From Craig Silverstein: implement -Ttext.
[deliverable/binutils-gdb.git] / gold / i386.cc
1 // i386.cc -- i386 target support for gold.
2
3 // Copyright 2006, 2007 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstring>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "reloc.h"
30 #include "i386.h"
31 #include "object.h"
32 #include "symtab.h"
33 #include "layout.h"
34 #include "output.h"
35 #include "target.h"
36 #include "target-reloc.h"
37 #include "target-select.h"
38 #include "tls.h"
39
40 namespace
41 {
42
43 using namespace gold;
44
45 class Output_data_plt_i386;
46
47 // The i386 target class.
48 // TLS info comes from
49 // http://people.redhat.com/drepper/tls.pdf
50 // http://www.lsd.ic.unicamp.br/~oliva/writeups/TLS/RFC-TLSDESC-x86.txt
51
52 class Target_i386 : public Sized_target<32, false>
53 {
54 public:
55 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
56
57 Target_i386()
58 : Sized_target<32, false>(&i386_info),
59 got_(NULL), plt_(NULL), got_plt_(NULL), rel_dyn_(NULL),
60 copy_relocs_(NULL), dynbss_(NULL)
61 { }
62
63 // Scan the relocations to look for symbol adjustments.
64 void
65 scan_relocs(const General_options& options,
66 Symbol_table* symtab,
67 Layout* layout,
68 Sized_relobj<32, false>* object,
69 unsigned int data_shndx,
70 unsigned int sh_type,
71 const unsigned char* prelocs,
72 size_t reloc_count,
73 size_t local_symbol_count,
74 const unsigned char* plocal_symbols,
75 Symbol** global_symbols);
76
77 // Finalize the sections.
78 void
79 do_finalize_sections(Layout*);
80
81 // Return the value to use for a dynamic which requires special
82 // treatment.
83 uint64_t
84 do_dynsym_value(const Symbol*) const;
85
86 // Relocate a section.
87 void
88 relocate_section(const Relocate_info<32, false>*,
89 unsigned int sh_type,
90 const unsigned char* prelocs,
91 size_t reloc_count,
92 unsigned char* view,
93 elfcpp::Elf_types<32>::Elf_Addr view_address,
94 off_t view_size);
95
96 // Return a string used to fill a code section with nops.
97 std::string
98 do_code_fill(off_t length);
99
100 private:
101 // The class which scans relocations.
102 struct Scan
103 {
104 inline void
105 local(const General_options& options, Symbol_table* symtab,
106 Layout* layout, Target_i386* target,
107 Sized_relobj<32, false>* object,
108 unsigned int data_shndx,
109 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
110 const elfcpp::Sym<32, false>& lsym);
111
112 inline void
113 global(const General_options& options, Symbol_table* symtab,
114 Layout* layout, Target_i386* target,
115 Sized_relobj<32, false>* object,
116 unsigned int data_shndx,
117 const elfcpp::Rel<32, false>& reloc, unsigned int r_type,
118 Symbol* gsym);
119
120 static void
121 unsupported_reloc_local(Sized_relobj<32, false>*, unsigned int r_type);
122
123 static void
124 unsupported_reloc_global(Sized_relobj<32, false>*, unsigned int r_type,
125 Symbol*);
126 };
127
128 // The class which implements relocation.
129 class Relocate
130 {
131 public:
132 Relocate()
133 : skip_call_tls_get_addr_(false),
134 local_dynamic_type_(LOCAL_DYNAMIC_NONE)
135 { }
136
137 ~Relocate()
138 {
139 if (this->skip_call_tls_get_addr_)
140 {
141 // FIXME: This needs to specify the location somehow.
142 gold_error(_("missing expected TLS relocation"));
143 }
144 }
145
146 // Do a relocation. Return false if the caller should not issue
147 // any warnings about this relocation.
148 inline bool
149 relocate(const Relocate_info<32, false>*, Target_i386*, size_t relnum,
150 const elfcpp::Rel<32, false>&,
151 unsigned int r_type, const Sized_symbol<32>*,
152 const Symbol_value<32>*,
153 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr,
154 off_t);
155
156 private:
157 // Do a TLS relocation.
158 inline void
159 relocate_tls(const Relocate_info<32, false>*, size_t relnum,
160 const elfcpp::Rel<32, false>&,
161 unsigned int r_type, const Sized_symbol<32>*,
162 const Symbol_value<32>*,
163 unsigned char*, elfcpp::Elf_types<32>::Elf_Addr, off_t);
164
165 // Do a TLS Initial-Exec to Local-Exec transition.
166 static inline void
167 tls_ie_to_le(const Relocate_info<32, false>*, size_t relnum,
168 Output_segment* tls_segment,
169 const elfcpp::Rel<32, false>&, unsigned int r_type,
170 elfcpp::Elf_types<32>::Elf_Addr value,
171 unsigned char* view,
172 off_t view_size);
173
174 // Do a TLS General-Dynamic to Local-Exec transition.
175 inline void
176 tls_gd_to_le(const Relocate_info<32, false>*, size_t relnum,
177 Output_segment* tls_segment,
178 const elfcpp::Rel<32, false>&, unsigned int r_type,
179 elfcpp::Elf_types<32>::Elf_Addr value,
180 unsigned char* view,
181 off_t view_size);
182
183 // Do a TLS Local-Dynamic to Local-Exec transition.
184 inline void
185 tls_ld_to_le(const Relocate_info<32, false>*, size_t relnum,
186 Output_segment* tls_segment,
187 const elfcpp::Rel<32, false>&, unsigned int r_type,
188 elfcpp::Elf_types<32>::Elf_Addr value,
189 unsigned char* view,
190 off_t view_size);
191
192 // We need to keep track of which type of local dynamic relocation
193 // we have seen, so that we can optimize R_386_TLS_LDO_32 correctly.
194 enum Local_dynamic_type
195 {
196 LOCAL_DYNAMIC_NONE,
197 LOCAL_DYNAMIC_SUN,
198 LOCAL_DYNAMIC_GNU
199 };
200
201 // This is set if we should skip the next reloc, which should be a
202 // PLT32 reloc against ___tls_get_addr.
203 bool skip_call_tls_get_addr_;
204 // The type of local dynamic relocation we have seen in the section
205 // being relocated, if any.
206 Local_dynamic_type local_dynamic_type_;
207 };
208
209 // Adjust TLS relocation type based on the options and whether this
210 // is a local symbol.
211 static tls::Tls_optimization
212 optimize_tls_reloc(bool is_final, int r_type);
213
214 // Get the GOT section, creating it if necessary.
215 Output_data_got<32, false>*
216 got_section(Symbol_table*, Layout*);
217
218 // Create a PLT entry for a global symbol.
219 void
220 make_plt_entry(Symbol_table*, Layout*, Symbol*);
221
222 // Get the PLT section.
223 const Output_data_plt_i386*
224 plt_section() const
225 {
226 gold_assert(this->plt_ != NULL);
227 return this->plt_;
228 }
229
230 // Get the dynamic reloc section, creating it if necessary.
231 Reloc_section*
232 rel_dyn_section(Layout*);
233
234 // Copy a relocation against a global symbol.
235 void
236 copy_reloc(const General_options*, Symbol_table*, Layout*,
237 Sized_relobj<32, false>*, unsigned int,
238 Symbol*, const elfcpp::Rel<32, false>&);
239
240 // Information about this specific target which we pass to the
241 // general Target structure.
242 static const Target::Target_info i386_info;
243
244 // The GOT section.
245 Output_data_got<32, false>* got_;
246 // The PLT section.
247 Output_data_plt_i386* plt_;
248 // The GOT PLT section.
249 Output_data_space* got_plt_;
250 // The dynamic reloc section.
251 Reloc_section* rel_dyn_;
252 // Relocs saved to avoid a COPY reloc.
253 Copy_relocs<32, false>* copy_relocs_;
254 // Space for variables copied with a COPY reloc.
255 Output_data_space* dynbss_;
256 };
257
258 const Target::Target_info Target_i386::i386_info =
259 {
260 32, // size
261 false, // is_big_endian
262 elfcpp::EM_386, // machine_code
263 false, // has_make_symbol
264 false, // has_resolve
265 true, // has_code_fill
266 "/usr/lib/libc.so.1", // dynamic_linker
267 0x08048000, // default_text_segment_address
268 0x1000, // abi_pagesize
269 0x1000 // common_pagesize
270 };
271
272 // Get the GOT section, creating it if necessary.
273
274 Output_data_got<32, false>*
275 Target_i386::got_section(Symbol_table* symtab, Layout* layout)
276 {
277 if (this->got_ == NULL)
278 {
279 gold_assert(symtab != NULL && layout != NULL);
280
281 this->got_ = new Output_data_got<32, false>();
282
283 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
284 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
285 this->got_);
286
287 // The old GNU linker creates a .got.plt section. We just
288 // create another set of data in the .got section. Note that we
289 // always create a PLT if we create a GOT, although the PLT
290 // might be empty.
291 this->got_plt_ = new Output_data_space(4);
292 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
293 elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE,
294 this->got_plt_);
295
296 // The first three entries are reserved.
297 this->got_plt_->set_space_size(3 * 4);
298
299 // Define _GLOBAL_OFFSET_TABLE_ at the start of the PLT.
300 symtab->define_in_output_data(this, "_GLOBAL_OFFSET_TABLE_", NULL,
301 this->got_plt_,
302 0, 0, elfcpp::STT_OBJECT,
303 elfcpp::STB_LOCAL,
304 elfcpp::STV_HIDDEN, 0,
305 false, false);
306 }
307
308 return this->got_;
309 }
310
311 // Get the dynamic reloc section, creating it if necessary.
312
313 Target_i386::Reloc_section*
314 Target_i386::rel_dyn_section(Layout* layout)
315 {
316 if (this->rel_dyn_ == NULL)
317 {
318 gold_assert(layout != NULL);
319 this->rel_dyn_ = new Reloc_section();
320 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
321 elfcpp::SHF_ALLOC, this->rel_dyn_);
322 }
323 return this->rel_dyn_;
324 }
325
326 // A class to handle the PLT data.
327
328 class Output_data_plt_i386 : public Output_section_data
329 {
330 public:
331 typedef Output_data_reloc<elfcpp::SHT_REL, true, 32, false> Reloc_section;
332
333 Output_data_plt_i386(Layout*, Output_data_space*);
334
335 // Add an entry to the PLT.
336 void
337 add_entry(Symbol* gsym);
338
339 // Return the .rel.plt section data.
340 const Reloc_section*
341 rel_plt() const
342 { return this->rel_; }
343
344 protected:
345 void
346 do_adjust_output_section(Output_section* os);
347
348 private:
349 // The size of an entry in the PLT.
350 static const int plt_entry_size = 16;
351
352 // The first entry in the PLT for an executable.
353 static unsigned char exec_first_plt_entry[plt_entry_size];
354
355 // The first entry in the PLT for a shared object.
356 static unsigned char dyn_first_plt_entry[plt_entry_size];
357
358 // Other entries in the PLT for an executable.
359 static unsigned char exec_plt_entry[plt_entry_size];
360
361 // Other entries in the PLT for a shared object.
362 static unsigned char dyn_plt_entry[plt_entry_size];
363
364 // Set the final size.
365 void
366 do_set_address(uint64_t, off_t)
367 { this->set_data_size((this->count_ + 1) * plt_entry_size); }
368
369 // Write out the PLT data.
370 void
371 do_write(Output_file*);
372
373 // The reloc section.
374 Reloc_section* rel_;
375 // The .got.plt section.
376 Output_data_space* got_plt_;
377 // The number of PLT entries.
378 unsigned int count_;
379 };
380
381 // Create the PLT section. The ordinary .got section is an argument,
382 // since we need to refer to the start. We also create our own .got
383 // section just for PLT entries.
384
385 Output_data_plt_i386::Output_data_plt_i386(Layout* layout,
386 Output_data_space* got_plt)
387 : Output_section_data(4), got_plt_(got_plt), count_(0)
388 {
389 this->rel_ = new Reloc_section();
390 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
391 elfcpp::SHF_ALLOC, this->rel_);
392 }
393
394 void
395 Output_data_plt_i386::do_adjust_output_section(Output_section* os)
396 {
397 // UnixWare sets the entsize of .plt to 4, and so does the old GNU
398 // linker, and so do we.
399 os->set_entsize(4);
400 }
401
402 // Add an entry to the PLT.
403
404 void
405 Output_data_plt_i386::add_entry(Symbol* gsym)
406 {
407 gold_assert(!gsym->has_plt_offset());
408
409 // Note that when setting the PLT offset we skip the initial
410 // reserved PLT entry.
411 gsym->set_plt_offset((this->count_ + 1) * plt_entry_size);
412
413 ++this->count_;
414
415 off_t got_offset = this->got_plt_->data_size();
416
417 // Every PLT entry needs a GOT entry which points back to the PLT
418 // entry (this will be changed by the dynamic linker, normally
419 // lazily when the function is called).
420 this->got_plt_->set_space_size(got_offset + 4);
421
422 // Every PLT entry needs a reloc.
423 gsym->set_needs_dynsym_entry();
424 this->rel_->add_global(gsym, elfcpp::R_386_JUMP_SLOT, this->got_plt_,
425 got_offset);
426
427 // Note that we don't need to save the symbol. The contents of the
428 // PLT are independent of which symbols are used. The symbols only
429 // appear in the relocations.
430 }
431
432 // The first entry in the PLT for an executable.
433
434 unsigned char Output_data_plt_i386::exec_first_plt_entry[plt_entry_size] =
435 {
436 0xff, 0x35, // pushl contents of memory address
437 0, 0, 0, 0, // replaced with address of .got + 4
438 0xff, 0x25, // jmp indirect
439 0, 0, 0, 0, // replaced with address of .got + 8
440 0, 0, 0, 0 // unused
441 };
442
443 // The first entry in the PLT for a shared object.
444
445 unsigned char Output_data_plt_i386::dyn_first_plt_entry[plt_entry_size] =
446 {
447 0xff, 0xb3, 4, 0, 0, 0, // pushl 4(%ebx)
448 0xff, 0xa3, 8, 0, 0, 0, // jmp *8(%ebx)
449 0, 0, 0, 0 // unused
450 };
451
452 // Subsequent entries in the PLT for an executable.
453
454 unsigned char Output_data_plt_i386::exec_plt_entry[plt_entry_size] =
455 {
456 0xff, 0x25, // jmp indirect
457 0, 0, 0, 0, // replaced with address of symbol in .got
458 0x68, // pushl immediate
459 0, 0, 0, 0, // replaced with offset into relocation table
460 0xe9, // jmp relative
461 0, 0, 0, 0 // replaced with offset to start of .plt
462 };
463
464 // Subsequent entries in the PLT for a shared object.
465
466 unsigned char Output_data_plt_i386::dyn_plt_entry[plt_entry_size] =
467 {
468 0xff, 0xa3, // jmp *offset(%ebx)
469 0, 0, 0, 0, // replaced with offset of symbol in .got
470 0x68, // pushl immediate
471 0, 0, 0, 0, // replaced with offset into relocation table
472 0xe9, // jmp relative
473 0, 0, 0, 0 // replaced with offset to start of .plt
474 };
475
476 // Write out the PLT. This uses the hand-coded instructions above,
477 // and adjusts them as needed. This is all specified by the i386 ELF
478 // Processor Supplement.
479
480 void
481 Output_data_plt_i386::do_write(Output_file* of)
482 {
483 const off_t offset = this->offset();
484 const off_t oview_size = this->data_size();
485 unsigned char* const oview = of->get_output_view(offset, oview_size);
486
487 const off_t got_file_offset = this->got_plt_->offset();
488 const off_t got_size = this->got_plt_->data_size();
489 unsigned char* const got_view = of->get_output_view(got_file_offset,
490 got_size);
491
492 unsigned char* pov = oview;
493
494 elfcpp::Elf_types<32>::Elf_Addr plt_address = this->address();
495 elfcpp::Elf_types<32>::Elf_Addr got_address = this->got_plt_->address();
496
497 if (parameters->output_is_shared())
498 memcpy(pov, dyn_first_plt_entry, plt_entry_size);
499 else
500 {
501 memcpy(pov, exec_first_plt_entry, plt_entry_size);
502 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_address + 4);
503 elfcpp::Swap<32, false>::writeval(pov + 8, got_address + 8);
504 }
505 pov += plt_entry_size;
506
507 unsigned char* got_pov = got_view;
508
509 memset(got_pov, 0, 12);
510 got_pov += 12;
511
512 const int rel_size = elfcpp::Elf_sizes<32>::rel_size;
513
514 unsigned int plt_offset = plt_entry_size;
515 unsigned int plt_rel_offset = 0;
516 unsigned int got_offset = 12;
517 const unsigned int count = this->count_;
518 for (unsigned int i = 0;
519 i < count;
520 ++i,
521 pov += plt_entry_size,
522 got_pov += 4,
523 plt_offset += plt_entry_size,
524 plt_rel_offset += rel_size,
525 got_offset += 4)
526 {
527 // Set and adjust the PLT entry itself.
528
529 if (parameters->output_is_shared())
530 {
531 memcpy(pov, dyn_plt_entry, plt_entry_size);
532 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2, got_offset);
533 }
534 else
535 {
536 memcpy(pov, exec_plt_entry, plt_entry_size);
537 elfcpp::Swap_unaligned<32, false>::writeval(pov + 2,
538 (got_address
539 + got_offset));
540 }
541
542 elfcpp::Swap_unaligned<32, false>::writeval(pov + 7, plt_rel_offset);
543 elfcpp::Swap<32, false>::writeval(pov + 12,
544 - (plt_offset + plt_entry_size));
545
546 // Set the entry in the GOT.
547 elfcpp::Swap<32, false>::writeval(got_pov, plt_address + plt_offset + 6);
548 }
549
550 gold_assert(pov - oview == oview_size);
551 gold_assert(got_pov - got_view == got_size);
552
553 of->write_output_view(offset, oview_size, oview);
554 of->write_output_view(got_file_offset, got_size, got_view);
555 }
556
557 // Create a PLT entry for a global symbol.
558
559 void
560 Target_i386::make_plt_entry(Symbol_table* symtab, Layout* layout, Symbol* gsym)
561 {
562 if (gsym->has_plt_offset())
563 return;
564
565 if (this->plt_ == NULL)
566 {
567 // Create the GOT sections first.
568 this->got_section(symtab, layout);
569
570 this->plt_ = new Output_data_plt_i386(layout, this->got_plt_);
571 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
572 (elfcpp::SHF_ALLOC
573 | elfcpp::SHF_EXECINSTR),
574 this->plt_);
575 }
576
577 this->plt_->add_entry(gsym);
578 }
579
580 // Handle a relocation against a non-function symbol defined in a
581 // dynamic object. The traditional way to handle this is to generate
582 // a COPY relocation to copy the variable at runtime from the shared
583 // object into the executable's data segment. However, this is
584 // undesirable in general, as if the size of the object changes in the
585 // dynamic object, the executable will no longer work correctly. If
586 // this relocation is in a writable section, then we can create a
587 // dynamic reloc and the dynamic linker will resolve it to the correct
588 // address at runtime. However, we do not want do that if the
589 // relocation is in a read-only section, as it would prevent the
590 // readonly segment from being shared. And if we have to eventually
591 // generate a COPY reloc, then any dynamic relocations will be
592 // useless. So this means that if this is a writable section, we need
593 // to save the relocation until we see whether we have to create a
594 // COPY relocation for this symbol for any other relocation.
595
596 void
597 Target_i386::copy_reloc(const General_options* options,
598 Symbol_table* symtab,
599 Layout* layout,
600 Sized_relobj<32, false>* object,
601 unsigned int data_shndx, Symbol* gsym,
602 const elfcpp::Rel<32, false>& rel)
603 {
604 Sized_symbol<32>* ssym;
605 ssym = symtab->get_sized_symbol SELECT_SIZE_NAME(32) (gsym
606 SELECT_SIZE(32));
607
608 if (!Copy_relocs<32, false>::need_copy_reloc(options, object,
609 data_shndx, ssym))
610 {
611 // So far we do not need a COPY reloc. Save this relocation.
612 // If it turns out that we never need a COPY reloc for this
613 // symbol, then we will emit the relocation.
614 if (this->copy_relocs_ == NULL)
615 this->copy_relocs_ = new Copy_relocs<32, false>();
616 this->copy_relocs_->save(ssym, object, data_shndx, rel);
617 }
618 else
619 {
620 // Allocate space for this symbol in the .bss section.
621
622 elfcpp::Elf_types<32>::Elf_WXword symsize = ssym->symsize();
623
624 // There is no defined way to determine the required alignment
625 // of the symbol. We pick the alignment based on the size. We
626 // set an arbitrary maximum of 256.
627 unsigned int align;
628 for (align = 1; align < 512; align <<= 1)
629 if ((symsize & align) != 0)
630 break;
631
632 if (this->dynbss_ == NULL)
633 {
634 this->dynbss_ = new Output_data_space(align);
635 layout->add_output_section_data(".bss",
636 elfcpp::SHT_NOBITS,
637 (elfcpp::SHF_ALLOC
638 | elfcpp::SHF_WRITE),
639 this->dynbss_);
640 }
641
642 Output_data_space* dynbss = this->dynbss_;
643
644 if (align > dynbss->addralign())
645 dynbss->set_space_alignment(align);
646
647 off_t dynbss_size = dynbss->data_size();
648 dynbss_size = align_address(dynbss_size, align);
649 off_t offset = dynbss_size;
650 dynbss->set_space_size(dynbss_size + symsize);
651
652 // Define the symbol in the .dynbss section.
653 symtab->define_in_output_data(this, ssym->name(), ssym->version(),
654 dynbss, offset, symsize, ssym->type(),
655 ssym->binding(), ssym->visibility(),
656 ssym->nonvis(), false, false);
657
658 // Add the COPY reloc.
659 ssym->set_needs_dynsym_entry();
660 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
661 rel_dyn->add_global(ssym, elfcpp::R_386_COPY, dynbss, offset);
662 }
663 }
664
665 // Optimize the TLS relocation type based on what we know about the
666 // symbol. IS_FINAL is true if the final address of this symbol is
667 // known at link time.
668
669 tls::Tls_optimization
670 Target_i386::optimize_tls_reloc(bool is_final, int r_type)
671 {
672 // If we are generating a shared library, then we can't do anything
673 // in the linker.
674 if (parameters->output_is_shared())
675 return tls::TLSOPT_NONE;
676
677 switch (r_type)
678 {
679 case elfcpp::R_386_TLS_GD:
680 case elfcpp::R_386_TLS_GOTDESC:
681 case elfcpp::R_386_TLS_DESC_CALL:
682 // These are General-Dynamic which permits fully general TLS
683 // access. Since we know that we are generating an executable,
684 // we can convert this to Initial-Exec. If we also know that
685 // this is a local symbol, we can further switch to Local-Exec.
686 if (is_final)
687 return tls::TLSOPT_TO_LE;
688 return tls::TLSOPT_TO_IE;
689
690 case elfcpp::R_386_TLS_LDM:
691 // This is Local-Dynamic, which refers to a local symbol in the
692 // dynamic TLS block. Since we know that we generating an
693 // executable, we can switch to Local-Exec.
694 return tls::TLSOPT_TO_LE;
695
696 case elfcpp::R_386_TLS_LDO_32:
697 // Another type of Local-Dynamic relocation.
698 return tls::TLSOPT_TO_LE;
699
700 case elfcpp::R_386_TLS_IE:
701 case elfcpp::R_386_TLS_GOTIE:
702 case elfcpp::R_386_TLS_IE_32:
703 // These are Initial-Exec relocs which get the thread offset
704 // from the GOT. If we know that we are linking against the
705 // local symbol, we can switch to Local-Exec, which links the
706 // thread offset into the instruction.
707 if (is_final)
708 return tls::TLSOPT_TO_LE;
709 return tls::TLSOPT_NONE;
710
711 case elfcpp::R_386_TLS_LE:
712 case elfcpp::R_386_TLS_LE_32:
713 // When we already have Local-Exec, there is nothing further we
714 // can do.
715 return tls::TLSOPT_NONE;
716
717 default:
718 gold_unreachable();
719 }
720 }
721
722 // Report an unsupported relocation against a local symbol.
723
724 void
725 Target_i386::Scan::unsupported_reloc_local(Sized_relobj<32, false>* object,
726 unsigned int r_type)
727 {
728 gold_error(_("%s: unsupported reloc %u against local symbol"),
729 object->name().c_str(), r_type);
730 }
731
732 // Scan a relocation for a local symbol.
733
734 inline void
735 Target_i386::Scan::local(const General_options&,
736 Symbol_table* symtab,
737 Layout* layout,
738 Target_i386* target,
739 Sized_relobj<32, false>* object,
740 unsigned int data_shndx,
741 const elfcpp::Rel<32, false>& reloc,
742 unsigned int r_type,
743 const elfcpp::Sym<32, false>&)
744 {
745 switch (r_type)
746 {
747 case elfcpp::R_386_NONE:
748 case elfcpp::R_386_GNU_VTINHERIT:
749 case elfcpp::R_386_GNU_VTENTRY:
750 break;
751
752 case elfcpp::R_386_32:
753 case elfcpp::R_386_16:
754 case elfcpp::R_386_8:
755 // FIXME: If we are generating a shared object we need to copy
756 // this relocation into the object.
757 gold_assert(!parameters->output_is_shared());
758 break;
759
760 case elfcpp::R_386_PC32:
761 case elfcpp::R_386_PC16:
762 case elfcpp::R_386_PC8:
763 break;
764
765 case elfcpp::R_386_GOTOFF:
766 case elfcpp::R_386_GOTPC:
767 // We need a GOT section.
768 target->got_section(symtab, layout);
769 break;
770
771 case elfcpp::R_386_GOT32:
772 {
773 // The symbol requires a GOT entry.
774 Output_data_got<32, false>* got = target->got_section(symtab, layout);
775 unsigned int r_sym = elfcpp::elf_r_sym<32>(reloc.get_r_info());
776 if (got->add_local(object, r_sym))
777 {
778 // If we are generating a shared object, we need to add a
779 // dynamic RELATIVE relocation for this symbol.
780 if (parameters->output_is_shared())
781 {
782 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
783 rel_dyn->add_local(object, 0, elfcpp::R_386_RELATIVE,
784 data_shndx, reloc.get_r_offset());
785 }
786 }
787 }
788 break;
789
790 // These are relocations which should only be seen by the
791 // dynamic linker, and should never be seen here.
792 case elfcpp::R_386_COPY:
793 case elfcpp::R_386_GLOB_DAT:
794 case elfcpp::R_386_JUMP_SLOT:
795 case elfcpp::R_386_RELATIVE:
796 case elfcpp::R_386_TLS_TPOFF:
797 case elfcpp::R_386_TLS_DTPMOD32:
798 case elfcpp::R_386_TLS_DTPOFF32:
799 case elfcpp::R_386_TLS_TPOFF32:
800 case elfcpp::R_386_TLS_DESC:
801 gold_error(_("%s: unexpected reloc %u in object file"),
802 object->name().c_str(), r_type);
803 break;
804
805 // These are initial TLS relocs, which are expected when
806 // linking.
807 case elfcpp::R_386_TLS_IE:
808 case elfcpp::R_386_TLS_GOTIE:
809 case elfcpp::R_386_TLS_LE:
810 case elfcpp::R_386_TLS_GD:
811 case elfcpp::R_386_TLS_LDM:
812 case elfcpp::R_386_TLS_LDO_32:
813 case elfcpp::R_386_TLS_IE_32:
814 case elfcpp::R_386_TLS_LE_32:
815 case elfcpp::R_386_TLS_GOTDESC:
816 case elfcpp::R_386_TLS_DESC_CALL:
817 {
818 bool output_is_shared = parameters->output_is_shared();
819 const tls::Tls_optimization optimized_type
820 = Target_i386::optimize_tls_reloc(!output_is_shared, r_type);
821 switch (r_type)
822 {
823 case elfcpp::R_386_TLS_LE:
824 case elfcpp::R_386_TLS_LE_32:
825 // FIXME: If generating a shared object, we need to copy
826 // this relocation into the object.
827 gold_assert(!output_is_shared);
828 break;
829
830 case elfcpp::R_386_TLS_IE:
831 case elfcpp::R_386_TLS_IE_32:
832 case elfcpp::R_386_TLS_GOTIE:
833 // FIXME: If not relaxing to LE, we need to generate a
834 // TPOFF or TPOFF32 reloc.
835 if (optimized_type != tls::TLSOPT_TO_LE)
836 unsupported_reloc_local(object, r_type);
837 break;
838
839 case elfcpp::R_386_TLS_LDM:
840 // FIXME: If not relaxing to LE, we need to generate a
841 // DTPMOD32 reloc.
842 if (optimized_type != tls::TLSOPT_TO_LE)
843 unsupported_reloc_local(object, r_type);
844 break;
845
846 case elfcpp::R_386_TLS_LDO_32:
847 break;
848
849 case elfcpp::R_386_TLS_GD:
850 case elfcpp::R_386_TLS_GOTDESC:
851 case elfcpp::R_386_TLS_DESC_CALL:
852 // FIXME: If not relaxing to LE, we need to generate
853 // DTPMOD32 and DTPOFF32 relocs.
854 if (optimized_type != tls::TLSOPT_TO_LE)
855 unsupported_reloc_local(object, r_type);
856 break;
857
858 default:
859 gold_unreachable();
860 }
861 }
862 break;
863
864 case elfcpp::R_386_PLT32:
865 case elfcpp::R_386_32PLT:
866 case elfcpp::R_386_TLS_GD_32:
867 case elfcpp::R_386_TLS_GD_PUSH:
868 case elfcpp::R_386_TLS_GD_CALL:
869 case elfcpp::R_386_TLS_GD_POP:
870 case elfcpp::R_386_TLS_LDM_32:
871 case elfcpp::R_386_TLS_LDM_PUSH:
872 case elfcpp::R_386_TLS_LDM_CALL:
873 case elfcpp::R_386_TLS_LDM_POP:
874 case elfcpp::R_386_USED_BY_INTEL_200:
875 default:
876 unsupported_reloc_local(object, r_type);
877 break;
878 }
879 }
880
881 // Report an unsupported relocation against a global symbol.
882
883 void
884 Target_i386::Scan::unsupported_reloc_global(Sized_relobj<32, false>* object,
885 unsigned int r_type,
886 Symbol* gsym)
887 {
888 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
889 object->name().c_str(), r_type, gsym->name());
890 }
891
892 // Scan a relocation for a global symbol.
893
894 inline void
895 Target_i386::Scan::global(const General_options& options,
896 Symbol_table* symtab,
897 Layout* layout,
898 Target_i386* target,
899 Sized_relobj<32, false>* object,
900 unsigned int data_shndx,
901 const elfcpp::Rel<32, false>& reloc,
902 unsigned int r_type,
903 Symbol* gsym)
904 {
905 switch (r_type)
906 {
907 case elfcpp::R_386_NONE:
908 case elfcpp::R_386_GNU_VTINHERIT:
909 case elfcpp::R_386_GNU_VTENTRY:
910 break;
911
912 case elfcpp::R_386_32:
913 case elfcpp::R_386_PC32:
914 case elfcpp::R_386_16:
915 case elfcpp::R_386_PC16:
916 case elfcpp::R_386_8:
917 case elfcpp::R_386_PC8:
918 // FIXME: If we are generating a shared object we may need to
919 // copy this relocation into the object. If this symbol is
920 // defined in a shared object, we may need to copy this
921 // relocation in order to avoid a COPY relocation.
922 gold_assert(!parameters->output_is_shared());
923
924 if (gsym->is_from_dynobj())
925 {
926 // This symbol is defined in a dynamic object. If it is a
927 // function, we make a PLT entry. Otherwise we need to
928 // either generate a COPY reloc or copy this reloc.
929 if (gsym->type() == elfcpp::STT_FUNC)
930 {
931 target->make_plt_entry(symtab, layout, gsym);
932
933 // If this is not a PC relative reference, then we may
934 // be taking the address of the function. In that case
935 // we need to set the entry in the dynamic symbol table
936 // to the address of the PLT entry.
937 if (r_type != elfcpp::R_386_PC32
938 && r_type != elfcpp::R_386_PC16
939 && r_type != elfcpp::R_386_PC8)
940 gsym->set_needs_dynsym_value();
941 }
942 else
943 target->copy_reloc(&options, symtab, layout, object, data_shndx,
944 gsym, reloc);
945 }
946
947 break;
948
949 case elfcpp::R_386_GOT32:
950 {
951 // The symbol requires a GOT entry.
952 Output_data_got<32, false>* got = target->got_section(symtab, layout);
953 if (got->add_global(gsym))
954 {
955 // If this symbol is not fully resolved, we need to add a
956 // dynamic relocation for it.
957 if (!gsym->final_value_is_known())
958 {
959 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
960 rel_dyn->add_global(gsym, elfcpp::R_386_GLOB_DAT, got,
961 gsym->got_offset());
962 }
963 }
964 }
965 break;
966
967 case elfcpp::R_386_PLT32:
968 // If the symbol is fully resolved, this is just a PC32 reloc.
969 // Otherwise we need a PLT entry.
970 if (gsym->final_value_is_known())
971 break;
972 target->make_plt_entry(symtab, layout, gsym);
973 break;
974
975 case elfcpp::R_386_GOTOFF:
976 case elfcpp::R_386_GOTPC:
977 // We need a GOT section.
978 target->got_section(symtab, layout);
979 break;
980
981 // These are relocations which should only be seen by the
982 // dynamic linker, and should never be seen here.
983 case elfcpp::R_386_COPY:
984 case elfcpp::R_386_GLOB_DAT:
985 case elfcpp::R_386_JUMP_SLOT:
986 case elfcpp::R_386_RELATIVE:
987 case elfcpp::R_386_TLS_TPOFF:
988 case elfcpp::R_386_TLS_DTPMOD32:
989 case elfcpp::R_386_TLS_DTPOFF32:
990 case elfcpp::R_386_TLS_TPOFF32:
991 case elfcpp::R_386_TLS_DESC:
992 gold_error(_("%s: unexpected reloc %u in object file"),
993 object->name().c_str(), r_type);
994 break;
995
996 // These are initial tls relocs, which are expected when
997 // linking.
998 case elfcpp::R_386_TLS_IE:
999 case elfcpp::R_386_TLS_GOTIE:
1000 case elfcpp::R_386_TLS_LE:
1001 case elfcpp::R_386_TLS_GD:
1002 case elfcpp::R_386_TLS_LDM:
1003 case elfcpp::R_386_TLS_LDO_32:
1004 case elfcpp::R_386_TLS_IE_32:
1005 case elfcpp::R_386_TLS_LE_32:
1006 case elfcpp::R_386_TLS_GOTDESC:
1007 case elfcpp::R_386_TLS_DESC_CALL:
1008 {
1009 const bool is_final = gsym->final_value_is_known();
1010 const tls::Tls_optimization optimized_type
1011 = Target_i386::optimize_tls_reloc(is_final, r_type);
1012 switch (r_type)
1013 {
1014 case elfcpp::R_386_TLS_LE:
1015 case elfcpp::R_386_TLS_LE_32:
1016 // FIXME: If generating a shared object, we need to copy
1017 // this relocation into the object.
1018 gold_assert(!parameters->output_is_shared());
1019 break;
1020
1021 case elfcpp::R_386_TLS_IE:
1022 case elfcpp::R_386_TLS_IE_32:
1023 case elfcpp::R_386_TLS_GOTIE:
1024 // FIXME: If not relaxing to LE, we need to generate a
1025 // TPOFF or TPOFF32 reloc.
1026 if (optimized_type != tls::TLSOPT_TO_LE)
1027 unsupported_reloc_global(object, r_type, gsym);
1028 break;
1029
1030 case elfcpp::R_386_TLS_LDM:
1031 // FIXME: If not relaxing to LE, we need to generate a
1032 // DTPMOD32 reloc.
1033 if (optimized_type != tls::TLSOPT_TO_LE)
1034 unsupported_reloc_global(object, r_type, gsym);
1035 break;
1036
1037 case elfcpp::R_386_TLS_LDO_32:
1038 break;
1039
1040 case elfcpp::R_386_TLS_GD:
1041 case elfcpp::R_386_TLS_GOTDESC:
1042 case elfcpp::R_386_TLS_DESC_CALL:
1043 // FIXME: If not relaxing to LE, we need to generate
1044 // DTPMOD32 and DTPOFF32 relocs.
1045 if (optimized_type != tls::TLSOPT_TO_LE)
1046 unsupported_reloc_global(object, r_type, gsym);
1047 break;
1048
1049 default:
1050 gold_unreachable();
1051 }
1052 }
1053 break;
1054
1055 case elfcpp::R_386_32PLT:
1056 case elfcpp::R_386_TLS_GD_32:
1057 case elfcpp::R_386_TLS_GD_PUSH:
1058 case elfcpp::R_386_TLS_GD_CALL:
1059 case elfcpp::R_386_TLS_GD_POP:
1060 case elfcpp::R_386_TLS_LDM_32:
1061 case elfcpp::R_386_TLS_LDM_PUSH:
1062 case elfcpp::R_386_TLS_LDM_CALL:
1063 case elfcpp::R_386_TLS_LDM_POP:
1064 case elfcpp::R_386_USED_BY_INTEL_200:
1065 default:
1066 unsupported_reloc_global(object, r_type, gsym);
1067 break;
1068 }
1069 }
1070
1071 // Scan relocations for a section.
1072
1073 void
1074 Target_i386::scan_relocs(const General_options& options,
1075 Symbol_table* symtab,
1076 Layout* layout,
1077 Sized_relobj<32, false>* object,
1078 unsigned int data_shndx,
1079 unsigned int sh_type,
1080 const unsigned char* prelocs,
1081 size_t reloc_count,
1082 size_t local_symbol_count,
1083 const unsigned char* plocal_symbols,
1084 Symbol** global_symbols)
1085 {
1086 if (sh_type == elfcpp::SHT_RELA)
1087 {
1088 gold_error(_("%s: unsupported RELA reloc section"),
1089 object->name().c_str());
1090 return;
1091 }
1092
1093 gold::scan_relocs<32, false, Target_i386, elfcpp::SHT_REL,
1094 Target_i386::Scan>(
1095 options,
1096 symtab,
1097 layout,
1098 this,
1099 object,
1100 data_shndx,
1101 prelocs,
1102 reloc_count,
1103 local_symbol_count,
1104 plocal_symbols,
1105 global_symbols);
1106 }
1107
1108 // Finalize the sections.
1109
1110 void
1111 Target_i386::do_finalize_sections(Layout* layout)
1112 {
1113 // Fill in some more dynamic tags.
1114 Output_data_dynamic* const odyn = layout->dynamic_data();
1115 if (odyn != NULL)
1116 {
1117 if (this->got_plt_ != NULL)
1118 odyn->add_section_address(elfcpp::DT_PLTGOT, this->got_plt_);
1119
1120 if (this->plt_ != NULL)
1121 {
1122 const Output_data* od = this->plt_->rel_plt();
1123 odyn->add_section_size(elfcpp::DT_PLTRELSZ, od);
1124 odyn->add_section_address(elfcpp::DT_JMPREL, od);
1125 odyn->add_constant(elfcpp::DT_PLTREL, elfcpp::DT_REL);
1126 }
1127
1128 if (this->rel_dyn_ != NULL)
1129 {
1130 const Output_data* od = this->rel_dyn_;
1131 odyn->add_section_address(elfcpp::DT_REL, od);
1132 odyn->add_section_size(elfcpp::DT_RELSZ, od);
1133 odyn->add_constant(elfcpp::DT_RELENT,
1134 elfcpp::Elf_sizes<32>::rel_size);
1135 }
1136
1137 if (!parameters->output_is_shared())
1138 {
1139 // The value of the DT_DEBUG tag is filled in by the dynamic
1140 // linker at run time, and used by the debugger.
1141 odyn->add_constant(elfcpp::DT_DEBUG, 0);
1142 }
1143 }
1144
1145 // Emit any relocs we saved in an attempt to avoid generating COPY
1146 // relocs.
1147 if (this->copy_relocs_ == NULL)
1148 return;
1149 if (this->copy_relocs_->any_to_emit())
1150 {
1151 Reloc_section* rel_dyn = this->rel_dyn_section(layout);
1152 this->copy_relocs_->emit(rel_dyn);
1153 }
1154 delete this->copy_relocs_;
1155 this->copy_relocs_ = NULL;
1156 }
1157
1158 // Perform a relocation.
1159
1160 inline bool
1161 Target_i386::Relocate::relocate(const Relocate_info<32, false>* relinfo,
1162 Target_i386* target,
1163 size_t relnum,
1164 const elfcpp::Rel<32, false>& rel,
1165 unsigned int r_type,
1166 const Sized_symbol<32>* gsym,
1167 const Symbol_value<32>* psymval,
1168 unsigned char* view,
1169 elfcpp::Elf_types<32>::Elf_Addr address,
1170 off_t view_size)
1171 {
1172 if (this->skip_call_tls_get_addr_)
1173 {
1174 if (r_type != elfcpp::R_386_PLT32
1175 || gsym == NULL
1176 || strcmp(gsym->name(), "___tls_get_addr") != 0)
1177 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1178 _("missing expected TLS relocation"));
1179 else
1180 {
1181 this->skip_call_tls_get_addr_ = false;
1182 return false;
1183 }
1184 }
1185
1186 // Pick the value to use for symbols defined in shared objects.
1187 Symbol_value<32> symval;
1188 if (gsym != NULL && gsym->is_from_dynobj() && gsym->has_plt_offset())
1189 {
1190 symval.set_output_value(target->plt_section()->address()
1191 + gsym->plt_offset());
1192 psymval = &symval;
1193 }
1194
1195 const Sized_relobj<32, false>* object = relinfo->object;
1196
1197 // Get the GOT offset if needed.
1198 bool have_got_offset = false;
1199 unsigned int got_offset = 0;
1200 switch (r_type)
1201 {
1202 case elfcpp::R_386_GOT32:
1203 if (gsym != NULL)
1204 {
1205 gold_assert(gsym->has_got_offset());
1206 got_offset = gsym->got_offset();
1207 }
1208 else
1209 {
1210 unsigned int r_sym = elfcpp::elf_r_sym<32>(rel.get_r_info());
1211 got_offset = object->local_got_offset(r_sym);
1212 }
1213 have_got_offset = true;
1214 break;
1215
1216 default:
1217 break;
1218 }
1219
1220 switch (r_type)
1221 {
1222 case elfcpp::R_386_NONE:
1223 case elfcpp::R_386_GNU_VTINHERIT:
1224 case elfcpp::R_386_GNU_VTENTRY:
1225 break;
1226
1227 case elfcpp::R_386_32:
1228 Relocate_functions<32, false>::rel32(view, object, psymval);
1229 break;
1230
1231 case elfcpp::R_386_PC32:
1232 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1233 break;
1234
1235 case elfcpp::R_386_16:
1236 Relocate_functions<32, false>::rel16(view, object, psymval);
1237 break;
1238
1239 case elfcpp::R_386_PC16:
1240 Relocate_functions<32, false>::pcrel16(view, object, psymval, address);
1241 break;
1242
1243 case elfcpp::R_386_8:
1244 Relocate_functions<32, false>::rel8(view, object, psymval);
1245 break;
1246
1247 case elfcpp::R_386_PC8:
1248 Relocate_functions<32, false>::pcrel8(view, object, psymval, address);
1249 break;
1250
1251 case elfcpp::R_386_PLT32:
1252 gold_assert(gsym->has_plt_offset()
1253 || gsym->final_value_is_known());
1254 Relocate_functions<32, false>::pcrel32(view, object, psymval, address);
1255 break;
1256
1257 case elfcpp::R_386_GOT32:
1258 gold_assert(have_got_offset);
1259 Relocate_functions<32, false>::rel32(view, got_offset);
1260 break;
1261
1262 case elfcpp::R_386_GOTOFF:
1263 {
1264 elfcpp::Elf_types<32>::Elf_Addr value;
1265 value = (psymval->value(object, 0)
1266 - target->got_section(NULL, NULL)->address());
1267 Relocate_functions<32, false>::rel32(view, value);
1268 }
1269 break;
1270
1271 case elfcpp::R_386_GOTPC:
1272 {
1273 elfcpp::Elf_types<32>::Elf_Addr value;
1274 value = target->got_section(NULL, NULL)->address();
1275 Relocate_functions<32, false>::pcrel32(view, value, address);
1276 }
1277 break;
1278
1279 case elfcpp::R_386_COPY:
1280 case elfcpp::R_386_GLOB_DAT:
1281 case elfcpp::R_386_JUMP_SLOT:
1282 case elfcpp::R_386_RELATIVE:
1283 // These are outstanding tls relocs, which are unexpected when
1284 // linking.
1285 case elfcpp::R_386_TLS_TPOFF:
1286 case elfcpp::R_386_TLS_DTPMOD32:
1287 case elfcpp::R_386_TLS_DTPOFF32:
1288 case elfcpp::R_386_TLS_TPOFF32:
1289 case elfcpp::R_386_TLS_DESC:
1290 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1291 _("unexpected reloc %u in object file"),
1292 r_type);
1293 break;
1294
1295 // These are initial tls relocs, which are expected when
1296 // linking.
1297 case elfcpp::R_386_TLS_IE:
1298 case elfcpp::R_386_TLS_GOTIE:
1299 case elfcpp::R_386_TLS_LE:
1300 case elfcpp::R_386_TLS_GD:
1301 case elfcpp::R_386_TLS_LDM:
1302 case elfcpp::R_386_TLS_LDO_32:
1303 case elfcpp::R_386_TLS_IE_32:
1304 case elfcpp::R_386_TLS_LE_32:
1305 case elfcpp::R_386_TLS_GOTDESC:
1306 case elfcpp::R_386_TLS_DESC_CALL:
1307 this->relocate_tls(relinfo, relnum, rel, r_type, gsym, psymval, view,
1308 address, view_size);
1309 break;
1310
1311 case elfcpp::R_386_32PLT:
1312 case elfcpp::R_386_TLS_GD_32:
1313 case elfcpp::R_386_TLS_GD_PUSH:
1314 case elfcpp::R_386_TLS_GD_CALL:
1315 case elfcpp::R_386_TLS_GD_POP:
1316 case elfcpp::R_386_TLS_LDM_32:
1317 case elfcpp::R_386_TLS_LDM_PUSH:
1318 case elfcpp::R_386_TLS_LDM_CALL:
1319 case elfcpp::R_386_TLS_LDM_POP:
1320 case elfcpp::R_386_USED_BY_INTEL_200:
1321 default:
1322 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1323 _("unsupported reloc %u"),
1324 r_type);
1325 break;
1326 }
1327
1328 return true;
1329 }
1330
1331 // Perform a TLS relocation.
1332
1333 inline void
1334 Target_i386::Relocate::relocate_tls(const Relocate_info<32, false>* relinfo,
1335 size_t relnum,
1336 const elfcpp::Rel<32, false>& rel,
1337 unsigned int r_type,
1338 const Sized_symbol<32>* gsym,
1339 const Symbol_value<32>* psymval,
1340 unsigned char* view,
1341 elfcpp::Elf_types<32>::Elf_Addr,
1342 off_t view_size)
1343 {
1344 Output_segment* tls_segment = relinfo->layout->tls_segment();
1345 if (tls_segment == NULL)
1346 {
1347 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1348 _("TLS reloc but no TLS segment"));
1349 return;
1350 }
1351
1352 elfcpp::Elf_types<32>::Elf_Addr value = psymval->value(relinfo->object, 0);
1353
1354 const bool is_final = (gsym == NULL
1355 ? !parameters->output_is_shared()
1356 : gsym->final_value_is_known());
1357 const tls::Tls_optimization optimized_type
1358 = Target_i386::optimize_tls_reloc(is_final, r_type);
1359 switch (r_type)
1360 {
1361 case elfcpp::R_386_TLS_LE_32:
1362 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1363 Relocate_functions<32, false>::rel32(view, value);
1364 break;
1365
1366 case elfcpp::R_386_TLS_LE:
1367 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1368 Relocate_functions<32, false>::rel32(view, value);
1369 break;
1370
1371 case elfcpp::R_386_TLS_IE:
1372 case elfcpp::R_386_TLS_GOTIE:
1373 case elfcpp::R_386_TLS_IE_32:
1374 if (optimized_type == tls::TLSOPT_TO_LE)
1375 {
1376 Target_i386::Relocate::tls_ie_to_le(relinfo, relnum, tls_segment,
1377 rel, r_type, value, view,
1378 view_size);
1379 break;
1380 }
1381 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1382 _("unsupported reloc %u"),
1383 r_type);
1384 break;
1385
1386 case elfcpp::R_386_TLS_GD:
1387 if (optimized_type == tls::TLSOPT_TO_LE)
1388 {
1389 this->tls_gd_to_le(relinfo, relnum, tls_segment,
1390 rel, r_type, value, view,
1391 view_size);
1392 break;
1393 }
1394 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1395 _("unsupported reloc %u"),
1396 r_type);
1397 break;
1398
1399 case elfcpp::R_386_TLS_LDM:
1400 if (this->local_dynamic_type_ == LOCAL_DYNAMIC_SUN)
1401 {
1402 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1403 _("both SUN and GNU model "
1404 "TLS relocations"));
1405 break;
1406 }
1407 this->local_dynamic_type_ = LOCAL_DYNAMIC_GNU;
1408 if (optimized_type == tls::TLSOPT_TO_LE)
1409 {
1410 this->tls_ld_to_le(relinfo, relnum, tls_segment, rel, r_type,
1411 value, view, view_size);
1412 break;
1413 }
1414 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1415 _("unsupported reloc %u"),
1416 r_type);
1417 break;
1418
1419 case elfcpp::R_386_TLS_LDO_32:
1420 // This reloc can appear in debugging sections, in which case we
1421 // won't see the TLS_LDM reloc. The local_dynamic_type field
1422 // tells us this.
1423 if (optimized_type != tls::TLSOPT_TO_LE
1424 || this->local_dynamic_type_ == LOCAL_DYNAMIC_NONE)
1425 value = value - tls_segment->vaddr();
1426 else if (this->local_dynamic_type_ == LOCAL_DYNAMIC_GNU)
1427 value = value - (tls_segment->vaddr() + tls_segment->memsz());
1428 else
1429 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1430 Relocate_functions<32, false>::rel32(view, value);
1431 break;
1432
1433 case elfcpp::R_386_TLS_GOTDESC:
1434 case elfcpp::R_386_TLS_DESC_CALL:
1435 gold_error_at_location(relinfo, relnum, rel.get_r_offset(),
1436 _("unsupported reloc %u"),
1437 r_type);
1438 break;
1439 }
1440 }
1441
1442 // Do a relocation in which we convert a TLS Initial-Exec to a
1443 // Local-Exec.
1444
1445 inline void
1446 Target_i386::Relocate::tls_ie_to_le(const Relocate_info<32, false>* relinfo,
1447 size_t relnum,
1448 Output_segment* tls_segment,
1449 const elfcpp::Rel<32, false>& rel,
1450 unsigned int r_type,
1451 elfcpp::Elf_types<32>::Elf_Addr value,
1452 unsigned char* view,
1453 off_t view_size)
1454 {
1455 // We have to actually change the instructions, which means that we
1456 // need to examine the opcodes to figure out which instruction we
1457 // are looking at.
1458 if (r_type == elfcpp::R_386_TLS_IE)
1459 {
1460 // movl %gs:XX,%eax ==> movl $YY,%eax
1461 // movl %gs:XX,%reg ==> movl $YY,%reg
1462 // addl %gs:XX,%reg ==> addl $YY,%reg
1463 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -1);
1464 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1465
1466 unsigned char op1 = view[-1];
1467 if (op1 == 0xa1)
1468 {
1469 // movl XX,%eax ==> movl $YY,%eax
1470 view[-1] = 0xb8;
1471 }
1472 else
1473 {
1474 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1475
1476 unsigned char op2 = view[-2];
1477 if (op2 == 0x8b)
1478 {
1479 // movl XX,%reg ==> movl $YY,%reg
1480 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1481 (op1 & 0xc7) == 0x05);
1482 view[-2] = 0xc7;
1483 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1484 }
1485 else if (op2 == 0x03)
1486 {
1487 // addl XX,%reg ==> addl $YY,%reg
1488 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1489 (op1 & 0xc7) == 0x05);
1490 view[-2] = 0x81;
1491 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1492 }
1493 else
1494 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1495 }
1496 }
1497 else
1498 {
1499 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1500 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1501 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1502 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1503 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 4);
1504
1505 unsigned char op1 = view[-1];
1506 unsigned char op2 = view[-2];
1507 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1508 (op1 & 0xc0) == 0x80 && (op1 & 7) != 4);
1509 if (op2 == 0x8b)
1510 {
1511 // movl %gs:XX(%reg1),%reg2 ==> movl $YY,%reg2
1512 view[-2] = 0xc7;
1513 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1514 }
1515 else if (op2 == 0x2b)
1516 {
1517 // subl %gs:XX(%reg1),%reg2 ==> subl $YY,%reg2
1518 view[-2] = 0x81;
1519 view[-1] = 0xe8 | ((op1 >> 3) & 7);
1520 }
1521 else if (op2 == 0x03)
1522 {
1523 // addl %gs:XX(%reg1),%reg2 ==> addl $YY,$reg2
1524 view[-2] = 0x81;
1525 view[-1] = 0xc0 | ((op1 >> 3) & 7);
1526 }
1527 else
1528 tls::check_tls(relinfo, relnum, rel.get_r_offset(), 0);
1529 }
1530
1531 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1532 if (r_type == elfcpp::R_386_TLS_IE || r_type == elfcpp::R_386_TLS_GOTIE)
1533 value = - value;
1534
1535 Relocate_functions<32, false>::rel32(view, value);
1536 }
1537
1538 // Do a relocation in which we convert a TLS General-Dynamic to a
1539 // Local-Exec.
1540
1541 inline void
1542 Target_i386::Relocate::tls_gd_to_le(const Relocate_info<32, false>* relinfo,
1543 size_t relnum,
1544 Output_segment* tls_segment,
1545 const elfcpp::Rel<32, false>& rel,
1546 unsigned int,
1547 elfcpp::Elf_types<32>::Elf_Addr value,
1548 unsigned char* view,
1549 off_t view_size)
1550 {
1551 // leal foo(,%reg,1),%eax; call ___tls_get_addr
1552 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1553 // leal foo(%reg),%eax; call ___tls_get_addr
1554 // ==> movl %gs:0,%eax; subl $foo@tpoff,%eax
1555
1556 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1557 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1558
1559 unsigned char op1 = view[-1];
1560 unsigned char op2 = view[-2];
1561
1562 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1563 op2 == 0x8d || op2 == 0x04);
1564 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1565
1566 int roff = 5;
1567
1568 if (op2 == 0x04)
1569 {
1570 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -3);
1571 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[-3] == 0x8d);
1572 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1573 ((op1 & 0xc7) == 0x05 && op1 != (4 << 3)));
1574 memcpy(view - 3, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1575 }
1576 else
1577 {
1578 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1579 (op1 & 0xf8) == 0x80 && (op1 & 7) != 4);
1580 if (static_cast<off_t>(rel.get_r_offset() + 9) < view_size
1581 && view[9] == 0x90)
1582 {
1583 // There is a trailing nop. Use the size byte subl.
1584 memcpy(view - 2, "\x65\xa1\0\0\0\0\x81\xe8\0\0\0", 12);
1585 roff = 6;
1586 }
1587 else
1588 {
1589 // Use the five byte subl.
1590 memcpy(view - 2, "\x65\xa1\0\0\0\0\x2d\0\0\0", 11);
1591 }
1592 }
1593
1594 value = tls_segment->vaddr() + tls_segment->memsz() - value;
1595 Relocate_functions<32, false>::rel32(view + roff, value);
1596
1597 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1598 // We can skip it.
1599 this->skip_call_tls_get_addr_ = true;
1600 }
1601
1602 // Do a relocation in which we convert a TLS Local-Dynamic to a
1603 // Local-Exec.
1604
1605 inline void
1606 Target_i386::Relocate::tls_ld_to_le(const Relocate_info<32, false>* relinfo,
1607 size_t relnum,
1608 Output_segment*,
1609 const elfcpp::Rel<32, false>& rel,
1610 unsigned int,
1611 elfcpp::Elf_types<32>::Elf_Addr,
1612 unsigned char* view,
1613 off_t view_size)
1614 {
1615 // leal foo(%reg), %eax; call ___tls_get_addr
1616 // ==> movl %gs:0,%eax; nop; leal 0(%esi,1),%esi
1617
1618 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, -2);
1619 tls::check_range(relinfo, relnum, rel.get_r_offset(), view_size, 9);
1620
1621 // FIXME: Does this test really always pass?
1622 tls::check_tls(relinfo, relnum, rel.get_r_offset(),
1623 view[-2] == 0x8d && view[-1] == 0x83);
1624
1625 tls::check_tls(relinfo, relnum, rel.get_r_offset(), view[4] == 0xe8);
1626
1627 memcpy(view - 2, "\x65\xa1\0\0\0\0\x90\x8d\x74\x26\0", 11);
1628
1629 // The next reloc should be a PLT32 reloc against __tls_get_addr.
1630 // We can skip it.
1631 this->skip_call_tls_get_addr_ = true;
1632 }
1633
1634 // Relocate section data.
1635
1636 void
1637 Target_i386::relocate_section(const Relocate_info<32, false>* relinfo,
1638 unsigned int sh_type,
1639 const unsigned char* prelocs,
1640 size_t reloc_count,
1641 unsigned char* view,
1642 elfcpp::Elf_types<32>::Elf_Addr address,
1643 off_t view_size)
1644 {
1645 gold_assert(sh_type == elfcpp::SHT_REL);
1646
1647 gold::relocate_section<32, false, Target_i386, elfcpp::SHT_REL,
1648 Target_i386::Relocate>(
1649 relinfo,
1650 this,
1651 prelocs,
1652 reloc_count,
1653 view,
1654 address,
1655 view_size);
1656 }
1657
1658 // Return the value to use for a dynamic which requires special
1659 // treatment. This is how we support equality comparisons of function
1660 // pointers across shared library boundaries, as described in the
1661 // processor specific ABI supplement.
1662
1663 uint64_t
1664 Target_i386::do_dynsym_value(const Symbol* gsym) const
1665 {
1666 gold_assert(gsym->is_from_dynobj() && gsym->has_plt_offset());
1667 return this->plt_section()->address() + gsym->plt_offset();
1668 }
1669
1670 // Return a string used to fill a code section with nops to take up
1671 // the specified length.
1672
1673 std::string
1674 Target_i386::do_code_fill(off_t length)
1675 {
1676 if (length >= 16)
1677 {
1678 // Build a jmp instruction to skip over the bytes.
1679 unsigned char jmp[5];
1680 jmp[0] = 0xe9;
1681 elfcpp::Swap_unaligned<32, false>::writeval(jmp + 1, length - 5);
1682 return (std::string(reinterpret_cast<char*>(&jmp[0]), 5)
1683 + std::string(length - 5, '\0'));
1684 }
1685
1686 // Nop sequences of various lengths.
1687 const char nop1[1] = { 0x90 }; // nop
1688 const char nop2[2] = { 0x66, 0x90 }; // xchg %ax %ax
1689 const char nop3[3] = { 0x8d, 0x76, 0x00 }; // leal 0(%esi),%esi
1690 const char nop4[4] = { 0x8d, 0x74, 0x26, 0x00}; // leal 0(%esi,1),%esi
1691 const char nop5[5] = { 0x90, 0x8d, 0x74, 0x26, // nop
1692 0x00 }; // leal 0(%esi,1),%esi
1693 const char nop6[6] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1694 0x00, 0x00 };
1695 const char nop7[7] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1696 0x00, 0x00, 0x00 };
1697 const char nop8[8] = { 0x90, 0x8d, 0xb4, 0x26, // nop
1698 0x00, 0x00, 0x00, 0x00 }; // leal 0L(%esi,1),%esi
1699 const char nop9[9] = { 0x89, 0xf6, 0x8d, 0xbc, // movl %esi,%esi
1700 0x27, 0x00, 0x00, 0x00, // leal 0L(%edi,1),%edi
1701 0x00 };
1702 const char nop10[10] = { 0x8d, 0x76, 0x00, 0x8d, // leal 0(%esi),%esi
1703 0xbc, 0x27, 0x00, 0x00, // leal 0L(%edi,1),%edi
1704 0x00, 0x00 };
1705 const char nop11[11] = { 0x8d, 0x74, 0x26, 0x00, // leal 0(%esi,1),%esi
1706 0x8d, 0xbc, 0x27, 0x00, // leal 0L(%edi,1),%edi
1707 0x00, 0x00, 0x00 };
1708 const char nop12[12] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1709 0x00, 0x00, 0x8d, 0xbf, // leal 0L(%edi),%edi
1710 0x00, 0x00, 0x00, 0x00 };
1711 const char nop13[13] = { 0x8d, 0xb6, 0x00, 0x00, // leal 0L(%esi),%esi
1712 0x00, 0x00, 0x8d, 0xbc, // leal 0L(%edi,1),%edi
1713 0x27, 0x00, 0x00, 0x00,
1714 0x00 };
1715 const char nop14[14] = { 0x8d, 0xb4, 0x26, 0x00, // leal 0L(%esi,1),%esi
1716 0x00, 0x00, 0x00, 0x8d, // leal 0L(%edi,1),%edi
1717 0xbc, 0x27, 0x00, 0x00,
1718 0x00, 0x00 };
1719 const char nop15[15] = { 0xeb, 0x0d, 0x90, 0x90, // jmp .+15
1720 0x90, 0x90, 0x90, 0x90, // nop,nop,nop,...
1721 0x90, 0x90, 0x90, 0x90,
1722 0x90, 0x90, 0x90 };
1723
1724 const char* nops[16] = {
1725 NULL,
1726 nop1, nop2, nop3, nop4, nop5, nop6, nop7,
1727 nop8, nop9, nop10, nop11, nop12, nop13, nop14, nop15
1728 };
1729
1730 return std::string(nops[length], length);
1731 }
1732
1733 // The selector for i386 object files.
1734
1735 class Target_selector_i386 : public Target_selector
1736 {
1737 public:
1738 Target_selector_i386()
1739 : Target_selector(elfcpp::EM_386, 32, false)
1740 { }
1741
1742 Target*
1743 recognize(int machine, int osabi, int abiversion);
1744
1745 private:
1746 Target_i386* target_;
1747 };
1748
1749 // Recognize an i386 object file when we already know that the machine
1750 // number is EM_386.
1751
1752 Target*
1753 Target_selector_i386::recognize(int, int, int)
1754 {
1755 if (this->target_ == NULL)
1756 this->target_ = new Target_i386();
1757 return this->target_;
1758 }
1759
1760 Target_selector_i386 target_selector_i386;
1761
1762 } // End anonymous namespace.
This page took 0.068932 seconds and 5 git commands to generate.