Add ChangeLog file now that the sources are part of the GNU binutils.
[deliverable/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007, 2008 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL), got_mod_index_offset_(-1U)
61 { }
62
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 Output_section* output_section,
74 bool needs_special_offset_handling,
75 size_t local_symbol_count,
76 const unsigned char* plocal_symbols);
77
78 // Finalize the sections.
79 void
80 do_finalize_sections(Layout*);
81
82 // Return the value to use for a dynamic which requires special
83 // treatment.
84 uint64_t
85 do_dynsym_value(const Symbol*) const;
86
87 // Relocate a section.
88 void
89 relocate_section(const Relocate_info<32, false>*,
90 unsigned int sh_type,
91 const unsigned char* prelocs,
92 size_t reloc_count,
93 Output_section* output_section,
94 bool needs_special_offset_handling,
95 unsigned char* view,
96 elfcpp::Elf_types<32>::Elf_Addr view_address,
97 section_size_type view_size);
98
99 // Scan the relocs during a relocatable link.
100 void
101 scan_relocatable_relocs(const General_options& options,
102 Symbol_table* symtab,
103 Layout* layout,
104 Sized_relobj<32, false>* object,
105 unsigned int data_shndx,
106 unsigned int sh_type,
107 const unsigned char* prelocs,
108 size_t reloc_count,
109 Output_section* output_section,
110 bool needs_special_offset_handling,
111 size_t local_symbol_count,
112 const unsigned char* plocal_symbols,
113 Relocatable_relocs*);
114
115 // Relocate a section during a relocatable link.
116 void
117 relocate_for_relocatable(const Relocate_info<32, false>*,
118 unsigned int sh_type,
119 const unsigned char* prelocs,
120 size_t reloc_count,
121 Output_section* output_section,
122 off_t offset_in_output_section,
123 const Relocatable_relocs*,
124 unsigned char* view,
125 elfcpp::Elf_types<32>::Elf_Addr view_address,
126 section_size_type view_size,
127 unsigned char* reloc_view,
128 section_size_type reloc_view_size);
129
130 // Return a string used to fill a code section with nops.
131 std::string
132 do_code_fill(section_size_type length) const;
133
134 // Return whether SYM is defined by the ABI.
135 bool
136 do_is_defined_by_abi(Symbol* sym) const
137 { return strcmp(sym->name(), "___tls_get_addr") == 0; }
138
139 // Return the size of the GOT section.
140 section_size_type
141 got_size()
142 {
143 gold_assert(this->got_ != NULL);
144 return this->got_->data_size();
145 }
146
147 private:
148 // The class which scans relocations.
149 struct Scan
150 {
151 inline void
152 local(const General_options& options, Symbol_table* symtab,
153 Layout* layout, Target_i386* target,
154 Sized_relobj<32, false>* object,
155 unsigned int data_shndx,
156 Output_section* output_section,
157 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
158 const elfcpp::Sym<32, false>& lsym);
159
160 inline void
161 global(const General_options& options, Symbol_table* symtab,
162 Layout* layout, Target_i386* target,
163 Sized_relobj<32, false>* object,
164 unsigned int data_shndx,
165 Output_section* output_section,
166 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
167 Symbol* gsym);
168
169 static void
170 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
171
172 static void
173 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
174 Symbol*);
175 };
176
177 // The class which implements relocation.
178 class Relocate
179 {
180 public:
181 Relocate()
182 : skip_call_tls_get_addr_(false),
183 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
184 { }
185
186 ~Relocate()
187 {
188 if (this->skip_call_tls_get_addr_)
189 {
190 // FIXME: This needs to specify the location somehow.
191 gold_error(_("missing expected TLS relocation"));
192 }
193 }
194
195 // Return whether the static relocation needs to be applied.
196 inline bool
197 should_apply_static_reloc(const Sized_symbol<32>* gsym,
198 int ref_flags,
199 bool is_32bit);
200
201 // Do a relocation. Return false if the caller should not issue
202 // any warnings about this relocation.
203 inline bool
204 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
205 const elfcpp::Rel<32, false>&,
206 unsigned int r_type, const Sized_symbol<32>*,
207 const Symbol_value<32>*,
208 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
209 section_size_type);
210
211 private:
212 // Do a TLS relocation.
213 inline void
214 relocate_tls(const Relocate_info<32, false>*, Target_i386* target,
215 size_t relnum, const elfcpp::Rel<32, false>&,
216 unsigned int r_type, const Sized_symbol<32>*,
217 const Symbol_value<32>*,
218 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
219 section_size_type);
220
221 // Do a TLS General-Dynamic to Initial-Exec transition.
222 inline void
223 tls_gd_to_ie(const Relocate_info<32, false>*, size_t relnum,
224 Output_segment* tls_segment,
225 const elfcpp::Rel<32, false>&, unsigned int r_type,
226 elfcpp::Elf_types<32>::Elf_Addr value,
227 unsigned char* view,
228 section_size_type view_size);
229
230 // Do a TLS General-Dynamic to Local-Exec transition.
231 inline void
232 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
233 Output_segment* tls_segment,
234 const elfcpp::Rel<32, false>&, unsigned int r_type,
235 elfcpp::Elf_types<32>::Elf_Addr value,
236 unsigned char* view,
237 section_size_type view_size);
238
239 // Do a TLS Local-Dynamic to Local-Exec transition.
240 inline void
241 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
242 Output_segment* tls_segment,
243 const elfcpp::Rel<32, false>&, unsigned int r_type,
244 elfcpp::Elf_types<32>::Elf_Addr value,
245 unsigned char* view,
246 section_size_type view_size);
247
248 // Do a TLS Initial-Exec to Local-Exec transition.
249 static inline void
250 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
251 Output_segment* tls_segment,
252 const elfcpp::Rel<32, false>&, unsigned int r_type,
253 elfcpp::Elf_types<32>::Elf_Addr value,
254 unsigned char* view,
255 section_size_type view_size);
256
257 // We need to keep track of which type of local dynamic relocation
258 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
259 enum Local_dynamic_type
260 {
261 LOCAL_DYNAMIC_NONE,
262 LOCAL_DYNAMIC_SUN,
263 LOCAL_DYNAMIC_GNU
264 };
265
266 // This is set if we should skip the next reloc, which should be a
267 // PLT32 reloc against ___tls_get_addr.
268 bool skip_call_tls_get_addr_;
269 // The type of local dynamic relocation we have seen in the section
270 // being relocated, if any.
271 Local_dynamic_type local_dynamic_type_;
272 };
273
274 // A class which returns the size required for a relocation type,
275 // used while scanning relocs during a relocatable link.
276 class Relocatable_size_for_reloc
277 {
278 public:
279 unsigned int
280 get_size_for_reloc(unsigned int, Relobj*);
281 };
282
283 // Adjust TLS relocation type based on the options and whether this
284 // is a local symbol.
285 static tls::Tls_optimization
286 optimize_tls_reloc(bool is_final, int r_type);
287
288 // Get the GOT section, creating it if necessary.
289 Output_data_got<32, false>*
290 got_section(Symbol_table*, Layout*);
291
292 // Get the GOT PLT section.
293 Output_data_space*
294 got_plt_section() const
295 {
296 gold_assert(this->got_plt_ != NULL);
297 return this->got_plt_;
298 }
299
300 // Create a PLT entry for a global symbol.
301 void
302 make_plt_entry(Symbol_table*, Layout*, Symbol*);
303
304 // Create a GOT entry for the TLS module index.
305 unsigned int
306 got_mod_index_entry(Symbol_table* symtab, Layout* layout,
307 Sized_relobj<32, false>* object);
308
309 // Get the PLT section.
310 const Output_data_plt_i386*
311 plt_section() const
312 {
313 gold_assert(this->plt_ != NULL);
314 return this->plt_;
315 }
316
317 // Get the dynamic reloc section, creating it if necessary.
318 Reloc_section*
319 rel_dyn_section(Layout*);
320
321 // Return true if the symbol may need a COPY relocation.
322 // References from an executable object to non-function symbols
323 // defined in a dynamic object may need a COPY relocation.
324 bool
325 may_need_copy_reloc(Symbol* gsym)
326 {
327 return (!parameters->options().shared()
328 && gsym->is_from_dynobj()
329 && gsym->type() != elfcpp::STT_FUNC);
330 }
331
332 // Copy a relocation against a global symbol.
333 void
334 copy_reloc(const General_options*, Symbol_table*, Layout*,
335 Sized_relobj<32, false>*, unsigned int,
336 Output_section*, Symbol*, const elfcpp::Rel<32, false>&);
337
338 // Information about this specific target which we pass to the
339 // general Target structure.
340 static const Target::Target_info i386_info;
341
342 // The GOT section.
343 Output_data_got<32, false>* got_;
344 // The PLT section.
345 Output_data_plt_i386* plt_;
346 // The GOT PLT section.
347 Output_data_space* got_plt_;
348 // The dynamic reloc section.
349 Reloc_section* rel_dyn_;
350 // Relocs saved to avoid a COPY reloc.
351 Copy_relocs<32, false>* copy_relocs_;
352 // Space for variables copied with a COPY reloc.
353 Output_data_space* dynbss_;
354 // Offset of the GOT entry for the TLS module index;
355 unsigned int got_mod_index_offset_;
356 };
357
358 const Target::Target_info Target_i386::i386_info =
359 {
360 32, // size
361 false, // is_big_endian
362 elfcpp::EM_386, // machine_code
363 false, // has_make_symbol
364 false, // has_resolve
365 true, // has_code_fill
366 true, // is_default_stack_executable
367 "/usr/lib/libc.so.1", // dynamic_linker
368 0x08048000, // default_text_segment_address
369 0x1000, // abi_pagesize (overridable by -z max-page-size)
370 0x1000 // common_pagesize (overridable by -z common-page-size)
371 };
372
373 // Get the GOT section, creating it if necessary.
374
375 Output_data_got<32, false>*
376 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
377 {
378 if (this->got_ == NULL)
379 {
380 gold_assert(symtab != NULL && layout != NULL);
381
382 this->got_ = new Output_data_got<32, false>();
383
384 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
385 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
386 this->got_);
387
388 // The old GNU linker creates a .got.plt section. We just
389 // create another set of data in the .got section. Note that we
390 // always create a PLT if we create a GOT, although the PLT
391 // might be empty.
392 this->got_plt_ = new Output_data_space(4);
393 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
394 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
395 this->got_plt_);
396
397 // The first three entries are reserved.
398 this->got_plt_->set_current_data_size(3 * 4);
399
400 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
401 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
402 this->got_plt_,
403 0, 0, elfcpp::STT_OBJECT,
404 elfcpp::STB_LOCAL,
405 elfcpp::STV_HIDDEN, 0,
406 false, false);
407 }
408
409 return this->got_;
410 }
411
412 // Get the dynamic reloc section, creating it if necessary.
413
414 Target_i386::Reloc_section*
415 Target_i386::rel_dyn_section(Layout* layout)
416 {
417 if (this->rel_dyn_ == NULL)
418 {
419 gold_assert(layout != NULL);
420 this->rel_dyn_ = new Reloc_section();
421 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
422 elfcpp::SHF_ALLOC, this->rel_dyn_);
423 }
424 return this->rel_dyn_;
425 }
426
427 // A class to handle the PLT data.
428
429 class Output_data_plt_i386 : public Output_section_data
430 {
431 public:
432 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
433
434 Output_data_plt_i386(Layout*, Output_data_space*);
435
436 // Add an entry to the PLT.
437 void
438 add_entry(Symbol* gsym);
439
440 // Return the .rel.plt section data.
441 const Reloc_section*
442 rel_plt() const
443 { return this->rel_; }
444
445 protected:
446 void
447 do_adjust_output_section(Output_section* os);
448
449 private:
450 // The size of an entry in the PLT.
451 static const int plt_entry_size = 16;
452
453 // The first entry in the PLT for an executable.
454 static unsigned char exec_first_plt_entry[plt_entry_size];
455
456 // The first entry in the PLT for a shared object.
457 static unsigned char dyn_first_plt_entry[plt_entry_size];
458
459 // Other entries in the PLT for an executable.
460 static unsigned char exec_plt_entry[plt_entry_size];
461
462 // Other entries in the PLT for a shared object.
463 static unsigned char dyn_plt_entry[plt_entry_size];
464
465 // Set the final size.
466 void
467 set_final_data_size()
468 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
469
470 // Write out the PLT data.
471 void
472 do_write(Output_file*);
473
474 // The reloc section.
475 Reloc_section* rel_;
476 // The .got.plt section.
477 Output_data_space* got_plt_;
478 // The number of PLT entries.
479 unsigned int count_;
480 };
481
482 // Create the PLT section. The ordinary .got section is an argument,
483 // since we need to refer to the start. We also create our own .got
484 // section just for PLT entries.
485
486 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
487 Output_data_space* got_plt)
488 : Output_section_data(4), got_plt_(got_plt), count_(0)
489 {
490 this->rel_ = new Reloc_section();
491 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
492 elfcpp::SHF_ALLOC, this->rel_);
493 }
494
495 void
496 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
497 {
498 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
499 // linker, and so do we.
500 os->set_entsize(4);
501 }
502
503 // Add an entry to the PLT.
504
505 void
506 Output_data_plt_i386::add_entry(Symbol* gsym)
507 {
508 gold_assert(!gsym->has_plt_offset());
509
510 // Note that when setting the PLT offset we skip the initial
511 // reserved PLT entry.
512 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
513
514 ++this->count_;
515
516 section_offset_type got_offset = this->got_plt_->current_data_size();
517
518 // Every PLT entry needs a GOT entry which points back to the PLT
519 // entry (this will be changed by the dynamic linker, normally
520 // lazily when the function is called).
521 this->got_plt_->set_current_data_size(got_offset + 4);
522
523 // Every PLT entry needs a reloc.
524 gsym->set_needs_dynsym_entry();
525 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
526 got_offset);
527
528 // Note that we don't need to save the symbol. The contents of the
529 // PLT are independent of which symbols are used. The symbols only
530 // appear in the relocations.
531 }
532
533 // The first entry in the PLT for an executable.
534
535 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
536 {
537 0xff, 0x35, // pushl contents of memory address
538 0, 0, 0, 0, // replaced with address of .got + 4
539 0xff, 0x25, // jmp indirect
540 0, 0, 0, 0, // replaced with address of .got + 8
541 0, 0, 0, 0 // unused
542 };
543
544 // The first entry in the PLT for a shared object.
545
546 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
547 {
548 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
549 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
550 0, 0, 0, 0 // unused
551 };
552
553 // Subsequent entries in the PLT for an executable.
554
555 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
556 {
557 0xff, 0x25, // jmp indirect
558 0, 0, 0, 0, // replaced with address of symbol in .got
559 0x68, // pushl immediate
560 0, 0, 0, 0, // replaced with offset into relocation table
561 0xe9, // jmp relative
562 0, 0, 0, 0 // replaced with offset to start of .plt
563 };
564
565 // Subsequent entries in the PLT for a shared object.
566
567 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
568 {
569 0xff, 0xa3, // jmp *offset(%ebx)
570 0, 0, 0, 0, // replaced with offset of symbol in .got
571 0x68, // pushl immediate
572 0, 0, 0, 0, // replaced with offset into relocation table
573 0xe9, // jmp relative
574 0, 0, 0, 0 // replaced with offset to start of .plt
575 };
576
577 // Write out the PLT. This uses the hand-coded instructions above,
578 // and adjusts them as needed. This is all specified by the i386 ELF
579 // Processor Supplement.
580
581 void
582 Output_data_plt_i386::do_write(Output_file* of)
583 {
584 const off_t offset = this->offset();
585 const section_size_type oview_size =
586 convert_to_section_size_type(this->data_size());
587 unsigned char* const oview = of->get_output_view(offset, oview_size);
588
589 const off_t got_file_offset = this->got_plt_->offset();
590 const section_size_type got_size =
591 convert_to_section_size_type(this->got_plt_->data_size());
592 unsigned char* const got_view = of->get_output_view(got_file_offset,
593 got_size);
594
595 unsigned char* pov = oview;
596
597 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
598 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
599
600 if (parameters->options().shared())
601 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
602 else
603 {
604 memcpy(pov, exec_first_plt_entry, plt_entry_size);
605 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
606 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
607 }
608 pov += plt_entry_size;
609
610 unsigned char* got_pov = got_view;
611
612 memset(got_pov, 0, 12);
613 got_pov += 12;
614
615 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
616
617 unsigned int plt_offset = plt_entry_size;
618 unsigned int plt_rel_offset = 0;
619 unsigned int got_offset = 12;
620 const unsigned int count = this->count_;
621 for (unsigned int i = 0;
622 i < count;
623 ++i,
624 pov += plt_entry_size,
625 got_pov += 4,
626 plt_offset += plt_entry_size,
627 plt_rel_offset += rel_size,
628 got_offset += 4)
629 {
630 // Set and adjust the PLT entry itself.
631
632 if (parameters->options().shared())
633 {
634 memcpy(pov, dyn_plt_entry, plt_entry_size);
635 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
636 }
637 else
638 {
639 memcpy(pov, exec_plt_entry, plt_entry_size);
640 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
641 (got_address
642 + got_offset));
643 }
644
645 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
646 elfcpp::Swap<32, false>::writeval(pov + 12,
647 - (plt_offset + plt_entry_size));
648
649 // Set the entry in the GOT.
650 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
651 }
652
653 gold_assert(static_cast<section_size_type>(pov - oview) == oview_size);
654 gold_assert(static_cast<section_size_type>(got_pov - got_view) == got_size);
655
656 of->write_output_view(offset, oview_size, oview);
657 of->write_output_view(got_file_offset, got_size, got_view);
658 }
659
660 // Create a PLT entry for a global symbol.
661
662 void
663 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
664 {
665 if (gsym->has_plt_offset())
666 return;
667
668 if (this->plt_ == NULL)
669 {
670 // Create the GOT sections first.
671 this->got_section(symtab, layout);
672
673 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
674 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
675 (elfcpp::SHF_ALLOC
676 | elfcpp::SHF_EXECINSTR),
677 this->plt_);
678 }
679
680 this->plt_->add_entry(gsym);
681 }
682
683 // Create a GOT entry for the TLS module index.
684
685 unsigned int
686 Target_i386::got_mod_index_entry(Symbol_table* symtab, Layout* layout,
687 Sized_relobj<32, false>* object)
688 {
689 if (this->got_mod_index_offset_ == -1U)
690 {
691 gold_assert(symtab != NULL && layout != NULL && object != NULL);
692 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
693 Output_data_got<32, false>* got = this->got_section(symtab, layout);
694 unsigned int got_offset = got->add_constant(0);
695 rel_dyn->add_local(object, 0, elfcpp::R_386_TLS_DTPMOD32, got,
696 got_offset);
697 got->add_constant(0);
698 this->got_mod_index_offset_ = got_offset;
699 }
700 return this->got_mod_index_offset_;
701 }
702
703 // Handle a relocation against a non-function symbol defined in a
704 // dynamic object. The traditional way to handle this is to generate
705 // a COPY relocation to copy the variable at runtime from the shared
706 // object into the executable's data segment. However, this is
707 // undesirable in general, as if the size of the object changes in the
708 // dynamic object, the executable will no longer work correctly. If
709 // this relocation is in a writable section, then we can create a
710 // dynamic reloc and the dynamic linker will resolve it to the correct
711 // address at runtime. However, we do not want do that if the
712 // relocation is in a read-only section, as it would prevent the
713 // readonly segment from being shared. And if we have to eventually
714 // generate a COPY reloc, then any dynamic relocations will be
715 // useless. So this means that if this is a writable section, we need
716 // to save the relocation until we see whether we have to create a
717 // COPY relocation for this symbol for any other relocation.
718
719 void
720 Target_i386::copy_reloc(const General_options* options,
721 Symbol_table* symtab,
722 Layout* layout,
723 Sized_relobj<32, false>* object,
724 unsigned int data_shndx,
725 Output_section* output_section,
726 Symbol* gsym,
727 const elfcpp::Rel<32, false>& rel)
728 {
729 Sized_symbol<32>* ssym = symtab->get_sized_symbol<32>(gsym);
730
731 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
732 data_shndx, ssym))
733 {
734 // So far we do not need a COPY reloc. Save this relocation.
735 // If it turns out that we never need a COPY reloc for this
736 // symbol, then we will emit the relocation.
737 if (this->copy_relocs_ == NULL)
738 this->copy_relocs_ = new Copy_relocs<32, false>();
739 this->copy_relocs_->save(ssym, object, data_shndx, output_section, rel);
740 }
741 else
742 {
743 // Allocate space for this symbol in the .bss section.
744
745 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
746
747 // There is no defined way to determine the required alignment
748 // of the symbol. We pick the alignment based on the size. We
749 // set an arbitrary maximum of 256.
750 unsigned int align;
751 for (align = 1; align < 512; align <<= 1)
752 if ((symsize & align) != 0)
753 break;
754
755 if (this->dynbss_ == NULL)
756 {
757 this->dynbss_ = new Output_data_space(align);
758 layout->add_output_section_data(".bss",
759 elfcpp::SHT_NOBITS,
760 (elfcpp::SHF_ALLOC
761 | elfcpp::SHF_WRITE),
762 this->dynbss_);
763 }
764
765 Output_data_space* dynbss = this->dynbss_;
766
767 if (align > dynbss->addralign())
768 dynbss->set_space_alignment(align);
769
770 section_size_type dynbss_size =
771 convert_to_section_size_type(dynbss->current_data_size());
772 dynbss_size = align_address(dynbss_size, align);
773 section_size_type offset = dynbss_size;
774 dynbss->set_current_data_size(dynbss_size + symsize);
775
776 symtab->define_with_copy_reloc(ssym, dynbss, offset);
777
778 // Add the COPY reloc.
779 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
780 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
781 }
782 }
783
784 // Optimize the TLS relocation type based on what we know about the
785 // symbol. IS_FINAL is true if the final address of this symbol is
786 // known at link time.
787
788 tls::Tls_optimization
789 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
790 {
791 // If we are generating a shared library, then we can't do anything
792 // in the linker.
793 if (parameters->options().shared())
794 return tls::TLSOPT_NONE;
795
796 switch (r_type)
797 {
798 case elfcpp::R_386_TLS_GD:
799 case elfcpp::R_386_TLS_GOTDESC:
800 case elfcpp::R_386_TLS_DESC_CALL:
801 // These are General-Dynamic which permits fully general TLS
802 // access. Since we know that we are generating an executable,
803 // we can convert this to Initial-Exec. If we also know that
804 // this is a local symbol, we can further switch to Local-Exec.
805 if (is_final)
806 return tls::TLSOPT_TO_LE;
807 return tls::TLSOPT_TO_IE;
808
809 case elfcpp::R_386_TLS_LDM:
810 // This is Local-Dynamic, which refers to a local symbol in the
811 // dynamic TLS block. Since we know that we generating an
812 // executable, we can switch to Local-Exec.
813 return tls::TLSOPT_TO_LE;
814
815 case elfcpp::R_386_TLS_LDO_32:
816 // Another type of Local-Dynamic relocation.
817 return tls::TLSOPT_TO_LE;
818
819 case elfcpp::R_386_TLS_IE:
820 case elfcpp::R_386_TLS_GOTIE:
821 case elfcpp::R_386_TLS_IE_32:
822 // These are Initial-Exec relocs which get the thread offset
823 // from the GOT. If we know that we are linking against the
824 // local symbol, we can switch to Local-Exec, which links the
825 // thread offset into the instruction.
826 if (is_final)
827 return tls::TLSOPT_TO_LE;
828 return tls::TLSOPT_NONE;
829
830 case elfcpp::R_386_TLS_LE:
831 case elfcpp::R_386_TLS_LE_32:
832 // When we already have Local-Exec, there is nothing further we
833 // can do.
834 return tls::TLSOPT_NONE;
835
836 default:
837 gold_unreachable();
838 }
839 }
840
841 // Report an unsupported relocation against a local symbol.
842
843 void
844 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
845 unsigned int r_type)
846 {
847 gold_error(_("%s: unsupported reloc %u against local symbol"),
848 object->name().c_str(), r_type);
849 }
850
851 // Scan a relocation for a local symbol.
852
853 inline void
854 Target_i386::Scan::local(const General_options&,
855 Symbol_table* symtab,
856 Layout* layout,
857 Target_i386* target,
858 Sized_relobj<32, false>* object,
859 unsigned int data_shndx,
860 Output_section* output_section,
861 const elfcpp::Rel<32, false>& reloc,
862 unsigned int r_type,
863 const elfcpp::Sym<32, false>& lsym)
864 {
865 switch (r_type)
866 {
867 case elfcpp::R_386_NONE:
868 case elfcpp::R_386_GNU_VTINHERIT:
869 case elfcpp::R_386_GNU_VTENTRY:
870 break;
871
872 case elfcpp::R_386_32:
873 // If building a shared library (or a position-independent
874 // executable), we need to create a dynamic relocation for
875 // this location. The relocation applied at link time will
876 // apply the link-time value, so we flag the location with
877 // an R_386_RELATIVE relocation so the dynamic loader can
878 // relocate it easily.
879 if (parameters->options().output_is_position_independent())
880 {
881 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
882 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
883 rel_dyn->add_local_relative(object, r_sym, elfcpp::R_386_RELATIVE,
884 output_section, data_shndx,
885 reloc.get_r_offset());
886 }
887 break;
888
889 case elfcpp::R_386_16:
890 case elfcpp::R_386_8:
891 // If building a shared library (or a position-independent
892 // executable), we need to create a dynamic relocation for
893 // this location. Because the addend needs to remain in the
894 // data section, we need to be careful not to apply this
895 // relocation statically.
896 if (parameters->options().output_is_position_independent())
897 {
898 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
899 if (lsym.get_st_type() != elfcpp::STT_SECTION)
900 {
901 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
902 rel_dyn->add_local(object, r_sym, r_type, output_section,
903 data_shndx, reloc.get_r_offset());
904 }
905 else
906 {
907 gold_assert(lsym.get_st_value() == 0);
908 rel_dyn->add_local_section(object, lsym.get_st_shndx(),
909 r_type, output_section,
910 data_shndx, reloc.get_r_offset());
911 }
912 }
913 break;
914
915 case elfcpp::R_386_PC32:
916 case elfcpp::R_386_PC16:
917 case elfcpp::R_386_PC8:
918 break;
919
920 case elfcpp::R_386_PLT32:
921 // Since we know this is a local symbol, we can handle this as a
922 // PC32 reloc.
923 break;
924
925 case elfcpp::R_386_GOTOFF:
926 case elfcpp::R_386_GOTPC:
927 // We need a GOT section.
928 target->got_section(symtab, layout);
929 break;
930
931 case elfcpp::R_386_GOT32:
932 {
933 // The symbol requires a GOT entry.
934 Output_data_got<32, false>* got = target->got_section(symtab, layout);
935 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
936 if (got->add_local(object, r_sym))
937 {
938 // If we are generating a shared object, we need to add a
939 // dynamic RELATIVE relocation for this symbol's GOT entry.
940 if (parameters->options().output_is_position_independent())
941 {
942 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
943 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
944 rel_dyn->add_local_relative(object, r_sym,
945 elfcpp::R_386_RELATIVE,
946 got,
947 object->local_got_offset(r_sym));
948 }
949 }
950 }
951 break;
952
953 // These are relocations which should only be seen by the
954 // dynamic linker, and should never be seen here.
955 case elfcpp::R_386_COPY:
956 case elfcpp::R_386_GLOB_DAT:
957 case elfcpp::R_386_JUMP_SLOT:
958 case elfcpp::R_386_RELATIVE:
959 case elfcpp::R_386_TLS_TPOFF:
960 case elfcpp::R_386_TLS_DTPMOD32:
961 case elfcpp::R_386_TLS_DTPOFF32:
962 case elfcpp::R_386_TLS_TPOFF32:
963 case elfcpp::R_386_TLS_DESC:
964 gold_error(_("%s: unexpected reloc %u in object file"),
965 object->name().c_str(), r_type);
966 break;
967
968 // These are initial TLS relocs, which are expected when
969 // linking.
970 case elfcpp::R_386_TLS_GD: // Global-dynamic
971 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
972 case elfcpp::R_386_TLS_DESC_CALL:
973 case elfcpp::R_386_TLS_LDM: // Local-dynamic
974 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
975 case elfcpp::R_386_TLS_IE: // Initial-exec
976 case elfcpp::R_386_TLS_IE_32:
977 case elfcpp::R_386_TLS_GOTIE:
978 case elfcpp::R_386_TLS_LE: // Local-exec
979 case elfcpp::R_386_TLS_LE_32:
980 {
981 bool output_is_shared = parameters->options().shared();
982 const tls::Tls_optimization optimized_type
983 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
984 switch (r_type)
985 {
986 case elfcpp::R_386_TLS_GD: // Global-dynamic
987 if (optimized_type == tls::TLSOPT_NONE)
988 {
989 // Create a pair of GOT entries for the module index and
990 // dtv-relative offset.
991 Output_data_got<32, false>* got
992 = target->got_section(symtab, layout);
993 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
994 got->add_local_tls_with_rel(object, r_sym,
995 lsym.get_st_shndx(), true,
996 target->rel_dyn_section(layout),
997 elfcpp::R_386_TLS_DTPMOD32);
998 }
999 else if (optimized_type != tls::TLSOPT_TO_LE)
1000 unsupported_reloc_local(object, r_type);
1001 break;
1002
1003 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva)
1004 case elfcpp::R_386_TLS_DESC_CALL:
1005 // FIXME: If not relaxing to LE, we need to generate
1006 // a GOT entry with an R_386_TLS_DESC reloc.
1007 if (optimized_type != tls::TLSOPT_TO_LE)
1008 unsupported_reloc_local(object, r_type);
1009 break;
1010
1011 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1012 if (optimized_type == tls::TLSOPT_NONE)
1013 {
1014 // Create a GOT entry for the module index.
1015 target->got_mod_index_entry(symtab, layout, object);
1016 }
1017 else if (optimized_type != tls::TLSOPT_TO_LE)
1018 unsupported_reloc_local(object, r_type);
1019 break;
1020
1021 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1022 break;
1023
1024 case elfcpp::R_386_TLS_IE: // Initial-exec
1025 case elfcpp::R_386_TLS_IE_32:
1026 case elfcpp::R_386_TLS_GOTIE:
1027 layout->set_has_static_tls();
1028 if (optimized_type == tls::TLSOPT_NONE)
1029 {
1030 // For the R_386_TLS_IE relocation, we need to create a
1031 // dynamic relocation when building a shared library.
1032 if (r_type == elfcpp::R_386_TLS_IE
1033 && parameters->options().shared())
1034 {
1035 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1036 unsigned int r_sym
1037 = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1038 rel_dyn->add_local_relative(object, r_sym,
1039 elfcpp::R_386_RELATIVE,
1040 output_section, data_shndx,
1041 reloc.get_r_offset());
1042 }
1043 // Create a GOT entry for the tp-relative offset.
1044 Output_data_got<32, false>* got
1045 = target->got_section(symtab, layout);
1046 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1047 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1048 ? elfcpp::R_386_TLS_TPOFF32
1049 : elfcpp::R_386_TLS_TPOFF);
1050 got->add_local_with_rel(object, r_sym,
1051 target->rel_dyn_section(layout),
1052 dyn_r_type);
1053 }
1054 else if (optimized_type != tls::TLSOPT_TO_LE)
1055 unsupported_reloc_local(object, r_type);
1056 break;
1057
1058 case elfcpp::R_386_TLS_LE: // Local-exec
1059 case elfcpp::R_386_TLS_LE_32:
1060 layout->set_has_static_tls();
1061 if (output_is_shared)
1062 {
1063 // We need to create a dynamic relocation.
1064 gold_assert(lsym.get_st_type() != elfcpp::STT_SECTION);
1065 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
1066 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1067 ? elfcpp::R_386_TLS_TPOFF32
1068 : elfcpp::R_386_TLS_TPOFF);
1069 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1070 rel_dyn->add_local(object, r_sym, dyn_r_type, output_section,
1071 data_shndx, reloc.get_r_offset());
1072 }
1073 break;
1074
1075 default:
1076 gold_unreachable();
1077 }
1078 }
1079 break;
1080
1081 case elfcpp::R_386_32PLT:
1082 case elfcpp::R_386_TLS_GD_32:
1083 case elfcpp::R_386_TLS_GD_PUSH:
1084 case elfcpp::R_386_TLS_GD_CALL:
1085 case elfcpp::R_386_TLS_GD_POP:
1086 case elfcpp::R_386_TLS_LDM_32:
1087 case elfcpp::R_386_TLS_LDM_PUSH:
1088 case elfcpp::R_386_TLS_LDM_CALL:
1089 case elfcpp::R_386_TLS_LDM_POP:
1090 case elfcpp::R_386_USED_BY_INTEL_200:
1091 default:
1092 unsupported_reloc_local(object, r_type);
1093 break;
1094 }
1095 }
1096
1097 // Report an unsupported relocation against a global symbol.
1098
1099 void
1100 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
1101 unsigned int r_type,
1102 Symbol* gsym)
1103 {
1104 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
1105 object->name().c_str(), r_type, gsym->demangled_name().c_str());
1106 }
1107
1108 // Scan a relocation for a global symbol.
1109
1110 inline void
1111 Target_i386::Scan::global(const General_options& options,
1112 Symbol_table* symtab,
1113 Layout* layout,
1114 Target_i386* target,
1115 Sized_relobj<32, false>* object,
1116 unsigned int data_shndx,
1117 Output_section* output_section,
1118 const elfcpp::Rel<32, false>& reloc,
1119 unsigned int r_type,
1120 Symbol* gsym)
1121 {
1122 switch (r_type)
1123 {
1124 case elfcpp::R_386_NONE:
1125 case elfcpp::R_386_GNU_VTINHERIT:
1126 case elfcpp::R_386_GNU_VTENTRY:
1127 break;
1128
1129 case elfcpp::R_386_32:
1130 case elfcpp::R_386_16:
1131 case elfcpp::R_386_8:
1132 {
1133 // Make a PLT entry if necessary.
1134 if (gsym->needs_plt_entry())
1135 {
1136 target->make_plt_entry(symtab, layout, gsym);
1137 // Since this is not a PC-relative relocation, we may be
1138 // taking the address of a function. In that case we need to
1139 // set the entry in the dynamic symbol table to the address of
1140 // the PLT entry.
1141 if (gsym->is_from_dynobj() && !parameters->options().shared())
1142 gsym->set_needs_dynsym_value();
1143 }
1144 // Make a dynamic relocation if necessary.
1145 if (gsym->needs_dynamic_reloc(Symbol::ABSOLUTE_REF))
1146 {
1147 if (target->may_need_copy_reloc(gsym))
1148 {
1149 target->copy_reloc(&options, symtab, layout, object,
1150 data_shndx, output_section, gsym, reloc);
1151 }
1152 else if (r_type == elfcpp::R_386_32
1153 && gsym->can_use_relative_reloc(false))
1154 {
1155 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1156 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1157 output_section, object,
1158 data_shndx, reloc.get_r_offset());
1159 }
1160 else
1161 {
1162 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1163 rel_dyn->add_global(gsym, r_type, output_section, object,
1164 data_shndx, reloc.get_r_offset());
1165 }
1166 }
1167 }
1168 break;
1169
1170 case elfcpp::R_386_PC32:
1171 case elfcpp::R_386_PC16:
1172 case elfcpp::R_386_PC8:
1173 {
1174 // Make a PLT entry if necessary.
1175 if (gsym->needs_plt_entry())
1176 {
1177 // These relocations are used for function calls only in
1178 // non-PIC code. For a 32-bit relocation in a shared library,
1179 // we'll need a text relocation anyway, so we can skip the
1180 // PLT entry and let the dynamic linker bind the call directly
1181 // to the target. For smaller relocations, we should use a
1182 // PLT entry to ensure that the call can reach.
1183 if (!parameters->options().shared()
1184 || r_type != elfcpp::R_386_PC32)
1185 target->make_plt_entry(symtab, layout, gsym);
1186 }
1187 // Make a dynamic relocation if necessary.
1188 int flags = Symbol::NON_PIC_REF;
1189 if (gsym->type() == elfcpp::STT_FUNC)
1190 flags |= Symbol::FUNCTION_CALL;
1191 if (gsym->needs_dynamic_reloc(flags))
1192 {
1193 if (target->may_need_copy_reloc(gsym))
1194 {
1195 target->copy_reloc(&options, symtab, layout, object,
1196 data_shndx, output_section, gsym, reloc);
1197 }
1198 else
1199 {
1200 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1201 rel_dyn->add_global(gsym, r_type, output_section, object,
1202 data_shndx, reloc.get_r_offset());
1203 }
1204 }
1205 }
1206 break;
1207
1208 case elfcpp::R_386_GOT32:
1209 {
1210 // The symbol requires a GOT entry.
1211 Output_data_got<32, false>* got = target->got_section(symtab, layout);
1212 if (gsym->final_value_is_known())
1213 got->add_global(gsym);
1214 else
1215 {
1216 // If this symbol is not fully resolved, we need to add a
1217 // GOT entry with a dynamic relocation.
1218 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1219 if (gsym->is_from_dynobj()
1220 || gsym->is_undefined()
1221 || gsym->is_preemptible())
1222 got->add_global_with_rel(gsym, rel_dyn, elfcpp::R_386_GLOB_DAT);
1223 else
1224 {
1225 if (got->add_global(gsym))
1226 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1227 got, gsym->got_offset());
1228 }
1229 }
1230 }
1231 break;
1232
1233 case elfcpp::R_386_PLT32:
1234 // If the symbol is fully resolved, this is just a PC32 reloc.
1235 // Otherwise we need a PLT entry.
1236 if (gsym->final_value_is_known())
1237 break;
1238 // If building a shared library, we can also skip the PLT entry
1239 // if the symbol is defined in the output file and is protected
1240 // or hidden.
1241 if (gsym->is_defined()
1242 && !gsym->is_from_dynobj()
1243 && !gsym->is_preemptible())
1244 break;
1245 target->make_plt_entry(symtab, layout, gsym);
1246 break;
1247
1248 case elfcpp::R_386_GOTOFF:
1249 case elfcpp::R_386_GOTPC:
1250 // We need a GOT section.
1251 target->got_section(symtab, layout);
1252 break;
1253
1254 // These are relocations which should only be seen by the
1255 // dynamic linker, and should never be seen here.
1256 case elfcpp::R_386_COPY:
1257 case elfcpp::R_386_GLOB_DAT:
1258 case elfcpp::R_386_JUMP_SLOT:
1259 case elfcpp::R_386_RELATIVE:
1260 case elfcpp::R_386_TLS_TPOFF:
1261 case elfcpp::R_386_TLS_DTPMOD32:
1262 case elfcpp::R_386_TLS_DTPOFF32:
1263 case elfcpp::R_386_TLS_TPOFF32:
1264 case elfcpp::R_386_TLS_DESC:
1265 gold_error(_("%s: unexpected reloc %u in object file"),
1266 object->name().c_str(), r_type);
1267 break;
1268
1269 // These are initial tls relocs, which are expected when
1270 // linking.
1271 case elfcpp::R_386_TLS_GD: // Global-dynamic
1272 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1273 case elfcpp::R_386_TLS_DESC_CALL:
1274 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1275 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1276 case elfcpp::R_386_TLS_IE: // Initial-exec
1277 case elfcpp::R_386_TLS_IE_32:
1278 case elfcpp::R_386_TLS_GOTIE:
1279 case elfcpp::R_386_TLS_LE: // Local-exec
1280 case elfcpp::R_386_TLS_LE_32:
1281 {
1282 const bool is_final = gsym->final_value_is_known();
1283 const tls::Tls_optimization optimized_type
1284 = Target_i386::optimize_tls_reloc(is_final, r_type);
1285 switch (r_type)
1286 {
1287 case elfcpp::R_386_TLS_GD: // Global-dynamic
1288 if (optimized_type == tls::TLSOPT_NONE)
1289 {
1290 // Create a pair of GOT entries for the module index and
1291 // dtv-relative offset.
1292 Output_data_got<32, false>* got
1293 = target->got_section(symtab, layout);
1294 got->add_global_tls_with_rel(gsym,
1295 target->rel_dyn_section(layout),
1296 elfcpp::R_386_TLS_DTPMOD32,
1297 elfcpp::R_386_TLS_DTPOFF32);
1298 }
1299 else if (optimized_type == tls::TLSOPT_TO_IE)
1300 {
1301 // Create a GOT entry for the tp-relative offset.
1302 Output_data_got<32, false>* got
1303 = target->got_section(symtab, layout);
1304 got->add_global_with_rel(gsym, target->rel_dyn_section(layout),
1305 elfcpp::R_386_TLS_TPOFF32);
1306 }
1307 else if (optimized_type != tls::TLSOPT_TO_LE)
1308 unsupported_reloc_global(object, r_type, gsym);
1309 break;
1310
1311 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (~oliva url)
1312 case elfcpp::R_386_TLS_DESC_CALL:
1313 // FIXME: If not relaxing to LE, we need to generate
1314 // a GOT entry with an R_386_TLS_DESC reloc.
1315 if (optimized_type != tls::TLSOPT_TO_LE)
1316 unsupported_reloc_global(object, r_type, gsym);
1317 unsupported_reloc_global(object, r_type, gsym);
1318 break;
1319
1320 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1321 if (optimized_type == tls::TLSOPT_NONE)
1322 {
1323 // Create a GOT entry for the module index.
1324 target->got_mod_index_entry(symtab, layout, object);
1325 }
1326 else if (optimized_type != tls::TLSOPT_TO_LE)
1327 unsupported_reloc_global(object, r_type, gsym);
1328 break;
1329
1330 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1331 break;
1332
1333 case elfcpp::R_386_TLS_IE: // Initial-exec
1334 case elfcpp::R_386_TLS_IE_32:
1335 case elfcpp::R_386_TLS_GOTIE:
1336 layout->set_has_static_tls();
1337 if (optimized_type == tls::TLSOPT_NONE)
1338 {
1339 // For the R_386_TLS_IE relocation, we need to create a
1340 // dynamic relocation when building a shared library.
1341 if (r_type == elfcpp::R_386_TLS_IE
1342 && parameters->options().shared())
1343 {
1344 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1345 rel_dyn->add_global_relative(gsym, elfcpp::R_386_RELATIVE,
1346 output_section, object,
1347 data_shndx,
1348 reloc.get_r_offset());
1349 }
1350 // Create a GOT entry for the tp-relative offset.
1351 Output_data_got<32, false>* got
1352 = target->got_section(symtab, layout);
1353 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_IE_32
1354 ? elfcpp::R_386_TLS_TPOFF32
1355 : elfcpp::R_386_TLS_TPOFF);
1356 got->add_global_with_rel(gsym,
1357 target->rel_dyn_section(layout),
1358 dyn_r_type);
1359 }
1360 else if (optimized_type != tls::TLSOPT_TO_LE)
1361 unsupported_reloc_global(object, r_type, gsym);
1362 break;
1363
1364 case elfcpp::R_386_TLS_LE: // Local-exec
1365 case elfcpp::R_386_TLS_LE_32:
1366 layout->set_has_static_tls();
1367 if (parameters->options().shared())
1368 {
1369 // We need to create a dynamic relocation.
1370 unsigned int dyn_r_type = (r_type == elfcpp::R_386_TLS_LE_32
1371 ? elfcpp::R_386_TLS_TPOFF32
1372 : elfcpp::R_386_TLS_TPOFF);
1373 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
1374 rel_dyn->add_global(gsym, dyn_r_type, output_section, object,
1375 data_shndx, reloc.get_r_offset());
1376 }
1377 break;
1378
1379 default:
1380 gold_unreachable();
1381 }
1382 }
1383 break;
1384
1385 case elfcpp::R_386_32PLT:
1386 case elfcpp::R_386_TLS_GD_32:
1387 case elfcpp::R_386_TLS_GD_PUSH:
1388 case elfcpp::R_386_TLS_GD_CALL:
1389 case elfcpp::R_386_TLS_GD_POP:
1390 case elfcpp::R_386_TLS_LDM_32:
1391 case elfcpp::R_386_TLS_LDM_PUSH:
1392 case elfcpp::R_386_TLS_LDM_CALL:
1393 case elfcpp::R_386_TLS_LDM_POP:
1394 case elfcpp::R_386_USED_BY_INTEL_200:
1395 default:
1396 unsupported_reloc_global(object, r_type, gsym);
1397 break;
1398 }
1399 }
1400
1401 // Scan relocations for a section.
1402
1403 void
1404 Target_i386::scan_relocs(const General_options& options,
1405 Symbol_table* symtab,
1406 Layout* layout,
1407 Sized_relobj<32, false>* object,
1408 unsigned int data_shndx,
1409 unsigned int sh_type,
1410 const unsigned char* prelocs,
1411 size_t reloc_count,
1412 Output_section* output_section,
1413 bool needs_special_offset_handling,
1414 size_t local_symbol_count,
1415 const unsigned char* plocal_symbols)
1416 {
1417 if (sh_type == elfcpp::SHT_RELA)
1418 {
1419 gold_error(_("%s: unsupported RELA reloc section"),
1420 object->name().c_str());
1421 return;
1422 }
1423
1424 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1425 Target_i386::Scan>(
1426 options,
1427 symtab,
1428 layout,
1429 this,
1430 object,
1431 data_shndx,
1432 prelocs,
1433 reloc_count,
1434 output_section,
1435 needs_special_offset_handling,
1436 local_symbol_count,
1437 plocal_symbols);
1438 }
1439
1440 // Finalize the sections.
1441
1442 void
1443 Target_i386::do_finalize_sections(Layout* layout)
1444 {
1445 // Fill in some more dynamic tags.
1446 Output_data_dynamic* const odyn = layout->dynamic_data();
1447 if (odyn != NULL)
1448 {
1449 if (this->got_plt_ != NULL)
1450 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1451
1452 if (this->plt_ != NULL)
1453 {
1454 const Output_data* od = this->plt_->rel_plt();
1455 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1456 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1457 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1458 }
1459
1460 if (this->rel_dyn_ != NULL)
1461 {
1462 const Output_data* od = this->rel_dyn_;
1463 odyn->add_section_address(elfcpp::DT_REL, od);
1464 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1465 odyn->add_constant(elfcpp::DT_RELENT,
1466 elfcpp::Elf_sizes<32>::rel_size);
1467 }
1468
1469 if (!parameters->options().shared())
1470 {
1471 // The value of the DT_DEBUG tag is filled in by the dynamic
1472 // linker at run time, and used by the debugger.
1473 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1474 }
1475 }
1476
1477 // Emit any relocs we saved in an attempt to avoid generating COPY
1478 // relocs.
1479 if (this->copy_relocs_ == NULL)
1480 return;
1481 if (this->copy_relocs_->any_to_emit())
1482 {
1483 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1484 this->copy_relocs_->emit(rel_dyn);
1485 }
1486 delete this->copy_relocs_;
1487 this->copy_relocs_ = NULL;
1488 }
1489
1490 // Return whether a direct absolute static relocation needs to be applied.
1491 // In cases where Scan::local() or Scan::global() has created
1492 // a dynamic relocation other than R_386_RELATIVE, the addend
1493 // of the relocation is carried in the data, and we must not
1494 // apply the static relocation.
1495
1496 inline bool
1497 Target_i386::Relocate::should_apply_static_reloc(const Sized_symbol<32>* gsym,
1498 int ref_flags,
1499 bool is_32bit)
1500 {
1501 // For local symbols, we will have created a non-RELATIVE dynamic
1502 // relocation only if (a) the output is position independent,
1503 // (b) the relocation is absolute (not pc- or segment-relative), and
1504 // (c) the relocation is not 32 bits wide.
1505 if (gsym == NULL)
1506 return !(parameters->options().output_is_position_independent()
1507 && (ref_flags & Symbol::ABSOLUTE_REF)
1508 && !is_32bit);
1509
1510 // For global symbols, we use the same helper routines used in the
1511 // scan pass. If we did not create a dynamic relocation, or if we
1512 // created a RELATIVE dynamic relocation, we should apply the static
1513 // relocation.
1514 bool has_dyn = gsym->needs_dynamic_reloc(ref_flags);
1515 bool is_rel = (ref_flags & Symbol::ABSOLUTE_REF)
1516 && gsym->can_use_relative_reloc(ref_flags
1517 & Symbol::FUNCTION_CALL);
1518 return !has_dyn || is_rel;
1519 }
1520
1521 // Perform a relocation.
1522
1523 inline bool
1524 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1525 Target_i386* target,
1526 size_t relnum,
1527 const elfcpp::Rel<32, false>& rel,
1528 unsigned int r_type,
1529 const Sized_symbol<32>* gsym,
1530 const Symbol_value<32>* psymval,
1531 unsigned char* view,
1532 elfcpp::Elf_types<32>::Elf_Addr address,
1533 section_size_type view_size)
1534 {
1535 if (this->skip_call_tls_get_addr_)
1536 {
1537 if (r_type != elfcpp::R_386_PLT32
1538 || gsym == NULL
1539 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1540 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1541 _("missing expected TLS relocation"));
1542 else
1543 {
1544 this->skip_call_tls_get_addr_ = false;
1545 return false;
1546 }
1547 }
1548
1549 // Pick the value to use for symbols defined in shared objects.
1550 Symbol_value<32> symval;
1551 bool is_nonpic = (r_type == elfcpp::R_386_PC8
1552 || r_type == elfcpp::R_386_PC16
1553 || r_type == elfcpp::R_386_PC32);
1554 if (gsym != NULL
1555 && (gsym->is_from_dynobj()
1556 || (parameters->options().shared()
1557 && (gsym->is_undefined() || gsym->is_preemptible())))
1558 && gsym->has_plt_offset()
1559 && (!is_nonpic || !parameters->options().shared()))
1560 {
1561 symval.set_output_value(target->plt_section()->address()
1562 + gsym->plt_offset());
1563 psymval = &symval;
1564 }
1565
1566 const Sized_relobj<32, false>* object = relinfo->object;
1567
1568 // Get the GOT offset if needed.
1569 // The GOT pointer points to the end of the GOT section.
1570 // We need to subtract the size of the GOT section to get
1571 // the actual offset to use in the relocation.
1572 bool have_got_offset = false;
1573 unsigned int got_offset = 0;
1574 switch (r_type)
1575 {
1576 case elfcpp::R_386_GOT32:
1577 if (gsym != NULL)
1578 {
1579 gold_assert(gsym->has_got_offset());
1580 got_offset = gsym->got_offset() - target->got_size();
1581 }
1582 else
1583 {
1584 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1585 gold_assert(object->local_has_got_offset(r_sym));
1586 got_offset = object->local_got_offset(r_sym) - target->got_size();
1587 }
1588 have_got_offset = true;
1589 break;
1590
1591 default:
1592 break;
1593 }
1594
1595 switch (r_type)
1596 {
1597 case elfcpp::R_386_NONE:
1598 case elfcpp::R_386_GNU_VTINHERIT:
1599 case elfcpp::R_386_GNU_VTENTRY:
1600 break;
1601
1602 case elfcpp::R_386_32:
1603 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, true))
1604 Relocate_functions<32, false>::rel32(view, object, psymval);
1605 break;
1606
1607 case elfcpp::R_386_PC32:
1608 {
1609 int ref_flags = Symbol::NON_PIC_REF;
1610 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1611 ref_flags |= Symbol::FUNCTION_CALL;
1612 if (should_apply_static_reloc(gsym, ref_flags, true))
1613 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1614 }
1615 break;
1616
1617 case elfcpp::R_386_16:
1618 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1619 Relocate_functions<32, false>::rel16(view, object, psymval);
1620 break;
1621
1622 case elfcpp::R_386_PC16:
1623 {
1624 int ref_flags = Symbol::NON_PIC_REF;
1625 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1626 ref_flags |= Symbol::FUNCTION_CALL;
1627 if (should_apply_static_reloc(gsym, ref_flags, false))
1628 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1629 }
1630 break;
1631
1632 case elfcpp::R_386_8:
1633 if (should_apply_static_reloc(gsym, Symbol::ABSOLUTE_REF, false))
1634 Relocate_functions<32, false>::rel8(view, object, psymval);
1635 break;
1636
1637 case elfcpp::R_386_PC8:
1638 {
1639 int ref_flags = Symbol::NON_PIC_REF;
1640 if (gsym != NULL && gsym->type() == elfcpp::STT_FUNC)
1641 ref_flags |= Symbol::FUNCTION_CALL;
1642 if (should_apply_static_reloc(gsym, ref_flags, false))
1643 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1644 }
1645 break;
1646
1647 case elfcpp::R_386_PLT32:
1648 gold_assert(gsym == NULL
1649 || gsym->has_plt_offset()
1650 || gsym->final_value_is_known()
1651 || (gsym->is_defined()
1652 && !gsym->is_from_dynobj()
1653 && !gsym->is_preemptible()));
1654 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1655 break;
1656
1657 case elfcpp::R_386_GOT32:
1658 gold_assert(have_got_offset);
1659 Relocate_functions<32, false>::rel32(view, got_offset);
1660 break;
1661
1662 case elfcpp::R_386_GOTOFF:
1663 {
1664 elfcpp::Elf_types<32>::Elf_Addr value;
1665 value = (psymval->value(object, 0)
1666 - target->got_plt_section()->address());
1667 Relocate_functions<32, false>::rel32(view, value);
1668 }
1669 break;
1670
1671 case elfcpp::R_386_GOTPC:
1672 {
1673 elfcpp::Elf_types<32>::Elf_Addr value;
1674 value = target->got_plt_section()->address();
1675 Relocate_functions<32, false>::pcrel32(view, value, address);
1676 }
1677 break;
1678
1679 case elfcpp::R_386_COPY:
1680 case elfcpp::R_386_GLOB_DAT:
1681 case elfcpp::R_386_JUMP_SLOT:
1682 case elfcpp::R_386_RELATIVE:
1683 // These are outstanding tls relocs, which are unexpected when
1684 // linking.
1685 case elfcpp::R_386_TLS_TPOFF:
1686 case elfcpp::R_386_TLS_DTPMOD32:
1687 case elfcpp::R_386_TLS_DTPOFF32:
1688 case elfcpp::R_386_TLS_TPOFF32:
1689 case elfcpp::R_386_TLS_DESC:
1690 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1691 _("unexpected reloc %u in object file"),
1692 r_type);
1693 break;
1694
1695 // These are initial tls relocs, which are expected when
1696 // linking.
1697 case elfcpp::R_386_TLS_GD: // Global-dynamic
1698 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1699 case elfcpp::R_386_TLS_DESC_CALL:
1700 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1701 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1702 case elfcpp::R_386_TLS_IE: // Initial-exec
1703 case elfcpp::R_386_TLS_IE_32:
1704 case elfcpp::R_386_TLS_GOTIE:
1705 case elfcpp::R_386_TLS_LE: // Local-exec
1706 case elfcpp::R_386_TLS_LE_32:
1707 this->relocate_tls(relinfo, target, relnum, rel, r_type, gsym, psymval,
1708 view, address, view_size);
1709 break;
1710
1711 case elfcpp::R_386_32PLT:
1712 case elfcpp::R_386_TLS_GD_32:
1713 case elfcpp::R_386_TLS_GD_PUSH:
1714 case elfcpp::R_386_TLS_GD_CALL:
1715 case elfcpp::R_386_TLS_GD_POP:
1716 case elfcpp::R_386_TLS_LDM_32:
1717 case elfcpp::R_386_TLS_LDM_PUSH:
1718 case elfcpp::R_386_TLS_LDM_CALL:
1719 case elfcpp::R_386_TLS_LDM_POP:
1720 case elfcpp::R_386_USED_BY_INTEL_200:
1721 default:
1722 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1723 _("unsupported reloc %u"),
1724 r_type);
1725 break;
1726 }
1727
1728 return true;
1729 }
1730
1731 // Perform a TLS relocation.
1732
1733 inline void
1734 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1735 Target_i386* target,
1736 size_t relnum,
1737 const elfcpp::Rel<32, false>& rel,
1738 unsigned int r_type,
1739 const Sized_symbol<32>* gsym,
1740 const Symbol_value<32>* psymval,
1741 unsigned char* view,
1742 elfcpp::Elf_types<32>::Elf_Addr,
1743 section_size_type view_size)
1744 {
1745 Output_segment* tls_segment = relinfo->layout->tls_segment();
1746
1747 const Sized_relobj<32, false>* object = relinfo->object;
1748
1749 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(object, 0);
1750
1751 const bool is_final =
1752 (gsym == NULL
1753 ? !parameters->options().output_is_position_independent()
1754 : gsym->final_value_is_known());
1755 const tls::Tls_optimization optimized_type
1756 = Target_i386::optimize_tls_reloc(is_final, r_type);
1757 switch (r_type)
1758 {
1759 case elfcpp::R_386_TLS_GD: // Global-dynamic
1760 if (optimized_type == tls::TLSOPT_TO_LE)
1761 {
1762 gold_assert(tls_segment != NULL);
1763 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1764 rel, r_type, value, view,
1765 view_size);
1766 break;
1767 }
1768 else
1769 {
1770 unsigned int got_offset;
1771 if (gsym != NULL)
1772 {
1773 gold_assert(gsym->has_tls_got_offset(true));
1774 got_offset = gsym->tls_got_offset(true) - target->got_size();
1775 }
1776 else
1777 {
1778 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1779 gold_assert(object->local_has_tls_got_offset(r_sym, true));
1780 got_offset = (object->local_tls_got_offset(r_sym, true)
1781 - target->got_size());
1782 }
1783 if (optimized_type == tls::TLSOPT_TO_IE)
1784 {
1785 gold_assert(tls_segment != NULL);
1786 this->tls_gd_to_ie(relinfo, relnum, tls_segment, rel, r_type,
1787 got_offset, view, view_size);
1788 break;
1789 }
1790 else if (optimized_type == tls::TLSOPT_NONE)
1791 {
1792 // Relocate the field with the offset of the pair of GOT
1793 // entries.
1794 Relocate_functions<32, false>::rel32(view, got_offset);
1795 break;
1796 }
1797 }
1798 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1799 _("unsupported reloc %u"),
1800 r_type);
1801 break;
1802
1803 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
1804 case elfcpp::R_386_TLS_DESC_CALL:
1805 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1806 _("unsupported reloc %u"),
1807 r_type);
1808 break;
1809
1810 case elfcpp::R_386_TLS_LDM: // Local-dynamic
1811 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1812 {
1813 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1814 _("both SUN and GNU model "
1815 "TLS relocations"));
1816 break;
1817 }
1818 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1819 if (optimized_type == tls::TLSOPT_TO_LE)
1820 {
1821 gold_assert(tls_segment != NULL);
1822 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1823 value, view, view_size);
1824 break;
1825 }
1826 else if (optimized_type == tls::TLSOPT_NONE)
1827 {
1828 // Relocate the field with the offset of the GOT entry for
1829 // the module index.
1830 unsigned int got_offset;
1831 got_offset = (target->got_mod_index_entry(NULL, NULL, NULL)
1832 - target->got_size());
1833 Relocate_functions<32, false>::rel32(view, got_offset);
1834 break;
1835 }
1836 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1837 _("unsupported reloc %u"),
1838 r_type);
1839 break;
1840
1841 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
1842 // This reloc can appear in debugging sections, in which case we
1843 // won't see the TLS_LDM reloc. The local_dynamic_type field
1844 // tells us this.
1845 if (optimized_type == tls::TLSOPT_TO_LE)
1846 {
1847 gold_assert(tls_segment != NULL);
1848 value -= tls_segment->memsz();
1849 }
1850 Relocate_functions<32, false>::rel32(view, value);
1851 break;
1852
1853 case elfcpp::R_386_TLS_IE: // Initial-exec
1854 case elfcpp::R_386_TLS_GOTIE:
1855 case elfcpp::R_386_TLS_IE_32:
1856 if (optimized_type == tls::TLSOPT_TO_LE)
1857 {
1858 gold_assert(tls_segment != NULL);
1859 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1860 rel, r_type, value, view,
1861 view_size);
1862 break;
1863 }
1864 else if (optimized_type == tls::TLSOPT_NONE)
1865 {
1866 // Relocate the field with the offset of the GOT entry for
1867 // the tp-relative offset of the symbol.
1868 unsigned int got_offset;
1869 if (gsym != NULL)
1870 {
1871 gold_assert(gsym->has_got_offset());
1872 got_offset = gsym->got_offset();
1873 }
1874 else
1875 {
1876 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1877 gold_assert(object->local_has_got_offset(r_sym));
1878 got_offset = object->local_got_offset(r_sym);
1879 }
1880 // For the R_386_TLS_IE relocation, we need to apply the
1881 // absolute address of the GOT entry.
1882 if (r_type == elfcpp::R_386_TLS_IE)
1883 got_offset += target->got_plt_section()->address();
1884 // All GOT offsets are relative to the end of the GOT.
1885 got_offset -= target->got_size();
1886 Relocate_functions<32, false>::rel32(view, got_offset);
1887 break;
1888 }
1889 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1890 _("unsupported reloc %u"),
1891 r_type);
1892 break;
1893
1894 case elfcpp::R_386_TLS_LE: // Local-exec
1895 // If we're creating a shared library, a dynamic relocation will
1896 // have been created for this location, so do not apply it now.
1897 if (!parameters->options().shared())
1898 {
1899 gold_assert(tls_segment != NULL);
1900 value -= tls_segment->memsz();
1901 Relocate_functions<32, false>::rel32(view, value);
1902 }
1903 break;
1904
1905 case elfcpp::R_386_TLS_LE_32:
1906 // If we're creating a shared library, a dynamic relocation will
1907 // have been created for this location, so do not apply it now.
1908 if (!parameters->options().shared())
1909 {
1910 gold_assert(tls_segment != NULL);
1911 value = tls_segment->memsz() - value;
1912 Relocate_functions<32, false>::rel32(view, value);
1913 }
1914 break;
1915 }
1916 }
1917
1918 // Do a relocation in which we convert a TLS General-Dynamic to a
1919 // Local-Exec.
1920
1921 inline void
1922 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1923 size_t relnum,
1924 Output_segment* tls_segment,
1925 const elfcpp::Rel<32, false>& rel,
1926 unsigned int,
1927 elfcpp::Elf_types<32>::Elf_Addr value,
1928 unsigned char* view,
1929 section_size_type view_size)
1930 {
1931 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1932 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1933 // leal foo(%reg),%eax; call ___tls_get_addr
1934 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1935
1936 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1937 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1938
1939 unsigned char op1 = view[-1];
1940 unsigned char op2 = view[-2];
1941
1942 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1943 op2 == 0x8d || op2 == 0x04);
1944 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1945
1946 int roff = 5;
1947
1948 if (op2 == 0x04)
1949 {
1950 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1951 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1952 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1953 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1954 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1955 }
1956 else
1957 {
1958 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1959 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1960 if (rel.get_r_offset() + 9 < view_size
1961 && view[9] == 0x90)
1962 {
1963 // There is a trailing nop. Use the size byte subl.
1964 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1965 roff = 6;
1966 }
1967 else
1968 {
1969 // Use the five byte subl.
1970 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1971 }
1972 }
1973
1974 value = tls_segment->memsz() - value;
1975 Relocate_functions<32, false>::rel32(view + roff, value);
1976
1977 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1978 // We can skip it.
1979 this->skip_call_tls_get_addr_ = true;
1980 }
1981
1982 // Do a relocation in which we convert a TLS General-Dynamic to an
1983 // Initial-Exec.
1984
1985 inline void
1986 Target_i386::Relocate::tls_gd_to_ie(const Relocate_info<32, false>* relinfo,
1987 size_t relnum,
1988 Output_segment* tls_segment,
1989 const elfcpp::Rel<32, false>& rel,
1990 unsigned int,
1991 elfcpp::Elf_types<32>::Elf_Addr value,
1992 unsigned char* view,
1993 section_size_type view_size)
1994 {
1995 // leal foo(,%ebx,1),%eax; call ___tls_get_addr
1996 // ==> movl %gs:0,%eax; addl foo@gotntpoff(%ebx),%eax
1997
1998 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1999 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2000
2001 unsigned char op1 = view[-1];
2002 unsigned char op2 = view[-2];
2003
2004 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2005 op2 == 0x8d || op2 == 0x04);
2006 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2007
2008 int roff = 5;
2009
2010 // FIXME: For now, support only one form.
2011 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2012 op1 == 0x8d && op2 == 0x04);
2013
2014 if (op2 == 0x04)
2015 {
2016 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
2017 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
2018 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2019 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
2020 memcpy(view - 3, "\x65\xa1\0\0\0\0\x03\x83\0\0\0", 12);
2021 }
2022 else
2023 {
2024 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2025 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
2026 if (rel.get_r_offset() + 9 < view_size
2027 && view[9] == 0x90)
2028 {
2029 // FIXME: This is not the right instruction sequence.
2030 // There is a trailing nop. Use the size byte subl.
2031 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
2032 roff = 6;
2033 }
2034 else
2035 {
2036 // FIXME: This is not the right instruction sequence.
2037 // Use the five byte subl.
2038 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
2039 }
2040 }
2041
2042 value = tls_segment->memsz() - value;
2043 Relocate_functions<32, false>::rel32(view + roff, value);
2044
2045 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2046 // We can skip it.
2047 this->skip_call_tls_get_addr_ = true;
2048 }
2049
2050 // Do a relocation in which we convert a TLS Local-Dynamic to a
2051 // Local-Exec.
2052
2053 inline void
2054 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
2055 size_t relnum,
2056 Output_segment*,
2057 const elfcpp::Rel<32, false>& rel,
2058 unsigned int,
2059 elfcpp::Elf_types<32>::Elf_Addr,
2060 unsigned char* view,
2061 section_size_type view_size)
2062 {
2063 // leal foo(%reg), %eax; call ___tls_get_addr
2064 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
2065
2066 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2067 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
2068
2069 // FIXME: Does this test really always pass?
2070 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2071 view[-2] == 0x8d && view[-1] == 0x83);
2072
2073 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
2074
2075 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
2076
2077 // The next reloc should be a PLT32 reloc against __tls_get_addr.
2078 // We can skip it.
2079 this->skip_call_tls_get_addr_ = true;
2080 }
2081
2082 // Do a relocation in which we convert a TLS Initial-Exec to a
2083 // Local-Exec.
2084
2085 inline void
2086 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
2087 size_t relnum,
2088 Output_segment* tls_segment,
2089 const elfcpp::Rel<32, false>& rel,
2090 unsigned int r_type,
2091 elfcpp::Elf_types<32>::Elf_Addr value,
2092 unsigned char* view,
2093 section_size_type view_size)
2094 {
2095 // We have to actually change the instructions, which means that we
2096 // need to examine the opcodes to figure out which instruction we
2097 // are looking at.
2098 if (r_type == elfcpp::R_386_TLS_IE)
2099 {
2100 // movl %gs:XX,%eax ==> movl $YY,%eax
2101 // movl %gs:XX,%reg ==> movl $YY,%reg
2102 // addl %gs:XX,%reg ==> addl $YY,%reg
2103 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
2104 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2105
2106 unsigned char op1 = view[-1];
2107 if (op1 == 0xa1)
2108 {
2109 // movl XX,%eax ==> movl $YY,%eax
2110 view[-1] = 0xb8;
2111 }
2112 else
2113 {
2114 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2115
2116 unsigned char op2 = view[-2];
2117 if (op2 == 0x8b)
2118 {
2119 // movl XX,%reg ==> movl $YY,%reg
2120 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2121 (op1 & 0xc7) == 0x05);
2122 view[-2] = 0xc7;
2123 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2124 }
2125 else if (op2 == 0x03)
2126 {
2127 // addl XX,%reg ==> addl $YY,%reg
2128 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2129 (op1 & 0xc7) == 0x05);
2130 view[-2] = 0x81;
2131 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2132 }
2133 else
2134 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2135 }
2136 }
2137 else
2138 {
2139 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2140 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2141 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2142 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
2143 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
2144
2145 unsigned char op1 = view[-1];
2146 unsigned char op2 = view[-2];
2147 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
2148 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
2149 if (op2 == 0x8b)
2150 {
2151 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
2152 view[-2] = 0xc7;
2153 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2154 }
2155 else if (op2 == 0x2b)
2156 {
2157 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
2158 view[-2] = 0x81;
2159 view[-1] = 0xe8 | ((op1 >> 3) & 7);
2160 }
2161 else if (op2 == 0x03)
2162 {
2163 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
2164 view[-2] = 0x81;
2165 view[-1] = 0xc0 | ((op1 >> 3) & 7);
2166 }
2167 else
2168 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
2169 }
2170
2171 value = tls_segment->memsz() - value;
2172 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
2173 value = - value;
2174
2175 Relocate_functions<32, false>::rel32(view, value);
2176 }
2177
2178 // Relocate section data.
2179
2180 void
2181 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
2182 unsigned int sh_type,
2183 const unsigned char* prelocs,
2184 size_t reloc_count,
2185 Output_section* output_section,
2186 bool needs_special_offset_handling,
2187 unsigned char* view,
2188 elfcpp::Elf_types<32>::Elf_Addr address,
2189 section_size_type view_size)
2190 {
2191 gold_assert(sh_type == elfcpp::SHT_REL);
2192
2193 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
2194 Target_i386::Relocate>(
2195 relinfo,
2196 this,
2197 prelocs,
2198 reloc_count,
2199 output_section,
2200 needs_special_offset_handling,
2201 view,
2202 address,
2203 view_size);
2204 }
2205
2206 // Return the size of a relocation while scanning during a relocatable
2207 // link.
2208
2209 unsigned int
2210 Target_i386::Relocatable_size_for_reloc::get_size_for_reloc(
2211 unsigned int r_type,
2212 Relobj* object)
2213 {
2214 switch (r_type)
2215 {
2216 case elfcpp::R_386_NONE:
2217 case elfcpp::R_386_GNU_VTINHERIT:
2218 case elfcpp::R_386_GNU_VTENTRY:
2219 case elfcpp::R_386_TLS_GD: // Global-dynamic
2220 case elfcpp::R_386_TLS_GOTDESC: // Global-dynamic (from ~oliva url)
2221 case elfcpp::R_386_TLS_DESC_CALL:
2222 case elfcpp::R_386_TLS_LDM: // Local-dynamic
2223 case elfcpp::R_386_TLS_LDO_32: // Alternate local-dynamic
2224 case elfcpp::R_386_TLS_IE: // Initial-exec
2225 case elfcpp::R_386_TLS_IE_32:
2226 case elfcpp::R_386_TLS_GOTIE:
2227 case elfcpp::R_386_TLS_LE: // Local-exec
2228 case elfcpp::R_386_TLS_LE_32:
2229 return 0;
2230
2231 case elfcpp::R_386_32:
2232 case elfcpp::R_386_PC32:
2233 case elfcpp::R_386_GOT32:
2234 case elfcpp::R_386_PLT32:
2235 case elfcpp::R_386_GOTOFF:
2236 case elfcpp::R_386_GOTPC:
2237 return 4;
2238
2239 case elfcpp::R_386_16:
2240 case elfcpp::R_386_PC16:
2241 return 2;
2242
2243 case elfcpp::R_386_8:
2244 case elfcpp::R_386_PC8:
2245 return 1;
2246
2247 // These are relocations which should only be seen by the
2248 // dynamic linker, and should never be seen here.
2249 case elfcpp::R_386_COPY:
2250 case elfcpp::R_386_GLOB_DAT:
2251 case elfcpp::R_386_JUMP_SLOT:
2252 case elfcpp::R_386_RELATIVE:
2253 case elfcpp::R_386_TLS_TPOFF:
2254 case elfcpp::R_386_TLS_DTPMOD32:
2255 case elfcpp::R_386_TLS_DTPOFF32:
2256 case elfcpp::R_386_TLS_TPOFF32:
2257 case elfcpp::R_386_TLS_DESC:
2258 object->error(_("unexpected reloc %u in object file"), r_type);
2259 return 0;
2260
2261 case elfcpp::R_386_32PLT:
2262 case elfcpp::R_386_TLS_GD_32:
2263 case elfcpp::R_386_TLS_GD_PUSH:
2264 case elfcpp::R_386_TLS_GD_CALL:
2265 case elfcpp::R_386_TLS_GD_POP:
2266 case elfcpp::R_386_TLS_LDM_32:
2267 case elfcpp::R_386_TLS_LDM_PUSH:
2268 case elfcpp::R_386_TLS_LDM_CALL:
2269 case elfcpp::R_386_TLS_LDM_POP:
2270 case elfcpp::R_386_USED_BY_INTEL_200:
2271 default:
2272 object->error(_("unsupported reloc %u in object file"), r_type);
2273 return 0;
2274 }
2275 }
2276
2277 // Scan the relocs during a relocatable link.
2278
2279 void
2280 Target_i386::scan_relocatable_relocs(const General_options& options,
2281 Symbol_table* symtab,
2282 Layout* layout,
2283 Sized_relobj<32, false>* object,
2284 unsigned int data_shndx,
2285 unsigned int sh_type,
2286 const unsigned char* prelocs,
2287 size_t reloc_count,
2288 Output_section* output_section,
2289 bool needs_special_offset_handling,
2290 size_t local_symbol_count,
2291 const unsigned char* plocal_symbols,
2292 Relocatable_relocs* rr)
2293 {
2294 gold_assert(sh_type == elfcpp::SHT_REL);
2295
2296 typedef gold::Default_scan_relocatable_relocs<elfcpp::SHT_REL,
2297 Relocatable_size_for_reloc> Scan_relocatable_relocs;
2298
2299 gold::scan_relocatable_relocs<32, false, elfcpp::SHT_REL,
2300 Scan_relocatable_relocs>(
2301 options,
2302 symtab,
2303 layout,
2304 object,
2305 data_shndx,
2306 prelocs,
2307 reloc_count,
2308 output_section,
2309 needs_special_offset_handling,
2310 local_symbol_count,
2311 plocal_symbols,
2312 rr);
2313 }
2314
2315 // Relocate a section during a relocatable link.
2316
2317 void
2318 Target_i386::relocate_for_relocatable(
2319 const Relocate_info<32, false>* relinfo,
2320 unsigned int sh_type,
2321 const unsigned char* prelocs,
2322 size_t reloc_count,
2323 Output_section* output_section,
2324 off_t offset_in_output_section,
2325 const Relocatable_relocs* rr,
2326 unsigned char* view,
2327 elfcpp::Elf_types<32>::Elf_Addr view_address,
2328 section_size_type view_size,
2329 unsigned char* reloc_view,
2330 section_size_type reloc_view_size)
2331 {
2332 gold_assert(sh_type == elfcpp::SHT_REL);
2333
2334 gold::relocate_for_relocatable<32, false, elfcpp::SHT_REL>(
2335 relinfo,
2336 prelocs,
2337 reloc_count,
2338 output_section,
2339 offset_in_output_section,
2340 rr,
2341 view,
2342 view_address,
2343 view_size,
2344 reloc_view,
2345 reloc_view_size);
2346 }
2347
2348 // Return the value to use for a dynamic which requires special
2349 // treatment. This is how we support equality comparisons of function
2350 // pointers across shared library boundaries, as described in the
2351 // processor specific ABI supplement.
2352
2353 uint64_t
2354 Target_i386::do_dynsym_value(const Symbol* gsym) const
2355 {
2356 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
2357 return this->plt_section()->address() + gsym->plt_offset();
2358 }
2359
2360 // Return a string used to fill a code section with nops to take up
2361 // the specified length.
2362
2363 std::string
2364 Target_i386::do_code_fill(section_size_type length) const
2365 {
2366 if (length >= 16)
2367 {
2368 // Build a jmp instruction to skip over the bytes.
2369 unsigned char jmp[5];
2370 jmp[0] = 0xe9;
2371 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
2372 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
2373 + std::string(length - 5, '\0'));
2374 }
2375
2376 // Nop sequences of various lengths.
2377 const char nop1[1] = { 0x90 }; // nop
2378 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
2379 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
2380 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
2381 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
2382 0x00 }; // leal 0(%esi,1),%esi
2383 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2384 0x00, 0x00 };
2385 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2386 0x00, 0x00, 0x00 };
2387 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
2388 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
2389 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
2390 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
2391 0x00 };
2392 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
2393 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
2394 0x00, 0x00 };
2395 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
2396 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
2397 0x00, 0x00, 0x00 };
2398 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2399 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
2400 0x00, 0x00, 0x00, 0x00 };
2401 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
2402 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
2403 0x27, 0x00, 0x00, 0x00,
2404 0x00 };
2405 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
2406 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
2407 0xbc, 0x27, 0x00, 0x00,
2408 0x00, 0x00 };
2409 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
2410 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
2411 0x90, 0x90, 0x90, 0x90,
2412 0x90, 0x90, 0x90 };
2413
2414 const char* nops[16] = {
2415 NULL,
2416 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
2417 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
2418 };
2419
2420 return std::string(nops[length], length);
2421 }
2422
2423 // The selector for i386 object files.
2424
2425 class Target_selector_i386 : public Target_selector
2426 {
2427 public:
2428 Target_selector_i386()
2429 : Target_selector(elfcpp::EM_386, 32, false)
2430 { }
2431
2432 Target*
2433 recognize(int machine, int osabi, int abiversion);
2434
2435 Target*
2436 recognize_by_name(const char* name);
2437
2438 private:
2439 Target_i386* target_;
2440 };
2441
2442 // Recognize an i386 object file when we already know that the machine
2443 // number is EM_386.
2444
2445 Target*
2446 Target_selector_i386::recognize(int, int, int)
2447 {
2448 if (this->target_ == NULL)
2449 this->target_ = new Target_i386();
2450 return this->target_;
2451 }
2452
2453 Target*
2454 Target_selector_i386::recognize_by_name(const char* name)
2455 {
2456 if (strcmp(name, "elf32-i386") != 0)
2457 return NULL;
2458 if (this->target_ == NULL)
2459 this->target_ = new Target_i386();
2460 return this->target_;
2461 }
2462
2463 Target_selector_i386 target_selector_i386;
2464
2465 } // End anonymous namespace.
This page took 0.109931 seconds and 4 git commands to generate.