Patch for gold internal error while fixing erratum 843419.
[deliverable/binutils-gdb.git] / gold / aarch64.cc
1 // aarch64.cc -- aarch64 target support for gold.
2
3 // Copyright (C) 2014-2015 Free Software Foundation, Inc.
4 // Written by Jing Yu <jingyu@google.com> and Han Shen <shenhan@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26 #include <map>
27 #include <set>
28
29 #include "elfcpp.h"
30 #include "dwarf.h"
31 #include "parameters.h"
32 #include "reloc.h"
33 #include "aarch64.h"
34 #include "object.h"
35 #include "symtab.h"
36 #include "layout.h"
37 #include "output.h"
38 #include "copy-relocs.h"
39 #include "target.h"
40 #include "target-reloc.h"
41 #include "target-select.h"
42 #include "tls.h"
43 #include "freebsd.h"
44 #include "nacl.h"
45 #include "gc.h"
46 #include "icf.h"
47 #include "aarch64-reloc-property.h"
48
49 // The first three .got.plt entries are reserved.
50 const int32_t AARCH64_GOTPLT_RESERVE_COUNT = 3;
51
52
53 namespace
54 {
55
56 using namespace gold;
57
58 template<int size, bool big_endian>
59 class Output_data_plt_aarch64;
60
61 template<int size, bool big_endian>
62 class Output_data_plt_aarch64_standard;
63
64 template<int size, bool big_endian>
65 class Target_aarch64;
66
67 template<int size, bool big_endian>
68 class AArch64_relocate_functions;
69
70 // Utility class dealing with insns. This is ported from macros in
71 // bfd/elfnn-aarch64.cc, but wrapped inside a class as static members. This
72 // class is used in erratum sequence scanning.
73
74 template<bool big_endian>
75 class AArch64_insn_utilities
76 {
77 public:
78 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
79
80 static const int BYTES_PER_INSN;
81
82 // Zero register encoding - 31.
83 static const unsigned int AARCH64_ZR;
84
85 static unsigned int
86 aarch64_bit(Insntype insn, int pos)
87 { return ((1 << pos) & insn) >> pos; }
88
89 static unsigned int
90 aarch64_bits(Insntype insn, int pos, int l)
91 { return (insn >> pos) & ((1 << l) - 1); }
92
93 // Get the encoding field "op31" of 3-source data processing insns. "op31" is
94 // the name defined in armv8 insn manual C3.5.9.
95 static unsigned int
96 aarch64_op31(Insntype insn)
97 { return aarch64_bits(insn, 21, 3); }
98
99 // Get the encoding field "ra" of 3-source data processing insns. "ra" is the
100 // third source register. See armv8 insn manual C3.5.9.
101 static unsigned int
102 aarch64_ra(Insntype insn)
103 { return aarch64_bits(insn, 10, 5); }
104
105 static bool
106 is_adrp(const Insntype insn)
107 { return (insn & 0x9F000000) == 0x90000000; }
108
109 static unsigned int
110 aarch64_rm(const Insntype insn)
111 { return aarch64_bits(insn, 16, 5); }
112
113 static unsigned int
114 aarch64_rn(const Insntype insn)
115 { return aarch64_bits(insn, 5, 5); }
116
117 static unsigned int
118 aarch64_rd(const Insntype insn)
119 { return aarch64_bits(insn, 0, 5); }
120
121 static unsigned int
122 aarch64_rt(const Insntype insn)
123 { return aarch64_bits(insn, 0, 5); }
124
125 static unsigned int
126 aarch64_rt2(const Insntype insn)
127 { return aarch64_bits(insn, 10, 5); }
128
129 static bool
130 aarch64_b(const Insntype insn)
131 { return (insn & 0xFC000000) == 0x14000000; }
132
133 static bool
134 aarch64_bl(const Insntype insn)
135 { return (insn & 0xFC000000) == 0x94000000; }
136
137 static bool
138 aarch64_blr(const Insntype insn)
139 { return (insn & 0xFFFFFC1F) == 0xD63F0000; }
140
141 static bool
142 aarch64_br(const Insntype insn)
143 { return (insn & 0xFFFFFC1F) == 0xD61F0000; }
144
145 // All ld/st ops. See C4-182 of the ARM ARM. The encoding space for
146 // LD_PCREL, LDST_RO, LDST_UI and LDST_UIMM cover prefetch ops.
147 static bool
148 aarch64_ld(Insntype insn) { return aarch64_bit(insn, 22) == 1; }
149
150 static bool
151 aarch64_ldst(Insntype insn)
152 { return (insn & 0x0a000000) == 0x08000000; }
153
154 static bool
155 aarch64_ldst_ex(Insntype insn)
156 { return (insn & 0x3f000000) == 0x08000000; }
157
158 static bool
159 aarch64_ldst_pcrel(Insntype insn)
160 { return (insn & 0x3b000000) == 0x18000000; }
161
162 static bool
163 aarch64_ldst_nap(Insntype insn)
164 { return (insn & 0x3b800000) == 0x28000000; }
165
166 static bool
167 aarch64_ldstp_pi(Insntype insn)
168 { return (insn & 0x3b800000) == 0x28800000; }
169
170 static bool
171 aarch64_ldstp_o(Insntype insn)
172 { return (insn & 0x3b800000) == 0x29000000; }
173
174 static bool
175 aarch64_ldstp_pre(Insntype insn)
176 { return (insn & 0x3b800000) == 0x29800000; }
177
178 static bool
179 aarch64_ldst_ui(Insntype insn)
180 { return (insn & 0x3b200c00) == 0x38000000; }
181
182 static bool
183 aarch64_ldst_piimm(Insntype insn)
184 { return (insn & 0x3b200c00) == 0x38000400; }
185
186 static bool
187 aarch64_ldst_u(Insntype insn)
188 { return (insn & 0x3b200c00) == 0x38000800; }
189
190 static bool
191 aarch64_ldst_preimm(Insntype insn)
192 { return (insn & 0x3b200c00) == 0x38000c00; }
193
194 static bool
195 aarch64_ldst_ro(Insntype insn)
196 { return (insn & 0x3b200c00) == 0x38200800; }
197
198 static bool
199 aarch64_ldst_uimm(Insntype insn)
200 { return (insn & 0x3b000000) == 0x39000000; }
201
202 static bool
203 aarch64_ldst_simd_m(Insntype insn)
204 { return (insn & 0xbfbf0000) == 0x0c000000; }
205
206 static bool
207 aarch64_ldst_simd_m_pi(Insntype insn)
208 { return (insn & 0xbfa00000) == 0x0c800000; }
209
210 static bool
211 aarch64_ldst_simd_s(Insntype insn)
212 { return (insn & 0xbf9f0000) == 0x0d000000; }
213
214 static bool
215 aarch64_ldst_simd_s_pi(Insntype insn)
216 { return (insn & 0xbf800000) == 0x0d800000; }
217
218 // Classify an INSN if it is indeed a load/store. Return true if INSN is a
219 // LD/ST instruction otherwise return false. For scalar LD/ST instructions
220 // PAIR is FALSE, RT is returned and RT2 is set equal to RT. For LD/ST pair
221 // instructions PAIR is TRUE, RT and RT2 are returned.
222 static bool
223 aarch64_mem_op_p(Insntype insn, unsigned int *rt, unsigned int *rt2,
224 bool *pair, bool *load)
225 {
226 uint32_t opcode;
227 unsigned int r;
228 uint32_t opc = 0;
229 uint32_t v = 0;
230 uint32_t opc_v = 0;
231
232 /* Bail out quickly if INSN doesn't fall into the the load-store
233 encoding space. */
234 if (!aarch64_ldst (insn))
235 return false;
236
237 *pair = false;
238 *load = false;
239 if (aarch64_ldst_ex (insn))
240 {
241 *rt = aarch64_rt (insn);
242 *rt2 = *rt;
243 if (aarch64_bit (insn, 21) == 1)
244 {
245 *pair = true;
246 *rt2 = aarch64_rt2 (insn);
247 }
248 *load = aarch64_ld (insn);
249 return true;
250 }
251 else if (aarch64_ldst_nap (insn)
252 || aarch64_ldstp_pi (insn)
253 || aarch64_ldstp_o (insn)
254 || aarch64_ldstp_pre (insn))
255 {
256 *pair = true;
257 *rt = aarch64_rt (insn);
258 *rt2 = aarch64_rt2 (insn);
259 *load = aarch64_ld (insn);
260 return true;
261 }
262 else if (aarch64_ldst_pcrel (insn)
263 || aarch64_ldst_ui (insn)
264 || aarch64_ldst_piimm (insn)
265 || aarch64_ldst_u (insn)
266 || aarch64_ldst_preimm (insn)
267 || aarch64_ldst_ro (insn)
268 || aarch64_ldst_uimm (insn))
269 {
270 *rt = aarch64_rt (insn);
271 *rt2 = *rt;
272 if (aarch64_ldst_pcrel (insn))
273 *load = true;
274 opc = aarch64_bits (insn, 22, 2);
275 v = aarch64_bit (insn, 26);
276 opc_v = opc | (v << 2);
277 *load = (opc_v == 1 || opc_v == 2 || opc_v == 3
278 || opc_v == 5 || opc_v == 7);
279 return true;
280 }
281 else if (aarch64_ldst_simd_m (insn)
282 || aarch64_ldst_simd_m_pi (insn))
283 {
284 *rt = aarch64_rt (insn);
285 *load = aarch64_bit (insn, 22);
286 opcode = (insn >> 12) & 0xf;
287 switch (opcode)
288 {
289 case 0:
290 case 2:
291 *rt2 = *rt + 3;
292 break;
293
294 case 4:
295 case 6:
296 *rt2 = *rt + 2;
297 break;
298
299 case 7:
300 *rt2 = *rt;
301 break;
302
303 case 8:
304 case 10:
305 *rt2 = *rt + 1;
306 break;
307
308 default:
309 return false;
310 }
311 return true;
312 }
313 else if (aarch64_ldst_simd_s (insn)
314 || aarch64_ldst_simd_s_pi (insn))
315 {
316 *rt = aarch64_rt (insn);
317 r = (insn >> 21) & 1;
318 *load = aarch64_bit (insn, 22);
319 opcode = (insn >> 13) & 0x7;
320 switch (opcode)
321 {
322 case 0:
323 case 2:
324 case 4:
325 *rt2 = *rt + r;
326 break;
327
328 case 1:
329 case 3:
330 case 5:
331 *rt2 = *rt + (r == 0 ? 2 : 3);
332 break;
333
334 case 6:
335 *rt2 = *rt + r;
336 break;
337
338 case 7:
339 *rt2 = *rt + (r == 0 ? 2 : 3);
340 break;
341
342 default:
343 return false;
344 }
345 return true;
346 }
347 return false;
348 } // End of "aarch64_mem_op_p".
349
350 // Return true if INSN is mac insn.
351 static bool
352 aarch64_mac(Insntype insn)
353 { return (insn & 0xff000000) == 0x9b000000; }
354
355 // Return true if INSN is multiply-accumulate.
356 // (This is similar to implementaton in elfnn-aarch64.c.)
357 static bool
358 aarch64_mlxl(Insntype insn)
359 {
360 uint32_t op31 = aarch64_op31(insn);
361 if (aarch64_mac(insn)
362 && (op31 == 0 || op31 == 1 || op31 == 5)
363 /* Exclude MUL instructions which are encoded as a multiple-accumulate
364 with RA = XZR. */
365 && aarch64_ra(insn) != AARCH64_ZR)
366 {
367 return true;
368 }
369 return false;
370 }
371 }; // End of "AArch64_insn_utilities".
372
373
374 // Insn length in byte.
375
376 template<bool big_endian>
377 const int AArch64_insn_utilities<big_endian>::BYTES_PER_INSN = 4;
378
379
380 // Zero register encoding - 31.
381
382 template<bool big_endian>
383 const unsigned int AArch64_insn_utilities<big_endian>::AARCH64_ZR = 0x1f;
384
385
386 // Output_data_got_aarch64 class.
387
388 template<int size, bool big_endian>
389 class Output_data_got_aarch64 : public Output_data_got<size, big_endian>
390 {
391 public:
392 typedef typename elfcpp::Elf_types<size>::Elf_Addr Valtype;
393 Output_data_got_aarch64(Symbol_table* symtab, Layout* layout)
394 : Output_data_got<size, big_endian>(),
395 symbol_table_(symtab), layout_(layout)
396 { }
397
398 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
399 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
400 // applied in a static link.
401 void
402 add_static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
403 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
404
405
406 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
407 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
408 // relocation that needs to be applied in a static link.
409 void
410 add_static_reloc(unsigned int got_offset, unsigned int r_type,
411 Sized_relobj_file<size, big_endian>* relobj,
412 unsigned int index)
413 {
414 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
415 index));
416 }
417
418
419 protected:
420 // Write out the GOT table.
421 void
422 do_write(Output_file* of) {
423 // The first entry in the GOT is the address of the .dynamic section.
424 gold_assert(this->data_size() >= size / 8);
425 Output_section* dynamic = this->layout_->dynamic_section();
426 Valtype dynamic_addr = dynamic == NULL ? 0 : dynamic->address();
427 this->replace_constant(0, dynamic_addr);
428 Output_data_got<size, big_endian>::do_write(of);
429
430 // Handling static relocs
431 if (this->static_relocs_.empty())
432 return;
433
434 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
435
436 gold_assert(parameters->doing_static_link());
437 const off_t offset = this->offset();
438 const section_size_type oview_size =
439 convert_to_section_size_type(this->data_size());
440 unsigned char* const oview = of->get_output_view(offset, oview_size);
441
442 Output_segment* tls_segment = this->layout_->tls_segment();
443 gold_assert(tls_segment != NULL);
444
445 AArch64_address aligned_tcb_address =
446 align_address(Target_aarch64<size, big_endian>::TCB_SIZE,
447 tls_segment->maximum_alignment());
448
449 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
450 {
451 Static_reloc& reloc(this->static_relocs_[i]);
452 AArch64_address value;
453
454 if (!reloc.symbol_is_global())
455 {
456 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
457 const Symbol_value<size>* psymval =
458 reloc.relobj()->local_symbol(reloc.index());
459
460 // We are doing static linking. Issue an error and skip this
461 // relocation if the symbol is undefined or in a discarded_section.
462 bool is_ordinary;
463 unsigned int shndx = psymval->input_shndx(&is_ordinary);
464 if ((shndx == elfcpp::SHN_UNDEF)
465 || (is_ordinary
466 && shndx != elfcpp::SHN_UNDEF
467 && !object->is_section_included(shndx)
468 && !this->symbol_table_->is_section_folded(object, shndx)))
469 {
470 gold_error(_("undefined or discarded local symbol %u from "
471 " object %s in GOT"),
472 reloc.index(), reloc.relobj()->name().c_str());
473 continue;
474 }
475 value = psymval->value(object, 0);
476 }
477 else
478 {
479 const Symbol* gsym = reloc.symbol();
480 gold_assert(gsym != NULL);
481 if (gsym->is_forwarder())
482 gsym = this->symbol_table_->resolve_forwards(gsym);
483
484 // We are doing static linking. Issue an error and skip this
485 // relocation if the symbol is undefined or in a discarded_section
486 // unless it is a weakly_undefined symbol.
487 if ((gsym->is_defined_in_discarded_section()
488 || gsym->is_undefined())
489 && !gsym->is_weak_undefined())
490 {
491 gold_error(_("undefined or discarded symbol %s in GOT"),
492 gsym->name());
493 continue;
494 }
495
496 if (!gsym->is_weak_undefined())
497 {
498 const Sized_symbol<size>* sym =
499 static_cast<const Sized_symbol<size>*>(gsym);
500 value = sym->value();
501 }
502 else
503 value = 0;
504 }
505
506 unsigned got_offset = reloc.got_offset();
507 gold_assert(got_offset < oview_size);
508
509 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
510 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
511 Valtype x;
512 switch (reloc.r_type())
513 {
514 case elfcpp::R_AARCH64_TLS_DTPREL64:
515 x = value;
516 break;
517 case elfcpp::R_AARCH64_TLS_TPREL64:
518 x = value + aligned_tcb_address;
519 break;
520 default:
521 gold_unreachable();
522 }
523 elfcpp::Swap<size, big_endian>::writeval(wv, x);
524 }
525
526 of->write_output_view(offset, oview_size, oview);
527 }
528
529 private:
530 // Symbol table of the output object.
531 Symbol_table* symbol_table_;
532 // A pointer to the Layout class, so that we can find the .dynamic
533 // section when we write out the GOT section.
534 Layout* layout_;
535
536 // This class represent dynamic relocations that need to be applied by
537 // gold because we are using TLS relocations in a static link.
538 class Static_reloc
539 {
540 public:
541 Static_reloc(unsigned int got_offset, unsigned int r_type, Symbol* gsym)
542 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
543 { this->u_.global.symbol = gsym; }
544
545 Static_reloc(unsigned int got_offset, unsigned int r_type,
546 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
547 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
548 {
549 this->u_.local.relobj = relobj;
550 this->u_.local.index = index;
551 }
552
553 // Return the GOT offset.
554 unsigned int
555 got_offset() const
556 { return this->got_offset_; }
557
558 // Relocation type.
559 unsigned int
560 r_type() const
561 { return this->r_type_; }
562
563 // Whether the symbol is global or not.
564 bool
565 symbol_is_global() const
566 { return this->symbol_is_global_; }
567
568 // For a relocation against a global symbol, the global symbol.
569 Symbol*
570 symbol() const
571 {
572 gold_assert(this->symbol_is_global_);
573 return this->u_.global.symbol;
574 }
575
576 // For a relocation against a local symbol, the defining object.
577 Sized_relobj_file<size, big_endian>*
578 relobj() const
579 {
580 gold_assert(!this->symbol_is_global_);
581 return this->u_.local.relobj;
582 }
583
584 // For a relocation against a local symbol, the local symbol index.
585 unsigned int
586 index() const
587 {
588 gold_assert(!this->symbol_is_global_);
589 return this->u_.local.index;
590 }
591
592 private:
593 // GOT offset of the entry to which this relocation is applied.
594 unsigned int got_offset_;
595 // Type of relocation.
596 unsigned int r_type_;
597 // Whether this relocation is against a global symbol.
598 bool symbol_is_global_;
599 // A global or local symbol.
600 union
601 {
602 struct
603 {
604 // For a global symbol, the symbol itself.
605 Symbol* symbol;
606 } global;
607 struct
608 {
609 // For a local symbol, the object defining the symbol.
610 Sized_relobj_file<size, big_endian>* relobj;
611 // For a local symbol, the symbol index.
612 unsigned int index;
613 } local;
614 } u_;
615 }; // End of inner class Static_reloc
616
617 std::vector<Static_reloc> static_relocs_;
618 }; // End of Output_data_got_aarch64
619
620
621 template<int size, bool big_endian>
622 class AArch64_input_section;
623
624
625 template<int size, bool big_endian>
626 class AArch64_output_section;
627
628
629 template<int size, bool big_endian>
630 class AArch64_relobj;
631
632
633 // Stub type enum constants.
634
635 enum
636 {
637 ST_NONE = 0,
638
639 // Using adrp/add pair, 4 insns (including alignment) without mem access,
640 // the fastest stub. This has a limited jump distance, which is tested by
641 // aarch64_valid_for_adrp_p.
642 ST_ADRP_BRANCH = 1,
643
644 // Using ldr-absolute-address/br-register, 4 insns with 1 mem access,
645 // unlimited in jump distance.
646 ST_LONG_BRANCH_ABS = 2,
647
648 // Using ldr/calculate-pcrel/jump, 8 insns (including alignment) with 1
649 // mem access, slowest one. Only used in position independent executables.
650 ST_LONG_BRANCH_PCREL = 3,
651
652 // Stub for erratum 843419 handling.
653 ST_E_843419 = 4,
654
655 // Stub for erratum 835769 handling.
656 ST_E_835769 = 5,
657
658 // Number of total stub types.
659 ST_NUMBER = 6
660 };
661
662
663 // Struct that wraps insns for a particular stub. All stub templates are
664 // created/initialized as constants by Stub_template_repertoire.
665
666 template<bool big_endian>
667 struct Stub_template
668 {
669 const typename AArch64_insn_utilities<big_endian>::Insntype* insns;
670 const int insn_num;
671 };
672
673
674 // Simple singleton class that creates/initializes/stores all types of stub
675 // templates.
676
677 template<bool big_endian>
678 class Stub_template_repertoire
679 {
680 public:
681 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
682
683 // Single static method to get stub template for a given stub type.
684 static const Stub_template<big_endian>*
685 get_stub_template(int type)
686 {
687 static Stub_template_repertoire<big_endian> singleton;
688 return singleton.stub_templates_[type];
689 }
690
691 private:
692 // Constructor - creates/initializes all stub templates.
693 Stub_template_repertoire();
694 ~Stub_template_repertoire()
695 { }
696
697 // Disallowing copy ctor and copy assignment operator.
698 Stub_template_repertoire(Stub_template_repertoire&);
699 Stub_template_repertoire& operator=(Stub_template_repertoire&);
700
701 // Data that stores all insn templates.
702 const Stub_template<big_endian>* stub_templates_[ST_NUMBER];
703 }; // End of "class Stub_template_repertoire".
704
705
706 // Constructor - creates/initilizes all stub templates.
707
708 template<bool big_endian>
709 Stub_template_repertoire<big_endian>::Stub_template_repertoire()
710 {
711 // Insn array definitions.
712 const static Insntype ST_NONE_INSNS[] = {};
713
714 const static Insntype ST_ADRP_BRANCH_INSNS[] =
715 {
716 0x90000010, /* adrp ip0, X */
717 /* ADR_PREL_PG_HI21(X) */
718 0x91000210, /* add ip0, ip0, :lo12:X */
719 /* ADD_ABS_LO12_NC(X) */
720 0xd61f0200, /* br ip0 */
721 0x00000000, /* alignment padding */
722 };
723
724 const static Insntype ST_LONG_BRANCH_ABS_INSNS[] =
725 {
726 0x58000050, /* ldr ip0, 0x8 */
727 0xd61f0200, /* br ip0 */
728 0x00000000, /* address field */
729 0x00000000, /* address fields */
730 };
731
732 const static Insntype ST_LONG_BRANCH_PCREL_INSNS[] =
733 {
734 0x58000090, /* ldr ip0, 0x10 */
735 0x10000011, /* adr ip1, #0 */
736 0x8b110210, /* add ip0, ip0, ip1 */
737 0xd61f0200, /* br ip0 */
738 0x00000000, /* address field */
739 0x00000000, /* address field */
740 0x00000000, /* alignment padding */
741 0x00000000, /* alignment padding */
742 };
743
744 const static Insntype ST_E_843419_INSNS[] =
745 {
746 0x00000000, /* Placeholder for erratum insn. */
747 0x14000000, /* b <label> */
748 };
749
750 // ST_E_835769 has the same stub template as ST_E_843419.
751 const static Insntype* ST_E_835769_INSNS = ST_E_843419_INSNS;
752
753 #define install_insn_template(T) \
754 const static Stub_template<big_endian> template_##T = { \
755 T##_INSNS, sizeof(T##_INSNS) / sizeof(T##_INSNS[0]) }; \
756 this->stub_templates_[T] = &template_##T
757
758 install_insn_template(ST_NONE);
759 install_insn_template(ST_ADRP_BRANCH);
760 install_insn_template(ST_LONG_BRANCH_ABS);
761 install_insn_template(ST_LONG_BRANCH_PCREL);
762 install_insn_template(ST_E_843419);
763 install_insn_template(ST_E_835769);
764
765 #undef install_insn_template
766 }
767
768
769 // Base class for stubs.
770
771 template<int size, bool big_endian>
772 class Stub_base
773 {
774 public:
775 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
776 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
777
778 static const AArch64_address invalid_address =
779 static_cast<AArch64_address>(-1);
780
781 static const section_offset_type invalid_offset =
782 static_cast<section_offset_type>(-1);
783
784 Stub_base(int type)
785 : destination_address_(invalid_address),
786 offset_(invalid_offset),
787 type_(type)
788 {}
789
790 ~Stub_base()
791 {}
792
793 // Get stub type.
794 int
795 type() const
796 { return this->type_; }
797
798 // Get stub template that provides stub insn information.
799 const Stub_template<big_endian>*
800 stub_template() const
801 {
802 return Stub_template_repertoire<big_endian>::
803 get_stub_template(this->type());
804 }
805
806 // Get destination address.
807 AArch64_address
808 destination_address() const
809 {
810 gold_assert(this->destination_address_ != this->invalid_address);
811 return this->destination_address_;
812 }
813
814 // Set destination address.
815 void
816 set_destination_address(AArch64_address address)
817 {
818 gold_assert(address != this->invalid_address);
819 this->destination_address_ = address;
820 }
821
822 // Reset the destination address.
823 void
824 reset_destination_address()
825 { this->destination_address_ = this->invalid_address; }
826
827 // Get offset of code stub. For Reloc_stub, it is the offset from the
828 // beginning of its containing stub table; for Erratum_stub, it is the offset
829 // from the end of reloc_stubs.
830 section_offset_type
831 offset() const
832 {
833 gold_assert(this->offset_ != this->invalid_offset);
834 return this->offset_;
835 }
836
837 // Set stub offset.
838 void
839 set_offset(section_offset_type offset)
840 { this->offset_ = offset; }
841
842 // Return the stub insn.
843 const Insntype*
844 insns() const
845 { return this->stub_template()->insns; }
846
847 // Return num of stub insns.
848 unsigned int
849 insn_num() const
850 { return this->stub_template()->insn_num; }
851
852 // Get size of the stub.
853 int
854 stub_size() const
855 {
856 return this->insn_num() *
857 AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
858 }
859
860 // Write stub to output file.
861 void
862 write(unsigned char* view, section_size_type view_size)
863 { this->do_write(view, view_size); }
864
865 protected:
866 // Abstract method to be implemented by sub-classes.
867 virtual void
868 do_write(unsigned char*, section_size_type) = 0;
869
870 private:
871 // The last insn of a stub is a jump to destination insn. This field records
872 // the destination address.
873 AArch64_address destination_address_;
874 // The stub offset. Note this has difference interpretations between an
875 // Reloc_stub and an Erratum_stub. For Reloc_stub this is the offset from the
876 // beginning of the containing stub_table, whereas for Erratum_stub, this is
877 // the offset from the end of reloc_stubs.
878 section_offset_type offset_;
879 // Stub type.
880 const int type_;
881 }; // End of "Stub_base".
882
883
884 // Erratum stub class. An erratum stub differs from a reloc stub in that for
885 // each erratum occurrence, we generate an erratum stub. We never share erratum
886 // stubs, whereas for reloc stubs, different branches insns share a single reloc
887 // stub as long as the branch targets are the same. (More to the point, reloc
888 // stubs can be shared because they're used to reach a specific target, whereas
889 // erratum stubs branch back to the original control flow.)
890
891 template<int size, bool big_endian>
892 class Erratum_stub : public Stub_base<size, big_endian>
893 {
894 public:
895 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
896 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
897 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
898 typedef typename AArch64_insn_utilities<big_endian>::Insntype Insntype;
899
900 static const int STUB_ADDR_ALIGN;
901
902 static const Insntype invalid_insn = static_cast<Insntype>(-1);
903
904 Erratum_stub(The_aarch64_relobj* relobj, int type,
905 unsigned shndx, unsigned int sh_offset)
906 : Stub_base<size, big_endian>(type), relobj_(relobj),
907 shndx_(shndx), sh_offset_(sh_offset),
908 erratum_insn_(invalid_insn),
909 erratum_address_(this->invalid_address)
910 {}
911
912 ~Erratum_stub() {}
913
914 // Return the object that contains the erratum.
915 The_aarch64_relobj*
916 relobj()
917 { return this->relobj_; }
918
919 // Get section index of the erratum.
920 unsigned int
921 shndx() const
922 { return this->shndx_; }
923
924 // Get section offset of the erratum.
925 unsigned int
926 sh_offset() const
927 { return this->sh_offset_; }
928
929 // Get the erratum insn. This is the insn located at erratum_insn_address.
930 Insntype
931 erratum_insn() const
932 {
933 gold_assert(this->erratum_insn_ != this->invalid_insn);
934 return this->erratum_insn_;
935 }
936
937 // Set the insn that the erratum happens to.
938 void
939 set_erratum_insn(Insntype insn)
940 { this->erratum_insn_ = insn; }
941
942 // For 843419, the erratum insn is ld/st xt, [xn, #uimm], which may be a
943 // relocation spot, in this case, the erratum_insn_ recorded at scanning phase
944 // is no longer the one we want to write out to the stub, update erratum_insn_
945 // with relocated version. Also note that in this case xn must not be "PC", so
946 // it is safe to move the erratum insn from the origin place to the stub. For
947 // 835769, the erratum insn is multiply-accumulate insn, which could not be a
948 // relocation spot (assertion added though).
949 void
950 update_erratum_insn(Insntype insn)
951 {
952 gold_assert(this->erratum_insn_ != this->invalid_insn);
953 switch (this->type())
954 {
955 case ST_E_843419:
956 gold_assert(Insn_utilities::aarch64_ldst_uimm(insn));
957 gold_assert(Insn_utilities::aarch64_ldst_uimm(this->erratum_insn()));
958 gold_assert(Insn_utilities::aarch64_rd(insn) ==
959 Insn_utilities::aarch64_rd(this->erratum_insn()));
960 gold_assert(Insn_utilities::aarch64_rn(insn) ==
961 Insn_utilities::aarch64_rn(this->erratum_insn()));
962 // Update plain ld/st insn with relocated insn.
963 this->erratum_insn_ = insn;
964 break;
965 case ST_E_835769:
966 gold_assert(insn == this->erratum_insn());
967 break;
968 default:
969 gold_unreachable();
970 }
971 }
972
973
974 // Return the address where an erratum must be done.
975 AArch64_address
976 erratum_address() const
977 {
978 gold_assert(this->erratum_address_ != this->invalid_address);
979 return this->erratum_address_;
980 }
981
982 // Set the address where an erratum must be done.
983 void
984 set_erratum_address(AArch64_address addr)
985 { this->erratum_address_ = addr; }
986
987 // Comparator used to group Erratum_stubs in a set by (obj, shndx,
988 // sh_offset). We do not include 'type' in the calculation, becuase there is
989 // at most one stub type at (obj, shndx, sh_offset).
990 bool
991 operator<(const Erratum_stub<size, big_endian>& k) const
992 {
993 if (this == &k)
994 return false;
995 // We group stubs by relobj.
996 if (this->relobj_ != k.relobj_)
997 return this->relobj_ < k.relobj_;
998 // Then by section index.
999 if (this->shndx_ != k.shndx_)
1000 return this->shndx_ < k.shndx_;
1001 // Lastly by section offset.
1002 return this->sh_offset_ < k.sh_offset_;
1003 }
1004
1005 protected:
1006 virtual void
1007 do_write(unsigned char*, section_size_type);
1008
1009 private:
1010 // The object that needs to be fixed.
1011 The_aarch64_relobj* relobj_;
1012 // The shndx in the object that needs to be fixed.
1013 const unsigned int shndx_;
1014 // The section offset in the obejct that needs to be fixed.
1015 const unsigned int sh_offset_;
1016 // The insn to be fixed.
1017 Insntype erratum_insn_;
1018 // The address of the above insn.
1019 AArch64_address erratum_address_;
1020 }; // End of "Erratum_stub".
1021
1022 template<int size, bool big_endian>
1023 const int Erratum_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1024
1025 // Comparator used in set definition.
1026 template<int size, bool big_endian>
1027 struct Erratum_stub_less
1028 {
1029 bool
1030 operator()(const Erratum_stub<size, big_endian>* s1,
1031 const Erratum_stub<size, big_endian>* s2) const
1032 { return *s1 < *s2; }
1033 };
1034
1035 // Erratum_stub implementation for writing stub to output file.
1036
1037 template<int size, bool big_endian>
1038 void
1039 Erratum_stub<size, big_endian>::do_write(unsigned char* view, section_size_type)
1040 {
1041 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1042 const Insntype* insns = this->insns();
1043 uint32_t num_insns = this->insn_num();
1044 Insntype* ip = reinterpret_cast<Insntype*>(view);
1045 // For current implemented erratum 843419 and 835769, the first insn in the
1046 // stub is always a copy of the problematic insn (in 843419, the mem access
1047 // insn, in 835769, the mac insn), followed by a jump-back.
1048 elfcpp::Swap<32, big_endian>::writeval(ip, this->erratum_insn());
1049 for (uint32_t i = 1; i < num_insns; ++i)
1050 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1051 }
1052
1053
1054 // Reloc stub class.
1055
1056 template<int size, bool big_endian>
1057 class Reloc_stub : public Stub_base<size, big_endian>
1058 {
1059 public:
1060 typedef Reloc_stub<size, big_endian> This;
1061 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1062
1063 // Branch range. This is used to calculate the section group size, as well as
1064 // determine whether a stub is needed.
1065 static const int MAX_BRANCH_OFFSET = ((1 << 25) - 1) << 2;
1066 static const int MIN_BRANCH_OFFSET = -((1 << 25) << 2);
1067
1068 // Constant used to determine if an offset fits in the adrp instruction
1069 // encoding.
1070 static const int MAX_ADRP_IMM = (1 << 20) - 1;
1071 static const int MIN_ADRP_IMM = -(1 << 20);
1072
1073 static const int BYTES_PER_INSN = 4;
1074 static const int STUB_ADDR_ALIGN;
1075
1076 // Determine whether the offset fits in the jump/branch instruction.
1077 static bool
1078 aarch64_valid_branch_offset_p(int64_t offset)
1079 { return offset >= MIN_BRANCH_OFFSET && offset <= MAX_BRANCH_OFFSET; }
1080
1081 // Determine whether the offset fits in the adrp immediate field.
1082 static bool
1083 aarch64_valid_for_adrp_p(AArch64_address location, AArch64_address dest)
1084 {
1085 typedef AArch64_relocate_functions<size, big_endian> Reloc;
1086 int64_t adrp_imm = (Reloc::Page(dest) - Reloc::Page(location)) >> 12;
1087 return adrp_imm >= MIN_ADRP_IMM && adrp_imm <= MAX_ADRP_IMM;
1088 }
1089
1090 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1091 // needed.
1092 static int
1093 stub_type_for_reloc(unsigned int r_type, AArch64_address address,
1094 AArch64_address target);
1095
1096 Reloc_stub(int type)
1097 : Stub_base<size, big_endian>(type)
1098 { }
1099
1100 ~Reloc_stub()
1101 { }
1102
1103 // The key class used to index the stub instance in the stub table's stub map.
1104 class Key
1105 {
1106 public:
1107 Key(int type, const Symbol* symbol, const Relobj* relobj,
1108 unsigned int r_sym, int32_t addend)
1109 : type_(type), addend_(addend)
1110 {
1111 if (symbol != NULL)
1112 {
1113 this->r_sym_ = Reloc_stub::invalid_index;
1114 this->u_.symbol = symbol;
1115 }
1116 else
1117 {
1118 gold_assert(relobj != NULL && r_sym != invalid_index);
1119 this->r_sym_ = r_sym;
1120 this->u_.relobj = relobj;
1121 }
1122 }
1123
1124 ~Key()
1125 { }
1126
1127 // Return stub type.
1128 int
1129 type() const
1130 { return this->type_; }
1131
1132 // Return the local symbol index or invalid_index.
1133 unsigned int
1134 r_sym() const
1135 { return this->r_sym_; }
1136
1137 // Return the symbol if there is one.
1138 const Symbol*
1139 symbol() const
1140 { return this->r_sym_ == invalid_index ? this->u_.symbol : NULL; }
1141
1142 // Return the relobj if there is one.
1143 const Relobj*
1144 relobj() const
1145 { return this->r_sym_ != invalid_index ? this->u_.relobj : NULL; }
1146
1147 // Whether this equals to another key k.
1148 bool
1149 eq(const Key& k) const
1150 {
1151 return ((this->type_ == k.type_)
1152 && (this->r_sym_ == k.r_sym_)
1153 && ((this->r_sym_ != Reloc_stub::invalid_index)
1154 ? (this->u_.relobj == k.u_.relobj)
1155 : (this->u_.symbol == k.u_.symbol))
1156 && (this->addend_ == k.addend_));
1157 }
1158
1159 // Return a hash value.
1160 size_t
1161 hash_value() const
1162 {
1163 size_t name_hash_value = gold::string_hash<char>(
1164 (this->r_sym_ != Reloc_stub::invalid_index)
1165 ? this->u_.relobj->name().c_str()
1166 : this->u_.symbol->name());
1167 // We only have 4 stub types.
1168 size_t stub_type_hash_value = 0x03 & this->type_;
1169 return (name_hash_value
1170 ^ stub_type_hash_value
1171 ^ ((this->r_sym_ & 0x3fff) << 2)
1172 ^ ((this->addend_ & 0xffff) << 16));
1173 }
1174
1175 // Functors for STL associative containers.
1176 struct hash
1177 {
1178 size_t
1179 operator()(const Key& k) const
1180 { return k.hash_value(); }
1181 };
1182
1183 struct equal_to
1184 {
1185 bool
1186 operator()(const Key& k1, const Key& k2) const
1187 { return k1.eq(k2); }
1188 };
1189
1190 private:
1191 // Stub type.
1192 const int type_;
1193 // If this is a local symbol, this is the index in the defining object.
1194 // Otherwise, it is invalid_index for a global symbol.
1195 unsigned int r_sym_;
1196 // If r_sym_ is an invalid index, this points to a global symbol.
1197 // Otherwise, it points to a relobj. We used the unsized and target
1198 // independent Symbol and Relobj classes instead of Sized_symbol<32> and
1199 // Arm_relobj, in order to avoid making the stub class a template
1200 // as most of the stub machinery is endianness-neutral. However, it
1201 // may require a bit of casting done by users of this class.
1202 union
1203 {
1204 const Symbol* symbol;
1205 const Relobj* relobj;
1206 } u_;
1207 // Addend associated with a reloc.
1208 int32_t addend_;
1209 }; // End of inner class Reloc_stub::Key
1210
1211 protected:
1212 // This may be overridden in the child class.
1213 virtual void
1214 do_write(unsigned char*, section_size_type);
1215
1216 private:
1217 static const unsigned int invalid_index = static_cast<unsigned int>(-1);
1218 }; // End of Reloc_stub
1219
1220 template<int size, bool big_endian>
1221 const int Reloc_stub<size, big_endian>::STUB_ADDR_ALIGN = 4;
1222
1223 // Write data to output file.
1224
1225 template<int size, bool big_endian>
1226 void
1227 Reloc_stub<size, big_endian>::
1228 do_write(unsigned char* view, section_size_type)
1229 {
1230 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
1231 const uint32_t* insns = this->insns();
1232 uint32_t num_insns = this->insn_num();
1233 Insntype* ip = reinterpret_cast<Insntype*>(view);
1234 for (uint32_t i = 0; i < num_insns; ++i)
1235 elfcpp::Swap<32, big_endian>::writeval(ip + i, insns[i]);
1236 }
1237
1238
1239 // Determine the stub type for a certain relocation or ST_NONE, if no stub is
1240 // needed.
1241
1242 template<int size, bool big_endian>
1243 inline int
1244 Reloc_stub<size, big_endian>::stub_type_for_reloc(
1245 unsigned int r_type, AArch64_address location, AArch64_address dest)
1246 {
1247 int64_t branch_offset = 0;
1248 switch(r_type)
1249 {
1250 case elfcpp::R_AARCH64_CALL26:
1251 case elfcpp::R_AARCH64_JUMP26:
1252 branch_offset = dest - location;
1253 break;
1254 default:
1255 gold_unreachable();
1256 }
1257
1258 if (aarch64_valid_branch_offset_p(branch_offset))
1259 return ST_NONE;
1260
1261 if (aarch64_valid_for_adrp_p(location, dest))
1262 return ST_ADRP_BRANCH;
1263
1264 if (parameters->options().output_is_position_independent()
1265 && parameters->options().output_is_executable())
1266 return ST_LONG_BRANCH_PCREL;
1267
1268 return ST_LONG_BRANCH_ABS;
1269 }
1270
1271 // A class to hold stubs for the ARM target.
1272
1273 template<int size, bool big_endian>
1274 class Stub_table : public Output_data
1275 {
1276 public:
1277 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1278 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1279 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
1280 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1281 typedef Reloc_stub<size, big_endian> The_reloc_stub;
1282 typedef typename The_reloc_stub::Key The_reloc_stub_key;
1283 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1284 typedef Erratum_stub_less<size, big_endian> The_erratum_stub_less;
1285 typedef typename The_reloc_stub_key::hash The_reloc_stub_key_hash;
1286 typedef typename The_reloc_stub_key::equal_to The_reloc_stub_key_equal_to;
1287 typedef Stub_table<size, big_endian> The_stub_table;
1288 typedef Unordered_map<The_reloc_stub_key, The_reloc_stub*,
1289 The_reloc_stub_key_hash, The_reloc_stub_key_equal_to>
1290 Reloc_stub_map;
1291 typedef typename Reloc_stub_map::const_iterator Reloc_stub_map_const_iter;
1292 typedef Relocate_info<size, big_endian> The_relocate_info;
1293
1294 typedef std::set<The_erratum_stub*, The_erratum_stub_less> Erratum_stub_set;
1295 typedef typename Erratum_stub_set::iterator Erratum_stub_set_iter;
1296
1297 Stub_table(The_aarch64_input_section* owner)
1298 : Output_data(), owner_(owner), reloc_stubs_size_(0),
1299 erratum_stubs_size_(0), prev_data_size_(0)
1300 { }
1301
1302 ~Stub_table()
1303 { }
1304
1305 The_aarch64_input_section*
1306 owner() const
1307 { return owner_; }
1308
1309 // Whether this stub table is empty.
1310 bool
1311 empty() const
1312 { return reloc_stubs_.empty() && erratum_stubs_.empty(); }
1313
1314 // Return the current data size.
1315 off_t
1316 current_data_size() const
1317 { return this->current_data_size_for_child(); }
1318
1319 // Add a STUB using KEY. The caller is responsible for avoiding addition
1320 // if a STUB with the same key has already been added.
1321 void
1322 add_reloc_stub(The_reloc_stub* stub, const The_reloc_stub_key& key);
1323
1324 // Add an erratum stub into the erratum stub set. The set is ordered by
1325 // (relobj, shndx, sh_offset).
1326 void
1327 add_erratum_stub(The_erratum_stub* stub);
1328
1329 // Find if such erratum exists for any given (obj, shndx, sh_offset).
1330 The_erratum_stub*
1331 find_erratum_stub(The_aarch64_relobj* a64relobj,
1332 unsigned int shndx, unsigned int sh_offset);
1333
1334 // Find all the erratums for a given input section. The return value is a pair
1335 // of iterators [begin, end).
1336 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1337 find_erratum_stubs_for_input_section(The_aarch64_relobj* a64relobj,
1338 unsigned int shndx);
1339
1340 // Compute the erratum stub address.
1341 AArch64_address
1342 erratum_stub_address(The_erratum_stub* stub) const
1343 {
1344 AArch64_address r = align_address(this->address() + this->reloc_stubs_size_,
1345 The_erratum_stub::STUB_ADDR_ALIGN);
1346 r += stub->offset();
1347 return r;
1348 }
1349
1350 // Finalize stubs. No-op here, just for completeness.
1351 void
1352 finalize_stubs()
1353 { }
1354
1355 // Look up a relocation stub using KEY. Return NULL if there is none.
1356 The_reloc_stub*
1357 find_reloc_stub(The_reloc_stub_key& key)
1358 {
1359 Reloc_stub_map_const_iter p = this->reloc_stubs_.find(key);
1360 return (p != this->reloc_stubs_.end()) ? p->second : NULL;
1361 }
1362
1363 // Relocate stubs in this stub table.
1364 void
1365 relocate_stubs(const The_relocate_info*,
1366 The_target_aarch64*,
1367 Output_section*,
1368 unsigned char*,
1369 AArch64_address,
1370 section_size_type);
1371
1372 // Update data size at the end of a relaxation pass. Return true if data size
1373 // is different from that of the previous relaxation pass.
1374 bool
1375 update_data_size_changed_p()
1376 {
1377 // No addralign changed here.
1378 off_t s = align_address(this->reloc_stubs_size_,
1379 The_erratum_stub::STUB_ADDR_ALIGN)
1380 + this->erratum_stubs_size_;
1381 bool changed = (s != this->prev_data_size_);
1382 this->prev_data_size_ = s;
1383 return changed;
1384 }
1385
1386 protected:
1387 // Write out section contents.
1388 void
1389 do_write(Output_file*);
1390
1391 // Return the required alignment.
1392 uint64_t
1393 do_addralign() const
1394 {
1395 return std::max(The_reloc_stub::STUB_ADDR_ALIGN,
1396 The_erratum_stub::STUB_ADDR_ALIGN);
1397 }
1398
1399 // Reset address and file offset.
1400 void
1401 do_reset_address_and_file_offset()
1402 { this->set_current_data_size_for_child(this->prev_data_size_); }
1403
1404 // Set final data size.
1405 void
1406 set_final_data_size()
1407 { this->set_data_size(this->current_data_size()); }
1408
1409 private:
1410 // Relocate one stub.
1411 void
1412 relocate_stub(The_reloc_stub*,
1413 const The_relocate_info*,
1414 The_target_aarch64*,
1415 Output_section*,
1416 unsigned char*,
1417 AArch64_address,
1418 section_size_type);
1419
1420 private:
1421 // Owner of this stub table.
1422 The_aarch64_input_section* owner_;
1423 // The relocation stubs.
1424 Reloc_stub_map reloc_stubs_;
1425 // The erratum stubs.
1426 Erratum_stub_set erratum_stubs_;
1427 // Size of reloc stubs.
1428 off_t reloc_stubs_size_;
1429 // Size of erratum stubs.
1430 off_t erratum_stubs_size_;
1431 // data size of this in the previous pass.
1432 off_t prev_data_size_;
1433 }; // End of Stub_table
1434
1435
1436 // Add an erratum stub into the erratum stub set. The set is ordered by
1437 // (relobj, shndx, sh_offset).
1438
1439 template<int size, bool big_endian>
1440 void
1441 Stub_table<size, big_endian>::add_erratum_stub(The_erratum_stub* stub)
1442 {
1443 std::pair<Erratum_stub_set_iter, bool> ret =
1444 this->erratum_stubs_.insert(stub);
1445 gold_assert(ret.second);
1446 this->erratum_stubs_size_ = align_address(
1447 this->erratum_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1448 stub->set_offset(this->erratum_stubs_size_);
1449 this->erratum_stubs_size_ += stub->stub_size();
1450 }
1451
1452
1453 // Find if such erratum exists for given (obj, shndx, sh_offset).
1454
1455 template<int size, bool big_endian>
1456 Erratum_stub<size, big_endian>*
1457 Stub_table<size, big_endian>::find_erratum_stub(
1458 The_aarch64_relobj* a64relobj, unsigned int shndx, unsigned int sh_offset)
1459 {
1460 // A dummy object used as key to search in the set.
1461 The_erratum_stub key(a64relobj, ST_NONE,
1462 shndx, sh_offset);
1463 Erratum_stub_set_iter i = this->erratum_stubs_.find(&key);
1464 if (i != this->erratum_stubs_.end())
1465 {
1466 The_erratum_stub* stub(*i);
1467 gold_assert(stub->erratum_insn() != 0);
1468 return stub;
1469 }
1470 return NULL;
1471 }
1472
1473
1474 // Find all the errata for a given input section. The return value is a pair of
1475 // iterators [begin, end).
1476
1477 template<int size, bool big_endian>
1478 std::pair<typename Stub_table<size, big_endian>::Erratum_stub_set_iter,
1479 typename Stub_table<size, big_endian>::Erratum_stub_set_iter>
1480 Stub_table<size, big_endian>::find_erratum_stubs_for_input_section(
1481 The_aarch64_relobj* a64relobj, unsigned int shndx)
1482 {
1483 typedef std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter> Result_pair;
1484 Erratum_stub_set_iter start, end;
1485 The_erratum_stub low_key(a64relobj, ST_NONE, shndx, 0);
1486 start = this->erratum_stubs_.lower_bound(&low_key);
1487 if (start == this->erratum_stubs_.end())
1488 return Result_pair(this->erratum_stubs_.end(),
1489 this->erratum_stubs_.end());
1490 end = start;
1491 while (end != this->erratum_stubs_.end() &&
1492 (*end)->relobj() == a64relobj && (*end)->shndx() == shndx)
1493 ++end;
1494 return Result_pair(start, end);
1495 }
1496
1497
1498 // Add a STUB using KEY. The caller is responsible for avoiding addition
1499 // if a STUB with the same key has already been added.
1500
1501 template<int size, bool big_endian>
1502 void
1503 Stub_table<size, big_endian>::add_reloc_stub(
1504 The_reloc_stub* stub, const The_reloc_stub_key& key)
1505 {
1506 gold_assert(stub->type() == key.type());
1507 this->reloc_stubs_[key] = stub;
1508
1509 // Assign stub offset early. We can do this because we never remove
1510 // reloc stubs and they are in the beginning of the stub table.
1511 this->reloc_stubs_size_ = align_address(this->reloc_stubs_size_,
1512 The_reloc_stub::STUB_ADDR_ALIGN);
1513 stub->set_offset(this->reloc_stubs_size_);
1514 this->reloc_stubs_size_ += stub->stub_size();
1515 }
1516
1517
1518 // Relocate all stubs in this stub table.
1519
1520 template<int size, bool big_endian>
1521 void
1522 Stub_table<size, big_endian>::
1523 relocate_stubs(const The_relocate_info* relinfo,
1524 The_target_aarch64* target_aarch64,
1525 Output_section* output_section,
1526 unsigned char* view,
1527 AArch64_address address,
1528 section_size_type view_size)
1529 {
1530 // "view_size" is the total size of the stub_table.
1531 gold_assert(address == this->address() &&
1532 view_size == static_cast<section_size_type>(this->data_size()));
1533 for(Reloc_stub_map_const_iter p = this->reloc_stubs_.begin();
1534 p != this->reloc_stubs_.end(); ++p)
1535 relocate_stub(p->second, relinfo, target_aarch64, output_section,
1536 view, address, view_size);
1537
1538 // Just for convenience.
1539 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
1540
1541 // Now 'relocate' erratum stubs.
1542 for(Erratum_stub_set_iter i = this->erratum_stubs_.begin();
1543 i != this->erratum_stubs_.end(); ++i)
1544 {
1545 AArch64_address stub_address = this->erratum_stub_address(*i);
1546 // The address of "b" in the stub that is to be "relocated".
1547 AArch64_address stub_b_insn_address;
1548 // Branch offset that is to be filled in "b" insn.
1549 int b_offset = 0;
1550 switch ((*i)->type())
1551 {
1552 case ST_E_843419:
1553 case ST_E_835769:
1554 // The 1st insn of the erratum could be a relocation spot,
1555 // in this case we need to fix it with
1556 // "(*i)->erratum_insn()".
1557 elfcpp::Swap<32, big_endian>::writeval(
1558 view + (stub_address - this->address()),
1559 (*i)->erratum_insn());
1560 // For the erratum, the 2nd insn is a b-insn to be patched
1561 // (relocated).
1562 stub_b_insn_address = stub_address + 1 * BPI;
1563 b_offset = (*i)->destination_address() - stub_b_insn_address;
1564 AArch64_relocate_functions<size, big_endian>::construct_b(
1565 view + (stub_b_insn_address - this->address()),
1566 ((unsigned int)(b_offset)) & 0xfffffff);
1567 break;
1568 default:
1569 gold_unreachable();
1570 break;
1571 }
1572 }
1573 }
1574
1575
1576 // Relocate one stub. This is a helper for Stub_table::relocate_stubs().
1577
1578 template<int size, bool big_endian>
1579 void
1580 Stub_table<size, big_endian>::
1581 relocate_stub(The_reloc_stub* stub,
1582 const The_relocate_info* relinfo,
1583 The_target_aarch64* target_aarch64,
1584 Output_section* output_section,
1585 unsigned char* view,
1586 AArch64_address address,
1587 section_size_type view_size)
1588 {
1589 // "offset" is the offset from the beginning of the stub_table.
1590 section_size_type offset = stub->offset();
1591 section_size_type stub_size = stub->stub_size();
1592 // "view_size" is the total size of the stub_table.
1593 gold_assert(offset + stub_size <= view_size);
1594
1595 target_aarch64->relocate_stub(stub, relinfo, output_section,
1596 view + offset, address + offset, view_size);
1597 }
1598
1599
1600 // Write out the stubs to file.
1601
1602 template<int size, bool big_endian>
1603 void
1604 Stub_table<size, big_endian>::do_write(Output_file* of)
1605 {
1606 off_t offset = this->offset();
1607 const section_size_type oview_size =
1608 convert_to_section_size_type(this->data_size());
1609 unsigned char* const oview = of->get_output_view(offset, oview_size);
1610
1611 // Write relocation stubs.
1612 for (typename Reloc_stub_map::const_iterator p = this->reloc_stubs_.begin();
1613 p != this->reloc_stubs_.end(); ++p)
1614 {
1615 The_reloc_stub* stub = p->second;
1616 AArch64_address address = this->address() + stub->offset();
1617 gold_assert(address ==
1618 align_address(address, The_reloc_stub::STUB_ADDR_ALIGN));
1619 stub->write(oview + stub->offset(), stub->stub_size());
1620 }
1621
1622 // Write erratum stubs.
1623 unsigned int erratum_stub_start_offset =
1624 align_address(this->reloc_stubs_size_, The_erratum_stub::STUB_ADDR_ALIGN);
1625 for (typename Erratum_stub_set::iterator p = this->erratum_stubs_.begin();
1626 p != this->erratum_stubs_.end(); ++p)
1627 {
1628 The_erratum_stub* stub(*p);
1629 stub->write(oview + erratum_stub_start_offset + stub->offset(),
1630 stub->stub_size());
1631 }
1632
1633 of->write_output_view(this->offset(), oview_size, oview);
1634 }
1635
1636
1637 // AArch64_relobj class.
1638
1639 template<int size, bool big_endian>
1640 class AArch64_relobj : public Sized_relobj_file<size, big_endian>
1641 {
1642 public:
1643 typedef AArch64_relobj<size, big_endian> This;
1644 typedef Target_aarch64<size, big_endian> The_target_aarch64;
1645 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
1646 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
1647 typedef Stub_table<size, big_endian> The_stub_table;
1648 typedef Erratum_stub<size, big_endian> The_erratum_stub;
1649 typedef typename The_stub_table::Erratum_stub_set_iter Erratum_stub_set_iter;
1650 typedef std::vector<The_stub_table*> Stub_table_list;
1651 static const AArch64_address invalid_address =
1652 static_cast<AArch64_address>(-1);
1653
1654 AArch64_relobj(const std::string& name, Input_file* input_file, off_t offset,
1655 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1656 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1657 stub_tables_()
1658 { }
1659
1660 ~AArch64_relobj()
1661 { }
1662
1663 // Return the stub table of the SHNDX-th section if there is one.
1664 The_stub_table*
1665 stub_table(unsigned int shndx) const
1666 {
1667 gold_assert(shndx < this->stub_tables_.size());
1668 return this->stub_tables_[shndx];
1669 }
1670
1671 // Set STUB_TABLE to be the stub_table of the SHNDX-th section.
1672 void
1673 set_stub_table(unsigned int shndx, The_stub_table* stub_table)
1674 {
1675 gold_assert(shndx < this->stub_tables_.size());
1676 this->stub_tables_[shndx] = stub_table;
1677 }
1678
1679 // Entrance to errata scanning.
1680 void
1681 scan_errata(unsigned int shndx,
1682 const elfcpp::Shdr<size, big_endian>&,
1683 Output_section*, const Symbol_table*,
1684 The_target_aarch64*);
1685
1686 // Scan all relocation sections for stub generation.
1687 void
1688 scan_sections_for_stubs(The_target_aarch64*, const Symbol_table*,
1689 const Layout*);
1690
1691 // Whether a section is a scannable text section.
1692 bool
1693 text_section_is_scannable(const elfcpp::Shdr<size, big_endian>&, unsigned int,
1694 const Output_section*, const Symbol_table*);
1695
1696 // Convert regular input section with index SHNDX to a relaxed section.
1697 void
1698 convert_input_section_to_relaxed_section(unsigned /* shndx */)
1699 {
1700 // The stubs have relocations and we need to process them after writing
1701 // out the stubs. So relocation now must follow section write.
1702 this->set_relocs_must_follow_section_writes();
1703 }
1704
1705 // Structure for mapping symbol position.
1706 struct Mapping_symbol_position
1707 {
1708 Mapping_symbol_position(unsigned int shndx, AArch64_address offset):
1709 shndx_(shndx), offset_(offset)
1710 {}
1711
1712 // "<" comparator used in ordered_map container.
1713 bool
1714 operator<(const Mapping_symbol_position& p) const
1715 {
1716 return (this->shndx_ < p.shndx_
1717 || (this->shndx_ == p.shndx_ && this->offset_ < p.offset_));
1718 }
1719
1720 // Section index.
1721 unsigned int shndx_;
1722
1723 // Section offset.
1724 AArch64_address offset_;
1725 };
1726
1727 typedef std::map<Mapping_symbol_position, char> Mapping_symbol_info;
1728
1729 protected:
1730 // Post constructor setup.
1731 void
1732 do_setup()
1733 {
1734 // Call parent's setup method.
1735 Sized_relobj_file<size, big_endian>::do_setup();
1736
1737 // Initialize look-up tables.
1738 this->stub_tables_.resize(this->shnum());
1739 }
1740
1741 virtual void
1742 do_relocate_sections(
1743 const Symbol_table* symtab, const Layout* layout,
1744 const unsigned char* pshdrs, Output_file* of,
1745 typename Sized_relobj_file<size, big_endian>::Views* pviews);
1746
1747 // Count local symbols and (optionally) record mapping info.
1748 virtual void
1749 do_count_local_symbols(Stringpool_template<char>*,
1750 Stringpool_template<char>*);
1751
1752 private:
1753 // Fix all errata in the object.
1754 void
1755 fix_errata(typename Sized_relobj_file<size, big_endian>::Views* pviews);
1756
1757 // Whether a section needs to be scanned for relocation stubs.
1758 bool
1759 section_needs_reloc_stub_scanning(const elfcpp::Shdr<size, big_endian>&,
1760 const Relobj::Output_sections&,
1761 const Symbol_table*, const unsigned char*);
1762
1763 // List of stub tables.
1764 Stub_table_list stub_tables_;
1765
1766 // Mapping symbol information sorted by (section index, section_offset).
1767 Mapping_symbol_info mapping_symbol_info_;
1768 }; // End of AArch64_relobj
1769
1770
1771 // Override to record mapping symbol information.
1772 template<int size, bool big_endian>
1773 void
1774 AArch64_relobj<size, big_endian>::do_count_local_symbols(
1775 Stringpool_template<char>* pool, Stringpool_template<char>* dynpool)
1776 {
1777 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
1778
1779 // Only erratum-fixing work needs mapping symbols, so skip this time consuming
1780 // processing if not fixing erratum.
1781 if (!parameters->options().fix_cortex_a53_843419()
1782 && !parameters->options().fix_cortex_a53_835769())
1783 return;
1784
1785 const unsigned int loccount = this->local_symbol_count();
1786 if (loccount == 0)
1787 return;
1788
1789 // Read the symbol table section header.
1790 const unsigned int symtab_shndx = this->symtab_shndx();
1791 elfcpp::Shdr<size, big_endian>
1792 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
1793 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
1794
1795 // Read the local symbols.
1796 const int sym_size =elfcpp::Elf_sizes<size>::sym_size;
1797 gold_assert(loccount == symtabshdr.get_sh_info());
1798 off_t locsize = loccount * sym_size;
1799 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
1800 locsize, true, true);
1801
1802 // For mapping symbol processing, we need to read the symbol names.
1803 unsigned int strtab_shndx = this->adjust_shndx(symtabshdr.get_sh_link());
1804 if (strtab_shndx >= this->shnum())
1805 {
1806 this->error(_("invalid symbol table name index: %u"), strtab_shndx);
1807 return;
1808 }
1809
1810 elfcpp::Shdr<size, big_endian>
1811 strtabshdr(this, this->elf_file()->section_header(strtab_shndx));
1812 if (strtabshdr.get_sh_type() != elfcpp::SHT_STRTAB)
1813 {
1814 this->error(_("symbol table name section has wrong type: %u"),
1815 static_cast<unsigned int>(strtabshdr.get_sh_type()));
1816 return;
1817 }
1818
1819 const char* pnames =
1820 reinterpret_cast<const char*>(this->get_view(strtabshdr.get_sh_offset(),
1821 strtabshdr.get_sh_size(),
1822 false, false));
1823
1824 // Skip the first dummy symbol.
1825 psyms += sym_size;
1826 typename Sized_relobj_file<size, big_endian>::Local_values*
1827 plocal_values = this->local_values();
1828 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
1829 {
1830 elfcpp::Sym<size, big_endian> sym(psyms);
1831 Symbol_value<size>& lv((*plocal_values)[i]);
1832 AArch64_address input_value = lv.input_value();
1833
1834 // Check to see if this is a mapping symbol.
1835 const char* sym_name = pnames + sym.get_st_name();
1836 if (sym_name[0] == '$' && (sym_name[1] == 'x' || sym_name[1] == 'd')
1837 && sym_name[2] == '\0')
1838 {
1839 bool is_ordinary;
1840 unsigned int input_shndx =
1841 this->adjust_sym_shndx(i, sym.get_st_shndx(), &is_ordinary);
1842 gold_assert(is_ordinary);
1843
1844 Mapping_symbol_position msp(input_shndx, input_value);
1845 // Insert mapping_symbol_info into map whose ordering is defined by
1846 // (shndx, offset_within_section).
1847 this->mapping_symbol_info_[msp] = sym_name[1];
1848 }
1849 }
1850 }
1851
1852
1853 // Fix all errata in the object.
1854
1855 template<int size, bool big_endian>
1856 void
1857 AArch64_relobj<size, big_endian>::fix_errata(
1858 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1859 {
1860 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
1861 unsigned int shnum = this->shnum();
1862 for (unsigned int i = 1; i < shnum; ++i)
1863 {
1864 The_stub_table* stub_table = this->stub_table(i);
1865 if (!stub_table)
1866 continue;
1867 std::pair<Erratum_stub_set_iter, Erratum_stub_set_iter>
1868 ipair(stub_table->find_erratum_stubs_for_input_section(this, i));
1869 Erratum_stub_set_iter p = ipair.first, end = ipair.second;
1870 while (p != end)
1871 {
1872 The_erratum_stub* stub = *p;
1873 typename Sized_relobj_file<size, big_endian>::View_size&
1874 pview((*pviews)[i]);
1875
1876 // Double check data before fix.
1877 gold_assert(pview.address + stub->sh_offset()
1878 == stub->erratum_address());
1879
1880 // Update previously recorded erratum insn with relocated
1881 // version.
1882 Insntype* ip =
1883 reinterpret_cast<Insntype*>(pview.view + stub->sh_offset());
1884 Insntype insn_to_fix = ip[0];
1885 stub->update_erratum_insn(insn_to_fix);
1886
1887 // Replace the erratum insn with a branch-to-stub.
1888 AArch64_address stub_address =
1889 stub_table->erratum_stub_address(stub);
1890 unsigned int b_offset = stub_address - stub->erratum_address();
1891 AArch64_relocate_functions<size, big_endian>::construct_b(
1892 pview.view + stub->sh_offset(), b_offset & 0xfffffff);
1893 ++p;
1894 }
1895 }
1896 }
1897
1898
1899 // Relocate sections.
1900
1901 template<int size, bool big_endian>
1902 void
1903 AArch64_relobj<size, big_endian>::do_relocate_sections(
1904 const Symbol_table* symtab, const Layout* layout,
1905 const unsigned char* pshdrs, Output_file* of,
1906 typename Sized_relobj_file<size, big_endian>::Views* pviews)
1907 {
1908 // Call parent to relocate sections.
1909 Sized_relobj_file<size, big_endian>::do_relocate_sections(symtab, layout,
1910 pshdrs, of, pviews);
1911
1912 // We do not generate stubs if doing a relocatable link.
1913 if (parameters->options().relocatable())
1914 return;
1915
1916 if (parameters->options().fix_cortex_a53_843419()
1917 || parameters->options().fix_cortex_a53_835769())
1918 this->fix_errata(pviews);
1919
1920 Relocate_info<size, big_endian> relinfo;
1921 relinfo.symtab = symtab;
1922 relinfo.layout = layout;
1923 relinfo.object = this;
1924
1925 // Relocate stub tables.
1926 unsigned int shnum = this->shnum();
1927 The_target_aarch64* target = The_target_aarch64::current_target();
1928
1929 for (unsigned int i = 1; i < shnum; ++i)
1930 {
1931 The_aarch64_input_section* aarch64_input_section =
1932 target->find_aarch64_input_section(this, i);
1933 if (aarch64_input_section != NULL
1934 && aarch64_input_section->is_stub_table_owner()
1935 && !aarch64_input_section->stub_table()->empty())
1936 {
1937 Output_section* os = this->output_section(i);
1938 gold_assert(os != NULL);
1939
1940 relinfo.reloc_shndx = elfcpp::SHN_UNDEF;
1941 relinfo.reloc_shdr = NULL;
1942 relinfo.data_shndx = i;
1943 relinfo.data_shdr = pshdrs + i * elfcpp::Elf_sizes<size>::shdr_size;
1944
1945 typename Sized_relobj_file<size, big_endian>::View_size&
1946 view_struct = (*pviews)[i];
1947 gold_assert(view_struct.view != NULL);
1948
1949 The_stub_table* stub_table = aarch64_input_section->stub_table();
1950 off_t offset = stub_table->address() - view_struct.address;
1951 unsigned char* view = view_struct.view + offset;
1952 AArch64_address address = stub_table->address();
1953 section_size_type view_size = stub_table->data_size();
1954 stub_table->relocate_stubs(&relinfo, target, os, view, address,
1955 view_size);
1956 }
1957 }
1958 }
1959
1960
1961 // Determine if an input section is scannable for stub processing. SHDR is
1962 // the header of the section and SHNDX is the section index. OS is the output
1963 // section for the input section and SYMTAB is the global symbol table used to
1964 // look up ICF information.
1965
1966 template<int size, bool big_endian>
1967 bool
1968 AArch64_relobj<size, big_endian>::text_section_is_scannable(
1969 const elfcpp::Shdr<size, big_endian>& text_shdr,
1970 unsigned int text_shndx,
1971 const Output_section* os,
1972 const Symbol_table* symtab)
1973 {
1974 // Skip any empty sections, unallocated sections or sections whose
1975 // type are not SHT_PROGBITS.
1976 if (text_shdr.get_sh_size() == 0
1977 || (text_shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0
1978 || text_shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
1979 return false;
1980
1981 // Skip any discarded or ICF'ed sections.
1982 if (os == NULL || symtab->is_section_folded(this, text_shndx))
1983 return false;
1984
1985 // Skip exception frame.
1986 if (strcmp(os->name(), ".eh_frame") == 0)
1987 return false ;
1988
1989 gold_assert(!this->is_output_section_offset_invalid(text_shndx) ||
1990 os->find_relaxed_input_section(this, text_shndx) != NULL);
1991
1992 return true;
1993 }
1994
1995
1996 // Determine if we want to scan the SHNDX-th section for relocation stubs.
1997 // This is a helper for AArch64_relobj::scan_sections_for_stubs().
1998
1999 template<int size, bool big_endian>
2000 bool
2001 AArch64_relobj<size, big_endian>::section_needs_reloc_stub_scanning(
2002 const elfcpp::Shdr<size, big_endian>& shdr,
2003 const Relobj::Output_sections& out_sections,
2004 const Symbol_table* symtab,
2005 const unsigned char* pshdrs)
2006 {
2007 unsigned int sh_type = shdr.get_sh_type();
2008 if (sh_type != elfcpp::SHT_RELA)
2009 return false;
2010
2011 // Ignore empty section.
2012 off_t sh_size = shdr.get_sh_size();
2013 if (sh_size == 0)
2014 return false;
2015
2016 // Ignore reloc section with unexpected symbol table. The
2017 // error will be reported in the final link.
2018 if (this->adjust_shndx(shdr.get_sh_link()) != this->symtab_shndx())
2019 return false;
2020
2021 gold_assert(sh_type == elfcpp::SHT_RELA);
2022 unsigned int reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2023
2024 // Ignore reloc section with unexpected entsize or uneven size.
2025 // The error will be reported in the final link.
2026 if (reloc_size != shdr.get_sh_entsize() || sh_size % reloc_size != 0)
2027 return false;
2028
2029 // Ignore reloc section with bad info. This error will be
2030 // reported in the final link.
2031 unsigned int text_shndx = this->adjust_shndx(shdr.get_sh_info());
2032 if (text_shndx >= this->shnum())
2033 return false;
2034
2035 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2036 const elfcpp::Shdr<size, big_endian> text_shdr(pshdrs +
2037 text_shndx * shdr_size);
2038 return this->text_section_is_scannable(text_shdr, text_shndx,
2039 out_sections[text_shndx], symtab);
2040 }
2041
2042
2043 // Scan section SHNDX for erratum 843419 and 835769.
2044
2045 template<int size, bool big_endian>
2046 void
2047 AArch64_relobj<size, big_endian>::scan_errata(
2048 unsigned int shndx, const elfcpp::Shdr<size, big_endian>& shdr,
2049 Output_section* os, const Symbol_table* symtab,
2050 The_target_aarch64* target)
2051 {
2052 if (shdr.get_sh_size() == 0
2053 || (shdr.get_sh_flags() &
2054 (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR)) == 0
2055 || shdr.get_sh_type() != elfcpp::SHT_PROGBITS)
2056 return;
2057
2058 if (!os || symtab->is_section_folded(this, shndx)) return;
2059
2060 AArch64_address output_offset = this->get_output_section_offset(shndx);
2061 AArch64_address output_address;
2062 if (output_offset != invalid_address)
2063 output_address = os->address() + output_offset;
2064 else
2065 {
2066 const Output_relaxed_input_section* poris =
2067 os->find_relaxed_input_section(this, shndx);
2068 if (!poris) return;
2069 output_address = poris->address();
2070 }
2071
2072 section_size_type input_view_size = 0;
2073 const unsigned char* input_view =
2074 this->section_contents(shndx, &input_view_size, false);
2075
2076 Mapping_symbol_position section_start(shndx, 0);
2077 // Find the first mapping symbol record within section shndx.
2078 typename Mapping_symbol_info::const_iterator p =
2079 this->mapping_symbol_info_.lower_bound(section_start);
2080 if (p == this->mapping_symbol_info_.end() || p->first.shndx_ != shndx)
2081 gold_warning(_("cannot scan executable section %u of %s for Cortex-A53 "
2082 "erratum because it has no mapping symbols."),
2083 shndx, this->name().c_str());
2084 while (p != this->mapping_symbol_info_.end() &&
2085 p->first.shndx_ == shndx)
2086 {
2087 typename Mapping_symbol_info::const_iterator prev = p;
2088 ++p;
2089 if (prev->second == 'x')
2090 {
2091 section_size_type span_start =
2092 convert_to_section_size_type(prev->first.offset_);
2093 section_size_type span_end;
2094 if (p != this->mapping_symbol_info_.end()
2095 && p->first.shndx_ == shndx)
2096 span_end = convert_to_section_size_type(p->first.offset_);
2097 else
2098 span_end = convert_to_section_size_type(shdr.get_sh_size());
2099
2100 // Here we do not share the scanning code of both errata. For 843419,
2101 // only the last few insns of each page are examined, which is fast,
2102 // whereas, for 835769, every insn pair needs to be checked.
2103
2104 if (parameters->options().fix_cortex_a53_843419())
2105 target->scan_erratum_843419_span(
2106 this, shndx, span_start, span_end,
2107 const_cast<unsigned char*>(input_view), output_address);
2108
2109 if (parameters->options().fix_cortex_a53_835769())
2110 target->scan_erratum_835769_span(
2111 this, shndx, span_start, span_end,
2112 const_cast<unsigned char*>(input_view), output_address);
2113 }
2114 }
2115 }
2116
2117
2118 // Scan relocations for stub generation.
2119
2120 template<int size, bool big_endian>
2121 void
2122 AArch64_relobj<size, big_endian>::scan_sections_for_stubs(
2123 The_target_aarch64* target,
2124 const Symbol_table* symtab,
2125 const Layout* layout)
2126 {
2127 unsigned int shnum = this->shnum();
2128 const unsigned int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
2129
2130 // Read the section headers.
2131 const unsigned char* pshdrs = this->get_view(this->elf_file()->shoff(),
2132 shnum * shdr_size,
2133 true, true);
2134
2135 // To speed up processing, we set up hash tables for fast lookup of
2136 // input offsets to output addresses.
2137 this->initialize_input_to_output_maps();
2138
2139 const Relobj::Output_sections& out_sections(this->output_sections());
2140
2141 Relocate_info<size, big_endian> relinfo;
2142 relinfo.symtab = symtab;
2143 relinfo.layout = layout;
2144 relinfo.object = this;
2145
2146 // Do relocation stubs scanning.
2147 const unsigned char* p = pshdrs + shdr_size;
2148 for (unsigned int i = 1; i < shnum; ++i, p += shdr_size)
2149 {
2150 const elfcpp::Shdr<size, big_endian> shdr(p);
2151 if (parameters->options().fix_cortex_a53_843419()
2152 || parameters->options().fix_cortex_a53_835769())
2153 scan_errata(i, shdr, out_sections[i], symtab, target);
2154 if (this->section_needs_reloc_stub_scanning(shdr, out_sections, symtab,
2155 pshdrs))
2156 {
2157 unsigned int index = this->adjust_shndx(shdr.get_sh_info());
2158 AArch64_address output_offset =
2159 this->get_output_section_offset(index);
2160 AArch64_address output_address;
2161 if (output_offset != invalid_address)
2162 {
2163 output_address = out_sections[index]->address() + output_offset;
2164 }
2165 else
2166 {
2167 // Currently this only happens for a relaxed section.
2168 const Output_relaxed_input_section* poris =
2169 out_sections[index]->find_relaxed_input_section(this, index);
2170 gold_assert(poris != NULL);
2171 output_address = poris->address();
2172 }
2173
2174 // Get the relocations.
2175 const unsigned char* prelocs = this->get_view(shdr.get_sh_offset(),
2176 shdr.get_sh_size(),
2177 true, false);
2178
2179 // Get the section contents.
2180 section_size_type input_view_size = 0;
2181 const unsigned char* input_view =
2182 this->section_contents(index, &input_view_size, false);
2183
2184 relinfo.reloc_shndx = i;
2185 relinfo.data_shndx = index;
2186 unsigned int sh_type = shdr.get_sh_type();
2187 unsigned int reloc_size;
2188 gold_assert (sh_type == elfcpp::SHT_RELA);
2189 reloc_size = elfcpp::Elf_sizes<size>::rela_size;
2190
2191 Output_section* os = out_sections[index];
2192 target->scan_section_for_stubs(&relinfo, sh_type, prelocs,
2193 shdr.get_sh_size() / reloc_size,
2194 os,
2195 output_offset == invalid_address,
2196 input_view, output_address,
2197 input_view_size);
2198 }
2199 }
2200 }
2201
2202
2203 // A class to wrap an ordinary input section containing executable code.
2204
2205 template<int size, bool big_endian>
2206 class AArch64_input_section : public Output_relaxed_input_section
2207 {
2208 public:
2209 typedef Stub_table<size, big_endian> The_stub_table;
2210
2211 AArch64_input_section(Relobj* relobj, unsigned int shndx)
2212 : Output_relaxed_input_section(relobj, shndx, 1),
2213 stub_table_(NULL),
2214 original_contents_(NULL), original_size_(0),
2215 original_addralign_(1)
2216 { }
2217
2218 ~AArch64_input_section()
2219 { delete[] this->original_contents_; }
2220
2221 // Initialize.
2222 void
2223 init();
2224
2225 // Set the stub_table.
2226 void
2227 set_stub_table(The_stub_table* st)
2228 { this->stub_table_ = st; }
2229
2230 // Whether this is a stub table owner.
2231 bool
2232 is_stub_table_owner() const
2233 { return this->stub_table_ != NULL && this->stub_table_->owner() == this; }
2234
2235 // Return the original size of the section.
2236 uint32_t
2237 original_size() const
2238 { return this->original_size_; }
2239
2240 // Return the stub table.
2241 The_stub_table*
2242 stub_table()
2243 { return stub_table_; }
2244
2245 protected:
2246 // Write out this input section.
2247 void
2248 do_write(Output_file*);
2249
2250 // Return required alignment of this.
2251 uint64_t
2252 do_addralign() const
2253 {
2254 if (this->is_stub_table_owner())
2255 return std::max(this->stub_table_->addralign(),
2256 static_cast<uint64_t>(this->original_addralign_));
2257 else
2258 return this->original_addralign_;
2259 }
2260
2261 // Finalize data size.
2262 void
2263 set_final_data_size();
2264
2265 // Reset address and file offset.
2266 void
2267 do_reset_address_and_file_offset();
2268
2269 // Output offset.
2270 bool
2271 do_output_offset(const Relobj* object, unsigned int shndx,
2272 section_offset_type offset,
2273 section_offset_type* poutput) const
2274 {
2275 if ((object == this->relobj())
2276 && (shndx == this->shndx())
2277 && (offset >= 0)
2278 && (offset <=
2279 convert_types<section_offset_type, uint32_t>(this->original_size_)))
2280 {
2281 *poutput = offset;
2282 return true;
2283 }
2284 else
2285 return false;
2286 }
2287
2288 private:
2289 // Copying is not allowed.
2290 AArch64_input_section(const AArch64_input_section&);
2291 AArch64_input_section& operator=(const AArch64_input_section&);
2292
2293 // The relocation stubs.
2294 The_stub_table* stub_table_;
2295 // Original section contents. We have to make a copy here since the file
2296 // containing the original section may not be locked when we need to access
2297 // the contents.
2298 unsigned char* original_contents_;
2299 // Section size of the original input section.
2300 uint32_t original_size_;
2301 // Address alignment of the original input section.
2302 uint32_t original_addralign_;
2303 }; // End of AArch64_input_section
2304
2305
2306 // Finalize data size.
2307
2308 template<int size, bool big_endian>
2309 void
2310 AArch64_input_section<size, big_endian>::set_final_data_size()
2311 {
2312 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2313
2314 if (this->is_stub_table_owner())
2315 {
2316 this->stub_table_->finalize_data_size();
2317 off = align_address(off, this->stub_table_->addralign());
2318 off += this->stub_table_->data_size();
2319 }
2320 this->set_data_size(off);
2321 }
2322
2323
2324 // Reset address and file offset.
2325
2326 template<int size, bool big_endian>
2327 void
2328 AArch64_input_section<size, big_endian>::do_reset_address_and_file_offset()
2329 {
2330 // Size of the original input section contents.
2331 off_t off = convert_types<off_t, uint64_t>(this->original_size_);
2332
2333 // If this is a stub table owner, account for the stub table size.
2334 if (this->is_stub_table_owner())
2335 {
2336 The_stub_table* stub_table = this->stub_table_;
2337
2338 // Reset the stub table's address and file offset. The
2339 // current data size for child will be updated after that.
2340 stub_table_->reset_address_and_file_offset();
2341 off = align_address(off, stub_table_->addralign());
2342 off += stub_table->current_data_size();
2343 }
2344
2345 this->set_current_data_size(off);
2346 }
2347
2348
2349 // Initialize an Arm_input_section.
2350
2351 template<int size, bool big_endian>
2352 void
2353 AArch64_input_section<size, big_endian>::init()
2354 {
2355 Relobj* relobj = this->relobj();
2356 unsigned int shndx = this->shndx();
2357
2358 // We have to cache original size, alignment and contents to avoid locking
2359 // the original file.
2360 this->original_addralign_ =
2361 convert_types<uint32_t, uint64_t>(relobj->section_addralign(shndx));
2362
2363 // This is not efficient but we expect only a small number of relaxed
2364 // input sections for stubs.
2365 section_size_type section_size;
2366 const unsigned char* section_contents =
2367 relobj->section_contents(shndx, &section_size, false);
2368 this->original_size_ =
2369 convert_types<uint32_t, uint64_t>(relobj->section_size(shndx));
2370
2371 gold_assert(this->original_contents_ == NULL);
2372 this->original_contents_ = new unsigned char[section_size];
2373 memcpy(this->original_contents_, section_contents, section_size);
2374
2375 // We want to make this look like the original input section after
2376 // output sections are finalized.
2377 Output_section* os = relobj->output_section(shndx);
2378 off_t offset = relobj->output_section_offset(shndx);
2379 gold_assert(os != NULL && !relobj->is_output_section_offset_invalid(shndx));
2380 this->set_address(os->address() + offset);
2381 this->set_file_offset(os->offset() + offset);
2382 this->set_current_data_size(this->original_size_);
2383 this->finalize_data_size();
2384 }
2385
2386
2387 // Write data to output file.
2388
2389 template<int size, bool big_endian>
2390 void
2391 AArch64_input_section<size, big_endian>::do_write(Output_file* of)
2392 {
2393 // We have to write out the original section content.
2394 gold_assert(this->original_contents_ != NULL);
2395 of->write(this->offset(), this->original_contents_,
2396 this->original_size_);
2397
2398 // If this owns a stub table and it is not empty, write it.
2399 if (this->is_stub_table_owner() && !this->stub_table_->empty())
2400 this->stub_table_->write(of);
2401 }
2402
2403
2404 // Arm output section class. This is defined mainly to add a number of stub
2405 // generation methods.
2406
2407 template<int size, bool big_endian>
2408 class AArch64_output_section : public Output_section
2409 {
2410 public:
2411 typedef Target_aarch64<size, big_endian> The_target_aarch64;
2412 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2413 typedef Stub_table<size, big_endian> The_stub_table;
2414 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2415
2416 public:
2417 AArch64_output_section(const char* name, elfcpp::Elf_Word type,
2418 elfcpp::Elf_Xword flags)
2419 : Output_section(name, type, flags)
2420 { }
2421
2422 ~AArch64_output_section() {}
2423
2424 // Group input sections for stub generation.
2425 void
2426 group_sections(section_size_type, bool, Target_aarch64<size, big_endian>*,
2427 const Task*);
2428
2429 private:
2430 typedef Output_section::Input_section Input_section;
2431 typedef Output_section::Input_section_list Input_section_list;
2432
2433 // Create a stub group.
2434 void
2435 create_stub_group(Input_section_list::const_iterator,
2436 Input_section_list::const_iterator,
2437 Input_section_list::const_iterator,
2438 The_target_aarch64*,
2439 std::vector<Output_relaxed_input_section*>&,
2440 const Task*);
2441 }; // End of AArch64_output_section
2442
2443
2444 // Create a stub group for input sections from FIRST to LAST. OWNER points to
2445 // the input section that will be the owner of the stub table.
2446
2447 template<int size, bool big_endian> void
2448 AArch64_output_section<size, big_endian>::create_stub_group(
2449 Input_section_list::const_iterator first,
2450 Input_section_list::const_iterator last,
2451 Input_section_list::const_iterator owner,
2452 The_target_aarch64* target,
2453 std::vector<Output_relaxed_input_section*>& new_relaxed_sections,
2454 const Task* task)
2455 {
2456 // Currently we convert ordinary input sections into relaxed sections only
2457 // at this point.
2458 The_aarch64_input_section* input_section;
2459 if (owner->is_relaxed_input_section())
2460 gold_unreachable();
2461 else
2462 {
2463 gold_assert(owner->is_input_section());
2464 // Create a new relaxed input section. We need to lock the original
2465 // file.
2466 Task_lock_obj<Object> tl(task, owner->relobj());
2467 input_section =
2468 target->new_aarch64_input_section(owner->relobj(), owner->shndx());
2469 new_relaxed_sections.push_back(input_section);
2470 }
2471
2472 // Create a stub table.
2473 The_stub_table* stub_table =
2474 target->new_stub_table(input_section);
2475
2476 input_section->set_stub_table(stub_table);
2477
2478 Input_section_list::const_iterator p = first;
2479 // Look for input sections or relaxed input sections in [first ... last].
2480 do
2481 {
2482 if (p->is_input_section() || p->is_relaxed_input_section())
2483 {
2484 // The stub table information for input sections live
2485 // in their objects.
2486 The_aarch64_relobj* aarch64_relobj =
2487 static_cast<The_aarch64_relobj*>(p->relobj());
2488 aarch64_relobj->set_stub_table(p->shndx(), stub_table);
2489 }
2490 }
2491 while (p++ != last);
2492 }
2493
2494
2495 // Group input sections for stub generation. GROUP_SIZE is roughly the limit of
2496 // stub groups. We grow a stub group by adding input section until the size is
2497 // just below GROUP_SIZE. The last input section will be converted into a stub
2498 // table owner. If STUB_ALWAYS_AFTER_BRANCH is false, we also add input sectiond
2499 // after the stub table, effectively doubling the group size.
2500 //
2501 // This is similar to the group_sections() function in elf32-arm.c but is
2502 // implemented differently.
2503
2504 template<int size, bool big_endian>
2505 void AArch64_output_section<size, big_endian>::group_sections(
2506 section_size_type group_size,
2507 bool stubs_always_after_branch,
2508 Target_aarch64<size, big_endian>* target,
2509 const Task* task)
2510 {
2511 typedef enum
2512 {
2513 NO_GROUP,
2514 FINDING_STUB_SECTION,
2515 HAS_STUB_SECTION
2516 } State;
2517
2518 std::vector<Output_relaxed_input_section*> new_relaxed_sections;
2519
2520 State state = NO_GROUP;
2521 section_size_type off = 0;
2522 section_size_type group_begin_offset = 0;
2523 section_size_type group_end_offset = 0;
2524 section_size_type stub_table_end_offset = 0;
2525 Input_section_list::const_iterator group_begin =
2526 this->input_sections().end();
2527 Input_section_list::const_iterator stub_table =
2528 this->input_sections().end();
2529 Input_section_list::const_iterator group_end = this->input_sections().end();
2530 for (Input_section_list::const_iterator p = this->input_sections().begin();
2531 p != this->input_sections().end();
2532 ++p)
2533 {
2534 section_size_type section_begin_offset =
2535 align_address(off, p->addralign());
2536 section_size_type section_end_offset =
2537 section_begin_offset + p->data_size();
2538
2539 // Check to see if we should group the previously seen sections.
2540 switch (state)
2541 {
2542 case NO_GROUP:
2543 break;
2544
2545 case FINDING_STUB_SECTION:
2546 // Adding this section makes the group larger than GROUP_SIZE.
2547 if (section_end_offset - group_begin_offset >= group_size)
2548 {
2549 if (stubs_always_after_branch)
2550 {
2551 gold_assert(group_end != this->input_sections().end());
2552 this->create_stub_group(group_begin, group_end, group_end,
2553 target, new_relaxed_sections,
2554 task);
2555 state = NO_GROUP;
2556 }
2557 else
2558 {
2559 // Input sections up to stub_group_size bytes after the stub
2560 // table can be handled by it too.
2561 state = HAS_STUB_SECTION;
2562 stub_table = group_end;
2563 stub_table_end_offset = group_end_offset;
2564 }
2565 }
2566 break;
2567
2568 case HAS_STUB_SECTION:
2569 // Adding this section makes the post stub-section group larger
2570 // than GROUP_SIZE.
2571 gold_unreachable();
2572 // NOT SUPPORTED YET. For completeness only.
2573 if (section_end_offset - stub_table_end_offset >= group_size)
2574 {
2575 gold_assert(group_end != this->input_sections().end());
2576 this->create_stub_group(group_begin, group_end, stub_table,
2577 target, new_relaxed_sections, task);
2578 state = NO_GROUP;
2579 }
2580 break;
2581
2582 default:
2583 gold_unreachable();
2584 }
2585
2586 // If we see an input section and currently there is no group, start
2587 // a new one. Skip any empty sections. We look at the data size
2588 // instead of calling p->relobj()->section_size() to avoid locking.
2589 if ((p->is_input_section() || p->is_relaxed_input_section())
2590 && (p->data_size() != 0))
2591 {
2592 if (state == NO_GROUP)
2593 {
2594 state = FINDING_STUB_SECTION;
2595 group_begin = p;
2596 group_begin_offset = section_begin_offset;
2597 }
2598
2599 // Keep track of the last input section seen.
2600 group_end = p;
2601 group_end_offset = section_end_offset;
2602 }
2603
2604 off = section_end_offset;
2605 }
2606
2607 // Create a stub group for any ungrouped sections.
2608 if (state == FINDING_STUB_SECTION || state == HAS_STUB_SECTION)
2609 {
2610 gold_assert(group_end != this->input_sections().end());
2611 this->create_stub_group(group_begin, group_end,
2612 (state == FINDING_STUB_SECTION
2613 ? group_end
2614 : stub_table),
2615 target, new_relaxed_sections, task);
2616 }
2617
2618 if (!new_relaxed_sections.empty())
2619 this->convert_input_sections_to_relaxed_sections(new_relaxed_sections);
2620
2621 // Update the section offsets
2622 for (size_t i = 0; i < new_relaxed_sections.size(); ++i)
2623 {
2624 The_aarch64_relobj* relobj = static_cast<The_aarch64_relobj*>(
2625 new_relaxed_sections[i]->relobj());
2626 unsigned int shndx = new_relaxed_sections[i]->shndx();
2627 // Tell AArch64_relobj that this input section is converted.
2628 relobj->convert_input_section_to_relaxed_section(shndx);
2629 }
2630 } // End of AArch64_output_section::group_sections
2631
2632
2633 AArch64_reloc_property_table* aarch64_reloc_property_table = NULL;
2634
2635
2636 // The aarch64 target class.
2637 // See the ABI at
2638 // http://infocenter.arm.com/help/topic/com.arm.doc.ihi0056b/IHI0056B_aaelf64.pdf
2639 template<int size, bool big_endian>
2640 class Target_aarch64 : public Sized_target<size, big_endian>
2641 {
2642 public:
2643 typedef Target_aarch64<size, big_endian> This;
2644 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2645 Reloc_section;
2646 typedef Relocate_info<size, big_endian> The_relocate_info;
2647 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
2648 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
2649 typedef Reloc_stub<size, big_endian> The_reloc_stub;
2650 typedef Erratum_stub<size, big_endian> The_erratum_stub;
2651 typedef typename Reloc_stub<size, big_endian>::Key The_reloc_stub_key;
2652 typedef Stub_table<size, big_endian> The_stub_table;
2653 typedef std::vector<The_stub_table*> Stub_table_list;
2654 typedef typename Stub_table_list::iterator Stub_table_iterator;
2655 typedef AArch64_input_section<size, big_endian> The_aarch64_input_section;
2656 typedef AArch64_output_section<size, big_endian> The_aarch64_output_section;
2657 typedef Unordered_map<Section_id,
2658 AArch64_input_section<size, big_endian>*,
2659 Section_id_hash> AArch64_input_section_map;
2660 typedef AArch64_insn_utilities<big_endian> Insn_utilities;
2661 const static int TCB_SIZE = size / 8 * 2;
2662
2663 Target_aarch64(const Target::Target_info* info = &aarch64_info)
2664 : Sized_target<size, big_endian>(info),
2665 got_(NULL), plt_(NULL), got_plt_(NULL), got_irelative_(NULL),
2666 got_tlsdesc_(NULL), global_offset_table_(NULL), rela_dyn_(NULL),
2667 rela_irelative_(NULL), copy_relocs_(elfcpp::R_AARCH64_COPY),
2668 got_mod_index_offset_(-1U),
2669 tlsdesc_reloc_info_(), tls_base_symbol_defined_(false),
2670 stub_tables_(), stub_group_size_(0), aarch64_input_section_map_()
2671 { }
2672
2673 // Scan the relocations to determine unreferenced sections for
2674 // garbage collection.
2675 void
2676 gc_process_relocs(Symbol_table* symtab,
2677 Layout* layout,
2678 Sized_relobj_file<size, big_endian>* object,
2679 unsigned int data_shndx,
2680 unsigned int sh_type,
2681 const unsigned char* prelocs,
2682 size_t reloc_count,
2683 Output_section* output_section,
2684 bool needs_special_offset_handling,
2685 size_t local_symbol_count,
2686 const unsigned char* plocal_symbols);
2687
2688 // Scan the relocations to look for symbol adjustments.
2689 void
2690 scan_relocs(Symbol_table* symtab,
2691 Layout* layout,
2692 Sized_relobj_file<size, big_endian>* object,
2693 unsigned int data_shndx,
2694 unsigned int sh_type,
2695 const unsigned char* prelocs,
2696 size_t reloc_count,
2697 Output_section* output_section,
2698 bool needs_special_offset_handling,
2699 size_t local_symbol_count,
2700 const unsigned char* plocal_symbols);
2701
2702 // Finalize the sections.
2703 void
2704 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2705
2706 // Return the value to use for a dynamic which requires special
2707 // treatment.
2708 uint64_t
2709 do_dynsym_value(const Symbol*) const;
2710
2711 // Relocate a section.
2712 void
2713 relocate_section(const Relocate_info<size, big_endian>*,
2714 unsigned int sh_type,
2715 const unsigned char* prelocs,
2716 size_t reloc_count,
2717 Output_section* output_section,
2718 bool needs_special_offset_handling,
2719 unsigned char* view,
2720 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2721 section_size_type view_size,
2722 const Reloc_symbol_changes*);
2723
2724 // Scan the relocs during a relocatable link.
2725 void
2726 scan_relocatable_relocs(Symbol_table* symtab,
2727 Layout* layout,
2728 Sized_relobj_file<size, big_endian>* object,
2729 unsigned int data_shndx,
2730 unsigned int sh_type,
2731 const unsigned char* prelocs,
2732 size_t reloc_count,
2733 Output_section* output_section,
2734 bool needs_special_offset_handling,
2735 size_t local_symbol_count,
2736 const unsigned char* plocal_symbols,
2737 Relocatable_relocs*);
2738
2739 // Relocate a section during a relocatable link.
2740 void
2741 relocate_relocs(
2742 const Relocate_info<size, big_endian>*,
2743 unsigned int sh_type,
2744 const unsigned char* prelocs,
2745 size_t reloc_count,
2746 Output_section* output_section,
2747 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
2748 const Relocatable_relocs*,
2749 unsigned char* view,
2750 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
2751 section_size_type view_size,
2752 unsigned char* reloc_view,
2753 section_size_type reloc_view_size);
2754
2755 // Return the symbol index to use for a target specific relocation.
2756 // The only target specific relocation is R_AARCH64_TLSDESC for a
2757 // local symbol, which is an absolute reloc.
2758 unsigned int
2759 do_reloc_symbol_index(void*, unsigned int r_type) const
2760 {
2761 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
2762 return 0;
2763 }
2764
2765 // Return the addend to use for a target specific relocation.
2766 uint64_t
2767 do_reloc_addend(void* arg, unsigned int r_type, uint64_t addend) const;
2768
2769 // Return the PLT section.
2770 uint64_t
2771 do_plt_address_for_global(const Symbol* gsym) const
2772 { return this->plt_section()->address_for_global(gsym); }
2773
2774 uint64_t
2775 do_plt_address_for_local(const Relobj* relobj, unsigned int symndx) const
2776 { return this->plt_section()->address_for_local(relobj, symndx); }
2777
2778 // This function should be defined in targets that can use relocation
2779 // types to determine (implemented in local_reloc_may_be_function_pointer
2780 // and global_reloc_may_be_function_pointer)
2781 // if a function's pointer is taken. ICF uses this in safe mode to only
2782 // fold those functions whose pointer is defintely not taken.
2783 bool
2784 do_can_check_for_function_pointers() const
2785 { return true; }
2786
2787 // Return the number of entries in the PLT.
2788 unsigned int
2789 plt_entry_count() const;
2790
2791 //Return the offset of the first non-reserved PLT entry.
2792 unsigned int
2793 first_plt_entry_offset() const;
2794
2795 // Return the size of each PLT entry.
2796 unsigned int
2797 plt_entry_size() const;
2798
2799 // Create a stub table.
2800 The_stub_table*
2801 new_stub_table(The_aarch64_input_section*);
2802
2803 // Create an aarch64 input section.
2804 The_aarch64_input_section*
2805 new_aarch64_input_section(Relobj*, unsigned int);
2806
2807 // Find an aarch64 input section instance for a given OBJ and SHNDX.
2808 The_aarch64_input_section*
2809 find_aarch64_input_section(Relobj*, unsigned int) const;
2810
2811 // Return the thread control block size.
2812 unsigned int
2813 tcb_size() const { return This::TCB_SIZE; }
2814
2815 // Scan a section for stub generation.
2816 void
2817 scan_section_for_stubs(const Relocate_info<size, big_endian>*, unsigned int,
2818 const unsigned char*, size_t, Output_section*,
2819 bool, const unsigned char*,
2820 Address,
2821 section_size_type);
2822
2823 // Scan a relocation section for stub.
2824 template<int sh_type>
2825 void
2826 scan_reloc_section_for_stubs(
2827 const The_relocate_info* relinfo,
2828 const unsigned char* prelocs,
2829 size_t reloc_count,
2830 Output_section* output_section,
2831 bool needs_special_offset_handling,
2832 const unsigned char* view,
2833 Address view_address,
2834 section_size_type);
2835
2836 // Relocate a single stub.
2837 void
2838 relocate_stub(The_reloc_stub*, const Relocate_info<size, big_endian>*,
2839 Output_section*, unsigned char*, Address,
2840 section_size_type);
2841
2842 // Get the default AArch64 target.
2843 static This*
2844 current_target()
2845 {
2846 gold_assert(parameters->target().machine_code() == elfcpp::EM_AARCH64
2847 && parameters->target().get_size() == size
2848 && parameters->target().is_big_endian() == big_endian);
2849 return static_cast<This*>(parameters->sized_target<size, big_endian>());
2850 }
2851
2852
2853 // Scan erratum 843419 for a part of a section.
2854 void
2855 scan_erratum_843419_span(
2856 AArch64_relobj<size, big_endian>*,
2857 unsigned int,
2858 const section_size_type,
2859 const section_size_type,
2860 unsigned char*,
2861 Address);
2862
2863 // Scan erratum 835769 for a part of a section.
2864 void
2865 scan_erratum_835769_span(
2866 AArch64_relobj<size, big_endian>*,
2867 unsigned int,
2868 const section_size_type,
2869 const section_size_type,
2870 unsigned char*,
2871 Address);
2872
2873 protected:
2874 void
2875 do_select_as_default_target()
2876 {
2877 gold_assert(aarch64_reloc_property_table == NULL);
2878 aarch64_reloc_property_table = new AArch64_reloc_property_table();
2879 }
2880
2881 // Add a new reloc argument, returning the index in the vector.
2882 size_t
2883 add_tlsdesc_info(Sized_relobj_file<size, big_endian>* object,
2884 unsigned int r_sym)
2885 {
2886 this->tlsdesc_reloc_info_.push_back(Tlsdesc_info(object, r_sym));
2887 return this->tlsdesc_reloc_info_.size() - 1;
2888 }
2889
2890 virtual Output_data_plt_aarch64<size, big_endian>*
2891 do_make_data_plt(Layout* layout,
2892 Output_data_got_aarch64<size, big_endian>* got,
2893 Output_data_space* got_plt,
2894 Output_data_space* got_irelative)
2895 {
2896 return new Output_data_plt_aarch64_standard<size, big_endian>(
2897 layout, got, got_plt, got_irelative);
2898 }
2899
2900
2901 // do_make_elf_object to override the same function in the base class.
2902 Object*
2903 do_make_elf_object(const std::string&, Input_file*, off_t,
2904 const elfcpp::Ehdr<size, big_endian>&);
2905
2906 Output_data_plt_aarch64<size, big_endian>*
2907 make_data_plt(Layout* layout,
2908 Output_data_got_aarch64<size, big_endian>* got,
2909 Output_data_space* got_plt,
2910 Output_data_space* got_irelative)
2911 {
2912 return this->do_make_data_plt(layout, got, got_plt, got_irelative);
2913 }
2914
2915 // We only need to generate stubs, and hence perform relaxation if we are
2916 // not doing relocatable linking.
2917 virtual bool
2918 do_may_relax() const
2919 { return !parameters->options().relocatable(); }
2920
2921 // Relaxation hook. This is where we do stub generation.
2922 virtual bool
2923 do_relax(int, const Input_objects*, Symbol_table*, Layout*, const Task*);
2924
2925 void
2926 group_sections(Layout* layout,
2927 section_size_type group_size,
2928 bool stubs_always_after_branch,
2929 const Task* task);
2930
2931 void
2932 scan_reloc_for_stub(const The_relocate_info*, unsigned int,
2933 const Sized_symbol<size>*, unsigned int,
2934 const Symbol_value<size>*,
2935 typename elfcpp::Elf_types<size>::Elf_Swxword,
2936 Address Elf_Addr);
2937
2938 // Make an output section.
2939 Output_section*
2940 do_make_output_section(const char* name, elfcpp::Elf_Word type,
2941 elfcpp::Elf_Xword flags)
2942 { return new The_aarch64_output_section(name, type, flags); }
2943
2944 private:
2945 // The class which scans relocations.
2946 class Scan
2947 {
2948 public:
2949 Scan()
2950 : issued_non_pic_error_(false)
2951 { }
2952
2953 inline void
2954 local(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2955 Sized_relobj_file<size, big_endian>* object,
2956 unsigned int data_shndx,
2957 Output_section* output_section,
2958 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2959 const elfcpp::Sym<size, big_endian>& lsym,
2960 bool is_discarded);
2961
2962 inline void
2963 global(Symbol_table* symtab, Layout* layout, Target_aarch64* target,
2964 Sized_relobj_file<size, big_endian>* object,
2965 unsigned int data_shndx,
2966 Output_section* output_section,
2967 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
2968 Symbol* gsym);
2969
2970 inline bool
2971 local_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2972 Target_aarch64<size, big_endian>* ,
2973 Sized_relobj_file<size, big_endian>* ,
2974 unsigned int ,
2975 Output_section* ,
2976 const elfcpp::Rela<size, big_endian>& ,
2977 unsigned int r_type,
2978 const elfcpp::Sym<size, big_endian>&);
2979
2980 inline bool
2981 global_reloc_may_be_function_pointer(Symbol_table* , Layout* ,
2982 Target_aarch64<size, big_endian>* ,
2983 Sized_relobj_file<size, big_endian>* ,
2984 unsigned int ,
2985 Output_section* ,
2986 const elfcpp::Rela<size, big_endian>& ,
2987 unsigned int r_type,
2988 Symbol* gsym);
2989
2990 private:
2991 static void
2992 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
2993 unsigned int r_type);
2994
2995 static void
2996 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
2997 unsigned int r_type, Symbol*);
2998
2999 inline bool
3000 possible_function_pointer_reloc(unsigned int r_type);
3001
3002 void
3003 check_non_pic(Relobj*, unsigned int r_type);
3004
3005 bool
3006 reloc_needs_plt_for_ifunc(Sized_relobj_file<size, big_endian>*,
3007 unsigned int r_type);
3008
3009 // Whether we have issued an error about a non-PIC compilation.
3010 bool issued_non_pic_error_;
3011 };
3012
3013 // The class which implements relocation.
3014 class Relocate
3015 {
3016 public:
3017 Relocate()
3018 : skip_call_tls_get_addr_(false)
3019 { }
3020
3021 ~Relocate()
3022 { }
3023
3024 // Do a relocation. Return false if the caller should not issue
3025 // any warnings about this relocation.
3026 inline bool
3027 relocate(const Relocate_info<size, big_endian>*, Target_aarch64*,
3028 Output_section*,
3029 size_t relnum, const elfcpp::Rela<size, big_endian>&,
3030 unsigned int r_type, const Sized_symbol<size>*,
3031 const Symbol_value<size>*,
3032 unsigned char*, typename elfcpp::Elf_types<size>::Elf_Addr,
3033 section_size_type);
3034
3035 private:
3036 inline typename AArch64_relocate_functions<size, big_endian>::Status
3037 relocate_tls(const Relocate_info<size, big_endian>*,
3038 Target_aarch64<size, big_endian>*,
3039 size_t,
3040 const elfcpp::Rela<size, big_endian>&,
3041 unsigned int r_type, const Sized_symbol<size>*,
3042 const Symbol_value<size>*,
3043 unsigned char*,
3044 typename elfcpp::Elf_types<size>::Elf_Addr);
3045
3046 inline typename AArch64_relocate_functions<size, big_endian>::Status
3047 tls_gd_to_le(
3048 const Relocate_info<size, big_endian>*,
3049 Target_aarch64<size, big_endian>*,
3050 const elfcpp::Rela<size, big_endian>&,
3051 unsigned int,
3052 unsigned char*,
3053 const Symbol_value<size>*);
3054
3055 inline typename AArch64_relocate_functions<size, big_endian>::Status
3056 tls_ld_to_le(
3057 const Relocate_info<size, big_endian>*,
3058 Target_aarch64<size, big_endian>*,
3059 const elfcpp::Rela<size, big_endian>&,
3060 unsigned int,
3061 unsigned char*,
3062 const Symbol_value<size>*);
3063
3064 inline typename AArch64_relocate_functions<size, big_endian>::Status
3065 tls_ie_to_le(
3066 const Relocate_info<size, big_endian>*,
3067 Target_aarch64<size, big_endian>*,
3068 const elfcpp::Rela<size, big_endian>&,
3069 unsigned int,
3070 unsigned char*,
3071 const Symbol_value<size>*);
3072
3073 inline typename AArch64_relocate_functions<size, big_endian>::Status
3074 tls_desc_gd_to_le(
3075 const Relocate_info<size, big_endian>*,
3076 Target_aarch64<size, big_endian>*,
3077 const elfcpp::Rela<size, big_endian>&,
3078 unsigned int,
3079 unsigned char*,
3080 const Symbol_value<size>*);
3081
3082 inline typename AArch64_relocate_functions<size, big_endian>::Status
3083 tls_desc_gd_to_ie(
3084 const Relocate_info<size, big_endian>*,
3085 Target_aarch64<size, big_endian>*,
3086 const elfcpp::Rela<size, big_endian>&,
3087 unsigned int,
3088 unsigned char*,
3089 const Symbol_value<size>*,
3090 typename elfcpp::Elf_types<size>::Elf_Addr,
3091 typename elfcpp::Elf_types<size>::Elf_Addr);
3092
3093 bool skip_call_tls_get_addr_;
3094
3095 }; // End of class Relocate
3096
3097 // A class which returns the size required for a relocation type,
3098 // used while scanning relocs during a relocatable link.
3099 class Relocatable_size_for_reloc
3100 {
3101 public:
3102 unsigned int
3103 get_size_for_reloc(unsigned int, Relobj*);
3104 };
3105
3106 // Adjust TLS relocation type based on the options and whether this
3107 // is a local symbol.
3108 static tls::Tls_optimization
3109 optimize_tls_reloc(bool is_final, int r_type);
3110
3111 // Get the GOT section, creating it if necessary.
3112 Output_data_got_aarch64<size, big_endian>*
3113 got_section(Symbol_table*, Layout*);
3114
3115 // Get the GOT PLT section.
3116 Output_data_space*
3117 got_plt_section() const
3118 {
3119 gold_assert(this->got_plt_ != NULL);
3120 return this->got_plt_;
3121 }
3122
3123 // Get the GOT section for TLSDESC entries.
3124 Output_data_got<size, big_endian>*
3125 got_tlsdesc_section() const
3126 {
3127 gold_assert(this->got_tlsdesc_ != NULL);
3128 return this->got_tlsdesc_;
3129 }
3130
3131 // Create the PLT section.
3132 void
3133 make_plt_section(Symbol_table* symtab, Layout* layout);
3134
3135 // Create a PLT entry for a global symbol.
3136 void
3137 make_plt_entry(Symbol_table*, Layout*, Symbol*);
3138
3139 // Create a PLT entry for a local STT_GNU_IFUNC symbol.
3140 void
3141 make_local_ifunc_plt_entry(Symbol_table*, Layout*,
3142 Sized_relobj_file<size, big_endian>* relobj,
3143 unsigned int local_sym_index);
3144
3145 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
3146 void
3147 define_tls_base_symbol(Symbol_table*, Layout*);
3148
3149 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
3150 void
3151 reserve_tlsdesc_entries(Symbol_table* symtab, Layout* layout);
3152
3153 // Create a GOT entry for the TLS module index.
3154 unsigned int
3155 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
3156 Sized_relobj_file<size, big_endian>* object);
3157
3158 // Get the PLT section.
3159 Output_data_plt_aarch64<size, big_endian>*
3160 plt_section() const
3161 {
3162 gold_assert(this->plt_ != NULL);
3163 return this->plt_;
3164 }
3165
3166 // Helper method to create erratum stubs for ST_E_843419 and ST_E_835769.
3167 void create_erratum_stub(
3168 AArch64_relobj<size, big_endian>* relobj,
3169 unsigned int shndx,
3170 section_size_type erratum_insn_offset,
3171 Address erratum_address,
3172 typename Insn_utilities::Insntype erratum_insn,
3173 int erratum_type);
3174
3175 // Return whether this is a 3-insn erratum sequence.
3176 bool is_erratum_843419_sequence(
3177 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
3178 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
3179 typename elfcpp::Swap<32,big_endian>::Valtype insn3);
3180
3181 // Return whether this is a 835769 sequence.
3182 // (Similarly implemented as in elfnn-aarch64.c.)
3183 bool is_erratum_835769_sequence(
3184 typename elfcpp::Swap<32,big_endian>::Valtype,
3185 typename elfcpp::Swap<32,big_endian>::Valtype);
3186
3187 // Get the dynamic reloc section, creating it if necessary.
3188 Reloc_section*
3189 rela_dyn_section(Layout*);
3190
3191 // Get the section to use for TLSDESC relocations.
3192 Reloc_section*
3193 rela_tlsdesc_section(Layout*) const;
3194
3195 // Get the section to use for IRELATIVE relocations.
3196 Reloc_section*
3197 rela_irelative_section(Layout*);
3198
3199 // Add a potential copy relocation.
3200 void
3201 copy_reloc(Symbol_table* symtab, Layout* layout,
3202 Sized_relobj_file<size, big_endian>* object,
3203 unsigned int shndx, Output_section* output_section,
3204 Symbol* sym, const elfcpp::Rela<size, big_endian>& reloc)
3205 {
3206 this->copy_relocs_.copy_reloc(symtab, layout,
3207 symtab->get_sized_symbol<size>(sym),
3208 object, shndx, output_section,
3209 reloc, this->rela_dyn_section(layout));
3210 }
3211
3212 // Information about this specific target which we pass to the
3213 // general Target structure.
3214 static const Target::Target_info aarch64_info;
3215
3216 // The types of GOT entries needed for this platform.
3217 // These values are exposed to the ABI in an incremental link.
3218 // Do not renumber existing values without changing the version
3219 // number of the .gnu_incremental_inputs section.
3220 enum Got_type
3221 {
3222 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
3223 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
3224 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
3225 GOT_TYPE_TLS_DESC = 3 // GOT entry for TLS_DESC pair
3226 };
3227
3228 // This type is used as the argument to the target specific
3229 // relocation routines. The only target specific reloc is
3230 // R_AARCh64_TLSDESC against a local symbol.
3231 struct Tlsdesc_info
3232 {
3233 Tlsdesc_info(Sized_relobj_file<size, big_endian>* a_object,
3234 unsigned int a_r_sym)
3235 : object(a_object), r_sym(a_r_sym)
3236 { }
3237
3238 // The object in which the local symbol is defined.
3239 Sized_relobj_file<size, big_endian>* object;
3240 // The local symbol index in the object.
3241 unsigned int r_sym;
3242 };
3243
3244 // The GOT section.
3245 Output_data_got_aarch64<size, big_endian>* got_;
3246 // The PLT section.
3247 Output_data_plt_aarch64<size, big_endian>* plt_;
3248 // The GOT PLT section.
3249 Output_data_space* got_plt_;
3250 // The GOT section for IRELATIVE relocations.
3251 Output_data_space* got_irelative_;
3252 // The GOT section for TLSDESC relocations.
3253 Output_data_got<size, big_endian>* got_tlsdesc_;
3254 // The _GLOBAL_OFFSET_TABLE_ symbol.
3255 Symbol* global_offset_table_;
3256 // The dynamic reloc section.
3257 Reloc_section* rela_dyn_;
3258 // The section to use for IRELATIVE relocs.
3259 Reloc_section* rela_irelative_;
3260 // Relocs saved to avoid a COPY reloc.
3261 Copy_relocs<elfcpp::SHT_RELA, size, big_endian> copy_relocs_;
3262 // Offset of the GOT entry for the TLS module index.
3263 unsigned int got_mod_index_offset_;
3264 // We handle R_AARCH64_TLSDESC against a local symbol as a target
3265 // specific relocation. Here we store the object and local symbol
3266 // index for the relocation.
3267 std::vector<Tlsdesc_info> tlsdesc_reloc_info_;
3268 // True if the _TLS_MODULE_BASE_ symbol has been defined.
3269 bool tls_base_symbol_defined_;
3270 // List of stub_tables
3271 Stub_table_list stub_tables_;
3272 // Actual stub group size
3273 section_size_type stub_group_size_;
3274 AArch64_input_section_map aarch64_input_section_map_;
3275 }; // End of Target_aarch64
3276
3277
3278 template<>
3279 const Target::Target_info Target_aarch64<64, false>::aarch64_info =
3280 {
3281 64, // size
3282 false, // is_big_endian
3283 elfcpp::EM_AARCH64, // machine_code
3284 false, // has_make_symbol
3285 false, // has_resolve
3286 false, // has_code_fill
3287 true, // is_default_stack_executable
3288 true, // can_icf_inline_merge_sections
3289 '\0', // wrap_char
3290 "/lib/ld.so.1", // program interpreter
3291 0x400000, // default_text_segment_address
3292 0x1000, // abi_pagesize (overridable by -z max-page-size)
3293 0x1000, // common_pagesize (overridable by -z common-page-size)
3294 false, // isolate_execinstr
3295 0, // rosegment_gap
3296 elfcpp::SHN_UNDEF, // small_common_shndx
3297 elfcpp::SHN_UNDEF, // large_common_shndx
3298 0, // small_common_section_flags
3299 0, // large_common_section_flags
3300 NULL, // attributes_section
3301 NULL, // attributes_vendor
3302 "_start" // entry_symbol_name
3303 };
3304
3305 template<>
3306 const Target::Target_info Target_aarch64<32, false>::aarch64_info =
3307 {
3308 32, // size
3309 false, // is_big_endian
3310 elfcpp::EM_AARCH64, // machine_code
3311 false, // has_make_symbol
3312 false, // has_resolve
3313 false, // has_code_fill
3314 true, // is_default_stack_executable
3315 false, // can_icf_inline_merge_sections
3316 '\0', // wrap_char
3317 "/lib/ld.so.1", // program interpreter
3318 0x400000, // default_text_segment_address
3319 0x1000, // abi_pagesize (overridable by -z max-page-size)
3320 0x1000, // common_pagesize (overridable by -z common-page-size)
3321 false, // isolate_execinstr
3322 0, // rosegment_gap
3323 elfcpp::SHN_UNDEF, // small_common_shndx
3324 elfcpp::SHN_UNDEF, // large_common_shndx
3325 0, // small_common_section_flags
3326 0, // large_common_section_flags
3327 NULL, // attributes_section
3328 NULL, // attributes_vendor
3329 "_start" // entry_symbol_name
3330 };
3331
3332 template<>
3333 const Target::Target_info Target_aarch64<64, true>::aarch64_info =
3334 {
3335 64, // size
3336 true, // is_big_endian
3337 elfcpp::EM_AARCH64, // machine_code
3338 false, // has_make_symbol
3339 false, // has_resolve
3340 false, // has_code_fill
3341 true, // is_default_stack_executable
3342 true, // can_icf_inline_merge_sections
3343 '\0', // wrap_char
3344 "/lib/ld.so.1", // program interpreter
3345 0x400000, // default_text_segment_address
3346 0x1000, // abi_pagesize (overridable by -z max-page-size)
3347 0x1000, // common_pagesize (overridable by -z common-page-size)
3348 false, // isolate_execinstr
3349 0, // rosegment_gap
3350 elfcpp::SHN_UNDEF, // small_common_shndx
3351 elfcpp::SHN_UNDEF, // large_common_shndx
3352 0, // small_common_section_flags
3353 0, // large_common_section_flags
3354 NULL, // attributes_section
3355 NULL, // attributes_vendor
3356 "_start" // entry_symbol_name
3357 };
3358
3359 template<>
3360 const Target::Target_info Target_aarch64<32, true>::aarch64_info =
3361 {
3362 32, // size
3363 true, // is_big_endian
3364 elfcpp::EM_AARCH64, // machine_code
3365 false, // has_make_symbol
3366 false, // has_resolve
3367 false, // has_code_fill
3368 true, // is_default_stack_executable
3369 false, // can_icf_inline_merge_sections
3370 '\0', // wrap_char
3371 "/lib/ld.so.1", // program interpreter
3372 0x400000, // default_text_segment_address
3373 0x1000, // abi_pagesize (overridable by -z max-page-size)
3374 0x1000, // common_pagesize (overridable by -z common-page-size)
3375 false, // isolate_execinstr
3376 0, // rosegment_gap
3377 elfcpp::SHN_UNDEF, // small_common_shndx
3378 elfcpp::SHN_UNDEF, // large_common_shndx
3379 0, // small_common_section_flags
3380 0, // large_common_section_flags
3381 NULL, // attributes_section
3382 NULL, // attributes_vendor
3383 "_start" // entry_symbol_name
3384 };
3385
3386 // Get the GOT section, creating it if necessary.
3387
3388 template<int size, bool big_endian>
3389 Output_data_got_aarch64<size, big_endian>*
3390 Target_aarch64<size, big_endian>::got_section(Symbol_table* symtab,
3391 Layout* layout)
3392 {
3393 if (this->got_ == NULL)
3394 {
3395 gold_assert(symtab != NULL && layout != NULL);
3396
3397 // When using -z now, we can treat .got.plt as a relro section.
3398 // Without -z now, it is modified after program startup by lazy
3399 // PLT relocations.
3400 bool is_got_plt_relro = parameters->options().now();
3401 Output_section_order got_order = (is_got_plt_relro
3402 ? ORDER_RELRO
3403 : ORDER_RELRO_LAST);
3404 Output_section_order got_plt_order = (is_got_plt_relro
3405 ? ORDER_RELRO
3406 : ORDER_NON_RELRO_FIRST);
3407
3408 // Layout of .got and .got.plt sections.
3409 // .got[0] &_DYNAMIC <-_GLOBAL_OFFSET_TABLE_
3410 // ...
3411 // .gotplt[0] reserved for ld.so (&linkmap) <--DT_PLTGOT
3412 // .gotplt[1] reserved for ld.so (resolver)
3413 // .gotplt[2] reserved
3414
3415 // Generate .got section.
3416 this->got_ = new Output_data_got_aarch64<size, big_endian>(symtab,
3417 layout);
3418 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
3419 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
3420 this->got_, got_order, true);
3421 // The first word of GOT is reserved for the address of .dynamic.
3422 // We put 0 here now. The value will be replaced later in
3423 // Output_data_got_aarch64::do_write.
3424 this->got_->add_constant(0);
3425
3426 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
3427 // _GLOBAL_OFFSET_TABLE_ value points to the start of the .got section,
3428 // even if there is a .got.plt section.
3429 this->global_offset_table_ =
3430 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
3431 Symbol_table::PREDEFINED,
3432 this->got_,
3433 0, 0, elfcpp::STT_OBJECT,
3434 elfcpp::STB_LOCAL,
3435 elfcpp::STV_HIDDEN, 0,
3436 false, false);
3437
3438 // Generate .got.plt section.
3439 this->got_plt_ = new Output_data_space(size / 8, "** GOT PLT");
3440 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3441 (elfcpp::SHF_ALLOC
3442 | elfcpp::SHF_WRITE),
3443 this->got_plt_, got_plt_order,
3444 is_got_plt_relro);
3445
3446 // The first three entries are reserved.
3447 this->got_plt_->set_current_data_size(
3448 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3449
3450 // If there are any IRELATIVE relocations, they get GOT entries
3451 // in .got.plt after the jump slot entries.
3452 this->got_irelative_ = new Output_data_space(size / 8,
3453 "** GOT IRELATIVE PLT");
3454 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3455 (elfcpp::SHF_ALLOC
3456 | elfcpp::SHF_WRITE),
3457 this->got_irelative_,
3458 got_plt_order,
3459 is_got_plt_relro);
3460
3461 // If there are any TLSDESC relocations, they get GOT entries in
3462 // .got.plt after the jump slot and IRELATIVE entries.
3463 this->got_tlsdesc_ = new Output_data_got<size, big_endian>();
3464 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
3465 (elfcpp::SHF_ALLOC
3466 | elfcpp::SHF_WRITE),
3467 this->got_tlsdesc_,
3468 got_plt_order,
3469 is_got_plt_relro);
3470
3471 if (!is_got_plt_relro)
3472 {
3473 // Those bytes can go into the relro segment.
3474 layout->increase_relro(
3475 AARCH64_GOTPLT_RESERVE_COUNT * (size / 8));
3476 }
3477
3478 }
3479 return this->got_;
3480 }
3481
3482 // Get the dynamic reloc section, creating it if necessary.
3483
3484 template<int size, bool big_endian>
3485 typename Target_aarch64<size, big_endian>::Reloc_section*
3486 Target_aarch64<size, big_endian>::rela_dyn_section(Layout* layout)
3487 {
3488 if (this->rela_dyn_ == NULL)
3489 {
3490 gold_assert(layout != NULL);
3491 this->rela_dyn_ = new Reloc_section(parameters->options().combreloc());
3492 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3493 elfcpp::SHF_ALLOC, this->rela_dyn_,
3494 ORDER_DYNAMIC_RELOCS, false);
3495 }
3496 return this->rela_dyn_;
3497 }
3498
3499 // Get the section to use for IRELATIVE relocs, creating it if
3500 // necessary. These go in .rela.dyn, but only after all other dynamic
3501 // relocations. They need to follow the other dynamic relocations so
3502 // that they can refer to global variables initialized by those
3503 // relocs.
3504
3505 template<int size, bool big_endian>
3506 typename Target_aarch64<size, big_endian>::Reloc_section*
3507 Target_aarch64<size, big_endian>::rela_irelative_section(Layout* layout)
3508 {
3509 if (this->rela_irelative_ == NULL)
3510 {
3511 // Make sure we have already created the dynamic reloc section.
3512 this->rela_dyn_section(layout);
3513 this->rela_irelative_ = new Reloc_section(false);
3514 layout->add_output_section_data(".rela.dyn", elfcpp::SHT_RELA,
3515 elfcpp::SHF_ALLOC, this->rela_irelative_,
3516 ORDER_DYNAMIC_RELOCS, false);
3517 gold_assert(this->rela_dyn_->output_section()
3518 == this->rela_irelative_->output_section());
3519 }
3520 return this->rela_irelative_;
3521 }
3522
3523
3524 // do_make_elf_object to override the same function in the base class. We need
3525 // to use a target-specific sub-class of Sized_relobj_file<size, big_endian> to
3526 // store backend specific information. Hence we need to have our own ELF object
3527 // creation.
3528
3529 template<int size, bool big_endian>
3530 Object*
3531 Target_aarch64<size, big_endian>::do_make_elf_object(
3532 const std::string& name,
3533 Input_file* input_file,
3534 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
3535 {
3536 int et = ehdr.get_e_type();
3537 // ET_EXEC files are valid input for --just-symbols/-R,
3538 // and we treat them as relocatable objects.
3539 if (et == elfcpp::ET_EXEC && input_file->just_symbols())
3540 return Sized_target<size, big_endian>::do_make_elf_object(
3541 name, input_file, offset, ehdr);
3542 else if (et == elfcpp::ET_REL)
3543 {
3544 AArch64_relobj<size, big_endian>* obj =
3545 new AArch64_relobj<size, big_endian>(name, input_file, offset, ehdr);
3546 obj->setup();
3547 return obj;
3548 }
3549 else if (et == elfcpp::ET_DYN)
3550 {
3551 // Keep base implementation.
3552 Sized_dynobj<size, big_endian>* obj =
3553 new Sized_dynobj<size, big_endian>(name, input_file, offset, ehdr);
3554 obj->setup();
3555 return obj;
3556 }
3557 else
3558 {
3559 gold_error(_("%s: unsupported ELF file type %d"),
3560 name.c_str(), et);
3561 return NULL;
3562 }
3563 }
3564
3565
3566 // Scan a relocation for stub generation.
3567
3568 template<int size, bool big_endian>
3569 void
3570 Target_aarch64<size, big_endian>::scan_reloc_for_stub(
3571 const Relocate_info<size, big_endian>* relinfo,
3572 unsigned int r_type,
3573 const Sized_symbol<size>* gsym,
3574 unsigned int r_sym,
3575 const Symbol_value<size>* psymval,
3576 typename elfcpp::Elf_types<size>::Elf_Swxword addend,
3577 Address address)
3578 {
3579 const AArch64_relobj<size, big_endian>* aarch64_relobj =
3580 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3581
3582 Symbol_value<size> symval;
3583 if (gsym != NULL)
3584 {
3585 const AArch64_reloc_property* arp = aarch64_reloc_property_table->
3586 get_reloc_property(r_type);
3587 if (gsym->use_plt_offset(arp->reference_flags()))
3588 {
3589 // This uses a PLT, change the symbol value.
3590 symval.set_output_value(this->plt_section()->address()
3591 + gsym->plt_offset());
3592 psymval = &symval;
3593 }
3594 else if (gsym->is_undefined())
3595 // There is no need to generate a stub symbol is undefined.
3596 return;
3597 }
3598
3599 // Get the symbol value.
3600 typename Symbol_value<size>::Value value = psymval->value(aarch64_relobj, 0);
3601
3602 // Owing to pipelining, the PC relative branches below actually skip
3603 // two instructions when the branch offset is 0.
3604 Address destination = static_cast<Address>(-1);
3605 switch (r_type)
3606 {
3607 case elfcpp::R_AARCH64_CALL26:
3608 case elfcpp::R_AARCH64_JUMP26:
3609 destination = value + addend;
3610 break;
3611 default:
3612 gold_unreachable();
3613 }
3614
3615 int stub_type = The_reloc_stub::
3616 stub_type_for_reloc(r_type, address, destination);
3617 if (stub_type == ST_NONE)
3618 return;
3619
3620 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
3621 gold_assert(stub_table != NULL);
3622
3623 The_reloc_stub_key key(stub_type, gsym, aarch64_relobj, r_sym, addend);
3624 The_reloc_stub* stub = stub_table->find_reloc_stub(key);
3625 if (stub == NULL)
3626 {
3627 stub = new The_reloc_stub(stub_type);
3628 stub_table->add_reloc_stub(stub, key);
3629 }
3630 stub->set_destination_address(destination);
3631 } // End of Target_aarch64::scan_reloc_for_stub
3632
3633
3634 // This function scans a relocation section for stub generation.
3635 // The template parameter Relocate must be a class type which provides
3636 // a single function, relocate(), which implements the machine
3637 // specific part of a relocation.
3638
3639 // BIG_ENDIAN is the endianness of the data. SH_TYPE is the section type:
3640 // SHT_REL or SHT_RELA.
3641
3642 // PRELOCS points to the relocation data. RELOC_COUNT is the number
3643 // of relocs. OUTPUT_SECTION is the output section.
3644 // NEEDS_SPECIAL_OFFSET_HANDLING is true if input offsets need to be
3645 // mapped to output offsets.
3646
3647 // VIEW is the section data, VIEW_ADDRESS is its memory address, and
3648 // VIEW_SIZE is the size. These refer to the input section, unless
3649 // NEEDS_SPECIAL_OFFSET_HANDLING is true, in which case they refer to
3650 // the output section.
3651
3652 template<int size, bool big_endian>
3653 template<int sh_type>
3654 void inline
3655 Target_aarch64<size, big_endian>::scan_reloc_section_for_stubs(
3656 const Relocate_info<size, big_endian>* relinfo,
3657 const unsigned char* prelocs,
3658 size_t reloc_count,
3659 Output_section* /*output_section*/,
3660 bool /*needs_special_offset_handling*/,
3661 const unsigned char* /*view*/,
3662 Address view_address,
3663 section_size_type)
3664 {
3665 typedef typename Reloc_types<sh_type,size,big_endian>::Reloc Reltype;
3666
3667 const int reloc_size =
3668 Reloc_types<sh_type,size,big_endian>::reloc_size;
3669 AArch64_relobj<size, big_endian>* object =
3670 static_cast<AArch64_relobj<size, big_endian>*>(relinfo->object);
3671 unsigned int local_count = object->local_symbol_count();
3672
3673 gold::Default_comdat_behavior default_comdat_behavior;
3674 Comdat_behavior comdat_behavior = CB_UNDETERMINED;
3675
3676 for (size_t i = 0; i < reloc_count; ++i, prelocs += reloc_size)
3677 {
3678 Reltype reloc(prelocs);
3679 typename elfcpp::Elf_types<size>::Elf_WXword r_info = reloc.get_r_info();
3680 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
3681 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
3682 if (r_type != elfcpp::R_AARCH64_CALL26
3683 && r_type != elfcpp::R_AARCH64_JUMP26)
3684 continue;
3685
3686 section_offset_type offset =
3687 convert_to_section_size_type(reloc.get_r_offset());
3688
3689 // Get the addend.
3690 typename elfcpp::Elf_types<size>::Elf_Swxword addend =
3691 reloc.get_r_addend();
3692
3693 const Sized_symbol<size>* sym;
3694 Symbol_value<size> symval;
3695 const Symbol_value<size> *psymval;
3696 bool is_defined_in_discarded_section;
3697 unsigned int shndx;
3698 if (r_sym < local_count)
3699 {
3700 sym = NULL;
3701 psymval = object->local_symbol(r_sym);
3702
3703 // If the local symbol belongs to a section we are discarding,
3704 // and that section is a debug section, try to find the
3705 // corresponding kept section and map this symbol to its
3706 // counterpart in the kept section. The symbol must not
3707 // correspond to a section we are folding.
3708 bool is_ordinary;
3709 shndx = psymval->input_shndx(&is_ordinary);
3710 is_defined_in_discarded_section =
3711 (is_ordinary
3712 && shndx != elfcpp::SHN_UNDEF
3713 && !object->is_section_included(shndx)
3714 && !relinfo->symtab->is_section_folded(object, shndx));
3715
3716 // We need to compute the would-be final value of this local
3717 // symbol.
3718 if (!is_defined_in_discarded_section)
3719 {
3720 typedef Sized_relobj_file<size, big_endian> ObjType;
3721 typename ObjType::Compute_final_local_value_status status =
3722 object->compute_final_local_value(r_sym, psymval, &symval,
3723 relinfo->symtab);
3724 if (status == ObjType::CFLV_OK)
3725 {
3726 // Currently we cannot handle a branch to a target in
3727 // a merged section. If this is the case, issue an error
3728 // and also free the merge symbol value.
3729 if (!symval.has_output_value())
3730 {
3731 const std::string& section_name =
3732 object->section_name(shndx);
3733 object->error(_("cannot handle branch to local %u "
3734 "in a merged section %s"),
3735 r_sym, section_name.c_str());
3736 }
3737 psymval = &symval;
3738 }
3739 else
3740 {
3741 // We cannot determine the final value.
3742 continue;
3743 }
3744 }
3745 }
3746 else
3747 {
3748 const Symbol* gsym;
3749 gsym = object->global_symbol(r_sym);
3750 gold_assert(gsym != NULL);
3751 if (gsym->is_forwarder())
3752 gsym = relinfo->symtab->resolve_forwards(gsym);
3753
3754 sym = static_cast<const Sized_symbol<size>*>(gsym);
3755 if (sym->has_symtab_index() && sym->symtab_index() != -1U)
3756 symval.set_output_symtab_index(sym->symtab_index());
3757 else
3758 symval.set_no_output_symtab_entry();
3759
3760 // We need to compute the would-be final value of this global
3761 // symbol.
3762 const Symbol_table* symtab = relinfo->symtab;
3763 const Sized_symbol<size>* sized_symbol =
3764 symtab->get_sized_symbol<size>(gsym);
3765 Symbol_table::Compute_final_value_status status;
3766 typename elfcpp::Elf_types<size>::Elf_Addr value =
3767 symtab->compute_final_value<size>(sized_symbol, &status);
3768
3769 // Skip this if the symbol has not output section.
3770 if (status == Symbol_table::CFVS_NO_OUTPUT_SECTION)
3771 continue;
3772 symval.set_output_value(value);
3773
3774 if (gsym->type() == elfcpp::STT_TLS)
3775 symval.set_is_tls_symbol();
3776 else if (gsym->type() == elfcpp::STT_GNU_IFUNC)
3777 symval.set_is_ifunc_symbol();
3778 psymval = &symval;
3779
3780 is_defined_in_discarded_section =
3781 (gsym->is_defined_in_discarded_section()
3782 && gsym->is_undefined());
3783 shndx = 0;
3784 }
3785
3786 Symbol_value<size> symval2;
3787 if (is_defined_in_discarded_section)
3788 {
3789 if (comdat_behavior == CB_UNDETERMINED)
3790 {
3791 std::string name = object->section_name(relinfo->data_shndx);
3792 comdat_behavior = default_comdat_behavior.get(name.c_str());
3793 }
3794 if (comdat_behavior == CB_PRETEND)
3795 {
3796 bool found;
3797 typename elfcpp::Elf_types<size>::Elf_Addr value =
3798 object->map_to_kept_section(shndx, &found);
3799 if (found)
3800 symval2.set_output_value(value + psymval->input_value());
3801 else
3802 symval2.set_output_value(0);
3803 }
3804 else
3805 {
3806 if (comdat_behavior == CB_WARNING)
3807 gold_warning_at_location(relinfo, i, offset,
3808 _("relocation refers to discarded "
3809 "section"));
3810 symval2.set_output_value(0);
3811 }
3812 symval2.set_no_output_symtab_entry();
3813 psymval = &symval2;
3814 }
3815
3816 // If symbol is a section symbol, we don't know the actual type of
3817 // destination. Give up.
3818 if (psymval->is_section_symbol())
3819 continue;
3820
3821 this->scan_reloc_for_stub(relinfo, r_type, sym, r_sym, psymval,
3822 addend, view_address + offset);
3823 } // End of iterating relocs in a section
3824 } // End of Target_aarch64::scan_reloc_section_for_stubs
3825
3826
3827 // Scan an input section for stub generation.
3828
3829 template<int size, bool big_endian>
3830 void
3831 Target_aarch64<size, big_endian>::scan_section_for_stubs(
3832 const Relocate_info<size, big_endian>* relinfo,
3833 unsigned int sh_type,
3834 const unsigned char* prelocs,
3835 size_t reloc_count,
3836 Output_section* output_section,
3837 bool needs_special_offset_handling,
3838 const unsigned char* view,
3839 Address view_address,
3840 section_size_type view_size)
3841 {
3842 gold_assert(sh_type == elfcpp::SHT_RELA);
3843 this->scan_reloc_section_for_stubs<elfcpp::SHT_RELA>(
3844 relinfo,
3845 prelocs,
3846 reloc_count,
3847 output_section,
3848 needs_special_offset_handling,
3849 view,
3850 view_address,
3851 view_size);
3852 }
3853
3854
3855 // Relocate a single stub.
3856
3857 template<int size, bool big_endian>
3858 void Target_aarch64<size, big_endian>::
3859 relocate_stub(The_reloc_stub* stub,
3860 const The_relocate_info*,
3861 Output_section*,
3862 unsigned char* view,
3863 Address address,
3864 section_size_type)
3865 {
3866 typedef AArch64_relocate_functions<size, big_endian> The_reloc_functions;
3867 typedef typename The_reloc_functions::Status The_reloc_functions_status;
3868 typedef typename elfcpp::Swap<32,big_endian>::Valtype Insntype;
3869
3870 Insntype* ip = reinterpret_cast<Insntype*>(view);
3871 int insn_number = stub->insn_num();
3872 const uint32_t* insns = stub->insns();
3873 // Check the insns are really those stub insns.
3874 for (int i = 0; i < insn_number; ++i)
3875 {
3876 Insntype insn = elfcpp::Swap<32,big_endian>::readval(ip + i);
3877 gold_assert(((uint32_t)insn == insns[i]));
3878 }
3879
3880 Address dest = stub->destination_address();
3881
3882 switch(stub->type())
3883 {
3884 case ST_ADRP_BRANCH:
3885 {
3886 // 1st reloc is ADR_PREL_PG_HI21
3887 The_reloc_functions_status status =
3888 The_reloc_functions::adrp(view, dest, address);
3889 // An error should never arise in the above step. If so, please
3890 // check 'aarch64_valid_for_adrp_p'.
3891 gold_assert(status == The_reloc_functions::STATUS_OKAY);
3892
3893 // 2nd reloc is ADD_ABS_LO12_NC
3894 const AArch64_reloc_property* arp =
3895 aarch64_reloc_property_table->get_reloc_property(
3896 elfcpp::R_AARCH64_ADD_ABS_LO12_NC);
3897 gold_assert(arp != NULL);
3898 status = The_reloc_functions::template
3899 rela_general<32>(view + 4, dest, 0, arp);
3900 // An error should never arise, it is an "_NC" relocation.
3901 gold_assert(status == The_reloc_functions::STATUS_OKAY);
3902 }
3903 break;
3904
3905 case ST_LONG_BRANCH_ABS:
3906 // 1st reloc is R_AARCH64_PREL64, at offset 8
3907 elfcpp::Swap<64,big_endian>::writeval(view + 8, dest);
3908 break;
3909
3910 case ST_LONG_BRANCH_PCREL:
3911 {
3912 // "PC" calculation is the 2nd insn in the stub.
3913 uint64_t offset = dest - (address + 4);
3914 // Offset is placed at offset 4 and 5.
3915 elfcpp::Swap<64,big_endian>::writeval(view + 16, offset);
3916 }
3917 break;
3918
3919 default:
3920 gold_unreachable();
3921 }
3922 }
3923
3924
3925 // A class to handle the PLT data.
3926 // This is an abstract base class that handles most of the linker details
3927 // but does not know the actual contents of PLT entries. The derived
3928 // classes below fill in those details.
3929
3930 template<int size, bool big_endian>
3931 class Output_data_plt_aarch64 : public Output_section_data
3932 {
3933 public:
3934 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
3935 Reloc_section;
3936 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
3937
3938 Output_data_plt_aarch64(Layout* layout,
3939 uint64_t addralign,
3940 Output_data_got_aarch64<size, big_endian>* got,
3941 Output_data_space* got_plt,
3942 Output_data_space* got_irelative)
3943 : Output_section_data(addralign), tlsdesc_rel_(NULL), irelative_rel_(NULL),
3944 got_(got), got_plt_(got_plt), got_irelative_(got_irelative),
3945 count_(0), irelative_count_(0), tlsdesc_got_offset_(-1U)
3946 { this->init(layout); }
3947
3948 // Initialize the PLT section.
3949 void
3950 init(Layout* layout);
3951
3952 // Add an entry to the PLT.
3953 void
3954 add_entry(Symbol_table*, Layout*, Symbol* gsym);
3955
3956 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol.
3957 unsigned int
3958 add_local_ifunc_entry(Symbol_table* symtab, Layout*,
3959 Sized_relobj_file<size, big_endian>* relobj,
3960 unsigned int local_sym_index);
3961
3962 // Add the relocation for a PLT entry.
3963 void
3964 add_relocation(Symbol_table*, Layout*, Symbol* gsym,
3965 unsigned int got_offset);
3966
3967 // Add the reserved TLSDESC_PLT entry to the PLT.
3968 void
3969 reserve_tlsdesc_entry(unsigned int got_offset)
3970 { this->tlsdesc_got_offset_ = got_offset; }
3971
3972 // Return true if a TLSDESC_PLT entry has been reserved.
3973 bool
3974 has_tlsdesc_entry() const
3975 { return this->tlsdesc_got_offset_ != -1U; }
3976
3977 // Return the GOT offset for the reserved TLSDESC_PLT entry.
3978 unsigned int
3979 get_tlsdesc_got_offset() const
3980 { return this->tlsdesc_got_offset_; }
3981
3982 // Return the PLT offset of the reserved TLSDESC_PLT entry.
3983 unsigned int
3984 get_tlsdesc_plt_offset() const
3985 {
3986 return (this->first_plt_entry_offset() +
3987 (this->count_ + this->irelative_count_)
3988 * this->get_plt_entry_size());
3989 }
3990
3991 // Return the .rela.plt section data.
3992 Reloc_section*
3993 rela_plt()
3994 { return this->rel_; }
3995
3996 // Return where the TLSDESC relocations should go.
3997 Reloc_section*
3998 rela_tlsdesc(Layout*);
3999
4000 // Return where the IRELATIVE relocations should go in the PLT
4001 // relocations.
4002 Reloc_section*
4003 rela_irelative(Symbol_table*, Layout*);
4004
4005 // Return whether we created a section for IRELATIVE relocations.
4006 bool
4007 has_irelative_section() const
4008 { return this->irelative_rel_ != NULL; }
4009
4010 // Return the number of PLT entries.
4011 unsigned int
4012 entry_count() const
4013 { return this->count_ + this->irelative_count_; }
4014
4015 // Return the offset of the first non-reserved PLT entry.
4016 unsigned int
4017 first_plt_entry_offset() const
4018 { return this->do_first_plt_entry_offset(); }
4019
4020 // Return the size of a PLT entry.
4021 unsigned int
4022 get_plt_entry_size() const
4023 { return this->do_get_plt_entry_size(); }
4024
4025 // Return the reserved tlsdesc entry size.
4026 unsigned int
4027 get_plt_tlsdesc_entry_size() const
4028 { return this->do_get_plt_tlsdesc_entry_size(); }
4029
4030 // Return the PLT address to use for a global symbol.
4031 uint64_t
4032 address_for_global(const Symbol*);
4033
4034 // Return the PLT address to use for a local symbol.
4035 uint64_t
4036 address_for_local(const Relobj*, unsigned int symndx);
4037
4038 protected:
4039 // Fill in the first PLT entry.
4040 void
4041 fill_first_plt_entry(unsigned char* pov,
4042 Address got_address,
4043 Address plt_address)
4044 { this->do_fill_first_plt_entry(pov, got_address, plt_address); }
4045
4046 // Fill in a normal PLT entry.
4047 void
4048 fill_plt_entry(unsigned char* pov,
4049 Address got_address,
4050 Address plt_address,
4051 unsigned int got_offset,
4052 unsigned int plt_offset)
4053 {
4054 this->do_fill_plt_entry(pov, got_address, plt_address,
4055 got_offset, plt_offset);
4056 }
4057
4058 // Fill in the reserved TLSDESC PLT entry.
4059 void
4060 fill_tlsdesc_entry(unsigned char* pov,
4061 Address gotplt_address,
4062 Address plt_address,
4063 Address got_base,
4064 unsigned int tlsdesc_got_offset,
4065 unsigned int plt_offset)
4066 {
4067 this->do_fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4068 tlsdesc_got_offset, plt_offset);
4069 }
4070
4071 virtual unsigned int
4072 do_first_plt_entry_offset() const = 0;
4073
4074 virtual unsigned int
4075 do_get_plt_entry_size() const = 0;
4076
4077 virtual unsigned int
4078 do_get_plt_tlsdesc_entry_size() const = 0;
4079
4080 virtual void
4081 do_fill_first_plt_entry(unsigned char* pov,
4082 Address got_addr,
4083 Address plt_addr) = 0;
4084
4085 virtual void
4086 do_fill_plt_entry(unsigned char* pov,
4087 Address got_address,
4088 Address plt_address,
4089 unsigned int got_offset,
4090 unsigned int plt_offset) = 0;
4091
4092 virtual void
4093 do_fill_tlsdesc_entry(unsigned char* pov,
4094 Address gotplt_address,
4095 Address plt_address,
4096 Address got_base,
4097 unsigned int tlsdesc_got_offset,
4098 unsigned int plt_offset) = 0;
4099
4100 void
4101 do_adjust_output_section(Output_section* os);
4102
4103 // Write to a map file.
4104 void
4105 do_print_to_mapfile(Mapfile* mapfile) const
4106 { mapfile->print_output_data(this, _("** PLT")); }
4107
4108 private:
4109 // Set the final size.
4110 void
4111 set_final_data_size();
4112
4113 // Write out the PLT data.
4114 void
4115 do_write(Output_file*);
4116
4117 // The reloc section.
4118 Reloc_section* rel_;
4119
4120 // The TLSDESC relocs, if necessary. These must follow the regular
4121 // PLT relocs.
4122 Reloc_section* tlsdesc_rel_;
4123
4124 // The IRELATIVE relocs, if necessary. These must follow the
4125 // regular PLT relocations.
4126 Reloc_section* irelative_rel_;
4127
4128 // The .got section.
4129 Output_data_got_aarch64<size, big_endian>* got_;
4130
4131 // The .got.plt section.
4132 Output_data_space* got_plt_;
4133
4134 // The part of the .got.plt section used for IRELATIVE relocs.
4135 Output_data_space* got_irelative_;
4136
4137 // The number of PLT entries.
4138 unsigned int count_;
4139
4140 // Number of PLT entries with R_AARCH64_IRELATIVE relocs. These
4141 // follow the regular PLT entries.
4142 unsigned int irelative_count_;
4143
4144 // GOT offset of the reserved TLSDESC_GOT entry for the lazy trampoline.
4145 // Communicated to the loader via DT_TLSDESC_GOT. The magic value -1
4146 // indicates an offset is not allocated.
4147 unsigned int tlsdesc_got_offset_;
4148 };
4149
4150 // Initialize the PLT section.
4151
4152 template<int size, bool big_endian>
4153 void
4154 Output_data_plt_aarch64<size, big_endian>::init(Layout* layout)
4155 {
4156 this->rel_ = new Reloc_section(false);
4157 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4158 elfcpp::SHF_ALLOC, this->rel_,
4159 ORDER_DYNAMIC_PLT_RELOCS, false);
4160 }
4161
4162 template<int size, bool big_endian>
4163 void
4164 Output_data_plt_aarch64<size, big_endian>::do_adjust_output_section(
4165 Output_section* os)
4166 {
4167 os->set_entsize(this->get_plt_entry_size());
4168 }
4169
4170 // Add an entry to the PLT.
4171
4172 template<int size, bool big_endian>
4173 void
4174 Output_data_plt_aarch64<size, big_endian>::add_entry(Symbol_table* symtab,
4175 Layout* layout, Symbol* gsym)
4176 {
4177 gold_assert(!gsym->has_plt_offset());
4178
4179 unsigned int* pcount;
4180 unsigned int plt_reserved;
4181 Output_section_data_build* got;
4182
4183 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4184 && gsym->can_use_relative_reloc(false))
4185 {
4186 pcount = &this->irelative_count_;
4187 plt_reserved = 0;
4188 got = this->got_irelative_;
4189 }
4190 else
4191 {
4192 pcount = &this->count_;
4193 plt_reserved = this->first_plt_entry_offset();
4194 got = this->got_plt_;
4195 }
4196
4197 gsym->set_plt_offset((*pcount) * this->get_plt_entry_size()
4198 + plt_reserved);
4199
4200 ++*pcount;
4201
4202 section_offset_type got_offset = got->current_data_size();
4203
4204 // Every PLT entry needs a GOT entry which points back to the PLT
4205 // entry (this will be changed by the dynamic linker, normally
4206 // lazily when the function is called).
4207 got->set_current_data_size(got_offset + size / 8);
4208
4209 // Every PLT entry needs a reloc.
4210 this->add_relocation(symtab, layout, gsym, got_offset);
4211
4212 // Note that we don't need to save the symbol. The contents of the
4213 // PLT are independent of which symbols are used. The symbols only
4214 // appear in the relocations.
4215 }
4216
4217 // Add an entry to the PLT for a local STT_GNU_IFUNC symbol. Return
4218 // the PLT offset.
4219
4220 template<int size, bool big_endian>
4221 unsigned int
4222 Output_data_plt_aarch64<size, big_endian>::add_local_ifunc_entry(
4223 Symbol_table* symtab,
4224 Layout* layout,
4225 Sized_relobj_file<size, big_endian>* relobj,
4226 unsigned int local_sym_index)
4227 {
4228 unsigned int plt_offset = this->irelative_count_ * this->get_plt_entry_size();
4229 ++this->irelative_count_;
4230
4231 section_offset_type got_offset = this->got_irelative_->current_data_size();
4232
4233 // Every PLT entry needs a GOT entry which points back to the PLT
4234 // entry.
4235 this->got_irelative_->set_current_data_size(got_offset + size / 8);
4236
4237 // Every PLT entry needs a reloc.
4238 Reloc_section* rela = this->rela_irelative(symtab, layout);
4239 rela->add_symbolless_local_addend(relobj, local_sym_index,
4240 elfcpp::R_AARCH64_IRELATIVE,
4241 this->got_irelative_, got_offset, 0);
4242
4243 return plt_offset;
4244 }
4245
4246 // Add the relocation for a PLT entry.
4247
4248 template<int size, bool big_endian>
4249 void
4250 Output_data_plt_aarch64<size, big_endian>::add_relocation(
4251 Symbol_table* symtab, Layout* layout, Symbol* gsym, unsigned int got_offset)
4252 {
4253 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4254 && gsym->can_use_relative_reloc(false))
4255 {
4256 Reloc_section* rela = this->rela_irelative(symtab, layout);
4257 rela->add_symbolless_global_addend(gsym, elfcpp::R_AARCH64_IRELATIVE,
4258 this->got_irelative_, got_offset, 0);
4259 }
4260 else
4261 {
4262 gsym->set_needs_dynsym_entry();
4263 this->rel_->add_global(gsym, elfcpp::R_AARCH64_JUMP_SLOT, this->got_plt_,
4264 got_offset, 0);
4265 }
4266 }
4267
4268 // Return where the TLSDESC relocations should go, creating it if
4269 // necessary. These follow the JUMP_SLOT relocations.
4270
4271 template<int size, bool big_endian>
4272 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4273 Output_data_plt_aarch64<size, big_endian>::rela_tlsdesc(Layout* layout)
4274 {
4275 if (this->tlsdesc_rel_ == NULL)
4276 {
4277 this->tlsdesc_rel_ = new Reloc_section(false);
4278 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4279 elfcpp::SHF_ALLOC, this->tlsdesc_rel_,
4280 ORDER_DYNAMIC_PLT_RELOCS, false);
4281 gold_assert(this->tlsdesc_rel_->output_section()
4282 == this->rel_->output_section());
4283 }
4284 return this->tlsdesc_rel_;
4285 }
4286
4287 // Return where the IRELATIVE relocations should go in the PLT. These
4288 // follow the JUMP_SLOT and the TLSDESC relocations.
4289
4290 template<int size, bool big_endian>
4291 typename Output_data_plt_aarch64<size, big_endian>::Reloc_section*
4292 Output_data_plt_aarch64<size, big_endian>::rela_irelative(Symbol_table* symtab,
4293 Layout* layout)
4294 {
4295 if (this->irelative_rel_ == NULL)
4296 {
4297 // Make sure we have a place for the TLSDESC relocations, in
4298 // case we see any later on.
4299 this->rela_tlsdesc(layout);
4300 this->irelative_rel_ = new Reloc_section(false);
4301 layout->add_output_section_data(".rela.plt", elfcpp::SHT_RELA,
4302 elfcpp::SHF_ALLOC, this->irelative_rel_,
4303 ORDER_DYNAMIC_PLT_RELOCS, false);
4304 gold_assert(this->irelative_rel_->output_section()
4305 == this->rel_->output_section());
4306
4307 if (parameters->doing_static_link())
4308 {
4309 // A statically linked executable will only have a .rela.plt
4310 // section to hold R_AARCH64_IRELATIVE relocs for
4311 // STT_GNU_IFUNC symbols. The library will use these
4312 // symbols to locate the IRELATIVE relocs at program startup
4313 // time.
4314 symtab->define_in_output_data("__rela_iplt_start", NULL,
4315 Symbol_table::PREDEFINED,
4316 this->irelative_rel_, 0, 0,
4317 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4318 elfcpp::STV_HIDDEN, 0, false, true);
4319 symtab->define_in_output_data("__rela_iplt_end", NULL,
4320 Symbol_table::PREDEFINED,
4321 this->irelative_rel_, 0, 0,
4322 elfcpp::STT_NOTYPE, elfcpp::STB_GLOBAL,
4323 elfcpp::STV_HIDDEN, 0, true, true);
4324 }
4325 }
4326 return this->irelative_rel_;
4327 }
4328
4329 // Return the PLT address to use for a global symbol.
4330
4331 template<int size, bool big_endian>
4332 uint64_t
4333 Output_data_plt_aarch64<size, big_endian>::address_for_global(
4334 const Symbol* gsym)
4335 {
4336 uint64_t offset = 0;
4337 if (gsym->type() == elfcpp::STT_GNU_IFUNC
4338 && gsym->can_use_relative_reloc(false))
4339 offset = (this->first_plt_entry_offset() +
4340 this->count_ * this->get_plt_entry_size());
4341 return this->address() + offset + gsym->plt_offset();
4342 }
4343
4344 // Return the PLT address to use for a local symbol. These are always
4345 // IRELATIVE relocs.
4346
4347 template<int size, bool big_endian>
4348 uint64_t
4349 Output_data_plt_aarch64<size, big_endian>::address_for_local(
4350 const Relobj* object,
4351 unsigned int r_sym)
4352 {
4353 return (this->address()
4354 + this->first_plt_entry_offset()
4355 + this->count_ * this->get_plt_entry_size()
4356 + object->local_plt_offset(r_sym));
4357 }
4358
4359 // Set the final size.
4360
4361 template<int size, bool big_endian>
4362 void
4363 Output_data_plt_aarch64<size, big_endian>::set_final_data_size()
4364 {
4365 unsigned int count = this->count_ + this->irelative_count_;
4366 unsigned int extra_size = 0;
4367 if (this->has_tlsdesc_entry())
4368 extra_size += this->get_plt_tlsdesc_entry_size();
4369 this->set_data_size(this->first_plt_entry_offset()
4370 + count * this->get_plt_entry_size()
4371 + extra_size);
4372 }
4373
4374 template<int size, bool big_endian>
4375 class Output_data_plt_aarch64_standard :
4376 public Output_data_plt_aarch64<size, big_endian>
4377 {
4378 public:
4379 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4380 Output_data_plt_aarch64_standard(
4381 Layout* layout,
4382 Output_data_got_aarch64<size, big_endian>* got,
4383 Output_data_space* got_plt,
4384 Output_data_space* got_irelative)
4385 : Output_data_plt_aarch64<size, big_endian>(layout,
4386 size == 32 ? 4 : 8,
4387 got, got_plt,
4388 got_irelative)
4389 { }
4390
4391 protected:
4392 // Return the offset of the first non-reserved PLT entry.
4393 virtual unsigned int
4394 do_first_plt_entry_offset() const
4395 { return this->first_plt_entry_size; }
4396
4397 // Return the size of a PLT entry
4398 virtual unsigned int
4399 do_get_plt_entry_size() const
4400 { return this->plt_entry_size; }
4401
4402 // Return the size of a tlsdesc entry
4403 virtual unsigned int
4404 do_get_plt_tlsdesc_entry_size() const
4405 { return this->plt_tlsdesc_entry_size; }
4406
4407 virtual void
4408 do_fill_first_plt_entry(unsigned char* pov,
4409 Address got_address,
4410 Address plt_address);
4411
4412 virtual void
4413 do_fill_plt_entry(unsigned char* pov,
4414 Address got_address,
4415 Address plt_address,
4416 unsigned int got_offset,
4417 unsigned int plt_offset);
4418
4419 virtual void
4420 do_fill_tlsdesc_entry(unsigned char* pov,
4421 Address gotplt_address,
4422 Address plt_address,
4423 Address got_base,
4424 unsigned int tlsdesc_got_offset,
4425 unsigned int plt_offset);
4426
4427 private:
4428 // The size of the first plt entry size.
4429 static const int first_plt_entry_size = 32;
4430 // The size of the plt entry size.
4431 static const int plt_entry_size = 16;
4432 // The size of the plt tlsdesc entry size.
4433 static const int plt_tlsdesc_entry_size = 32;
4434 // Template for the first PLT entry.
4435 static const uint32_t first_plt_entry[first_plt_entry_size / 4];
4436 // Template for subsequent PLT entries.
4437 static const uint32_t plt_entry[plt_entry_size / 4];
4438 // The reserved TLSDESC entry in the PLT for an executable.
4439 static const uint32_t tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4];
4440 };
4441
4442 // The first entry in the PLT for an executable.
4443
4444 template<>
4445 const uint32_t
4446 Output_data_plt_aarch64_standard<32, false>::
4447 first_plt_entry[first_plt_entry_size / 4] =
4448 {
4449 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4450 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4451 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4452 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4453 0xd61f0220, /* br x17 */
4454 0xd503201f, /* nop */
4455 0xd503201f, /* nop */
4456 0xd503201f, /* nop */
4457 };
4458
4459
4460 template<>
4461 const uint32_t
4462 Output_data_plt_aarch64_standard<32, true>::
4463 first_plt_entry[first_plt_entry_size / 4] =
4464 {
4465 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4466 0x90000010, /* adrp x16, PLT_GOT+0x8 */
4467 0xb9400A11, /* ldr w17, [x16, #PLT_GOT+0x8] */
4468 0x11002210, /* add w16, w16,#PLT_GOT+0x8 */
4469 0xd61f0220, /* br x17 */
4470 0xd503201f, /* nop */
4471 0xd503201f, /* nop */
4472 0xd503201f, /* nop */
4473 };
4474
4475
4476 template<>
4477 const uint32_t
4478 Output_data_plt_aarch64_standard<64, false>::
4479 first_plt_entry[first_plt_entry_size / 4] =
4480 {
4481 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4482 0x90000010, /* adrp x16, PLT_GOT+16 */
4483 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4484 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4485 0xd61f0220, /* br x17 */
4486 0xd503201f, /* nop */
4487 0xd503201f, /* nop */
4488 0xd503201f, /* nop */
4489 };
4490
4491
4492 template<>
4493 const uint32_t
4494 Output_data_plt_aarch64_standard<64, true>::
4495 first_plt_entry[first_plt_entry_size / 4] =
4496 {
4497 0xa9bf7bf0, /* stp x16, x30, [sp, #-16]! */
4498 0x90000010, /* adrp x16, PLT_GOT+16 */
4499 0xf9400A11, /* ldr x17, [x16, #PLT_GOT+0x10] */
4500 0x91004210, /* add x16, x16,#PLT_GOT+0x10 */
4501 0xd61f0220, /* br x17 */
4502 0xd503201f, /* nop */
4503 0xd503201f, /* nop */
4504 0xd503201f, /* nop */
4505 };
4506
4507
4508 template<>
4509 const uint32_t
4510 Output_data_plt_aarch64_standard<32, false>::
4511 plt_entry[plt_entry_size / 4] =
4512 {
4513 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4514 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4515 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4516 0xd61f0220, /* br x17. */
4517 };
4518
4519
4520 template<>
4521 const uint32_t
4522 Output_data_plt_aarch64_standard<32, true>::
4523 plt_entry[plt_entry_size / 4] =
4524 {
4525 0x90000010, /* adrp x16, PLTGOT + n * 4 */
4526 0xb9400211, /* ldr w17, [w16, PLTGOT + n * 4] */
4527 0x11000210, /* add w16, w16, :lo12:PLTGOT + n * 4 */
4528 0xd61f0220, /* br x17. */
4529 };
4530
4531
4532 template<>
4533 const uint32_t
4534 Output_data_plt_aarch64_standard<64, false>::
4535 plt_entry[plt_entry_size / 4] =
4536 {
4537 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4538 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4539 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4540 0xd61f0220, /* br x17. */
4541 };
4542
4543
4544 template<>
4545 const uint32_t
4546 Output_data_plt_aarch64_standard<64, true>::
4547 plt_entry[plt_entry_size / 4] =
4548 {
4549 0x90000010, /* adrp x16, PLTGOT + n * 8 */
4550 0xf9400211, /* ldr x17, [x16, PLTGOT + n * 8] */
4551 0x91000210, /* add x16, x16, :lo12:PLTGOT + n * 8 */
4552 0xd61f0220, /* br x17. */
4553 };
4554
4555
4556 template<int size, bool big_endian>
4557 void
4558 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_first_plt_entry(
4559 unsigned char* pov,
4560 Address got_address,
4561 Address plt_address)
4562 {
4563 // PLT0 of the small PLT looks like this in ELF64 -
4564 // stp x16, x30, [sp, #-16]! Save the reloc and lr on stack.
4565 // adrp x16, PLT_GOT + 16 Get the page base of the GOTPLT
4566 // ldr x17, [x16, #:lo12:PLT_GOT+16] Load the address of the
4567 // symbol resolver
4568 // add x16, x16, #:lo12:PLT_GOT+16 Load the lo12 bits of the
4569 // GOTPLT entry for this.
4570 // br x17
4571 // PLT0 will be slightly different in ELF32 due to different got entry
4572 // size.
4573 memcpy(pov, this->first_plt_entry, this->first_plt_entry_size);
4574 Address gotplt_2nd_ent = got_address + (size / 8) * 2;
4575
4576 // Fill in the top 21 bits for this: ADRP x16, PLT_GOT + 8 * 2.
4577 // ADRP: (PG(S+A)-PG(P)) >> 12) & 0x1fffff.
4578 // FIXME: This only works for 64bit
4579 AArch64_relocate_functions<size, big_endian>::adrp(pov + 4,
4580 gotplt_2nd_ent, plt_address + 4);
4581
4582 // Fill in R_AARCH64_LDST8_LO12
4583 elfcpp::Swap<32, big_endian>::writeval(
4584 pov + 8,
4585 ((this->first_plt_entry[2] & 0xffc003ff)
4586 | ((gotplt_2nd_ent & 0xff8) << 7)));
4587
4588 // Fill in R_AARCH64_ADD_ABS_LO12
4589 elfcpp::Swap<32, big_endian>::writeval(
4590 pov + 12,
4591 ((this->first_plt_entry[3] & 0xffc003ff)
4592 | ((gotplt_2nd_ent & 0xfff) << 10)));
4593 }
4594
4595
4596 // Subsequent entries in the PLT for an executable.
4597 // FIXME: This only works for 64bit
4598
4599 template<int size, bool big_endian>
4600 void
4601 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_plt_entry(
4602 unsigned char* pov,
4603 Address got_address,
4604 Address plt_address,
4605 unsigned int got_offset,
4606 unsigned int plt_offset)
4607 {
4608 memcpy(pov, this->plt_entry, this->plt_entry_size);
4609
4610 Address gotplt_entry_address = got_address + got_offset;
4611 Address plt_entry_address = plt_address + plt_offset;
4612
4613 // Fill in R_AARCH64_PCREL_ADR_HI21
4614 AArch64_relocate_functions<size, big_endian>::adrp(
4615 pov,
4616 gotplt_entry_address,
4617 plt_entry_address);
4618
4619 // Fill in R_AARCH64_LDST64_ABS_LO12
4620 elfcpp::Swap<32, big_endian>::writeval(
4621 pov + 4,
4622 ((this->plt_entry[1] & 0xffc003ff)
4623 | ((gotplt_entry_address & 0xff8) << 7)));
4624
4625 // Fill in R_AARCH64_ADD_ABS_LO12
4626 elfcpp::Swap<32, big_endian>::writeval(
4627 pov + 8,
4628 ((this->plt_entry[2] & 0xffc003ff)
4629 | ((gotplt_entry_address & 0xfff) <<10)));
4630
4631 }
4632
4633
4634 template<>
4635 const uint32_t
4636 Output_data_plt_aarch64_standard<32, false>::
4637 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4638 {
4639 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4640 0x90000002, /* adrp x2, 0 */
4641 0x90000003, /* adrp x3, 0 */
4642 0xb9400042, /* ldr w2, [w2, #0] */
4643 0x11000063, /* add w3, w3, 0 */
4644 0xd61f0040, /* br x2 */
4645 0xd503201f, /* nop */
4646 0xd503201f, /* nop */
4647 };
4648
4649 template<>
4650 const uint32_t
4651 Output_data_plt_aarch64_standard<32, true>::
4652 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4653 {
4654 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4655 0x90000002, /* adrp x2, 0 */
4656 0x90000003, /* adrp x3, 0 */
4657 0xb9400042, /* ldr w2, [w2, #0] */
4658 0x11000063, /* add w3, w3, 0 */
4659 0xd61f0040, /* br x2 */
4660 0xd503201f, /* nop */
4661 0xd503201f, /* nop */
4662 };
4663
4664 template<>
4665 const uint32_t
4666 Output_data_plt_aarch64_standard<64, false>::
4667 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4668 {
4669 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4670 0x90000002, /* adrp x2, 0 */
4671 0x90000003, /* adrp x3, 0 */
4672 0xf9400042, /* ldr x2, [x2, #0] */
4673 0x91000063, /* add x3, x3, 0 */
4674 0xd61f0040, /* br x2 */
4675 0xd503201f, /* nop */
4676 0xd503201f, /* nop */
4677 };
4678
4679 template<>
4680 const uint32_t
4681 Output_data_plt_aarch64_standard<64, true>::
4682 tlsdesc_plt_entry[plt_tlsdesc_entry_size / 4] =
4683 {
4684 0xa9bf0fe2, /* stp x2, x3, [sp, #-16]! */
4685 0x90000002, /* adrp x2, 0 */
4686 0x90000003, /* adrp x3, 0 */
4687 0xf9400042, /* ldr x2, [x2, #0] */
4688 0x91000063, /* add x3, x3, 0 */
4689 0xd61f0040, /* br x2 */
4690 0xd503201f, /* nop */
4691 0xd503201f, /* nop */
4692 };
4693
4694 template<int size, bool big_endian>
4695 void
4696 Output_data_plt_aarch64_standard<size, big_endian>::do_fill_tlsdesc_entry(
4697 unsigned char* pov,
4698 Address gotplt_address,
4699 Address plt_address,
4700 Address got_base,
4701 unsigned int tlsdesc_got_offset,
4702 unsigned int plt_offset)
4703 {
4704 memcpy(pov, tlsdesc_plt_entry, plt_tlsdesc_entry_size);
4705
4706 // move DT_TLSDESC_GOT address into x2
4707 // move .got.plt address into x3
4708 Address tlsdesc_got_entry = got_base + tlsdesc_got_offset;
4709 Address plt_entry_address = plt_address + plt_offset;
4710
4711 // R_AARCH64_ADR_PREL_PG_HI21
4712 AArch64_relocate_functions<size, big_endian>::adrp(
4713 pov + 4,
4714 tlsdesc_got_entry,
4715 plt_entry_address + 4);
4716
4717 // R_AARCH64_ADR_PREL_PG_HI21
4718 AArch64_relocate_functions<size, big_endian>::adrp(
4719 pov + 8,
4720 gotplt_address,
4721 plt_entry_address + 8);
4722
4723 // R_AARCH64_LDST64_ABS_LO12
4724 elfcpp::Swap<32, big_endian>::writeval(
4725 pov + 12,
4726 ((this->tlsdesc_plt_entry[3] & 0xffc003ff)
4727 | ((tlsdesc_got_entry & 0xff8) << 7)));
4728
4729 // R_AARCH64_ADD_ABS_LO12
4730 elfcpp::Swap<32, big_endian>::writeval(
4731 pov + 16,
4732 ((this->tlsdesc_plt_entry[4] & 0xffc003ff)
4733 | ((gotplt_address & 0xfff) << 10)));
4734 }
4735
4736 // Write out the PLT. This uses the hand-coded instructions above,
4737 // and adjusts them as needed. This is specified by the AMD64 ABI.
4738
4739 template<int size, bool big_endian>
4740 void
4741 Output_data_plt_aarch64<size, big_endian>::do_write(Output_file* of)
4742 {
4743 const off_t offset = this->offset();
4744 const section_size_type oview_size =
4745 convert_to_section_size_type(this->data_size());
4746 unsigned char* const oview = of->get_output_view(offset, oview_size);
4747
4748 const off_t got_file_offset = this->got_plt_->offset();
4749 gold_assert(got_file_offset + this->got_plt_->data_size()
4750 == this->got_irelative_->offset());
4751
4752 const section_size_type got_size =
4753 convert_to_section_size_type(this->got_plt_->data_size()
4754 + this->got_irelative_->data_size());
4755 unsigned char* const got_view = of->get_output_view(got_file_offset,
4756 got_size);
4757
4758 unsigned char* pov = oview;
4759
4760 // The base address of the .plt section.
4761 typename elfcpp::Elf_types<size>::Elf_Addr plt_address = this->address();
4762 // The base address of the PLT portion of the .got section.
4763 typename elfcpp::Elf_types<size>::Elf_Addr gotplt_address
4764 = this->got_plt_->address();
4765
4766 this->fill_first_plt_entry(pov, gotplt_address, plt_address);
4767 pov += this->first_plt_entry_offset();
4768
4769 // The first three entries in .got.plt are reserved.
4770 unsigned char* got_pov = got_view;
4771 memset(got_pov, 0, size / 8 * AARCH64_GOTPLT_RESERVE_COUNT);
4772 got_pov += (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4773
4774 unsigned int plt_offset = this->first_plt_entry_offset();
4775 unsigned int got_offset = (size / 8) * AARCH64_GOTPLT_RESERVE_COUNT;
4776 const unsigned int count = this->count_ + this->irelative_count_;
4777 for (unsigned int plt_index = 0;
4778 plt_index < count;
4779 ++plt_index,
4780 pov += this->get_plt_entry_size(),
4781 got_pov += size / 8,
4782 plt_offset += this->get_plt_entry_size(),
4783 got_offset += size / 8)
4784 {
4785 // Set and adjust the PLT entry itself.
4786 this->fill_plt_entry(pov, gotplt_address, plt_address,
4787 got_offset, plt_offset);
4788
4789 // Set the entry in the GOT, which points to plt0.
4790 elfcpp::Swap<size, big_endian>::writeval(got_pov, plt_address);
4791 }
4792
4793 if (this->has_tlsdesc_entry())
4794 {
4795 // Set and adjust the reserved TLSDESC PLT entry.
4796 unsigned int tlsdesc_got_offset = this->get_tlsdesc_got_offset();
4797 // The base address of the .base section.
4798 typename elfcpp::Elf_types<size>::Elf_Addr got_base =
4799 this->got_->address();
4800 this->fill_tlsdesc_entry(pov, gotplt_address, plt_address, got_base,
4801 tlsdesc_got_offset, plt_offset);
4802 pov += this->get_plt_tlsdesc_entry_size();
4803 }
4804
4805 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
4806 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
4807
4808 of->write_output_view(offset, oview_size, oview);
4809 of->write_output_view(got_file_offset, got_size, got_view);
4810 }
4811
4812 // Telling how to update the immediate field of an instruction.
4813 struct AArch64_howto
4814 {
4815 // The immediate field mask.
4816 elfcpp::Elf_Xword dst_mask;
4817
4818 // The offset to apply relocation immediate
4819 int doffset;
4820
4821 // The second part offset, if the immediate field has two parts.
4822 // -1 if the immediate field has only one part.
4823 int doffset2;
4824 };
4825
4826 static const AArch64_howto aarch64_howto[AArch64_reloc_property::INST_NUM] =
4827 {
4828 {0, -1, -1}, // DATA
4829 {0x1fffe0, 5, -1}, // MOVW [20:5]-imm16
4830 {0xffffe0, 5, -1}, // LD [23:5]-imm19
4831 {0x60ffffe0, 29, 5}, // ADR [30:29]-immlo [23:5]-immhi
4832 {0x60ffffe0, 29, 5}, // ADRP [30:29]-immlo [23:5]-immhi
4833 {0x3ffc00, 10, -1}, // ADD [21:10]-imm12
4834 {0x3ffc00, 10, -1}, // LDST [21:10]-imm12
4835 {0x7ffe0, 5, -1}, // TBZNZ [18:5]-imm14
4836 {0xffffe0, 5, -1}, // CONDB [23:5]-imm19
4837 {0x3ffffff, 0, -1}, // B [25:0]-imm26
4838 {0x3ffffff, 0, -1}, // CALL [25:0]-imm26
4839 };
4840
4841 // AArch64 relocate function class
4842
4843 template<int size, bool big_endian>
4844 class AArch64_relocate_functions
4845 {
4846 public:
4847 typedef enum
4848 {
4849 STATUS_OKAY, // No error during relocation.
4850 STATUS_OVERFLOW, // Relocation overflow.
4851 STATUS_BAD_RELOC, // Relocation cannot be applied.
4852 } Status;
4853
4854 typedef AArch64_relocate_functions<size, big_endian> This;
4855 typedef typename elfcpp::Elf_types<size>::Elf_Addr Address;
4856 typedef Relocate_info<size, big_endian> The_relocate_info;
4857 typedef AArch64_relobj<size, big_endian> The_aarch64_relobj;
4858 typedef Reloc_stub<size, big_endian> The_reloc_stub;
4859 typedef Stub_table<size, big_endian> The_stub_table;
4860 typedef elfcpp::Rela<size, big_endian> The_rela;
4861 typedef typename elfcpp::Swap<size, big_endian>::Valtype AArch64_valtype;
4862
4863 // Return the page address of the address.
4864 // Page(address) = address & ~0xFFF
4865
4866 static inline AArch64_valtype
4867 Page(Address address)
4868 {
4869 return (address & (~static_cast<Address>(0xFFF)));
4870 }
4871
4872 private:
4873 // Update instruction (pointed by view) with selected bits (immed).
4874 // val = (val & ~dst_mask) | (immed << doffset)
4875
4876 template<int valsize>
4877 static inline void
4878 update_view(unsigned char* view,
4879 AArch64_valtype immed,
4880 elfcpp::Elf_Xword doffset,
4881 elfcpp::Elf_Xword dst_mask)
4882 {
4883 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4884 Valtype* wv = reinterpret_cast<Valtype*>(view);
4885 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4886
4887 // Clear immediate fields.
4888 val &= ~dst_mask;
4889 elfcpp::Swap<valsize, big_endian>::writeval(wv,
4890 static_cast<Valtype>(val | (immed << doffset)));
4891 }
4892
4893 // Update two parts of an instruction (pointed by view) with selected
4894 // bits (immed1 and immed2).
4895 // val = (val & ~dst_mask) | (immed1 << doffset1) | (immed2 << doffset2)
4896
4897 template<int valsize>
4898 static inline void
4899 update_view_two_parts(
4900 unsigned char* view,
4901 AArch64_valtype immed1,
4902 AArch64_valtype immed2,
4903 elfcpp::Elf_Xword doffset1,
4904 elfcpp::Elf_Xword doffset2,
4905 elfcpp::Elf_Xword dst_mask)
4906 {
4907 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
4908 Valtype* wv = reinterpret_cast<Valtype*>(view);
4909 Valtype val = elfcpp::Swap<valsize, big_endian>::readval(wv);
4910 val &= ~dst_mask;
4911 elfcpp::Swap<valsize, big_endian>::writeval(wv,
4912 static_cast<Valtype>(val | (immed1 << doffset1) |
4913 (immed2 << doffset2)));
4914 }
4915
4916 // Update adr or adrp instruction with immed.
4917 // In adr and adrp: [30:29] immlo [23:5] immhi
4918
4919 static inline void
4920 update_adr(unsigned char* view, AArch64_valtype immed)
4921 {
4922 elfcpp::Elf_Xword dst_mask = (0x3 << 29) | (0x7ffff << 5);
4923 This::template update_view_two_parts<32>(
4924 view,
4925 immed & 0x3,
4926 (immed & 0x1ffffc) >> 2,
4927 29,
4928 5,
4929 dst_mask);
4930 }
4931
4932 // Update movz/movn instruction with bits immed.
4933 // Set instruction to movz if is_movz is true, otherwise set instruction
4934 // to movn.
4935
4936 static inline void
4937 update_movnz(unsigned char* view,
4938 AArch64_valtype immed,
4939 bool is_movz)
4940 {
4941 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype;
4942 Valtype* wv = reinterpret_cast<Valtype*>(view);
4943 Valtype val = elfcpp::Swap<32, big_endian>::readval(wv);
4944
4945 const elfcpp::Elf_Xword doffset =
4946 aarch64_howto[AArch64_reloc_property::INST_MOVW].doffset;
4947 const elfcpp::Elf_Xword dst_mask =
4948 aarch64_howto[AArch64_reloc_property::INST_MOVW].dst_mask;
4949
4950 // Clear immediate fields and opc code.
4951 val &= ~(dst_mask | (0x3 << 29));
4952
4953 // Set instruction to movz or movn.
4954 // movz: [30:29] is 10 movn: [30:29] is 00
4955 if (is_movz)
4956 val |= (0x2 << 29);
4957
4958 elfcpp::Swap<32, big_endian>::writeval(wv,
4959 static_cast<Valtype>(val | (immed << doffset)));
4960 }
4961
4962 // Update selected bits in text.
4963
4964 template<int valsize>
4965 static inline typename This::Status
4966 reloc_common(unsigned char* view, Address x,
4967 const AArch64_reloc_property* reloc_property)
4968 {
4969 // Select bits from X.
4970 Address immed = reloc_property->select_x_value(x);
4971
4972 // Update view.
4973 const AArch64_reloc_property::Reloc_inst inst =
4974 reloc_property->reloc_inst();
4975 // If it is a data relocation or instruction has 2 parts of immediate
4976 // fields, you should not call pcrela_general.
4977 gold_assert(aarch64_howto[inst].doffset2 == -1 &&
4978 aarch64_howto[inst].doffset != -1);
4979 This::template update_view<valsize>(view, immed,
4980 aarch64_howto[inst].doffset,
4981 aarch64_howto[inst].dst_mask);
4982
4983 // Do check overflow or alignment if needed.
4984 return (reloc_property->checkup_x_value(x)
4985 ? This::STATUS_OKAY
4986 : This::STATUS_OVERFLOW);
4987 }
4988
4989 public:
4990
4991 // Construct a B insn. Note, although we group it here with other relocation
4992 // operation, there is actually no 'relocation' involved here.
4993 static inline void
4994 construct_b(unsigned char* view, unsigned int branch_offset)
4995 {
4996 update_view_two_parts<32>(view, 0x05, (branch_offset >> 2),
4997 26, 0, 0xffffffff);
4998 }
4999
5000 // Do a simple rela relocation at unaligned addresses.
5001
5002 template<int valsize>
5003 static inline typename This::Status
5004 rela_ua(unsigned char* view,
5005 const Sized_relobj_file<size, big_endian>* object,
5006 const Symbol_value<size>* psymval,
5007 AArch64_valtype addend,
5008 const AArch64_reloc_property* reloc_property)
5009 {
5010 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5011 Valtype;
5012 typename elfcpp::Elf_types<size>::Elf_Addr x =
5013 psymval->value(object, addend);
5014 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5015 static_cast<Valtype>(x));
5016 return (reloc_property->checkup_x_value(x)
5017 ? This::STATUS_OKAY
5018 : This::STATUS_OVERFLOW);
5019 }
5020
5021 // Do a simple pc-relative relocation at unaligned addresses.
5022
5023 template<int valsize>
5024 static inline typename This::Status
5025 pcrela_ua(unsigned char* view,
5026 const Sized_relobj_file<size, big_endian>* object,
5027 const Symbol_value<size>* psymval,
5028 AArch64_valtype addend,
5029 Address address,
5030 const AArch64_reloc_property* reloc_property)
5031 {
5032 typedef typename elfcpp::Swap_unaligned<valsize, big_endian>::Valtype
5033 Valtype;
5034 Address x = psymval->value(object, addend) - address;
5035 elfcpp::Swap_unaligned<valsize, big_endian>::writeval(view,
5036 static_cast<Valtype>(x));
5037 return (reloc_property->checkup_x_value(x)
5038 ? This::STATUS_OKAY
5039 : This::STATUS_OVERFLOW);
5040 }
5041
5042 // Do a simple rela relocation at aligned addresses.
5043
5044 template<int valsize>
5045 static inline typename This::Status
5046 rela(
5047 unsigned char* view,
5048 const Sized_relobj_file<size, big_endian>* object,
5049 const Symbol_value<size>* psymval,
5050 AArch64_valtype addend,
5051 const AArch64_reloc_property* reloc_property)
5052 {
5053 typedef typename elfcpp::Swap<valsize, big_endian>::Valtype Valtype;
5054 Valtype* wv = reinterpret_cast<Valtype*>(view);
5055 Address x = psymval->value(object, addend);
5056 elfcpp::Swap<valsize, big_endian>::writeval(wv,static_cast<Valtype>(x));
5057 return (reloc_property->checkup_x_value(x)
5058 ? This::STATUS_OKAY
5059 : This::STATUS_OVERFLOW);
5060 }
5061
5062 // Do relocate. Update selected bits in text.
5063 // new_val = (val & ~dst_mask) | (immed << doffset)
5064
5065 template<int valsize>
5066 static inline typename This::Status
5067 rela_general(unsigned char* view,
5068 const Sized_relobj_file<size, big_endian>* object,
5069 const Symbol_value<size>* psymval,
5070 AArch64_valtype addend,
5071 const AArch64_reloc_property* reloc_property)
5072 {
5073 // Calculate relocation.
5074 Address x = psymval->value(object, addend);
5075 return This::template reloc_common<valsize>(view, x, reloc_property);
5076 }
5077
5078 // Do relocate. Update selected bits in text.
5079 // new val = (val & ~dst_mask) | (immed << doffset)
5080
5081 template<int valsize>
5082 static inline typename This::Status
5083 rela_general(
5084 unsigned char* view,
5085 AArch64_valtype s,
5086 AArch64_valtype addend,
5087 const AArch64_reloc_property* reloc_property)
5088 {
5089 // Calculate relocation.
5090 Address x = s + addend;
5091 return This::template reloc_common<valsize>(view, x, reloc_property);
5092 }
5093
5094 // Do address relative relocate. Update selected bits in text.
5095 // new val = (val & ~dst_mask) | (immed << doffset)
5096
5097 template<int valsize>
5098 static inline typename This::Status
5099 pcrela_general(
5100 unsigned char* view,
5101 const Sized_relobj_file<size, big_endian>* object,
5102 const Symbol_value<size>* psymval,
5103 AArch64_valtype addend,
5104 Address address,
5105 const AArch64_reloc_property* reloc_property)
5106 {
5107 // Calculate relocation.
5108 Address x = psymval->value(object, addend) - address;
5109 return This::template reloc_common<valsize>(view, x, reloc_property);
5110 }
5111
5112
5113 // Calculate (S + A) - address, update adr instruction.
5114
5115 static inline typename This::Status
5116 adr(unsigned char* view,
5117 const Sized_relobj_file<size, big_endian>* object,
5118 const Symbol_value<size>* psymval,
5119 Address addend,
5120 Address address,
5121 const AArch64_reloc_property* /* reloc_property */)
5122 {
5123 AArch64_valtype x = psymval->value(object, addend) - address;
5124 // Pick bits [20:0] of X.
5125 AArch64_valtype immed = x & 0x1fffff;
5126 update_adr(view, immed);
5127 // Check -2^20 <= X < 2^20
5128 return (size == 64 && Bits<21>::has_overflow((x))
5129 ? This::STATUS_OVERFLOW
5130 : This::STATUS_OKAY);
5131 }
5132
5133 // Calculate PG(S+A) - PG(address), update adrp instruction.
5134 // R_AARCH64_ADR_PREL_PG_HI21
5135
5136 static inline typename This::Status
5137 adrp(
5138 unsigned char* view,
5139 Address sa,
5140 Address address)
5141 {
5142 AArch64_valtype x = This::Page(sa) - This::Page(address);
5143 // Pick [32:12] of X.
5144 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5145 update_adr(view, immed);
5146 // Check -2^32 <= X < 2^32
5147 return (size == 64 && Bits<33>::has_overflow((x))
5148 ? This::STATUS_OVERFLOW
5149 : This::STATUS_OKAY);
5150 }
5151
5152 // Calculate PG(S+A) - PG(address), update adrp instruction.
5153 // R_AARCH64_ADR_PREL_PG_HI21
5154
5155 static inline typename This::Status
5156 adrp(unsigned char* view,
5157 const Sized_relobj_file<size, big_endian>* object,
5158 const Symbol_value<size>* psymval,
5159 Address addend,
5160 Address address,
5161 const AArch64_reloc_property* reloc_property)
5162 {
5163 Address sa = psymval->value(object, addend);
5164 AArch64_valtype x = This::Page(sa) - This::Page(address);
5165 // Pick [32:12] of X.
5166 AArch64_valtype immed = (x >> 12) & 0x1fffff;
5167 update_adr(view, immed);
5168 return (reloc_property->checkup_x_value(x)
5169 ? This::STATUS_OKAY
5170 : This::STATUS_OVERFLOW);
5171 }
5172
5173 // Update mov[n/z] instruction. Check overflow if needed.
5174 // If X >=0, set the instruction to movz and its immediate value to the
5175 // selected bits S.
5176 // If X < 0, set the instruction to movn and its immediate value to
5177 // NOT (selected bits of).
5178
5179 static inline typename This::Status
5180 movnz(unsigned char* view,
5181 AArch64_valtype x,
5182 const AArch64_reloc_property* reloc_property)
5183 {
5184 // Select bits from X.
5185 Address immed;
5186 bool is_movz;
5187 typedef typename elfcpp::Elf_types<size>::Elf_Swxword SignedW;
5188 if (static_cast<SignedW>(x) >= 0)
5189 {
5190 immed = reloc_property->select_x_value(x);
5191 is_movz = true;
5192 }
5193 else
5194 {
5195 immed = reloc_property->select_x_value(~x);;
5196 is_movz = false;
5197 }
5198
5199 // Update movnz instruction.
5200 update_movnz(view, immed, is_movz);
5201
5202 // Do check overflow or alignment if needed.
5203 return (reloc_property->checkup_x_value(x)
5204 ? This::STATUS_OKAY
5205 : This::STATUS_OVERFLOW);
5206 }
5207
5208 static inline bool
5209 maybe_apply_stub(unsigned int,
5210 const The_relocate_info*,
5211 const The_rela&,
5212 unsigned char*,
5213 Address,
5214 const Sized_symbol<size>*,
5215 const Symbol_value<size>*,
5216 const Sized_relobj_file<size, big_endian>*,
5217 section_size_type);
5218
5219 }; // End of AArch64_relocate_functions
5220
5221
5222 // For a certain relocation type (usually jump/branch), test to see if the
5223 // destination needs a stub to fulfil. If so, re-route the destination of the
5224 // original instruction to the stub, note, at this time, the stub has already
5225 // been generated.
5226
5227 template<int size, bool big_endian>
5228 bool
5229 AArch64_relocate_functions<size, big_endian>::
5230 maybe_apply_stub(unsigned int r_type,
5231 const The_relocate_info* relinfo,
5232 const The_rela& rela,
5233 unsigned char* view,
5234 Address address,
5235 const Sized_symbol<size>* gsym,
5236 const Symbol_value<size>* psymval,
5237 const Sized_relobj_file<size, big_endian>* object,
5238 section_size_type current_group_size)
5239 {
5240 if (parameters->options().relocatable())
5241 return false;
5242
5243 typename elfcpp::Elf_types<size>::Elf_Swxword addend = rela.get_r_addend();
5244 Address branch_target = psymval->value(object, 0) + addend;
5245 int stub_type =
5246 The_reloc_stub::stub_type_for_reloc(r_type, address, branch_target);
5247 if (stub_type == ST_NONE)
5248 return false;
5249
5250 const The_aarch64_relobj* aarch64_relobj =
5251 static_cast<const The_aarch64_relobj*>(object);
5252 The_stub_table* stub_table = aarch64_relobj->stub_table(relinfo->data_shndx);
5253 gold_assert(stub_table != NULL);
5254
5255 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5256 typename The_reloc_stub::Key stub_key(stub_type, gsym, object, r_sym, addend);
5257 The_reloc_stub* stub = stub_table->find_reloc_stub(stub_key);
5258 gold_assert(stub != NULL);
5259
5260 Address new_branch_target = stub_table->address() + stub->offset();
5261 typename elfcpp::Swap<size, big_endian>::Valtype branch_offset =
5262 new_branch_target - address;
5263 const AArch64_reloc_property* arp =
5264 aarch64_reloc_property_table->get_reloc_property(r_type);
5265 gold_assert(arp != NULL);
5266 typename This::Status status = This::template
5267 rela_general<32>(view, branch_offset, 0, arp);
5268 if (status != This::STATUS_OKAY)
5269 gold_error(_("Stub is too far away, try a smaller value "
5270 "for '--stub-group-size'. The current value is 0x%lx."),
5271 static_cast<unsigned long>(current_group_size));
5272 return true;
5273 }
5274
5275
5276 // Group input sections for stub generation.
5277 //
5278 // We group input sections in an output section so that the total size,
5279 // including any padding space due to alignment is smaller than GROUP_SIZE
5280 // unless the only input section in group is bigger than GROUP_SIZE already.
5281 // Then an ARM stub table is created to follow the last input section
5282 // in group. For each group an ARM stub table is created an is placed
5283 // after the last group. If STUB_ALWAYS_AFTER_BRANCH is false, we further
5284 // extend the group after the stub table.
5285
5286 template<int size, bool big_endian>
5287 void
5288 Target_aarch64<size, big_endian>::group_sections(
5289 Layout* layout,
5290 section_size_type group_size,
5291 bool stubs_always_after_branch,
5292 const Task* task)
5293 {
5294 // Group input sections and insert stub table
5295 Layout::Section_list section_list;
5296 layout->get_executable_sections(&section_list);
5297 for (Layout::Section_list::const_iterator p = section_list.begin();
5298 p != section_list.end();
5299 ++p)
5300 {
5301 AArch64_output_section<size, big_endian>* output_section =
5302 static_cast<AArch64_output_section<size, big_endian>*>(*p);
5303 output_section->group_sections(group_size, stubs_always_after_branch,
5304 this, task);
5305 }
5306 }
5307
5308
5309 // Find the AArch64_input_section object corresponding to the SHNDX-th input
5310 // section of RELOBJ.
5311
5312 template<int size, bool big_endian>
5313 AArch64_input_section<size, big_endian>*
5314 Target_aarch64<size, big_endian>::find_aarch64_input_section(
5315 Relobj* relobj, unsigned int shndx) const
5316 {
5317 Section_id sid(relobj, shndx);
5318 typename AArch64_input_section_map::const_iterator p =
5319 this->aarch64_input_section_map_.find(sid);
5320 return (p != this->aarch64_input_section_map_.end()) ? p->second : NULL;
5321 }
5322
5323
5324 // Make a new AArch64_input_section object.
5325
5326 template<int size, bool big_endian>
5327 AArch64_input_section<size, big_endian>*
5328 Target_aarch64<size, big_endian>::new_aarch64_input_section(
5329 Relobj* relobj, unsigned int shndx)
5330 {
5331 Section_id sid(relobj, shndx);
5332
5333 AArch64_input_section<size, big_endian>* input_section =
5334 new AArch64_input_section<size, big_endian>(relobj, shndx);
5335 input_section->init();
5336
5337 // Register new AArch64_input_section in map for look-up.
5338 std::pair<typename AArch64_input_section_map::iterator,bool> ins =
5339 this->aarch64_input_section_map_.insert(
5340 std::make_pair(sid, input_section));
5341
5342 // Make sure that it we have not created another AArch64_input_section
5343 // for this input section already.
5344 gold_assert(ins.second);
5345
5346 return input_section;
5347 }
5348
5349
5350 // Relaxation hook. This is where we do stub generation.
5351
5352 template<int size, bool big_endian>
5353 bool
5354 Target_aarch64<size, big_endian>::do_relax(
5355 int pass,
5356 const Input_objects* input_objects,
5357 Symbol_table* symtab,
5358 Layout* layout ,
5359 const Task* task)
5360 {
5361 gold_assert(!parameters->options().relocatable());
5362 if (pass == 1)
5363 {
5364 // We don't handle negative stub_group_size right now.
5365 this->stub_group_size_ = abs(parameters->options().stub_group_size());
5366 if (this->stub_group_size_ == 1)
5367 {
5368 // Leave room for 4096 4-byte stub entries. If we exceed that, then we
5369 // will fail to link. The user will have to relink with an explicit
5370 // group size option.
5371 this->stub_group_size_ = The_reloc_stub::MAX_BRANCH_OFFSET -
5372 4096 * 4;
5373 }
5374 group_sections(layout, this->stub_group_size_, true, task);
5375 }
5376 else
5377 {
5378 // If this is not the first pass, addresses and file offsets have
5379 // been reset at this point, set them here.
5380 for (Stub_table_iterator sp = this->stub_tables_.begin();
5381 sp != this->stub_tables_.end(); ++sp)
5382 {
5383 The_stub_table* stt = *sp;
5384 The_aarch64_input_section* owner = stt->owner();
5385 off_t off = align_address(owner->original_size(),
5386 stt->addralign());
5387 stt->set_address_and_file_offset(owner->address() + off,
5388 owner->offset() + off);
5389 }
5390 }
5391
5392 // Scan relocs for relocation stubs
5393 for (Input_objects::Relobj_iterator op = input_objects->relobj_begin();
5394 op != input_objects->relobj_end();
5395 ++op)
5396 {
5397 The_aarch64_relobj* aarch64_relobj =
5398 static_cast<The_aarch64_relobj*>(*op);
5399 // Lock the object so we can read from it. This is only called
5400 // single-threaded from Layout::finalize, so it is OK to lock.
5401 Task_lock_obj<Object> tl(task, aarch64_relobj);
5402 aarch64_relobj->scan_sections_for_stubs(this, symtab, layout);
5403 }
5404
5405 bool any_stub_table_changed = false;
5406 for (Stub_table_iterator siter = this->stub_tables_.begin();
5407 siter != this->stub_tables_.end() && !any_stub_table_changed; ++siter)
5408 {
5409 The_stub_table* stub_table = *siter;
5410 if (stub_table->update_data_size_changed_p())
5411 {
5412 The_aarch64_input_section* owner = stub_table->owner();
5413 uint64_t address = owner->address();
5414 off_t offset = owner->offset();
5415 owner->reset_address_and_file_offset();
5416 owner->set_address_and_file_offset(address, offset);
5417
5418 any_stub_table_changed = true;
5419 }
5420 }
5421
5422 // Do not continue relaxation.
5423 bool continue_relaxation = any_stub_table_changed;
5424 if (!continue_relaxation)
5425 for (Stub_table_iterator sp = this->stub_tables_.begin();
5426 (sp != this->stub_tables_.end());
5427 ++sp)
5428 (*sp)->finalize_stubs();
5429
5430 return continue_relaxation;
5431 }
5432
5433
5434 // Make a new Stub_table.
5435
5436 template<int size, bool big_endian>
5437 Stub_table<size, big_endian>*
5438 Target_aarch64<size, big_endian>::new_stub_table(
5439 AArch64_input_section<size, big_endian>* owner)
5440 {
5441 Stub_table<size, big_endian>* stub_table =
5442 new Stub_table<size, big_endian>(owner);
5443 stub_table->set_address(align_address(
5444 owner->address() + owner->data_size(), 8));
5445 stub_table->set_file_offset(owner->offset() + owner->data_size());
5446 stub_table->finalize_data_size();
5447
5448 this->stub_tables_.push_back(stub_table);
5449
5450 return stub_table;
5451 }
5452
5453
5454 template<int size, bool big_endian>
5455 uint64_t
5456 Target_aarch64<size, big_endian>::do_reloc_addend(
5457 void* arg, unsigned int r_type, uint64_t) const
5458 {
5459 gold_assert(r_type == elfcpp::R_AARCH64_TLSDESC);
5460 uintptr_t intarg = reinterpret_cast<uintptr_t>(arg);
5461 gold_assert(intarg < this->tlsdesc_reloc_info_.size());
5462 const Tlsdesc_info& ti(this->tlsdesc_reloc_info_[intarg]);
5463 const Symbol_value<size>* psymval = ti.object->local_symbol(ti.r_sym);
5464 gold_assert(psymval->is_tls_symbol());
5465 // The value of a TLS symbol is the offset in the TLS segment.
5466 return psymval->value(ti.object, 0);
5467 }
5468
5469 // Return the number of entries in the PLT.
5470
5471 template<int size, bool big_endian>
5472 unsigned int
5473 Target_aarch64<size, big_endian>::plt_entry_count() const
5474 {
5475 if (this->plt_ == NULL)
5476 return 0;
5477 return this->plt_->entry_count();
5478 }
5479
5480 // Return the offset of the first non-reserved PLT entry.
5481
5482 template<int size, bool big_endian>
5483 unsigned int
5484 Target_aarch64<size, big_endian>::first_plt_entry_offset() const
5485 {
5486 return this->plt_->first_plt_entry_offset();
5487 }
5488
5489 // Return the size of each PLT entry.
5490
5491 template<int size, bool big_endian>
5492 unsigned int
5493 Target_aarch64<size, big_endian>::plt_entry_size() const
5494 {
5495 return this->plt_->get_plt_entry_size();
5496 }
5497
5498 // Define the _TLS_MODULE_BASE_ symbol in the TLS segment.
5499
5500 template<int size, bool big_endian>
5501 void
5502 Target_aarch64<size, big_endian>::define_tls_base_symbol(
5503 Symbol_table* symtab, Layout* layout)
5504 {
5505 if (this->tls_base_symbol_defined_)
5506 return;
5507
5508 Output_segment* tls_segment = layout->tls_segment();
5509 if (tls_segment != NULL)
5510 {
5511 // _TLS_MODULE_BASE_ always points to the beginning of tls segment.
5512 symtab->define_in_output_segment("_TLS_MODULE_BASE_", NULL,
5513 Symbol_table::PREDEFINED,
5514 tls_segment, 0, 0,
5515 elfcpp::STT_TLS,
5516 elfcpp::STB_LOCAL,
5517 elfcpp::STV_HIDDEN, 0,
5518 Symbol::SEGMENT_START,
5519 true);
5520 }
5521 this->tls_base_symbol_defined_ = true;
5522 }
5523
5524 // Create the reserved PLT and GOT entries for the TLS descriptor resolver.
5525
5526 template<int size, bool big_endian>
5527 void
5528 Target_aarch64<size, big_endian>::reserve_tlsdesc_entries(
5529 Symbol_table* symtab, Layout* layout)
5530 {
5531 if (this->plt_ == NULL)
5532 this->make_plt_section(symtab, layout);
5533
5534 if (!this->plt_->has_tlsdesc_entry())
5535 {
5536 // Allocate the TLSDESC_GOT entry.
5537 Output_data_got_aarch64<size, big_endian>* got =
5538 this->got_section(symtab, layout);
5539 unsigned int got_offset = got->add_constant(0);
5540
5541 // Allocate the TLSDESC_PLT entry.
5542 this->plt_->reserve_tlsdesc_entry(got_offset);
5543 }
5544 }
5545
5546 // Create a GOT entry for the TLS module index.
5547
5548 template<int size, bool big_endian>
5549 unsigned int
5550 Target_aarch64<size, big_endian>::got_mod_index_entry(
5551 Symbol_table* symtab, Layout* layout,
5552 Sized_relobj_file<size, big_endian>* object)
5553 {
5554 if (this->got_mod_index_offset_ == -1U)
5555 {
5556 gold_assert(symtab != NULL && layout != NULL && object != NULL);
5557 Reloc_section* rela_dyn = this->rela_dyn_section(layout);
5558 Output_data_got_aarch64<size, big_endian>* got =
5559 this->got_section(symtab, layout);
5560 unsigned int got_offset = got->add_constant(0);
5561 rela_dyn->add_local(object, 0, elfcpp::R_AARCH64_TLS_DTPMOD64, got,
5562 got_offset, 0);
5563 got->add_constant(0);
5564 this->got_mod_index_offset_ = got_offset;
5565 }
5566 return this->got_mod_index_offset_;
5567 }
5568
5569 // Optimize the TLS relocation type based on what we know about the
5570 // symbol. IS_FINAL is true if the final address of this symbol is
5571 // known at link time.
5572
5573 template<int size, bool big_endian>
5574 tls::Tls_optimization
5575 Target_aarch64<size, big_endian>::optimize_tls_reloc(bool is_final,
5576 int r_type)
5577 {
5578 // If we are generating a shared library, then we can't do anything
5579 // in the linker
5580 if (parameters->options().shared())
5581 return tls::TLSOPT_NONE;
5582
5583 switch (r_type)
5584 {
5585 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5586 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5587 case elfcpp::R_AARCH64_TLSDESC_LD_PREL19:
5588 case elfcpp::R_AARCH64_TLSDESC_ADR_PREL21:
5589 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5590 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5591 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5592 case elfcpp::R_AARCH64_TLSDESC_OFF_G1:
5593 case elfcpp::R_AARCH64_TLSDESC_OFF_G0_NC:
5594 case elfcpp::R_AARCH64_TLSDESC_LDR:
5595 case elfcpp::R_AARCH64_TLSDESC_ADD:
5596 case elfcpp::R_AARCH64_TLSDESC_CALL:
5597 // These are General-Dynamic which permits fully general TLS
5598 // access. Since we know that we are generating an executable,
5599 // we can convert this to Initial-Exec. If we also know that
5600 // this is a local symbol, we can further switch to Local-Exec.
5601 if (is_final)
5602 return tls::TLSOPT_TO_LE;
5603 return tls::TLSOPT_TO_IE;
5604
5605 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5606 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5607 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5608 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5609 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5610 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5611 // These are Local-Dynamic, which refer to local symbols in the
5612 // dynamic TLS block. Since we know that we generating an
5613 // executable, we can switch to Local-Exec.
5614 return tls::TLSOPT_TO_LE;
5615
5616 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G1:
5617 case elfcpp::R_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC:
5618 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5619 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5620 case elfcpp::R_AARCH64_TLSIE_LD_GOTTPREL_PREL19:
5621 // These are Initial-Exec relocs which get the thread offset
5622 // from the GOT. If we know that we are linking against the
5623 // local symbol, we can switch to Local-Exec, which links the
5624 // thread offset into the instruction.
5625 if (is_final)
5626 return tls::TLSOPT_TO_LE;
5627 return tls::TLSOPT_NONE;
5628
5629 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5630 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5631 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5632 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5633 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5634 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5635 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5636 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5637 // When we already have Local-Exec, there is nothing further we
5638 // can do.
5639 return tls::TLSOPT_NONE;
5640
5641 default:
5642 gold_unreachable();
5643 }
5644 }
5645
5646 // Returns true if this relocation type could be that of a function pointer.
5647
5648 template<int size, bool big_endian>
5649 inline bool
5650 Target_aarch64<size, big_endian>::Scan::possible_function_pointer_reloc(
5651 unsigned int r_type)
5652 {
5653 switch (r_type)
5654 {
5655 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
5656 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
5657 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
5658 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
5659 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
5660 {
5661 return true;
5662 }
5663 }
5664 return false;
5665 }
5666
5667 // For safe ICF, scan a relocation for a local symbol to check if it
5668 // corresponds to a function pointer being taken. In that case mark
5669 // the function whose pointer was taken as not foldable.
5670
5671 template<int size, bool big_endian>
5672 inline bool
5673 Target_aarch64<size, big_endian>::Scan::local_reloc_may_be_function_pointer(
5674 Symbol_table* ,
5675 Layout* ,
5676 Target_aarch64<size, big_endian>* ,
5677 Sized_relobj_file<size, big_endian>* ,
5678 unsigned int ,
5679 Output_section* ,
5680 const elfcpp::Rela<size, big_endian>& ,
5681 unsigned int r_type,
5682 const elfcpp::Sym<size, big_endian>&)
5683 {
5684 // When building a shared library, do not fold any local symbols.
5685 return (parameters->options().shared()
5686 || possible_function_pointer_reloc(r_type));
5687 }
5688
5689 // For safe ICF, scan a relocation for a global symbol to check if it
5690 // corresponds to a function pointer being taken. In that case mark
5691 // the function whose pointer was taken as not foldable.
5692
5693 template<int size, bool big_endian>
5694 inline bool
5695 Target_aarch64<size, big_endian>::Scan::global_reloc_may_be_function_pointer(
5696 Symbol_table* ,
5697 Layout* ,
5698 Target_aarch64<size, big_endian>* ,
5699 Sized_relobj_file<size, big_endian>* ,
5700 unsigned int ,
5701 Output_section* ,
5702 const elfcpp::Rela<size, big_endian>& ,
5703 unsigned int r_type,
5704 Symbol* gsym)
5705 {
5706 // When building a shared library, do not fold symbols whose visibility
5707 // is hidden, internal or protected.
5708 return ((parameters->options().shared()
5709 && (gsym->visibility() == elfcpp::STV_INTERNAL
5710 || gsym->visibility() == elfcpp::STV_PROTECTED
5711 || gsym->visibility() == elfcpp::STV_HIDDEN))
5712 || possible_function_pointer_reloc(r_type));
5713 }
5714
5715 // Report an unsupported relocation against a local symbol.
5716
5717 template<int size, bool big_endian>
5718 void
5719 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_local(
5720 Sized_relobj_file<size, big_endian>* object,
5721 unsigned int r_type)
5722 {
5723 gold_error(_("%s: unsupported reloc %u against local symbol"),
5724 object->name().c_str(), r_type);
5725 }
5726
5727 // We are about to emit a dynamic relocation of type R_TYPE. If the
5728 // dynamic linker does not support it, issue an error.
5729
5730 template<int size, bool big_endian>
5731 void
5732 Target_aarch64<size, big_endian>::Scan::check_non_pic(Relobj* object,
5733 unsigned int r_type)
5734 {
5735 gold_assert(r_type != elfcpp::R_AARCH64_NONE);
5736
5737 switch (r_type)
5738 {
5739 // These are the relocation types supported by glibc for AARCH64.
5740 case elfcpp::R_AARCH64_NONE:
5741 case elfcpp::R_AARCH64_COPY:
5742 case elfcpp::R_AARCH64_GLOB_DAT:
5743 case elfcpp::R_AARCH64_JUMP_SLOT:
5744 case elfcpp::R_AARCH64_RELATIVE:
5745 case elfcpp::R_AARCH64_TLS_DTPREL64:
5746 case elfcpp::R_AARCH64_TLS_DTPMOD64:
5747 case elfcpp::R_AARCH64_TLS_TPREL64:
5748 case elfcpp::R_AARCH64_TLSDESC:
5749 case elfcpp::R_AARCH64_IRELATIVE:
5750 case elfcpp::R_AARCH64_ABS32:
5751 case elfcpp::R_AARCH64_ABS64:
5752 return;
5753
5754 default:
5755 break;
5756 }
5757
5758 // This prevents us from issuing more than one error per reloc
5759 // section. But we can still wind up issuing more than one
5760 // error per object file.
5761 if (this->issued_non_pic_error_)
5762 return;
5763 gold_assert(parameters->options().output_is_position_independent());
5764 object->error(_("requires unsupported dynamic reloc; "
5765 "recompile with -fPIC"));
5766 this->issued_non_pic_error_ = true;
5767 return;
5768 }
5769
5770 // Return whether we need to make a PLT entry for a relocation of the
5771 // given type against a STT_GNU_IFUNC symbol.
5772
5773 template<int size, bool big_endian>
5774 bool
5775 Target_aarch64<size, big_endian>::Scan::reloc_needs_plt_for_ifunc(
5776 Sized_relobj_file<size, big_endian>* object,
5777 unsigned int r_type)
5778 {
5779 const AArch64_reloc_property* arp =
5780 aarch64_reloc_property_table->get_reloc_property(r_type);
5781 gold_assert(arp != NULL);
5782
5783 int flags = arp->reference_flags();
5784 if (flags & Symbol::TLS_REF)
5785 {
5786 gold_error(_("%s: unsupported TLS reloc %s for IFUNC symbol"),
5787 object->name().c_str(), arp->name().c_str());
5788 return false;
5789 }
5790 return flags != 0;
5791 }
5792
5793 // Scan a relocation for a local symbol.
5794
5795 template<int size, bool big_endian>
5796 inline void
5797 Target_aarch64<size, big_endian>::Scan::local(
5798 Symbol_table* symtab,
5799 Layout* layout,
5800 Target_aarch64<size, big_endian>* target,
5801 Sized_relobj_file<size, big_endian>* object,
5802 unsigned int data_shndx,
5803 Output_section* output_section,
5804 const elfcpp::Rela<size, big_endian>& rela,
5805 unsigned int r_type,
5806 const elfcpp::Sym<size, big_endian>& lsym,
5807 bool is_discarded)
5808 {
5809 if (is_discarded)
5810 return;
5811
5812 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
5813 Reloc_section;
5814 Output_data_got_aarch64<size, big_endian>* got =
5815 target->got_section(symtab, layout);
5816 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5817
5818 // A local STT_GNU_IFUNC symbol may require a PLT entry.
5819 bool is_ifunc = lsym.get_st_type() == elfcpp::STT_GNU_IFUNC;
5820 if (is_ifunc && this->reloc_needs_plt_for_ifunc(object, r_type))
5821 target->make_local_ifunc_plt_entry(symtab, layout, object, r_sym);
5822
5823 switch (r_type)
5824 {
5825 case elfcpp::R_AARCH64_ABS32:
5826 case elfcpp::R_AARCH64_ABS16:
5827 if (parameters->options().output_is_position_independent())
5828 {
5829 gold_error(_("%s: unsupported reloc %u in pos independent link."),
5830 object->name().c_str(), r_type);
5831 }
5832 break;
5833
5834 case elfcpp::R_AARCH64_ABS64:
5835 // If building a shared library or pie, we need to mark this as a dynmic
5836 // reloction, so that the dynamic loader can relocate it.
5837 if (parameters->options().output_is_position_independent())
5838 {
5839 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
5840 rela_dyn->add_local_relative(object, r_sym,
5841 elfcpp::R_AARCH64_RELATIVE,
5842 output_section,
5843 data_shndx,
5844 rela.get_r_offset(),
5845 rela.get_r_addend(),
5846 is_ifunc);
5847 }
5848 break;
5849
5850 case elfcpp::R_AARCH64_PREL64:
5851 case elfcpp::R_AARCH64_PREL32:
5852 case elfcpp::R_AARCH64_PREL16:
5853 break;
5854
5855 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
5856 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
5857 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
5858 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
5859 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
5860 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
5861 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
5862 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
5863 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
5864 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
5865 break;
5866
5867 // Control flow, pc-relative. We don't need to do anything for a relative
5868 // addressing relocation against a local symbol if it does not reference
5869 // the GOT.
5870 case elfcpp::R_AARCH64_TSTBR14:
5871 case elfcpp::R_AARCH64_CONDBR19:
5872 case elfcpp::R_AARCH64_JUMP26:
5873 case elfcpp::R_AARCH64_CALL26:
5874 break;
5875
5876 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
5877 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
5878 {
5879 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5880 optimize_tls_reloc(!parameters->options().shared(), r_type);
5881 if (tlsopt == tls::TLSOPT_TO_LE)
5882 break;
5883
5884 layout->set_has_static_tls();
5885 // Create a GOT entry for the tp-relative offset.
5886 if (!parameters->doing_static_link())
5887 {
5888 got->add_local_with_rel(object, r_sym, GOT_TYPE_TLS_OFFSET,
5889 target->rela_dyn_section(layout),
5890 elfcpp::R_AARCH64_TLS_TPREL64);
5891 }
5892 else if (!object->local_has_got_offset(r_sym,
5893 GOT_TYPE_TLS_OFFSET))
5894 {
5895 got->add_local(object, r_sym, GOT_TYPE_TLS_OFFSET);
5896 unsigned int got_offset =
5897 object->local_got_offset(r_sym, GOT_TYPE_TLS_OFFSET);
5898 const elfcpp::Elf_Xword addend = rela.get_r_addend();
5899 gold_assert(addend == 0);
5900 got->add_static_reloc(got_offset, elfcpp::R_AARCH64_TLS_TPREL64,
5901 object, r_sym);
5902 }
5903 }
5904 break;
5905
5906 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
5907 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
5908 {
5909 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5910 optimize_tls_reloc(!parameters->options().shared(), r_type);
5911 if (tlsopt == tls::TLSOPT_TO_LE)
5912 {
5913 layout->set_has_static_tls();
5914 break;
5915 }
5916 gold_assert(tlsopt == tls::TLSOPT_NONE);
5917
5918 got->add_local_pair_with_rel(object,r_sym, data_shndx,
5919 GOT_TYPE_TLS_PAIR,
5920 target->rela_dyn_section(layout),
5921 elfcpp::R_AARCH64_TLS_DTPMOD64);
5922 }
5923 break;
5924
5925 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
5926 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
5927 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
5928 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
5929 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
5930 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
5931 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
5932 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
5933 {
5934 layout->set_has_static_tls();
5935 bool output_is_shared = parameters->options().shared();
5936 if (output_is_shared)
5937 gold_error(_("%s: unsupported TLSLE reloc %u in shared code."),
5938 object->name().c_str(), r_type);
5939 }
5940 break;
5941
5942 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
5943 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
5944 {
5945 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5946 optimize_tls_reloc(!parameters->options().shared(), r_type);
5947 if (tlsopt == tls::TLSOPT_NONE)
5948 {
5949 // Create a GOT entry for the module index.
5950 target->got_mod_index_entry(symtab, layout, object);
5951 }
5952 else if (tlsopt != tls::TLSOPT_TO_LE)
5953 unsupported_reloc_local(object, r_type);
5954 }
5955 break;
5956
5957 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
5958 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
5959 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
5960 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
5961 break;
5962
5963 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
5964 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
5965 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
5966 {
5967 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
5968 optimize_tls_reloc(!parameters->options().shared(), r_type);
5969 target->define_tls_base_symbol(symtab, layout);
5970 if (tlsopt == tls::TLSOPT_NONE)
5971 {
5972 // Create reserved PLT and GOT entries for the resolver.
5973 target->reserve_tlsdesc_entries(symtab, layout);
5974
5975 // Generate a double GOT entry with an R_AARCH64_TLSDESC reloc.
5976 // The R_AARCH64_TLSDESC reloc is resolved lazily, so the GOT
5977 // entry needs to be in an area in .got.plt, not .got. Call
5978 // got_section to make sure the section has been created.
5979 target->got_section(symtab, layout);
5980 Output_data_got<size, big_endian>* got =
5981 target->got_tlsdesc_section();
5982 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
5983 if (!object->local_has_got_offset(r_sym, GOT_TYPE_TLS_DESC))
5984 {
5985 unsigned int got_offset = got->add_constant(0);
5986 got->add_constant(0);
5987 object->set_local_got_offset(r_sym, GOT_TYPE_TLS_DESC,
5988 got_offset);
5989 Reloc_section* rt = target->rela_tlsdesc_section(layout);
5990 // We store the arguments we need in a vector, and use
5991 // the index into the vector as the parameter to pass
5992 // to the target specific routines.
5993 uintptr_t intarg = target->add_tlsdesc_info(object, r_sym);
5994 void* arg = reinterpret_cast<void*>(intarg);
5995 rt->add_target_specific(elfcpp::R_AARCH64_TLSDESC, arg,
5996 got, got_offset, 0);
5997 }
5998 }
5999 else if (tlsopt != tls::TLSOPT_TO_LE)
6000 unsupported_reloc_local(object, r_type);
6001 }
6002 break;
6003
6004 case elfcpp::R_AARCH64_TLSDESC_CALL:
6005 break;
6006
6007 default:
6008 unsupported_reloc_local(object, r_type);
6009 }
6010 }
6011
6012
6013 // Report an unsupported relocation against a global symbol.
6014
6015 template<int size, bool big_endian>
6016 void
6017 Target_aarch64<size, big_endian>::Scan::unsupported_reloc_global(
6018 Sized_relobj_file<size, big_endian>* object,
6019 unsigned int r_type,
6020 Symbol* gsym)
6021 {
6022 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
6023 object->name().c_str(), r_type, gsym->demangled_name().c_str());
6024 }
6025
6026 template<int size, bool big_endian>
6027 inline void
6028 Target_aarch64<size, big_endian>::Scan::global(
6029 Symbol_table* symtab,
6030 Layout* layout,
6031 Target_aarch64<size, big_endian>* target,
6032 Sized_relobj_file<size, big_endian> * object,
6033 unsigned int data_shndx,
6034 Output_section* output_section,
6035 const elfcpp::Rela<size, big_endian>& rela,
6036 unsigned int r_type,
6037 Symbol* gsym)
6038 {
6039 // A STT_GNU_IFUNC symbol may require a PLT entry.
6040 if (gsym->type() == elfcpp::STT_GNU_IFUNC
6041 && this->reloc_needs_plt_for_ifunc(object, r_type))
6042 target->make_plt_entry(symtab, layout, gsym);
6043
6044 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
6045 Reloc_section;
6046 const AArch64_reloc_property* arp =
6047 aarch64_reloc_property_table->get_reloc_property(r_type);
6048 gold_assert(arp != NULL);
6049
6050 switch (r_type)
6051 {
6052 case elfcpp::R_AARCH64_ABS16:
6053 case elfcpp::R_AARCH64_ABS32:
6054 case elfcpp::R_AARCH64_ABS64:
6055 {
6056 // Make a PLT entry if necessary.
6057 if (gsym->needs_plt_entry())
6058 {
6059 target->make_plt_entry(symtab, layout, gsym);
6060 // Since this is not a PC-relative relocation, we may be
6061 // taking the address of a function. In that case we need to
6062 // set the entry in the dynamic symbol table to the address of
6063 // the PLT entry.
6064 if (gsym->is_from_dynobj() && !parameters->options().shared())
6065 gsym->set_needs_dynsym_value();
6066 }
6067 // Make a dynamic relocation if necessary.
6068 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6069 {
6070 if (!parameters->options().output_is_position_independent()
6071 && gsym->may_need_copy_reloc())
6072 {
6073 target->copy_reloc(symtab, layout, object,
6074 data_shndx, output_section, gsym, rela);
6075 }
6076 else if (r_type == elfcpp::R_AARCH64_ABS64
6077 && gsym->type() == elfcpp::STT_GNU_IFUNC
6078 && gsym->can_use_relative_reloc(false)
6079 && !gsym->is_from_dynobj()
6080 && !gsym->is_undefined()
6081 && !gsym->is_preemptible())
6082 {
6083 // Use an IRELATIVE reloc for a locally defined STT_GNU_IFUNC
6084 // symbol. This makes a function address in a PIE executable
6085 // match the address in a shared library that it links against.
6086 Reloc_section* rela_dyn =
6087 target->rela_irelative_section(layout);
6088 unsigned int r_type = elfcpp::R_AARCH64_IRELATIVE;
6089 rela_dyn->add_symbolless_global_addend(gsym, r_type,
6090 output_section, object,
6091 data_shndx,
6092 rela.get_r_offset(),
6093 rela.get_r_addend());
6094 }
6095 else if (r_type == elfcpp::R_AARCH64_ABS64
6096 && gsym->can_use_relative_reloc(false))
6097 {
6098 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6099 rela_dyn->add_global_relative(gsym,
6100 elfcpp::R_AARCH64_RELATIVE,
6101 output_section,
6102 object,
6103 data_shndx,
6104 rela.get_r_offset(),
6105 rela.get_r_addend(),
6106 false);
6107 }
6108 else
6109 {
6110 check_non_pic(object, r_type);
6111 Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>*
6112 rela_dyn = target->rela_dyn_section(layout);
6113 rela_dyn->add_global(
6114 gsym, r_type, output_section, object,
6115 data_shndx, rela.get_r_offset(),rela.get_r_addend());
6116 }
6117 }
6118 }
6119 break;
6120
6121 case elfcpp::R_AARCH64_PREL16:
6122 case elfcpp::R_AARCH64_PREL32:
6123 case elfcpp::R_AARCH64_PREL64:
6124 // This is used to fill the GOT absolute address.
6125 if (gsym->needs_plt_entry())
6126 {
6127 target->make_plt_entry(symtab, layout, gsym);
6128 }
6129 break;
6130
6131 case elfcpp::R_AARCH64_LD_PREL_LO19: // 273
6132 case elfcpp::R_AARCH64_ADR_PREL_LO21: // 274
6133 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21: // 275
6134 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC: // 276
6135 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC: // 277
6136 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC: // 278
6137 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC: // 284
6138 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC: // 285
6139 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC: // 286
6140 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC: // 299
6141 {
6142 if (gsym->needs_plt_entry())
6143 target->make_plt_entry(symtab, layout, gsym);
6144 // Make a dynamic relocation if necessary.
6145 if (gsym->needs_dynamic_reloc(arp->reference_flags()))
6146 {
6147 if (parameters->options().output_is_executable()
6148 && gsym->may_need_copy_reloc())
6149 {
6150 target->copy_reloc(symtab, layout, object,
6151 data_shndx, output_section, gsym, rela);
6152 }
6153 }
6154 break;
6155 }
6156
6157 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6158 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6159 {
6160 // This pair of relocations is used to access a specific GOT entry.
6161 // Note a GOT entry is an *address* to a symbol.
6162 // The symbol requires a GOT entry
6163 Output_data_got_aarch64<size, big_endian>* got =
6164 target->got_section(symtab, layout);
6165 if (gsym->final_value_is_known())
6166 {
6167 // For a STT_GNU_IFUNC symbol we want the PLT address.
6168 if (gsym->type() == elfcpp::STT_GNU_IFUNC)
6169 got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6170 else
6171 got->add_global(gsym, GOT_TYPE_STANDARD);
6172 }
6173 else
6174 {
6175 // If this symbol is not fully resolved, we need to add a dynamic
6176 // relocation for it.
6177 Reloc_section* rela_dyn = target->rela_dyn_section(layout);
6178
6179 // Use a GLOB_DAT rather than a RELATIVE reloc if:
6180 //
6181 // 1) The symbol may be defined in some other module.
6182 // 2) We are building a shared library and this is a protected
6183 // symbol; using GLOB_DAT means that the dynamic linker can use
6184 // the address of the PLT in the main executable when appropriate
6185 // so that function address comparisons work.
6186 // 3) This is a STT_GNU_IFUNC symbol in position dependent code,
6187 // again so that function address comparisons work.
6188 if (gsym->is_from_dynobj()
6189 || gsym->is_undefined()
6190 || gsym->is_preemptible()
6191 || (gsym->visibility() == elfcpp::STV_PROTECTED
6192 && parameters->options().shared())
6193 || (gsym->type() == elfcpp::STT_GNU_IFUNC
6194 && parameters->options().output_is_position_independent()))
6195 got->add_global_with_rel(gsym, GOT_TYPE_STANDARD,
6196 rela_dyn, elfcpp::R_AARCH64_GLOB_DAT);
6197 else
6198 {
6199 // For a STT_GNU_IFUNC symbol we want to write the PLT
6200 // offset into the GOT, so that function pointer
6201 // comparisons work correctly.
6202 bool is_new;
6203 if (gsym->type() != elfcpp::STT_GNU_IFUNC)
6204 is_new = got->add_global(gsym, GOT_TYPE_STANDARD);
6205 else
6206 {
6207 is_new = got->add_global_plt(gsym, GOT_TYPE_STANDARD);
6208 // Tell the dynamic linker to use the PLT address
6209 // when resolving relocations.
6210 if (gsym->is_from_dynobj()
6211 && !parameters->options().shared())
6212 gsym->set_needs_dynsym_value();
6213 }
6214 if (is_new)
6215 {
6216 rela_dyn->add_global_relative(
6217 gsym, elfcpp::R_AARCH64_RELATIVE,
6218 got,
6219 gsym->got_offset(GOT_TYPE_STANDARD),
6220 0,
6221 false);
6222 }
6223 }
6224 }
6225 break;
6226 }
6227
6228 case elfcpp::R_AARCH64_TSTBR14:
6229 case elfcpp::R_AARCH64_CONDBR19:
6230 case elfcpp::R_AARCH64_JUMP26:
6231 case elfcpp::R_AARCH64_CALL26:
6232 {
6233 if (gsym->final_value_is_known())
6234 break;
6235
6236 if (gsym->is_defined() &&
6237 !gsym->is_from_dynobj() &&
6238 !gsym->is_preemptible())
6239 break;
6240
6241 // Make plt entry for function call.
6242 target->make_plt_entry(symtab, layout, gsym);
6243 break;
6244 }
6245
6246 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6247 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // General dynamic
6248 {
6249 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6250 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6251 if (tlsopt == tls::TLSOPT_TO_LE)
6252 {
6253 layout->set_has_static_tls();
6254 break;
6255 }
6256 gold_assert(tlsopt == tls::TLSOPT_NONE);
6257
6258 // General dynamic.
6259 Output_data_got_aarch64<size, big_endian>* got =
6260 target->got_section(symtab, layout);
6261 // Create 2 consecutive entries for module index and offset.
6262 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_PAIR,
6263 target->rela_dyn_section(layout),
6264 elfcpp::R_AARCH64_TLS_DTPMOD64,
6265 elfcpp::R_AARCH64_TLS_DTPREL64);
6266 }
6267 break;
6268
6269 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6270 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local dynamic
6271 {
6272 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6273 optimize_tls_reloc(!parameters->options().shared(), r_type);
6274 if (tlsopt == tls::TLSOPT_NONE)
6275 {
6276 // Create a GOT entry for the module index.
6277 target->got_mod_index_entry(symtab, layout, object);
6278 }
6279 else if (tlsopt != tls::TLSOPT_TO_LE)
6280 unsupported_reloc_local(object, r_type);
6281 }
6282 break;
6283
6284 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6285 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6286 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6287 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local dynamic
6288 break;
6289
6290 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6291 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial executable
6292 {
6293 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6294 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6295 if (tlsopt == tls::TLSOPT_TO_LE)
6296 break;
6297
6298 layout->set_has_static_tls();
6299 // Create a GOT entry for the tp-relative offset.
6300 Output_data_got_aarch64<size, big_endian>* got
6301 = target->got_section(symtab, layout);
6302 if (!parameters->doing_static_link())
6303 {
6304 got->add_global_with_rel(
6305 gsym, GOT_TYPE_TLS_OFFSET,
6306 target->rela_dyn_section(layout),
6307 elfcpp::R_AARCH64_TLS_TPREL64);
6308 }
6309 if (!gsym->has_got_offset(GOT_TYPE_TLS_OFFSET))
6310 {
6311 got->add_global(gsym, GOT_TYPE_TLS_OFFSET);
6312 unsigned int got_offset =
6313 gsym->got_offset(GOT_TYPE_TLS_OFFSET);
6314 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6315 gold_assert(addend == 0);
6316 got->add_static_reloc(got_offset,
6317 elfcpp::R_AARCH64_TLS_TPREL64, gsym);
6318 }
6319 }
6320 break;
6321
6322 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6323 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6324 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6325 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6326 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6327 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6328 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6329 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC: // Local executable
6330 layout->set_has_static_tls();
6331 if (parameters->options().shared())
6332 gold_error(_("%s: unsupported TLSLE reloc type %u in shared objects."),
6333 object->name().c_str(), r_type);
6334 break;
6335
6336 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6337 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6338 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12: // TLS descriptor
6339 {
6340 target->define_tls_base_symbol(symtab, layout);
6341 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6342 optimize_tls_reloc(gsym->final_value_is_known(), r_type);
6343 if (tlsopt == tls::TLSOPT_NONE)
6344 {
6345 // Create reserved PLT and GOT entries for the resolver.
6346 target->reserve_tlsdesc_entries(symtab, layout);
6347
6348 // Create a double GOT entry with an R_AARCH64_TLSDESC
6349 // relocation. The R_AARCH64_TLSDESC is resolved lazily, so the GOT
6350 // entry needs to be in an area in .got.plt, not .got. Call
6351 // got_section to make sure the section has been created.
6352 target->got_section(symtab, layout);
6353 Output_data_got<size, big_endian>* got =
6354 target->got_tlsdesc_section();
6355 Reloc_section* rt = target->rela_tlsdesc_section(layout);
6356 got->add_global_pair_with_rel(gsym, GOT_TYPE_TLS_DESC, rt,
6357 elfcpp::R_AARCH64_TLSDESC, 0);
6358 }
6359 else if (tlsopt == tls::TLSOPT_TO_IE)
6360 {
6361 // Create a GOT entry for the tp-relative offset.
6362 Output_data_got<size, big_endian>* got
6363 = target->got_section(symtab, layout);
6364 got->add_global_with_rel(gsym, GOT_TYPE_TLS_OFFSET,
6365 target->rela_dyn_section(layout),
6366 elfcpp::R_AARCH64_TLS_TPREL64);
6367 }
6368 else if (tlsopt != tls::TLSOPT_TO_LE)
6369 unsupported_reloc_global(object, r_type, gsym);
6370 }
6371 break;
6372
6373 case elfcpp::R_AARCH64_TLSDESC_CALL:
6374 break;
6375
6376 default:
6377 gold_error(_("%s: unsupported reloc type in global scan"),
6378 aarch64_reloc_property_table->
6379 reloc_name_in_error_message(r_type).c_str());
6380 }
6381 return;
6382 } // End of Scan::global
6383
6384
6385 // Create the PLT section.
6386 template<int size, bool big_endian>
6387 void
6388 Target_aarch64<size, big_endian>::make_plt_section(
6389 Symbol_table* symtab, Layout* layout)
6390 {
6391 if (this->plt_ == NULL)
6392 {
6393 // Create the GOT section first.
6394 this->got_section(symtab, layout);
6395
6396 this->plt_ = this->make_data_plt(layout, this->got_, this->got_plt_,
6397 this->got_irelative_);
6398
6399 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
6400 (elfcpp::SHF_ALLOC
6401 | elfcpp::SHF_EXECINSTR),
6402 this->plt_, ORDER_PLT, false);
6403
6404 // Make the sh_info field of .rela.plt point to .plt.
6405 Output_section* rela_plt_os = this->plt_->rela_plt()->output_section();
6406 rela_plt_os->set_info_section(this->plt_->output_section());
6407 }
6408 }
6409
6410 // Return the section for TLSDESC relocations.
6411
6412 template<int size, bool big_endian>
6413 typename Target_aarch64<size, big_endian>::Reloc_section*
6414 Target_aarch64<size, big_endian>::rela_tlsdesc_section(Layout* layout) const
6415 {
6416 return this->plt_section()->rela_tlsdesc(layout);
6417 }
6418
6419 // Create a PLT entry for a global symbol.
6420
6421 template<int size, bool big_endian>
6422 void
6423 Target_aarch64<size, big_endian>::make_plt_entry(
6424 Symbol_table* symtab,
6425 Layout* layout,
6426 Symbol* gsym)
6427 {
6428 if (gsym->has_plt_offset())
6429 return;
6430
6431 if (this->plt_ == NULL)
6432 this->make_plt_section(symtab, layout);
6433
6434 this->plt_->add_entry(symtab, layout, gsym);
6435 }
6436
6437 // Make a PLT entry for a local STT_GNU_IFUNC symbol.
6438
6439 template<int size, bool big_endian>
6440 void
6441 Target_aarch64<size, big_endian>::make_local_ifunc_plt_entry(
6442 Symbol_table* symtab, Layout* layout,
6443 Sized_relobj_file<size, big_endian>* relobj,
6444 unsigned int local_sym_index)
6445 {
6446 if (relobj->local_has_plt_offset(local_sym_index))
6447 return;
6448 if (this->plt_ == NULL)
6449 this->make_plt_section(symtab, layout);
6450 unsigned int plt_offset = this->plt_->add_local_ifunc_entry(symtab, layout,
6451 relobj,
6452 local_sym_index);
6453 relobj->set_local_plt_offset(local_sym_index, plt_offset);
6454 }
6455
6456 template<int size, bool big_endian>
6457 void
6458 Target_aarch64<size, big_endian>::gc_process_relocs(
6459 Symbol_table* symtab,
6460 Layout* layout,
6461 Sized_relobj_file<size, big_endian>* object,
6462 unsigned int data_shndx,
6463 unsigned int sh_type,
6464 const unsigned char* prelocs,
6465 size_t reloc_count,
6466 Output_section* output_section,
6467 bool needs_special_offset_handling,
6468 size_t local_symbol_count,
6469 const unsigned char* plocal_symbols)
6470 {
6471 if (sh_type == elfcpp::SHT_REL)
6472 {
6473 return;
6474 }
6475
6476 gold::gc_process_relocs<
6477 size, big_endian,
6478 Target_aarch64<size, big_endian>,
6479 elfcpp::SHT_RELA,
6480 typename Target_aarch64<size, big_endian>::Scan,
6481 typename Target_aarch64<size, big_endian>::Relocatable_size_for_reloc>(
6482 symtab,
6483 layout,
6484 this,
6485 object,
6486 data_shndx,
6487 prelocs,
6488 reloc_count,
6489 output_section,
6490 needs_special_offset_handling,
6491 local_symbol_count,
6492 plocal_symbols);
6493 }
6494
6495 // Scan relocations for a section.
6496
6497 template<int size, bool big_endian>
6498 void
6499 Target_aarch64<size, big_endian>::scan_relocs(
6500 Symbol_table* symtab,
6501 Layout* layout,
6502 Sized_relobj_file<size, big_endian>* object,
6503 unsigned int data_shndx,
6504 unsigned int sh_type,
6505 const unsigned char* prelocs,
6506 size_t reloc_count,
6507 Output_section* output_section,
6508 bool needs_special_offset_handling,
6509 size_t local_symbol_count,
6510 const unsigned char* plocal_symbols)
6511 {
6512 if (sh_type == elfcpp::SHT_REL)
6513 {
6514 gold_error(_("%s: unsupported REL reloc section"),
6515 object->name().c_str());
6516 return;
6517 }
6518 gold::scan_relocs<size, big_endian, Target_aarch64, elfcpp::SHT_RELA, Scan>(
6519 symtab,
6520 layout,
6521 this,
6522 object,
6523 data_shndx,
6524 prelocs,
6525 reloc_count,
6526 output_section,
6527 needs_special_offset_handling,
6528 local_symbol_count,
6529 plocal_symbols);
6530 }
6531
6532 // Return the value to use for a dynamic which requires special
6533 // treatment. This is how we support equality comparisons of function
6534 // pointers across shared library boundaries, as described in the
6535 // processor specific ABI supplement.
6536
6537 template<int size, bool big_endian>
6538 uint64_t
6539 Target_aarch64<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
6540 {
6541 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
6542 return this->plt_address_for_global(gsym);
6543 }
6544
6545
6546 // Finalize the sections.
6547
6548 template<int size, bool big_endian>
6549 void
6550 Target_aarch64<size, big_endian>::do_finalize_sections(
6551 Layout* layout,
6552 const Input_objects*,
6553 Symbol_table* symtab)
6554 {
6555 const Reloc_section* rel_plt = (this->plt_ == NULL
6556 ? NULL
6557 : this->plt_->rela_plt());
6558 layout->add_target_dynamic_tags(false, this->got_plt_, rel_plt,
6559 this->rela_dyn_, true, false);
6560
6561 // Emit any relocs we saved in an attempt to avoid generating COPY
6562 // relocs.
6563 if (this->copy_relocs_.any_saved_relocs())
6564 this->copy_relocs_.emit(this->rela_dyn_section(layout));
6565
6566 // Fill in some more dynamic tags.
6567 Output_data_dynamic* const odyn = layout->dynamic_data();
6568 if (odyn != NULL)
6569 {
6570 if (this->plt_ != NULL
6571 && this->plt_->output_section() != NULL
6572 && this->plt_ ->has_tlsdesc_entry())
6573 {
6574 unsigned int plt_offset = this->plt_->get_tlsdesc_plt_offset();
6575 unsigned int got_offset = this->plt_->get_tlsdesc_got_offset();
6576 this->got_->finalize_data_size();
6577 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_PLT,
6578 this->plt_, plt_offset);
6579 odyn->add_section_plus_offset(elfcpp::DT_TLSDESC_GOT,
6580 this->got_, got_offset);
6581 }
6582 }
6583
6584 // Set the size of the _GLOBAL_OFFSET_TABLE_ symbol to the size of
6585 // the .got.plt section.
6586 Symbol* sym = this->global_offset_table_;
6587 if (sym != NULL)
6588 {
6589 uint64_t data_size = this->got_plt_->current_data_size();
6590 symtab->get_sized_symbol<size>(sym)->set_symsize(data_size);
6591
6592 // If the .got section is more than 0x8000 bytes, we add
6593 // 0x8000 to the value of _GLOBAL_OFFSET_TABLE_, so that 16
6594 // bit relocations have a greater chance of working.
6595 if (data_size >= 0x8000)
6596 symtab->get_sized_symbol<size>(sym)->set_value(
6597 symtab->get_sized_symbol<size>(sym)->value() + 0x8000);
6598 }
6599
6600 if (parameters->doing_static_link()
6601 && (this->plt_ == NULL || !this->plt_->has_irelative_section()))
6602 {
6603 // If linking statically, make sure that the __rela_iplt symbols
6604 // were defined if necessary, even if we didn't create a PLT.
6605 static const Define_symbol_in_segment syms[] =
6606 {
6607 {
6608 "__rela_iplt_start", // name
6609 elfcpp::PT_LOAD, // segment_type
6610 elfcpp::PF_W, // segment_flags_set
6611 elfcpp::PF(0), // segment_flags_clear
6612 0, // value
6613 0, // size
6614 elfcpp::STT_NOTYPE, // type
6615 elfcpp::STB_GLOBAL, // binding
6616 elfcpp::STV_HIDDEN, // visibility
6617 0, // nonvis
6618 Symbol::SEGMENT_START, // offset_from_base
6619 true // only_if_ref
6620 },
6621 {
6622 "__rela_iplt_end", // name
6623 elfcpp::PT_LOAD, // segment_type
6624 elfcpp::PF_W, // segment_flags_set
6625 elfcpp::PF(0), // segment_flags_clear
6626 0, // value
6627 0, // size
6628 elfcpp::STT_NOTYPE, // type
6629 elfcpp::STB_GLOBAL, // binding
6630 elfcpp::STV_HIDDEN, // visibility
6631 0, // nonvis
6632 Symbol::SEGMENT_START, // offset_from_base
6633 true // only_if_ref
6634 }
6635 };
6636
6637 symtab->define_symbols(layout, 2, syms,
6638 layout->script_options()->saw_sections_clause());
6639 }
6640
6641 return;
6642 }
6643
6644 // Perform a relocation.
6645
6646 template<int size, bool big_endian>
6647 inline bool
6648 Target_aarch64<size, big_endian>::Relocate::relocate(
6649 const Relocate_info<size, big_endian>* relinfo,
6650 Target_aarch64<size, big_endian>* target,
6651 Output_section* ,
6652 size_t relnum,
6653 const elfcpp::Rela<size, big_endian>& rela,
6654 unsigned int r_type,
6655 const Sized_symbol<size>* gsym,
6656 const Symbol_value<size>* psymval,
6657 unsigned char* view,
6658 typename elfcpp::Elf_types<size>::Elf_Addr address,
6659 section_size_type /* view_size */)
6660 {
6661 if (view == NULL)
6662 return true;
6663
6664 typedef AArch64_relocate_functions<size, big_endian> Reloc;
6665
6666 const AArch64_reloc_property* reloc_property =
6667 aarch64_reloc_property_table->get_reloc_property(r_type);
6668
6669 if (reloc_property == NULL)
6670 {
6671 std::string reloc_name =
6672 aarch64_reloc_property_table->reloc_name_in_error_message(r_type);
6673 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6674 _("cannot relocate %s in object file"),
6675 reloc_name.c_str());
6676 return true;
6677 }
6678
6679 const Sized_relobj_file<size, big_endian>* object = relinfo->object;
6680
6681 // Pick the value to use for symbols defined in the PLT.
6682 Symbol_value<size> symval;
6683 if (gsym != NULL
6684 && gsym->use_plt_offset(reloc_property->reference_flags()))
6685 {
6686 symval.set_output_value(target->plt_address_for_global(gsym));
6687 psymval = &symval;
6688 }
6689 else if (gsym == NULL && psymval->is_ifunc_symbol())
6690 {
6691 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6692 if (object->local_has_plt_offset(r_sym))
6693 {
6694 symval.set_output_value(target->plt_address_for_local(object, r_sym));
6695 psymval = &symval;
6696 }
6697 }
6698
6699 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6700
6701 // Get the GOT offset if needed.
6702 // For aarch64, the GOT pointer points to the start of the GOT section.
6703 bool have_got_offset = false;
6704 int got_offset = 0;
6705 int got_base = (target->got_ != NULL
6706 ? (target->got_->current_data_size() >= 0x8000
6707 ? 0x8000 : 0)
6708 : 0);
6709 switch (r_type)
6710 {
6711 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0:
6712 case elfcpp::R_AARCH64_MOVW_GOTOFF_G0_NC:
6713 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1:
6714 case elfcpp::R_AARCH64_MOVW_GOTOFF_G1_NC:
6715 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2:
6716 case elfcpp::R_AARCH64_MOVW_GOTOFF_G2_NC:
6717 case elfcpp::R_AARCH64_MOVW_GOTOFF_G3:
6718 case elfcpp::R_AARCH64_GOTREL64:
6719 case elfcpp::R_AARCH64_GOTREL32:
6720 case elfcpp::R_AARCH64_GOT_LD_PREL19:
6721 case elfcpp::R_AARCH64_LD64_GOTOFF_LO15:
6722 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6723 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6724 case elfcpp::R_AARCH64_LD64_GOTPAGE_LO15:
6725 if (gsym != NULL)
6726 {
6727 gold_assert(gsym->has_got_offset(GOT_TYPE_STANDARD));
6728 got_offset = gsym->got_offset(GOT_TYPE_STANDARD) - got_base;
6729 }
6730 else
6731 {
6732 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6733 gold_assert(object->local_has_got_offset(r_sym, GOT_TYPE_STANDARD));
6734 got_offset = (object->local_got_offset(r_sym, GOT_TYPE_STANDARD)
6735 - got_base);
6736 }
6737 have_got_offset = true;
6738 break;
6739
6740 default:
6741 break;
6742 }
6743
6744 typename Reloc::Status reloc_status = Reloc::STATUS_OKAY;
6745 typename elfcpp::Elf_types<size>::Elf_Addr value;
6746 switch (r_type)
6747 {
6748 case elfcpp::R_AARCH64_NONE:
6749 break;
6750
6751 case elfcpp::R_AARCH64_ABS64:
6752 reloc_status = Reloc::template rela_ua<64>(
6753 view, object, psymval, addend, reloc_property);
6754 break;
6755
6756 case elfcpp::R_AARCH64_ABS32:
6757 reloc_status = Reloc::template rela_ua<32>(
6758 view, object, psymval, addend, reloc_property);
6759 break;
6760
6761 case elfcpp::R_AARCH64_ABS16:
6762 reloc_status = Reloc::template rela_ua<16>(
6763 view, object, psymval, addend, reloc_property);
6764 break;
6765
6766 case elfcpp::R_AARCH64_PREL64:
6767 reloc_status = Reloc::template pcrela_ua<64>(
6768 view, object, psymval, addend, address, reloc_property);
6769 break;
6770
6771 case elfcpp::R_AARCH64_PREL32:
6772 reloc_status = Reloc::template pcrela_ua<32>(
6773 view, object, psymval, addend, address, reloc_property);
6774 break;
6775
6776 case elfcpp::R_AARCH64_PREL16:
6777 reloc_status = Reloc::template pcrela_ua<16>(
6778 view, object, psymval, addend, address, reloc_property);
6779 break;
6780
6781 case elfcpp::R_AARCH64_LD_PREL_LO19:
6782 reloc_status = Reloc::template pcrela_general<32>(
6783 view, object, psymval, addend, address, reloc_property);
6784 break;
6785
6786 case elfcpp::R_AARCH64_ADR_PREL_LO21:
6787 reloc_status = Reloc::adr(view, object, psymval, addend,
6788 address, reloc_property);
6789 break;
6790
6791 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21_NC:
6792 case elfcpp::R_AARCH64_ADR_PREL_PG_HI21:
6793 reloc_status = Reloc::adrp(view, object, psymval, addend, address,
6794 reloc_property);
6795 break;
6796
6797 case elfcpp::R_AARCH64_LDST8_ABS_LO12_NC:
6798 case elfcpp::R_AARCH64_LDST16_ABS_LO12_NC:
6799 case elfcpp::R_AARCH64_LDST32_ABS_LO12_NC:
6800 case elfcpp::R_AARCH64_LDST64_ABS_LO12_NC:
6801 case elfcpp::R_AARCH64_LDST128_ABS_LO12_NC:
6802 case elfcpp::R_AARCH64_ADD_ABS_LO12_NC:
6803 reloc_status = Reloc::template rela_general<32>(
6804 view, object, psymval, addend, reloc_property);
6805 break;
6806
6807 case elfcpp::R_AARCH64_CALL26:
6808 if (this->skip_call_tls_get_addr_)
6809 {
6810 // Double check that the TLSGD insn has been optimized away.
6811 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
6812 Insntype insn = elfcpp::Swap<32, big_endian>::readval(
6813 reinterpret_cast<Insntype*>(view));
6814 gold_assert((insn & 0xff000000) == 0x91000000);
6815
6816 reloc_status = Reloc::STATUS_OKAY;
6817 this->skip_call_tls_get_addr_ = false;
6818 // Return false to stop further processing this reloc.
6819 return false;
6820 }
6821 // Fallthrough
6822 case elfcpp::R_AARCH64_JUMP26:
6823 if (Reloc::maybe_apply_stub(r_type, relinfo, rela, view, address,
6824 gsym, psymval, object,
6825 target->stub_group_size_))
6826 break;
6827 // Fallthrough
6828 case elfcpp::R_AARCH64_TSTBR14:
6829 case elfcpp::R_AARCH64_CONDBR19:
6830 reloc_status = Reloc::template pcrela_general<32>(
6831 view, object, psymval, addend, address, reloc_property);
6832 break;
6833
6834 case elfcpp::R_AARCH64_ADR_GOT_PAGE:
6835 gold_assert(have_got_offset);
6836 value = target->got_->address() + got_base + got_offset;
6837 reloc_status = Reloc::adrp(view, value + addend, address);
6838 break;
6839
6840 case elfcpp::R_AARCH64_LD64_GOT_LO12_NC:
6841 gold_assert(have_got_offset);
6842 value = target->got_->address() + got_base + got_offset;
6843 reloc_status = Reloc::template rela_general<32>(
6844 view, value, addend, reloc_property);
6845 break;
6846
6847 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6848 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6849 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
6850 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
6851 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
6852 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
6853 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
6854 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
6855 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
6856 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
6857 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
6858 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
6859 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
6860 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
6861 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
6862 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
6863 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
6864 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
6865 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
6866 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
6867 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
6868 case elfcpp::R_AARCH64_TLSDESC_CALL:
6869 reloc_status = relocate_tls(relinfo, target, relnum, rela, r_type,
6870 gsym, psymval, view, address);
6871 break;
6872
6873 // These are dynamic relocations, which are unexpected when linking.
6874 case elfcpp::R_AARCH64_COPY:
6875 case elfcpp::R_AARCH64_GLOB_DAT:
6876 case elfcpp::R_AARCH64_JUMP_SLOT:
6877 case elfcpp::R_AARCH64_RELATIVE:
6878 case elfcpp::R_AARCH64_IRELATIVE:
6879 case elfcpp::R_AARCH64_TLS_DTPREL64:
6880 case elfcpp::R_AARCH64_TLS_DTPMOD64:
6881 case elfcpp::R_AARCH64_TLS_TPREL64:
6882 case elfcpp::R_AARCH64_TLSDESC:
6883 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6884 _("unexpected reloc %u in object file"),
6885 r_type);
6886 break;
6887
6888 default:
6889 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6890 _("unsupported reloc %s"),
6891 reloc_property->name().c_str());
6892 break;
6893 }
6894
6895 // Report any errors.
6896 switch (reloc_status)
6897 {
6898 case Reloc::STATUS_OKAY:
6899 break;
6900 case Reloc::STATUS_OVERFLOW:
6901 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
6902 _("relocation overflow in %s"),
6903 reloc_property->name().c_str());
6904 break;
6905 case Reloc::STATUS_BAD_RELOC:
6906 gold_error_at_location(
6907 relinfo,
6908 relnum,
6909 rela.get_r_offset(),
6910 _("unexpected opcode while processing relocation %s"),
6911 reloc_property->name().c_str());
6912 break;
6913 default:
6914 gold_unreachable();
6915 }
6916
6917 return true;
6918 }
6919
6920
6921 template<int size, bool big_endian>
6922 inline
6923 typename AArch64_relocate_functions<size, big_endian>::Status
6924 Target_aarch64<size, big_endian>::Relocate::relocate_tls(
6925 const Relocate_info<size, big_endian>* relinfo,
6926 Target_aarch64<size, big_endian>* target,
6927 size_t relnum,
6928 const elfcpp::Rela<size, big_endian>& rela,
6929 unsigned int r_type, const Sized_symbol<size>* gsym,
6930 const Symbol_value<size>* psymval,
6931 unsigned char* view,
6932 typename elfcpp::Elf_types<size>::Elf_Addr address)
6933 {
6934 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
6935 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
6936
6937 Output_segment* tls_segment = relinfo->layout->tls_segment();
6938 const elfcpp::Elf_Xword addend = rela.get_r_addend();
6939 const AArch64_reloc_property* reloc_property =
6940 aarch64_reloc_property_table->get_reloc_property(r_type);
6941 gold_assert(reloc_property != NULL);
6942
6943 const bool is_final = (gsym == NULL
6944 ? !parameters->options().shared()
6945 : gsym->final_value_is_known());
6946 tls::Tls_optimization tlsopt = Target_aarch64<size, big_endian>::
6947 optimize_tls_reloc(is_final, r_type);
6948
6949 Sized_relobj_file<size, big_endian>* object = relinfo->object;
6950 int tls_got_offset_type;
6951 switch (r_type)
6952 {
6953 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6954 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC: // Global-dynamic
6955 {
6956 if (tlsopt == tls::TLSOPT_TO_LE)
6957 {
6958 if (tls_segment == NULL)
6959 {
6960 gold_assert(parameters->errors()->error_count() > 0
6961 || issue_undefined_symbol_error(gsym));
6962 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
6963 }
6964 return tls_gd_to_le(relinfo, target, rela, r_type, view,
6965 psymval);
6966 }
6967 else if (tlsopt == tls::TLSOPT_NONE)
6968 {
6969 tls_got_offset_type = GOT_TYPE_TLS_PAIR;
6970 // Firstly get the address for the got entry.
6971 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
6972 if (gsym != NULL)
6973 {
6974 gold_assert(gsym->has_got_offset(tls_got_offset_type));
6975 got_entry_address = target->got_->address() +
6976 gsym->got_offset(tls_got_offset_type);
6977 }
6978 else
6979 {
6980 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
6981 gold_assert(
6982 object->local_has_got_offset(r_sym, tls_got_offset_type));
6983 got_entry_address = target->got_->address() +
6984 object->local_got_offset(r_sym, tls_got_offset_type);
6985 }
6986
6987 // Relocate the address into adrp/ld, adrp/add pair.
6988 switch (r_type)
6989 {
6990 case elfcpp::R_AARCH64_TLSGD_ADR_PAGE21:
6991 return aarch64_reloc_funcs::adrp(
6992 view, got_entry_address + addend, address);
6993
6994 break;
6995
6996 case elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC:
6997 return aarch64_reloc_funcs::template rela_general<32>(
6998 view, got_entry_address, addend, reloc_property);
6999 break;
7000
7001 default:
7002 gold_unreachable();
7003 }
7004 }
7005 gold_error_at_location(relinfo, relnum, rela.get_r_offset(),
7006 _("unsupported gd_to_ie relaxation on %u"),
7007 r_type);
7008 }
7009 break;
7010
7011 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7012 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC: // Local-dynamic
7013 {
7014 if (tlsopt == tls::TLSOPT_TO_LE)
7015 {
7016 if (tls_segment == NULL)
7017 {
7018 gold_assert(parameters->errors()->error_count() > 0
7019 || issue_undefined_symbol_error(gsym));
7020 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7021 }
7022 return this->tls_ld_to_le(relinfo, target, rela, r_type, view,
7023 psymval);
7024 }
7025
7026 gold_assert(tlsopt == tls::TLSOPT_NONE);
7027 // Relocate the field with the offset of the GOT entry for
7028 // the module index.
7029 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7030 got_entry_address = (target->got_mod_index_entry(NULL, NULL, NULL) +
7031 target->got_->address());
7032
7033 switch (r_type)
7034 {
7035 case elfcpp::R_AARCH64_TLSLD_ADR_PAGE21:
7036 return aarch64_reloc_funcs::adrp(
7037 view, got_entry_address + addend, address);
7038 break;
7039
7040 case elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC:
7041 return aarch64_reloc_funcs::template rela_general<32>(
7042 view, got_entry_address, addend, reloc_property);
7043 break;
7044
7045 default:
7046 gold_unreachable();
7047 }
7048 }
7049 break;
7050
7051 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7052 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7053 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7054 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC: // Other local-dynamic
7055 {
7056 AArch64_address value = psymval->value(object, 0);
7057 if (tlsopt == tls::TLSOPT_TO_LE)
7058 {
7059 if (tls_segment == NULL)
7060 {
7061 gold_assert(parameters->errors()->error_count() > 0
7062 || issue_undefined_symbol_error(gsym));
7063 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7064 }
7065 }
7066 switch (r_type)
7067 {
7068 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G1:
7069 return aarch64_reloc_funcs::movnz(view, value + addend,
7070 reloc_property);
7071 break;
7072
7073 case elfcpp::R_AARCH64_TLSLD_MOVW_DTPREL_G0_NC:
7074 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_HI12:
7075 case elfcpp::R_AARCH64_TLSLD_ADD_DTPREL_LO12_NC:
7076 return aarch64_reloc_funcs::template rela_general<32>(
7077 view, value, addend, reloc_property);
7078 break;
7079
7080 default:
7081 gold_unreachable();
7082 }
7083 // We should never reach here.
7084 }
7085 break;
7086
7087 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7088 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: // Initial-exec
7089 {
7090 if (tlsopt == tls::TLSOPT_TO_LE)
7091 {
7092 if (tls_segment == NULL)
7093 {
7094 gold_assert(parameters->errors()->error_count() > 0
7095 || issue_undefined_symbol_error(gsym));
7096 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7097 }
7098 return tls_ie_to_le(relinfo, target, rela, r_type, view,
7099 psymval);
7100 }
7101 tls_got_offset_type = GOT_TYPE_TLS_OFFSET;
7102
7103 // Firstly get the address for the got entry.
7104 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7105 if (gsym != NULL)
7106 {
7107 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7108 got_entry_address = target->got_->address() +
7109 gsym->got_offset(tls_got_offset_type);
7110 }
7111 else
7112 {
7113 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7114 gold_assert(
7115 object->local_has_got_offset(r_sym, tls_got_offset_type));
7116 got_entry_address = target->got_->address() +
7117 object->local_got_offset(r_sym, tls_got_offset_type);
7118 }
7119 // Relocate the address into adrp/ld, adrp/add pair.
7120 switch (r_type)
7121 {
7122 case elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
7123 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7124 address);
7125 break;
7126 case elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
7127 return aarch64_reloc_funcs::template rela_general<32>(
7128 view, got_entry_address, addend, reloc_property);
7129 default:
7130 gold_unreachable();
7131 }
7132 }
7133 // We shall never reach here.
7134 break;
7135
7136 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7137 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7138 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
7139 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7140 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
7141 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12:
7142 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12:
7143 case elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
7144 {
7145 gold_assert(tls_segment != NULL);
7146 AArch64_address value = psymval->value(object, 0);
7147
7148 if (!parameters->options().shared())
7149 {
7150 AArch64_address aligned_tcb_size =
7151 align_address(target->tcb_size(),
7152 tls_segment->maximum_alignment());
7153 value += aligned_tcb_size;
7154 switch (r_type)
7155 {
7156 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G2:
7157 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G1:
7158 case elfcpp::R_AARCH64_TLSLE_MOVW_TPREL_G0:
7159 return aarch64_reloc_funcs::movnz(view, value + addend,
7160 reloc_property);
7161 default:
7162 return aarch64_reloc_funcs::template
7163 rela_general<32>(view,
7164 value,
7165 addend,
7166 reloc_property);
7167 }
7168 }
7169 else
7170 gold_error(_("%s: unsupported reloc %u "
7171 "in non-static TLSLE mode."),
7172 object->name().c_str(), r_type);
7173 }
7174 break;
7175
7176 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7177 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7178 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7179 case elfcpp::R_AARCH64_TLSDESC_CALL:
7180 {
7181 if (tlsopt == tls::TLSOPT_TO_LE)
7182 {
7183 if (tls_segment == NULL)
7184 {
7185 gold_assert(parameters->errors()->error_count() > 0
7186 || issue_undefined_symbol_error(gsym));
7187 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7188 }
7189 return tls_desc_gd_to_le(relinfo, target, rela, r_type,
7190 view, psymval);
7191 }
7192 else
7193 {
7194 tls_got_offset_type = (tlsopt == tls::TLSOPT_TO_IE
7195 ? GOT_TYPE_TLS_OFFSET
7196 : GOT_TYPE_TLS_DESC);
7197 unsigned int got_tlsdesc_offset = 0;
7198 if (r_type != elfcpp::R_AARCH64_TLSDESC_CALL
7199 && tlsopt == tls::TLSOPT_NONE)
7200 {
7201 // We created GOT entries in the .got.tlsdesc portion of the
7202 // .got.plt section, but the offset stored in the symbol is the
7203 // offset within .got.tlsdesc.
7204 got_tlsdesc_offset = (target->got_->data_size()
7205 + target->got_plt_section()->data_size());
7206 }
7207 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address;
7208 if (gsym != NULL)
7209 {
7210 gold_assert(gsym->has_got_offset(tls_got_offset_type));
7211 got_entry_address = target->got_->address()
7212 + got_tlsdesc_offset
7213 + gsym->got_offset(tls_got_offset_type);
7214 }
7215 else
7216 {
7217 unsigned int r_sym = elfcpp::elf_r_sym<size>(rela.get_r_info());
7218 gold_assert(
7219 object->local_has_got_offset(r_sym, tls_got_offset_type));
7220 got_entry_address = target->got_->address() +
7221 got_tlsdesc_offset +
7222 object->local_got_offset(r_sym, tls_got_offset_type);
7223 }
7224 if (tlsopt == tls::TLSOPT_TO_IE)
7225 {
7226 if (tls_segment == NULL)
7227 {
7228 gold_assert(parameters->errors()->error_count() > 0
7229 || issue_undefined_symbol_error(gsym));
7230 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7231 }
7232 return tls_desc_gd_to_ie(relinfo, target, rela, r_type,
7233 view, psymval, got_entry_address,
7234 address);
7235 }
7236
7237 // Now do tlsdesc relocation.
7238 switch (r_type)
7239 {
7240 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7241 return aarch64_reloc_funcs::adrp(view,
7242 got_entry_address + addend,
7243 address);
7244 break;
7245 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7246 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7247 return aarch64_reloc_funcs::template rela_general<32>(
7248 view, got_entry_address, addend, reloc_property);
7249 break;
7250 case elfcpp::R_AARCH64_TLSDESC_CALL:
7251 return aarch64_reloc_funcs::STATUS_OKAY;
7252 break;
7253 default:
7254 gold_unreachable();
7255 }
7256 }
7257 }
7258 break;
7259
7260 default:
7261 gold_error(_("%s: unsupported TLS reloc %u."),
7262 object->name().c_str(), r_type);
7263 }
7264 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7265 } // End of relocate_tls.
7266
7267
7268 template<int size, bool big_endian>
7269 inline
7270 typename AArch64_relocate_functions<size, big_endian>::Status
7271 Target_aarch64<size, big_endian>::Relocate::tls_gd_to_le(
7272 const Relocate_info<size, big_endian>* relinfo,
7273 Target_aarch64<size, big_endian>* target,
7274 const elfcpp::Rela<size, big_endian>& rela,
7275 unsigned int r_type,
7276 unsigned char* view,
7277 const Symbol_value<size>* psymval)
7278 {
7279 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7280 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7281 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7282
7283 Insntype* ip = reinterpret_cast<Insntype*>(view);
7284 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7285 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7286 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7287
7288 if (r_type == elfcpp::R_AARCH64_TLSGD_ADD_LO12_NC)
7289 {
7290 // This is the 2nd relocs, optimization should already have been
7291 // done.
7292 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7293 return aarch64_reloc_funcs::STATUS_OKAY;
7294 }
7295
7296 // The original sequence is -
7297 // 90000000 adrp x0, 0 <main>
7298 // 91000000 add x0, x0, #0x0
7299 // 94000000 bl 0 <__tls_get_addr>
7300 // optimized to sequence -
7301 // d53bd040 mrs x0, tpidr_el0
7302 // 91400000 add x0, x0, #0x0, lsl #12
7303 // 91000000 add x0, x0, #0x0
7304
7305 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7306 // encounter the first relocation "R_AARCH64_TLSGD_ADR_PAGE21". Because we
7307 // have to change "bl tls_get_addr", which does not have a corresponding tls
7308 // relocation type. So before proceeding, we need to make sure compiler
7309 // does not change the sequence.
7310 if(!(insn1 == 0x90000000 // adrp x0,0
7311 && insn2 == 0x91000000 // add x0, x0, #0x0
7312 && insn3 == 0x94000000)) // bl 0
7313 {
7314 // Ideally we should give up gd_to_le relaxation and do gd access.
7315 // However the gd_to_le relaxation decision has been made early
7316 // in the scan stage, where we did not allocate any GOT entry for
7317 // this symbol. Therefore we have to exit and report error now.
7318 gold_error(_("unexpected reloc insn sequence while relaxing "
7319 "tls gd to le for reloc %u."), r_type);
7320 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7321 }
7322
7323 // Write new insns.
7324 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7325 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7326 insn3 = 0x91000000; // add x0, x0, #0x0
7327 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7328 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7329 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7330
7331 // Calculate tprel value.
7332 Output_segment* tls_segment = relinfo->layout->tls_segment();
7333 gold_assert(tls_segment != NULL);
7334 AArch64_address value = psymval->value(relinfo->object, 0);
7335 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7336 AArch64_address aligned_tcb_size =
7337 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7338 AArch64_address x = value + aligned_tcb_size;
7339
7340 // After new insns are written, apply TLSLE relocs.
7341 const AArch64_reloc_property* rp1 =
7342 aarch64_reloc_property_table->get_reloc_property(
7343 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7344 const AArch64_reloc_property* rp2 =
7345 aarch64_reloc_property_table->get_reloc_property(
7346 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7347 gold_assert(rp1 != NULL && rp2 != NULL);
7348
7349 typename aarch64_reloc_funcs::Status s1 =
7350 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7351 x,
7352 addend,
7353 rp1);
7354 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7355 return s1;
7356
7357 typename aarch64_reloc_funcs::Status s2 =
7358 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7359 x,
7360 addend,
7361 rp2);
7362
7363 this->skip_call_tls_get_addr_ = true;
7364 return s2;
7365 } // End of tls_gd_to_le
7366
7367
7368 template<int size, bool big_endian>
7369 inline
7370 typename AArch64_relocate_functions<size, big_endian>::Status
7371 Target_aarch64<size, big_endian>::Relocate::tls_ld_to_le(
7372 const Relocate_info<size, big_endian>* relinfo,
7373 Target_aarch64<size, big_endian>* target,
7374 const elfcpp::Rela<size, big_endian>& rela,
7375 unsigned int r_type,
7376 unsigned char* view,
7377 const Symbol_value<size>* psymval)
7378 {
7379 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7380 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7381 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7382
7383 Insntype* ip = reinterpret_cast<Insntype*>(view);
7384 Insntype insn1 = elfcpp::Swap<32, big_endian>::readval(ip);
7385 Insntype insn2 = elfcpp::Swap<32, big_endian>::readval(ip + 1);
7386 Insntype insn3 = elfcpp::Swap<32, big_endian>::readval(ip + 2);
7387
7388 if (r_type == elfcpp::R_AARCH64_TLSLD_ADD_LO12_NC)
7389 {
7390 // This is the 2nd relocs, optimization should already have been
7391 // done.
7392 gold_assert((insn1 & 0xfff00000) == 0x91400000);
7393 return aarch64_reloc_funcs::STATUS_OKAY;
7394 }
7395
7396 // The original sequence is -
7397 // 90000000 adrp x0, 0 <main>
7398 // 91000000 add x0, x0, #0x0
7399 // 94000000 bl 0 <__tls_get_addr>
7400 // optimized to sequence -
7401 // d53bd040 mrs x0, tpidr_el0
7402 // 91400000 add x0, x0, #0x0, lsl #12
7403 // 91000000 add x0, x0, #0x0
7404
7405 // Unlike tls_ie_to_le, we change the 3 insns in one function call when we
7406 // encounter the first relocation "R_AARCH64_TLSLD_ADR_PAGE21". Because we
7407 // have to change "bl tls_get_addr", which does not have a corresponding tls
7408 // relocation type. So before proceeding, we need to make sure compiler
7409 // does not change the sequence.
7410 if(!(insn1 == 0x90000000 // adrp x0,0
7411 && insn2 == 0x91000000 // add x0, x0, #0x0
7412 && insn3 == 0x94000000)) // bl 0
7413 {
7414 // Ideally we should give up gd_to_le relaxation and do gd access.
7415 // However the gd_to_le relaxation decision has been made early
7416 // in the scan stage, where we did not allocate any GOT entry for
7417 // this symbol. Therefore we have to exit and report error now.
7418 gold_error(_("unexpected reloc insn sequence while relaxing "
7419 "tls gd to le for reloc %u."), r_type);
7420 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7421 }
7422
7423 // Write new insns.
7424 insn1 = 0xd53bd040; // mrs x0, tpidr_el0
7425 insn2 = 0x91400000; // add x0, x0, #0x0, lsl #12
7426 insn3 = 0x91000000; // add x0, x0, #0x0
7427 elfcpp::Swap<32, big_endian>::writeval(ip, insn1);
7428 elfcpp::Swap<32, big_endian>::writeval(ip + 1, insn2);
7429 elfcpp::Swap<32, big_endian>::writeval(ip + 2, insn3);
7430
7431 // Calculate tprel value.
7432 Output_segment* tls_segment = relinfo->layout->tls_segment();
7433 gold_assert(tls_segment != NULL);
7434 AArch64_address value = psymval->value(relinfo->object, 0);
7435 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7436 AArch64_address aligned_tcb_size =
7437 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7438 AArch64_address x = value + aligned_tcb_size;
7439
7440 // After new insns are written, apply TLSLE relocs.
7441 const AArch64_reloc_property* rp1 =
7442 aarch64_reloc_property_table->get_reloc_property(
7443 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_HI12);
7444 const AArch64_reloc_property* rp2 =
7445 aarch64_reloc_property_table->get_reloc_property(
7446 elfcpp::R_AARCH64_TLSLE_ADD_TPREL_LO12);
7447 gold_assert(rp1 != NULL && rp2 != NULL);
7448
7449 typename aarch64_reloc_funcs::Status s1 =
7450 aarch64_reloc_funcs::template rela_general<32>(view + 4,
7451 x,
7452 addend,
7453 rp1);
7454 if (s1 != aarch64_reloc_funcs::STATUS_OKAY)
7455 return s1;
7456
7457 typename aarch64_reloc_funcs::Status s2 =
7458 aarch64_reloc_funcs::template rela_general<32>(view + 8,
7459 x,
7460 addend,
7461 rp2);
7462
7463 this->skip_call_tls_get_addr_ = true;
7464 return s2;
7465
7466 } // End of tls_ld_to_le
7467
7468 template<int size, bool big_endian>
7469 inline
7470 typename AArch64_relocate_functions<size, big_endian>::Status
7471 Target_aarch64<size, big_endian>::Relocate::tls_ie_to_le(
7472 const Relocate_info<size, big_endian>* relinfo,
7473 Target_aarch64<size, big_endian>* target,
7474 const elfcpp::Rela<size, big_endian>& rela,
7475 unsigned int r_type,
7476 unsigned char* view,
7477 const Symbol_value<size>* psymval)
7478 {
7479 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7480 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7481 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7482
7483 AArch64_address value = psymval->value(relinfo->object, 0);
7484 Output_segment* tls_segment = relinfo->layout->tls_segment();
7485 AArch64_address aligned_tcb_address =
7486 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7487 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7488 AArch64_address x = value + addend + aligned_tcb_address;
7489 // "x" is the offset to tp, we can only do this if x is within
7490 // range [0, 2^32-1]
7491 if (!(size == 32 || (size == 64 && (static_cast<uint64_t>(x) >> 32) == 0)))
7492 {
7493 gold_error(_("TLS variable referred by reloc %u is too far from TP."),
7494 r_type);
7495 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7496 }
7497
7498 Insntype* ip = reinterpret_cast<Insntype*>(view);
7499 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7500 unsigned int regno;
7501 Insntype newinsn;
7502 if (r_type == elfcpp::R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21)
7503 {
7504 // Generate movz.
7505 regno = (insn & 0x1f);
7506 newinsn = (0xd2a00000 | regno) | (((x >> 16) & 0xffff) << 5);
7507 }
7508 else if (r_type == elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC)
7509 {
7510 // Generate movk.
7511 regno = (insn & 0x1f);
7512 gold_assert(regno == ((insn >> 5) & 0x1f));
7513 newinsn = (0xf2800000 | regno) | ((x & 0xffff) << 5);
7514 }
7515 else
7516 gold_unreachable();
7517
7518 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7519 return aarch64_reloc_funcs::STATUS_OKAY;
7520 } // End of tls_ie_to_le
7521
7522
7523 template<int size, bool big_endian>
7524 inline
7525 typename AArch64_relocate_functions<size, big_endian>::Status
7526 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_le(
7527 const Relocate_info<size, big_endian>* relinfo,
7528 Target_aarch64<size, big_endian>* target,
7529 const elfcpp::Rela<size, big_endian>& rela,
7530 unsigned int r_type,
7531 unsigned char* view,
7532 const Symbol_value<size>* psymval)
7533 {
7534 typedef typename elfcpp::Elf_types<size>::Elf_Addr AArch64_address;
7535 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7536 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7537
7538 // TLSDESC-GD sequence is like:
7539 // adrp x0, :tlsdesc:v1
7540 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7541 // add x0, x0, :tlsdesc_lo12:v1
7542 // .tlsdesccall v1
7543 // blr x1
7544 // After desc_gd_to_le optimization, the sequence will be like:
7545 // movz x0, #0x0, lsl #16
7546 // movk x0, #0x10
7547 // nop
7548 // nop
7549
7550 // Calculate tprel value.
7551 Output_segment* tls_segment = relinfo->layout->tls_segment();
7552 gold_assert(tls_segment != NULL);
7553 Insntype* ip = reinterpret_cast<Insntype*>(view);
7554 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7555 AArch64_address value = psymval->value(relinfo->object, addend);
7556 AArch64_address aligned_tcb_size =
7557 align_address(target->tcb_size(), tls_segment->maximum_alignment());
7558 AArch64_address x = value + aligned_tcb_size;
7559 // x is the offset to tp, we can only do this if x is within range
7560 // [0, 2^32-1]. If x is out of range, fail and exit.
7561 if (size == 64 && (static_cast<uint64_t>(x) >> 32) != 0)
7562 {
7563 gold_error(_("TLS variable referred by reloc %u is too far from TP. "
7564 "We Can't do gd_to_le relaxation.\n"), r_type);
7565 return aarch64_reloc_funcs::STATUS_BAD_RELOC;
7566 }
7567 Insntype newinsn;
7568 switch (r_type)
7569 {
7570 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7571 case elfcpp::R_AARCH64_TLSDESC_CALL:
7572 // Change to nop
7573 newinsn = 0xd503201f;
7574 break;
7575
7576 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7577 // Change to movz.
7578 newinsn = 0xd2a00000 | (((x >> 16) & 0xffff) << 5);
7579 break;
7580
7581 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7582 // Change to movk.
7583 newinsn = 0xf2800000 | ((x & 0xffff) << 5);
7584 break;
7585
7586 default:
7587 gold_error(_("unsupported tlsdesc gd_to_le optimization on reloc %u"),
7588 r_type);
7589 gold_unreachable();
7590 }
7591 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7592 return aarch64_reloc_funcs::STATUS_OKAY;
7593 } // End of tls_desc_gd_to_le
7594
7595
7596 template<int size, bool big_endian>
7597 inline
7598 typename AArch64_relocate_functions<size, big_endian>::Status
7599 Target_aarch64<size, big_endian>::Relocate::tls_desc_gd_to_ie(
7600 const Relocate_info<size, big_endian>* /* relinfo */,
7601 Target_aarch64<size, big_endian>* /* target */,
7602 const elfcpp::Rela<size, big_endian>& rela,
7603 unsigned int r_type,
7604 unsigned char* view,
7605 const Symbol_value<size>* /* psymval */,
7606 typename elfcpp::Elf_types<size>::Elf_Addr got_entry_address,
7607 typename elfcpp::Elf_types<size>::Elf_Addr address)
7608 {
7609 typedef typename elfcpp::Swap<32, big_endian>::Valtype Insntype;
7610 typedef AArch64_relocate_functions<size, big_endian> aarch64_reloc_funcs;
7611
7612 // TLSDESC-GD sequence is like:
7613 // adrp x0, :tlsdesc:v1
7614 // ldr x1, [x0, #:tlsdesc_lo12:v1]
7615 // add x0, x0, :tlsdesc_lo12:v1
7616 // .tlsdesccall v1
7617 // blr x1
7618 // After desc_gd_to_ie optimization, the sequence will be like:
7619 // adrp x0, :tlsie:v1
7620 // ldr x0, [x0, :tlsie_lo12:v1]
7621 // nop
7622 // nop
7623
7624 Insntype* ip = reinterpret_cast<Insntype*>(view);
7625 const elfcpp::Elf_Xword addend = rela.get_r_addend();
7626 Insntype newinsn;
7627 switch (r_type)
7628 {
7629 case elfcpp::R_AARCH64_TLSDESC_ADD_LO12:
7630 case elfcpp::R_AARCH64_TLSDESC_CALL:
7631 // Change to nop
7632 newinsn = 0xd503201f;
7633 elfcpp::Swap<32, big_endian>::writeval(ip, newinsn);
7634 break;
7635
7636 case elfcpp::R_AARCH64_TLSDESC_ADR_PAGE21:
7637 {
7638 return aarch64_reloc_funcs::adrp(view, got_entry_address + addend,
7639 address);
7640 }
7641 break;
7642
7643 case elfcpp::R_AARCH64_TLSDESC_LD64_LO12:
7644 {
7645 // Set ldr target register to be x0.
7646 Insntype insn = elfcpp::Swap<32, big_endian>::readval(ip);
7647 insn &= 0xffffffe0;
7648 elfcpp::Swap<32, big_endian>::writeval(ip, insn);
7649 // Do relocation.
7650 const AArch64_reloc_property* reloc_property =
7651 aarch64_reloc_property_table->get_reloc_property(
7652 elfcpp::R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC);
7653 return aarch64_reloc_funcs::template rela_general<32>(
7654 view, got_entry_address, addend, reloc_property);
7655 }
7656 break;
7657
7658 default:
7659 gold_error(_("Don't support tlsdesc gd_to_ie optimization on reloc %u"),
7660 r_type);
7661 gold_unreachable();
7662 }
7663 return aarch64_reloc_funcs::STATUS_OKAY;
7664 } // End of tls_desc_gd_to_ie
7665
7666 // Relocate section data.
7667
7668 template<int size, bool big_endian>
7669 void
7670 Target_aarch64<size, big_endian>::relocate_section(
7671 const Relocate_info<size, big_endian>* relinfo,
7672 unsigned int sh_type,
7673 const unsigned char* prelocs,
7674 size_t reloc_count,
7675 Output_section* output_section,
7676 bool needs_special_offset_handling,
7677 unsigned char* view,
7678 typename elfcpp::Elf_types<size>::Elf_Addr address,
7679 section_size_type view_size,
7680 const Reloc_symbol_changes* reloc_symbol_changes)
7681 {
7682 gold_assert(sh_type == elfcpp::SHT_RELA);
7683 typedef typename Target_aarch64<size, big_endian>::Relocate AArch64_relocate;
7684 gold::relocate_section<size, big_endian, Target_aarch64, elfcpp::SHT_RELA,
7685 AArch64_relocate, gold::Default_comdat_behavior>(
7686 relinfo,
7687 this,
7688 prelocs,
7689 reloc_count,
7690 output_section,
7691 needs_special_offset_handling,
7692 view,
7693 address,
7694 view_size,
7695 reloc_symbol_changes);
7696 }
7697
7698 // Return the size of a relocation while scanning during a relocatable
7699 // link.
7700
7701 template<int size, bool big_endian>
7702 unsigned int
7703 Target_aarch64<size, big_endian>::Relocatable_size_for_reloc::
7704 get_size_for_reloc(
7705 unsigned int ,
7706 Relobj* )
7707 {
7708 // We will never support SHT_REL relocations.
7709 gold_unreachable();
7710 return 0;
7711 }
7712
7713 // Scan the relocs during a relocatable link.
7714
7715 template<int size, bool big_endian>
7716 void
7717 Target_aarch64<size, big_endian>::scan_relocatable_relocs(
7718 Symbol_table* symtab,
7719 Layout* layout,
7720 Sized_relobj_file<size, big_endian>* object,
7721 unsigned int data_shndx,
7722 unsigned int sh_type,
7723 const unsigned char* prelocs,
7724 size_t reloc_count,
7725 Output_section* output_section,
7726 bool needs_special_offset_handling,
7727 size_t local_symbol_count,
7728 const unsigned char* plocal_symbols,
7729 Relocatable_relocs* rr)
7730 {
7731 gold_assert(sh_type == elfcpp::SHT_RELA);
7732
7733 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_RELA,
7734 Relocatable_size_for_reloc> Scan_relocatable_relocs;
7735
7736 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_RELA,
7737 Scan_relocatable_relocs>(
7738 symtab,
7739 layout,
7740 object,
7741 data_shndx,
7742 prelocs,
7743 reloc_count,
7744 output_section,
7745 needs_special_offset_handling,
7746 local_symbol_count,
7747 plocal_symbols,
7748 rr);
7749 }
7750
7751 // Relocate a section during a relocatable link.
7752
7753 template<int size, bool big_endian>
7754 void
7755 Target_aarch64<size, big_endian>::relocate_relocs(
7756 const Relocate_info<size, big_endian>* relinfo,
7757 unsigned int sh_type,
7758 const unsigned char* prelocs,
7759 size_t reloc_count,
7760 Output_section* output_section,
7761 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
7762 const Relocatable_relocs* rr,
7763 unsigned char* view,
7764 typename elfcpp::Elf_types<size>::Elf_Addr view_address,
7765 section_size_type view_size,
7766 unsigned char* reloc_view,
7767 section_size_type reloc_view_size)
7768 {
7769 gold_assert(sh_type == elfcpp::SHT_RELA);
7770
7771 gold::relocate_relocs<size, big_endian, elfcpp::SHT_RELA>(
7772 relinfo,
7773 prelocs,
7774 reloc_count,
7775 output_section,
7776 offset_in_output_section,
7777 rr,
7778 view,
7779 view_address,
7780 view_size,
7781 reloc_view,
7782 reloc_view_size);
7783 }
7784
7785
7786 // Return whether this is a 3-insn erratum sequence.
7787
7788 template<int size, bool big_endian>
7789 bool
7790 Target_aarch64<size, big_endian>::is_erratum_843419_sequence(
7791 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7792 typename elfcpp::Swap<32,big_endian>::Valtype insn2,
7793 typename elfcpp::Swap<32,big_endian>::Valtype insn3)
7794 {
7795 unsigned rt1, rt2;
7796 bool load, pair;
7797
7798 // The 2nd insn is a single register load or store; or register pair
7799 // store.
7800 if (Insn_utilities::aarch64_mem_op_p(insn2, &rt1, &rt2, &pair, &load)
7801 && (!pair || (pair && !load)))
7802 {
7803 // The 3rd insn is a load or store instruction from the "Load/store
7804 // register (unsigned immediate)" encoding class, using Rn as the
7805 // base address register.
7806 if (Insn_utilities::aarch64_ldst_uimm(insn3)
7807 && (Insn_utilities::aarch64_rn(insn3)
7808 == Insn_utilities::aarch64_rd(insn1)))
7809 return true;
7810 }
7811 return false;
7812 }
7813
7814
7815 // Return whether this is a 835769 sequence.
7816 // (Similarly implemented as in elfnn-aarch64.c.)
7817
7818 template<int size, bool big_endian>
7819 bool
7820 Target_aarch64<size, big_endian>::is_erratum_835769_sequence(
7821 typename elfcpp::Swap<32,big_endian>::Valtype insn1,
7822 typename elfcpp::Swap<32,big_endian>::Valtype insn2)
7823 {
7824 uint32_t rt;
7825 uint32_t rt2;
7826 uint32_t rn;
7827 uint32_t rm;
7828 uint32_t ra;
7829 bool pair;
7830 bool load;
7831
7832 if (Insn_utilities::aarch64_mlxl(insn2)
7833 && Insn_utilities::aarch64_mem_op_p (insn1, &rt, &rt2, &pair, &load))
7834 {
7835 /* Any SIMD memory op is independent of the subsequent MLA
7836 by definition of the erratum. */
7837 if (Insn_utilities::aarch64_bit(insn1, 26))
7838 return true;
7839
7840 /* If not SIMD, check for integer memory ops and MLA relationship. */
7841 rn = Insn_utilities::aarch64_rn(insn2);
7842 ra = Insn_utilities::aarch64_ra(insn2);
7843 rm = Insn_utilities::aarch64_rm(insn2);
7844
7845 /* If this is a load and there's a true(RAW) dependency, we are safe
7846 and this is not an erratum sequence. */
7847 if (load &&
7848 (rt == rn || rt == rm || rt == ra
7849 || (pair && (rt2 == rn || rt2 == rm || rt2 == ra))))
7850 return false;
7851
7852 /* We conservatively put out stubs for all other cases (including
7853 writebacks). */
7854 return true;
7855 }
7856
7857 return false;
7858 }
7859
7860
7861 // Helper method to create erratum stub for ST_E_843419 and ST_E_835769.
7862
7863 template<int size, bool big_endian>
7864 void
7865 Target_aarch64<size, big_endian>::create_erratum_stub(
7866 AArch64_relobj<size, big_endian>* relobj,
7867 unsigned int shndx,
7868 section_size_type erratum_insn_offset,
7869 Address erratum_address,
7870 typename Insn_utilities::Insntype erratum_insn,
7871 int erratum_type)
7872 {
7873 gold_assert(erratum_type == ST_E_843419 || erratum_type == ST_E_835769);
7874 The_stub_table* stub_table = relobj->stub_table(shndx);
7875 gold_assert(stub_table != NULL);
7876 if (stub_table->find_erratum_stub(relobj,
7877 shndx,
7878 erratum_insn_offset) == NULL)
7879 {
7880 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
7881 The_erratum_stub* stub = new The_erratum_stub(
7882 relobj, erratum_type, shndx, erratum_insn_offset);
7883 stub->set_erratum_insn(erratum_insn);
7884 stub->set_erratum_address(erratum_address);
7885 // For erratum ST_E_843419 and ST_E_835769, the destination address is
7886 // always the next insn after erratum insn.
7887 stub->set_destination_address(erratum_address + BPI);
7888 stub_table->add_erratum_stub(stub);
7889 }
7890 }
7891
7892
7893 // Scan erratum for section SHNDX range [output_address + span_start,
7894 // output_address + span_end). Note here we do not share the code with
7895 // scan_erratum_843419_span function, because for 843419 we optimize by only
7896 // scanning the last few insns of a page, whereas for 835769, we need to scan
7897 // every insn.
7898
7899 template<int size, bool big_endian>
7900 void
7901 Target_aarch64<size, big_endian>::scan_erratum_835769_span(
7902 AArch64_relobj<size, big_endian>* relobj,
7903 unsigned int shndx,
7904 const section_size_type span_start,
7905 const section_size_type span_end,
7906 unsigned char* input_view,
7907 Address output_address)
7908 {
7909 typedef typename Insn_utilities::Insntype Insntype;
7910
7911 const int BPI = AArch64_insn_utilities<big_endian>::BYTES_PER_INSN;
7912
7913 // Adjust output_address and view to the start of span.
7914 output_address += span_start;
7915 input_view += span_start;
7916
7917 section_size_type span_length = span_end - span_start;
7918 section_size_type offset = 0;
7919 for (offset = 0; offset + BPI < span_length; offset += BPI)
7920 {
7921 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
7922 Insntype insn1 = ip[0];
7923 Insntype insn2 = ip[1];
7924 if (is_erratum_835769_sequence(insn1, insn2))
7925 {
7926 Insntype erratum_insn = insn2;
7927 // "span_start + offset" is the offset for insn1. So for insn2, it is
7928 // "span_start + offset + BPI".
7929 section_size_type erratum_insn_offset = span_start + offset + BPI;
7930 Address erratum_address = output_address + offset + BPI;
7931 gold_warning(_("Erratum 835769 found and fixed at \"%s\", "
7932 "section %d, offset 0x%08x."),
7933 relobj->name().c_str(), shndx,
7934 (unsigned int)(span_start + offset));
7935
7936 this->create_erratum_stub(relobj, shndx,
7937 erratum_insn_offset, erratum_address,
7938 erratum_insn, ST_E_835769);
7939 offset += BPI; // Skip mac insn.
7940 }
7941 }
7942 } // End of "Target_aarch64::scan_erratum_835769_span".
7943
7944
7945 // Scan erratum for section SHNDX range
7946 // [output_address + span_start, output_address + span_end).
7947
7948 template<int size, bool big_endian>
7949 void
7950 Target_aarch64<size, big_endian>::scan_erratum_843419_span(
7951 AArch64_relobj<size, big_endian>* relobj,
7952 unsigned int shndx,
7953 const section_size_type span_start,
7954 const section_size_type span_end,
7955 unsigned char* input_view,
7956 Address output_address)
7957 {
7958 typedef typename Insn_utilities::Insntype Insntype;
7959
7960 // Adjust output_address and view to the start of span.
7961 output_address += span_start;
7962 input_view += span_start;
7963
7964 if ((output_address & 0x03) != 0)
7965 return;
7966
7967 section_size_type offset = 0;
7968 section_size_type span_length = span_end - span_start;
7969 // The first instruction must be ending at 0xFF8 or 0xFFC.
7970 unsigned int page_offset = output_address & 0xFFF;
7971 // Make sure starting position, that is "output_address+offset",
7972 // starts at page position 0xff8 or 0xffc.
7973 if (page_offset < 0xff8)
7974 offset = 0xff8 - page_offset;
7975 while (offset + 3 * Insn_utilities::BYTES_PER_INSN <= span_length)
7976 {
7977 Insntype* ip = reinterpret_cast<Insntype*>(input_view + offset);
7978 Insntype insn1 = ip[0];
7979 if (Insn_utilities::is_adrp(insn1))
7980 {
7981 Insntype insn2 = ip[1];
7982 Insntype insn3 = ip[2];
7983 Insntype erratum_insn;
7984 unsigned insn_offset;
7985 bool do_report = false;
7986 if (is_erratum_843419_sequence(insn1, insn2, insn3))
7987 {
7988 do_report = true;
7989 erratum_insn = insn3;
7990 insn_offset = 2 * Insn_utilities::BYTES_PER_INSN;
7991 }
7992 else if (offset + 4 * Insn_utilities::BYTES_PER_INSN <= span_length)
7993 {
7994 // Optionally we can have an insn between ins2 and ins3
7995 Insntype insn_opt = ip[2];
7996 // And insn_opt must not be a branch.
7997 if (!Insn_utilities::aarch64_b(insn_opt)
7998 && !Insn_utilities::aarch64_bl(insn_opt)
7999 && !Insn_utilities::aarch64_blr(insn_opt)
8000 && !Insn_utilities::aarch64_br(insn_opt))
8001 {
8002 // And insn_opt must not write to dest reg in insn1. However
8003 // we do a conservative scan, which means we may fix/report
8004 // more than necessary, but it doesn't hurt.
8005
8006 Insntype insn4 = ip[3];
8007 if (is_erratum_843419_sequence(insn1, insn2, insn4))
8008 {
8009 do_report = true;
8010 erratum_insn = insn4;
8011 insn_offset = 3 * Insn_utilities::BYTES_PER_INSN;
8012 }
8013 }
8014 }
8015 if (do_report)
8016 {
8017 gold_warning(_("Erratum 843419 found and fixed at \"%s\", "
8018 "section %d, offset 0x%08x."),
8019 relobj->name().c_str(), shndx,
8020 (unsigned int)(span_start + offset));
8021 unsigned int erratum_insn_offset =
8022 span_start + offset + insn_offset;
8023 Address erratum_address =
8024 output_address + offset + insn_offset;
8025 create_erratum_stub(relobj, shndx,
8026 erratum_insn_offset, erratum_address,
8027 erratum_insn, ST_E_843419);
8028 }
8029 }
8030
8031 // Advance to next candidate instruction. We only consider instruction
8032 // sequences starting at a page offset of 0xff8 or 0xffc.
8033 page_offset = (output_address + offset) & 0xfff;
8034 if (page_offset == 0xff8)
8035 offset += 4;
8036 else // (page_offset == 0xffc), we move to next page's 0xff8.
8037 offset += 0xffc;
8038 }
8039 } // End of "Target_aarch64::scan_erratum_843419_span".
8040
8041
8042 // The selector for aarch64 object files.
8043
8044 template<int size, bool big_endian>
8045 class Target_selector_aarch64 : public Target_selector
8046 {
8047 public:
8048 Target_selector_aarch64();
8049
8050 virtual Target*
8051 do_instantiate_target()
8052 { return new Target_aarch64<size, big_endian>(); }
8053 };
8054
8055 template<>
8056 Target_selector_aarch64<32, true>::Target_selector_aarch64()
8057 : Target_selector(elfcpp::EM_AARCH64, 32, true,
8058 "elf32-bigaarch64", "aarch64_elf32_be_vec")
8059 { }
8060
8061 template<>
8062 Target_selector_aarch64<32, false>::Target_selector_aarch64()
8063 : Target_selector(elfcpp::EM_AARCH64, 32, false,
8064 "elf32-littleaarch64", "aarch64_elf32_le_vec")
8065 { }
8066
8067 template<>
8068 Target_selector_aarch64<64, true>::Target_selector_aarch64()
8069 : Target_selector(elfcpp::EM_AARCH64, 64, true,
8070 "elf64-bigaarch64", "aarch64_elf64_be_vec")
8071 { }
8072
8073 template<>
8074 Target_selector_aarch64<64, false>::Target_selector_aarch64()
8075 : Target_selector(elfcpp::EM_AARCH64, 64, false,
8076 "elf64-littleaarch64", "aarch64_elf64_le_vec")
8077 { }
8078
8079 Target_selector_aarch64<32, true> target_selector_aarch64elf32b;
8080 Target_selector_aarch64<32, false> target_selector_aarch64elf32;
8081 Target_selector_aarch64<64, true> target_selector_aarch64elfb;
8082 Target_selector_aarch64<64, false> target_selector_aarch64elf;
8083
8084 } // End anonymous namespace.
This page took 0.194916 seconds and 5 git commands to generate.