* gdb.pascal/floats.pas: New test program.
[deliverable/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
61 { }
62
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 Output_section* output_section,
74 bool needs_special_offset_handling,
75 size_t local_symbol_count,
76 const unsigned char* plocal_symbols);
77
78 // Finalize the sections.
79 void
80 do_finalize_sections(Layout*);
81
82 // Return the value to use for a dynamic which requires special
83 // treatment.
84 uint64_t
85 do_dynsym_value(const Symbol*) const;
86
87 // Relocate a section.
88 void
89 relocate_section(const Relocate_info<32, false>*,
90 unsigned int sh_type,
91 const unsigned char* prelocs,
92 size_t reloc_count,
93 Output_section* output_section,
94 bool needs_special_offset_handling,
95 unsigned char* view,
96 elfcpp::Elf_types<32>::Elf_Addr view_address,
97 section_size_type view_size);
98
99 // Scan the relocs during a relocatable link.
100 void
101 scan_relocatable_relocs(const General_options& options,
102 Symbol_table* symtab,
103 Layout* layout,
104 Sized_relobj<32, false>* object,
105 unsigned int data_shndx,
106 unsigned int sh_type,
107 const unsigned char* prelocs,
108 size_t reloc_count,
109 Output_section* output_section,
110 bool needs_special_offset_handling,
111 size_t local_symbol_count,
112 const unsigned char* plocal_symbols,
113 Relocatable_relocs*);
114
115 // Relocate a section during a relocatable link.
116 void
117 relocate_for_relocatable(const Relocate_info<32, false>*,
118 unsigned int sh_type,
119 const unsigned char* prelocs,
120 size_t reloc_count,
121 Output_section* output_section,
122 off_t offset_in_output_section,
123 const Relocatable_relocs*,
124 unsigned char* view,
125 elfcpp::Elf_types<32>::Elf_Addr view_address,
126 section_size_type view_size,
127 unsigned char* reloc_view,
128 section_size_type reloc_view_size);
129
130 // Return a string used to fill a code section with nops.
131 std::string
132 do_code_fill(section_size_type length);
133
134 // Return whether SYM is defined by the ABI.
135 bool
136 do_is_defined_by_abi(Symbol* sym) const
137 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
138
139 // Return the size of the GOT section.
140 section_size_type
141 got_size()
142 {
143 gold_assert(this->got_ != NULL);
144 return this->got_->data_size();
145 }
146
147 private:
148 // The class which scans relocations.
149 struct Scan
150 {
151 inline void
152 local(const General_options& options, Symbol_table* symtab,
153 Layout* layout, Target_i386* target,
154 Sized_relobj<32, false>* object,
155 unsigned int data_shndx,
156 Output_section* output_section,
157 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
158 const elfcpp::Sym<32, false>& lsym);
159
160 inline void
161 global(const General_options& options, Symbol_table* symtab,
162 Layout* layout, Target_i386* target,
163 Sized_relobj<32, false>* object,
164 unsigned int data_shndx,
165 Output_section* output_section,
166 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
167 Symbol* gsym);
168
169 static void
170 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
171
172 static void
173 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
174 Symbol*);
175 };
176
177 // The class which implements relocation.
178 class Relocate
179 {
180 public:
181 Relocate()
182 : skip_call_tls_get_addr_(false),
183 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
184 { }
185
186 ~Relocate()
187 {
188 if (this->skip_call_tls_get_addr_)
189 {
190 // FIXME: This needs to specify the location somehow.
191 gold_error(_("missing expected TLS relocation"));
192 }
193 }
194
195 // Return whether the static relocation needs to be applied.
196 inline bool
197 should_apply_static_reloc(const Sized_symbol<32>* gsym,
198 int ref_flags,
199 bool is_32bit);
200
201 // Do a relocation. Return false if the caller should not issue
202 // any warnings about this relocation.
203 inline bool
204 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
205 const elfcpp::Rel<32, false>&,
206 unsigned int r_type, const Sized_symbol<32>*,
207 const Symbol_value<32>*,
208 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
209 section_size_type);
210
211 private:
212 // Do a TLS relocation.
213 inline void
214 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
215 size_t relnum, const elfcpp::Rel<32, false>&,
216 unsigned int r_type, const Sized_symbol<32>*,
217 const Symbol_value<32>*,
218 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
219 section_size_type);
220
221 // Do a TLS General-Dynamic to Initial-Exec transition.
222 inline void
223 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
224 Output_segment* tls_segment,
225 const elfcpp::Rel<32, false>&, unsigned int r_type,
226 elfcpp::Elf_types<32>::Elf_Addr value,
227 unsigned char* view,
228 section_size_type view_size);
229
230 // Do a TLS General-Dynamic to Local-Exec transition.
231 inline void
232 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
233 Output_segment* tls_segment,
234 const elfcpp::Rel<32, false>&, unsigned int r_type,
235 elfcpp::Elf_types<32>::Elf_Addr value,
236 unsigned char* view,
237 section_size_type view_size);
238
239 // Do a TLS Local-Dynamic to Local-Exec transition.
240 inline void
241 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
242 Output_segment* tls_segment,
243 const elfcpp::Rel<32, false>&, unsigned int r_type,
244 elfcpp::Elf_types<32>::Elf_Addr value,
245 unsigned char* view,
246 section_size_type view_size);
247
248 // Do a TLS Initial-Exec to Local-Exec transition.
249 static inline void
250 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
251 Output_segment* tls_segment,
252 const elfcpp::Rel<32, false>&, unsigned int r_type,
253 elfcpp::Elf_types<32>::Elf_Addr value,
254 unsigned char* view,
255 section_size_type view_size);
256
257 // We need to keep track of which type of local dynamic relocation
258 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
259 enum Local_dynamic_type
260 {
261 LOCAL_DYNAMIC_NONE,
262 LOCAL_DYNAMIC_SUN,
263 LOCAL_DYNAMIC_GNU
264 };
265
266 // This is set if we should skip the next reloc, which should be a
267 // PLT32 reloc against ___tls_get_addr.
268 bool skip_call_tls_get_addr_;
269 // The type of local dynamic relocation we have seen in the section
270 // being relocated, if any.
271 Local_dynamic_type local_dynamic_type_;
272 };
273
274 // A class which returns the size required for a relocation type,
275 // used while scanning relocs during a relocatable link.
276 class Relocatable_size_for_reloc
277 {
278 public:
279 unsigned int
280 get_size_for_reloc(unsigned int, Relobj*);
281 };
282
283 // Adjust TLS relocation type based on the options and whether this
284 // is a local symbol.
285 static tls::Tls_optimization
286 optimize_tls_reloc(bool is_final, int r_type);
287
288 // Get the GOT section, creating it if necessary.
289 Output_data_got<32, false>*
290 got_section(Symbol_table*, Layout*);
291
292 // Get the GOT PLT section.
293 Output_data_space*
294 got_plt_section() const
295 {
296 gold_assert(this->got_plt_ != NULL);
297 return this->got_plt_;
298 }
299
300 // Create a PLT entry for a global symbol.
301 void
302 make_plt_entry(Symbol_table*, Layout*, Symbol*);
303
304 // Create a GOT entry for the TLS module index.
305 unsigned int
306 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
307 Sized_relobj<32, false>* object);
308
309 // Get the PLT section.
310 const Output_data_plt_i386*
311 plt_section() const
312 {
313 gold_assert(this->plt_ != NULL);
314 return this->plt_;
315 }
316
317 // Get the dynamic reloc section, creating it if necessary.
318 Reloc_section*
319 rel_dyn_section(Layout*);
320
321 // Return true if the symbol may need a COPY relocation.
322 // References from an executable object to non-function symbols
323 // defined in a dynamic object may need a COPY relocation.
324 bool
325 may_need_copy_reloc(Symbol* gsym)
326 {
327 return (!parameters->output_is_shared()
328 && gsym->is_from_dynobj()
329 && gsym->type() != elfcpp::STT_FUNC);
330 }
331
332 // Copy a relocation against a global symbol.
333 void
334 copy_reloc(const General_options*, Symbol_table*, Layout*,
335 Sized_relobj<32, false>*, unsigned int,
336 Output_section*, Symbol*, const elfcpp::Rel<32, false>&);
337
338 // Information about this specific target which we pass to the
339 // general Target structure.
340 static const Target::Target_info i386_info;
341
342 // The GOT section.
343 Output_data_got<32, false>* got_;
344 // The PLT section.
345 Output_data_plt_i386* plt_;
346 // The GOT PLT section.
347 Output_data_space* got_plt_;
348 // The dynamic reloc section.
349 Reloc_section* rel_dyn_;
350 // Relocs saved to avoid a COPY reloc.
351 Copy_relocs<32, false>* copy_relocs_;
352 // Space for variables copied with a COPY reloc.
353 Output_data_space* dynbss_;
354 // Offset of the GOT entry for the TLS module index;
355 unsigned int got_mod_index_offset_;
356 };
357
358 const Target::Target_info Target_i386::i386_info =
359 {
360 32, // size
361 false, // is_big_endian
362 elfcpp::EM_386, // machine_code
363 false, // has_make_symbol
364 false, // has_resolve
365 true, // has_code_fill
366 true, // is_default_stack_executable
367 "/usr/lib/libc.so.1", // dynamic_linker
368 0x08048000, // default_text_segment_address
369 0x1000, // abi_pagesize
370 0x1000 // common_pagesize
371 };
372
373 // Get the GOT section, creating it if necessary.
374
375 Output_data_got<32, false>*
376 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
377 {
378 if (this->got_ == NULL)
379 {
380 gold_assert(symtab != NULL && layout != NULL);
381
382 this->got_ = new Output_data_got<32, false>();
383
384 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
385 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
386 this->got_);
387
388 // The old GNU linker creates a .got.plt section. We just
389 // create another set of data in the .got section. Note that we
390 // always create a PLT if we create a GOT, although the PLT
391 // might be empty.
392 this->got_plt_ = new Output_data_space(4);
393 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
394 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
395 this->got_plt_);
396
397 // The first three entries are reserved.
398 this->got_plt_->set_current_data_size(3 * 4);
399
400 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
401 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
402 this->got_plt_,
403 0, 0, elfcpp::STT_OBJECT,
404 elfcpp::STB_LOCAL,
405 elfcpp::STV_HIDDEN, 0,
406 false, false);
407 }
408
409 return this->got_;
410 }
411
412 // Get the dynamic reloc section, creating it if necessary.
413
414 Target_i386::Reloc_section*
415 Target_i386::rel_dyn_section(Layout* layout)
416 {
417 if (this->rel_dyn_ == NULL)
418 {
419 gold_assert(layout != NULL);
420 this->rel_dyn_ = new Reloc_section();
421 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
422 elfcpp::SHF_ALLOC, this->rel_dyn_);
423 }
424 return this->rel_dyn_;
425 }
426
427 // A class to handle the PLT data.
428
429 class Output_data_plt_i386 : public Output_section_data
430 {
431 public:
432 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
433
434 Output_data_plt_i386(Layout*, Output_data_space*);
435
436 // Add an entry to the PLT.
437 void
438 add_entry(Symbol* gsym);
439
440 // Return the .rel.plt section data.
441 const Reloc_section*
442 rel_plt() const
443 { return this->rel_; }
444
445 protected:
446 void
447 do_adjust_output_section(Output_section* os);
448
449 private:
450 // The size of an entry in the PLT.
451 static const int plt_entry_size = 16;
452
453 // The first entry in the PLT for an executable.
454 static unsigned char exec_first_plt_entry[plt_entry_size];
455
456 // The first entry in the PLT for a shared object.
457 static unsigned char dyn_first_plt_entry[plt_entry_size];
458
459 // Other entries in the PLT for an executable.
460 static unsigned char exec_plt_entry[plt_entry_size];
461
462 // Other entries in the PLT for a shared object.
463 static unsigned char dyn_plt_entry[plt_entry_size];
464
465 // Set the final size.
466 void
467 set_final_data_size()
468 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
469
470 // Write out the PLT data.
471 void
472 do_write(Output_file*);
473
474 // The reloc section.
475 Reloc_section* rel_;
476 // The .got.plt section.
477 Output_data_space* got_plt_;
478 // The number of PLT entries.
479 unsigned int count_;
480 };
481
482 // Create the PLT section. The ordinary .got section is an argument,
483 // since we need to refer to the start. We also create our own .got
484 // section just for PLT entries.
485
486 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
487 Output_data_space* got_plt)
488 : Output_section_data(4), got_plt_(got_plt), count_(0)
489 {
490 this->rel_ = new Reloc_section();
491 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
492 elfcpp::SHF_ALLOC, this->rel_);
493 }
494
495 void
496 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
497 {
498 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
499 // linker, and so do we.
500 os->set_entsize(4);
501 }
502
503 // Add an entry to the PLT.
504
505 void
506 Output_data_plt_i386::add_entry(Symbol* gsym)
507 {
508 gold_assert(!gsym->has_plt_offset());
509
510 // Note that when setting the PLT offset we skip the initial
511 // reserved PLT entry.
512 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
513
514 ++this->count_;
515
516 section_offset_type got_offset = this->got_plt_->current_data_size();
517
518 // Every PLT entry needs a GOT entry which points back to the PLT
519 // entry (this will be changed by the dynamic linker, normally
520 // lazily when the function is called).
521 this->got_plt_->set_current_data_size(got_offset + 4);
522
523 // Every PLT entry needs a reloc.
524 gsym->set_needs_dynsym_entry();
525 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
526 got_offset);
527
528 // Note that we don't need to save the symbol. The contents of the
529 // PLT are independent of which symbols are used. The symbols only
530 // appear in the relocations.
531 }
532
533 // The first entry in the PLT for an executable.
534
535 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
536 {
537 0xff, 0x35, // pushl contents of memory address
538 0, 0, 0, 0, // replaced with address of .got + 4
539 0xff, 0x25, // jmp indirect
540 0, 0, 0, 0, // replaced with address of .got + 8
541 0, 0, 0, 0 // unused
542 };
543
544 // The first entry in the PLT for a shared object.
545
546 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
547 {
548 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
549 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
550 0, 0, 0, 0 // unused
551 };
552
553 // Subsequent entries in the PLT for an executable.
554
555 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
556 {
557 0xff, 0x25, // jmp indirect
558 0, 0, 0, 0, // replaced with address of symbol in .got
559 0x68, // pushl immediate
560 0, 0, 0, 0, // replaced with offset into relocation table
561 0xe9, // jmp relative
562 0, 0, 0, 0 // replaced with offset to start of .plt
563 };
564
565 // Subsequent entries in the PLT for a shared object.
566
567 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
568 {
569 0xff, 0xa3, // jmp *offset(%ebx)
570 0, 0, 0, 0, // replaced with offset of symbol in .got
571 0x68, // pushl immediate
572 0, 0, 0, 0, // replaced with offset into relocation table
573 0xe9, // jmp relative
574 0, 0, 0, 0 // replaced with offset to start of .plt
575 };
576
577 // Write out the PLT. This uses the hand-coded instructions above,
578 // and adjusts them as needed. This is all specified by the i386 ELF
579 // Processor Supplement.
580
581 void
582 Output_data_plt_i386::do_write(Output_file* of)
583 {
584 const off_t offset = this->offset();
585 const section_size_type oview_size =
586 convert_to_section_size_type(this->data_size());
587 unsigned char* const oview = of->get_output_view(offset, oview_size);
588
589 const off_t got_file_offset = this->got_plt_->offset();
590 const section_size_type got_size =
591 convert_to_section_size_type(this->got_plt_->data_size());
592 unsigned char* const got_view = of->get_output_view(got_file_offset,
593 got_size);
594
595 unsigned char* pov = oview;
596
597 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
598 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
599
600 if (parameters->output_is_shared())
601 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
602 else
603 {
604 memcpy(pov, exec_first_plt_entry, plt_entry_size);
605 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
606 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
607 }
608 pov += plt_entry_size;
609
610 unsigned char* got_pov = got_view;
611
612 memset(got_pov, 0, 12);
613 got_pov += 12;
614
615 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
616
617 unsigned int plt_offset = plt_entry_size;
618 unsigned int plt_rel_offset = 0;
619 unsigned int got_offset = 12;
620 const unsigned int count = this->count_;
621 for (unsigned int i = 0;
622 i < count;
623 ++i,
624 pov += plt_entry_size,
625 got_pov += 4,
626 plt_offset += plt_entry_size,
627 plt_rel_offset += rel_size,
628 got_offset += 4)
629 {
630 // Set and adjust the PLT entry itself.
631
632 if (parameters->output_is_shared())
633 {
634 memcpy(pov, dyn_plt_entry, plt_entry_size);
635 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
636 }
637 else
638 {
639 memcpy(pov, exec_plt_entry, plt_entry_size);
640 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
641 (got_address
642 + got_offset));
643 }
644
645 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
646 elfcpp::Swap<32, false>::writeval(pov + 12,
647 - (plt_offset + plt_entry_size));
648
649 // Set the entry in the GOT.
650 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
651 }
652
653 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
654 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
655
656 of->write_output_view(offset, oview_size, oview);
657 of->write_output_view(got_file_offset, got_size, got_view);
658 }
659
660 // Create a PLT entry for a global symbol.
661
662 void
663 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
664 {
665 if (gsym->has_plt_offset())
666 return;
667
668 if (this->plt_ == NULL)
669 {
670 // Create the GOT sections first.
671 this->got_section(symtab, layout);
672
673 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
674 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
675 (elfcpp::SHF_ALLOC
676 | elfcpp::SHF_EXECINSTR),
677 this->plt_);
678 }
679
680 this->plt_->add_entry(gsym);
681 }
682
683 // Create a GOT entry for the TLS module index.
684
685 unsigned int
686 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
687 Sized_relobj<32, false>* object)
688 {
689 if (this->got_mod_index_offset_ == -1U)
690 {
691 gold_assert(symtab != NULL && layout != NULL && object != NULL);
692 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
693 Output_data_got<32, false>* got = this->got_section(symtab, layout);
694 unsigned int got_offset = got->add_constant(0);
695 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
696 got_offset);
697 got->add_constant(0);
698 this->got_mod_index_offset_ = got_offset;
699 }
700 return this->got_mod_index_offset_;
701 }
702
703 // Handle a relocation against a non-function symbol defined in a
704 // dynamic object. The traditional way to handle this is to generate
705 // a COPY relocation to copy the variable at runtime from the shared
706 // object into the executable's data segment. However, this is
707 // undesirable in general, as if the size of the object changes in the
708 // dynamic object, the executable will no longer work correctly. If
709 // this relocation is in a writable section, then we can create a
710 // dynamic reloc and the dynamic linker will resolve it to the correct
711 // address at runtime. However, we do not want do that if the
712 // relocation is in a read-only section, as it would prevent the
713 // readonly segment from being shared. And if we have to eventually
714 // generate a COPY reloc, then any dynamic relocations will be
715 // useless. So this means that if this is a writable section, we need
716 // to save the relocation until we see whether we have to create a
717 // COPY relocation for this symbol for any other relocation.
718
719 void
720 Target_i386::copy_reloc(const General_options* options,
721 Symbol_table* symtab,
722 Layout* layout,
723 Sized_relobj<32, false>* object,
724 unsigned int data_shndx,
725 Output_section* output_section,
726 Symbol* gsym,
727 const elfcpp::Rel<32, false>& rel)
728 {
729 Sized_symbol<32>* ssym;
730 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
731 SELECT_SIZE(32));
732
733 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
734 data_shndx, ssym))
735 {
736 // So far we do not need a COPY reloc. Save this relocation.
737 // If it turns out that we never need a COPY reloc for this
738 // symbol, then we will emit the relocation.
739 if (this->copy_relocs_ == NULL)
740 this->copy_relocs_ = new Copy_relocs<32, false>();
741 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rel);
742 }
743 else
744 {
745 // Allocate space for this symbol in the .bss section.
746
747 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
748
749 // There is no defined way to determine the required alignment
750 // of the symbol. We pick the alignment based on the size. We
751 // set an arbitrary maximum of 256.
752 unsigned int align;
753 for (align = 1; align < 512; align <<= 1)
754 if ((symsize & align) != 0)
755 break;
756
757 if (this->dynbss_ == NULL)
758 {
759 this->dynbss_ = new Output_data_space(align);
760 layout->add_output_section_data(".bss",
761 elfcpp::SHT_NOBITS,
762 (elfcpp::SHF_ALLOC
763 | elfcpp::SHF_WRITE),
764 this->dynbss_);
765 }
766
767 Output_data_space* dynbss = this->dynbss_;
768
769 if (align > dynbss->addralign())
770 dynbss->set_space_alignment(align);
771
772 section_size_type dynbss_size =
773 convert_to_section_size_type(dynbss->current_data_size());
774 dynbss_size = align_address(dynbss_size, align);
775 section_size_type offset = dynbss_size;
776 dynbss->set_current_data_size(dynbss_size + symsize);
777
778 symtab->define_with_copy_reloc(ssym, dynbss, offset);
779
780 // Add the COPY reloc.
781 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
782 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
783 }
784 }
785
786 // Optimize the TLS relocation type based on what we know about the
787 // symbol. IS_FINAL is true if the final address of this symbol is
788 // known at link time.
789
790 tls::Tls_optimization
791 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
792 {
793 // If we are generating a shared library, then we can't do anything
794 // in the linker.
795 if (parameters->output_is_shared())
796 return tls::TLSOPT_NONE;
797
798 switch (r_type)
799 {
800 case elfcpp::R_386_TLS_GD:
801 case elfcpp::R_386_TLS_GOTDESC:
802 case elfcpp::R_386_TLS_DESC_CALL:
803 // These are General-Dynamic which permits fully general TLS
804 // access. Since we know that we are generating an executable,
805 // we can convert this to Initial-Exec. If we also know that
806 // this is a local symbol, we can further switch to Local-Exec.
807 if (is_final)
808 return tls::TLSOPT_TO_LE;
809 return tls::TLSOPT_TO_IE;
810
811 case elfcpp::R_386_TLS_LDM:
812 // This is Local-Dynamic, which refers to a local symbol in the
813 // dynamic TLS block. Since we know that we generating an
814 // executable, we can switch to Local-Exec.
815 return tls::TLSOPT_TO_LE;
816
817 case elfcpp::R_386_TLS_LDO_32:
818 // Another type of Local-Dynamic relocation.
819 return tls::TLSOPT_TO_LE;
820
821 case elfcpp::R_386_TLS_IE:
822 case elfcpp::R_386_TLS_GOTIE:
823 case elfcpp::R_386_TLS_IE_32:
824 // These are Initial-Exec relocs which get the thread offset
825 // from the GOT. If we know that we are linking against the
826 // local symbol, we can switch to Local-Exec, which links the
827 // thread offset into the instruction.
828 if (is_final)
829 return tls::TLSOPT_TO_LE;
830 return tls::TLSOPT_NONE;
831
832 case elfcpp::R_386_TLS_LE:
833 case elfcpp::R_386_TLS_LE_32:
834 // When we already have Local-Exec, there is nothing further we
835 // can do.
836 return tls::TLSOPT_NONE;
837
838 default:
839 gold_unreachable();
840 }
841 }
842
843 // Report an unsupported relocation against a local symbol.
844
845 void
846 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
847 unsigned int r_type)
848 {
849 gold_error(_("%s: unsupported reloc %u against local symbol"),
850 object->name().c_str(), r_type);
851 }
852
853 // Scan a relocation for a local symbol.
854
855 inline void
856 Target_i386::Scan::local(const General_options&,
857 Symbol_table* symtab,
858 Layout* layout,
859 Target_i386* target,
860 Sized_relobj<32, false>* object,
861 unsigned int data_shndx,
862 Output_section* output_section,
863 const elfcpp::Rel<32, false>& reloc,
864 unsigned int r_type,
865 const elfcpp::Sym<32, false>& lsym)
866 {
867 switch (r_type)
868 {
869 case elfcpp::R_386_NONE:
870 case elfcpp::R_386_GNU_VTINHERIT:
871 case elfcpp::R_386_GNU_VTENTRY:
872 break;
873
874 case elfcpp::R_386_32:
875 // If building a shared library (or a position-independent
876 // executable), we need to create a dynamic relocation for
877 // this location. The relocation applied at link time will
878 // apply the link-time value, so we flag the location with
879 // an R_386_RELATIVE relocation so the dynamic loader can
880 // relocate it easily.
881 if (parameters->output_is_position_independent())
882 {
883 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
884 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
885 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
886 output_section, data_shndx,
887 reloc.get_r_offset());
888 }
889 break;
890
891 case elfcpp::R_386_16:
892 case elfcpp::R_386_8:
893 // If building a shared library (or a position-independent
894 // executable), we need to create a dynamic relocation for
895 // this location. Because the addend needs to remain in the
896 // data section, we need to be careful not to apply this
897 // relocation statically.
898 if (parameters->output_is_position_independent())
899 {
900 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
901 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
902 rel_dyn->add_local(object, r_sym, r_type, output_section, data_shndx,
903 reloc.get_r_offset());
904 }
905 break;
906
907 case elfcpp::R_386_PC32:
908 case elfcpp::R_386_PC16:
909 case elfcpp::R_386_PC8:
910 break;
911
912 case elfcpp::R_386_PLT32:
913 // Since we know this is a local symbol, we can handle this as a
914 // PC32 reloc.
915 break;
916
917 case elfcpp::R_386_GOTOFF:
918 case elfcpp::R_386_GOTPC:
919 // We need a GOT section.
920 target->got_section(symtab, layout);
921 break;
922
923 case elfcpp::R_386_GOT32:
924 {
925 // The symbol requires a GOT entry.
926 Output_data_got<32, false>* got = target->got_section(symtab, layout);
927 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
928 if (got->add_local(object, r_sym))
929 {
930 // If we are generating a shared object, we need to add a
931 // dynamic RELATIVE relocation for this symbol's GOT entry.
932 if (parameters->output_is_position_independent())
933 {
934 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
935 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
936 rel_dyn->add_local_relative(object, r_sym,
937 elfcpp::R_386_RELATIVE,
938 got,
939 object->local_got_offset(r_sym));
940 }
941 }
942 }
943 break;
944
945 // These are relocations which should only be seen by the
946 // dynamic linker, and should never be seen here.
947 case elfcpp::R_386_COPY:
948 case elfcpp::R_386_GLOB_DAT:
949 case elfcpp::R_386_JUMP_SLOT:
950 case elfcpp::R_386_RELATIVE:
951 case elfcpp::R_386_TLS_TPOFF:
952 case elfcpp::R_386_TLS_DTPMOD32:
953 case elfcpp::R_386_TLS_DTPOFF32:
954 case elfcpp::R_386_TLS_TPOFF32:
955 case elfcpp::R_386_TLS_DESC:
956 gold_error(_("%s: unexpected reloc %u in object file"),
957 object->name().c_str(), r_type);
958 break;
959
960 // These are initial TLS relocs, which are expected when
961 // linking.
962 case elfcpp::R_386_TLS_GD: // Global-dynamic
963 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
964 case elfcpp::R_386_TLS_DESC_CALL:
965 case elfcpp::R_386_TLS_LDM: // Local-dynamic
966 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
967 case elfcpp::R_386_TLS_IE: // Initial-exec
968 case elfcpp::R_386_TLS_IE_32:
969 case elfcpp::R_386_TLS_GOTIE:
970 case elfcpp::R_386_TLS_LE: // Local-exec
971 case elfcpp::R_386_TLS_LE_32:
972 {
973 bool output_is_shared = parameters->output_is_shared();
974 const tls::Tls_optimization optimized_type
975 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
976 switch (r_type)
977 {
978 case elfcpp::R_386_TLS_GD: // Global-dynamic
979 if (optimized_type == tls::TLSOPT_NONE)
980 {
981 // Create a pair of GOT entries for the module index and
982 // dtv-relative offset.
983 Output_data_got<32, false>* got
984 = target->got_section(symtab, layout);
985 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
986 got->add_local_tls_with_rel(object, r_sym,
987 lsym.get_st_shndx(), true,
988 target->rel_dyn_section(layout),
989 elfcpp::R_386_TLS_DTPMOD32);
990 }
991 else if (optimized_type != tls::TLSOPT_TO_LE)
992 unsupported_reloc_local(object, r_type);
993 break;
994
995 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
996 case elfcpp::R_386_TLS_DESC_CALL:
997 // FIXME: If not relaxing to LE, we need to generate
998 // a GOT entry with an R_386_TLS_DESC reloc.
999 if (optimized_type != tls::TLSOPT_TO_LE)
1000 unsupported_reloc_local(object, r_type);
1001 break;
1002
1003 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1004 if (optimized_type == tls::TLSOPT_NONE)
1005 {
1006 // Create a GOT entry for the module index.
1007 target->got_mod_index_entry(symtab, layout, object);
1008 }
1009 else if (optimized_type != tls::TLSOPT_TO_LE)
1010 unsupported_reloc_local(object, r_type);
1011 break;
1012
1013 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1014 break;
1015
1016 case elfcpp::R_386_TLS_IE: // Initial-exec
1017 case elfcpp::R_386_TLS_IE_32:
1018 case elfcpp::R_386_TLS_GOTIE:
1019 layout->set_has_static_tls();
1020 if (optimized_type == tls::TLSOPT_NONE)
1021 {
1022 // For the R_386_TLS_IE relocation, we need to create a
1023 // dynamic relocation when building a shared library.
1024 if (r_type == elfcpp::R_386_TLS_IE
1025 && parameters->output_is_shared())
1026 {
1027 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1028 unsigned int r_sym
1029 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1030 rel_dyn->add_local_relative(object, r_sym,
1031 elfcpp::R_386_RELATIVE,
1032 output_section, data_shndx,
1033 reloc.get_r_offset());
1034 }
1035 // Create a GOT entry for the tp-relative offset.
1036 Output_data_got<32, false>* got
1037 = target->got_section(symtab, layout);
1038 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1039 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1040 ? elfcpp::R_386_TLS_TPOFF32
1041 : elfcpp::R_386_TLS_TPOFF);
1042 got->add_local_with_rel(object, r_sym,
1043 target->rel_dyn_section(layout),
1044 dyn_r_type);
1045 }
1046 else if (optimized_type != tls::TLSOPT_TO_LE)
1047 unsupported_reloc_local(object, r_type);
1048 break;
1049
1050 case elfcpp::R_386_TLS_LE: // Local-exec
1051 case elfcpp::R_386_TLS_LE_32:
1052 layout->set_has_static_tls();
1053 if (output_is_shared)
1054 {
1055 // We need to create a dynamic relocation.
1056 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1057 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1058 ? elfcpp::R_386_TLS_TPOFF32
1059 : elfcpp::R_386_TLS_TPOFF);
1060 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1061 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1062 data_shndx, reloc.get_r_offset());
1063 }
1064 break;
1065
1066 default:
1067 gold_unreachable();
1068 }
1069 }
1070 break;
1071
1072 case elfcpp::R_386_32PLT:
1073 case elfcpp::R_386_TLS_GD_32:
1074 case elfcpp::R_386_TLS_GD_PUSH:
1075 case elfcpp::R_386_TLS_GD_CALL:
1076 case elfcpp::R_386_TLS_GD_POP:
1077 case elfcpp::R_386_TLS_LDM_32:
1078 case elfcpp::R_386_TLS_LDM_PUSH:
1079 case elfcpp::R_386_TLS_LDM_CALL:
1080 case elfcpp::R_386_TLS_LDM_POP:
1081 case elfcpp::R_386_USED_BY_INTEL_200:
1082 default:
1083 unsupported_reloc_local(object, r_type);
1084 break;
1085 }
1086 }
1087
1088 // Report an unsupported relocation against a global symbol.
1089
1090 void
1091 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1092 unsigned int r_type,
1093 Symbol* gsym)
1094 {
1095 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1096 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1097 }
1098
1099 // Scan a relocation for a global symbol.
1100
1101 inline void
1102 Target_i386::Scan::global(const General_options& options,
1103 Symbol_table* symtab,
1104 Layout* layout,
1105 Target_i386* target,
1106 Sized_relobj<32, false>* object,
1107 unsigned int data_shndx,
1108 Output_section* output_section,
1109 const elfcpp::Rel<32, false>& reloc,
1110 unsigned int r_type,
1111 Symbol* gsym)
1112 {
1113 switch (r_type)
1114 {
1115 case elfcpp::R_386_NONE:
1116 case elfcpp::R_386_GNU_VTINHERIT:
1117 case elfcpp::R_386_GNU_VTENTRY:
1118 break;
1119
1120 case elfcpp::R_386_32:
1121 case elfcpp::R_386_16:
1122 case elfcpp::R_386_8:
1123 {
1124 // Make a PLT entry if necessary.
1125 if (gsym->needs_plt_entry())
1126 {
1127 target->make_plt_entry(symtab, layout, gsym);
1128 // Since this is not a PC-relative relocation, we may be
1129 // taking the address of a function. In that case we need to
1130 // set the entry in the dynamic symbol table to the address of
1131 // the PLT entry.
1132 if (gsym->is_from_dynobj() && !parameters->output_is_shared())
1133 gsym->set_needs_dynsym_value();
1134 }
1135 // Make a dynamic relocation if necessary.
1136 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1137 {
1138 if (target->may_need_copy_reloc(gsym))
1139 {
1140 target->copy_reloc(&options, symtab, layout, object,
1141 data_shndx, output_section, gsym, reloc);
1142 }
1143 else if (r_type == elfcpp::R_386_32
1144 && gsym->can_use_relative_reloc(false))
1145 {
1146 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1147 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1148 output_section, object,
1149 data_shndx, reloc.get_r_offset());
1150 }
1151 else
1152 {
1153 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1154 rel_dyn->add_global(gsym, r_type, output_section, object,
1155 data_shndx, reloc.get_r_offset());
1156 }
1157 }
1158 }
1159 break;
1160
1161 case elfcpp::R_386_PC32:
1162 case elfcpp::R_386_PC16:
1163 case elfcpp::R_386_PC8:
1164 {
1165 // Make a PLT entry if necessary.
1166 if (gsym->needs_plt_entry())
1167 {
1168 // These relocations are used for function calls only in
1169 // non-PIC code. For a 32-bit relocation in a shared library,
1170 // we'll need a text relocation anyway, so we can skip the
1171 // PLT entry and let the dynamic linker bind the call directly
1172 // to the target. For smaller relocations, we should use a
1173 // PLT entry to ensure that the call can reach.
1174 if (!parameters->output_is_shared()
1175 || r_type != elfcpp::R_386_PC32)
1176 target->make_plt_entry(symtab, layout, gsym);
1177 }
1178 // Make a dynamic relocation if necessary.
1179 int flags = Symbol::NON_PIC_REF;
1180 if (gsym->type() == elfcpp::STT_FUNC)
1181 flags |= Symbol::FUNCTION_CALL;
1182 if (gsym->needs_dynamic_reloc(flags))
1183 {
1184 if (target->may_need_copy_reloc(gsym))
1185 {
1186 target->copy_reloc(&options, symtab, layout, object,
1187 data_shndx, output_section, gsym, reloc);
1188 }
1189 else
1190 {
1191 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1192 rel_dyn->add_global(gsym, r_type, output_section, object,
1193 data_shndx, reloc.get_r_offset());
1194 }
1195 }
1196 }
1197 break;
1198
1199 case elfcpp::R_386_GOT32:
1200 {
1201 // The symbol requires a GOT entry.
1202 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1203 if (gsym->final_value_is_known())
1204 got->add_global(gsym);
1205 else
1206 {
1207 // If this symbol is not fully resolved, we need to add a
1208 // GOT entry with a dynamic relocation.
1209 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1210 if (gsym->is_from_dynobj() || gsym->is_preemptible())
1211 got->add_global_with_rel(gsym, rel_dyn, elfcpp::R_386_GLOB_DAT);
1212 else
1213 {
1214 if (got->add_global(gsym))
1215 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1216 got, gsym->got_offset());
1217 }
1218 }
1219 }
1220 break;
1221
1222 case elfcpp::R_386_PLT32:
1223 // If the symbol is fully resolved, this is just a PC32 reloc.
1224 // Otherwise we need a PLT entry.
1225 if (gsym->final_value_is_known())
1226 break;
1227 // If building a shared library, we can also skip the PLT entry
1228 // if the symbol is defined in the output file and is protected
1229 // or hidden.
1230 if (gsym->is_defined()
1231 && !gsym->is_from_dynobj()
1232 && !gsym->is_preemptible())
1233 break;
1234 target->make_plt_entry(symtab, layout, gsym);
1235 break;
1236
1237 case elfcpp::R_386_GOTOFF:
1238 case elfcpp::R_386_GOTPC:
1239 // We need a GOT section.
1240 target->got_section(symtab, layout);
1241 break;
1242
1243 // These are relocations which should only be seen by the
1244 // dynamic linker, and should never be seen here.
1245 case elfcpp::R_386_COPY:
1246 case elfcpp::R_386_GLOB_DAT:
1247 case elfcpp::R_386_JUMP_SLOT:
1248 case elfcpp::R_386_RELATIVE:
1249 case elfcpp::R_386_TLS_TPOFF:
1250 case elfcpp::R_386_TLS_DTPMOD32:
1251 case elfcpp::R_386_TLS_DTPOFF32:
1252 case elfcpp::R_386_TLS_TPOFF32:
1253 case elfcpp::R_386_TLS_DESC:
1254 gold_error(_("%s: unexpected reloc %u in object file"),
1255 object->name().c_str(), r_type);
1256 break;
1257
1258 // These are initial tls relocs, which are expected when
1259 // linking.
1260 case elfcpp::R_386_TLS_GD: // Global-dynamic
1261 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1262 case elfcpp::R_386_TLS_DESC_CALL:
1263 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1264 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1265 case elfcpp::R_386_TLS_IE: // Initial-exec
1266 case elfcpp::R_386_TLS_IE_32:
1267 case elfcpp::R_386_TLS_GOTIE:
1268 case elfcpp::R_386_TLS_LE: // Local-exec
1269 case elfcpp::R_386_TLS_LE_32:
1270 {
1271 const bool is_final = gsym->final_value_is_known();
1272 const tls::Tls_optimization optimized_type
1273 = Target_i386::optimize_tls_reloc(is_final, r_type);
1274 switch (r_type)
1275 {
1276 case elfcpp::R_386_TLS_GD: // Global-dynamic
1277 if (optimized_type == tls::TLSOPT_NONE)
1278 {
1279 // Create a pair of GOT entries for the module index and
1280 // dtv-relative offset.
1281 Output_data_got<32, false>* got
1282 = target->got_section(symtab, layout);
1283 got->add_global_tls_with_rel(gsym,
1284 target->rel_dyn_section(layout),
1285 elfcpp::R_386_TLS_DTPMOD32,
1286 elfcpp::R_386_TLS_DTPOFF32);
1287 }
1288 else if (optimized_type == tls::TLSOPT_TO_IE)
1289 {
1290 // Create a GOT entry for the tp-relative offset.
1291 Output_data_got<32, false>* got
1292 = target->got_section(symtab, layout);
1293 got->add_global_with_rel(gsym, target->rel_dyn_section(layout),
1294 elfcpp::R_386_TLS_TPOFF32);
1295 }
1296 else if (optimized_type != tls::TLSOPT_TO_LE)
1297 unsupported_reloc_global(object, r_type, gsym);
1298 break;
1299
1300 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
1301 case elfcpp::R_386_TLS_DESC_CALL:
1302 // FIXME: If not relaxing to LE, we need to generate
1303 // a GOT entry with an R_386_TLS_DESC reloc.
1304 if (optimized_type != tls::TLSOPT_TO_LE)
1305 unsupported_reloc_global(object, r_type, gsym);
1306 unsupported_reloc_global(object, r_type, gsym);
1307 break;
1308
1309 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1310 if (optimized_type == tls::TLSOPT_NONE)
1311 {
1312 // Create a GOT entry for the module index.
1313 target->got_mod_index_entry(symtab, layout, object);
1314 }
1315 else if (optimized_type != tls::TLSOPT_TO_LE)
1316 unsupported_reloc_global(object, r_type, gsym);
1317 break;
1318
1319 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1320 break;
1321
1322 case elfcpp::R_386_TLS_IE: // Initial-exec
1323 case elfcpp::R_386_TLS_IE_32:
1324 case elfcpp::R_386_TLS_GOTIE:
1325 layout->set_has_static_tls();
1326 if (optimized_type == tls::TLSOPT_NONE)
1327 {
1328 // For the R_386_TLS_IE relocation, we need to create a
1329 // dynamic relocation when building a shared library.
1330 if (r_type == elfcpp::R_386_TLS_IE
1331 && parameters->output_is_shared())
1332 {
1333 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1334 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1335 output_section, object,
1336 data_shndx,
1337 reloc.get_r_offset());
1338 }
1339 // Create a GOT entry for the tp-relative offset.
1340 Output_data_got<32, false>* got
1341 = target->got_section(symtab, layout);
1342 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1343 ? elfcpp::R_386_TLS_TPOFF32
1344 : elfcpp::R_386_TLS_TPOFF);
1345 got->add_global_with_rel(gsym,
1346 target->rel_dyn_section(layout),
1347 dyn_r_type);
1348 }
1349 else if (optimized_type != tls::TLSOPT_TO_LE)
1350 unsupported_reloc_global(object, r_type, gsym);
1351 break;
1352
1353 case elfcpp::R_386_TLS_LE: // Local-exec
1354 case elfcpp::R_386_TLS_LE_32:
1355 layout->set_has_static_tls();
1356 if (parameters->output_is_shared())
1357 {
1358 // We need to create a dynamic relocation.
1359 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1360 ? elfcpp::R_386_TLS_TPOFF32
1361 : elfcpp::R_386_TLS_TPOFF);
1362 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1363 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1364 data_shndx, reloc.get_r_offset());
1365 }
1366 break;
1367
1368 default:
1369 gold_unreachable();
1370 }
1371 }
1372 break;
1373
1374 case elfcpp::R_386_32PLT:
1375 case elfcpp::R_386_TLS_GD_32:
1376 case elfcpp::R_386_TLS_GD_PUSH:
1377 case elfcpp::R_386_TLS_GD_CALL:
1378 case elfcpp::R_386_TLS_GD_POP:
1379 case elfcpp::R_386_TLS_LDM_32:
1380 case elfcpp::R_386_TLS_LDM_PUSH:
1381 case elfcpp::R_386_TLS_LDM_CALL:
1382 case elfcpp::R_386_TLS_LDM_POP:
1383 case elfcpp::R_386_USED_BY_INTEL_200:
1384 default:
1385 unsupported_reloc_global(object, r_type, gsym);
1386 break;
1387 }
1388 }
1389
1390 // Scan relocations for a section.
1391
1392 void
1393 Target_i386::scan_relocs(const General_options& options,
1394 Symbol_table* symtab,
1395 Layout* layout,
1396 Sized_relobj<32, false>* object,
1397 unsigned int data_shndx,
1398 unsigned int sh_type,
1399 const unsigned char* prelocs,
1400 size_t reloc_count,
1401 Output_section* output_section,
1402 bool needs_special_offset_handling,
1403 size_t local_symbol_count,
1404 const unsigned char* plocal_symbols)
1405 {
1406 if (sh_type == elfcpp::SHT_RELA)
1407 {
1408 gold_error(_("%s: unsupported RELA reloc section"),
1409 object->name().c_str());
1410 return;
1411 }
1412
1413 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1414 Target_i386::Scan>(
1415 options,
1416 symtab,
1417 layout,
1418 this,
1419 object,
1420 data_shndx,
1421 prelocs,
1422 reloc_count,
1423 output_section,
1424 needs_special_offset_handling,
1425 local_symbol_count,
1426 plocal_symbols);
1427 }
1428
1429 // Finalize the sections.
1430
1431 void
1432 Target_i386::do_finalize_sections(Layout* layout)
1433 {
1434 // Fill in some more dynamic tags.
1435 Output_data_dynamic* const odyn = layout->dynamic_data();
1436 if (odyn != NULL)
1437 {
1438 if (this->got_plt_ != NULL)
1439 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1440
1441 if (this->plt_ != NULL)
1442 {
1443 const Output_data* od = this->plt_->rel_plt();
1444 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1445 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1446 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1447 }
1448
1449 if (this->rel_dyn_ != NULL)
1450 {
1451 const Output_data* od = this->rel_dyn_;
1452 odyn->add_section_address(elfcpp::DT_REL, od);
1453 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1454 odyn->add_constant(elfcpp::DT_RELENT,
1455 elfcpp::Elf_sizes<32>::rel_size);
1456 }
1457
1458 if (!parameters->output_is_shared())
1459 {
1460 // The value of the DT_DEBUG tag is filled in by the dynamic
1461 // linker at run time, and used by the debugger.
1462 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1463 }
1464 }
1465
1466 // Emit any relocs we saved in an attempt to avoid generating COPY
1467 // relocs.
1468 if (this->copy_relocs_ == NULL)
1469 return;
1470 if (this->copy_relocs_->any_to_emit())
1471 {
1472 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1473 this->copy_relocs_->emit(rel_dyn);
1474 }
1475 delete this->copy_relocs_;
1476 this->copy_relocs_ = NULL;
1477 }
1478
1479 // Return whether a direct absolute static relocation needs to be applied.
1480 // In cases where Scan::local() or Scan::global() has created
1481 // a dynamic relocation other than R_386_RELATIVE, the addend
1482 // of the relocation is carried in the data, and we must not
1483 // apply the static relocation.
1484
1485 inline bool
1486 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1487 int ref_flags,
1488 bool is_32bit)
1489 {
1490 // For local symbols, we will have created a non-RELATIVE dynamic
1491 // relocation only if (a) the output is position independent,
1492 // (b) the relocation is absolute (not pc- or segment-relative), and
1493 // (c) the relocation is not 32 bits wide.
1494 if (gsym == NULL)
1495 return !(parameters->output_is_position_independent()
1496 && (ref_flags & Symbol::ABSOLUTE_REF)
1497 && !is_32bit);
1498
1499 // For global symbols, we use the same helper routines used in the
1500 // scan pass. If we did not create a dynamic relocation, or if we
1501 // created a RELATIVE dynamic relocation, we should apply the static
1502 // relocation.
1503 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1504 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1505 && gsym->can_use_relative_reloc(ref_flags
1506 & Symbol::FUNCTION_CALL);
1507 return !has_dyn || is_rel;
1508 }
1509
1510 // Perform a relocation.
1511
1512 inline bool
1513 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1514 Target_i386* target,
1515 size_t relnum,
1516 const elfcpp::Rel<32, false>& rel,
1517 unsigned int r_type,
1518 const Sized_symbol<32>* gsym,
1519 const Symbol_value<32>* psymval,
1520 unsigned char* view,
1521 elfcpp::Elf_types<32>::Elf_Addr address,
1522 section_size_type view_size)
1523 {
1524 if (this->skip_call_tls_get_addr_)
1525 {
1526 if (r_type != elfcpp::R_386_PLT32
1527 || gsym == NULL
1528 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1529 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1530 _("missing expected TLS relocation"));
1531 else
1532 {
1533 this->skip_call_tls_get_addr_ = false;
1534 return false;
1535 }
1536 }
1537
1538 // Pick the value to use for symbols defined in shared objects.
1539 Symbol_value<32> symval;
1540 bool is_nonpic = (r_type == elfcpp::R_386_PC8
1541 || r_type == elfcpp::R_386_PC16
1542 || r_type == elfcpp::R_386_PC32);
1543 if (gsym != NULL
1544 && (gsym->is_from_dynobj()
1545 || (parameters->output_is_shared()
1546 && gsym->is_preemptible()))
1547 && gsym->has_plt_offset()
1548 && (!is_nonpic || !parameters->output_is_shared()))
1549 {
1550 symval.set_output_value(target->plt_section()->address()
1551 + gsym->plt_offset());
1552 psymval = &symval;
1553 }
1554
1555 const Sized_relobj<32, false>* object = relinfo->object;
1556
1557 // Get the GOT offset if needed.
1558 // The GOT pointer points to the end of the GOT section.
1559 // We need to subtract the size of the GOT section to get
1560 // the actual offset to use in the relocation.
1561 bool have_got_offset = false;
1562 unsigned int got_offset = 0;
1563 switch (r_type)
1564 {
1565 case elfcpp::R_386_GOT32:
1566 if (gsym != NULL)
1567 {
1568 gold_assert(gsym->has_got_offset());
1569 got_offset = gsym->got_offset() - target->got_size();
1570 }
1571 else
1572 {
1573 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1574 gold_assert(object->local_has_got_offset(r_sym));
1575 got_offset = object->local_got_offset(r_sym) - target->got_size();
1576 }
1577 have_got_offset = true;
1578 break;
1579
1580 default:
1581 break;
1582 }
1583
1584 switch (r_type)
1585 {
1586 case elfcpp::R_386_NONE:
1587 case elfcpp::R_386_GNU_VTINHERIT:
1588 case elfcpp::R_386_GNU_VTENTRY:
1589 break;
1590
1591 case elfcpp::R_386_32:
1592 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true))
1593 Relocate_functions<32, false>::rel32(view, object, psymval);
1594 break;
1595
1596 case elfcpp::R_386_PC32:
1597 {
1598 int ref_flags = Symbol::NON_PIC_REF;
1599 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1600 ref_flags |= Symbol::FUNCTION_CALL;
1601 if (should_apply_static_reloc(gsym, ref_flags, true))
1602 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1603 }
1604 break;
1605
1606 case elfcpp::R_386_16:
1607 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1608 Relocate_functions<32, false>::rel16(view, object, psymval);
1609 break;
1610
1611 case elfcpp::R_386_PC16:
1612 {
1613 int ref_flags = Symbol::NON_PIC_REF;
1614 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1615 ref_flags |= Symbol::FUNCTION_CALL;
1616 if (should_apply_static_reloc(gsym, ref_flags, false))
1617 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1618 }
1619 break;
1620
1621 case elfcpp::R_386_8:
1622 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1623 Relocate_functions<32, false>::rel8(view, object, psymval);
1624 break;
1625
1626 case elfcpp::R_386_PC8:
1627 {
1628 int ref_flags = Symbol::NON_PIC_REF;
1629 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1630 ref_flags |= Symbol::FUNCTION_CALL;
1631 if (should_apply_static_reloc(gsym, ref_flags, false))
1632 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1633 }
1634 break;
1635
1636 case elfcpp::R_386_PLT32:
1637 gold_assert(gsym == NULL
1638 || gsym->has_plt_offset()
1639 || gsym->final_value_is_known()
1640 || (gsym->is_defined()
1641 && !gsym->is_from_dynobj()
1642 && !gsym->is_preemptible()));
1643 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1644 break;
1645
1646 case elfcpp::R_386_GOT32:
1647 gold_assert(have_got_offset);
1648 Relocate_functions<32, false>::rel32(view, got_offset);
1649 break;
1650
1651 case elfcpp::R_386_GOTOFF:
1652 {
1653 elfcpp::Elf_types<32>::Elf_Addr value;
1654 value = (psymval->value(object, 0)
1655 - target->got_plt_section()->address());
1656 Relocate_functions<32, false>::rel32(view, value);
1657 }
1658 break;
1659
1660 case elfcpp::R_386_GOTPC:
1661 {
1662 elfcpp::Elf_types<32>::Elf_Addr value;
1663 value = target->got_plt_section()->address();
1664 Relocate_functions<32, false>::pcrel32(view, value, address);
1665 }
1666 break;
1667
1668 case elfcpp::R_386_COPY:
1669 case elfcpp::R_386_GLOB_DAT:
1670 case elfcpp::R_386_JUMP_SLOT:
1671 case elfcpp::R_386_RELATIVE:
1672 // These are outstanding tls relocs, which are unexpected when
1673 // linking.
1674 case elfcpp::R_386_TLS_TPOFF:
1675 case elfcpp::R_386_TLS_DTPMOD32:
1676 case elfcpp::R_386_TLS_DTPOFF32:
1677 case elfcpp::R_386_TLS_TPOFF32:
1678 case elfcpp::R_386_TLS_DESC:
1679 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1680 _("unexpected reloc %u in object file"),
1681 r_type);
1682 break;
1683
1684 // These are initial tls relocs, which are expected when
1685 // linking.
1686 case elfcpp::R_386_TLS_GD: // Global-dynamic
1687 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1688 case elfcpp::R_386_TLS_DESC_CALL:
1689 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1690 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1691 case elfcpp::R_386_TLS_IE: // Initial-exec
1692 case elfcpp::R_386_TLS_IE_32:
1693 case elfcpp::R_386_TLS_GOTIE:
1694 case elfcpp::R_386_TLS_LE: // Local-exec
1695 case elfcpp::R_386_TLS_LE_32:
1696 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1697 view, address, view_size);
1698 break;
1699
1700 case elfcpp::R_386_32PLT:
1701 case elfcpp::R_386_TLS_GD_32:
1702 case elfcpp::R_386_TLS_GD_PUSH:
1703 case elfcpp::R_386_TLS_GD_CALL:
1704 case elfcpp::R_386_TLS_GD_POP:
1705 case elfcpp::R_386_TLS_LDM_32:
1706 case elfcpp::R_386_TLS_LDM_PUSH:
1707 case elfcpp::R_386_TLS_LDM_CALL:
1708 case elfcpp::R_386_TLS_LDM_POP:
1709 case elfcpp::R_386_USED_BY_INTEL_200:
1710 default:
1711 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1712 _("unsupported reloc %u"),
1713 r_type);
1714 break;
1715 }
1716
1717 return true;
1718 }
1719
1720 // Perform a TLS relocation.
1721
1722 inline void
1723 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1724 Target_i386* target,
1725 size_t relnum,
1726 const elfcpp::Rel<32, false>& rel,
1727 unsigned int r_type,
1728 const Sized_symbol<32>* gsym,
1729 const Symbol_value<32>* psymval,
1730 unsigned char* view,
1731 elfcpp::Elf_types<32>::Elf_Addr,
1732 section_size_type view_size)
1733 {
1734 Output_segment* tls_segment = relinfo->layout->tls_segment();
1735
1736 const Sized_relobj<32, false>* object = relinfo->object;
1737
1738 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1739
1740 const bool is_final = (gsym == NULL
1741 ? !parameters->output_is_position_independent()
1742 : gsym->final_value_is_known());
1743 const tls::Tls_optimization optimized_type
1744 = Target_i386::optimize_tls_reloc(is_final, r_type);
1745 switch (r_type)
1746 {
1747 case elfcpp::R_386_TLS_GD: // Global-dynamic
1748 if (optimized_type == tls::TLSOPT_TO_LE)
1749 {
1750 gold_assert(tls_segment != NULL);
1751 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1752 rel, r_type, value, view,
1753 view_size);
1754 break;
1755 }
1756 else
1757 {
1758 unsigned int got_offset;
1759 if (gsym != NULL)
1760 {
1761 gold_assert(gsym->has_tls_got_offset(true));
1762 got_offset = gsym->tls_got_offset(true) - target->got_size();
1763 }
1764 else
1765 {
1766 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1767 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1768 got_offset = (object->local_tls_got_offset(r_sym, true)
1769 - target->got_size());
1770 }
1771 if (optimized_type == tls::TLSOPT_TO_IE)
1772 {
1773 gold_assert(tls_segment != NULL);
1774 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1775 got_offset, view, view_size);
1776 break;
1777 }
1778 else if (optimized_type == tls::TLSOPT_NONE)
1779 {
1780 // Relocate the field with the offset of the pair of GOT
1781 // entries.
1782 Relocate_functions<32, false>::rel32(view, got_offset);
1783 break;
1784 }
1785 }
1786 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1787 _("unsupported reloc %u"),
1788 r_type);
1789 break;
1790
1791 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1792 case elfcpp::R_386_TLS_DESC_CALL:
1793 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1794 _("unsupported reloc %u"),
1795 r_type);
1796 break;
1797
1798 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1799 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1800 {
1801 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1802 _("both SUN and GNU model "
1803 "TLS relocations"));
1804 break;
1805 }
1806 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1807 if (optimized_type == tls::TLSOPT_TO_LE)
1808 {
1809 gold_assert(tls_segment != NULL);
1810 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1811 value, view, view_size);
1812 break;
1813 }
1814 else if (optimized_type == tls::TLSOPT_NONE)
1815 {
1816 // Relocate the field with the offset of the GOT entry for
1817 // the module index.
1818 unsigned int got_offset;
1819 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1820 - target->got_size());
1821 Relocate_functions<32, false>::rel32(view, got_offset);
1822 break;
1823 }
1824 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1825 _("unsupported reloc %u"),
1826 r_type);
1827 break;
1828
1829 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1830 // This reloc can appear in debugging sections, in which case we
1831 // won't see the TLS_LDM reloc. The local_dynamic_type field
1832 // tells us this.
1833 if (optimized_type == tls::TLSOPT_TO_LE)
1834 {
1835 gold_assert(tls_segment != NULL);
1836 value -= tls_segment->memsz();
1837 }
1838 Relocate_functions<32, false>::rel32(view, value);
1839 break;
1840
1841 case elfcpp::R_386_TLS_IE: // Initial-exec
1842 case elfcpp::R_386_TLS_GOTIE:
1843 case elfcpp::R_386_TLS_IE_32:
1844 if (optimized_type == tls::TLSOPT_TO_LE)
1845 {
1846 gold_assert(tls_segment != NULL);
1847 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1848 rel, r_type, value, view,
1849 view_size);
1850 break;
1851 }
1852 else if (optimized_type == tls::TLSOPT_NONE)
1853 {
1854 // Relocate the field with the offset of the GOT entry for
1855 // the tp-relative offset of the symbol.
1856 unsigned int got_offset;
1857 if (gsym != NULL)
1858 {
1859 gold_assert(gsym->has_got_offset());
1860 got_offset = gsym->got_offset();
1861 }
1862 else
1863 {
1864 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1865 gold_assert(object->local_has_got_offset(r_sym));
1866 got_offset = object->local_got_offset(r_sym);
1867 }
1868 // For the R_386_TLS_IE relocation, we need to apply the
1869 // absolute address of the GOT entry.
1870 if (r_type == elfcpp::R_386_TLS_IE)
1871 got_offset += target->got_plt_section()->address();
1872 // All GOT offsets are relative to the end of the GOT.
1873 got_offset -= target->got_size();
1874 Relocate_functions<32, false>::rel32(view, got_offset);
1875 break;
1876 }
1877 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1878 _("unsupported reloc %u"),
1879 r_type);
1880 break;
1881
1882 case elfcpp::R_386_TLS_LE: // Local-exec
1883 // If we're creating a shared library, a dynamic relocation will
1884 // have been created for this location, so do not apply it now.
1885 if (!parameters->output_is_shared())
1886 {
1887 gold_assert(tls_segment != NULL);
1888 value -= tls_segment->memsz();
1889 Relocate_functions<32, false>::rel32(view, value);
1890 }
1891 break;
1892
1893 case elfcpp::R_386_TLS_LE_32:
1894 // If we're creating a shared library, a dynamic relocation will
1895 // have been created for this location, so do not apply it now.
1896 if (!parameters->output_is_shared())
1897 {
1898 gold_assert(tls_segment != NULL);
1899 value = tls_segment->memsz() - value;
1900 Relocate_functions<32, false>::rel32(view, value);
1901 }
1902 break;
1903 }
1904 }
1905
1906 // Do a relocation in which we convert a TLS General-Dynamic to a
1907 // Local-Exec.
1908
1909 inline void
1910 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1911 size_t relnum,
1912 Output_segment* tls_segment,
1913 const elfcpp::Rel<32, false>& rel,
1914 unsigned int,
1915 elfcpp::Elf_types<32>::Elf_Addr value,
1916 unsigned char* view,
1917 section_size_type view_size)
1918 {
1919 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1920 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1921 // leal foo(%reg),%eax; call ___tls_get_addr
1922 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1923
1924 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1925 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1926
1927 unsigned char op1 = view[-1];
1928 unsigned char op2 = view[-2];
1929
1930 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1931 op2 == 0x8d || op2 == 0x04);
1932 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1933
1934 int roff = 5;
1935
1936 if (op2 == 0x04)
1937 {
1938 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1939 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1940 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1941 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1942 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1943 }
1944 else
1945 {
1946 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1947 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1948 if (rel.get_r_offset() + 9 < view_size
1949 && view[9] == 0x90)
1950 {
1951 // There is a trailing nop. Use the size byte subl.
1952 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1953 roff = 6;
1954 }
1955 else
1956 {
1957 // Use the five byte subl.
1958 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1959 }
1960 }
1961
1962 value = tls_segment->memsz() - value;
1963 Relocate_functions<32, false>::rel32(view + roff, value);
1964
1965 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1966 // We can skip it.
1967 this->skip_call_tls_get_addr_ = true;
1968 }
1969
1970 // Do a relocation in which we convert a TLS General-Dynamic to an
1971 // Initial-Exec.
1972
1973 inline void
1974 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
1975 size_t relnum,
1976 Output_segment* tls_segment,
1977 const elfcpp::Rel<32, false>& rel,
1978 unsigned int,
1979 elfcpp::Elf_types<32>::Elf_Addr value,
1980 unsigned char* view,
1981 section_size_type view_size)
1982 {
1983 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
1984 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
1985
1986 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1987 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1988
1989 unsigned char op1 = view[-1];
1990 unsigned char op2 = view[-2];
1991
1992 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1993 op2 == 0x8d || op2 == 0x04);
1994 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1995
1996 int roff = 5;
1997
1998 // FIXME: For now, support only one form.
1999 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2000 op1 == 0x8d && op2 == 0x04);
2001
2002 if (op2 == 0x04)
2003 {
2004 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2005 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2006 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2007 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2008 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2009 }
2010 else
2011 {
2012 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2013 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2014 if (rel.get_r_offset() + 9 < view_size
2015 && view[9] == 0x90)
2016 {
2017 // FIXME: This is not the right instruction sequence.
2018 // There is a trailing nop. Use the size byte subl.
2019 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2020 roff = 6;
2021 }
2022 else
2023 {
2024 // FIXME: This is not the right instruction sequence.
2025 // Use the five byte subl.
2026 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2027 }
2028 }
2029
2030 value = tls_segment->memsz() - value;
2031 Relocate_functions<32, false>::rel32(view + roff, value);
2032
2033 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2034 // We can skip it.
2035 this->skip_call_tls_get_addr_ = true;
2036 }
2037
2038 // Do a relocation in which we convert a TLS Local-Dynamic to a
2039 // Local-Exec.
2040
2041 inline void
2042 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2043 size_t relnum,
2044 Output_segment*,
2045 const elfcpp::Rel<32, false>& rel,
2046 unsigned int,
2047 elfcpp::Elf_types<32>::Elf_Addr,
2048 unsigned char* view,
2049 section_size_type view_size)
2050 {
2051 // leal foo(%reg), %eax; call ___tls_get_addr
2052 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2053
2054 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2055 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2056
2057 // FIXME: Does this test really always pass?
2058 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2059 view[-2] == 0x8d && view[-1] == 0x83);
2060
2061 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2062
2063 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2064
2065 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2066 // We can skip it.
2067 this->skip_call_tls_get_addr_ = true;
2068 }
2069
2070 // Do a relocation in which we convert a TLS Initial-Exec to a
2071 // Local-Exec.
2072
2073 inline void
2074 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2075 size_t relnum,
2076 Output_segment* tls_segment,
2077 const elfcpp::Rel<32, false>& rel,
2078 unsigned int r_type,
2079 elfcpp::Elf_types<32>::Elf_Addr value,
2080 unsigned char* view,
2081 section_size_type view_size)
2082 {
2083 // We have to actually change the instructions, which means that we
2084 // need to examine the opcodes to figure out which instruction we
2085 // are looking at.
2086 if (r_type == elfcpp::R_386_TLS_IE)
2087 {
2088 // movl %gs:XX,%eax ==> movl $YY,%eax
2089 // movl %gs:XX,%reg ==> movl $YY,%reg
2090 // addl %gs:XX,%reg ==> addl $YY,%reg
2091 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2092 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2093
2094 unsigned char op1 = view[-1];
2095 if (op1 == 0xa1)
2096 {
2097 // movl XX,%eax ==> movl $YY,%eax
2098 view[-1] = 0xb8;
2099 }
2100 else
2101 {
2102 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2103
2104 unsigned char op2 = view[-2];
2105 if (op2 == 0x8b)
2106 {
2107 // movl XX,%reg ==> movl $YY,%reg
2108 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2109 (op1 & 0xc7) == 0x05);
2110 view[-2] = 0xc7;
2111 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2112 }
2113 else if (op2 == 0x03)
2114 {
2115 // addl XX,%reg ==> addl $YY,%reg
2116 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2117 (op1 & 0xc7) == 0x05);
2118 view[-2] = 0x81;
2119 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2120 }
2121 else
2122 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2123 }
2124 }
2125 else
2126 {
2127 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2128 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2129 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2130 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2131 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2132
2133 unsigned char op1 = view[-1];
2134 unsigned char op2 = view[-2];
2135 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2136 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2137 if (op2 == 0x8b)
2138 {
2139 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2140 view[-2] = 0xc7;
2141 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2142 }
2143 else if (op2 == 0x2b)
2144 {
2145 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2146 view[-2] = 0x81;
2147 view[-1] = 0xe8 | ((op1 >> 3) & 7);
2148 }
2149 else if (op2 == 0x03)
2150 {
2151 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2152 view[-2] = 0x81;
2153 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2154 }
2155 else
2156 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2157 }
2158
2159 value = tls_segment->memsz() - value;
2160 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2161 value = - value;
2162
2163 Relocate_functions<32, false>::rel32(view, value);
2164 }
2165
2166 // Relocate section data.
2167
2168 void
2169 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2170 unsigned int sh_type,
2171 const unsigned char* prelocs,
2172 size_t reloc_count,
2173 Output_section* output_section,
2174 bool needs_special_offset_handling,
2175 unsigned char* view,
2176 elfcpp::Elf_types<32>::Elf_Addr address,
2177 section_size_type view_size)
2178 {
2179 gold_assert(sh_type == elfcpp::SHT_REL);
2180
2181 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2182 Target_i386::Relocate>(
2183 relinfo,
2184 this,
2185 prelocs,
2186 reloc_count,
2187 output_section,
2188 needs_special_offset_handling,
2189 view,
2190 address,
2191 view_size);
2192 }
2193
2194 // Return the size of a relocation while scanning during a relocatable
2195 // link.
2196
2197 unsigned int
2198 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2199 unsigned int r_type,
2200 Relobj* object)
2201 {
2202 switch (r_type)
2203 {
2204 case elfcpp::R_386_NONE:
2205 case elfcpp::R_386_GNU_VTINHERIT:
2206 case elfcpp::R_386_GNU_VTENTRY:
2207 case elfcpp::R_386_TLS_GD: // Global-dynamic
2208 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2209 case elfcpp::R_386_TLS_DESC_CALL:
2210 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2211 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2212 case elfcpp::R_386_TLS_IE: // Initial-exec
2213 case elfcpp::R_386_TLS_IE_32:
2214 case elfcpp::R_386_TLS_GOTIE:
2215 case elfcpp::R_386_TLS_LE: // Local-exec
2216 case elfcpp::R_386_TLS_LE_32:
2217 return 0;
2218
2219 case elfcpp::R_386_32:
2220 case elfcpp::R_386_PC32:
2221 case elfcpp::R_386_GOT32:
2222 case elfcpp::R_386_PLT32:
2223 case elfcpp::R_386_GOTOFF:
2224 case elfcpp::R_386_GOTPC:
2225 return 4;
2226
2227 case elfcpp::R_386_16:
2228 case elfcpp::R_386_PC16:
2229 return 2;
2230
2231 case elfcpp::R_386_8:
2232 case elfcpp::R_386_PC8:
2233 return 1;
2234
2235 // These are relocations which should only be seen by the
2236 // dynamic linker, and should never be seen here.
2237 case elfcpp::R_386_COPY:
2238 case elfcpp::R_386_GLOB_DAT:
2239 case elfcpp::R_386_JUMP_SLOT:
2240 case elfcpp::R_386_RELATIVE:
2241 case elfcpp::R_386_TLS_TPOFF:
2242 case elfcpp::R_386_TLS_DTPMOD32:
2243 case elfcpp::R_386_TLS_DTPOFF32:
2244 case elfcpp::R_386_TLS_TPOFF32:
2245 case elfcpp::R_386_TLS_DESC:
2246 object->error(_("unexpected reloc %u in object file"), r_type);
2247 return 0;
2248
2249 case elfcpp::R_386_32PLT:
2250 case elfcpp::R_386_TLS_GD_32:
2251 case elfcpp::R_386_TLS_GD_PUSH:
2252 case elfcpp::R_386_TLS_GD_CALL:
2253 case elfcpp::R_386_TLS_GD_POP:
2254 case elfcpp::R_386_TLS_LDM_32:
2255 case elfcpp::R_386_TLS_LDM_PUSH:
2256 case elfcpp::R_386_TLS_LDM_CALL:
2257 case elfcpp::R_386_TLS_LDM_POP:
2258 case elfcpp::R_386_USED_BY_INTEL_200:
2259 default:
2260 object->error(_("unsupported reloc %u in object file"), r_type);
2261 return 0;
2262 }
2263 }
2264
2265 // Scan the relocs during a relocatable link.
2266
2267 void
2268 Target_i386::scan_relocatable_relocs(const General_options& options,
2269 Symbol_table* symtab,
2270 Layout* layout,
2271 Sized_relobj<32, false>* object,
2272 unsigned int data_shndx,
2273 unsigned int sh_type,
2274 const unsigned char* prelocs,
2275 size_t reloc_count,
2276 Output_section* output_section,
2277 bool needs_special_offset_handling,
2278 size_t local_symbol_count,
2279 const unsigned char* plocal_symbols,
2280 Relocatable_relocs* rr)
2281 {
2282 gold_assert(sh_type == elfcpp::SHT_REL);
2283
2284 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2285 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2286
2287 gold::scan_relocatable_relocs<32, false, Target_i386, elfcpp::SHT_REL,
2288 Scan_relocatable_relocs>(
2289 options,
2290 symtab,
2291 layout,
2292 object,
2293 data_shndx,
2294 prelocs,
2295 reloc_count,
2296 output_section,
2297 needs_special_offset_handling,
2298 local_symbol_count,
2299 plocal_symbols,
2300 rr);
2301 }
2302
2303 // Relocate a section during a relocatable link.
2304
2305 void
2306 Target_i386::relocate_for_relocatable(
2307 const Relocate_info<32, false>* relinfo,
2308 unsigned int sh_type,
2309 const unsigned char* prelocs,
2310 size_t reloc_count,
2311 Output_section* output_section,
2312 off_t offset_in_output_section,
2313 const Relocatable_relocs* rr,
2314 unsigned char* view,
2315 elfcpp::Elf_types<32>::Elf_Addr view_address,
2316 section_size_type view_size,
2317 unsigned char* reloc_view,
2318 section_size_type reloc_view_size)
2319 {
2320 gold_assert(sh_type == elfcpp::SHT_REL);
2321
2322 gold::relocate_for_relocatable<32, false, Target_i386, elfcpp::SHT_REL>(
2323 relinfo,
2324 prelocs,
2325 reloc_count,
2326 output_section,
2327 offset_in_output_section,
2328 rr,
2329 view,
2330 view_address,
2331 view_size,
2332 reloc_view,
2333 reloc_view_size);
2334 }
2335
2336 // Return the value to use for a dynamic which requires special
2337 // treatment. This is how we support equality comparisons of function
2338 // pointers across shared library boundaries, as described in the
2339 // processor specific ABI supplement.
2340
2341 uint64_t
2342 Target_i386::do_dynsym_value(const Symbol* gsym) const
2343 {
2344 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2345 return this->plt_section()->address() + gsym->plt_offset();
2346 }
2347
2348 // Return a string used to fill a code section with nops to take up
2349 // the specified length.
2350
2351 std::string
2352 Target_i386::do_code_fill(section_size_type length)
2353 {
2354 if (length >= 16)
2355 {
2356 // Build a jmp instruction to skip over the bytes.
2357 unsigned char jmp[5];
2358 jmp[0] = 0xe9;
2359 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2360 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2361 + std::string(length - 5, '\0'));
2362 }
2363
2364 // Nop sequences of various lengths.
2365 const char nop1[1] = { 0x90 }; // nop
2366 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2367 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2368 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2369 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2370 0x00 }; // leal 0(%esi,1),%esi
2371 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2372 0x00, 0x00 };
2373 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2374 0x00, 0x00, 0x00 };
2375 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2376 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2377 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2378 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2379 0x00 };
2380 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2381 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2382 0x00, 0x00 };
2383 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2384 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2385 0x00, 0x00, 0x00 };
2386 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2387 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2388 0x00, 0x00, 0x00, 0x00 };
2389 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2390 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2391 0x27, 0x00, 0x00, 0x00,
2392 0x00 };
2393 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2394 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2395 0xbc, 0x27, 0x00, 0x00,
2396 0x00, 0x00 };
2397 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2398 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2399 0x90, 0x90, 0x90, 0x90,
2400 0x90, 0x90, 0x90 };
2401
2402 const char* nops[16] = {
2403 NULL,
2404 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2405 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2406 };
2407
2408 return std::string(nops[length], length);
2409 }
2410
2411 // The selector for i386 object files.
2412
2413 class Target_selector_i386 : public Target_selector
2414 {
2415 public:
2416 Target_selector_i386()
2417 : Target_selector(elfcpp::EM_386, 32, false)
2418 { }
2419
2420 Target*
2421 recognize(int machine, int osabi, int abiversion);
2422
2423 private:
2424 Target_i386* target_;
2425 };
2426
2427 // Recognize an i386 object file when we already know that the machine
2428 // number is EM_386.
2429
2430 Target*
2431 Target_selector_i386::recognize(int, int, int)
2432 {
2433 if (this->target_ == NULL)
2434 this->target_ = new Target_i386();
2435 return this->target_;
2436 }
2437
2438 Target_selector_i386 target_selector_i386;
2439
2440 } // End anonymous namespace.
This page took 0.080245 seconds and 4 git commands to generate.