114fa262bb84921242df2d6b25e7feba4bacda77
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "reloc.h"
50 #include "descriptors.h"
51 #include "plugin.h"
52 #include "incremental.h"
53 #include "layout.h"
54
55 namespace gold
56 {
57
58 // Class Free_list.
59
60 // The total number of free lists used.
61 unsigned int Free_list::num_lists = 0;
62 // The total number of free list nodes used.
63 unsigned int Free_list::num_nodes = 0;
64 // The total number of calls to Free_list::remove.
65 unsigned int Free_list::num_removes = 0;
66 // The total number of nodes visited during calls to Free_list::remove.
67 unsigned int Free_list::num_remove_visits = 0;
68 // The total number of calls to Free_list::allocate.
69 unsigned int Free_list::num_allocates = 0;
70 // The total number of nodes visited during calls to Free_list::allocate.
71 unsigned int Free_list::num_allocate_visits = 0;
72
73 // Initialize the free list. Creates a single free list node that
74 // describes the entire region of length LEN. If EXTEND is true,
75 // allocate() is allowed to extend the region beyond its initial
76 // length.
77
78 void
79 Free_list::init(off_t len, bool extend)
80 {
81 this->list_.push_front(Free_list_node(0, len));
82 this->last_remove_ = this->list_.begin();
83 this->extend_ = extend;
84 this->length_ = len;
85 ++Free_list::num_lists;
86 ++Free_list::num_nodes;
87 }
88
89 // Remove a chunk from the free list. Because we start with a single
90 // node that covers the entire section, and remove chunks from it one
91 // at a time, we do not need to coalesce chunks or handle cases that
92 // span more than one free node. We expect to remove chunks from the
93 // free list in order, and we expect to have only a few chunks of free
94 // space left (corresponding to files that have changed since the last
95 // incremental link), so a simple linear list should provide sufficient
96 // performance.
97
98 void
99 Free_list::remove(off_t start, off_t end)
100 {
101 if (start == end)
102 return;
103 gold_assert(start < end);
104
105 ++Free_list::num_removes;
106
107 Iterator p = this->last_remove_;
108 if (p->start_ > start)
109 p = this->list_.begin();
110
111 for (; p != this->list_.end(); ++p)
112 {
113 ++Free_list::num_remove_visits;
114 // Find a node that wholly contains the indicated region.
115 if (p->start_ <= start && p->end_ >= end)
116 {
117 // Case 1: the indicated region spans the whole node.
118 // Add some fuzz to avoid creating tiny free chunks.
119 if (p->start_ + 3 >= start && p->end_ <= end + 3)
120 p = this->list_.erase(p);
121 // Case 2: remove a chunk from the start of the node.
122 else if (p->start_ + 3 >= start)
123 p->start_ = end;
124 // Case 3: remove a chunk from the end of the node.
125 else if (p->end_ <= end + 3)
126 p->end_ = start;
127 // Case 4: remove a chunk from the middle, and split
128 // the node into two.
129 else
130 {
131 Free_list_node newnode(p->start_, start);
132 p->start_ = end;
133 this->list_.insert(p, newnode);
134 ++Free_list::num_nodes;
135 }
136 this->last_remove_ = p;
137 return;
138 }
139 }
140
141 // Did not find a node containing the given chunk. This could happen
142 // because a small chunk was already removed due to the fuzz.
143 gold_debug(DEBUG_INCREMENTAL,
144 "Free_list::remove(%d,%d) not found",
145 static_cast<int>(start), static_cast<int>(end));
146 }
147
148 // Allocate a chunk of size LEN from the free list. Returns -1ULL
149 // if a sufficiently large chunk of free space is not found.
150 // We use a simple first-fit algorithm.
151
152 off_t
153 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
154 {
155 gold_debug(DEBUG_INCREMENTAL,
156 "Free_list::allocate(%08lx, %d, %08lx)",
157 static_cast<long>(len), static_cast<int>(align),
158 static_cast<long>(minoff));
159 if (len == 0)
160 return align_address(minoff, align);
161
162 ++Free_list::num_allocates;
163
164 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
165 {
166 ++Free_list::num_allocate_visits;
167 off_t start = p->start_ > minoff ? p->start_ : minoff;
168 start = align_address(start, align);
169 off_t end = start + len;
170 if (end <= p->end_)
171 {
172 if (p->start_ + 3 >= start && p->end_ <= end + 3)
173 this->list_.erase(p);
174 else if (p->start_ + 3 >= start)
175 p->start_ = end;
176 else if (p->end_ <= end + 3)
177 p->end_ = start;
178 else
179 {
180 Free_list_node newnode(p->start_, start);
181 p->start_ = end;
182 this->list_.insert(p, newnode);
183 ++Free_list::num_nodes;
184 }
185 return start;
186 }
187 }
188 return -1;
189 }
190
191 // Dump the free list (for debugging).
192 void
193 Free_list::dump()
194 {
195 gold_info("Free list:\n start end length\n");
196 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
197 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
198 static_cast<long>(p->end_),
199 static_cast<long>(p->end_ - p->start_));
200 }
201
202 // Print the statistics for the free lists.
203 void
204 Free_list::print_stats()
205 {
206 fprintf(stderr, _("%s: total free lists: %u\n"),
207 program_name, Free_list::num_lists);
208 fprintf(stderr, _("%s: total free list nodes: %u\n"),
209 program_name, Free_list::num_nodes);
210 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
211 program_name, Free_list::num_removes);
212 fprintf(stderr, _("%s: nodes visited: %u\n"),
213 program_name, Free_list::num_remove_visits);
214 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
215 program_name, Free_list::num_allocates);
216 fprintf(stderr, _("%s: nodes visited: %u\n"),
217 program_name, Free_list::num_allocate_visits);
218 }
219
220 // Layout::Relaxation_debug_check methods.
221
222 // Check that sections and special data are in reset states.
223 // We do not save states for Output_sections and special Output_data.
224 // So we check that they have not assigned any addresses or offsets.
225 // clean_up_after_relaxation simply resets their addresses and offsets.
226 void
227 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
228 const Layout::Section_list& sections,
229 const Layout::Data_list& special_outputs)
230 {
231 for(Layout::Section_list::const_iterator p = sections.begin();
232 p != sections.end();
233 ++p)
234 gold_assert((*p)->address_and_file_offset_have_reset_values());
235
236 for(Layout::Data_list::const_iterator p = special_outputs.begin();
237 p != special_outputs.end();
238 ++p)
239 gold_assert((*p)->address_and_file_offset_have_reset_values());
240 }
241
242 // Save information of SECTIONS for checking later.
243
244 void
245 Layout::Relaxation_debug_check::read_sections(
246 const Layout::Section_list& sections)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 {
252 Output_section* os = *p;
253 Section_info info;
254 info.output_section = os;
255 info.address = os->is_address_valid() ? os->address() : 0;
256 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
257 info.offset = os->is_offset_valid()? os->offset() : -1 ;
258 this->section_infos_.push_back(info);
259 }
260 }
261
262 // Verify SECTIONS using previously recorded information.
263
264 void
265 Layout::Relaxation_debug_check::verify_sections(
266 const Layout::Section_list& sections)
267 {
268 size_t i = 0;
269 for(Layout::Section_list::const_iterator p = sections.begin();
270 p != sections.end();
271 ++p, ++i)
272 {
273 Output_section* os = *p;
274 uint64_t address = os->is_address_valid() ? os->address() : 0;
275 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
276 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
277
278 if (i >= this->section_infos_.size())
279 {
280 gold_fatal("Section_info of %s missing.\n", os->name());
281 }
282 const Section_info& info = this->section_infos_[i];
283 if (os != info.output_section)
284 gold_fatal("Section order changed. Expecting %s but see %s\n",
285 info.output_section->name(), os->name());
286 if (address != info.address
287 || data_size != info.data_size
288 || offset != info.offset)
289 gold_fatal("Section %s changed.\n", os->name());
290 }
291 }
292
293 // Layout_task_runner methods.
294
295 // Lay out the sections. This is called after all the input objects
296 // have been read.
297
298 void
299 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
300 {
301 Layout* layout = this->layout_;
302 off_t file_size = layout->finalize(this->input_objects_,
303 this->symtab_,
304 this->target_,
305 task);
306
307 // Now we know the final size of the output file and we know where
308 // each piece of information goes.
309
310 if (this->mapfile_ != NULL)
311 {
312 this->mapfile_->print_discarded_sections(this->input_objects_);
313 layout->print_to_mapfile(this->mapfile_);
314 }
315
316 Output_file* of;
317 if (layout->incremental_base() == NULL)
318 {
319 of = new Output_file(parameters->options().output_file_name());
320 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
321 of->set_is_temporary();
322 of->open(file_size);
323 }
324 else
325 {
326 of = layout->incremental_base()->output_file();
327
328 // Apply the incremental relocations for symbols whose values
329 // have changed. We do this before we resize the file and start
330 // writing anything else to it, so that we can read the old
331 // incremental information from the file before (possibly)
332 // overwriting it.
333 if (parameters->incremental_update())
334 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
335 this->layout_,
336 of);
337
338 of->resize(file_size);
339 }
340
341 // Queue up the final set of tasks.
342 gold::queue_final_tasks(this->options_, this->input_objects_,
343 this->symtab_, layout, workqueue, of);
344 }
345
346 // Layout methods.
347
348 Layout::Layout(int number_of_input_files, Script_options* script_options)
349 : number_of_input_files_(number_of_input_files),
350 script_options_(script_options),
351 namepool_(),
352 sympool_(),
353 dynpool_(),
354 signatures_(),
355 section_name_map_(),
356 segment_list_(),
357 section_list_(),
358 unattached_section_list_(),
359 special_output_list_(),
360 section_headers_(NULL),
361 tls_segment_(NULL),
362 relro_segment_(NULL),
363 interp_segment_(NULL),
364 increase_relro_(0),
365 symtab_section_(NULL),
366 symtab_xindex_(NULL),
367 dynsym_section_(NULL),
368 dynsym_xindex_(NULL),
369 dynamic_section_(NULL),
370 dynamic_symbol_(NULL),
371 dynamic_data_(NULL),
372 eh_frame_section_(NULL),
373 eh_frame_data_(NULL),
374 added_eh_frame_data_(false),
375 eh_frame_hdr_section_(NULL),
376 build_id_note_(NULL),
377 debug_abbrev_(NULL),
378 debug_info_(NULL),
379 group_signatures_(),
380 output_file_size_(-1),
381 have_added_input_section_(false),
382 sections_are_attached_(false),
383 input_requires_executable_stack_(false),
384 input_with_gnu_stack_note_(false),
385 input_without_gnu_stack_note_(false),
386 has_static_tls_(false),
387 any_postprocessing_sections_(false),
388 resized_signatures_(false),
389 have_stabstr_section_(false),
390 incremental_inputs_(NULL),
391 record_output_section_data_from_script_(false),
392 script_output_section_data_list_(),
393 segment_states_(NULL),
394 relaxation_debug_check_(NULL),
395 incremental_base_(NULL),
396 free_list_()
397 {
398 // Make space for more than enough segments for a typical file.
399 // This is just for efficiency--it's OK if we wind up needing more.
400 this->segment_list_.reserve(12);
401
402 // We expect two unattached Output_data objects: the file header and
403 // the segment headers.
404 this->special_output_list_.reserve(2);
405
406 // Initialize structure needed for an incremental build.
407 if (parameters->incremental())
408 this->incremental_inputs_ = new Incremental_inputs;
409
410 // The section name pool is worth optimizing in all cases, because
411 // it is small, but there are often overlaps due to .rel sections.
412 this->namepool_.set_optimize();
413 }
414
415 // For incremental links, record the base file to be modified.
416
417 void
418 Layout::set_incremental_base(Incremental_binary* base)
419 {
420 this->incremental_base_ = base;
421 this->free_list_.init(base->output_file()->filesize(), true);
422 }
423
424 // Hash a key we use to look up an output section mapping.
425
426 size_t
427 Layout::Hash_key::operator()(const Layout::Key& k) const
428 {
429 return k.first + k.second.first + k.second.second;
430 }
431
432 // Returns whether the given section is in the list of
433 // debug-sections-used-by-some-version-of-gdb. Currently,
434 // we've checked versions of gdb up to and including 6.7.1.
435
436 static const char* gdb_sections[] =
437 { ".debug_abbrev",
438 // ".debug_aranges", // not used by gdb as of 6.7.1
439 ".debug_frame",
440 ".debug_info",
441 ".debug_types",
442 ".debug_line",
443 ".debug_loc",
444 ".debug_macinfo",
445 // ".debug_pubnames", // not used by gdb as of 6.7.1
446 ".debug_ranges",
447 ".debug_str",
448 };
449
450 static const char* lines_only_debug_sections[] =
451 { ".debug_abbrev",
452 // ".debug_aranges", // not used by gdb as of 6.7.1
453 // ".debug_frame",
454 ".debug_info",
455 // ".debug_types",
456 ".debug_line",
457 // ".debug_loc",
458 // ".debug_macinfo",
459 // ".debug_pubnames", // not used by gdb as of 6.7.1
460 // ".debug_ranges",
461 ".debug_str",
462 };
463
464 static inline bool
465 is_gdb_debug_section(const char* str)
466 {
467 // We can do this faster: binary search or a hashtable. But why bother?
468 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
469 if (strcmp(str, gdb_sections[i]) == 0)
470 return true;
471 return false;
472 }
473
474 static inline bool
475 is_lines_only_debug_section(const char* str)
476 {
477 // We can do this faster: binary search or a hashtable. But why bother?
478 for (size_t i = 0;
479 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
480 ++i)
481 if (strcmp(str, lines_only_debug_sections[i]) == 0)
482 return true;
483 return false;
484 }
485
486 // Sometimes we compress sections. This is typically done for
487 // sections that are not part of normal program execution (such as
488 // .debug_* sections), and where the readers of these sections know
489 // how to deal with compressed sections. This routine doesn't say for
490 // certain whether we'll compress -- it depends on commandline options
491 // as well -- just whether this section is a candidate for compression.
492 // (The Output_compressed_section class decides whether to compress
493 // a given section, and picks the name of the compressed section.)
494
495 static bool
496 is_compressible_debug_section(const char* secname)
497 {
498 return (is_prefix_of(".debug", secname));
499 }
500
501 // We may see compressed debug sections in input files. Return TRUE
502 // if this is the name of a compressed debug section.
503
504 bool
505 is_compressed_debug_section(const char* secname)
506 {
507 return (is_prefix_of(".zdebug", secname));
508 }
509
510 // Whether to include this section in the link.
511
512 template<int size, bool big_endian>
513 bool
514 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
515 const elfcpp::Shdr<size, big_endian>& shdr)
516 {
517 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
518 return false;
519
520 switch (shdr.get_sh_type())
521 {
522 case elfcpp::SHT_NULL:
523 case elfcpp::SHT_SYMTAB:
524 case elfcpp::SHT_DYNSYM:
525 case elfcpp::SHT_HASH:
526 case elfcpp::SHT_DYNAMIC:
527 case elfcpp::SHT_SYMTAB_SHNDX:
528 return false;
529
530 case elfcpp::SHT_STRTAB:
531 // Discard the sections which have special meanings in the ELF
532 // ABI. Keep others (e.g., .stabstr). We could also do this by
533 // checking the sh_link fields of the appropriate sections.
534 return (strcmp(name, ".dynstr") != 0
535 && strcmp(name, ".strtab") != 0
536 && strcmp(name, ".shstrtab") != 0);
537
538 case elfcpp::SHT_RELA:
539 case elfcpp::SHT_REL:
540 case elfcpp::SHT_GROUP:
541 // If we are emitting relocations these should be handled
542 // elsewhere.
543 gold_assert(!parameters->options().relocatable()
544 && !parameters->options().emit_relocs());
545 return false;
546
547 case elfcpp::SHT_PROGBITS:
548 if (parameters->options().strip_debug()
549 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
550 {
551 if (is_debug_info_section(name))
552 return false;
553 }
554 if (parameters->options().strip_debug_non_line()
555 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
556 {
557 // Debugging sections can only be recognized by name.
558 if (is_prefix_of(".debug", name)
559 && !is_lines_only_debug_section(name))
560 return false;
561 }
562 if (parameters->options().strip_debug_gdb()
563 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
564 {
565 // Debugging sections can only be recognized by name.
566 if (is_prefix_of(".debug", name)
567 && !is_gdb_debug_section(name))
568 return false;
569 }
570 if (parameters->options().strip_lto_sections()
571 && !parameters->options().relocatable()
572 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
573 {
574 // Ignore LTO sections containing intermediate code.
575 if (is_prefix_of(".gnu.lto_", name))
576 return false;
577 }
578 // The GNU linker strips .gnu_debuglink sections, so we do too.
579 // This is a feature used to keep debugging information in
580 // separate files.
581 if (strcmp(name, ".gnu_debuglink") == 0)
582 return false;
583 return true;
584
585 default:
586 return true;
587 }
588 }
589
590 // Return an output section named NAME, or NULL if there is none.
591
592 Output_section*
593 Layout::find_output_section(const char* name) const
594 {
595 for (Section_list::const_iterator p = this->section_list_.begin();
596 p != this->section_list_.end();
597 ++p)
598 if (strcmp((*p)->name(), name) == 0)
599 return *p;
600 return NULL;
601 }
602
603 // Return an output segment of type TYPE, with segment flags SET set
604 // and segment flags CLEAR clear. Return NULL if there is none.
605
606 Output_segment*
607 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
608 elfcpp::Elf_Word clear) const
609 {
610 for (Segment_list::const_iterator p = this->segment_list_.begin();
611 p != this->segment_list_.end();
612 ++p)
613 if (static_cast<elfcpp::PT>((*p)->type()) == type
614 && ((*p)->flags() & set) == set
615 && ((*p)->flags() & clear) == 0)
616 return *p;
617 return NULL;
618 }
619
620 // Return the output section to use for section NAME with type TYPE
621 // and section flags FLAGS. NAME must be canonicalized in the string
622 // pool, and NAME_KEY is the key. ORDER is where this should appear
623 // in the output sections. IS_RELRO is true for a relro section.
624
625 Output_section*
626 Layout::get_output_section(const char* name, Stringpool::Key name_key,
627 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
628 Output_section_order order, bool is_relro)
629 {
630 elfcpp::Elf_Xword lookup_flags = flags;
631
632 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
633 // read-write with read-only sections. Some other ELF linkers do
634 // not do this. FIXME: Perhaps there should be an option
635 // controlling this.
636 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
637
638 const Key key(name_key, std::make_pair(type, lookup_flags));
639 const std::pair<Key, Output_section*> v(key, NULL);
640 std::pair<Section_name_map::iterator, bool> ins(
641 this->section_name_map_.insert(v));
642
643 if (!ins.second)
644 return ins.first->second;
645 else
646 {
647 // This is the first time we've seen this name/type/flags
648 // combination. For compatibility with the GNU linker, we
649 // combine sections with contents and zero flags with sections
650 // with non-zero flags. This is a workaround for cases where
651 // assembler code forgets to set section flags. FIXME: Perhaps
652 // there should be an option to control this.
653 Output_section* os = NULL;
654
655 if (type == elfcpp::SHT_PROGBITS)
656 {
657 if (flags == 0)
658 {
659 Output_section* same_name = this->find_output_section(name);
660 if (same_name != NULL
661 && same_name->type() == elfcpp::SHT_PROGBITS
662 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
663 os = same_name;
664 }
665 else if ((flags & elfcpp::SHF_TLS) == 0)
666 {
667 elfcpp::Elf_Xword zero_flags = 0;
668 const Key zero_key(name_key, std::make_pair(type, zero_flags));
669 Section_name_map::iterator p =
670 this->section_name_map_.find(zero_key);
671 if (p != this->section_name_map_.end())
672 os = p->second;
673 }
674 }
675
676 if (os == NULL)
677 os = this->make_output_section(name, type, flags, order, is_relro);
678
679 ins.first->second = os;
680 return os;
681 }
682 }
683
684 // Pick the output section to use for section NAME, in input file
685 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
686 // linker created section. IS_INPUT_SECTION is true if we are
687 // choosing an output section for an input section found in a input
688 // file. ORDER is where this section should appear in the output
689 // sections. IS_RELRO is true for a relro section. This will return
690 // NULL if the input section should be discarded.
691
692 Output_section*
693 Layout::choose_output_section(const Relobj* relobj, const char* name,
694 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
695 bool is_input_section, Output_section_order order,
696 bool is_relro)
697 {
698 // We should not see any input sections after we have attached
699 // sections to segments.
700 gold_assert(!is_input_section || !this->sections_are_attached_);
701
702 // Some flags in the input section should not be automatically
703 // copied to the output section.
704 flags &= ~ (elfcpp::SHF_INFO_LINK
705 | elfcpp::SHF_GROUP
706 | elfcpp::SHF_MERGE
707 | elfcpp::SHF_STRINGS);
708
709 // We only clear the SHF_LINK_ORDER flag in for
710 // a non-relocatable link.
711 if (!parameters->options().relocatable())
712 flags &= ~elfcpp::SHF_LINK_ORDER;
713
714 if (this->script_options_->saw_sections_clause())
715 {
716 // We are using a SECTIONS clause, so the output section is
717 // chosen based only on the name.
718
719 Script_sections* ss = this->script_options_->script_sections();
720 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
721 Output_section** output_section_slot;
722 Script_sections::Section_type script_section_type;
723 const char* orig_name = name;
724 name = ss->output_section_name(file_name, name, &output_section_slot,
725 &script_section_type);
726 if (name == NULL)
727 {
728 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
729 "because it is not allowed by the "
730 "SECTIONS clause of the linker script"),
731 orig_name);
732 // The SECTIONS clause says to discard this input section.
733 return NULL;
734 }
735
736 // We can only handle script section types ST_NONE and ST_NOLOAD.
737 switch (script_section_type)
738 {
739 case Script_sections::ST_NONE:
740 break;
741 case Script_sections::ST_NOLOAD:
742 flags &= elfcpp::SHF_ALLOC;
743 break;
744 default:
745 gold_unreachable();
746 }
747
748 // If this is an orphan section--one not mentioned in the linker
749 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
750 // default processing below.
751
752 if (output_section_slot != NULL)
753 {
754 if (*output_section_slot != NULL)
755 {
756 (*output_section_slot)->update_flags_for_input_section(flags);
757 return *output_section_slot;
758 }
759
760 // We don't put sections found in the linker script into
761 // SECTION_NAME_MAP_. That keeps us from getting confused
762 // if an orphan section is mapped to a section with the same
763 // name as one in the linker script.
764
765 name = this->namepool_.add(name, false, NULL);
766
767 Output_section* os = this->make_output_section(name, type, flags,
768 order, is_relro);
769
770 os->set_found_in_sections_clause();
771
772 // Special handling for NOLOAD sections.
773 if (script_section_type == Script_sections::ST_NOLOAD)
774 {
775 os->set_is_noload();
776
777 // The constructor of Output_section sets addresses of non-ALLOC
778 // sections to 0 by default. We don't want that for NOLOAD
779 // sections even if they have no SHF_ALLOC flag.
780 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
781 && os->is_address_valid())
782 {
783 gold_assert(os->address() == 0
784 && !os->is_offset_valid()
785 && !os->is_data_size_valid());
786 os->reset_address_and_file_offset();
787 }
788 }
789
790 *output_section_slot = os;
791 return os;
792 }
793 }
794
795 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
796
797 size_t len = strlen(name);
798 char* uncompressed_name = NULL;
799
800 // Compressed debug sections should be mapped to the corresponding
801 // uncompressed section.
802 if (is_compressed_debug_section(name))
803 {
804 uncompressed_name = new char[len];
805 uncompressed_name[0] = '.';
806 gold_assert(name[0] == '.' && name[1] == 'z');
807 strncpy(&uncompressed_name[1], &name[2], len - 2);
808 uncompressed_name[len - 1] = '\0';
809 len -= 1;
810 name = uncompressed_name;
811 }
812
813 // Turn NAME from the name of the input section into the name of the
814 // output section.
815 if (is_input_section
816 && !this->script_options_->saw_sections_clause()
817 && !parameters->options().relocatable())
818 name = Layout::output_section_name(name, &len);
819
820 Stringpool::Key name_key;
821 name = this->namepool_.add_with_length(name, len, true, &name_key);
822
823 if (uncompressed_name != NULL)
824 delete[] uncompressed_name;
825
826 // Find or make the output section. The output section is selected
827 // based on the section name, type, and flags.
828 return this->get_output_section(name, name_key, type, flags, order, is_relro);
829 }
830
831 // For incremental links, record the initial fixed layout of a section
832 // from the base file, and return a pointer to the Output_section.
833
834 template<int size, bool big_endian>
835 Output_section*
836 Layout::init_fixed_output_section(const char* name,
837 elfcpp::Shdr<size, big_endian>& shdr)
838 {
839 unsigned int sh_type = shdr.get_sh_type();
840
841 // We preserve the layout of PROGBITS, NOBITS, and NOTE sections.
842 // All others will be created from scratch and reallocated.
843 if (sh_type != elfcpp::SHT_PROGBITS
844 && sh_type != elfcpp::SHT_NOBITS
845 && sh_type != elfcpp::SHT_NOTE)
846 return NULL;
847
848 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
849 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
850 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
851 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
852 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
853 shdr.get_sh_addralign();
854
855 // Make the output section.
856 Stringpool::Key name_key;
857 name = this->namepool_.add(name, true, &name_key);
858 Output_section* os = this->get_output_section(name, name_key, sh_type,
859 sh_flags, ORDER_INVALID, false);
860 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
861 if (sh_type != elfcpp::SHT_NOBITS)
862 this->free_list_.remove(sh_offset, sh_offset + sh_size);
863 return os;
864 }
865
866 // Return the output section to use for input section SHNDX, with name
867 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
868 // index of a relocation section which applies to this section, or 0
869 // if none, or -1U if more than one. RELOC_TYPE is the type of the
870 // relocation section if there is one. Set *OFF to the offset of this
871 // input section without the output section. Return NULL if the
872 // section should be discarded. Set *OFF to -1 if the section
873 // contents should not be written directly to the output file, but
874 // will instead receive special handling.
875
876 template<int size, bool big_endian>
877 Output_section*
878 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
879 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
880 unsigned int reloc_shndx, unsigned int, off_t* off)
881 {
882 *off = 0;
883
884 if (!this->include_section(object, name, shdr))
885 return NULL;
886
887 Output_section* os;
888
889 // Sometimes .init_array*, .preinit_array* and .fini_array* do not have
890 // correct section types. Force them here.
891 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
892 if (sh_type == elfcpp::SHT_PROGBITS)
893 {
894 static const char init_array_prefix[] = ".init_array";
895 static const char preinit_array_prefix[] = ".preinit_array";
896 static const char fini_array_prefix[] = ".fini_array";
897 static size_t init_array_prefix_size = sizeof(init_array_prefix) - 1;
898 static size_t preinit_array_prefix_size =
899 sizeof(preinit_array_prefix) - 1;
900 static size_t fini_array_prefix_size = sizeof(fini_array_prefix) - 1;
901
902 if (strncmp(name, init_array_prefix, init_array_prefix_size) == 0)
903 sh_type = elfcpp::SHT_INIT_ARRAY;
904 else if (strncmp(name, preinit_array_prefix, preinit_array_prefix_size)
905 == 0)
906 sh_type = elfcpp::SHT_PREINIT_ARRAY;
907 else if (strncmp(name, fini_array_prefix, fini_array_prefix_size) == 0)
908 sh_type = elfcpp::SHT_FINI_ARRAY;
909 }
910
911 // In a relocatable link a grouped section must not be combined with
912 // any other sections.
913 if (parameters->options().relocatable()
914 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
915 {
916 name = this->namepool_.add(name, true, NULL);
917 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
918 ORDER_INVALID, false);
919 }
920 else
921 {
922 os = this->choose_output_section(object, name, sh_type,
923 shdr.get_sh_flags(), true,
924 ORDER_INVALID, false);
925 if (os == NULL)
926 return NULL;
927 }
928
929 // By default the GNU linker sorts input sections whose names match
930 // .ctor.*, .dtor.*, .init_array.*, or .fini_array.*. The sections
931 // are sorted by name. This is used to implement constructor
932 // priority ordering. We are compatible.
933 if (!this->script_options_->saw_sections_clause()
934 && (is_prefix_of(".ctors.", name)
935 || is_prefix_of(".dtors.", name)
936 || is_prefix_of(".init_array.", name)
937 || is_prefix_of(".fini_array.", name)))
938 os->set_must_sort_attached_input_sections();
939
940 // FIXME: Handle SHF_LINK_ORDER somewhere.
941
942 elfcpp::Elf_Xword orig_flags = os->flags();
943
944 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
945 this->script_options_->saw_sections_clause());
946
947 // If the flags changed, we may have to change the order.
948 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
949 {
950 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
951 elfcpp::Elf_Xword new_flags =
952 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
953 if (orig_flags != new_flags)
954 os->set_order(this->default_section_order(os, false));
955 }
956
957 this->have_added_input_section_ = true;
958
959 return os;
960 }
961
962 // Handle a relocation section when doing a relocatable link.
963
964 template<int size, bool big_endian>
965 Output_section*
966 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
967 unsigned int,
968 const elfcpp::Shdr<size, big_endian>& shdr,
969 Output_section* data_section,
970 Relocatable_relocs* rr)
971 {
972 gold_assert(parameters->options().relocatable()
973 || parameters->options().emit_relocs());
974
975 int sh_type = shdr.get_sh_type();
976
977 std::string name;
978 if (sh_type == elfcpp::SHT_REL)
979 name = ".rel";
980 else if (sh_type == elfcpp::SHT_RELA)
981 name = ".rela";
982 else
983 gold_unreachable();
984 name += data_section->name();
985
986 // In a relocatable link relocs for a grouped section must not be
987 // combined with other reloc sections.
988 Output_section* os;
989 if (!parameters->options().relocatable()
990 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
991 os = this->choose_output_section(object, name.c_str(), sh_type,
992 shdr.get_sh_flags(), false,
993 ORDER_INVALID, false);
994 else
995 {
996 const char* n = this->namepool_.add(name.c_str(), true, NULL);
997 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
998 ORDER_INVALID, false);
999 }
1000
1001 os->set_should_link_to_symtab();
1002 os->set_info_section(data_section);
1003
1004 Output_section_data* posd;
1005 if (sh_type == elfcpp::SHT_REL)
1006 {
1007 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1008 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1009 size,
1010 big_endian>(rr);
1011 }
1012 else if (sh_type == elfcpp::SHT_RELA)
1013 {
1014 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1015 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1016 size,
1017 big_endian>(rr);
1018 }
1019 else
1020 gold_unreachable();
1021
1022 os->add_output_section_data(posd);
1023 rr->set_output_data(posd);
1024
1025 return os;
1026 }
1027
1028 // Handle a group section when doing a relocatable link.
1029
1030 template<int size, bool big_endian>
1031 void
1032 Layout::layout_group(Symbol_table* symtab,
1033 Sized_relobj_file<size, big_endian>* object,
1034 unsigned int,
1035 const char* group_section_name,
1036 const char* signature,
1037 const elfcpp::Shdr<size, big_endian>& shdr,
1038 elfcpp::Elf_Word flags,
1039 std::vector<unsigned int>* shndxes)
1040 {
1041 gold_assert(parameters->options().relocatable());
1042 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1043 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1044 Output_section* os = this->make_output_section(group_section_name,
1045 elfcpp::SHT_GROUP,
1046 shdr.get_sh_flags(),
1047 ORDER_INVALID, false);
1048
1049 // We need to find a symbol with the signature in the symbol table.
1050 // If we don't find one now, we need to look again later.
1051 Symbol* sym = symtab->lookup(signature, NULL);
1052 if (sym != NULL)
1053 os->set_info_symndx(sym);
1054 else
1055 {
1056 // Reserve some space to minimize reallocations.
1057 if (this->group_signatures_.empty())
1058 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1059
1060 // We will wind up using a symbol whose name is the signature.
1061 // So just put the signature in the symbol name pool to save it.
1062 signature = symtab->canonicalize_name(signature);
1063 this->group_signatures_.push_back(Group_signature(os, signature));
1064 }
1065
1066 os->set_should_link_to_symtab();
1067 os->set_entsize(4);
1068
1069 section_size_type entry_count =
1070 convert_to_section_size_type(shdr.get_sh_size() / 4);
1071 Output_section_data* posd =
1072 new Output_data_group<size, big_endian>(object, entry_count, flags,
1073 shndxes);
1074 os->add_output_section_data(posd);
1075 }
1076
1077 // Special GNU handling of sections name .eh_frame. They will
1078 // normally hold exception frame data as defined by the C++ ABI
1079 // (http://codesourcery.com/cxx-abi/).
1080
1081 template<int size, bool big_endian>
1082 Output_section*
1083 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1084 const unsigned char* symbols,
1085 off_t symbols_size,
1086 const unsigned char* symbol_names,
1087 off_t symbol_names_size,
1088 unsigned int shndx,
1089 const elfcpp::Shdr<size, big_endian>& shdr,
1090 unsigned int reloc_shndx, unsigned int reloc_type,
1091 off_t* off)
1092 {
1093 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS);
1094 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1095
1096 const char* const name = ".eh_frame";
1097 Output_section* os = this->choose_output_section(object, name,
1098 elfcpp::SHT_PROGBITS,
1099 elfcpp::SHF_ALLOC, false,
1100 ORDER_EHFRAME, false);
1101 if (os == NULL)
1102 return NULL;
1103
1104 if (this->eh_frame_section_ == NULL)
1105 {
1106 this->eh_frame_section_ = os;
1107 this->eh_frame_data_ = new Eh_frame();
1108
1109 // For incremental linking, we do not optimize .eh_frame sections
1110 // or create a .eh_frame_hdr section.
1111 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1112 {
1113 Output_section* hdr_os =
1114 this->choose_output_section(NULL, ".eh_frame_hdr",
1115 elfcpp::SHT_PROGBITS,
1116 elfcpp::SHF_ALLOC, false,
1117 ORDER_EHFRAME, false);
1118
1119 if (hdr_os != NULL)
1120 {
1121 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1122 this->eh_frame_data_);
1123 hdr_os->add_output_section_data(hdr_posd);
1124
1125 hdr_os->set_after_input_sections();
1126
1127 if (!this->script_options_->saw_phdrs_clause())
1128 {
1129 Output_segment* hdr_oseg;
1130 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1131 elfcpp::PF_R);
1132 hdr_oseg->add_output_section_to_nonload(hdr_os,
1133 elfcpp::PF_R);
1134 }
1135
1136 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1137 }
1138 }
1139 }
1140
1141 gold_assert(this->eh_frame_section_ == os);
1142
1143 if (!parameters->incremental()
1144 && this->eh_frame_data_->add_ehframe_input_section(object,
1145 symbols,
1146 symbols_size,
1147 symbol_names,
1148 symbol_names_size,
1149 shndx,
1150 reloc_shndx,
1151 reloc_type))
1152 {
1153 os->update_flags_for_input_section(shdr.get_sh_flags());
1154
1155 // A writable .eh_frame section is a RELRO section.
1156 if ((shdr.get_sh_flags() & elfcpp::SHF_WRITE) != 0)
1157 os->set_is_relro();
1158
1159 // We found a .eh_frame section we are going to optimize, so now
1160 // we can add the set of optimized sections to the output
1161 // section. We need to postpone adding this until we've found a
1162 // section we can optimize so that the .eh_frame section in
1163 // crtbegin.o winds up at the start of the output section.
1164 if (!this->added_eh_frame_data_)
1165 {
1166 os->add_output_section_data(this->eh_frame_data_);
1167 this->added_eh_frame_data_ = true;
1168 }
1169 *off = -1;
1170 }
1171 else
1172 {
1173 // We couldn't handle this .eh_frame section for some reason.
1174 // Add it as a normal section.
1175 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1176 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1177 saw_sections_clause);
1178 this->have_added_input_section_ = true;
1179 }
1180
1181 return os;
1182 }
1183
1184 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1185 // the output section.
1186
1187 Output_section*
1188 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1189 elfcpp::Elf_Xword flags,
1190 Output_section_data* posd,
1191 Output_section_order order, bool is_relro)
1192 {
1193 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1194 false, order, is_relro);
1195 if (os != NULL)
1196 os->add_output_section_data(posd);
1197 return os;
1198 }
1199
1200 // Map section flags to segment flags.
1201
1202 elfcpp::Elf_Word
1203 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1204 {
1205 elfcpp::Elf_Word ret = elfcpp::PF_R;
1206 if ((flags & elfcpp::SHF_WRITE) != 0)
1207 ret |= elfcpp::PF_W;
1208 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1209 ret |= elfcpp::PF_X;
1210 return ret;
1211 }
1212
1213 // Make a new Output_section, and attach it to segments as
1214 // appropriate. ORDER is the order in which this section should
1215 // appear in the output segment. IS_RELRO is true if this is a relro
1216 // (read-only after relocations) section.
1217
1218 Output_section*
1219 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1220 elfcpp::Elf_Xword flags,
1221 Output_section_order order, bool is_relro)
1222 {
1223 Output_section* os;
1224 if ((flags & elfcpp::SHF_ALLOC) == 0
1225 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1226 && is_compressible_debug_section(name))
1227 os = new Output_compressed_section(&parameters->options(), name, type,
1228 flags);
1229 else if ((flags & elfcpp::SHF_ALLOC) == 0
1230 && parameters->options().strip_debug_non_line()
1231 && strcmp(".debug_abbrev", name) == 0)
1232 {
1233 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1234 name, type, flags);
1235 if (this->debug_info_)
1236 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1237 }
1238 else if ((flags & elfcpp::SHF_ALLOC) == 0
1239 && parameters->options().strip_debug_non_line()
1240 && strcmp(".debug_info", name) == 0)
1241 {
1242 os = this->debug_info_ = new Output_reduced_debug_info_section(
1243 name, type, flags);
1244 if (this->debug_abbrev_)
1245 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1246 }
1247 else
1248 {
1249 // FIXME: const_cast is ugly.
1250 Target* target = const_cast<Target*>(&parameters->target());
1251 os = target->make_output_section(name, type, flags);
1252 }
1253
1254 // With -z relro, we have to recognize the special sections by name.
1255 // There is no other way.
1256 bool is_relro_local = false;
1257 if (!this->script_options_->saw_sections_clause()
1258 && parameters->options().relro()
1259 && type == elfcpp::SHT_PROGBITS
1260 && (flags & elfcpp::SHF_ALLOC) != 0
1261 && (flags & elfcpp::SHF_WRITE) != 0)
1262 {
1263 if (strcmp(name, ".data.rel.ro") == 0)
1264 is_relro = true;
1265 else if (strcmp(name, ".data.rel.ro.local") == 0)
1266 {
1267 is_relro = true;
1268 is_relro_local = true;
1269 }
1270 else if (type == elfcpp::SHT_INIT_ARRAY
1271 || type == elfcpp::SHT_FINI_ARRAY
1272 || type == elfcpp::SHT_PREINIT_ARRAY)
1273 is_relro = true;
1274 else if (strcmp(name, ".ctors") == 0
1275 || strcmp(name, ".dtors") == 0
1276 || strcmp(name, ".jcr") == 0)
1277 is_relro = true;
1278 }
1279
1280 if (is_relro)
1281 os->set_is_relro();
1282
1283 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1284 order = this->default_section_order(os, is_relro_local);
1285
1286 os->set_order(order);
1287
1288 parameters->target().new_output_section(os);
1289
1290 this->section_list_.push_back(os);
1291
1292 // The GNU linker by default sorts some sections by priority, so we
1293 // do the same. We need to know that this might happen before we
1294 // attach any input sections.
1295 if (!this->script_options_->saw_sections_clause()
1296 && (strcmp(name, ".ctors") == 0
1297 || strcmp(name, ".dtors") == 0
1298 || strcmp(name, ".init_array") == 0
1299 || strcmp(name, ".fini_array") == 0))
1300 os->set_may_sort_attached_input_sections();
1301
1302 // Check for .stab*str sections, as .stab* sections need to link to
1303 // them.
1304 if (type == elfcpp::SHT_STRTAB
1305 && !this->have_stabstr_section_
1306 && strncmp(name, ".stab", 5) == 0
1307 && strcmp(name + strlen(name) - 3, "str") == 0)
1308 this->have_stabstr_section_ = true;
1309
1310 // If we have already attached the sections to segments, then we
1311 // need to attach this one now. This happens for sections created
1312 // directly by the linker.
1313 if (this->sections_are_attached_)
1314 this->attach_section_to_segment(os);
1315
1316 return os;
1317 }
1318
1319 // Return the default order in which a section should be placed in an
1320 // output segment. This function captures a lot of the ideas in
1321 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1322 // linker created section is normally set when the section is created;
1323 // this function is used for input sections.
1324
1325 Output_section_order
1326 Layout::default_section_order(Output_section* os, bool is_relro_local)
1327 {
1328 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1329 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1330 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1331 bool is_bss = false;
1332
1333 switch (os->type())
1334 {
1335 default:
1336 case elfcpp::SHT_PROGBITS:
1337 break;
1338 case elfcpp::SHT_NOBITS:
1339 is_bss = true;
1340 break;
1341 case elfcpp::SHT_RELA:
1342 case elfcpp::SHT_REL:
1343 if (!is_write)
1344 return ORDER_DYNAMIC_RELOCS;
1345 break;
1346 case elfcpp::SHT_HASH:
1347 case elfcpp::SHT_DYNAMIC:
1348 case elfcpp::SHT_SHLIB:
1349 case elfcpp::SHT_DYNSYM:
1350 case elfcpp::SHT_GNU_HASH:
1351 case elfcpp::SHT_GNU_verdef:
1352 case elfcpp::SHT_GNU_verneed:
1353 case elfcpp::SHT_GNU_versym:
1354 if (!is_write)
1355 return ORDER_DYNAMIC_LINKER;
1356 break;
1357 case elfcpp::SHT_NOTE:
1358 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1359 }
1360
1361 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1362 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1363
1364 if (!is_bss && !is_write)
1365 {
1366 if (is_execinstr)
1367 {
1368 if (strcmp(os->name(), ".init") == 0)
1369 return ORDER_INIT;
1370 else if (strcmp(os->name(), ".fini") == 0)
1371 return ORDER_FINI;
1372 }
1373 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1374 }
1375
1376 if (os->is_relro())
1377 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1378
1379 if (os->is_small_section())
1380 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1381 if (os->is_large_section())
1382 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1383
1384 return is_bss ? ORDER_BSS : ORDER_DATA;
1385 }
1386
1387 // Attach output sections to segments. This is called after we have
1388 // seen all the input sections.
1389
1390 void
1391 Layout::attach_sections_to_segments()
1392 {
1393 for (Section_list::iterator p = this->section_list_.begin();
1394 p != this->section_list_.end();
1395 ++p)
1396 this->attach_section_to_segment(*p);
1397
1398 this->sections_are_attached_ = true;
1399 }
1400
1401 // Attach an output section to a segment.
1402
1403 void
1404 Layout::attach_section_to_segment(Output_section* os)
1405 {
1406 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1407 this->unattached_section_list_.push_back(os);
1408 else
1409 this->attach_allocated_section_to_segment(os);
1410 }
1411
1412 // Attach an allocated output section to a segment.
1413
1414 void
1415 Layout::attach_allocated_section_to_segment(Output_section* os)
1416 {
1417 elfcpp::Elf_Xword flags = os->flags();
1418 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1419
1420 if (parameters->options().relocatable())
1421 return;
1422
1423 // If we have a SECTIONS clause, we can't handle the attachment to
1424 // segments until after we've seen all the sections.
1425 if (this->script_options_->saw_sections_clause())
1426 return;
1427
1428 gold_assert(!this->script_options_->saw_phdrs_clause());
1429
1430 // This output section goes into a PT_LOAD segment.
1431
1432 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1433
1434 // Check for --section-start.
1435 uint64_t addr;
1436 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1437
1438 // In general the only thing we really care about for PT_LOAD
1439 // segments is whether or not they are writable or executable,
1440 // so that is how we search for them.
1441 // Large data sections also go into their own PT_LOAD segment.
1442 // People who need segments sorted on some other basis will
1443 // have to use a linker script.
1444
1445 Segment_list::const_iterator p;
1446 for (p = this->segment_list_.begin();
1447 p != this->segment_list_.end();
1448 ++p)
1449 {
1450 if ((*p)->type() != elfcpp::PT_LOAD)
1451 continue;
1452 if (!parameters->options().omagic()
1453 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1454 continue;
1455 if (parameters->options().rosegment()
1456 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1457 continue;
1458 // If -Tbss was specified, we need to separate the data and BSS
1459 // segments.
1460 if (parameters->options().user_set_Tbss())
1461 {
1462 if ((os->type() == elfcpp::SHT_NOBITS)
1463 == (*p)->has_any_data_sections())
1464 continue;
1465 }
1466 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1467 continue;
1468
1469 if (is_address_set)
1470 {
1471 if ((*p)->are_addresses_set())
1472 continue;
1473
1474 (*p)->add_initial_output_data(os);
1475 (*p)->update_flags_for_output_section(seg_flags);
1476 (*p)->set_addresses(addr, addr);
1477 break;
1478 }
1479
1480 (*p)->add_output_section_to_load(this, os, seg_flags);
1481 break;
1482 }
1483
1484 if (p == this->segment_list_.end())
1485 {
1486 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1487 seg_flags);
1488 if (os->is_large_data_section())
1489 oseg->set_is_large_data_segment();
1490 oseg->add_output_section_to_load(this, os, seg_flags);
1491 if (is_address_set)
1492 oseg->set_addresses(addr, addr);
1493 }
1494
1495 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1496 // segment.
1497 if (os->type() == elfcpp::SHT_NOTE)
1498 {
1499 // See if we already have an equivalent PT_NOTE segment.
1500 for (p = this->segment_list_.begin();
1501 p != segment_list_.end();
1502 ++p)
1503 {
1504 if ((*p)->type() == elfcpp::PT_NOTE
1505 && (((*p)->flags() & elfcpp::PF_W)
1506 == (seg_flags & elfcpp::PF_W)))
1507 {
1508 (*p)->add_output_section_to_nonload(os, seg_flags);
1509 break;
1510 }
1511 }
1512
1513 if (p == this->segment_list_.end())
1514 {
1515 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1516 seg_flags);
1517 oseg->add_output_section_to_nonload(os, seg_flags);
1518 }
1519 }
1520
1521 // If we see a loadable SHF_TLS section, we create a PT_TLS
1522 // segment. There can only be one such segment.
1523 if ((flags & elfcpp::SHF_TLS) != 0)
1524 {
1525 if (this->tls_segment_ == NULL)
1526 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1527 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1528 }
1529
1530 // If -z relro is in effect, and we see a relro section, we create a
1531 // PT_GNU_RELRO segment. There can only be one such segment.
1532 if (os->is_relro() && parameters->options().relro())
1533 {
1534 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1535 if (this->relro_segment_ == NULL)
1536 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1537 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1538 }
1539
1540 // If we are making a shared library, and we see a section named
1541 // .interp, and the -dynamic-linker option was not used, then put
1542 // the .interp section into a PT_INTERP segment. This is for GNU ld
1543 // compatibility. If making an executable, or if the
1544 // -dynamic-linker option was used, we will create the section and
1545 // segment in Layout::create_interp.
1546 if (strcmp(os->name(), ".interp") == 0
1547 && parameters->options().shared()
1548 && parameters->options().dynamic_linker() == NULL)
1549 {
1550 if (this->interp_segment_ == NULL)
1551 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1552 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1553 }
1554 }
1555
1556 // Make an output section for a script.
1557
1558 Output_section*
1559 Layout::make_output_section_for_script(
1560 const char* name,
1561 Script_sections::Section_type section_type)
1562 {
1563 name = this->namepool_.add(name, false, NULL);
1564 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1565 if (section_type == Script_sections::ST_NOLOAD)
1566 sh_flags = 0;
1567 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1568 sh_flags, ORDER_INVALID,
1569 false);
1570 os->set_found_in_sections_clause();
1571 if (section_type == Script_sections::ST_NOLOAD)
1572 os->set_is_noload();
1573 return os;
1574 }
1575
1576 // Return the number of segments we expect to see.
1577
1578 size_t
1579 Layout::expected_segment_count() const
1580 {
1581 size_t ret = this->segment_list_.size();
1582
1583 // If we didn't see a SECTIONS clause in a linker script, we should
1584 // already have the complete list of segments. Otherwise we ask the
1585 // SECTIONS clause how many segments it expects, and add in the ones
1586 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1587
1588 if (!this->script_options_->saw_sections_clause())
1589 return ret;
1590 else
1591 {
1592 const Script_sections* ss = this->script_options_->script_sections();
1593 return ret + ss->expected_segment_count(this);
1594 }
1595 }
1596
1597 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1598 // is whether we saw a .note.GNU-stack section in the object file.
1599 // GNU_STACK_FLAGS is the section flags. The flags give the
1600 // protection required for stack memory. We record this in an
1601 // executable as a PT_GNU_STACK segment. If an object file does not
1602 // have a .note.GNU-stack segment, we must assume that it is an old
1603 // object. On some targets that will force an executable stack.
1604
1605 void
1606 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1607 const Object* obj)
1608 {
1609 if (!seen_gnu_stack)
1610 {
1611 this->input_without_gnu_stack_note_ = true;
1612 if (parameters->options().warn_execstack()
1613 && parameters->target().is_default_stack_executable())
1614 gold_warning(_("%s: missing .note.GNU-stack section"
1615 " implies executable stack"),
1616 obj->name().c_str());
1617 }
1618 else
1619 {
1620 this->input_with_gnu_stack_note_ = true;
1621 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1622 {
1623 this->input_requires_executable_stack_ = true;
1624 if (parameters->options().warn_execstack()
1625 || parameters->options().is_stack_executable())
1626 gold_warning(_("%s: requires executable stack"),
1627 obj->name().c_str());
1628 }
1629 }
1630 }
1631
1632 // Create automatic note sections.
1633
1634 void
1635 Layout::create_notes()
1636 {
1637 this->create_gold_note();
1638 this->create_executable_stack_info();
1639 this->create_build_id();
1640 }
1641
1642 // Create the dynamic sections which are needed before we read the
1643 // relocs.
1644
1645 void
1646 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1647 {
1648 if (parameters->doing_static_link())
1649 return;
1650
1651 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1652 elfcpp::SHT_DYNAMIC,
1653 (elfcpp::SHF_ALLOC
1654 | elfcpp::SHF_WRITE),
1655 false, ORDER_RELRO,
1656 true);
1657
1658 this->dynamic_symbol_ =
1659 symtab->define_in_output_data("_DYNAMIC", NULL, Symbol_table::PREDEFINED,
1660 this->dynamic_section_, 0, 0,
1661 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1662 elfcpp::STV_HIDDEN, 0, false, false);
1663
1664 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1665
1666 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1667 }
1668
1669 // For each output section whose name can be represented as C symbol,
1670 // define __start and __stop symbols for the section. This is a GNU
1671 // extension.
1672
1673 void
1674 Layout::define_section_symbols(Symbol_table* symtab)
1675 {
1676 for (Section_list::const_iterator p = this->section_list_.begin();
1677 p != this->section_list_.end();
1678 ++p)
1679 {
1680 const char* const name = (*p)->name();
1681 if (is_cident(name))
1682 {
1683 const std::string name_string(name);
1684 const std::string start_name(cident_section_start_prefix
1685 + name_string);
1686 const std::string stop_name(cident_section_stop_prefix
1687 + name_string);
1688
1689 symtab->define_in_output_data(start_name.c_str(),
1690 NULL, // version
1691 Symbol_table::PREDEFINED,
1692 *p,
1693 0, // value
1694 0, // symsize
1695 elfcpp::STT_NOTYPE,
1696 elfcpp::STB_GLOBAL,
1697 elfcpp::STV_DEFAULT,
1698 0, // nonvis
1699 false, // offset_is_from_end
1700 true); // only_if_ref
1701
1702 symtab->define_in_output_data(stop_name.c_str(),
1703 NULL, // version
1704 Symbol_table::PREDEFINED,
1705 *p,
1706 0, // value
1707 0, // symsize
1708 elfcpp::STT_NOTYPE,
1709 elfcpp::STB_GLOBAL,
1710 elfcpp::STV_DEFAULT,
1711 0, // nonvis
1712 true, // offset_is_from_end
1713 true); // only_if_ref
1714 }
1715 }
1716 }
1717
1718 // Define symbols for group signatures.
1719
1720 void
1721 Layout::define_group_signatures(Symbol_table* symtab)
1722 {
1723 for (Group_signatures::iterator p = this->group_signatures_.begin();
1724 p != this->group_signatures_.end();
1725 ++p)
1726 {
1727 Symbol* sym = symtab->lookup(p->signature, NULL);
1728 if (sym != NULL)
1729 p->section->set_info_symndx(sym);
1730 else
1731 {
1732 // Force the name of the group section to the group
1733 // signature, and use the group's section symbol as the
1734 // signature symbol.
1735 if (strcmp(p->section->name(), p->signature) != 0)
1736 {
1737 const char* name = this->namepool_.add(p->signature,
1738 true, NULL);
1739 p->section->set_name(name);
1740 }
1741 p->section->set_needs_symtab_index();
1742 p->section->set_info_section_symndx(p->section);
1743 }
1744 }
1745
1746 this->group_signatures_.clear();
1747 }
1748
1749 // Find the first read-only PT_LOAD segment, creating one if
1750 // necessary.
1751
1752 Output_segment*
1753 Layout::find_first_load_seg()
1754 {
1755 Output_segment* best = NULL;
1756 for (Segment_list::const_iterator p = this->segment_list_.begin();
1757 p != this->segment_list_.end();
1758 ++p)
1759 {
1760 if ((*p)->type() == elfcpp::PT_LOAD
1761 && ((*p)->flags() & elfcpp::PF_R) != 0
1762 && (parameters->options().omagic()
1763 || ((*p)->flags() & elfcpp::PF_W) == 0))
1764 {
1765 if (best == NULL || this->segment_precedes(*p, best))
1766 best = *p;
1767 }
1768 }
1769 if (best != NULL)
1770 return best;
1771
1772 gold_assert(!this->script_options_->saw_phdrs_clause());
1773
1774 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1775 elfcpp::PF_R);
1776 return load_seg;
1777 }
1778
1779 // Save states of all current output segments. Store saved states
1780 // in SEGMENT_STATES.
1781
1782 void
1783 Layout::save_segments(Segment_states* segment_states)
1784 {
1785 for (Segment_list::const_iterator p = this->segment_list_.begin();
1786 p != this->segment_list_.end();
1787 ++p)
1788 {
1789 Output_segment* segment = *p;
1790 // Shallow copy.
1791 Output_segment* copy = new Output_segment(*segment);
1792 (*segment_states)[segment] = copy;
1793 }
1794 }
1795
1796 // Restore states of output segments and delete any segment not found in
1797 // SEGMENT_STATES.
1798
1799 void
1800 Layout::restore_segments(const Segment_states* segment_states)
1801 {
1802 // Go through the segment list and remove any segment added in the
1803 // relaxation loop.
1804 this->tls_segment_ = NULL;
1805 this->relro_segment_ = NULL;
1806 Segment_list::iterator list_iter = this->segment_list_.begin();
1807 while (list_iter != this->segment_list_.end())
1808 {
1809 Output_segment* segment = *list_iter;
1810 Segment_states::const_iterator states_iter =
1811 segment_states->find(segment);
1812 if (states_iter != segment_states->end())
1813 {
1814 const Output_segment* copy = states_iter->second;
1815 // Shallow copy to restore states.
1816 *segment = *copy;
1817
1818 // Also fix up TLS and RELRO segment pointers as appropriate.
1819 if (segment->type() == elfcpp::PT_TLS)
1820 this->tls_segment_ = segment;
1821 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1822 this->relro_segment_ = segment;
1823
1824 ++list_iter;
1825 }
1826 else
1827 {
1828 list_iter = this->segment_list_.erase(list_iter);
1829 // This is a segment created during section layout. It should be
1830 // safe to remove it since we should have removed all pointers to it.
1831 delete segment;
1832 }
1833 }
1834 }
1835
1836 // Clean up after relaxation so that sections can be laid out again.
1837
1838 void
1839 Layout::clean_up_after_relaxation()
1840 {
1841 // Restore the segments to point state just prior to the relaxation loop.
1842 Script_sections* script_section = this->script_options_->script_sections();
1843 script_section->release_segments();
1844 this->restore_segments(this->segment_states_);
1845
1846 // Reset section addresses and file offsets
1847 for (Section_list::iterator p = this->section_list_.begin();
1848 p != this->section_list_.end();
1849 ++p)
1850 {
1851 (*p)->restore_states();
1852
1853 // If an input section changes size because of relaxation,
1854 // we need to adjust the section offsets of all input sections.
1855 // after such a section.
1856 if ((*p)->section_offsets_need_adjustment())
1857 (*p)->adjust_section_offsets();
1858
1859 (*p)->reset_address_and_file_offset();
1860 }
1861
1862 // Reset special output object address and file offsets.
1863 for (Data_list::iterator p = this->special_output_list_.begin();
1864 p != this->special_output_list_.end();
1865 ++p)
1866 (*p)->reset_address_and_file_offset();
1867
1868 // A linker script may have created some output section data objects.
1869 // They are useless now.
1870 for (Output_section_data_list::const_iterator p =
1871 this->script_output_section_data_list_.begin();
1872 p != this->script_output_section_data_list_.end();
1873 ++p)
1874 delete *p;
1875 this->script_output_section_data_list_.clear();
1876 }
1877
1878 // Prepare for relaxation.
1879
1880 void
1881 Layout::prepare_for_relaxation()
1882 {
1883 // Create an relaxation debug check if in debugging mode.
1884 if (is_debugging_enabled(DEBUG_RELAXATION))
1885 this->relaxation_debug_check_ = new Relaxation_debug_check();
1886
1887 // Save segment states.
1888 this->segment_states_ = new Segment_states();
1889 this->save_segments(this->segment_states_);
1890
1891 for(Section_list::const_iterator p = this->section_list_.begin();
1892 p != this->section_list_.end();
1893 ++p)
1894 (*p)->save_states();
1895
1896 if (is_debugging_enabled(DEBUG_RELAXATION))
1897 this->relaxation_debug_check_->check_output_data_for_reset_values(
1898 this->section_list_, this->special_output_list_);
1899
1900 // Also enable recording of output section data from scripts.
1901 this->record_output_section_data_from_script_ = true;
1902 }
1903
1904 // Relaxation loop body: If target has no relaxation, this runs only once
1905 // Otherwise, the target relaxation hook is called at the end of
1906 // each iteration. If the hook returns true, it means re-layout of
1907 // section is required.
1908 //
1909 // The number of segments created by a linking script without a PHDRS
1910 // clause may be affected by section sizes and alignments. There is
1911 // a remote chance that relaxation causes different number of PT_LOAD
1912 // segments are created and sections are attached to different segments.
1913 // Therefore, we always throw away all segments created during section
1914 // layout. In order to be able to restart the section layout, we keep
1915 // a copy of the segment list right before the relaxation loop and use
1916 // that to restore the segments.
1917 //
1918 // PASS is the current relaxation pass number.
1919 // SYMTAB is a symbol table.
1920 // PLOAD_SEG is the address of a pointer for the load segment.
1921 // PHDR_SEG is a pointer to the PHDR segment.
1922 // SEGMENT_HEADERS points to the output segment header.
1923 // FILE_HEADER points to the output file header.
1924 // PSHNDX is the address to store the output section index.
1925
1926 off_t inline
1927 Layout::relaxation_loop_body(
1928 int pass,
1929 Target* target,
1930 Symbol_table* symtab,
1931 Output_segment** pload_seg,
1932 Output_segment* phdr_seg,
1933 Output_segment_headers* segment_headers,
1934 Output_file_header* file_header,
1935 unsigned int* pshndx)
1936 {
1937 // If this is not the first iteration, we need to clean up after
1938 // relaxation so that we can lay out the sections again.
1939 if (pass != 0)
1940 this->clean_up_after_relaxation();
1941
1942 // If there is a SECTIONS clause, put all the input sections into
1943 // the required order.
1944 Output_segment* load_seg;
1945 if (this->script_options_->saw_sections_clause())
1946 load_seg = this->set_section_addresses_from_script(symtab);
1947 else if (parameters->options().relocatable())
1948 load_seg = NULL;
1949 else
1950 load_seg = this->find_first_load_seg();
1951
1952 if (parameters->options().oformat_enum()
1953 != General_options::OBJECT_FORMAT_ELF)
1954 load_seg = NULL;
1955
1956 // If the user set the address of the text segment, that may not be
1957 // compatible with putting the segment headers and file headers into
1958 // that segment.
1959 if (parameters->options().user_set_Ttext())
1960 load_seg = NULL;
1961
1962 gold_assert(phdr_seg == NULL
1963 || load_seg != NULL
1964 || this->script_options_->saw_sections_clause());
1965
1966 // If the address of the load segment we found has been set by
1967 // --section-start rather than by a script, then adjust the VMA and
1968 // LMA downward if possible to include the file and section headers.
1969 uint64_t header_gap = 0;
1970 if (load_seg != NULL
1971 && load_seg->are_addresses_set()
1972 && !this->script_options_->saw_sections_clause()
1973 && !parameters->options().relocatable())
1974 {
1975 file_header->finalize_data_size();
1976 segment_headers->finalize_data_size();
1977 size_t sizeof_headers = (file_header->data_size()
1978 + segment_headers->data_size());
1979 const uint64_t abi_pagesize = target->abi_pagesize();
1980 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
1981 hdr_paddr &= ~(abi_pagesize - 1);
1982 uint64_t subtract = load_seg->paddr() - hdr_paddr;
1983 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
1984 load_seg = NULL;
1985 else
1986 {
1987 load_seg->set_addresses(load_seg->vaddr() - subtract,
1988 load_seg->paddr() - subtract);
1989 header_gap = subtract - sizeof_headers;
1990 }
1991 }
1992
1993 // Lay out the segment headers.
1994 if (!parameters->options().relocatable())
1995 {
1996 gold_assert(segment_headers != NULL);
1997 if (header_gap != 0 && load_seg != NULL)
1998 {
1999 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2000 load_seg->add_initial_output_data(z);
2001 }
2002 if (load_seg != NULL)
2003 load_seg->add_initial_output_data(segment_headers);
2004 if (phdr_seg != NULL)
2005 phdr_seg->add_initial_output_data(segment_headers);
2006 }
2007
2008 // Lay out the file header.
2009 if (load_seg != NULL)
2010 load_seg->add_initial_output_data(file_header);
2011
2012 if (this->script_options_->saw_phdrs_clause()
2013 && !parameters->options().relocatable())
2014 {
2015 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2016 // clause in a linker script.
2017 Script_sections* ss = this->script_options_->script_sections();
2018 ss->put_headers_in_phdrs(file_header, segment_headers);
2019 }
2020
2021 // We set the output section indexes in set_segment_offsets and
2022 // set_section_indexes.
2023 *pshndx = 1;
2024
2025 // Set the file offsets of all the segments, and all the sections
2026 // they contain.
2027 off_t off;
2028 if (!parameters->options().relocatable())
2029 off = this->set_segment_offsets(target, load_seg, pshndx);
2030 else
2031 off = this->set_relocatable_section_offsets(file_header, pshndx);
2032
2033 // Verify that the dummy relaxation does not change anything.
2034 if (is_debugging_enabled(DEBUG_RELAXATION))
2035 {
2036 if (pass == 0)
2037 this->relaxation_debug_check_->read_sections(this->section_list_);
2038 else
2039 this->relaxation_debug_check_->verify_sections(this->section_list_);
2040 }
2041
2042 *pload_seg = load_seg;
2043 return off;
2044 }
2045
2046 // Search the list of patterns and find the postion of the given section
2047 // name in the output section. If the section name matches a glob
2048 // pattern and a non-glob name, then the non-glob position takes
2049 // precedence. Return 0 if no match is found.
2050
2051 unsigned int
2052 Layout::find_section_order_index(const std::string& section_name)
2053 {
2054 Unordered_map<std::string, unsigned int>::iterator map_it;
2055 map_it = this->input_section_position_.find(section_name);
2056 if (map_it != this->input_section_position_.end())
2057 return map_it->second;
2058
2059 // Absolute match failed. Linear search the glob patterns.
2060 std::vector<std::string>::iterator it;
2061 for (it = this->input_section_glob_.begin();
2062 it != this->input_section_glob_.end();
2063 ++it)
2064 {
2065 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2066 {
2067 map_it = this->input_section_position_.find(*it);
2068 gold_assert(map_it != this->input_section_position_.end());
2069 return map_it->second;
2070 }
2071 }
2072 return 0;
2073 }
2074
2075 // Read the sequence of input sections from the file specified with
2076 // --section-ordering-file.
2077
2078 void
2079 Layout::read_layout_from_file()
2080 {
2081 const char* filename = parameters->options().section_ordering_file();
2082 std::ifstream in;
2083 std::string line;
2084
2085 in.open(filename);
2086 if (!in)
2087 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2088 filename, strerror(errno));
2089
2090 std::getline(in, line); // this chops off the trailing \n, if any
2091 unsigned int position = 1;
2092
2093 while (in)
2094 {
2095 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2096 line.resize(line.length() - 1);
2097 // Ignore comments, beginning with '#'
2098 if (line[0] == '#')
2099 {
2100 std::getline(in, line);
2101 continue;
2102 }
2103 this->input_section_position_[line] = position;
2104 // Store all glob patterns in a vector.
2105 if (is_wildcard_string(line.c_str()))
2106 this->input_section_glob_.push_back(line);
2107 position++;
2108 std::getline(in, line);
2109 }
2110 }
2111
2112 // Finalize the layout. When this is called, we have created all the
2113 // output sections and all the output segments which are based on
2114 // input sections. We have several things to do, and we have to do
2115 // them in the right order, so that we get the right results correctly
2116 // and efficiently.
2117
2118 // 1) Finalize the list of output segments and create the segment
2119 // table header.
2120
2121 // 2) Finalize the dynamic symbol table and associated sections.
2122
2123 // 3) Determine the final file offset of all the output segments.
2124
2125 // 4) Determine the final file offset of all the SHF_ALLOC output
2126 // sections.
2127
2128 // 5) Create the symbol table sections and the section name table
2129 // section.
2130
2131 // 6) Finalize the symbol table: set symbol values to their final
2132 // value and make a final determination of which symbols are going
2133 // into the output symbol table.
2134
2135 // 7) Create the section table header.
2136
2137 // 8) Determine the final file offset of all the output sections which
2138 // are not SHF_ALLOC, including the section table header.
2139
2140 // 9) Finalize the ELF file header.
2141
2142 // This function returns the size of the output file.
2143
2144 off_t
2145 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2146 Target* target, const Task* task)
2147 {
2148 target->finalize_sections(this, input_objects, symtab);
2149
2150 this->count_local_symbols(task, input_objects);
2151
2152 this->link_stabs_sections();
2153
2154 Output_segment* phdr_seg = NULL;
2155 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2156 {
2157 // There was a dynamic object in the link. We need to create
2158 // some information for the dynamic linker.
2159
2160 // Create the PT_PHDR segment which will hold the program
2161 // headers.
2162 if (!this->script_options_->saw_phdrs_clause())
2163 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2164
2165 // Create the dynamic symbol table, including the hash table.
2166 Output_section* dynstr;
2167 std::vector<Symbol*> dynamic_symbols;
2168 unsigned int local_dynamic_count;
2169 Versions versions(*this->script_options()->version_script_info(),
2170 &this->dynpool_);
2171 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2172 &local_dynamic_count, &dynamic_symbols,
2173 &versions);
2174
2175 // Create the .interp section to hold the name of the
2176 // interpreter, and put it in a PT_INTERP segment.
2177 if (!parameters->options().shared()
2178 || parameters->options().dynamic_linker() != NULL)
2179 this->create_interp(target);
2180
2181 // Finish the .dynamic section to hold the dynamic data, and put
2182 // it in a PT_DYNAMIC segment.
2183 this->finish_dynamic_section(input_objects, symtab);
2184
2185 // We should have added everything we need to the dynamic string
2186 // table.
2187 this->dynpool_.set_string_offsets();
2188
2189 // Create the version sections. We can't do this until the
2190 // dynamic string table is complete.
2191 this->create_version_sections(&versions, symtab, local_dynamic_count,
2192 dynamic_symbols, dynstr);
2193
2194 // Set the size of the _DYNAMIC symbol. We can't do this until
2195 // after we call create_version_sections.
2196 this->set_dynamic_symbol_size(symtab);
2197 }
2198
2199 // Create segment headers.
2200 Output_segment_headers* segment_headers =
2201 (parameters->options().relocatable()
2202 ? NULL
2203 : new Output_segment_headers(this->segment_list_));
2204
2205 // Lay out the file header.
2206 Output_file_header* file_header = new Output_file_header(target, symtab,
2207 segment_headers);
2208
2209 this->special_output_list_.push_back(file_header);
2210 if (segment_headers != NULL)
2211 this->special_output_list_.push_back(segment_headers);
2212
2213 // Find approriate places for orphan output sections if we are using
2214 // a linker script.
2215 if (this->script_options_->saw_sections_clause())
2216 this->place_orphan_sections_in_script();
2217
2218 Output_segment* load_seg;
2219 off_t off;
2220 unsigned int shndx;
2221 int pass = 0;
2222
2223 // Take a snapshot of the section layout as needed.
2224 if (target->may_relax())
2225 this->prepare_for_relaxation();
2226
2227 // Run the relaxation loop to lay out sections.
2228 do
2229 {
2230 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2231 phdr_seg, segment_headers, file_header,
2232 &shndx);
2233 pass++;
2234 }
2235 while (target->may_relax()
2236 && target->relax(pass, input_objects, symtab, this, task));
2237
2238 // Set the file offsets of all the non-data sections we've seen so
2239 // far which don't have to wait for the input sections. We need
2240 // this in order to finalize local symbols in non-allocated
2241 // sections.
2242 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2243
2244 // Set the section indexes of all unallocated sections seen so far,
2245 // in case any of them are somehow referenced by a symbol.
2246 shndx = this->set_section_indexes(shndx);
2247
2248 // Create the symbol table sections.
2249 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2250 if (!parameters->doing_static_link())
2251 this->assign_local_dynsym_offsets(input_objects);
2252
2253 // Process any symbol assignments from a linker script. This must
2254 // be called after the symbol table has been finalized.
2255 this->script_options_->finalize_symbols(symtab, this);
2256
2257 // Create the incremental inputs sections.
2258 if (this->incremental_inputs_)
2259 {
2260 this->incremental_inputs_->finalize();
2261 this->create_incremental_info_sections(symtab);
2262 }
2263
2264 // Create the .shstrtab section.
2265 Output_section* shstrtab_section = this->create_shstrtab();
2266
2267 // Set the file offsets of the rest of the non-data sections which
2268 // don't have to wait for the input sections.
2269 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2270
2271 // Now that all sections have been created, set the section indexes
2272 // for any sections which haven't been done yet.
2273 shndx = this->set_section_indexes(shndx);
2274
2275 // Create the section table header.
2276 this->create_shdrs(shstrtab_section, &off);
2277
2278 // If there are no sections which require postprocessing, we can
2279 // handle the section names now, and avoid a resize later.
2280 if (!this->any_postprocessing_sections_)
2281 {
2282 off = this->set_section_offsets(off,
2283 POSTPROCESSING_SECTIONS_PASS);
2284 off =
2285 this->set_section_offsets(off,
2286 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2287 }
2288
2289 file_header->set_section_info(this->section_headers_, shstrtab_section);
2290
2291 // Now we know exactly where everything goes in the output file
2292 // (except for non-allocated sections which require postprocessing).
2293 Output_data::layout_complete();
2294
2295 this->output_file_size_ = off;
2296
2297 return off;
2298 }
2299
2300 // Create a note header following the format defined in the ELF ABI.
2301 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2302 // of the section to create, DESCSZ is the size of the descriptor.
2303 // ALLOCATE is true if the section should be allocated in memory.
2304 // This returns the new note section. It sets *TRAILING_PADDING to
2305 // the number of trailing zero bytes required.
2306
2307 Output_section*
2308 Layout::create_note(const char* name, int note_type,
2309 const char* section_name, size_t descsz,
2310 bool allocate, size_t* trailing_padding)
2311 {
2312 // Authorities all agree that the values in a .note field should
2313 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2314 // they differ on what the alignment is for 64-bit binaries.
2315 // The GABI says unambiguously they take 8-byte alignment:
2316 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2317 // Other documentation says alignment should always be 4 bytes:
2318 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2319 // GNU ld and GNU readelf both support the latter (at least as of
2320 // version 2.16.91), and glibc always generates the latter for
2321 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2322 // here.
2323 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2324 const int size = parameters->target().get_size();
2325 #else
2326 const int size = 32;
2327 #endif
2328
2329 // The contents of the .note section.
2330 size_t namesz = strlen(name) + 1;
2331 size_t aligned_namesz = align_address(namesz, size / 8);
2332 size_t aligned_descsz = align_address(descsz, size / 8);
2333
2334 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2335
2336 unsigned char* buffer = new unsigned char[notehdrsz];
2337 memset(buffer, 0, notehdrsz);
2338
2339 bool is_big_endian = parameters->target().is_big_endian();
2340
2341 if (size == 32)
2342 {
2343 if (!is_big_endian)
2344 {
2345 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2346 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2347 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2348 }
2349 else
2350 {
2351 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2352 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2353 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2354 }
2355 }
2356 else if (size == 64)
2357 {
2358 if (!is_big_endian)
2359 {
2360 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2361 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2362 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2363 }
2364 else
2365 {
2366 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2367 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2368 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2369 }
2370 }
2371 else
2372 gold_unreachable();
2373
2374 memcpy(buffer + 3 * (size / 8), name, namesz);
2375
2376 elfcpp::Elf_Xword flags = 0;
2377 Output_section_order order = ORDER_INVALID;
2378 if (allocate)
2379 {
2380 flags = elfcpp::SHF_ALLOC;
2381 order = ORDER_RO_NOTE;
2382 }
2383 Output_section* os = this->choose_output_section(NULL, section_name,
2384 elfcpp::SHT_NOTE,
2385 flags, false, order, false);
2386 if (os == NULL)
2387 return NULL;
2388
2389 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2390 size / 8,
2391 "** note header");
2392 os->add_output_section_data(posd);
2393
2394 *trailing_padding = aligned_descsz - descsz;
2395
2396 return os;
2397 }
2398
2399 // For an executable or shared library, create a note to record the
2400 // version of gold used to create the binary.
2401
2402 void
2403 Layout::create_gold_note()
2404 {
2405 if (parameters->options().relocatable()
2406 || parameters->incremental_update())
2407 return;
2408
2409 std::string desc = std::string("gold ") + gold::get_version_string();
2410
2411 size_t trailing_padding;
2412 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2413 ".note.gnu.gold-version", desc.size(),
2414 false, &trailing_padding);
2415 if (os == NULL)
2416 return;
2417
2418 Output_section_data* posd = new Output_data_const(desc, 4);
2419 os->add_output_section_data(posd);
2420
2421 if (trailing_padding > 0)
2422 {
2423 posd = new Output_data_zero_fill(trailing_padding, 0);
2424 os->add_output_section_data(posd);
2425 }
2426 }
2427
2428 // Record whether the stack should be executable. This can be set
2429 // from the command line using the -z execstack or -z noexecstack
2430 // options. Otherwise, if any input file has a .note.GNU-stack
2431 // section with the SHF_EXECINSTR flag set, the stack should be
2432 // executable. Otherwise, if at least one input file a
2433 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2434 // section, we use the target default for whether the stack should be
2435 // executable. Otherwise, we don't generate a stack note. When
2436 // generating a object file, we create a .note.GNU-stack section with
2437 // the appropriate marking. When generating an executable or shared
2438 // library, we create a PT_GNU_STACK segment.
2439
2440 void
2441 Layout::create_executable_stack_info()
2442 {
2443 bool is_stack_executable;
2444 if (parameters->options().is_execstack_set())
2445 is_stack_executable = parameters->options().is_stack_executable();
2446 else if (!this->input_with_gnu_stack_note_)
2447 return;
2448 else
2449 {
2450 if (this->input_requires_executable_stack_)
2451 is_stack_executable = true;
2452 else if (this->input_without_gnu_stack_note_)
2453 is_stack_executable =
2454 parameters->target().is_default_stack_executable();
2455 else
2456 is_stack_executable = false;
2457 }
2458
2459 if (parameters->options().relocatable())
2460 {
2461 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2462 elfcpp::Elf_Xword flags = 0;
2463 if (is_stack_executable)
2464 flags |= elfcpp::SHF_EXECINSTR;
2465 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2466 ORDER_INVALID, false);
2467 }
2468 else
2469 {
2470 if (this->script_options_->saw_phdrs_clause())
2471 return;
2472 int flags = elfcpp::PF_R | elfcpp::PF_W;
2473 if (is_stack_executable)
2474 flags |= elfcpp::PF_X;
2475 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2476 }
2477 }
2478
2479 // If --build-id was used, set up the build ID note.
2480
2481 void
2482 Layout::create_build_id()
2483 {
2484 if (!parameters->options().user_set_build_id())
2485 return;
2486
2487 const char* style = parameters->options().build_id();
2488 if (strcmp(style, "none") == 0)
2489 return;
2490
2491 // Set DESCSZ to the size of the note descriptor. When possible,
2492 // set DESC to the note descriptor contents.
2493 size_t descsz;
2494 std::string desc;
2495 if (strcmp(style, "md5") == 0)
2496 descsz = 128 / 8;
2497 else if (strcmp(style, "sha1") == 0)
2498 descsz = 160 / 8;
2499 else if (strcmp(style, "uuid") == 0)
2500 {
2501 const size_t uuidsz = 128 / 8;
2502
2503 char buffer[uuidsz];
2504 memset(buffer, 0, uuidsz);
2505
2506 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2507 if (descriptor < 0)
2508 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2509 strerror(errno));
2510 else
2511 {
2512 ssize_t got = ::read(descriptor, buffer, uuidsz);
2513 release_descriptor(descriptor, true);
2514 if (got < 0)
2515 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2516 else if (static_cast<size_t>(got) != uuidsz)
2517 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2518 uuidsz, got);
2519 }
2520
2521 desc.assign(buffer, uuidsz);
2522 descsz = uuidsz;
2523 }
2524 else if (strncmp(style, "0x", 2) == 0)
2525 {
2526 hex_init();
2527 const char* p = style + 2;
2528 while (*p != '\0')
2529 {
2530 if (hex_p(p[0]) && hex_p(p[1]))
2531 {
2532 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2533 desc += c;
2534 p += 2;
2535 }
2536 else if (*p == '-' || *p == ':')
2537 ++p;
2538 else
2539 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2540 style);
2541 }
2542 descsz = desc.size();
2543 }
2544 else
2545 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2546
2547 // Create the note.
2548 size_t trailing_padding;
2549 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2550 ".note.gnu.build-id", descsz, true,
2551 &trailing_padding);
2552 if (os == NULL)
2553 return;
2554
2555 if (!desc.empty())
2556 {
2557 // We know the value already, so we fill it in now.
2558 gold_assert(desc.size() == descsz);
2559
2560 Output_section_data* posd = new Output_data_const(desc, 4);
2561 os->add_output_section_data(posd);
2562
2563 if (trailing_padding != 0)
2564 {
2565 posd = new Output_data_zero_fill(trailing_padding, 0);
2566 os->add_output_section_data(posd);
2567 }
2568 }
2569 else
2570 {
2571 // We need to compute a checksum after we have completed the
2572 // link.
2573 gold_assert(trailing_padding == 0);
2574 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2575 os->add_output_section_data(this->build_id_note_);
2576 }
2577 }
2578
2579 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2580 // field of the former should point to the latter. I'm not sure who
2581 // started this, but the GNU linker does it, and some tools depend
2582 // upon it.
2583
2584 void
2585 Layout::link_stabs_sections()
2586 {
2587 if (!this->have_stabstr_section_)
2588 return;
2589
2590 for (Section_list::iterator p = this->section_list_.begin();
2591 p != this->section_list_.end();
2592 ++p)
2593 {
2594 if ((*p)->type() != elfcpp::SHT_STRTAB)
2595 continue;
2596
2597 const char* name = (*p)->name();
2598 if (strncmp(name, ".stab", 5) != 0)
2599 continue;
2600
2601 size_t len = strlen(name);
2602 if (strcmp(name + len - 3, "str") != 0)
2603 continue;
2604
2605 std::string stab_name(name, len - 3);
2606 Output_section* stab_sec;
2607 stab_sec = this->find_output_section(stab_name.c_str());
2608 if (stab_sec != NULL)
2609 stab_sec->set_link_section(*p);
2610 }
2611 }
2612
2613 // Create .gnu_incremental_inputs and related sections needed
2614 // for the next run of incremental linking to check what has changed.
2615
2616 void
2617 Layout::create_incremental_info_sections(Symbol_table* symtab)
2618 {
2619 Incremental_inputs* incr = this->incremental_inputs_;
2620
2621 gold_assert(incr != NULL);
2622
2623 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2624 incr->create_data_sections(symtab);
2625
2626 // Add the .gnu_incremental_inputs section.
2627 const char* incremental_inputs_name =
2628 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2629 Output_section* incremental_inputs_os =
2630 this->make_output_section(incremental_inputs_name,
2631 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2632 ORDER_INVALID, false);
2633 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2634
2635 // Add the .gnu_incremental_symtab section.
2636 const char* incremental_symtab_name =
2637 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2638 Output_section* incremental_symtab_os =
2639 this->make_output_section(incremental_symtab_name,
2640 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2641 ORDER_INVALID, false);
2642 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2643 incremental_symtab_os->set_entsize(4);
2644
2645 // Add the .gnu_incremental_relocs section.
2646 const char* incremental_relocs_name =
2647 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2648 Output_section* incremental_relocs_os =
2649 this->make_output_section(incremental_relocs_name,
2650 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2651 ORDER_INVALID, false);
2652 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2653 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2654
2655 // Add the .gnu_incremental_got_plt section.
2656 const char* incremental_got_plt_name =
2657 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2658 Output_section* incremental_got_plt_os =
2659 this->make_output_section(incremental_got_plt_name,
2660 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2661 ORDER_INVALID, false);
2662 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2663
2664 // Add the .gnu_incremental_strtab section.
2665 const char* incremental_strtab_name =
2666 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2667 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2668 elfcpp::SHT_STRTAB, 0,
2669 ORDER_INVALID, false);
2670 Output_data_strtab* strtab_data =
2671 new Output_data_strtab(incr->get_stringpool());
2672 incremental_strtab_os->add_output_section_data(strtab_data);
2673
2674 incremental_inputs_os->set_after_input_sections();
2675 incremental_symtab_os->set_after_input_sections();
2676 incremental_relocs_os->set_after_input_sections();
2677 incremental_got_plt_os->set_after_input_sections();
2678
2679 incremental_inputs_os->set_link_section(incremental_strtab_os);
2680 incremental_symtab_os->set_link_section(incremental_inputs_os);
2681 incremental_relocs_os->set_link_section(incremental_inputs_os);
2682 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2683 }
2684
2685 // Return whether SEG1 should be before SEG2 in the output file. This
2686 // is based entirely on the segment type and flags. When this is
2687 // called the segment addresses has normally not yet been set.
2688
2689 bool
2690 Layout::segment_precedes(const Output_segment* seg1,
2691 const Output_segment* seg2)
2692 {
2693 elfcpp::Elf_Word type1 = seg1->type();
2694 elfcpp::Elf_Word type2 = seg2->type();
2695
2696 // The single PT_PHDR segment is required to precede any loadable
2697 // segment. We simply make it always first.
2698 if (type1 == elfcpp::PT_PHDR)
2699 {
2700 gold_assert(type2 != elfcpp::PT_PHDR);
2701 return true;
2702 }
2703 if (type2 == elfcpp::PT_PHDR)
2704 return false;
2705
2706 // The single PT_INTERP segment is required to precede any loadable
2707 // segment. We simply make it always second.
2708 if (type1 == elfcpp::PT_INTERP)
2709 {
2710 gold_assert(type2 != elfcpp::PT_INTERP);
2711 return true;
2712 }
2713 if (type2 == elfcpp::PT_INTERP)
2714 return false;
2715
2716 // We then put PT_LOAD segments before any other segments.
2717 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2718 return true;
2719 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2720 return false;
2721
2722 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2723 // segment, because that is where the dynamic linker expects to find
2724 // it (this is just for efficiency; other positions would also work
2725 // correctly).
2726 if (type1 == elfcpp::PT_TLS
2727 && type2 != elfcpp::PT_TLS
2728 && type2 != elfcpp::PT_GNU_RELRO)
2729 return false;
2730 if (type2 == elfcpp::PT_TLS
2731 && type1 != elfcpp::PT_TLS
2732 && type1 != elfcpp::PT_GNU_RELRO)
2733 return true;
2734
2735 // We put the PT_GNU_RELRO segment last, because that is where the
2736 // dynamic linker expects to find it (as with PT_TLS, this is just
2737 // for efficiency).
2738 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2739 return false;
2740 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2741 return true;
2742
2743 const elfcpp::Elf_Word flags1 = seg1->flags();
2744 const elfcpp::Elf_Word flags2 = seg2->flags();
2745
2746 // The order of non-PT_LOAD segments is unimportant. We simply sort
2747 // by the numeric segment type and flags values. There should not
2748 // be more than one segment with the same type and flags.
2749 if (type1 != elfcpp::PT_LOAD)
2750 {
2751 if (type1 != type2)
2752 return type1 < type2;
2753 gold_assert(flags1 != flags2);
2754 return flags1 < flags2;
2755 }
2756
2757 // If the addresses are set already, sort by load address.
2758 if (seg1->are_addresses_set())
2759 {
2760 if (!seg2->are_addresses_set())
2761 return true;
2762
2763 unsigned int section_count1 = seg1->output_section_count();
2764 unsigned int section_count2 = seg2->output_section_count();
2765 if (section_count1 == 0 && section_count2 > 0)
2766 return true;
2767 if (section_count1 > 0 && section_count2 == 0)
2768 return false;
2769
2770 uint64_t paddr1 = (seg1->are_addresses_set()
2771 ? seg1->paddr()
2772 : seg1->first_section_load_address());
2773 uint64_t paddr2 = (seg2->are_addresses_set()
2774 ? seg2->paddr()
2775 : seg2->first_section_load_address());
2776
2777 if (paddr1 != paddr2)
2778 return paddr1 < paddr2;
2779 }
2780 else if (seg2->are_addresses_set())
2781 return false;
2782
2783 // A segment which holds large data comes after a segment which does
2784 // not hold large data.
2785 if (seg1->is_large_data_segment())
2786 {
2787 if (!seg2->is_large_data_segment())
2788 return false;
2789 }
2790 else if (seg2->is_large_data_segment())
2791 return true;
2792
2793 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2794 // segments come before writable segments. Then writable segments
2795 // with data come before writable segments without data. Then
2796 // executable segments come before non-executable segments. Then
2797 // the unlikely case of a non-readable segment comes before the
2798 // normal case of a readable segment. If there are multiple
2799 // segments with the same type and flags, we require that the
2800 // address be set, and we sort by virtual address and then physical
2801 // address.
2802 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2803 return (flags1 & elfcpp::PF_W) == 0;
2804 if ((flags1 & elfcpp::PF_W) != 0
2805 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2806 return seg1->has_any_data_sections();
2807 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2808 return (flags1 & elfcpp::PF_X) != 0;
2809 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2810 return (flags1 & elfcpp::PF_R) == 0;
2811
2812 // We shouldn't get here--we shouldn't create segments which we
2813 // can't distinguish.
2814 gold_unreachable();
2815 }
2816
2817 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2818
2819 static off_t
2820 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2821 {
2822 uint64_t unsigned_off = off;
2823 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2824 | (addr & (abi_pagesize - 1)));
2825 if (aligned_off < unsigned_off)
2826 aligned_off += abi_pagesize;
2827 return aligned_off;
2828 }
2829
2830 // Set the file offsets of all the segments, and all the sections they
2831 // contain. They have all been created. LOAD_SEG must be be laid out
2832 // first. Return the offset of the data to follow.
2833
2834 off_t
2835 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
2836 unsigned int* pshndx)
2837 {
2838 // Sort them into the final order.
2839 std::sort(this->segment_list_.begin(), this->segment_list_.end(),
2840 Layout::Compare_segments());
2841
2842 // Find the PT_LOAD segments, and set their addresses and offsets
2843 // and their section's addresses and offsets.
2844 uint64_t addr;
2845 if (parameters->options().user_set_Ttext())
2846 addr = parameters->options().Ttext();
2847 else if (parameters->options().output_is_position_independent())
2848 addr = 0;
2849 else
2850 addr = target->default_text_segment_address();
2851 off_t off = 0;
2852
2853 // If LOAD_SEG is NULL, then the file header and segment headers
2854 // will not be loadable. But they still need to be at offset 0 in
2855 // the file. Set their offsets now.
2856 if (load_seg == NULL)
2857 {
2858 for (Data_list::iterator p = this->special_output_list_.begin();
2859 p != this->special_output_list_.end();
2860 ++p)
2861 {
2862 off = align_address(off, (*p)->addralign());
2863 (*p)->set_address_and_file_offset(0, off);
2864 off += (*p)->data_size();
2865 }
2866 }
2867
2868 unsigned int increase_relro = this->increase_relro_;
2869 if (this->script_options_->saw_sections_clause())
2870 increase_relro = 0;
2871
2872 const bool check_sections = parameters->options().check_sections();
2873 Output_segment* last_load_segment = NULL;
2874
2875 for (Segment_list::iterator p = this->segment_list_.begin();
2876 p != this->segment_list_.end();
2877 ++p)
2878 {
2879 if ((*p)->type() == elfcpp::PT_LOAD)
2880 {
2881 if (load_seg != NULL && load_seg != *p)
2882 gold_unreachable();
2883 load_seg = NULL;
2884
2885 bool are_addresses_set = (*p)->are_addresses_set();
2886 if (are_addresses_set)
2887 {
2888 // When it comes to setting file offsets, we care about
2889 // the physical address.
2890 addr = (*p)->paddr();
2891 }
2892 else if (parameters->options().user_set_Tdata()
2893 && ((*p)->flags() & elfcpp::PF_W) != 0
2894 && (!parameters->options().user_set_Tbss()
2895 || (*p)->has_any_data_sections()))
2896 {
2897 addr = parameters->options().Tdata();
2898 are_addresses_set = true;
2899 }
2900 else if (parameters->options().user_set_Tbss()
2901 && ((*p)->flags() & elfcpp::PF_W) != 0
2902 && !(*p)->has_any_data_sections())
2903 {
2904 addr = parameters->options().Tbss();
2905 are_addresses_set = true;
2906 }
2907
2908 uint64_t orig_addr = addr;
2909 uint64_t orig_off = off;
2910
2911 uint64_t aligned_addr = 0;
2912 uint64_t abi_pagesize = target->abi_pagesize();
2913 uint64_t common_pagesize = target->common_pagesize();
2914
2915 if (!parameters->options().nmagic()
2916 && !parameters->options().omagic())
2917 (*p)->set_minimum_p_align(common_pagesize);
2918
2919 if (!are_addresses_set)
2920 {
2921 // Skip the address forward one page, maintaining the same
2922 // position within the page. This lets us store both segments
2923 // overlapping on a single page in the file, but the loader will
2924 // put them on different pages in memory. We will revisit this
2925 // decision once we know the size of the segment.
2926
2927 addr = align_address(addr, (*p)->maximum_alignment());
2928 aligned_addr = addr;
2929
2930 if ((addr & (abi_pagesize - 1)) != 0)
2931 addr = addr + abi_pagesize;
2932
2933 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2934 }
2935
2936 if (!parameters->options().nmagic()
2937 && !parameters->options().omagic())
2938 off = align_file_offset(off, addr, abi_pagesize);
2939 else if (load_seg == NULL)
2940 {
2941 // This is -N or -n with a section script which prevents
2942 // us from using a load segment. We need to ensure that
2943 // the file offset is aligned to the alignment of the
2944 // segment. This is because the linker script
2945 // implicitly assumed a zero offset. If we don't align
2946 // here, then the alignment of the sections in the
2947 // linker script may not match the alignment of the
2948 // sections in the set_section_addresses call below,
2949 // causing an error about dot moving backward.
2950 off = align_address(off, (*p)->maximum_alignment());
2951 }
2952
2953 unsigned int shndx_hold = *pshndx;
2954 bool has_relro = false;
2955 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
2956 &increase_relro,
2957 &has_relro,
2958 &off, pshndx);
2959
2960 // Now that we know the size of this segment, we may be able
2961 // to save a page in memory, at the cost of wasting some
2962 // file space, by instead aligning to the start of a new
2963 // page. Here we use the real machine page size rather than
2964 // the ABI mandated page size. If the segment has been
2965 // aligned so that the relro data ends at a page boundary,
2966 // we do not try to realign it.
2967
2968 if (!are_addresses_set
2969 && !has_relro
2970 && aligned_addr != addr
2971 && !parameters->incremental())
2972 {
2973 uint64_t first_off = (common_pagesize
2974 - (aligned_addr
2975 & (common_pagesize - 1)));
2976 uint64_t last_off = new_addr & (common_pagesize - 1);
2977 if (first_off > 0
2978 && last_off > 0
2979 && ((aligned_addr & ~ (common_pagesize - 1))
2980 != (new_addr & ~ (common_pagesize - 1)))
2981 && first_off + last_off <= common_pagesize)
2982 {
2983 *pshndx = shndx_hold;
2984 addr = align_address(aligned_addr, common_pagesize);
2985 addr = align_address(addr, (*p)->maximum_alignment());
2986 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
2987 off = align_file_offset(off, addr, abi_pagesize);
2988
2989 increase_relro = this->increase_relro_;
2990 if (this->script_options_->saw_sections_clause())
2991 increase_relro = 0;
2992 has_relro = false;
2993
2994 new_addr = (*p)->set_section_addresses(this, true, addr,
2995 &increase_relro,
2996 &has_relro,
2997 &off, pshndx);
2998 }
2999 }
3000
3001 addr = new_addr;
3002
3003 // Implement --check-sections. We know that the segments
3004 // are sorted by LMA.
3005 if (check_sections && last_load_segment != NULL)
3006 {
3007 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3008 if (last_load_segment->paddr() + last_load_segment->memsz()
3009 > (*p)->paddr())
3010 {
3011 unsigned long long lb1 = last_load_segment->paddr();
3012 unsigned long long le1 = lb1 + last_load_segment->memsz();
3013 unsigned long long lb2 = (*p)->paddr();
3014 unsigned long long le2 = lb2 + (*p)->memsz();
3015 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3016 "[0x%llx -> 0x%llx]"),
3017 lb1, le1, lb2, le2);
3018 }
3019 }
3020 last_load_segment = *p;
3021 }
3022 }
3023
3024 // Handle the non-PT_LOAD segments, setting their offsets from their
3025 // section's offsets.
3026 for (Segment_list::iterator p = this->segment_list_.begin();
3027 p != this->segment_list_.end();
3028 ++p)
3029 {
3030 if ((*p)->type() != elfcpp::PT_LOAD)
3031 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3032 ? increase_relro
3033 : 0);
3034 }
3035
3036 // Set the TLS offsets for each section in the PT_TLS segment.
3037 if (this->tls_segment_ != NULL)
3038 this->tls_segment_->set_tls_offsets();
3039
3040 return off;
3041 }
3042
3043 // Set the offsets of all the allocated sections when doing a
3044 // relocatable link. This does the same jobs as set_segment_offsets,
3045 // only for a relocatable link.
3046
3047 off_t
3048 Layout::set_relocatable_section_offsets(Output_data* file_header,
3049 unsigned int* pshndx)
3050 {
3051 off_t off = 0;
3052
3053 file_header->set_address_and_file_offset(0, 0);
3054 off += file_header->data_size();
3055
3056 for (Section_list::iterator p = this->section_list_.begin();
3057 p != this->section_list_.end();
3058 ++p)
3059 {
3060 // We skip unallocated sections here, except that group sections
3061 // have to come first.
3062 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3063 && (*p)->type() != elfcpp::SHT_GROUP)
3064 continue;
3065
3066 off = align_address(off, (*p)->addralign());
3067
3068 // The linker script might have set the address.
3069 if (!(*p)->is_address_valid())
3070 (*p)->set_address(0);
3071 (*p)->set_file_offset(off);
3072 (*p)->finalize_data_size();
3073 off += (*p)->data_size();
3074
3075 (*p)->set_out_shndx(*pshndx);
3076 ++*pshndx;
3077 }
3078
3079 return off;
3080 }
3081
3082 // Set the file offset of all the sections not associated with a
3083 // segment.
3084
3085 off_t
3086 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3087 {
3088 off_t startoff = off;
3089 off_t maxoff = off;
3090
3091 for (Section_list::iterator p = this->unattached_section_list_.begin();
3092 p != this->unattached_section_list_.end();
3093 ++p)
3094 {
3095 // The symtab section is handled in create_symtab_sections.
3096 if (*p == this->symtab_section_)
3097 continue;
3098
3099 // If we've already set the data size, don't set it again.
3100 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3101 continue;
3102
3103 if (pass == BEFORE_INPUT_SECTIONS_PASS
3104 && (*p)->requires_postprocessing())
3105 {
3106 (*p)->create_postprocessing_buffer();
3107 this->any_postprocessing_sections_ = true;
3108 }
3109
3110 if (pass == BEFORE_INPUT_SECTIONS_PASS
3111 && (*p)->after_input_sections())
3112 continue;
3113 else if (pass == POSTPROCESSING_SECTIONS_PASS
3114 && (!(*p)->after_input_sections()
3115 || (*p)->type() == elfcpp::SHT_STRTAB))
3116 continue;
3117 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3118 && (!(*p)->after_input_sections()
3119 || (*p)->type() != elfcpp::SHT_STRTAB))
3120 continue;
3121
3122 if (!parameters->incremental_update())
3123 {
3124 off = align_address(off, (*p)->addralign());
3125 (*p)->set_file_offset(off);
3126 (*p)->finalize_data_size();
3127 }
3128 else
3129 {
3130 // Incremental update: allocate file space from free list.
3131 (*p)->pre_finalize_data_size();
3132 off_t current_size = (*p)->current_data_size();
3133 off = this->allocate(current_size, (*p)->addralign(), startoff);
3134 if (off == -1)
3135 {
3136 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3137 this->free_list_.dump();
3138 gold_assert((*p)->output_section() != NULL);
3139 gold_fallback(_("out of patch space for section %s; "
3140 "relink with --incremental-full"),
3141 (*p)->output_section()->name());
3142 }
3143 (*p)->set_file_offset(off);
3144 (*p)->finalize_data_size();
3145 if ((*p)->data_size() > current_size)
3146 {
3147 gold_assert((*p)->output_section() != NULL);
3148 gold_fallback(_("%s: section changed size; "
3149 "relink with --incremental-full"),
3150 (*p)->output_section()->name());
3151 }
3152 gold_debug(DEBUG_INCREMENTAL,
3153 "set_section_offsets: %08lx %08lx %s",
3154 static_cast<long>(off),
3155 static_cast<long>((*p)->data_size()),
3156 ((*p)->output_section() != NULL
3157 ? (*p)->output_section()->name() : "(special)"));
3158 }
3159
3160 off += (*p)->data_size();
3161 if (off > maxoff)
3162 maxoff = off;
3163
3164 // At this point the name must be set.
3165 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3166 this->namepool_.add((*p)->name(), false, NULL);
3167 }
3168 return maxoff;
3169 }
3170
3171 // Set the section indexes of all the sections not associated with a
3172 // segment.
3173
3174 unsigned int
3175 Layout::set_section_indexes(unsigned int shndx)
3176 {
3177 for (Section_list::iterator p = this->unattached_section_list_.begin();
3178 p != this->unattached_section_list_.end();
3179 ++p)
3180 {
3181 if (!(*p)->has_out_shndx())
3182 {
3183 (*p)->set_out_shndx(shndx);
3184 ++shndx;
3185 }
3186 }
3187 return shndx;
3188 }
3189
3190 // Set the section addresses according to the linker script. This is
3191 // only called when we see a SECTIONS clause. This returns the
3192 // program segment which should hold the file header and segment
3193 // headers, if any. It will return NULL if they should not be in a
3194 // segment.
3195
3196 Output_segment*
3197 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3198 {
3199 Script_sections* ss = this->script_options_->script_sections();
3200 gold_assert(ss->saw_sections_clause());
3201 return this->script_options_->set_section_addresses(symtab, this);
3202 }
3203
3204 // Place the orphan sections in the linker script.
3205
3206 void
3207 Layout::place_orphan_sections_in_script()
3208 {
3209 Script_sections* ss = this->script_options_->script_sections();
3210 gold_assert(ss->saw_sections_clause());
3211
3212 // Place each orphaned output section in the script.
3213 for (Section_list::iterator p = this->section_list_.begin();
3214 p != this->section_list_.end();
3215 ++p)
3216 {
3217 if (!(*p)->found_in_sections_clause())
3218 ss->place_orphan(*p);
3219 }
3220 }
3221
3222 // Count the local symbols in the regular symbol table and the dynamic
3223 // symbol table, and build the respective string pools.
3224
3225 void
3226 Layout::count_local_symbols(const Task* task,
3227 const Input_objects* input_objects)
3228 {
3229 // First, figure out an upper bound on the number of symbols we'll
3230 // be inserting into each pool. This helps us create the pools with
3231 // the right size, to avoid unnecessary hashtable resizing.
3232 unsigned int symbol_count = 0;
3233 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3234 p != input_objects->relobj_end();
3235 ++p)
3236 symbol_count += (*p)->local_symbol_count();
3237
3238 // Go from "upper bound" to "estimate." We overcount for two
3239 // reasons: we double-count symbols that occur in more than one
3240 // object file, and we count symbols that are dropped from the
3241 // output. Add it all together and assume we overcount by 100%.
3242 symbol_count /= 2;
3243
3244 // We assume all symbols will go into both the sympool and dynpool.
3245 this->sympool_.reserve(symbol_count);
3246 this->dynpool_.reserve(symbol_count);
3247
3248 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3249 p != input_objects->relobj_end();
3250 ++p)
3251 {
3252 Task_lock_obj<Object> tlo(task, *p);
3253 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3254 }
3255 }
3256
3257 // Create the symbol table sections. Here we also set the final
3258 // values of the symbols. At this point all the loadable sections are
3259 // fully laid out. SHNUM is the number of sections so far.
3260
3261 void
3262 Layout::create_symtab_sections(const Input_objects* input_objects,
3263 Symbol_table* symtab,
3264 unsigned int shnum,
3265 off_t* poff)
3266 {
3267 int symsize;
3268 unsigned int align;
3269 if (parameters->target().get_size() == 32)
3270 {
3271 symsize = elfcpp::Elf_sizes<32>::sym_size;
3272 align = 4;
3273 }
3274 else if (parameters->target().get_size() == 64)
3275 {
3276 symsize = elfcpp::Elf_sizes<64>::sym_size;
3277 align = 8;
3278 }
3279 else
3280 gold_unreachable();
3281
3282 // Compute file offsets relative to the start of the symtab section.
3283 off_t off = 0;
3284
3285 // Save space for the dummy symbol at the start of the section. We
3286 // never bother to write this out--it will just be left as zero.
3287 off += symsize;
3288 unsigned int local_symbol_index = 1;
3289
3290 // Add STT_SECTION symbols for each Output section which needs one.
3291 for (Section_list::iterator p = this->section_list_.begin();
3292 p != this->section_list_.end();
3293 ++p)
3294 {
3295 if (!(*p)->needs_symtab_index())
3296 (*p)->set_symtab_index(-1U);
3297 else
3298 {
3299 (*p)->set_symtab_index(local_symbol_index);
3300 ++local_symbol_index;
3301 off += symsize;
3302 }
3303 }
3304
3305 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3306 p != input_objects->relobj_end();
3307 ++p)
3308 {
3309 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3310 off, symtab);
3311 off += (index - local_symbol_index) * symsize;
3312 local_symbol_index = index;
3313 }
3314
3315 unsigned int local_symcount = local_symbol_index;
3316 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3317
3318 off_t dynoff;
3319 size_t dyn_global_index;
3320 size_t dyncount;
3321 if (this->dynsym_section_ == NULL)
3322 {
3323 dynoff = 0;
3324 dyn_global_index = 0;
3325 dyncount = 0;
3326 }
3327 else
3328 {
3329 dyn_global_index = this->dynsym_section_->info();
3330 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3331 dynoff = this->dynsym_section_->offset() + locsize;
3332 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3333 gold_assert(static_cast<off_t>(dyncount * symsize)
3334 == this->dynsym_section_->data_size() - locsize);
3335 }
3336
3337 off_t global_off = off;
3338 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3339 &this->sympool_, &local_symcount);
3340
3341 if (!parameters->options().strip_all())
3342 {
3343 this->sympool_.set_string_offsets();
3344
3345 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3346 Output_section* osymtab = this->make_output_section(symtab_name,
3347 elfcpp::SHT_SYMTAB,
3348 0, ORDER_INVALID,
3349 false);
3350 this->symtab_section_ = osymtab;
3351
3352 Output_section_data* pos = new Output_data_fixed_space(off, align,
3353 "** symtab");
3354 osymtab->add_output_section_data(pos);
3355
3356 // We generate a .symtab_shndx section if we have more than
3357 // SHN_LORESERVE sections. Technically it is possible that we
3358 // don't need one, because it is possible that there are no
3359 // symbols in any of sections with indexes larger than
3360 // SHN_LORESERVE. That is probably unusual, though, and it is
3361 // easier to always create one than to compute section indexes
3362 // twice (once here, once when writing out the symbols).
3363 if (shnum >= elfcpp::SHN_LORESERVE)
3364 {
3365 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3366 false, NULL);
3367 Output_section* osymtab_xindex =
3368 this->make_output_section(symtab_xindex_name,
3369 elfcpp::SHT_SYMTAB_SHNDX, 0,
3370 ORDER_INVALID, false);
3371
3372 size_t symcount = off / symsize;
3373 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3374
3375 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3376
3377 osymtab_xindex->set_link_section(osymtab);
3378 osymtab_xindex->set_addralign(4);
3379 osymtab_xindex->set_entsize(4);
3380
3381 osymtab_xindex->set_after_input_sections();
3382
3383 // This tells the driver code to wait until the symbol table
3384 // has written out before writing out the postprocessing
3385 // sections, including the .symtab_shndx section.
3386 this->any_postprocessing_sections_ = true;
3387 }
3388
3389 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3390 Output_section* ostrtab = this->make_output_section(strtab_name,
3391 elfcpp::SHT_STRTAB,
3392 0, ORDER_INVALID,
3393 false);
3394
3395 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3396 ostrtab->add_output_section_data(pstr);
3397
3398 off_t symtab_off;
3399 if (!parameters->incremental_update())
3400 symtab_off = align_address(*poff, align);
3401 else
3402 {
3403 symtab_off = this->allocate(off, align, *poff);
3404 if (off == -1)
3405 gold_fallback(_("out of patch space for symbol table; "
3406 "relink with --incremental-full"));
3407 gold_debug(DEBUG_INCREMENTAL,
3408 "create_symtab_sections: %08lx %08lx .symtab",
3409 static_cast<long>(symtab_off),
3410 static_cast<long>(off));
3411 }
3412
3413 symtab->set_file_offset(symtab_off + global_off);
3414 osymtab->set_file_offset(symtab_off);
3415 osymtab->finalize_data_size();
3416 osymtab->set_link_section(ostrtab);
3417 osymtab->set_info(local_symcount);
3418 osymtab->set_entsize(symsize);
3419
3420 if (symtab_off + off > *poff)
3421 *poff = symtab_off + off;
3422 }
3423 }
3424
3425 // Create the .shstrtab section, which holds the names of the
3426 // sections. At the time this is called, we have created all the
3427 // output sections except .shstrtab itself.
3428
3429 Output_section*
3430 Layout::create_shstrtab()
3431 {
3432 // FIXME: We don't need to create a .shstrtab section if we are
3433 // stripping everything.
3434
3435 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3436
3437 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3438 ORDER_INVALID, false);
3439
3440 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3441 {
3442 // We can't write out this section until we've set all the
3443 // section names, and we don't set the names of compressed
3444 // output sections until relocations are complete. FIXME: With
3445 // the current names we use, this is unnecessary.
3446 os->set_after_input_sections();
3447 }
3448
3449 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3450 os->add_output_section_data(posd);
3451
3452 return os;
3453 }
3454
3455 // Create the section headers. SIZE is 32 or 64. OFF is the file
3456 // offset.
3457
3458 void
3459 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3460 {
3461 Output_section_headers* oshdrs;
3462 oshdrs = new Output_section_headers(this,
3463 &this->segment_list_,
3464 &this->section_list_,
3465 &this->unattached_section_list_,
3466 &this->namepool_,
3467 shstrtab_section);
3468 off_t off;
3469 if (!parameters->incremental_update())
3470 off = align_address(*poff, oshdrs->addralign());
3471 else
3472 {
3473 oshdrs->pre_finalize_data_size();
3474 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3475 if (off == -1)
3476 gold_fallback(_("out of patch space for section header table; "
3477 "relink with --incremental-full"));
3478 gold_debug(DEBUG_INCREMENTAL,
3479 "create_shdrs: %08lx %08lx (section header table)",
3480 static_cast<long>(off),
3481 static_cast<long>(off + oshdrs->data_size()));
3482 }
3483 oshdrs->set_address_and_file_offset(0, off);
3484 off += oshdrs->data_size();
3485 if (off > *poff)
3486 *poff = off;
3487 this->section_headers_ = oshdrs;
3488 }
3489
3490 // Count the allocated sections.
3491
3492 size_t
3493 Layout::allocated_output_section_count() const
3494 {
3495 size_t section_count = 0;
3496 for (Segment_list::const_iterator p = this->segment_list_.begin();
3497 p != this->segment_list_.end();
3498 ++p)
3499 section_count += (*p)->output_section_count();
3500 return section_count;
3501 }
3502
3503 // Create the dynamic symbol table.
3504
3505 void
3506 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3507 Symbol_table* symtab,
3508 Output_section** pdynstr,
3509 unsigned int* plocal_dynamic_count,
3510 std::vector<Symbol*>* pdynamic_symbols,
3511 Versions* pversions)
3512 {
3513 // Count all the symbols in the dynamic symbol table, and set the
3514 // dynamic symbol indexes.
3515
3516 // Skip symbol 0, which is always all zeroes.
3517 unsigned int index = 1;
3518
3519 // Add STT_SECTION symbols for each Output section which needs one.
3520 for (Section_list::iterator p = this->section_list_.begin();
3521 p != this->section_list_.end();
3522 ++p)
3523 {
3524 if (!(*p)->needs_dynsym_index())
3525 (*p)->set_dynsym_index(-1U);
3526 else
3527 {
3528 (*p)->set_dynsym_index(index);
3529 ++index;
3530 }
3531 }
3532
3533 // Count the local symbols that need to go in the dynamic symbol table,
3534 // and set the dynamic symbol indexes.
3535 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3536 p != input_objects->relobj_end();
3537 ++p)
3538 {
3539 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3540 index = new_index;
3541 }
3542
3543 unsigned int local_symcount = index;
3544 *plocal_dynamic_count = local_symcount;
3545
3546 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3547 &this->dynpool_, pversions);
3548
3549 int symsize;
3550 unsigned int align;
3551 const int size = parameters->target().get_size();
3552 if (size == 32)
3553 {
3554 symsize = elfcpp::Elf_sizes<32>::sym_size;
3555 align = 4;
3556 }
3557 else if (size == 64)
3558 {
3559 symsize = elfcpp::Elf_sizes<64>::sym_size;
3560 align = 8;
3561 }
3562 else
3563 gold_unreachable();
3564
3565 // Create the dynamic symbol table section.
3566
3567 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3568 elfcpp::SHT_DYNSYM,
3569 elfcpp::SHF_ALLOC,
3570 false,
3571 ORDER_DYNAMIC_LINKER,
3572 false);
3573
3574 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3575 align,
3576 "** dynsym");
3577 dynsym->add_output_section_data(odata);
3578
3579 dynsym->set_info(local_symcount);
3580 dynsym->set_entsize(symsize);
3581 dynsym->set_addralign(align);
3582
3583 this->dynsym_section_ = dynsym;
3584
3585 Output_data_dynamic* const odyn = this->dynamic_data_;
3586 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3587 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3588
3589 // If there are more than SHN_LORESERVE allocated sections, we
3590 // create a .dynsym_shndx section. It is possible that we don't
3591 // need one, because it is possible that there are no dynamic
3592 // symbols in any of the sections with indexes larger than
3593 // SHN_LORESERVE. This is probably unusual, though, and at this
3594 // time we don't know the actual section indexes so it is
3595 // inconvenient to check.
3596 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3597 {
3598 Output_section* dynsym_xindex =
3599 this->choose_output_section(NULL, ".dynsym_shndx",
3600 elfcpp::SHT_SYMTAB_SHNDX,
3601 elfcpp::SHF_ALLOC,
3602 false, ORDER_DYNAMIC_LINKER, false);
3603
3604 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3605
3606 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3607
3608 dynsym_xindex->set_link_section(dynsym);
3609 dynsym_xindex->set_addralign(4);
3610 dynsym_xindex->set_entsize(4);
3611
3612 dynsym_xindex->set_after_input_sections();
3613
3614 // This tells the driver code to wait until the symbol table has
3615 // written out before writing out the postprocessing sections,
3616 // including the .dynsym_shndx section.
3617 this->any_postprocessing_sections_ = true;
3618 }
3619
3620 // Create the dynamic string table section.
3621
3622 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3623 elfcpp::SHT_STRTAB,
3624 elfcpp::SHF_ALLOC,
3625 false,
3626 ORDER_DYNAMIC_LINKER,
3627 false);
3628
3629 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3630 dynstr->add_output_section_data(strdata);
3631
3632 dynsym->set_link_section(dynstr);
3633 this->dynamic_section_->set_link_section(dynstr);
3634
3635 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3636 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3637
3638 *pdynstr = dynstr;
3639
3640 // Create the hash tables.
3641
3642 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3643 || strcmp(parameters->options().hash_style(), "both") == 0)
3644 {
3645 unsigned char* phash;
3646 unsigned int hashlen;
3647 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3648 &phash, &hashlen);
3649
3650 Output_section* hashsec =
3651 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3652 elfcpp::SHF_ALLOC, false,
3653 ORDER_DYNAMIC_LINKER, false);
3654
3655 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3656 hashlen,
3657 align,
3658 "** hash");
3659 hashsec->add_output_section_data(hashdata);
3660
3661 hashsec->set_link_section(dynsym);
3662 hashsec->set_entsize(4);
3663
3664 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3665 }
3666
3667 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3668 || strcmp(parameters->options().hash_style(), "both") == 0)
3669 {
3670 unsigned char* phash;
3671 unsigned int hashlen;
3672 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3673 &phash, &hashlen);
3674
3675 Output_section* hashsec =
3676 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3677 elfcpp::SHF_ALLOC, false,
3678 ORDER_DYNAMIC_LINKER, false);
3679
3680 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3681 hashlen,
3682 align,
3683 "** hash");
3684 hashsec->add_output_section_data(hashdata);
3685
3686 hashsec->set_link_section(dynsym);
3687
3688 // For a 64-bit target, the entries in .gnu.hash do not have a
3689 // uniform size, so we only set the entry size for a 32-bit
3690 // target.
3691 if (parameters->target().get_size() == 32)
3692 hashsec->set_entsize(4);
3693
3694 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3695 }
3696 }
3697
3698 // Assign offsets to each local portion of the dynamic symbol table.
3699
3700 void
3701 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3702 {
3703 Output_section* dynsym = this->dynsym_section_;
3704 gold_assert(dynsym != NULL);
3705
3706 off_t off = dynsym->offset();
3707
3708 // Skip the dummy symbol at the start of the section.
3709 off += dynsym->entsize();
3710
3711 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3712 p != input_objects->relobj_end();
3713 ++p)
3714 {
3715 unsigned int count = (*p)->set_local_dynsym_offset(off);
3716 off += count * dynsym->entsize();
3717 }
3718 }
3719
3720 // Create the version sections.
3721
3722 void
3723 Layout::create_version_sections(const Versions* versions,
3724 const Symbol_table* symtab,
3725 unsigned int local_symcount,
3726 const std::vector<Symbol*>& dynamic_symbols,
3727 const Output_section* dynstr)
3728 {
3729 if (!versions->any_defs() && !versions->any_needs())
3730 return;
3731
3732 switch (parameters->size_and_endianness())
3733 {
3734 #ifdef HAVE_TARGET_32_LITTLE
3735 case Parameters::TARGET_32_LITTLE:
3736 this->sized_create_version_sections<32, false>(versions, symtab,
3737 local_symcount,
3738 dynamic_symbols, dynstr);
3739 break;
3740 #endif
3741 #ifdef HAVE_TARGET_32_BIG
3742 case Parameters::TARGET_32_BIG:
3743 this->sized_create_version_sections<32, true>(versions, symtab,
3744 local_symcount,
3745 dynamic_symbols, dynstr);
3746 break;
3747 #endif
3748 #ifdef HAVE_TARGET_64_LITTLE
3749 case Parameters::TARGET_64_LITTLE:
3750 this->sized_create_version_sections<64, false>(versions, symtab,
3751 local_symcount,
3752 dynamic_symbols, dynstr);
3753 break;
3754 #endif
3755 #ifdef HAVE_TARGET_64_BIG
3756 case Parameters::TARGET_64_BIG:
3757 this->sized_create_version_sections<64, true>(versions, symtab,
3758 local_symcount,
3759 dynamic_symbols, dynstr);
3760 break;
3761 #endif
3762 default:
3763 gold_unreachable();
3764 }
3765 }
3766
3767 // Create the version sections, sized version.
3768
3769 template<int size, bool big_endian>
3770 void
3771 Layout::sized_create_version_sections(
3772 const Versions* versions,
3773 const Symbol_table* symtab,
3774 unsigned int local_symcount,
3775 const std::vector<Symbol*>& dynamic_symbols,
3776 const Output_section* dynstr)
3777 {
3778 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3779 elfcpp::SHT_GNU_versym,
3780 elfcpp::SHF_ALLOC,
3781 false,
3782 ORDER_DYNAMIC_LINKER,
3783 false);
3784
3785 unsigned char* vbuf;
3786 unsigned int vsize;
3787 versions->symbol_section_contents<size, big_endian>(symtab, &this->dynpool_,
3788 local_symcount,
3789 dynamic_symbols,
3790 &vbuf, &vsize);
3791
3792 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
3793 "** versions");
3794
3795 vsec->add_output_section_data(vdata);
3796 vsec->set_entsize(2);
3797 vsec->set_link_section(this->dynsym_section_);
3798
3799 Output_data_dynamic* const odyn = this->dynamic_data_;
3800 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
3801
3802 if (versions->any_defs())
3803 {
3804 Output_section* vdsec;
3805 vdsec= this->choose_output_section(NULL, ".gnu.version_d",
3806 elfcpp::SHT_GNU_verdef,
3807 elfcpp::SHF_ALLOC,
3808 false, ORDER_DYNAMIC_LINKER, false);
3809
3810 unsigned char* vdbuf;
3811 unsigned int vdsize;
3812 unsigned int vdentries;
3813 versions->def_section_contents<size, big_endian>(&this->dynpool_, &vdbuf,
3814 &vdsize, &vdentries);
3815
3816 Output_section_data* vddata =
3817 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
3818
3819 vdsec->add_output_section_data(vddata);
3820 vdsec->set_link_section(dynstr);
3821 vdsec->set_info(vdentries);
3822
3823 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
3824 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
3825 }
3826
3827 if (versions->any_needs())
3828 {
3829 Output_section* vnsec;
3830 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
3831 elfcpp::SHT_GNU_verneed,
3832 elfcpp::SHF_ALLOC,
3833 false, ORDER_DYNAMIC_LINKER, false);
3834
3835 unsigned char* vnbuf;
3836 unsigned int vnsize;
3837 unsigned int vnentries;
3838 versions->need_section_contents<size, big_endian>(&this->dynpool_,
3839 &vnbuf, &vnsize,
3840 &vnentries);
3841
3842 Output_section_data* vndata =
3843 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
3844
3845 vnsec->add_output_section_data(vndata);
3846 vnsec->set_link_section(dynstr);
3847 vnsec->set_info(vnentries);
3848
3849 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
3850 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
3851 }
3852 }
3853
3854 // Create the .interp section and PT_INTERP segment.
3855
3856 void
3857 Layout::create_interp(const Target* target)
3858 {
3859 gold_assert(this->interp_segment_ == NULL);
3860
3861 const char* interp = parameters->options().dynamic_linker();
3862 if (interp == NULL)
3863 {
3864 interp = target->dynamic_linker();
3865 gold_assert(interp != NULL);
3866 }
3867
3868 size_t len = strlen(interp) + 1;
3869
3870 Output_section_data* odata = new Output_data_const(interp, len, 1);
3871
3872 Output_section* osec;
3873
3874 // If we are using a SECTIONS clause, let it decide where the
3875 // .interp section should go. Otherwise always create a new section
3876 // so that this .interp section does not get confused with any
3877 // section of the same name in the program.
3878 if (this->script_options_->saw_sections_clause())
3879 osec = this->choose_output_section(NULL, ".interp", elfcpp::SHT_PROGBITS,
3880 elfcpp::SHF_ALLOC, false, ORDER_INTERP,
3881 false);
3882 else
3883 {
3884 const char* n = this->namepool_.add("interp", false, NULL);
3885 osec = this->make_output_section(n, elfcpp::SHT_PROGBITS,
3886 elfcpp::SHF_ALLOC, ORDER_INTERP, false);
3887 }
3888
3889 osec->add_output_section_data(odata);
3890
3891 if (!this->script_options_->saw_phdrs_clause())
3892 {
3893 Output_segment* oseg = this->make_output_segment(elfcpp::PT_INTERP,
3894 elfcpp::PF_R);
3895 oseg->add_output_section_to_nonload(osec, elfcpp::PF_R);
3896 }
3897 }
3898
3899 // Add dynamic tags for the PLT and the dynamic relocs. This is
3900 // called by the target-specific code. This does nothing if not doing
3901 // a dynamic link.
3902
3903 // USE_REL is true for REL relocs rather than RELA relocs.
3904
3905 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
3906
3907 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
3908 // and we also set DT_PLTREL. We use PLT_REL's output section, since
3909 // some targets have multiple reloc sections in PLT_REL.
3910
3911 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
3912 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT.
3913
3914 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
3915 // executable.
3916
3917 void
3918 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
3919 const Output_data* plt_rel,
3920 const Output_data_reloc_generic* dyn_rel,
3921 bool add_debug, bool dynrel_includes_plt)
3922 {
3923 Output_data_dynamic* odyn = this->dynamic_data_;
3924 if (odyn == NULL)
3925 return;
3926
3927 if (plt_got != NULL && plt_got->output_section() != NULL)
3928 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
3929
3930 if (plt_rel != NULL && plt_rel->output_section() != NULL)
3931 {
3932 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
3933 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
3934 odyn->add_constant(elfcpp::DT_PLTREL,
3935 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
3936 }
3937
3938 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
3939 {
3940 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
3941 dyn_rel);
3942 if (plt_rel != NULL && dynrel_includes_plt)
3943 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3944 dyn_rel, plt_rel);
3945 else
3946 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
3947 dyn_rel);
3948 const int size = parameters->target().get_size();
3949 elfcpp::DT rel_tag;
3950 int rel_size;
3951 if (use_rel)
3952 {
3953 rel_tag = elfcpp::DT_RELENT;
3954 if (size == 32)
3955 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
3956 else if (size == 64)
3957 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
3958 else
3959 gold_unreachable();
3960 }
3961 else
3962 {
3963 rel_tag = elfcpp::DT_RELAENT;
3964 if (size == 32)
3965 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
3966 else if (size == 64)
3967 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
3968 else
3969 gold_unreachable();
3970 }
3971 odyn->add_constant(rel_tag, rel_size);
3972
3973 if (parameters->options().combreloc())
3974 {
3975 size_t c = dyn_rel->relative_reloc_count();
3976 if (c > 0)
3977 odyn->add_constant((use_rel
3978 ? elfcpp::DT_RELCOUNT
3979 : elfcpp::DT_RELACOUNT),
3980 c);
3981 }
3982 }
3983
3984 if (add_debug && !parameters->options().shared())
3985 {
3986 // The value of the DT_DEBUG tag is filled in by the dynamic
3987 // linker at run time, and used by the debugger.
3988 odyn->add_constant(elfcpp::DT_DEBUG, 0);
3989 }
3990 }
3991
3992 // Finish the .dynamic section and PT_DYNAMIC segment.
3993
3994 void
3995 Layout::finish_dynamic_section(const Input_objects* input_objects,
3996 const Symbol_table* symtab)
3997 {
3998 if (!this->script_options_->saw_phdrs_clause())
3999 {
4000 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4001 (elfcpp::PF_R
4002 | elfcpp::PF_W));
4003 oseg->add_output_section_to_nonload(this->dynamic_section_,
4004 elfcpp::PF_R | elfcpp::PF_W);
4005 }
4006
4007 Output_data_dynamic* const odyn = this->dynamic_data_;
4008
4009 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4010 p != input_objects->dynobj_end();
4011 ++p)
4012 {
4013 if (!(*p)->is_needed() && (*p)->as_needed())
4014 {
4015 // This dynamic object was linked with --as-needed, but it
4016 // is not needed.
4017 continue;
4018 }
4019
4020 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4021 }
4022
4023 if (parameters->options().shared())
4024 {
4025 const char* soname = parameters->options().soname();
4026 if (soname != NULL)
4027 odyn->add_string(elfcpp::DT_SONAME, soname);
4028 }
4029
4030 Symbol* sym = symtab->lookup(parameters->options().init());
4031 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4032 odyn->add_symbol(elfcpp::DT_INIT, sym);
4033
4034 sym = symtab->lookup(parameters->options().fini());
4035 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4036 odyn->add_symbol(elfcpp::DT_FINI, sym);
4037
4038 // Look for .init_array, .preinit_array and .fini_array by checking
4039 // section types.
4040 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4041 p != this->section_list_.end();
4042 ++p)
4043 switch((*p)->type())
4044 {
4045 case elfcpp::SHT_FINI_ARRAY:
4046 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4047 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4048 break;
4049 case elfcpp::SHT_INIT_ARRAY:
4050 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4051 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4052 break;
4053 case elfcpp::SHT_PREINIT_ARRAY:
4054 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4055 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4056 break;
4057 default:
4058 break;
4059 }
4060
4061 // Add a DT_RPATH entry if needed.
4062 const General_options::Dir_list& rpath(parameters->options().rpath());
4063 if (!rpath.empty())
4064 {
4065 std::string rpath_val;
4066 for (General_options::Dir_list::const_iterator p = rpath.begin();
4067 p != rpath.end();
4068 ++p)
4069 {
4070 if (rpath_val.empty())
4071 rpath_val = p->name();
4072 else
4073 {
4074 // Eliminate duplicates.
4075 General_options::Dir_list::const_iterator q;
4076 for (q = rpath.begin(); q != p; ++q)
4077 if (q->name() == p->name())
4078 break;
4079 if (q == p)
4080 {
4081 rpath_val += ':';
4082 rpath_val += p->name();
4083 }
4084 }
4085 }
4086
4087 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4088 if (parameters->options().enable_new_dtags())
4089 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4090 }
4091
4092 // Look for text segments that have dynamic relocations.
4093 bool have_textrel = false;
4094 if (!this->script_options_->saw_sections_clause())
4095 {
4096 for (Segment_list::const_iterator p = this->segment_list_.begin();
4097 p != this->segment_list_.end();
4098 ++p)
4099 {
4100 if (((*p)->flags() & elfcpp::PF_W) == 0
4101 && (*p)->has_dynamic_reloc())
4102 {
4103 have_textrel = true;
4104 break;
4105 }
4106 }
4107 }
4108 else
4109 {
4110 // We don't know the section -> segment mapping, so we are
4111 // conservative and just look for readonly sections with
4112 // relocations. If those sections wind up in writable segments,
4113 // then we have created an unnecessary DT_TEXTREL entry.
4114 for (Section_list::const_iterator p = this->section_list_.begin();
4115 p != this->section_list_.end();
4116 ++p)
4117 {
4118 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4119 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4120 && ((*p)->has_dynamic_reloc()))
4121 {
4122 have_textrel = true;
4123 break;
4124 }
4125 }
4126 }
4127
4128 // Add a DT_FLAGS entry. We add it even if no flags are set so that
4129 // post-link tools can easily modify these flags if desired.
4130 unsigned int flags = 0;
4131 if (have_textrel)
4132 {
4133 // Add a DT_TEXTREL for compatibility with older loaders.
4134 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4135 flags |= elfcpp::DF_TEXTREL;
4136
4137 if (parameters->options().text())
4138 gold_error(_("read-only segment has dynamic relocations"));
4139 else if (parameters->options().warn_shared_textrel()
4140 && parameters->options().shared())
4141 gold_warning(_("shared library text segment is not shareable"));
4142 }
4143 if (parameters->options().shared() && this->has_static_tls())
4144 flags |= elfcpp::DF_STATIC_TLS;
4145 if (parameters->options().origin())
4146 flags |= elfcpp::DF_ORIGIN;
4147 if (parameters->options().Bsymbolic())
4148 {
4149 flags |= elfcpp::DF_SYMBOLIC;
4150 // Add DT_SYMBOLIC for compatibility with older loaders.
4151 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4152 }
4153 if (parameters->options().now())
4154 flags |= elfcpp::DF_BIND_NOW;
4155 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4156
4157 flags = 0;
4158 if (parameters->options().initfirst())
4159 flags |= elfcpp::DF_1_INITFIRST;
4160 if (parameters->options().interpose())
4161 flags |= elfcpp::DF_1_INTERPOSE;
4162 if (parameters->options().loadfltr())
4163 flags |= elfcpp::DF_1_LOADFLTR;
4164 if (parameters->options().nodefaultlib())
4165 flags |= elfcpp::DF_1_NODEFLIB;
4166 if (parameters->options().nodelete())
4167 flags |= elfcpp::DF_1_NODELETE;
4168 if (parameters->options().nodlopen())
4169 flags |= elfcpp::DF_1_NOOPEN;
4170 if (parameters->options().nodump())
4171 flags |= elfcpp::DF_1_NODUMP;
4172 if (!parameters->options().shared())
4173 flags &= ~(elfcpp::DF_1_INITFIRST
4174 | elfcpp::DF_1_NODELETE
4175 | elfcpp::DF_1_NOOPEN);
4176 if (parameters->options().origin())
4177 flags |= elfcpp::DF_1_ORIGIN;
4178 if (parameters->options().now())
4179 flags |= elfcpp::DF_1_NOW;
4180 if (flags)
4181 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4182 }
4183
4184 // Set the size of the _DYNAMIC symbol table to be the size of the
4185 // dynamic data.
4186
4187 void
4188 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4189 {
4190 Output_data_dynamic* const odyn = this->dynamic_data_;
4191 odyn->finalize_data_size();
4192 off_t data_size = odyn->data_size();
4193 const int size = parameters->target().get_size();
4194 if (size == 32)
4195 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4196 else if (size == 64)
4197 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4198 else
4199 gold_unreachable();
4200 }
4201
4202 // The mapping of input section name prefixes to output section names.
4203 // In some cases one prefix is itself a prefix of another prefix; in
4204 // such a case the longer prefix must come first. These prefixes are
4205 // based on the GNU linker default ELF linker script.
4206
4207 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4208 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4209 {
4210 MAPPING_INIT(".text.", ".text"),
4211 MAPPING_INIT(".ctors.", ".ctors"),
4212 MAPPING_INIT(".dtors.", ".dtors"),
4213 MAPPING_INIT(".rodata.", ".rodata"),
4214 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4215 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4216 MAPPING_INIT(".data.", ".data"),
4217 MAPPING_INIT(".bss.", ".bss"),
4218 MAPPING_INIT(".tdata.", ".tdata"),
4219 MAPPING_INIT(".tbss.", ".tbss"),
4220 MAPPING_INIT(".init_array.", ".init_array"),
4221 MAPPING_INIT(".fini_array.", ".fini_array"),
4222 MAPPING_INIT(".sdata.", ".sdata"),
4223 MAPPING_INIT(".sbss.", ".sbss"),
4224 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4225 // differently depending on whether it is creating a shared library.
4226 MAPPING_INIT(".sdata2.", ".sdata"),
4227 MAPPING_INIT(".sbss2.", ".sbss"),
4228 MAPPING_INIT(".lrodata.", ".lrodata"),
4229 MAPPING_INIT(".ldata.", ".ldata"),
4230 MAPPING_INIT(".lbss.", ".lbss"),
4231 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4232 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4233 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4234 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4235 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4236 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4237 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4238 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4239 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4240 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4241 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4242 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4243 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4244 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4245 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4246 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4247 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4248 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4249 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4250 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4251 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4252 };
4253 #undef MAPPING_INIT
4254
4255 const int Layout::section_name_mapping_count =
4256 (sizeof(Layout::section_name_mapping)
4257 / sizeof(Layout::section_name_mapping[0]));
4258
4259 // Choose the output section name to use given an input section name.
4260 // Set *PLEN to the length of the name. *PLEN is initialized to the
4261 // length of NAME.
4262
4263 const char*
4264 Layout::output_section_name(const char* name, size_t* plen)
4265 {
4266 // gcc 4.3 generates the following sorts of section names when it
4267 // needs a section name specific to a function:
4268 // .text.FN
4269 // .rodata.FN
4270 // .sdata2.FN
4271 // .data.FN
4272 // .data.rel.FN
4273 // .data.rel.local.FN
4274 // .data.rel.ro.FN
4275 // .data.rel.ro.local.FN
4276 // .sdata.FN
4277 // .bss.FN
4278 // .sbss.FN
4279 // .tdata.FN
4280 // .tbss.FN
4281
4282 // The GNU linker maps all of those to the part before the .FN,
4283 // except that .data.rel.local.FN is mapped to .data, and
4284 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4285 // beginning with .data.rel.ro.local are grouped together.
4286
4287 // For an anonymous namespace, the string FN can contain a '.'.
4288
4289 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4290 // GNU linker maps to .rodata.
4291
4292 // The .data.rel.ro sections are used with -z relro. The sections
4293 // are recognized by name. We use the same names that the GNU
4294 // linker does for these sections.
4295
4296 // It is hard to handle this in a principled way, so we don't even
4297 // try. We use a table of mappings. If the input section name is
4298 // not found in the table, we simply use it as the output section
4299 // name.
4300
4301 const Section_name_mapping* psnm = section_name_mapping;
4302 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4303 {
4304 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4305 {
4306 *plen = psnm->tolen;
4307 return psnm->to;
4308 }
4309 }
4310
4311 return name;
4312 }
4313
4314 // Check if a comdat group or .gnu.linkonce section with the given
4315 // NAME is selected for the link. If there is already a section,
4316 // *KEPT_SECTION is set to point to the existing section and the
4317 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4318 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4319 // *KEPT_SECTION is set to the internal copy and the function returns
4320 // true.
4321
4322 bool
4323 Layout::find_or_add_kept_section(const std::string& name,
4324 Relobj* object,
4325 unsigned int shndx,
4326 bool is_comdat,
4327 bool is_group_name,
4328 Kept_section** kept_section)
4329 {
4330 // It's normal to see a couple of entries here, for the x86 thunk
4331 // sections. If we see more than a few, we're linking a C++
4332 // program, and we resize to get more space to minimize rehashing.
4333 if (this->signatures_.size() > 4
4334 && !this->resized_signatures_)
4335 {
4336 reserve_unordered_map(&this->signatures_,
4337 this->number_of_input_files_ * 64);
4338 this->resized_signatures_ = true;
4339 }
4340
4341 Kept_section candidate;
4342 std::pair<Signatures::iterator, bool> ins =
4343 this->signatures_.insert(std::make_pair(name, candidate));
4344
4345 if (kept_section != NULL)
4346 *kept_section = &ins.first->second;
4347 if (ins.second)
4348 {
4349 // This is the first time we've seen this signature.
4350 ins.first->second.set_object(object);
4351 ins.first->second.set_shndx(shndx);
4352 if (is_comdat)
4353 ins.first->second.set_is_comdat();
4354 if (is_group_name)
4355 ins.first->second.set_is_group_name();
4356 return true;
4357 }
4358
4359 // We have already seen this signature.
4360
4361 if (ins.first->second.is_group_name())
4362 {
4363 // We've already seen a real section group with this signature.
4364 // If the kept group is from a plugin object, and we're in the
4365 // replacement phase, accept the new one as a replacement.
4366 if (ins.first->second.object() == NULL
4367 && parameters->options().plugins()->in_replacement_phase())
4368 {
4369 ins.first->second.set_object(object);
4370 ins.first->second.set_shndx(shndx);
4371 return true;
4372 }
4373 return false;
4374 }
4375 else if (is_group_name)
4376 {
4377 // This is a real section group, and we've already seen a
4378 // linkonce section with this signature. Record that we've seen
4379 // a section group, and don't include this section group.
4380 ins.first->second.set_is_group_name();
4381 return false;
4382 }
4383 else
4384 {
4385 // We've already seen a linkonce section and this is a linkonce
4386 // section. These don't block each other--this may be the same
4387 // symbol name with different section types.
4388 return true;
4389 }
4390 }
4391
4392 // Store the allocated sections into the section list.
4393
4394 void
4395 Layout::get_allocated_sections(Section_list* section_list) const
4396 {
4397 for (Section_list::const_iterator p = this->section_list_.begin();
4398 p != this->section_list_.end();
4399 ++p)
4400 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4401 section_list->push_back(*p);
4402 }
4403
4404 // Create an output segment.
4405
4406 Output_segment*
4407 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4408 {
4409 gold_assert(!parameters->options().relocatable());
4410 Output_segment* oseg = new Output_segment(type, flags);
4411 this->segment_list_.push_back(oseg);
4412
4413 if (type == elfcpp::PT_TLS)
4414 this->tls_segment_ = oseg;
4415 else if (type == elfcpp::PT_GNU_RELRO)
4416 this->relro_segment_ = oseg;
4417 else if (type == elfcpp::PT_INTERP)
4418 this->interp_segment_ = oseg;
4419
4420 return oseg;
4421 }
4422
4423 // Return the file offset of the normal symbol table.
4424
4425 off_t
4426 Layout::symtab_section_offset() const
4427 {
4428 if (this->symtab_section_ != NULL)
4429 return this->symtab_section_->offset();
4430 return 0;
4431 }
4432
4433 // Write out the Output_sections. Most won't have anything to write,
4434 // since most of the data will come from input sections which are
4435 // handled elsewhere. But some Output_sections do have Output_data.
4436
4437 void
4438 Layout::write_output_sections(Output_file* of) const
4439 {
4440 for (Section_list::const_iterator p = this->section_list_.begin();
4441 p != this->section_list_.end();
4442 ++p)
4443 {
4444 if (!(*p)->after_input_sections())
4445 (*p)->write(of);
4446 }
4447 }
4448
4449 // Write out data not associated with a section or the symbol table.
4450
4451 void
4452 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4453 {
4454 if (!parameters->options().strip_all())
4455 {
4456 const Output_section* symtab_section = this->symtab_section_;
4457 for (Section_list::const_iterator p = this->section_list_.begin();
4458 p != this->section_list_.end();
4459 ++p)
4460 {
4461 if ((*p)->needs_symtab_index())
4462 {
4463 gold_assert(symtab_section != NULL);
4464 unsigned int index = (*p)->symtab_index();
4465 gold_assert(index > 0 && index != -1U);
4466 off_t off = (symtab_section->offset()
4467 + index * symtab_section->entsize());
4468 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4469 }
4470 }
4471 }
4472
4473 const Output_section* dynsym_section = this->dynsym_section_;
4474 for (Section_list::const_iterator p = this->section_list_.begin();
4475 p != this->section_list_.end();
4476 ++p)
4477 {
4478 if ((*p)->needs_dynsym_index())
4479 {
4480 gold_assert(dynsym_section != NULL);
4481 unsigned int index = (*p)->dynsym_index();
4482 gold_assert(index > 0 && index != -1U);
4483 off_t off = (dynsym_section->offset()
4484 + index * dynsym_section->entsize());
4485 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4486 }
4487 }
4488
4489 // Write out the Output_data which are not in an Output_section.
4490 for (Data_list::const_iterator p = this->special_output_list_.begin();
4491 p != this->special_output_list_.end();
4492 ++p)
4493 (*p)->write(of);
4494 }
4495
4496 // Write out the Output_sections which can only be written after the
4497 // input sections are complete.
4498
4499 void
4500 Layout::write_sections_after_input_sections(Output_file* of)
4501 {
4502 // Determine the final section offsets, and thus the final output
4503 // file size. Note we finalize the .shstrab last, to allow the
4504 // after_input_section sections to modify their section-names before
4505 // writing.
4506 if (this->any_postprocessing_sections_)
4507 {
4508 off_t off = this->output_file_size_;
4509 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4510
4511 // Now that we've finalized the names, we can finalize the shstrab.
4512 off =
4513 this->set_section_offsets(off,
4514 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4515
4516 if (off > this->output_file_size_)
4517 {
4518 of->resize(off);
4519 this->output_file_size_ = off;
4520 }
4521 }
4522
4523 for (Section_list::const_iterator p = this->section_list_.begin();
4524 p != this->section_list_.end();
4525 ++p)
4526 {
4527 if ((*p)->after_input_sections())
4528 (*p)->write(of);
4529 }
4530
4531 this->section_headers_->write(of);
4532 }
4533
4534 // If the build ID requires computing a checksum, do so here, and
4535 // write it out. We compute a checksum over the entire file because
4536 // that is simplest.
4537
4538 void
4539 Layout::write_build_id(Output_file* of) const
4540 {
4541 if (this->build_id_note_ == NULL)
4542 return;
4543
4544 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4545
4546 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4547 this->build_id_note_->data_size());
4548
4549 const char* style = parameters->options().build_id();
4550 if (strcmp(style, "sha1") == 0)
4551 {
4552 sha1_ctx ctx;
4553 sha1_init_ctx(&ctx);
4554 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4555 sha1_finish_ctx(&ctx, ov);
4556 }
4557 else if (strcmp(style, "md5") == 0)
4558 {
4559 md5_ctx ctx;
4560 md5_init_ctx(&ctx);
4561 md5_process_bytes(iv, this->output_file_size_, &ctx);
4562 md5_finish_ctx(&ctx, ov);
4563 }
4564 else
4565 gold_unreachable();
4566
4567 of->write_output_view(this->build_id_note_->offset(),
4568 this->build_id_note_->data_size(),
4569 ov);
4570
4571 of->free_input_view(0, this->output_file_size_, iv);
4572 }
4573
4574 // Write out a binary file. This is called after the link is
4575 // complete. IN is the temporary output file we used to generate the
4576 // ELF code. We simply walk through the segments, read them from
4577 // their file offset in IN, and write them to their load address in
4578 // the output file. FIXME: with a bit more work, we could support
4579 // S-records and/or Intel hex format here.
4580
4581 void
4582 Layout::write_binary(Output_file* in) const
4583 {
4584 gold_assert(parameters->options().oformat_enum()
4585 == General_options::OBJECT_FORMAT_BINARY);
4586
4587 // Get the size of the binary file.
4588 uint64_t max_load_address = 0;
4589 for (Segment_list::const_iterator p = this->segment_list_.begin();
4590 p != this->segment_list_.end();
4591 ++p)
4592 {
4593 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4594 {
4595 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4596 if (max_paddr > max_load_address)
4597 max_load_address = max_paddr;
4598 }
4599 }
4600
4601 Output_file out(parameters->options().output_file_name());
4602 out.open(max_load_address);
4603
4604 for (Segment_list::const_iterator p = this->segment_list_.begin();
4605 p != this->segment_list_.end();
4606 ++p)
4607 {
4608 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4609 {
4610 const unsigned char* vin = in->get_input_view((*p)->offset(),
4611 (*p)->filesz());
4612 unsigned char* vout = out.get_output_view((*p)->paddr(),
4613 (*p)->filesz());
4614 memcpy(vout, vin, (*p)->filesz());
4615 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4616 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4617 }
4618 }
4619
4620 out.close();
4621 }
4622
4623 // Print the output sections to the map file.
4624
4625 void
4626 Layout::print_to_mapfile(Mapfile* mapfile) const
4627 {
4628 for (Segment_list::const_iterator p = this->segment_list_.begin();
4629 p != this->segment_list_.end();
4630 ++p)
4631 (*p)->print_sections_to_mapfile(mapfile);
4632 }
4633
4634 // Print statistical information to stderr. This is used for --stats.
4635
4636 void
4637 Layout::print_stats() const
4638 {
4639 this->namepool_.print_stats("section name pool");
4640 this->sympool_.print_stats("output symbol name pool");
4641 this->dynpool_.print_stats("dynamic name pool");
4642
4643 for (Section_list::const_iterator p = this->section_list_.begin();
4644 p != this->section_list_.end();
4645 ++p)
4646 (*p)->print_merge_stats();
4647 }
4648
4649 // Write_sections_task methods.
4650
4651 // We can always run this task.
4652
4653 Task_token*
4654 Write_sections_task::is_runnable()
4655 {
4656 return NULL;
4657 }
4658
4659 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4660 // when finished.
4661
4662 void
4663 Write_sections_task::locks(Task_locker* tl)
4664 {
4665 tl->add(this, this->output_sections_blocker_);
4666 tl->add(this, this->final_blocker_);
4667 }
4668
4669 // Run the task--write out the data.
4670
4671 void
4672 Write_sections_task::run(Workqueue*)
4673 {
4674 this->layout_->write_output_sections(this->of_);
4675 }
4676
4677 // Write_data_task methods.
4678
4679 // We can always run this task.
4680
4681 Task_token*
4682 Write_data_task::is_runnable()
4683 {
4684 return NULL;
4685 }
4686
4687 // We need to unlock FINAL_BLOCKER when finished.
4688
4689 void
4690 Write_data_task::locks(Task_locker* tl)
4691 {
4692 tl->add(this, this->final_blocker_);
4693 }
4694
4695 // Run the task--write out the data.
4696
4697 void
4698 Write_data_task::run(Workqueue*)
4699 {
4700 this->layout_->write_data(this->symtab_, this->of_);
4701 }
4702
4703 // Write_symbols_task methods.
4704
4705 // We can always run this task.
4706
4707 Task_token*
4708 Write_symbols_task::is_runnable()
4709 {
4710 return NULL;
4711 }
4712
4713 // We need to unlock FINAL_BLOCKER when finished.
4714
4715 void
4716 Write_symbols_task::locks(Task_locker* tl)
4717 {
4718 tl->add(this, this->final_blocker_);
4719 }
4720
4721 // Run the task--write out the symbols.
4722
4723 void
4724 Write_symbols_task::run(Workqueue*)
4725 {
4726 this->symtab_->write_globals(this->sympool_, this->dynpool_,
4727 this->layout_->symtab_xindex(),
4728 this->layout_->dynsym_xindex(), this->of_);
4729 }
4730
4731 // Write_after_input_sections_task methods.
4732
4733 // We can only run this task after the input sections have completed.
4734
4735 Task_token*
4736 Write_after_input_sections_task::is_runnable()
4737 {
4738 if (this->input_sections_blocker_->is_blocked())
4739 return this->input_sections_blocker_;
4740 return NULL;
4741 }
4742
4743 // We need to unlock FINAL_BLOCKER when finished.
4744
4745 void
4746 Write_after_input_sections_task::locks(Task_locker* tl)
4747 {
4748 tl->add(this, this->final_blocker_);
4749 }
4750
4751 // Run the task.
4752
4753 void
4754 Write_after_input_sections_task::run(Workqueue*)
4755 {
4756 this->layout_->write_sections_after_input_sections(this->of_);
4757 }
4758
4759 // Close_task_runner methods.
4760
4761 // Run the task--close the file.
4762
4763 void
4764 Close_task_runner::run(Workqueue*, const Task*)
4765 {
4766 // If we need to compute a checksum for the BUILD if, we do so here.
4767 this->layout_->write_build_id(this->of_);
4768
4769 // If we've been asked to create a binary file, we do so here.
4770 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
4771 this->layout_->write_binary(this->of_);
4772
4773 this->of_->close();
4774 }
4775
4776 // Instantiate the templates we need. We could use the configure
4777 // script to restrict this to only the ones for implemented targets.
4778
4779 #ifdef HAVE_TARGET_32_LITTLE
4780 template
4781 Output_section*
4782 Layout::init_fixed_output_section<32, false>(
4783 const char* name,
4784 elfcpp::Shdr<32, false>& shdr);
4785 #endif
4786
4787 #ifdef HAVE_TARGET_32_BIG
4788 template
4789 Output_section*
4790 Layout::init_fixed_output_section<32, true>(
4791 const char* name,
4792 elfcpp::Shdr<32, true>& shdr);
4793 #endif
4794
4795 #ifdef HAVE_TARGET_64_LITTLE
4796 template
4797 Output_section*
4798 Layout::init_fixed_output_section<64, false>(
4799 const char* name,
4800 elfcpp::Shdr<64, false>& shdr);
4801 #endif
4802
4803 #ifdef HAVE_TARGET_64_BIG
4804 template
4805 Output_section*
4806 Layout::init_fixed_output_section<64, true>(
4807 const char* name,
4808 elfcpp::Shdr<64, true>& shdr);
4809 #endif
4810
4811 #ifdef HAVE_TARGET_32_LITTLE
4812 template
4813 Output_section*
4814 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
4815 unsigned int shndx,
4816 const char* name,
4817 const elfcpp::Shdr<32, false>& shdr,
4818 unsigned int, unsigned int, off_t*);
4819 #endif
4820
4821 #ifdef HAVE_TARGET_32_BIG
4822 template
4823 Output_section*
4824 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
4825 unsigned int shndx,
4826 const char* name,
4827 const elfcpp::Shdr<32, true>& shdr,
4828 unsigned int, unsigned int, off_t*);
4829 #endif
4830
4831 #ifdef HAVE_TARGET_64_LITTLE
4832 template
4833 Output_section*
4834 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
4835 unsigned int shndx,
4836 const char* name,
4837 const elfcpp::Shdr<64, false>& shdr,
4838 unsigned int, unsigned int, off_t*);
4839 #endif
4840
4841 #ifdef HAVE_TARGET_64_BIG
4842 template
4843 Output_section*
4844 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
4845 unsigned int shndx,
4846 const char* name,
4847 const elfcpp::Shdr<64, true>& shdr,
4848 unsigned int, unsigned int, off_t*);
4849 #endif
4850
4851 #ifdef HAVE_TARGET_32_LITTLE
4852 template
4853 Output_section*
4854 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
4855 unsigned int reloc_shndx,
4856 const elfcpp::Shdr<32, false>& shdr,
4857 Output_section* data_section,
4858 Relocatable_relocs* rr);
4859 #endif
4860
4861 #ifdef HAVE_TARGET_32_BIG
4862 template
4863 Output_section*
4864 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
4865 unsigned int reloc_shndx,
4866 const elfcpp::Shdr<32, true>& shdr,
4867 Output_section* data_section,
4868 Relocatable_relocs* rr);
4869 #endif
4870
4871 #ifdef HAVE_TARGET_64_LITTLE
4872 template
4873 Output_section*
4874 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
4875 unsigned int reloc_shndx,
4876 const elfcpp::Shdr<64, false>& shdr,
4877 Output_section* data_section,
4878 Relocatable_relocs* rr);
4879 #endif
4880
4881 #ifdef HAVE_TARGET_64_BIG
4882 template
4883 Output_section*
4884 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
4885 unsigned int reloc_shndx,
4886 const elfcpp::Shdr<64, true>& shdr,
4887 Output_section* data_section,
4888 Relocatable_relocs* rr);
4889 #endif
4890
4891 #ifdef HAVE_TARGET_32_LITTLE
4892 template
4893 void
4894 Layout::layout_group<32, false>(Symbol_table* symtab,
4895 Sized_relobj_file<32, false>* object,
4896 unsigned int,
4897 const char* group_section_name,
4898 const char* signature,
4899 const elfcpp::Shdr<32, false>& shdr,
4900 elfcpp::Elf_Word flags,
4901 std::vector<unsigned int>* shndxes);
4902 #endif
4903
4904 #ifdef HAVE_TARGET_32_BIG
4905 template
4906 void
4907 Layout::layout_group<32, true>(Symbol_table* symtab,
4908 Sized_relobj_file<32, true>* object,
4909 unsigned int,
4910 const char* group_section_name,
4911 const char* signature,
4912 const elfcpp::Shdr<32, true>& shdr,
4913 elfcpp::Elf_Word flags,
4914 std::vector<unsigned int>* shndxes);
4915 #endif
4916
4917 #ifdef HAVE_TARGET_64_LITTLE
4918 template
4919 void
4920 Layout::layout_group<64, false>(Symbol_table* symtab,
4921 Sized_relobj_file<64, false>* object,
4922 unsigned int,
4923 const char* group_section_name,
4924 const char* signature,
4925 const elfcpp::Shdr<64, false>& shdr,
4926 elfcpp::Elf_Word flags,
4927 std::vector<unsigned int>* shndxes);
4928 #endif
4929
4930 #ifdef HAVE_TARGET_64_BIG
4931 template
4932 void
4933 Layout::layout_group<64, true>(Symbol_table* symtab,
4934 Sized_relobj_file<64, true>* object,
4935 unsigned int,
4936 const char* group_section_name,
4937 const char* signature,
4938 const elfcpp::Shdr<64, true>& shdr,
4939 elfcpp::Elf_Word flags,
4940 std::vector<unsigned int>* shndxes);
4941 #endif
4942
4943 #ifdef HAVE_TARGET_32_LITTLE
4944 template
4945 Output_section*
4946 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
4947 const unsigned char* symbols,
4948 off_t symbols_size,
4949 const unsigned char* symbol_names,
4950 off_t symbol_names_size,
4951 unsigned int shndx,
4952 const elfcpp::Shdr<32, false>& shdr,
4953 unsigned int reloc_shndx,
4954 unsigned int reloc_type,
4955 off_t* off);
4956 #endif
4957
4958 #ifdef HAVE_TARGET_32_BIG
4959 template
4960 Output_section*
4961 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
4962 const unsigned char* symbols,
4963 off_t symbols_size,
4964 const unsigned char* symbol_names,
4965 off_t symbol_names_size,
4966 unsigned int shndx,
4967 const elfcpp::Shdr<32, true>& shdr,
4968 unsigned int reloc_shndx,
4969 unsigned int reloc_type,
4970 off_t* off);
4971 #endif
4972
4973 #ifdef HAVE_TARGET_64_LITTLE
4974 template
4975 Output_section*
4976 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
4977 const unsigned char* symbols,
4978 off_t symbols_size,
4979 const unsigned char* symbol_names,
4980 off_t symbol_names_size,
4981 unsigned int shndx,
4982 const elfcpp::Shdr<64, false>& shdr,
4983 unsigned int reloc_shndx,
4984 unsigned int reloc_type,
4985 off_t* off);
4986 #endif
4987
4988 #ifdef HAVE_TARGET_64_BIG
4989 template
4990 Output_section*
4991 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
4992 const unsigned char* symbols,
4993 off_t symbols_size,
4994 const unsigned char* symbol_names,
4995 off_t symbol_names_size,
4996 unsigned int shndx,
4997 const elfcpp::Shdr<64, true>& shdr,
4998 unsigned int reloc_shndx,
4999 unsigned int reloc_type,
5000 off_t* off);
5001 #endif
5002
5003 } // End namespace gold.
This page took 0.168755 seconds and 4 git commands to generate.