(got_file_offset + this->got_plt_->data_size()
4757 == this->got_irelative_->offset());
4758
4759 const section_size_type got_size =
4760 convert_to_section_size_type(this->got_plt_->data_size()
4761 + this->got_irelative_->data_size());
4762 unsigned char* const got_view = of->get_output_view(got_file_offset,
4763 got_size);
4764
4765 unsigned char* pov = oview;
4766
4767 // The base address of the .plt section.
4768 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4769 // The base address of the PLT portion of the .got section.
4770 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4771 = this->got_plt_->address();
4772
4773 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4774 pov += this->first_plt_entry_offset();
4775
4776 // The first three entries in .got.plt are reserved.
4777 unsigned char* got_pov = got_view;
4778 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4779 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4780
4781 unsigned int plt_offset = this->first_plt_entry_offset();
4782 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4783 const unsigned int count = this->count_ + this->irelative_count_;
4784 for (unsigned int plt_index = 0;
4785 plt_index < count;
4786 ++plt_index,
4787 pov += this->get_plt_entry_size(),
4788 got_pov += size / 8,
4789 plt_offset += this->get_plt_entry_size(),
4790 got_offset += size / 8)
4791 {
4792 // Set and adjust the PLT entry itself.
4793 this->fill_plt_entry(pov, gotplt_address, plt_address,
4794 got_offset, plt_offset);
4795
4796 // Set the entry in the GOT, which points to plt0.
4797 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4798 }
4799
4800 if (this->has_tlsdesc_entry())
4801 {
4802 // Set and adjust the reserved TLSDESC PLT entry.
4803 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4804 // The base address of the .base section.
4805 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4806 this->got_->address();
4807 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4808 tlsdesc_got_offset, plt_offset);
4809 pov += this->get_plt_tlsdesc_entry_size();
4810 }
4811
4812 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4813 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4814
4815 of->write_output_view(offset, oview_size, oview);
4816 of->write_output_view(got_file_offset, got_size, got_view);
4817 }
4818
4819 // Telling how to update the immediate field of an instruction.
4820 struct AArch64_howto
4821 {
4822 // The immediate field mask.
4823 elfcpp::Elf_Xword dst_mask;
4824
4825 // The offset to apply relocation immediate
4826 int doffset;
4827
4828 // The second part offset, if the immediate field has two parts.
4829 // -1 if the immediate field has only one part.
4830 int doffset2;
4831 };
4832
4833 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4834 {
4835 {0, -1, -1}, // DATA
4836 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4837 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4838 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4839 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4840 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4841 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4842 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4843 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4844 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4845 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4846 };
4847
4848 // AArch64 relocate function class
4849
4850 template<int size, bool big_endian>
4851 class AArch64_relocate_functions
4852 {
4853 public:
4854 typedef enum
4855 {
4856 STATUS_OKAY, // No error during relocation.
4857 STATUS_OVERFLOW, // Relocation overflow.
4858 STATUS_BAD_RELOC, // Relocation cannot be applied.
4859 } Status;
4860
4861 typedef AArch64_relocate_functions<size, big_endian> This;
4862 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4863 typedef Relocate_info<size, big_endian> The_relocate_info;
4864 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4865 typedef Reloc_stub<size, big_endian> The_reloc_stub;
4866 typedef Stub_table<size, big_endian> The_stub_table;
4867 typedef elfcpp::Rela<size, big_endian> The_rela;
4868 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
4869
4870 // Return the page address of the address.
4871 // Page(address) = address & ~0xFFF
4872
4873 static inline AArch64_valtype
4874 Page(Address address)
4875 {
4876 return (address & (~static_cast<Address>(0xFFF)));
4877 }
4878
4879 private:
4880 // Update instruction (pointed by view) with selected bits (immed).
4881 // val = (val & ~dst_mask) | (immed << doffset)
4882
4883 template<int valsize>
4884 static inline void
4885 update_view(unsigned char* view,
4886 AArch64_valtype immed,
4887 elfcpp::Elf_Xword doffset,
4888 elfcpp::Elf_Xword dst_mask)
4889 {
4890 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4891 Valtype* wv = reinterpret_cast<Valtype*>(view);
4892 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4893
4894 // Clear immediate fields.
4895 val &= ~dst_mask;
4896 elfcpp::Swap<valsize, big_endian>::writeval(wv,
4897 static_cast<Valtype>(val | (immed << doffset)));
4898 }
4899
4900 // Update two parts of an instruction (pointed by view) with selected
4901 // bits (immed1 and immed2).
4902 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
4903
4904 template<int valsize>
4905 static inline void
4906 update_view_two_parts(
4907 unsigned char* view,
4908 AArch64_valtype immed1,
4909 AArch64_valtype immed2,
4910 elfcpp::Elf_Xword doffset1,
4911 elfcpp::Elf_Xword doffset2,
4912 elfcpp::Elf_Xword dst_mask)
4913 {
4914 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4915 Valtype* wv = reinterpret_cast<Valtype*>(view);
4916 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4917 val &= ~dst_mask;
4918 elfcpp::Swap<valsize, big_endian>::writeval(wv,
4919 static_cast<Valtype>(val | (immed1 << doffset1) |
4920 (immed2 << doffset2)));
4921 }
4922
4923 // Update adr or adrp instruction with immed.
4924 // In adr and adrp: [30:29] immlo [23:5] immhi
4925
4926 static inline void
4927 update_adr(unsigned char* view, AArch64_valtype immed)
4928 {
4929 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
4930 This::template update_view_two_parts<32>(
4931 view,
4932 immed & 0x3,
4933 (immed & 0x1ffffc) >> 2,
4934 29,
4935 5,
4936 dst_mask);
4937 }
4938
4939 // Update movz/movn instruction with bits immed.
4940 // Set instruction to movz if is_movz is true, otherwise set instruction
4941 // to movn.
4942
4943 static inline void
4944 update_movnz(unsigned char* view,
4945 AArch64_valtype immed,
4946 bool is_movz)
4947 {
4948 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4949 Valtype* wv = reinterpret_cast<Valtype*>(view);
4950 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
4951
4952 const elfcpp::Elf_Xword doffset =
4953 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
4954 const elfcpp::Elf_Xword dst_mask =
4955 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
4956
4957 // Clear immediate fields and opc code.
4958 val &= ~(dst_mask | (0x3 << 29));
4959
4960 // Set instruction to movz or movn.
4961 // movz: [30:29] is 10 movn: [30:29] is 00
4962 if (is_movz)
4963 val |= (0x2 << 29);
4964
4965 elfcpp::Swap<32, big_endian>::writeval(wv,
4966 static_cast<Valtype>(val | (immed << doffset)));
4967 }
4968
4969 // Update selected bits in text.
4970
4971 template<int valsize>
4972 static inline typename This::Status
4973 reloc_common(unsigned char* view, Address x,
4974 const AArch64_reloc_property* reloc_property)
4975 {
4976 // Select bits from X.
4977 Address immed = reloc_property->select_x_value(x);
4978
4979 // Update view.
4980 const AArch64_reloc_property::Reloc_inst inst =
4981 reloc_property->reloc_inst();
4982 // If it is a data relocation or instruction has 2 parts of immediate
4983 // fields, you should not call pcrela_general.
4984 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
4985 aarch64_howto[inst].doffset != -1);
4986 This::template update_view<valsize>(view, immed,
4987 aarch64_howto[inst].doffset,
4988 aarch64_howto[inst].dst_mask);
4989
4990 // Do check overflow or alignment if needed.
4991 return (reloc_property->checkup_x_value(x)
4992 ? This::STATUS_OKAY
4993 : This::STATUS_OVERFLOW);
4994 }
4995
4996 public:
4997
4998 // Construct a B insn. Note, although we group it here with other relocation
4999 // operation, there is actually no 'relocation' involved here.
5000 static inline void
5001 construct_b(unsigned char* view, unsigned int branch_offset)
5002 {
5003 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
5004 26, 0, 0xffffffff);
5005 }
5006
5007 // Do a simple rela relocation at unaligned addresses.
5008
5009 template<int valsize>
5010 static inline typename This::Status
5011 rela_ua(unsigned char* view,
5012 const Sized_relobj_file<size, big_endian>* object,
5013 const Symbol_value<size>* psymval,
5014 AArch64_valtype addend,
5015 const AArch64_reloc_property* reloc_property)
5016 {
5017 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5018 Valtype;
5019 typename elfcpp::Elf_types<size>::Elf_Addr x =
5020 psymval->value(object, addend);
5021 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5022 static_cast<Valtype>(x));
5023 return (reloc_property->checkup_x_value(x)
5024 ? This::STATUS_OKAY
5025 : This::STATUS_OVERFLOW);
5026 }
5027
5028 // Do a simple pc-relative relocation at unaligned addresses.
5029
5030 template<int valsize>
5031 static inline typename This::Status
5032 pcrela_ua(unsigned char* view,
5033 const Sized_relobj_file<size, big_endian>* object,
5034 const Symbol_value<size>* psymval,
5035 AArch64_valtype addend,
5036 Address address,
5037 const AArch64_reloc_property* reloc_property)
5038 {
5039 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5040 Valtype;
5041 Address x = psymval->value(object, addend) - address;
5042 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5043 static_cast<Valtype>(x));
5044 return (reloc_property->checkup_x_value(x)
5045 ? This::STATUS_OKAY
5046 : This::STATUS_OVERFLOW);
5047 }
5048
5049 // Do a simple rela relocation at aligned addresses.
5050
5051 template<int valsize>
5052 static inline typename This::Status
5053 rela(
5054 unsigned char* view,
5055 const Sized_relobj_file<size, big_endian>* object,
5056 const Symbol_value<size>* psymval,
5057 AArch64_valtype addend,
5058 const AArch64_reloc_property* reloc_property)
5059 {
5060 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5061 Valtype* wv = reinterpret_cast<Valtype*>(view);
5062 Address x = psymval->value(object, addend);
5063 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5064 return (reloc_property->checkup_x_value(x)
5065 ? This::STATUS_OKAY
5066 : This::STATUS_OVERFLOW);
5067 }
5068
5069 // Do relocate. Update selected bits in text.
5070 // new_val = (val & ~dst_mask) | (immed << doffset)
5071
5072 template<int valsize>
5073 static inline typename This::Status
5074 rela_general(unsigned char* view,
5075 const Sized_relobj_file<size, big_endian>* object,
5076 const Symbol_value<size>* psymval,
5077 AArch64_valtype addend,
5078 const AArch64_reloc_property* reloc_property)
5079 {
5080 // Calculate relocation.
5081 Address x = psymval->value(object, addend);
5082 return This::template reloc_common<valsize>(view, x, reloc_property);
5083 }
5084
5085 // Do relocate. Update selected bits in text.
5086 // new val = (val & ~dst_mask) | (immed << doffset)
5087
5088 template<int valsize>
5089 static inline typename This::Status
5090 rela_general(
5091 unsigned char* view,
5092 AArch64_valtype s,
5093 AArch64_valtype addend,
5094 const AArch64_reloc_property* reloc_property)
5095 {
5096 // Calculate relocation.
5097 Address x = s + addend;
5098 return This::template reloc_common<valsize>(view, x, reloc_property);
5099 }
5100
5101 // Do address relative relocate. Update selected bits in text.
5102 // new val = (val & ~dst_mask) | (immed << doffset)
5103
5104 template<int valsize>
5105 static inline typename This::Status
5106 pcrela_general(
5107 unsigned char* view,
5108 const Sized_relobj_file<size, big_endian>* object,
5109 const Symbol_value<size>* psymval,
5110 AArch64_valtype addend,
5111 Address address,
5112 const AArch64_reloc_property* reloc_property)
5113 {
5114 // Calculate relocation.
5115 Address x = psymval->value(object, addend) - address;
5116 return This::template reloc_common<valsize>(view, x, reloc_property);
5117 }
5118
5119
5120 // Calculate (S + A) - address, update adr instruction.
5121
5122 static inline typename This::Status
5123 adr(unsigned char* view,
5124 const Sized_relobj_file<size, big_endian>* object,
5125 const Symbol_value<size>* psymval,
5126 Address addend,
5127 Address address,
5128 const AArch64_reloc_property* /* reloc_property */)
5129 {
5130 AArch64_valtype x = psymval->value(object, addend) - address;
5131 // Pick bits [20:0] of X.
5132 AArch64_valtype immed = x & 0x1fffff;
5133 update_adr(view, immed);
5134 // Check -2^20 <= X < 2^20
5135 return (size == 64 && Bits<21>::has_overflow((x))
5136 ? This::STATUS_OVERFLOW
5137 : This::STATUS_OKAY);
5138 }
5139
5140 // Calculate PG(S+A) - PG(address), update adrp instruction.
5141 // R_AARCH64_ADR_PREL_PG_HI21
5142
5143 static inline typename This::Status
5144 adrp(
5145 unsigned char* view,
5146 Address sa,
5147 Address address)
5148 {
5149 AArch64_valtype x = This::Page(sa) - This::Page(address);
5150 // Pick [32:12] of X.
5151 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5152 update_adr(view, immed);
5153 // Check -2^32 <= X < 2^32
5154 return (size == 64 && Bits<33>::has_overflow((x))
5155 ? This::STATUS_OVERFLOW
5156 : This::STATUS_OKAY);
5157 }
5158
5159 // Calculate PG(S+A) - PG(address), update adrp instruction.
5160 // R_AARCH64_ADR_PREL_PG_HI21
5161
5162 static inline typename This::Status
5163 adrp(unsigned char* view,
5164 const Sized_relobj_file<size, big_endian>* object,
5165 const Symbol_value<size>* psymval,
5166 Address addend,
5167 Address address,
5168 const AArch64_reloc_property* reloc_property)
5169 {
5170 Address sa = psymval->value(object, addend);
5171 AArch64_valtype x = This::Page(sa) - This::Page(address);
5172 // Pick [32:12] of X.
5173 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5174 update_adr(view, immed);
5175 return (reloc_property->checkup_x_value(x)
5176 ? This::STATUS_OKAY
5177 : This::STATUS_OVERFLOW);
5178 }
5179
5180 // Update mov[n/z] instruction. Check overflow if needed.
5181 // If X >=0, set the instruction to movz and its immediate value to the
5182 // selected bits S.
5183 // If X < 0, set the instruction to movn and its immediate value to
5184 // NOT (selected bits of).
5185
5186 static inline typename This::Status
5187 movnz(unsigned char* view,
5188 AArch64_valtype x,
5189 const AArch64_reloc_property* reloc_property)
5190 {
5191 // Select bits from X.
5192 Address immed;
5193 bool is_movz;
5194 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5195 if (static_cast<SignedW>(x) >= 0)
5196 {
5197 immed = reloc_property->select_x_value(x);
5198 is_movz = true;
5199 }
5200 else
5201 {
5202 immed = reloc_property->select_x_value(~x);;
5203 is_movz = false;
5204 }
5205
5206 // Update movnz instruction.
5207 update_movnz(view, immed, is_movz);
5208
5209 // Do check overflow or alignment if needed.
5210 return (reloc_property->checkup_x_value(x)
5211 ? This::STATUS_OKAY
5212 : This::STATUS_OVERFLOW);
5213 }
5214
5215 static inline bool
5216 maybe_apply_stub(unsigned int,
5217 const The_relocate_info*,
5218 const The_rela&,
5219 unsigned char*,
5220 Address,
5221 const Sized_symbol<size>*,
5222 const Symbol_value<size>*,
5223 const Sized_relobj_file<size, big_endian>*,
5224 section_size_type);
5225
5226 }; // End of AArch64_relocate_functions
5227
5228
5229 // For a certain relocation type (usually jump/branch), test to see if the
5230 // destination needs a stub to fulfil. If so, re-route the destination of the
5231 // original instruction to the stub, note, at this time, the stub has already
5232 // been generated.
5233
5234 template<int size, bool big_endian>
5235 bool
5236 AArch64_relocate_functions<size, big_endian>::
5237 maybe_apply_stub(unsigned int r_type,
5238 const The_relocate_info* relinfo,
5239 const The_rela& rela,
5240 unsigned char* view,
5241 Address address,
5242 const Sized_symbol<size>* gsym,
5243 const Symbol_value<size>* psymval,
5244 const Sized_relobj_file<size, big_endian>* object,
5245 section_size_type current_group_size)
5246 {
5247 if (parameters->options().relocatable())
5248 return false;
5249
5250 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5251 Address branch_target = psymval->value(object, 0) + addend;
5252 int stub_type =
5253 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5254 if (stub_type == ST_NONE)
5255 return false;
5256
5257 const The_aarch64_relobj* aarch64_relobj =
5258 static_cast<const The_aarch64_relobj*>(object);
5259 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5260 gold_assert(stub_table != NULL);
5261
5262 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5263 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5264 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5265 gold_assert(stub != NULL);
5266
5267 Address new_branch_target = stub_table->address() + stub->offset();
5268 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5269 new_branch_target - address;
5270 const AArch64_reloc_property* arp =
5271 aarch64_reloc_property_table->get_reloc_property(r_type);
5272 gold_assert(arp != NULL);
5273 typename This::Status status = This::template
5274 rela_general<32>(view, branch_offset, 0, arp);
5275 if (status != This::STATUS_OKAY)
5276 gold_error(_("Stub is too far away, try a smaller value "
5277 "for '--stub-group-size'. The current value is 0x%lx."),
5278 static_cast<unsigned long>(current_group_size));
5279 return true;
5280 }
5281
5282
5283 // Group input sections for stub generation.
5284 //
5285 // We group input sections in an output section so that the total size,
5286 // including any padding space due to alignment is smaller than GROUP_SIZE
5287 // unless the only input section in group is bigger than GROUP_SIZE already.
5288 // Then an ARM stub table is created to follow the last input section
5289 // in group. For each group an ARM stub table is created an is placed
5290 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5291 // extend the group after the stub table.
5292
5293 template<int size, bool big_endian>
5294 void
5295 Target_aarch64<size, big_endian>::group_sections(
5296 Layout* layout,
5297 section_size_type group_size,
5298 bool stubs_always_after_branch,
5299 const Task* task)
5300 {
5301 // Group input sections and insert stub table
5302 Layout::Section_list section_list;
5303 layout->get_executable_sections(&section_list);
5304 for (Layout::Section_list::const_iterator p = section_list.begin();
5305 p != section_list.end();
5306 ++p)
5307 {
5308 AArch64_output_section<size, big_endian>* output_section =
5309 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5310 output_section->group_sections(group_size, stubs_always_after_branch,
5311 this, task);
5312 }
5313 }
5314
5315
5316 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5317 // section of RELOBJ.
5318
5319 template<int size, bool big_endian>
5320 AArch64_input_section<size, big_endian>*
5321 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5322 Relobj* relobj, unsigned int shndx) const
5323 {
5324 Section_id sid(relobj, shndx);
5325 typename AArch64_input_section_map::const_iterator p =
5326 this->aarch64_input_section_map_.find(sid);
5327 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5328 }
5329
5330
5331 // Make a new AArch64_input_section object.
5332
5333 template<int size, bool big_endian>
5334 AArch64_input_section<size, big_endian>*
5335 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5336 Relobj* relobj, unsigned int shndx)
5337 {
5338 Section_id sid(relobj, shndx);
5339
5340 AArch64_input_section<size, big_endian>* input_section =
5341 new AArch64_input_section<size, big_endian>(relobj, shndx);
5342 input_section->init();
5343
5344 // Register new AArch64_input_section in map for look-up.
5345 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5346 this->aarch64_input_section_map_.insert(
5347 std::make_pair(sid, input_section));
5348
5349 // Make sure that it we have not created another AArch64_input_section
5350 // for this input section already.
5351 gold_assert(ins.second);
5352
5353 return input_section;
5354 }
5355
5356
5357 // Relaxation hook. This is where we do stub generation.
5358
5359 template<int size, bool big_endian>
5360 bool
5361 Target_aarch64<size, big_endian>::do_relax(
5362 int pass,
5363 const Input_objects* input_objects,
5364 Symbol_table* symtab,
5365 Layout* layout ,
5366 const Task* task)
5367 {
5368 gold_assert(!parameters->options().relocatable());
5369 if (pass == 1)
5370 {
5371 // We don't handle negative stub_group_size right now.
5372 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5373 if (this->stub_group_size_ == 1)
5374 {
5375 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5376 // will fail to link. The user will have to relink with an explicit
5377 // group size option.
5378 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5379 4096 * 4;
5380 }
5381 group_sections(layout, this->stub_group_size_, true, task);
5382 }
5383 else
5384 {
5385 // If this is not the first pass, addresses and file offsets have
5386 // been reset at this point, set them here.
5387 for (Stub_table_iterator sp = this->stub_tables_.begin();
5388 sp != this->stub_tables_.end(); ++sp)
5389 {
5390 The_stub_table* stt = *sp;
5391 The_aarch64_input_section* owner = stt->owner();
5392 off_t off = align_address(owner->original_size(),
5393 stt->addralign());
5394 stt->set_address_and_file_offset(owner->address() + off,
5395 owner->offset() + off);
5396 }
5397 }
5398
5399 // Scan relocs for relocation stubs
5400 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5401 op != input_objects->relobj_end();
5402 ++op)
5403 {
5404 The_aarch64_relobj* aarch64_relobj =
5405 static_cast<The_aarch64_relobj*>(*op);
5406 // Lock the object so we can read from it. This is only called
5407 // single-threaded from Layout::finalize, so it is OK to lock.
5408 Task_lock_obj<Object> tl(task, aarch64_relobj);
5409 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5410 }
5411
5412 bool any_stub_table_changed = false;
5413 for (Stub_table_iterator siter = this->stub_tables_.begin();
5414 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5415 {
5416 The_stub_table* stub_table = *siter;
5417 if (stub_table->update_data_size_changed_p())
5418 {
5419 The_aarch64_input_section* owner = stub_table->owner();
5420 uint64_t address = owner->address();
5421 off_t offset = owner->offset();
5422 owner->reset_address_and_file_offset();
5423 owner->set_address_and_file_offset(address, offset);
5424
5425 any_stub_table_changed = true;
5426 }
5427 }
5428
5429 // Do not continue relaxation.
5430 bool continue_relaxation = any_stub_table_changed;
5431 if (!continue_relaxation)
5432 for (Stub_table_iterator sp = this->stub_tables_.begin();
5433 (sp != this->stub_tables_.end());
5434 ++sp)
5435 (*sp)->finalize_stubs();
5436
5437 return continue_relaxation;
5438 }
5439
5440
5441 // Make a new Stub_table.
5442
5443 template<int size, bool big_endian>
5444 Stub_table<size, big_endian>*
5445 Target_aarch64<size, big_endian>::new_stub_table(
5446 AArch64_input_section<size, big_endian>* owner)
5447 {
5448 Stub_table<size, big_endian>* stub_table =
5449 new Stub_table<size, big_endian>(owner);
5450 stub_table->set_address(align_address(
5451 owner->address() + owner->data_size(), 8));
5452 stub_table->set_file_offset(owner->offset() + owner->data_size());
5453 stub_table->finalize_data_size();
5454
5455 this->stub_tables_.push_back(stub_table);
5456
5457 return stub_table;
5458 }
5459
5460
5461 template<int size, bool big_endian>
5462 uint64_t
5463 Target_aarch64<size, big_endian>::do_reloc_addend(
5464 void* arg, unsigned int r_type, uint64_t) const
5465 {
5466 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5467 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5468 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5469 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5470 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5471 gold_assert(psymval->is_tls_symbol());
5472 // The value of a TLS symbol is the offset in the TLS segment.
5473 return psymval->value(ti.object, 0);
5474 }
5475
5476 // Return the number of entries in the PLT.
5477
5478 template<int size, bool big_endian>
5479 unsigned int
5480 Target_aarch64<size, big_endian>::plt_entry_count() const
5481 {
5482 if (this->plt_ == NULL)
5483 return 0;
5484 return this->plt_->entry_count();
5485 }
5486
5487 // Return the offset of the first non-reserved PLT entry.
5488
5489 template<int size, bool big_endian>
5490 unsigned int
5491 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5492 {
5493 return this->plt_->first_plt_entry_offset();
5494 }
5495
5496 // Return the size of each PLT entry.
5497
5498 template<int size, bool big_endian>
5499 unsigned int
5500 Target_aarch64<size, big_endian>::plt_entry_size() const
5501 {
5502 return this->plt_->get_plt_entry_size();
5503 }
5504
5505 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5506
5507 template<int size, bool big_endian>
5508 void
5509 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5510 Symbol_table* symtab, Layout* layout)
5511 {
5512 if (this->tls_base_symbol_defined_)
5513 return;
5514
5515 Output_segment* tls_segment = layout->tls_segment();
5516 if (tls_segment != NULL)
5517 {
5518 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5519 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5520 Symbol_table::PREDEFINED,
5521 tls_segment, 0, 0,
5522 elfcpp::STT_TLS,
5523 elfcpp::STB_LOCAL,
5524 elfcpp::STV_HIDDEN, 0,
5525 Symbol::SEGMENT_START,
5526 true);
5527 }
5528 this->tls_base_symbol_defined_ = true;
5529 }
5530
5531 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5532
5533 template<int size, bool big_endian>
5534 void
5535 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5536 Symbol_table* symtab, Layout* layout)
5537 {
5538 if (this->plt_ == NULL)
5539 this->make_plt_section(symtab, layout);
5540
5541 if (!this->plt_->has_tlsdesc_entry())
5542 {
5543 // Allocate the TLSDESC_GOT entry.
5544 Output_data_got_aarch64<size, big_endian>* got =
5545 this->got_section(symtab, layout);
5546 unsigned int got_offset = got->add_constant(0);
5547
5548 // Allocate the TLSDESC_PLT entry.
5549 this->plt_->reserve_tlsdesc_entry(got_offset);
5550 }
5551 }
5552
5553 // Create a GOT entry for the TLS module index.
5554
5555 template<int size, bool big_endian>
5556 unsigned int
5557 Target_aarch64<size, big_endian>::got_mod_index_entry(
5558 Symbol_table* symtab, Layout* layout,
5559 Sized_relobj_file<size, big_endian>* object)
5560 {
5561 if (this->got_mod_index_offset_ == -1U)
5562 {
5563 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5564 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5565 Output_data_got_aarch64<size, big_endian>* got =
5566 this->got_section(symtab, layout);
5567 unsigned int got_offset = got->add_constant(0);
5568 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5569 got_offset, 0);
5570 got->add_constant(0);
5571 this->got_mod_index_offset_ = got_offset;
5572 }
5573 return this->got_mod_index_offset_;
5574 }
5575
5576 // Optimize the TLS relocation type based on what we know about the
5577 // symbol. IS_FINAL is true if the final address of this symbol is
5578 // known at link time.
5579
5580 template<int size, bool big_endian>
5581 tls::Tls_optimization
5582 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5583 int r_type)
5584 {
5585 // If we are generating a shared library, then we can't do anything
5586 // in the linker
5587 if (parameters->options().shared())
5588 return tls::TLSOPT_NONE;
5589
5590 switch (r_type)
5591 {
5592 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5593 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5594 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5595 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5596 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5597 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5598 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5599 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5600 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5601 case elfcpp::R_AARCH64_TLSDESC_LDR:
5602 case elfcpp::R_AARCH64_TLSDESC_ADD:
5603 case elfcpp::R_AARCH64_TLSDESC_CALL:
5604 // These are General-Dynamic which permits fully general TLS
5605 // access. Since we know that we are generating an executable,
5606 // we can convert this to Initial-Exec. If we also know that
5607 // this is a local symbol, we can further switch to Local-Exec.
5608 if (is_final)
5609 return tls::TLSOPT_TO_LE;
5610 return tls::TLSOPT_TO_IE;
5611
5612 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5613 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5614 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5615 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5616 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5617 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5618 // These are Local-Dynamic, which refer to local symbols in the
5619 // dynamic TLS block. Since we know that we generating an
5620 // executable, we can switch to Local-Exec.
5621 return tls::TLSOPT_TO_LE;
5622
5623 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5624 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5625 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5626 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5627 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5628 // These are Initial-Exec relocs which get the thread offset
5629 // from the GOT. If we know that we are linking against the
5630 // local symbol, we can switch to Local-Exec, which links the
5631 // thread offset into the instruction.
5632 if (is_final)
5633 return tls::TLSOPT_TO_LE;
5634 return tls::TLSOPT_NONE;
5635
5636 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5637 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5638 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5639 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5640 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5641 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5642 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5643 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5644 // When we already have Local-Exec, there is nothing further we
5645 // can do.
5646 return tls::TLSOPT_NONE;
5647
5648 default:
5649 gold_unreachable();
5650 }
5651 }
5652
5653 // Returns true if this relocation type could be that of a function pointer.
5654
5655 template<int size, bool big_endian>
5656 inline bool
5657 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5658 unsigned int r_type)
5659 {
5660 switch (r_type)
5661 {
5662 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5663 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5664 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5665 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5666 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5667 {
5668 return true;
5669 }
5670 }
5671 return false;
5672 }
5673
5674 // For safe ICF, scan a relocation for a local symbol to check if it
5675 // corresponds to a function pointer being taken. In that case mark
5676 // the function whose pointer was taken as not foldable.
5677
5678 template<int size, bool big_endian>
5679 inline bool
5680 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5681 Symbol_table* ,
5682 Layout* ,
5683 Target_aarch64<size, big_endian>* ,
5684 Sized_relobj_file<size, big_endian>* ,
5685 unsigned int ,
5686 Output_section* ,
5687 const elfcpp::Rela<size, big_endian>& ,
5688 unsigned int r_type,
5689 const elfcpp::Sym<size, big_endian>&)
5690 {
5691 // When building a shared library, do not fold any local symbols.
5692 return (parameters->options().shared()
5693 || possible_function_pointer_reloc(r_type));
5694 }
5695
5696 // For safe ICF, scan a relocation for a global symbol to check if it
5697 // corresponds to a function pointer being taken. In that case mark
5698 // the function whose pointer was taken as not foldable.
5699
5700 template<int size, bool big_endian>
5701 inline bool
5702 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5703 Symbol_table* ,
5704 Layout* ,
5705 Target_aarch64<size, big_endian>* ,
5706 Sized_relobj_file<size, big_endian>* ,
5707 unsigned int ,
5708 Output_section* ,
5709 const elfcpp::Rela<size, big_endian>& ,
5710 unsigned int r_type,
5711 Symbol* gsym)
5712 {
5713 // When building a shared library, do not fold symbols whose visibility
5714 // is hidden, internal or protected.
5715 return ((parameters->options().shared()
5716 && (gsym->visibility() == elfcpp::STV_INTERNAL
5717 || gsym->visibility() == elfcpp::STV_PROTECTED
5718 || gsym->visibility() == elfcpp::STV_HIDDEN))
5719 || possible_function_pointer_reloc(r_type));
5720 }
5721
5722 // Report an unsupported relocation against a local symbol.
5723
5724 template<int size, bool big_endian>
5725 void
5726 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5727 Sized_relobj_file<size, big_endian>* object,
5728 unsigned int r_type)
5729 {
5730 gold_error(_("%s: unsupported reloc %u against local symbol"),
5731 object->name().c_str(), r_type);
5732 }
5733
5734 // We are about to emit a dynamic relocation of type R_TYPE. If the
5735 // dynamic linker does not support it, issue an error.
5736
5737 template<int size, bool big_endian>
5738 void
5739 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5740 unsigned int r_type)
5741 {
5742 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5743
5744 switch (r_type)
5745 {
5746 // These are the relocation types supported by glibc for AARCH64.
5747 case elfcpp::R_AARCH64_NONE:
5748 case elfcpp::R_AARCH64_COPY:
5749 case elfcpp::R_AARCH64_GLOB_DAT:
5750 case elfcpp::R_AARCH64_JUMP_SLOT:
5751 case elfcpp::R_AARCH64_RELATIVE:
5752 case elfcpp::R_AARCH64_TLS_DTPREL64:
5753 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5754 case elfcpp::R_AARCH64_TLS_TPREL64:
5755 case elfcpp::R_AARCH64_TLSDESC:
5756 case elfcpp::R_AARCH64_IRELATIVE:
5757 case elfcpp::R_AARCH64_ABS32:
5758 case elfcpp::R_AARCH64_ABS64:
5759 return;
5760
5761 default:
5762 break;
5763 }
5764
5765 // This prevents us from issuing more than one error per reloc
5766 // section. But we can still wind up issuing more than one
5767 // error per object file.
5768 if (this->issued_non_pic_error_)
5769 return;
5770 gold_assert(parameters->options().output_is_position_independent());
5771 object->error(_("requires unsupported dynamic reloc; "
5772 "recompile with -fPIC"));
5773 this->issued_non_pic_error_ = true;
5774 return;
5775 }
5776
5777 // Return whether we need to make a PLT entry for a relocation of the
5778 // given type against a STT_GNU_IFUNC symbol.
5779
5780 template<int size, bool big_endian>
5781 bool
5782 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5783 Sized_relobj_file<size, big_endian>* object,
5784 unsigned int r_type)
5785 {
5786 const AArch64_reloc_property* arp =
5787 aarch64_reloc_property_table->get_reloc_property(r_type);
5788 gold_assert(arp != NULL);
5789
5790 int flags = arp->reference_flags();
5791 if (flags & Symbol::TLS_REF)
5792 {
5793 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5794 object->name().c_str(), arp->name().c_str());
5795 return false;
5796 }
5797 return flags != 0;
5798 }
5799
5800 // Scan a relocation for a local symbol.
5801
5802 template<int size, bool big_endian>
5803 inline void
5804 Target_aarch64<size, big_endian>::Scan::local(
5805 Symbol_table* symtab,
5806 Layout* layout,
5807 Target_aarch64<size, big_endian>* target,
5808 Sized_relobj_file<size, big_endian>* object,
5809 unsigned int data_shndx,
5810 Output_section* output_section,
5811 const elfcpp::Rela<size, big_endian>& rela,
5812 unsigned int r_type,
5813 const elfcpp::Sym<size, big_endian>& lsym,
5814 bool is_discarded)
5815 {
5816 if (is_discarded)
5817 return;
5818
5819 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5820 Reloc_section;
5821 Output_data_got_aarch64<size, big_endian>* got =
5822 target->got_section(symtab, layout);
5823 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5824
5825 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5826 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5827 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5828 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5829
5830 switch (r_type)
5831 {
5832 case elfcpp::R_AARCH64_ABS32:
5833 case elfcpp::R_AARCH64_ABS16:
5834 if (parameters->options().output_is_position_independent())
5835 {
5836 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5837 object->name().c_str(), r_type);
5838 }
5839 break;
5840
5841 case elfcpp::R_AARCH64_ABS64:
5842 // If building a shared library or pie, we need to mark this as a dynmic
5843 // reloction, so that the dynamic loader can relocate it.
5844 if (parameters->options().output_is_position_independent())
5845 {
5846 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5847 rela_dyn->add_local_relative(object, r_sym,
5848 elfcpp::R_AARCH64_RELATIVE,
5849 output_section,
5850 data_shndx,
5851 rela.get_r_offset(),
5852 rela.get_r_addend(),
5853 is_ifunc);
5854 }
5855 break;
5856
5857 case elfcpp::R_AARCH64_PREL64:
5858 case elfcpp::R_AARCH64_PREL32:
5859 case elfcpp::R_AARCH64_PREL16:
5860 break;
5861
5862 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
5863 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
5864 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
5865 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5866 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
5867 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
5868 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
5869 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
5870 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
5871 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
5872 break;
5873
5874 // Control flow, pc-relative. We don't need to do anything for a relative
5875 // addressing relocation against a local symbol if it does not reference
5876 // the GOT.
5877 case elfcpp::R_AARCH64_TSTBR14:
5878 case elfcpp::R_AARCH64_CONDBR19:
5879 case elfcpp::R_AARCH64_JUMP26:
5880 case elfcpp::R_AARCH64_CALL26:
5881 break;
5882
5883 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5884 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5885 {
5886 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5887 optimize_tls_reloc(!parameters->options().shared(), r_type);
5888 if (tlsopt == tls::TLSOPT_TO_LE)
5889 break;
5890
5891 layout->set_has_static_tls();
5892 // Create a GOT entry for the tp-relative offset.
5893 if (!parameters->doing_static_link())
5894 {
5895 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
5896 target->rela_dyn_section(layout),
5897 elfcpp::R_AARCH64_TLS_TPREL64);
5898 }
5899 else if (!object->local_has_got_offset(r_sym,
5900 GOT_TYPE_TLS_OFFSET))
5901 {
5902 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
5903 unsigned int got_offset =
5904 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
5905 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5906 gold_assert(addend == 0);
5907 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
5908 object, r_sym);
5909 }
5910 }
5911 break;
5912
5913 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5914 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5915 {
5916 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5917 optimize_tls_reloc(!parameters->options().shared(), r_type);
5918 if (tlsopt == tls::TLSOPT_TO_LE)
5919 {
5920 layout->set_has_static_tls();
5921 break;
5922 }
5923 gold_assert(tlsopt == tls::TLSOPT_NONE);
5924
5925 got->add_local_pair_with_rel(object,r_sym, data_shndx,
5926 GOT_TYPE_TLS_PAIR,
5927 target->rela_dyn_section(layout),
5928 elfcpp::R_AARCH64_TLS_DTPMOD64);
5929 }
5930 break;
5931
5932 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5933 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5934 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5935 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5936 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5937 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5938 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5939 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5940 {
5941 layout->set_has_static_tls();
5942 bool output_is_shared = parameters->options().shared();
5943 if (output_is_shared)
5944 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
5945 object->name().c_str(), r_type);
5946 }
5947 break;
5948
5949 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5950 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5951 {
5952 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5953 optimize_tls_reloc(!parameters->options().shared(), r_type);
5954 if (tlsopt == tls::TLSOPT_NONE)
5955 {
5956 // Create a GOT entry for the module index.
5957 target->got_mod_index_entry(symtab, layout, object);
5958 }
5959 else if (tlsopt != tls::TLSOPT_TO_LE)
5960 unsupported_reloc_local(object, r_type);
5961 }
5962 break;
5963
5964 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5965 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5966 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5967 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5968 break;
5969
5970 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5971 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5972 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5973 {
5974 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5975 optimize_tls_reloc(!parameters->options().shared(), r_type);
5976 target->define_tls_base_symbol(symtab, layout);
5977 if (tlsopt == tls::TLSOPT_NONE)
5978 {
5979 // Create reserved PLT and GOT entries for the resolver.
5980 target->reserve_tlsdesc_entries(symtab, layout);
5981
5982 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
5983 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
5984 // entry needs to be in an area in .got.plt, not .got. Call
5985 // got_section to make sure the section has been created.
5986 target->got_section(symtab, layout);
5987 Output_data_got<size, big_endian>* got =
5988 target->got_tlsdesc_section();
5989 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5990 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
5991 {
5992 unsigned int got_offset = got->add_constant(0);
5993 got->add_constant(0);
5994 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
5995 got_offset);
5996 Reloc_section* rt = target->rela_tlsdesc_section(layout);
5997 // We store the arguments we need in a vector, and use
5998 // the index into the vector as the parameter to pass
5999 // to the target specific routines.
6000 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
6001 void* arg = reinterpret_cast<void*>(intarg);
6002 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
6003 got, got_offset, 0);
6004 }
6005 }
6006 else if (tlsopt != tls::TLSOPT_TO_LE)
6007 unsupported_reloc_local(object, r_type);
6008 }
6009 break;
6010
6011 case elfcpp::R_AARCH64_TLSDESC_CALL:
6012 break;
6013
6014 default:
6015 unsupported_reloc_local(object, r_type);
6016 }
6017 }
6018
6019
6020 // Report an unsupported relocation against a global symbol.
6021
6022 template<int size, bool big_endian>
6023 void
6024 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6025 Sized_relobj_file<size, big_endian>* object,
6026 unsigned int r_type,
6027 Symbol* gsym)
6028 {
6029 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6030 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6031 }
6032
6033 template<int size, bool big_endian>
6034 inline void
6035 Target_aarch64<size, big_endian>::Scan::global(
6036 Symbol_table* symtab,
6037 Layout* layout,
6038 Target_aarch64<size, big_endian>* target,
6039 Sized_relobj_file<size, big_endian> * object,
6040 unsigned int data_shndx,
6041 Output_section* output_section,
6042 const elfcpp::Rela<size, big_endian>& rela,
6043 unsigned int r_type,
6044 Symbol* gsym)
6045 {
6046 // A STT_GNU_IFUNC symbol may require a PLT entry.
6047 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6048 && this->reloc_needs_plt_for_ifunc(object, r_type))
6049 target->make_plt_entry(symtab, layout, gsym);
6050
6051 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6052 Reloc_section;
6053 const AArch64_reloc_property* arp =
6054 aarch64_reloc_property_table->get_reloc_property(r_type);
6055 gold_assert(arp != NULL);
6056
6057 switch (r_type)
6058 {
6059 case elfcpp::R_AARCH64_ABS16:
6060 case elfcpp::R_AARCH64_ABS32:
6061 case elfcpp::R_AARCH64_ABS64:
6062 {
6063 // Make a PLT entry if necessary.
6064 if (gsym->needs_plt_entry())
6065 {
6066 target->make_plt_entry(symtab, layout, gsym);
6067 // Since this is not a PC-relative relocation, we may be
6068 // taking the address of a function. In that case we need to
6069 // set the entry in the dynamic symbol table to the address of
6070 // the PLT entry.
6071 if (gsym->is_from_dynobj() && !parameters->options().shared())
6072 gsym->set_needs_dynsym_value();
6073 }
6074 // Make a dynamic relocation if necessary.
6075 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6076 {
6077 if (!parameters->options().output_is_position_independent()
6078 && gsym->may_need_copy_reloc())
6079 {
6080 target->copy_reloc(symtab, layout, object,
6081 data_shndx, output_section, gsym, rela);
6082 }
6083 else if (r_type == elfcpp::R_AARCH64_ABS64
6084 && gsym->type() == elfcpp::STT_GNU_IFUNC
6085 && gsym->can_use_relative_reloc(false)
6086 && !gsym->is_from_dynobj()
6087 && !gsym->is_undefined()
6088 && !gsym->is_preemptible())
6089 {
6090 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6091 // symbol. This makes a function address in a PIE executable
6092 // match the address in a shared library that it links against.
6093 Reloc_section* rela_dyn =
6094 target->rela_irelative_section(layout);
6095 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6096 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6097 output_section, object,
6098 data_shndx,
6099 rela.get_r_offset(),
6100 rela.get_r_addend());
6101 }
6102 else if (r_type == elfcpp::R_AARCH64_ABS64
6103 && gsym->can_use_relative_reloc(false))
6104 {
6105 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6106 rela_dyn->add_global_relative(gsym,
6107 elfcpp::R_AARCH64_RELATIVE,
6108 output_section,
6109 object,
6110 data_shndx,
6111 rela.get_r_offset(),
6112 rela.get_r_addend(),
6113 false);
6114 }
6115 else
6116 {
6117 check_non_pic(object, r_type);
6118 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6119 rela_dyn = target->rela_dyn_section(layout);
6120 rela_dyn->add_global(
6121 gsym, r_type, output_section, object,
6122 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6123 }
6124 }
6125 }
6126 break;
6127
6128 case elfcpp::R_AARCH64_PREL16:
6129 case elfcpp::R_AARCH64_PREL32:
6130 case elfcpp::R_AARCH64_PREL64:
6131 // This is used to fill the GOT absolute address.
6132 if (gsym->needs_plt_entry())
6133 {
6134 target->make_plt_entry(symtab, layout, gsym);
6135 }
6136 break;
6137
6138 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6139 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6140 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6141 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6142 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6143 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6144 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6145 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6146 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6147 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6148 {
6149 if (gsym->needs_plt_entry())
6150 target->make_plt_entry(symtab, layout, gsym);
6151 // Make a dynamic relocation if necessary.
6152 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6153 {
6154 if (parameters->options().output_is_executable()
6155 && gsym->may_need_copy_reloc())
6156 {
6157 target->copy_reloc(symtab, layout, object,
6158 data_shndx, output_section, gsym, rela);
6159 }
6160 }
6161 break;
6162 }
6163
6164 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6165 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6166 {
6167 // This pair of relocations is used to access a specific GOT entry.
6168 // Note a GOT entry is an *address* to a symbol.
6169 // The symbol requires a GOT entry
6170 Output_data_got_aarch64<size, big_endian>* got =
6171 target->got_section(symtab, layout);
6172 if (gsym->final_value_is_known())
6173 {
6174 // For a STT_GNU_IFUNC symbol we want the PLT address.
6175 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6176 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6177 else
6178 got->add_global(gsym, GOT_TYPE_STANDARD);
6179 }
6180 else
6181 {
6182 // If this symbol is not fully resolved, we need to add a dynamic
6183 // relocation for it.
6184 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6185
6186 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6187 //
6188 // 1) The symbol may be defined in some other module.
6189 // 2) We are building a shared library and this is a protected
6190 // symbol; using GLOB_DAT means that the dynamic linker can use
6191 // the address of the PLT in the main executable when appropriate
6192 // so that function address comparisons work.
6193 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6194 // again so that function address comparisons work.
6195 if (gsym->is_from_dynobj()
6196 || gsym->is_undefined()
6197 || gsym->is_preemptible()
6198 || (gsym->visibility() == elfcpp::STV_PROTECTED
6199 && parameters->options().shared())
6200 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6201 && parameters->options().output_is_position_independent()))
6202 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6203 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6204 else
6205 {
6206 // For a STT_GNU_IFUNC symbol we want to write the PLT
6207 // offset into the GOT, so that function pointer
6208 // comparisons work correctly.
6209 bool is_new;
6210 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6211 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6212 else
6213 {
6214 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6215 // Tell the dynamic linker to use the PLT address
6216 // when resolving relocations.
6217 if (gsym->is_from_dynobj()
6218 && !parameters->options().shared())
6219 gsym->set_needs_dynsym_value();
6220 }
6221 if (is_new)
6222 {
6223 rela_dyn->add_global_relative(
6224 gsym, elfcpp::R_AARCH64_RELATIVE,
6225 got,
6226 gsym->got_offset(GOT_TYPE_STANDARD),
6227 0,
6228 false);
6229 }
6230 }
6231 }
6232 break;
6233 }
6234
6235 case elfcpp::R_AARCH64_TSTBR14:
6236 case elfcpp::R_AARCH64_CONDBR19:
6237 case elfcpp::R_AARCH64_JUMP26:
6238 case elfcpp::R_AARCH64_CALL26:
6239 {
6240 if (gsym->final_value_is_known())
6241 break;
6242
6243 if (gsym->is_defined() &&
6244 !gsym->is_from_dynobj() &&
6245 !gsym->is_preemptible())
6246 break;
6247
6248 // Make plt entry for function call.
6249 target->make_plt_entry(symtab, layout, gsym);
6250 break;
6251 }
6252
6253 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6254 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6255 {
6256 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6257 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6258 if (tlsopt == tls::TLSOPT_TO_LE)
6259 {
6260 layout->set_has_static_tls();
6261 break;
6262 }
6263 gold_assert(tlsopt == tls::TLSOPT_NONE);
6264
6265 // General dynamic.
6266 Output_data_got_aarch64<size, big_endian>* got =
6267 target->got_section(symtab, layout);
6268 // Create 2 consecutive entries for module index and offset.
6269 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6270 target->rela_dyn_section(layout),
6271 elfcpp::R_AARCH64_TLS_DTPMOD64,
6272 elfcpp::R_AARCH64_TLS_DTPREL64);
6273 }
6274 break;
6275
6276 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6277 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6278 {
6279 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6280 optimize_tls_reloc(!parameters->options().shared(), r_type);
6281 if (tlsopt == tls::TLSOPT_NONE)
6282 {
6283 // Create a GOT entry for the module index.
6284 target->got_mod_index_entry(symtab, layout, object);
6285 }
6286 else if (tlsopt != tls::TLSOPT_TO_LE)
6287 unsupported_reloc_local(object, r_type);
6288 }
6289 break;
6290
6291 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6292 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6293 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6294 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6295 break;
6296
6297 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6298 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6299 {
6300 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6301 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6302 if (tlsopt == tls::TLSOPT_TO_LE)
6303 break;
6304
6305 layout->set_has_static_tls();
6306 // Create a GOT entry for the tp-relative offset.
6307 Output_data_got_aarch64<size, big_endian>* got
6308 = target->got_section(symtab, layout);
6309 if (!parameters->doing_static_link())
6310 {
6311 got->add_global_with_rel(
6312 gsym, GOT_TYPE_TLS_OFFSET,
6313 target->rela_dyn_section(layout),
6314 elfcpp::R_AARCH64_TLS_TPREL64);
6315 }
6316 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6317 {
6318 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6319 unsigned int got_offset =
6320 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6321 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6322 gold_assert(addend == 0);
6323 got->add_static_reloc(got_offset,
6324 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6325 }
6326 }
6327 break;
6328
6329 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6330 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6331 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6332 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6333 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6334 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6335 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6336 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
6337 layout->set_has_static_tls();
6338 if (parameters->options().shared())
6339 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6340 object->name().c_str(), r_type);
6341 break;
6342
6343 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6344 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6345 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6346 {
6347 target->define_tls_base_symbol(symtab, layout);
6348 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6349 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6350 if (tlsopt == tls::TLSOPT_NONE)
6351 {
6352 // Create reserved PLT and GOT entries for the resolver.
6353 target->reserve_tlsdesc_entries(symtab, layout);
6354
6355 // Create a double GOT entry with an R_AARCH64_TLSDESC
6356 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6357 // entry needs to be in an area in .got.plt, not .got. Call
6358 // got_section to make sure the section has been created.
6359 target->got_section(symtab, layout);
6360 Output_data_got<size, big_endian>* got =
6361 target->got_tlsdesc_section();
6362 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6363 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6364 elfcpp::R_AARCH64_TLSDESC, 0);
6365 }
6366 else if (tlsopt == tls::TLSOPT_TO_IE)
6367 {
6368 // Create a GOT entry for the tp-relative offset.
6369 Output_data_got<size, big_endian>* got
6370 = target->got_section(symtab, layout);
6371 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6372 target->rela_dyn_section(layout),
6373 elfcpp::R_AARCH64_TLS_TPREL64);
6374 }
6375 else if (tlsopt != tls::TLSOPT_TO_LE)
6376 unsupported_reloc_global(object, r_type, gsym);
6377 }
6378 break;
6379
6380 case elfcpp::R_AARCH64_TLSDESC_CALL:
6381 break;
6382
6383 default:
6384 gold_error(_("%s: unsupported reloc type in global scan"),
6385 aarch64_reloc_property_table->
6386 reloc_name_in_error_message(r_type).c_str());
6387 }
6388 return;
6389 } // End of Scan::global
6390
6391
6392 // Create the PLT section.
6393 template<int size, bool big_endian>
6394 void
6395 Target_aarch64<size, big_endian>::make_plt_section(
6396 Symbol_table* symtab, Layout* layout)
6397 {
6398 if (this->plt_ == NULL)
6399 {
6400 // Create the GOT section first.
6401 this->got_section(symtab, layout);
6402
6403 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6404 this->got_irelative_);
6405
6406 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6407 (elfcpp::SHF_ALLOC
6408 | elfcpp::SHF_EXECINSTR),
6409 this->plt_, ORDER_PLT, false);
6410
6411 // Make the sh_info field of .rela.plt point to .plt.
6412 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6413 rela_plt_os->set_info_section(this->plt_->output_section());
6414 }
6415 }
6416
6417 // Return the section for TLSDESC relocations.
6418
6419 template<int size, bool big_endian>
6420 typename Target_aarch64<size, big_endian>::Reloc_section*
6421 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6422 {
6423 return this->plt_section()->rela_tlsdesc(layout);
6424 }
6425
6426 // Create a PLT entry for a global symbol.
6427
6428 template<int size, bool big_endian>
6429 void
6430 Target_aarch64<size, big_endian>::make_plt_entry(
6431 Symbol_table* symtab,
6432 Layout* layout,
6433 Symbol* gsym)
6434 {
6435 if (gsym->has_plt_offset())
6436 return;
6437
6438 if (this->plt_ == NULL)
6439 this->make_plt_section(symtab, layout);
6440
6441 this->plt_->add_entry(symtab, layout, gsym);
6442 }
6443
6444 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6445
6446 template<int size, bool big_endian>
6447 void
6448 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6449 Symbol_table* symtab, Layout* layout,
6450 Sized_relobj_file<size, big_endian>* relobj,
6451 unsigned int local_sym_index)
6452 {
6453 if (relobj->local_has_plt_offset(local_sym_index))
6454 return;
6455 if (this->plt_ == NULL)
6456 this->make_plt_section(symtab, layout);
6457 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6458 relobj,
6459 local_sym_index);
6460 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6461 }
6462
6463 template<int size, bool big_endian>
6464 void
6465 Target_aarch64<size, big_endian>::gc_process_relocs(
6466 Symbol_table* symtab,
6467 Layout* layout,
6468 Sized_relobj_file<size, big_endian>* object,
6469 unsigned int data_shndx,
6470 unsigned int sh_type,
6471 const unsigned char* prelocs,
6472 size_t reloc_count,
6473 Output_section* output_section,
6474 bool needs_special_offset_handling,
6475 size_t local_symbol_count,
6476 const unsigned char* plocal_symbols)
6477 {
6478 if (sh_type == elfcpp::SHT_REL)
6479 {
6480 return;
6481 }
6482
6483 gold::gc_process_relocs<
6484 size, big_endian,
6485 Target_aarch64<size, big_endian>,
6486 elfcpp::SHT_RELA,
6487 typename Target_aarch64<size, big_endian>::Scan,
6488 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
6489 symtab,
6490 layout,
6491 this,
6492 object,
6493 data_shndx,
6494 prelocs,
6495 reloc_count,
6496 output_section,
6497 needs_special_offset_handling,
6498 local_symbol_count,
6499 plocal_symbols);
6500 }
6501
6502 // Scan relocations for a section.
6503
6504 template<int size, bool big_endian>
6505 void
6506 Target_aarch64<size, big_endian>::scan_relocs(
6507 Symbol_table* symtab,
6508 Layout* layout,
6509 Sized_relobj_file<size, big_endian>* object,
6510 unsigned int data_shndx,
6511 unsigned int sh_type,
6512 const unsigned char* prelocs,
6513 size_t reloc_count,
6514 Output_section* output_section,
6515 bool needs_special_offset_handling,
6516 size_t local_symbol_count,
6517 const unsigned char* plocal_symbols)
6518 {
6519 if (sh_type == elfcpp::SHT_REL)
6520 {
6521 gold_error(_("%s: unsupported REL reloc section"),
6522 object->name().c_str());
6523 return;
6524 }
6525 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
6526 symtab,
6527 layout,
6528 this,
6529 object,
6530 data_shndx,
6531 prelocs,
6532 reloc_count,
6533 output_section,
6534 needs_special_offset_handling,
6535 local_symbol_count,
6536 plocal_symbols);
6537 }
6538
6539 // Return the value to use for a dynamic which requires special
6540 // treatment. This is how we support equality comparisons of function
6541 // pointers across shared library boundaries, as described in the
6542 // processor specific ABI supplement.
6543
6544 template<int size, bool big_endian>
6545 uint64_t
6546 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6547 {
6548 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6549 return this->plt_address_for_global(gsym);
6550 }
6551
6552
6553 // Finalize the sections.
6554
6555 template<int size, bool big_endian>
6556 void
6557 Target_aarch64<size, big_endian>::do_finalize_sections(
6558 Layout* layout,
6559 const Input_objects*,
6560 Symbol_table* symtab)
6561 {
6562 const Reloc_section* rel_plt = (this->plt_ == NULL
6563 ? NULL
6564 : this->plt_->rela_plt());
6565 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6566 this->rela_dyn_, true, false);
6567
6568 // Emit any relocs we saved in an attempt to avoid generating COPY
6569 // relocs.
6570 if (this->copy_relocs_.any_saved_relocs())
6571 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6572
6573 // Fill in some more dynamic tags.
6574 Output_data_dynamic* const odyn = layout->dynamic_data();
6575 if (odyn != NULL)
6576 {
6577 if (this->plt_ != NULL
6578 && this->plt_->output_section() != NULL
6579 && this->plt_ ->has_tlsdesc_entry())
6580 {
6581 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6582 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6583 this->got_->finalize_data_size();
6584 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6585 this->plt_, plt_offset);
6586 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6587 this->got_, got_offset);
6588 }
6589 }
6590
6591 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6592 // the .got.plt section.
6593 Symbol* sym = this->global_offset_table_;
6594 if (sym != NULL)
6595 {
6596 uint64_t data_size = this->got_plt_->current_data_size();
6597 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6598
6599 // If the .got section is more than 0x8000 bytes, we add
6600 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6601 // bit relocations have a greater chance of working.
6602 if (data_size >= 0x8000)
6603 symtab->get_sized_symbol<size>(sym)->set_value(
6604 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6605 }
6606
6607 if (parameters->doing_static_link()
6608 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6609 {
6610 // If linking statically, make sure that the __rela_iplt symbols
6611 // were defined if necessary, even if we didn't create a PLT.
6612 static const Define_symbol_in_segment syms[] =
6613 {
6614 {
6615 "__rela_iplt_start", // name
6616 elfcpp::PT_LOAD, // segment_type
6617 elfcpp::PF_W, // segment_flags_set
6618 elfcpp::PF(0), // segment_flags_clear
6619 0, // value
6620 0, // size
6621 elfcpp::STT_NOTYPE, // type
6622 elfcpp::STB_GLOBAL, // binding
6623 elfcpp::STV_HIDDEN, // visibility
6624 0, // nonvis
6625 Symbol::SEGMENT_START, // offset_from_base
6626 true // only_if_ref
6627 },
6628 {
6629 "__rela_iplt_end", // name
6630 elfcpp::PT_LOAD, // segment_type
6631 elfcpp::PF_W, // segment_flags_set
6632 elfcpp::PF(0), // segment_flags_clear
6633 0, // value
6634 0, // size
6635 elfcpp::STT_NOTYPE, // type
6636 elfcpp::STB_GLOBAL, // binding
6637 elfcpp::STV_HIDDEN, // visibility
6638 0, // nonvis
6639 Symbol::SEGMENT_START, // offset_from_base
6640 true // only_if_ref
6641 }
6642 };
6643
6644 symtab->define_symbols(layout, 2, syms,
6645 layout->script_options()->saw_sections_clause());
6646 }
6647
6648 return;
6649 }
6650
6651 // Perform a relocation.
6652
6653 template<int size, bool big_endian>
6654 inline bool
6655 Target_aarch64<size, big_endian>::Relocate::relocate(
6656 const Relocate_info<size, big_endian>* relinfo,
6657 Target_aarch64<size, big_endian>* target,
6658 Output_section* ,
6659 size_t relnum,
6660 const elfcpp::Rela<size, big_endian>& rela,
6661 unsigned int r_type,
6662 const Sized_symbol<size>* gsym,
6663 const Symbol_value<size>* psymval,
6664 unsigned char* view,
6665 typename elfcpp::Elf_types<size>::Elf_Addr address,
6666 section_size_type /* view_size */)
6667 {
6668 if (view == NULL)
6669 return true;
6670
6671 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6672
6673 const AArch64_reloc_property* reloc_property =
6674 aarch64_reloc_property_table->get_reloc_property(r_type);
6675
6676 if (reloc_property == NULL)
6677 {
6678 std::string reloc_name =
6679 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6680 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6681 _("cannot relocate %s in object file"),
6682 reloc_name.c_str());
6683 return true;
6684 }
6685
6686 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6687
6688 // Pick the value to use for symbols defined in the PLT.
6689 Symbol_value<size> symval;
6690 if (gsym != NULL
6691 && gsym->use_plt_offset(reloc_property->reference_flags()))
6692 {
6693 symval.set_output_value(target->plt_address_for_global(gsym));
6694 psymval = &symval;
6695 }
6696 else if (gsym == NULL && psymval->is_ifunc_symbol())
6697 {
6698 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6699 if (object->local_has_plt_offset(r_sym))
6700 {
6701 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6702 psymval = &symval;
6703 }
6704 }
6705
6706 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6707
6708 // Get the GOT offset if needed.
6709 // For aarch64, the GOT pointer points to the start of the GOT section.
6710 bool have_got_offset = false;
6711 int got_offset = 0;
6712 int got_base = (target->got_ != NULL
6713 ? (target->got_->current_data_size() >= 0x8000
6714 ? 0x8000 : 0)
6715 : 0);
6716 switch (r_type)
6717 {
6718 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6719 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6720 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6721 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6722 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6723 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6724 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6725 case elfcpp::R_AARCH64_GOTREL64:
6726 case elfcpp::R_AARCH64_GOTREL32:
6727 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6728 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6729 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6730 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6731 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6732 if (gsym != NULL)
6733 {
6734 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6735 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6736 }
6737 else
6738 {
6739 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6740 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6741 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6742 - got_base);
6743 }
6744 have_got_offset = true;
6745 break;
6746
6747 default:
6748 break;
6749 }
6750
6751 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6752 typename elfcpp::Elf_types<size>::Elf_Addr value;
6753 switch (r_type)
6754 {
6755 case elfcpp::R_AARCH64_NONE:
6756 break;
6757
6758 case elfcpp::R_AARCH64_ABS64:
6759 reloc_status = Reloc::template rela_ua<64>(
6760 view, object, psymval, addend, reloc_property);
6761 break;
6762
6763 case elfcpp::R_AARCH64_ABS32:
6764 reloc_status = Reloc::template rela_ua<32>(
6765 view, object, psymval, addend, reloc_property);
6766 break;
6767
6768 case elfcpp::R_AARCH64_ABS16:
6769 reloc_status = Reloc::template rela_ua<16>(
6770 view, object, psymval, addend, reloc_property);
6771 break;
6772
6773 case elfcpp::R_AARCH64_PREL64:
6774 reloc_status = Reloc::template pcrela_ua<64>(
6775 view, object, psymval, addend, address, reloc_property);
6776 break;
6777
6778 case elfcpp::R_AARCH64_PREL32:
6779 reloc_status = Reloc::template pcrela_ua<32>(
6780 view, object, psymval, addend, address, reloc_property);
6781 break;
6782
6783 case elfcpp::R_AARCH64_PREL16:
6784 reloc_status = Reloc::template pcrela_ua<16>(
6785 view, object, psymval, addend, address, reloc_property);
6786 break;
6787
6788 case elfcpp::R_AARCH64_LD_PREL_LO19:
6789 reloc_status = Reloc::template pcrela_general<32>(
6790 view, object, psymval, addend, address, reloc_property);
6791 break;
6792
6793 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6794 reloc_status = Reloc::adr(view, object, psymval, addend,
6795 address, reloc_property);
6796 break;
6797
6798 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6799 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6800 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6801 reloc_property);
6802 break;
6803
6804 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6805 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6806 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6807 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6808 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6809 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6810 reloc_status = Reloc::template rela_general<32>(
6811 view, object, psymval, addend, reloc_property);
6812 break;
6813
6814 case elfcpp::R_AARCH64_CALL26:
6815 if (this->skip_call_tls_get_addr_)
6816 {
6817 // Double check that the TLSGD insn has been optimized away.
6818 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6819 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
6820 reinterpret_cast<Insntype*>(view));
6821 gold_assert((insn & 0xff000000) == 0x91000000);
6822
6823 reloc_status = Reloc::STATUS_OKAY;
6824 this->skip_call_tls_get_addr_ = false;
6825 // Return false to stop further processing this reloc.
6826 return false;
6827 }
6828 // Fallthrough
6829 case elfcpp::R_AARCH64_JUMP26:
6830 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
6831 gsym, psymval, object,
6832 target->stub_group_size_))
6833 break;
6834 // Fallthrough
6835 case elfcpp::R_AARCH64_TSTBR14:
6836 case elfcpp::R_AARCH64_CONDBR19:
6837 reloc_status = Reloc::template pcrela_general<32>(
6838 view, object, psymval, addend, address, reloc_property);
6839 break;
6840
6841 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6842 gold_assert(have_got_offset);
6843 value = target->got_->address() + got_base + got_offset;
6844 reloc_status = Reloc::adrp(view, value + addend, address);
6845 break;
6846
6847 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6848 gold_assert(have_got_offset);
6849 value = target->got_->address() + got_base + got_offset;
6850 reloc_status = Reloc::template rela_general<32>(
6851 view, value, addend, reloc_property);
6852 break;
6853
6854 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6855 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6856 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6857 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6858 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6859 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6860 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6861 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6862 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6863 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6864 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6865 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6866 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6867 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6868 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6869 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6870 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6871 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6872 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6873 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6874 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6875 case elfcpp::R_AARCH64_TLSDESC_CALL:
6876 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
6877 gsym, psymval, view, address);
6878 break;
6879
6880 // These are dynamic relocations, which are unexpected when linking.
6881 case elfcpp::R_AARCH64_COPY:
6882 case elfcpp::R_AARCH64_GLOB_DAT:
6883 case elfcpp::R_AARCH64_JUMP_SLOT:
6884 case elfcpp::R_AARCH64_RELATIVE:
6885 case elfcpp::R_AARCH64_IRELATIVE:
6886 case elfcpp::R_AARCH64_TLS_DTPREL64:
6887 case elfcpp::R_AARCH64_TLS_DTPMOD64:
6888 case elfcpp::R_AARCH64_TLS_TPREL64:
6889 case elfcpp::R_AARCH64_TLSDESC:
6890 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6891 _("unexpected reloc %u in object file"),
6892 r_type);
6893 break;
6894
6895 default:
6896 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6897 _("unsupported reloc %s"),
6898 reloc_property->name().c_str());
6899 break;
6900 }
6901
6902 // Report any errors.
6903 switch (reloc_status)
6904 {
6905 case Reloc::STATUS_OKAY:
6906 break;
6907 case Reloc::STATUS_OVERFLOW:
6908 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6909 _("relocation overflow in %s"),
6910 reloc_property->name().c_str());
6911 break;
6912 case Reloc::STATUS_BAD_RELOC:
6913 gold_error_at_location(
6914 relinfo,
6915 relnum,
6916 rela.get_r_offset(),
6917 _("unexpected opcode while processing relocation %s"),
6918 reloc_property->name().c_str());
6919 break;
6920 default:
6921 gold_unreachable();
6922 }
6923
6924 return true;
6925 }
6926
6927
6928 template<int size, bool big_endian>
6929 inline
6930 typename AArch64_relocate_functions<size, big_endian>::Status
6931 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
6932 const Relocate_info<size, big_endian>* relinfo,
6933 Target_aarch64<size, big_endian>* target,
6934 size_t relnum,
6935 const elfcpp::Rela<size, big_endian>& rela,
6936 unsigned int r_type, const Sized_symbol<size>* gsym,
6937 const Symbol_value<size>* psymval,
6938 unsigned char* view,
6939 typename elfcpp::Elf_types<size>::Elf_Addr address)
6940 {
6941 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6942 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6943
6944 Output_segment* tls_segment = relinfo->layout->tls_segment();
6945 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6946 const AArch64_reloc_property* reloc_property =
6947 aarch64_reloc_property_table->get_reloc_property(r_type);
6948 gold_assert(reloc_property != NULL);
6949
6950 const bool is_final = (gsym == NULL
6951 ? !parameters->options().shared()
6952 : gsym->final_value_is_known());
6953 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6954 optimize_tls_reloc(is_final, r_type);
6955
6956 Sized_relobj_file<size, big_endian>* object = relinfo->object;
6957 int tls_got_offset_type;
6958 switch (r_type)
6959 {
6960 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6961 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
6962 {
6963 if (tlsopt == tls::TLSOPT_TO_LE)
6964 {
6965 if (tls_segment == NULL)
6966 {
6967 gold_assert(parameters->errors()->error_count() > 0
6968 || issue_undefined_symbol_error(gsym));
6969 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6970 }
6971 return tls_gd_to_le(relinfo, target, rela, r_type, view,
6972 psymval);
6973 }
6974 else if (tlsopt == tls::TLSOPT_NONE)
6975 {
6976 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
6977 // Firstly get the address for the got entry.
6978 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6979 if (gsym != NULL)
6980 {
6981 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6982 got_entry_address = target->got_->address() +
6983 gsym->got_offset(tls_got_offset_type);
6984 }
6985 else
6986 {
6987 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6988 gold_assert(
6989 object->local_has_got_offset(r_sym, tls_got_offset_type));
6990 got_entry_address = target->got_->address() +
6991 object->local_got_offset(r_sym, tls_got_offset_type);
6992 }
6993
6994 // Relocate the address into adrp/ld, adrp/add pair.
6995 switch (r_type)
6996 {
6997 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6998 return aarch64_reloc_funcs::adrp(
6999 view, got_entry_address + addend, address);
7000
7001 break;
7002
7003 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
7004 return aarch64_reloc_funcs::template rela_general<32>(
7005 view, got_entry_address, addend, reloc_property);
7006 break;
7007
7008 default:
7009 gold_unreachable();
7010 }
7011 }
7012 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7013 _("unsupported gd_to_ie relaxation on %u"),
7014 r_type);
7015 }
7016 break;
7017
7018 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7019 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7020 {
7021 if (tlsopt == tls::TLSOPT_TO_LE)
7022 {
7023 if (tls_segment == NULL)
7024 {
7025 gold_assert(parameters->errors()->error_count() > 0
7026 || issue_undefined_symbol_error(gsym));
7027 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7028 }
7029 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7030 psymval);
7031 }
7032
7033 gold_assert(tlsopt == tls::TLSOPT_NONE);
7034 // Relocate the field with the offset of the GOT entry for
7035 // the module index.
7036 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7037 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7038 target->got_->address());
7039
7040 switch (r_type)
7041 {
7042 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7043 return aarch64_reloc_funcs::adrp(
7044 view, got_entry_address + addend, address);
7045 break;
7046
7047 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7048 return aarch64_reloc_funcs::template rela_general<32>(
7049 view, got_entry_address, addend, reloc_property);
7050 break;
7051
7052 default:
7053 gold_unreachable();
7054 }
7055 }
7056 break;
7057
7058 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7059 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7060 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7061 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7062 {
7063 AArch64_address value = psymval->value(object, 0);
7064 if (tlsopt == tls::TLSOPT_TO_LE)
7065 {
7066 if (tls_segment == NULL)
7067 {
7068 gold_assert(parameters->errors()->error_count() > 0
7069 || issue_undefined_symbol_error(gsym));
7070 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7071 }
7072 }
7073 switch (r_type)
7074 {
7075 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7076 return aarch64_reloc_funcs::movnz(view, value + addend,
7077 reloc_property);
7078 break;
7079
7080 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7081 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7082 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7083 return aarch64_reloc_funcs::template rela_general<32>(
7084 view, value, addend, reloc_property);
7085 break;
7086
7087 default:
7088 gold_unreachable();
7089 }
7090 // We should never reach here.
7091 }
7092 break;
7093
7094 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7095 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7096 {
7097 if (tlsopt == tls::TLSOPT_TO_LE)
7098 {
7099 if (tls_segment == NULL)
7100 {
7101 gold_assert(parameters->errors()->error_count() > 0
7102 || issue_undefined_symbol_error(gsym));
7103 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7104 }
7105 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7106 psymval);
7107 }
7108 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7109
7110 // Firstly get the address for the got entry.
7111 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7112 if (gsym != NULL)
7113 {
7114 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7115 got_entry_address = target->got_->address() +
7116 gsym->got_offset(tls_got_offset_type);
7117 }
7118 else
7119 {
7120 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7121 gold_assert(
7122 object->local_has_got_offset(r_sym, tls_got_offset_type));
7123 got_entry_address = target->got_->address() +
7124 object->local_got_offset(r_sym, tls_got_offset_type);
7125 }
7126 // Relocate the address into adrp/ld, adrp/add pair.
7127 switch (r_type)
7128 {
7129 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7130 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7131 address);
7132 break;
7133 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7134 return aarch64_reloc_funcs::template rela_general<32>(
7135 view, got_entry_address, addend, reloc_property);
7136 default:
7137 gold_unreachable();
7138 }
7139 }
7140 // We shall never reach here.
7141 break;
7142
7143 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7144 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7145 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7146 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7147 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7148 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7149 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7150 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7151 {
7152 gold_assert(tls_segment != NULL);
7153 AArch64_address value = psymval->value(object, 0);
7154
7155 if (!parameters->options().shared())
7156 {
7157 AArch64_address aligned_tcb_size =
7158 align_address(target->tcb_size(),
7159 tls_segment->maximum_alignment());
7160 value += aligned_tcb_size;
7161 switch (r_type)
7162 {
7163 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7164 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7165 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7166 return aarch64_reloc_funcs::movnz(view, value + addend,
7167 reloc_property);
7168 default:
7169 return aarch64_reloc_funcs::template
7170 rela_general<32>(view,
7171 value,
7172 addend,
7173 reloc_property);
7174 }
7175 }
7176 else
7177 gold_error(_("%s: unsupported reloc %u "
7178 "in non-static TLSLE mode."),
7179 object->name().c_str(), r_type);
7180 }
7181 break;
7182
7183 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7184 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7185 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7186 case elfcpp::R_AARCH64_TLSDESC_CALL:
7187 {
7188 if (tlsopt == tls::TLSOPT_TO_LE)
7189 {
7190 if (tls_segment == NULL)
7191 {
7192 gold_assert(parameters->errors()->error_count() > 0
7193 || issue_undefined_symbol_error(gsym));
7194 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7195 }
7196 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7197 view, psymval);
7198 }
7199 else
7200 {
7201 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7202 ? GOT_TYPE_TLS_OFFSET
7203 : GOT_TYPE_TLS_DESC);
7204 unsigned int got_tlsdesc_offset = 0;
7205 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7206 && tlsopt == tls::TLSOPT_NONE)
7207 {
7208 // We created GOT entries in the .got.tlsdesc portion of the
7209 // .got.plt section, but the offset stored in the symbol is the
7210 // offset within .got.tlsdesc.
7211 got_tlsdesc_offset = (target->got_->data_size()
7212 + target->got_plt_section()->data_size());
7213 }
7214 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7215 if (gsym != NULL)
7216 {
7217 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7218 got_entry_address = target->got_->address()
7219 + got_tlsdesc_offset
7220 + gsym->got_offset(tls_got_offset_type);
7221 }
7222 else
7223 {
7224 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7225 gold_assert(
7226 object->local_has_got_offset(r_sym, tls_got_offset_type));
7227 got_entry_address = target->got_->address() +
7228 got_tlsdesc_offset +
7229 object->local_got_offset(r_sym, tls_got_offset_type);
7230 }
7231 if (tlsopt == tls::TLSOPT_TO_IE)
7232 {
7233 if (tls_segment == NULL)
7234 {
7235 gold_assert(parameters->errors()->error_count() > 0
7236 || issue_undefined_symbol_error(gsym));
7237 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7238 }
7239 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7240 view, psymval, got_entry_address,
7241 address);
7242 }
7243
7244 // Now do tlsdesc relocation.
7245 switch (r_type)
7246 {
7247 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7248 return aarch64_reloc_funcs::adrp(view,
7249 got_entry_address + addend,
7250 address);
7251 break;
7252 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7253 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7254 return aarch64_reloc_funcs::template rela_general<32>(
7255 view, got_entry_address, addend, reloc_property);
7256 break;
7257 case elfcpp::R_AARCH64_TLSDESC_CALL:
7258 return aarch64_reloc_funcs::STATUS_OKAY;
7259 break;
7260 default:
7261 gold_unreachable();
7262 }
7263 }
7264 }
7265 break;
7266
7267 default:
7268 gold_error(_("%s: unsupported TLS reloc %u."),
7269 object->name().c_str(), r_type);
7270 }
7271 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7272 } // End of relocate_tls.
7273
7274
7275 template<int size, bool big_endian>
7276 inline
7277 typename AArch64_relocate_functions<size, big_endian>::Status
7278 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7279 const Relocate_info<size, big_endian>* relinfo,
7280 Target_aarch64<size, big_endian>* target,
7281 const elfcpp::Rela<size, big_endian>& rela,
7282 unsigned int r_type,
7283 unsigned char* view,
7284 const Symbol_value<size>* psymval)
7285 {
7286 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7287 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7288 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7289
7290 Insntype* ip = reinterpret_cast<Insntype*>(view);
7291 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7292 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7293 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7294
7295 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7296 {
7297 // This is the 2nd relocs, optimization should already have been
7298 // done.
7299 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7300 return aarch64_reloc_funcs::STATUS_OKAY;
7301 }
7302
7303 // The original sequence is -
7304 // 90000000 adrp x0, 0 <main>
7305 // 91000000 add x0, x0, #0x0
7306 // 94000000 bl 0 <__tls_get_addr>
7307 // optimized to sequence -
7308 // d53bd040 mrs x0, tpidr_el0
7309 // 91400000 add x0, x0, #0x0, lsl #12
7310 // 91000000 add x0, x0, #0x0
7311
7312 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7313 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7314 // have to change "bl tls_get_addr", which does not have a corresponding tls
7315 // relocation type. So before proceeding, we need to make sure compiler
7316 // does not change the sequence.
7317 if(!(insn1 == 0x90000000 // adrp x0,0
7318 && insn2 == 0x91000000 // add x0, x0, #0x0
7319 && insn3 == 0x94000000)) // bl 0
7320 {
7321 // Ideally we should give up gd_to_le relaxation and do gd access.
7322 // However the gd_to_le relaxation decision has been made early
7323 // in the scan stage, where we did not allocate any GOT entry for
7324 // this symbol. Therefore we have to exit and report error now.
7325 gold_error(_("unexpected reloc insn sequence while relaxing "
7326 "tls gd to le for reloc %u."), r_type);
7327 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7328 }
7329
7330 // Write new insns.
7331 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7332 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7333 insn3 = 0x91000000; // add x0, x0, #0x0
7334 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7335 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7336 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7337
7338 // Calculate tprel value.
7339 Output_segment* tls_segment = relinfo->layout->tls_segment();
7340 gold_assert(tls_segment != NULL);
7341 AArch64_address value = psymval->value(relinfo->object, 0);
7342 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7343 AArch64_address aligned_tcb_size =
7344 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7345 AArch64_address x = value + aligned_tcb_size;
7346
7347 // After new insns are written, apply TLSLE relocs.
7348 const AArch64_reloc_property* rp1 =
7349 aarch64_reloc_property_table->get_reloc_property(
7350 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7351 const AArch64_reloc_property* rp2 =
7352 aarch64_reloc_property_table->get_reloc_property(
7353 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7354 gold_assert(rp1 != NULL && rp2 != NULL);
7355
7356 typename aarch64_reloc_funcs::Status s1 =
7357 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7358 x,
7359 addend,
7360 rp1);
7361 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7362 return s1;
7363
7364 typename aarch64_reloc_funcs::Status s2 =
7365 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7366 x,
7367 addend,
7368 rp2);
7369
7370 this->skip_call_tls_get_addr_ = true;
7371 return s2;
7372 } // End of tls_gd_to_le
7373
7374
7375 template<int size, bool big_endian>
7376 inline
7377 typename AArch64_relocate_functions<size, big_endian>::Status
7378 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7379 const Relocate_info<size, big_endian>* relinfo,
7380 Target_aarch64<size, big_endian>* target,
7381 const elfcpp::Rela<size, big_endian>& rela,
7382 unsigned int r_type,
7383 unsigned char* view,
7384 const Symbol_value<size>* psymval)
7385 {
7386 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7387 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7388 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7389
7390 Insntype* ip = reinterpret_cast<Insntype*>(view);
7391 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7392 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7393 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7394
7395 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7396 {
7397 // This is the 2nd relocs, optimization should already have been
7398 // done.
7399 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7400 return aarch64_reloc_funcs::STATUS_OKAY;
7401 }
7402
7403 // The original sequence is -
7404 // 90000000 adrp x0, 0 <main>
7405 // 91000000 add x0, x0, #0x0
7406 // 94000000 bl 0 <__tls_get_addr>
7407 // optimized to sequence -
7408 // d53bd040 mrs x0, tpidr_el0
7409 // 91400000 add x0, x0, #0x0, lsl #12
7410 // 91000000 add x0, x0, #0x0
7411
7412 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7413 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7414 // have to change "bl tls_get_addr", which does not have a corresponding tls
7415 // relocation type. So before proceeding, we need to make sure compiler
7416 // does not change the sequence.
7417 if(!(insn1 == 0x90000000 // adrp x0,0
7418 && insn2 == 0x91000000 // add x0, x0, #0x0
7419 && insn3 == 0x94000000)) // bl 0
7420 {
7421 // Ideally we should give up gd_to_le relaxation and do gd access.
7422 // However the gd_to_le relaxation decision has been made early
7423 // in the scan stage, where we did not allocate any GOT entry for
7424 // this symbol. Therefore we have to exit and report error now.
7425 gold_error(_("unexpected reloc insn sequence while relaxing "
7426 "tls gd to le for reloc %u."), r_type);
7427 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7428 }
7429
7430 // Write new insns.
7431 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7432 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7433 insn3 = 0x91000000; // add x0, x0, #0x0
7434 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7435 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7436 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7437
7438 // Calculate tprel value.
7439 Output_segment* tls_segment = relinfo->layout->tls_segment();
7440 gold_assert(tls_segment != NULL);
7441 AArch64_address value = psymval->value(relinfo->object, 0);
7442 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7443 AArch64_address aligned_tcb_size =
7444 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7445 AArch64_address x = value + aligned_tcb_size;
7446
7447 // After new insns are written, apply TLSLE relocs.
7448 const AArch64_reloc_property* rp1 =
7449 aarch64_reloc_property_table->get_reloc_property(
7450 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7451 const AArch64_reloc_property* rp2 =
7452 aarch64_reloc_property_table->get_reloc_property(
7453 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7454 gold_assert(rp1 != NULL && rp2 != NULL);
7455
7456 typename aarch64_reloc_funcs::Status s1 =
7457 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7458 x,
7459 addend,
7460 rp1);
7461 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7462 return s1;
7463
7464 typename aarch64_reloc_funcs::Status s2 =
7465 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7466 x,
7467 addend,
7468 rp2);
7469
7470 this->skip_call_tls_get_addr_ = true;
7471 return s2;
7472
7473 } // End of tls_ld_to_le
7474
7475 template<int size, bool big_endian>
7476 inline
7477 typename AArch64_relocate_functions<size, big_endian>::Status
7478 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7479 const Relocate_info<size, big_endian>* relinfo,
7480 Target_aarch64<size, big_endian>* target,
7481 const elfcpp::Rela<size, big_endian>& rela,
7482 unsigned int r_type,
7483 unsigned char* view,
7484 const Symbol_value<size>* psymval)
7485 {
7486 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7487 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7488 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7489
7490 AArch64_address value = psymval->value(relinfo->object, 0);
7491 Output_segment* tls_segment = relinfo->layout->tls_segment();
7492 AArch64_address aligned_tcb_address =
7493 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7494 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7495 AArch64_address x = value + addend + aligned_tcb_address;
7496 // "x" is the offset to tp, we can only do this if x is within
7497 // range [0, 2^32-1]
7498 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7499 {
7500 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7501 r_type);
7502 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7503 }
7504
7505 Insntype* ip = reinterpret_cast<Insntype*>(view);
7506 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7507 unsigned int regno;
7508 Insntype newinsn;
7509 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7510 {
7511 // Generate movz.
7512 regno = (insn & 0x1f);
7513 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7514 }
7515 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7516 {
7517 // Generate movk.
7518 regno = (insn & 0x1f);
7519 gold_assert(regno == ((insn >> 5) & 0x1f));
7520 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7521 }
7522 else
7523 gold_unreachable();
7524
7525 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7526 return aarch64_reloc_funcs::STATUS_OKAY;
7527 } // End of tls_ie_to_le
7528
7529
7530 template<int size, bool big_endian>
7531 inline
7532 typename AArch64_relocate_functions<size, big_endian>::Status
7533 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7534 const Relocate_info<size, big_endian>* relinfo,
7535 Target_aarch64<size, big_endian>* target,
7536 const elfcpp::Rela<size, big_endian>& rela,
7537 unsigned int r_type,
7538 unsigned char* view,
7539 const Symbol_value<size>* psymval)
7540 {
7541 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7542 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7543 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7544
7545 // TLSDESC-GD sequence is like:
7546 // adrp x0, :tlsdesc:v1
7547 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7548 // add x0, x0, :tlsdesc_lo12:v1
7549 // .tlsdesccall v1
7550 // blr x1
7551 // After desc_gd_to_le optimization, the sequence will be like:
7552 // movz x0, #0x0, lsl #16
7553 // movk x0, #0x10
7554 // nop
7555 // nop
7556
7557 // Calculate tprel value.
7558 Output_segment* tls_segment = relinfo->layout->tls_segment();
7559 gold_assert(tls_segment != NULL);
7560 Insntype* ip = reinterpret_cast<Insntype*>(view);
7561 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7562 AArch64_address value = psymval->value(relinfo->object, addend);
7563 AArch64_address aligned_tcb_size =
7564 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7565 AArch64_address x = value + aligned_tcb_size;
7566 // x is the offset to tp, we can only do this if x is within range
7567 // [0, 2^32-1]. If x is out of range, fail and exit.
7568 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7569 {
7570 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7571 "We Can't do gd_to_le relaxation.\n"), r_type);
7572 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7573 }
7574 Insntype newinsn;
7575 switch (r_type)
7576 {
7577 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7578 case elfcpp::R_AARCH64_TLSDESC_CALL:
7579 // Change to nop
7580 newinsn = 0xd503201f;
7581 break;
7582
7583 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7584 // Change to movz.
7585 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7586 break;
7587
7588 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7589 // Change to movk.
7590 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7591 break;
7592
7593 default:
7594 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7595 r_type);
7596 gold_unreachable();
7597 }
7598 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7599 return aarch64_reloc_funcs::STATUS_OKAY;
7600 } // End of tls_desc_gd_to_le
7601
7602
7603 template<int size, bool big_endian>
7604 inline
7605 typename AArch64_relocate_functions<size, big_endian>::Status
7606 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7607 const Relocate_info<size, big_endian>* /* relinfo */,
7608 Target_aarch64<size, big_endian>* /* target */,
7609 const elfcpp::Rela<size, big_endian>& rela,
7610 unsigned int r_type,
7611 unsigned char* view,
7612 const Symbol_value<size>* /* psymval */,
7613 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7614 typename elfcpp::Elf_types<size>::Elf_Addr address)
7615 {
7616 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7617 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7618
7619 // TLSDESC-GD sequence is like:
7620 // adrp x0, :tlsdesc:v1
7621 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7622 // add x0, x0, :tlsdesc_lo12:v1
7623 // .tlsdesccall v1
7624 // blr x1
7625 // After desc_gd_to_ie optimization, the sequence will be like:
7626 // adrp x0, :tlsie:v1
7627 // ldr x0, [x0, :tlsie_lo12:v1]
7628 // nop
7629 // nop
7630
7631 Insntype* ip = reinterpret_cast<Insntype*>(view);
7632 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7633 Insntype newinsn;
7634 switch (r_type)
7635 {
7636 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7637 case elfcpp::R_AARCH64_TLSDESC_CALL:
7638 // Change to nop
7639 newinsn = 0xd503201f;
7640 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7641 break;
7642
7643 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7644 {
7645 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7646 address);
7647 }
7648 break;
7649
7650 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7651 {
7652 // Set ldr target register to be x0.
7653 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7654 insn &= 0xffffffe0;
7655 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7656 // Do relocation.
7657 const AArch64_reloc_property* reloc_property =
7658 aarch64_reloc_property_table->get_reloc_property(
7659 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7660 return aarch64_reloc_funcs::template rela_general<32>(
7661 view, got_entry_address, addend, reloc_property);
7662 }
7663 break;
7664
7665 default:
7666 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7667 r_type);
7668 gold_unreachable();
7669 }
7670 return aarch64_reloc_funcs::STATUS_OKAY;
7671 } // End of tls_desc_gd_to_ie
7672
7673 // Relocate section data.
7674
7675 template<int size, bool big_endian>
7676 void
7677 Target_aarch64<size, big_endian>::relocate_section(
7678 const Relocate_info<size, big_endian>* relinfo,
7679 unsigned int sh_type,
7680 const unsigned char* prelocs,
7681 size_t reloc_count,
7682 Output_section* output_section,
7683 bool needs_special_offset_handling,
7684 unsigned char* view,
7685 typename elfcpp::Elf_types<size>::Elf_Addr address,
7686 section_size_type view_size,
7687 const Reloc_symbol_changes* reloc_symbol_changes)
7688 {
7689 gold_assert(sh_type == elfcpp::SHT_RELA);
7690 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7691 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7692 AArch64_relocate, gold::Default_comdat_behavior>(
7693 relinfo,
7694 this,
7695 prelocs,
7696 reloc_count,
7697 output_section,
7698 needs_special_offset_handling,
7699 view,
7700 address,
7701 view_size,
7702 reloc_symbol_changes);
7703 }
7704
7705 // Return the size of a relocation while scanning during a relocatable
7706 // link.
7707
7708 template<int size, bool big_endian>
7709 unsigned int
7710 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7711 get_size_for_reloc(
7712 unsigned int ,
7713 Relobj* )
7714 {
7715 // We will never support SHT_REL relocations.
7716 gold_unreachable();
7717 return 0;
7718 }
7719
7720 // Scan the relocs during a relocatable link.
7721
7722 template<int size, bool big_endian>
7723 void
7724 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7725 Symbol_table* symtab,
7726 Layout* layout,
7727 Sized_relobj_file<size, big_endian>* object,
7728 unsigned int data_shndx,
7729 unsigned int sh_type,
7730 const unsigned char* prelocs,
7731 size_t reloc_count,
7732 Output_section* output_section,
7733 bool needs_special_offset_handling,
7734 size_t local_symbol_count,
7735 const unsigned char* plocal_symbols,
7736 Relocatable_relocs* rr)
7737 {
7738 gold_assert(sh_type == elfcpp::SHT_RELA);
7739
7740 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7741 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7742
7743 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7744 Scan_relocatable_relocs>(
7745 symtab,
7746 layout,
7747 object,
7748 data_shndx,
7749 prelocs,
7750 reloc_count,
7751 output_section,
7752 needs_special_offset_handling,
7753 local_symbol_count,
7754 plocal_symbols,
7755 rr);
7756 }
7757
7758 // Relocate a section during a relocatable link.
7759
7760 template<int size, bool big_endian>
7761 void
7762 Target_aarch64<size, big_endian>::relocate_relocs(
7763 const Relocate_info<size, big_endian>* relinfo,
7764 unsigned int sh_type,
7765 const unsigned char* prelocs,
7766 size_t reloc_count,
7767 Output_section* output_section,
7768 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7769 const Relocatable_relocs* rr,
7770 unsigned char* view,
7771 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7772 section_size_type view_size,
7773 unsigned char* reloc_view,
7774 section_size_type reloc_view_size)
7775 {
7776 gold_assert(sh_type == elfcpp::SHT_RELA);
7777
7778 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7779 relinfo,
7780 prelocs,
7781 reloc_count,
7782 output_section,
7783 offset_in_output_section,
7784 rr,
7785 view,
7786 view_address,
7787 view_size,
7788 reloc_view,
7789 reloc_view_size);
7790 }
7791
7792
7793 // Return whether this is a 3-insn erratum sequence.
7794
7795 template<int size, bool big_endian>
7796 bool
7797 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7798 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7799 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7800 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7801 {
7802 unsigned rt1, rt2;
7803 bool load, pair;
7804
7805 // The 2nd insn is a single register load or store; or register pair
7806 // store.
7807 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7808 && (!pair || (pair && !load)))
7809 {
7810 // The 3rd insn is a load or store instruction from the "Load/store
7811 // register (unsigned immediate)" encoding class, using Rn as the
7812 // base address register.
7813 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7814 && (Insn_utilities::aarch64_rn(insn3)
7815 == Insn_utilities::aarch64_rd(insn1)))
7816 return true;
7817 }
7818 return false;
7819 }
7820
7821
7822 // Return whether this is a 835769 sequence.
7823 // (Similarly implemented as in elfnn-aarch64.c.)
7824
7825 template<int size, bool big_endian>
7826 bool
7827 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
7828 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7829 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
7830 {
7831 uint32_t rt;
7832 uint32_t rt2;
7833 uint32_t rn;
7834 uint32_t rm;
7835 uint32_t ra;
7836 bool pair;
7837 bool load;
7838
7839 if (Insn_utilities::aarch64_mlxl(insn2)
7840 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
7841 {
7842 /* Any SIMD memory op is independent of the subsequent MLA
7843 by definition of the erratum. */
7844 if (Insn_utilities::aarch64_bit(insn1, 26))
7845 return true;
7846
7847 /* If not SIMD, check for integer memory ops and MLA relationship. */
7848 rn = Insn_utilities::aarch64_rn(insn2);
7849 ra = Insn_utilities::aarch64_ra(insn2);
7850 rm = Insn_utilities::aarch64_rm(insn2);
7851
7852 /* If this is a load and there's a true(RAW) dependency, we are safe
7853 and this is not an erratum sequence. */
7854 if (load &&
7855 (rt == rn || rt == rm || rt == ra
7856 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
7857 return false;
7858
7859 /* We conservatively put out stubs for all other cases (including
7860 writebacks). */
7861 return true;
7862 }
7863
7864 return false;
7865 }
7866
7867
7868 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
7869
7870 template<int size, bool big_endian>
7871 void
7872 Target_aarch64<size, big_endian>::create_erratum_stub(
7873 AArch64_relobj<size, big_endian>* relobj,
7874 unsigned int shndx,
7875 section_size_type erratum_insn_offset,
7876 Address erratum_address,
7877 typename Insn_utilities::Insntype erratum_insn,
7878 int erratum_type)
7879 {
7880 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
7881 The_stub_table* stub_table = relobj->stub_table(shndx);
7882 gold_assert(stub_table != NULL);
7883 if (stub_table->find_erratum_stub(relobj,
7884 shndx,
7885 erratum_insn_offset) == NULL)
7886 {
7887 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
7888 The_erratum_stub* stub = new The_erratum_stub(
7889 relobj, erratum_type, shndx, erratum_insn_offset);
7890 stub->set_erratum_insn(erratum_insn);
7891 stub->set_erratum_address(erratum_address);
7892 // For erratum ST_E_843419 and ST_E_835769, the destination address is
7893 // always the next insn after erratum insn.
7894 stub->set_destination_address(erratum_address + BPI);
7895 stub_table->add_erratum_stub(stub);
7896 }
7897 }
7898
7899
7900 // Scan erratum for section SHNDX range [output_address + span_start,
7901 // output_address + span_end). Note here we do not share the code with
7902 // scan_erratum_843419_span function, because for 843419 we optimize by only
7903 // scanning the last few insns of a page, whereas for 835769, we need to scan
7904 // every insn.
7905
7906 template<int size, bool big_endian>
7907 void
7908 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
7909 AArch64_relobj<size, big_endian>* relobj,
7910 unsigned int shndx,
7911 const section_size_type span_start,
7912 const section_size_type span_end,
7913 unsigned char* input_view,
7914 Address output_address)
7915 {
7916 typedef typename Insn_utilities::Insntype Insntype;
7917
7918 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
7919
7920 // Adjust output_address and view to the start of span.
7921 output_address += span_start;
7922 input_view += span_start;
7923
7924 section_size_type span_length = span_end - span_start;
7925 section_size_type offset = 0;
7926 for (offset = 0; offset + BPI < span_length; offset += BPI)
7927 {
7928 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
7929 Insntype insn1 = ip[0];
7930 Insntype insn2 = ip[1];
7931 if (is_erratum_835769_sequence(insn1, insn2))
7932 {
7933 Insntype erratum_insn = insn2;
7934 // "span_start + offset" is the offset for insn1. So for insn2, it is
7935 // "span_start + offset + BPI".
7936 section_size_type erratum_insn_offset = span_start + offset + BPI;
7937 Address erratum_address = output_address + offset + BPI;
7938 gold_warning(_("Erratum 835769 found and fixed at \"%s\", "
7939 "section %d, offset 0x%08x."),
7940 relobj->name().c_str(), shndx,
7941 (unsigned int)(span_start + offset));
7942
7943 this->create_erratum_stub(relobj, shndx,
7944 erratum_insn_offset, erratum_address,
7945 erratum_insn, ST_E_835769);
7946 offset += BPI; // Skip mac insn.
7947 }
7948 }
7949 } // End of "Target_aarch64::scan_erratum_835769_span".
7950
7951
7952 // Scan erratum for section SHNDX range
7953 // [output_address + span_start, output_address + span_end).
7954
7955 template<int size, bool big_endian>
7956 void
7957 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
7958 AArch64_relobj<size, big_endian>* relobj,
7959 unsigned int shndx,
7960 const section_size_type span_start,
7961 const section_size_type span_end,
7962 unsigned char* input_view,
7963 Address output_address)
7964 {
7965 typedef typename Insn_utilities::Insntype Insntype;
7966
7967 // Adjust output_address and view to the start of span.
7968 output_address += span_start;
7969 input_view += span_start;
7970
7971 if ((output_address & 0x03) != 0)
7972 return;
7973
7974 section_size_type offset = 0;
7975 section_size_type span_length = span_end - span_start;
7976 // The first instruction must be ending at 0xFF8 or 0xFFC.
7977 unsigned int page_offset = output_address & 0xFFF;
7978 // Make sure starting position, that is "output_address+offset",
7979 // starts at page position 0xff8 or 0xffc.
7980 if (page_offset < 0xff8)
7981 offset = 0xff8 - page_offset;
7982 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
7983 {
7984 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
7985 Insntype insn1 = ip[0];
7986 if (Insn_utilities::is_adrp(insn1))
7987 {
7988 Insntype insn2 = ip[1];
7989 Insntype insn3 = ip[2];
7990 Insntype erratum_insn;
7991 unsigned insn_offset;
7992 bool do_report = false;
7993 if (is_erratum_843419_sequence(insn1, insn2, insn3))
7994 {
7995 do_report = true;
7996 erratum_insn = insn3;
7997 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
7998 }
7999 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
8000 {
8001 // Optionally we can have an insn between ins2 and ins3
8002 Insntype insn_opt = ip[2];
8003 // And insn_opt must not be a branch.
8004 if (!Insn_utilities::aarch64_b(insn_opt)
8005 && !Insn_utilities::aarch64_bl(insn_opt)
8006 && !Insn_utilities::aarch64_blr(insn_opt)
8007 && !Insn_utilities::aarch64_br(insn_opt))
8008 {
8009 // And insn_opt must not write to dest reg in insn1. However
8010 // we do a conservative scan, which means we may fix/report
8011 // more than necessary, but it doesn't hurt.
8012
8013 Insntype insn4 = ip[3];
8014 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8015 {
8016 do_report = true;
8017 erratum_insn = insn4;
8018 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8019 }
8020 }
8021 }
8022 if (do_report)
8023 {
8024 gold_warning(_("Erratum 843419 found and fixed at \"%s\", "
8025 "section %d, offset 0x%08x."),
8026 relobj->name().c_str(), shndx,
8027 (unsigned int)(span_start + offset));
8028 unsigned int erratum_insn_offset =
8029 span_start + offset + insn_offset;
8030 Address erratum_address =
8031 output_address + offset + insn_offset;
8032 create_erratum_stub(relobj, shndx,
8033 erratum_insn_offset, erratum_address,
8034 erratum_insn, ST_E_843419);
8035 }
8036 }
8037
8038 // Advance to next candidate instruction. We only consider instruction
8039 // sequences starting at a page offset of 0xff8 or 0xffc.
8040 page_offset = (output_address + offset) & 0xfff;
8041 if (page_offset == 0xff8)
8042 offset += 4;
8043 else // (page_offset == 0xffc), we move to next page's 0xff8.
8044 offset += 0xffc;
8045 }
8046 } // End of "Target_aarch64::scan_erratum_843419_span".
8047
8048
8049 // The selector for aarch64 object files.
8050
8051 template<int size, bool big_endian>
8052 class Target_selector_aarch64 : public Target_selector
8053 {
8054 public:
8055 Target_selector_aarch64();
8056
8057 virtual Target*
8058 do_instantiate_target()
8059 { return new Target_aarch64<size, big_endian>(); }
8060 };
8061
8062 template<>
8063 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8064 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8065 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8066 { }
8067
8068 template<>
8069 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8070 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8071 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8072 { }
8073
8074 template<>
8075 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8076 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8077 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8078 { }
8079
8080 template<>
8081 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8082 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8083 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8084 { }
8085
8086 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8087 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8088 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8089 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8090
8091 } // End anonymous namespace.
This page took 0.206484 seconds and 4 git commands to generate.