* incremental.cc (can_incremental_update): New function.
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright 2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37
38 #include "parameters.h"
39 #include "options.h"
40 #include "mapfile.h"
41 #include "script.h"
42 #include "script-sections.h"
43 #include "output.h"
44 #include "symtab.h"
45 #include "dynobj.h"
46 #include "ehframe.h"
47 #include "compressed_output.h"
48 #include "reduced_debug_output.h"
49 #include "object.h"
50 #include "reloc.h"
51 #include "descriptors.h"
52 #include "plugin.h"
53 #include "incremental.h"
54 #include "layout.h"
55
56 namespace gold
57 {
58
59 // Class Free_list.
60
61 // The total number of free lists used.
62 unsigned int Free_list::num_lists = 0;
63 // The total number of free list nodes used.
64 unsigned int Free_list::num_nodes = 0;
65 // The total number of calls to Free_list::remove.
66 unsigned int Free_list::num_removes = 0;
67 // The total number of nodes visited during calls to Free_list::remove.
68 unsigned int Free_list::num_remove_visits = 0;
69 // The total number of calls to Free_list::allocate.
70 unsigned int Free_list::num_allocates = 0;
71 // The total number of nodes visited during calls to Free_list::allocate.
72 unsigned int Free_list::num_allocate_visits = 0;
73
74 // Initialize the free list. Creates a single free list node that
75 // describes the entire region of length LEN. If EXTEND is true,
76 // allocate() is allowed to extend the region beyond its initial
77 // length.
78
79 void
80 Free_list::init(off_t len, bool extend)
81 {
82 this->list_.push_front(Free_list_node(0, len));
83 this->last_remove_ = this->list_.begin();
84 this->extend_ = extend;
85 this->length_ = len;
86 ++Free_list::num_lists;
87 ++Free_list::num_nodes;
88 }
89
90 // Remove a chunk from the free list. Because we start with a single
91 // node that covers the entire section, and remove chunks from it one
92 // at a time, we do not need to coalesce chunks or handle cases that
93 // span more than one free node. We expect to remove chunks from the
94 // free list in order, and we expect to have only a few chunks of free
95 // space left (corresponding to files that have changed since the last
96 // incremental link), so a simple linear list should provide sufficient
97 // performance.
98
99 void
100 Free_list::remove(off_t start, off_t end)
101 {
102 if (start == end)
103 return;
104 gold_assert(start < end);
105
106 ++Free_list::num_removes;
107
108 Iterator p = this->last_remove_;
109 if (p->start_ > start)
110 p = this->list_.begin();
111
112 for (; p != this->list_.end(); ++p)
113 {
114 ++Free_list::num_remove_visits;
115 // Find a node that wholly contains the indicated region.
116 if (p->start_ <= start && p->end_ >= end)
117 {
118 // Case 1: the indicated region spans the whole node.
119 // Add some fuzz to avoid creating tiny free chunks.
120 if (p->start_ + 3 >= start && p->end_ <= end + 3)
121 p = this->list_.erase(p);
122 // Case 2: remove a chunk from the start of the node.
123 else if (p->start_ + 3 >= start)
124 p->start_ = end;
125 // Case 3: remove a chunk from the end of the node.
126 else if (p->end_ <= end + 3)
127 p->end_ = start;
128 // Case 4: remove a chunk from the middle, and split
129 // the node into two.
130 else
131 {
132 Free_list_node newnode(p->start_, start);
133 p->start_ = end;
134 this->list_.insert(p, newnode);
135 ++Free_list::num_nodes;
136 }
137 this->last_remove_ = p;
138 return;
139 }
140 }
141
142 // Did not find a node containing the given chunk. This could happen
143 // because a small chunk was already removed due to the fuzz.
144 gold_debug(DEBUG_INCREMENTAL,
145 "Free_list::remove(%d,%d) not found",
146 static_cast<int>(start), static_cast<int>(end));
147 }
148
149 // Allocate a chunk of size LEN from the free list. Returns -1ULL
150 // if a sufficiently large chunk of free space is not found.
151 // We use a simple first-fit algorithm.
152
153 off_t
154 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
155 {
156 gold_debug(DEBUG_INCREMENTAL,
157 "Free_list::allocate(%08lx, %d, %08lx)",
158 static_cast<long>(len), static_cast<int>(align),
159 static_cast<long>(minoff));
160 if (len == 0)
161 return align_address(minoff, align);
162
163 ++Free_list::num_allocates;
164
165 // We usually want to drop free chunks smaller than 4 bytes.
166 // If we need to guarantee a minimum hole size, though, we need
167 // to keep track of all free chunks.
168 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
169
170 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
171 {
172 ++Free_list::num_allocate_visits;
173 off_t start = p->start_ > minoff ? p->start_ : minoff;
174 start = align_address(start, align);
175 off_t end = start + len;
176 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
177 {
178 this->length_ = end;
179 p->end_ = end;
180 }
181 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
182 {
183 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
184 this->list_.erase(p);
185 else if (p->start_ + fuzz >= start)
186 p->start_ = end;
187 else if (p->end_ <= end + fuzz)
188 p->end_ = start;
189 else
190 {
191 Free_list_node newnode(p->start_, start);
192 p->start_ = end;
193 this->list_.insert(p, newnode);
194 ++Free_list::num_nodes;
195 }
196 return start;
197 }
198 }
199 if (this->extend_)
200 {
201 off_t start = align_address(this->length_, align);
202 this->length_ = start + len;
203 return start;
204 }
205 return -1;
206 }
207
208 // Dump the free list (for debugging).
209 void
210 Free_list::dump()
211 {
212 gold_info("Free list:\n start end length\n");
213 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
214 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
215 static_cast<long>(p->end_),
216 static_cast<long>(p->end_ - p->start_));
217 }
218
219 // Print the statistics for the free lists.
220 void
221 Free_list::print_stats()
222 {
223 fprintf(stderr, _("%s: total free lists: %u\n"),
224 program_name, Free_list::num_lists);
225 fprintf(stderr, _("%s: total free list nodes: %u\n"),
226 program_name, Free_list::num_nodes);
227 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
228 program_name, Free_list::num_removes);
229 fprintf(stderr, _("%s: nodes visited: %u\n"),
230 program_name, Free_list::num_remove_visits);
231 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
232 program_name, Free_list::num_allocates);
233 fprintf(stderr, _("%s: nodes visited: %u\n"),
234 program_name, Free_list::num_allocate_visits);
235 }
236
237 // Layout::Relaxation_debug_check methods.
238
239 // Check that sections and special data are in reset states.
240 // We do not save states for Output_sections and special Output_data.
241 // So we check that they have not assigned any addresses or offsets.
242 // clean_up_after_relaxation simply resets their addresses and offsets.
243 void
244 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
245 const Layout::Section_list& sections,
246 const Layout::Data_list& special_outputs)
247 {
248 for(Layout::Section_list::const_iterator p = sections.begin();
249 p != sections.end();
250 ++p)
251 gold_assert((*p)->address_and_file_offset_have_reset_values());
252
253 for(Layout::Data_list::const_iterator p = special_outputs.begin();
254 p != special_outputs.end();
255 ++p)
256 gold_assert((*p)->address_and_file_offset_have_reset_values());
257 }
258
259 // Save information of SECTIONS for checking later.
260
261 void
262 Layout::Relaxation_debug_check::read_sections(
263 const Layout::Section_list& sections)
264 {
265 for(Layout::Section_list::const_iterator p = sections.begin();
266 p != sections.end();
267 ++p)
268 {
269 Output_section* os = *p;
270 Section_info info;
271 info.output_section = os;
272 info.address = os->is_address_valid() ? os->address() : 0;
273 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
274 info.offset = os->is_offset_valid()? os->offset() : -1 ;
275 this->section_infos_.push_back(info);
276 }
277 }
278
279 // Verify SECTIONS using previously recorded information.
280
281 void
282 Layout::Relaxation_debug_check::verify_sections(
283 const Layout::Section_list& sections)
284 {
285 size_t i = 0;
286 for(Layout::Section_list::const_iterator p = sections.begin();
287 p != sections.end();
288 ++p, ++i)
289 {
290 Output_section* os = *p;
291 uint64_t address = os->is_address_valid() ? os->address() : 0;
292 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
293 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
294
295 if (i >= this->section_infos_.size())
296 {
297 gold_fatal("Section_info of %s missing.\n", os->name());
298 }
299 const Section_info& info = this->section_infos_[i];
300 if (os != info.output_section)
301 gold_fatal("Section order changed. Expecting %s but see %s\n",
302 info.output_section->name(), os->name());
303 if (address != info.address
304 || data_size != info.data_size
305 || offset != info.offset)
306 gold_fatal("Section %s changed.\n", os->name());
307 }
308 }
309
310 // Layout_task_runner methods.
311
312 // Lay out the sections. This is called after all the input objects
313 // have been read.
314
315 void
316 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
317 {
318 Layout* layout = this->layout_;
319 off_t file_size = layout->finalize(this->input_objects_,
320 this->symtab_,
321 this->target_,
322 task);
323
324 // Now we know the final size of the output file and we know where
325 // each piece of information goes.
326
327 if (this->mapfile_ != NULL)
328 {
329 this->mapfile_->print_discarded_sections(this->input_objects_);
330 layout->print_to_mapfile(this->mapfile_);
331 }
332
333 Output_file* of;
334 if (layout->incremental_base() == NULL)
335 {
336 of = new Output_file(parameters->options().output_file_name());
337 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
338 of->set_is_temporary();
339 of->open(file_size);
340 }
341 else
342 {
343 of = layout->incremental_base()->output_file();
344
345 // Apply the incremental relocations for symbols whose values
346 // have changed. We do this before we resize the file and start
347 // writing anything else to it, so that we can read the old
348 // incremental information from the file before (possibly)
349 // overwriting it.
350 if (parameters->incremental_update())
351 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
352 this->layout_,
353 of);
354
355 of->resize(file_size);
356 }
357
358 // Queue up the final set of tasks.
359 gold::queue_final_tasks(this->options_, this->input_objects_,
360 this->symtab_, layout, workqueue, of);
361 }
362
363 // Layout methods.
364
365 Layout::Layout(int number_of_input_files, Script_options* script_options)
366 : number_of_input_files_(number_of_input_files),
367 script_options_(script_options),
368 namepool_(),
369 sympool_(),
370 dynpool_(),
371 signatures_(),
372 section_name_map_(),
373 segment_list_(),
374 section_list_(),
375 unattached_section_list_(),
376 special_output_list_(),
377 section_headers_(NULL),
378 tls_segment_(NULL),
379 relro_segment_(NULL),
380 interp_segment_(NULL),
381 increase_relro_(0),
382 symtab_section_(NULL),
383 symtab_xindex_(NULL),
384 dynsym_section_(NULL),
385 dynsym_xindex_(NULL),
386 dynamic_section_(NULL),
387 dynamic_symbol_(NULL),
388 dynamic_data_(NULL),
389 eh_frame_section_(NULL),
390 eh_frame_data_(NULL),
391 added_eh_frame_data_(false),
392 eh_frame_hdr_section_(NULL),
393 build_id_note_(NULL),
394 debug_abbrev_(NULL),
395 debug_info_(NULL),
396 group_signatures_(),
397 output_file_size_(-1),
398 have_added_input_section_(false),
399 sections_are_attached_(false),
400 input_requires_executable_stack_(false),
401 input_with_gnu_stack_note_(false),
402 input_without_gnu_stack_note_(false),
403 has_static_tls_(false),
404 any_postprocessing_sections_(false),
405 resized_signatures_(false),
406 have_stabstr_section_(false),
407 section_ordering_specified_(false),
408 incremental_inputs_(NULL),
409 record_output_section_data_from_script_(false),
410 script_output_section_data_list_(),
411 segment_states_(NULL),
412 relaxation_debug_check_(NULL),
413 input_section_position_(),
414 input_section_glob_(),
415 incremental_base_(NULL),
416 free_list_()
417 {
418 // Make space for more than enough segments for a typical file.
419 // This is just for efficiency--it's OK if we wind up needing more.
420 this->segment_list_.reserve(12);
421
422 // We expect two unattached Output_data objects: the file header and
423 // the segment headers.
424 this->special_output_list_.reserve(2);
425
426 // Initialize structure needed for an incremental build.
427 if (parameters->incremental())
428 this->incremental_inputs_ = new Incremental_inputs;
429
430 // The section name pool is worth optimizing in all cases, because
431 // it is small, but there are often overlaps due to .rel sections.
432 this->namepool_.set_optimize();
433 }
434
435 // For incremental links, record the base file to be modified.
436
437 void
438 Layout::set_incremental_base(Incremental_binary* base)
439 {
440 this->incremental_base_ = base;
441 this->free_list_.init(base->output_file()->filesize(), true);
442 }
443
444 // Hash a key we use to look up an output section mapping.
445
446 size_t
447 Layout::Hash_key::operator()(const Layout::Key& k) const
448 {
449 return k.first + k.second.first + k.second.second;
450 }
451
452 // Returns whether the given section is in the list of
453 // debug-sections-used-by-some-version-of-gdb. Currently,
454 // we've checked versions of gdb up to and including 6.7.1.
455
456 static const char* gdb_sections[] =
457 { ".debug_abbrev",
458 // ".debug_aranges", // not used by gdb as of 6.7.1
459 ".debug_frame",
460 ".debug_info",
461 ".debug_types",
462 ".debug_line",
463 ".debug_loc",
464 ".debug_macinfo",
465 // ".debug_pubnames", // not used by gdb as of 6.7.1
466 ".debug_ranges",
467 ".debug_str",
468 };
469
470 static const char* lines_only_debug_sections[] =
471 { ".debug_abbrev",
472 // ".debug_aranges", // not used by gdb as of 6.7.1
473 // ".debug_frame",
474 ".debug_info",
475 // ".debug_types",
476 ".debug_line",
477 // ".debug_loc",
478 // ".debug_macinfo",
479 // ".debug_pubnames", // not used by gdb as of 6.7.1
480 // ".debug_ranges",
481 ".debug_str",
482 };
483
484 static inline bool
485 is_gdb_debug_section(const char* str)
486 {
487 // We can do this faster: binary search or a hashtable. But why bother?
488 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
489 if (strcmp(str, gdb_sections[i]) == 0)
490 return true;
491 return false;
492 }
493
494 static inline bool
495 is_lines_only_debug_section(const char* str)
496 {
497 // We can do this faster: binary search or a hashtable. But why bother?
498 for (size_t i = 0;
499 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
500 ++i)
501 if (strcmp(str, lines_only_debug_sections[i]) == 0)
502 return true;
503 return false;
504 }
505
506 // Sometimes we compress sections. This is typically done for
507 // sections that are not part of normal program execution (such as
508 // .debug_* sections), and where the readers of these sections know
509 // how to deal with compressed sections. This routine doesn't say for
510 // certain whether we'll compress -- it depends on commandline options
511 // as well -- just whether this section is a candidate for compression.
512 // (The Output_compressed_section class decides whether to compress
513 // a given section, and picks the name of the compressed section.)
514
515 static bool
516 is_compressible_debug_section(const char* secname)
517 {
518 return (is_prefix_of(".debug", secname));
519 }
520
521 // We may see compressed debug sections in input files. Return TRUE
522 // if this is the name of a compressed debug section.
523
524 bool
525 is_compressed_debug_section(const char* secname)
526 {
527 return (is_prefix_of(".zdebug", secname));
528 }
529
530 // Whether to include this section in the link.
531
532 template<int size, bool big_endian>
533 bool
534 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
535 const elfcpp::Shdr<size, big_endian>& shdr)
536 {
537 if (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE)
538 return false;
539
540 switch (shdr.get_sh_type())
541 {
542 case elfcpp::SHT_NULL:
543 case elfcpp::SHT_SYMTAB:
544 case elfcpp::SHT_DYNSYM:
545 case elfcpp::SHT_HASH:
546 case elfcpp::SHT_DYNAMIC:
547 case elfcpp::SHT_SYMTAB_SHNDX:
548 return false;
549
550 case elfcpp::SHT_STRTAB:
551 // Discard the sections which have special meanings in the ELF
552 // ABI. Keep others (e.g., .stabstr). We could also do this by
553 // checking the sh_link fields of the appropriate sections.
554 return (strcmp(name, ".dynstr") != 0
555 && strcmp(name, ".strtab") != 0
556 && strcmp(name, ".shstrtab") != 0);
557
558 case elfcpp::SHT_RELA:
559 case elfcpp::SHT_REL:
560 case elfcpp::SHT_GROUP:
561 // If we are emitting relocations these should be handled
562 // elsewhere.
563 gold_assert(!parameters->options().relocatable()
564 && !parameters->options().emit_relocs());
565 return false;
566
567 case elfcpp::SHT_PROGBITS:
568 if (parameters->options().strip_debug()
569 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
570 {
571 if (is_debug_info_section(name))
572 return false;
573 }
574 if (parameters->options().strip_debug_non_line()
575 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
576 {
577 // Debugging sections can only be recognized by name.
578 if (is_prefix_of(".debug", name)
579 && !is_lines_only_debug_section(name))
580 return false;
581 }
582 if (parameters->options().strip_debug_gdb()
583 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
584 {
585 // Debugging sections can only be recognized by name.
586 if (is_prefix_of(".debug", name)
587 && !is_gdb_debug_section(name))
588 return false;
589 }
590 if (parameters->options().strip_lto_sections()
591 && !parameters->options().relocatable()
592 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
593 {
594 // Ignore LTO sections containing intermediate code.
595 if (is_prefix_of(".gnu.lto_", name))
596 return false;
597 }
598 // The GNU linker strips .gnu_debuglink sections, so we do too.
599 // This is a feature used to keep debugging information in
600 // separate files.
601 if (strcmp(name, ".gnu_debuglink") == 0)
602 return false;
603 return true;
604
605 default:
606 return true;
607 }
608 }
609
610 // Return an output section named NAME, or NULL if there is none.
611
612 Output_section*
613 Layout::find_output_section(const char* name) const
614 {
615 for (Section_list::const_iterator p = this->section_list_.begin();
616 p != this->section_list_.end();
617 ++p)
618 if (strcmp((*p)->name(), name) == 0)
619 return *p;
620 return NULL;
621 }
622
623 // Return an output segment of type TYPE, with segment flags SET set
624 // and segment flags CLEAR clear. Return NULL if there is none.
625
626 Output_segment*
627 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
628 elfcpp::Elf_Word clear) const
629 {
630 for (Segment_list::const_iterator p = this->segment_list_.begin();
631 p != this->segment_list_.end();
632 ++p)
633 if (static_cast<elfcpp::PT>((*p)->type()) == type
634 && ((*p)->flags() & set) == set
635 && ((*p)->flags() & clear) == 0)
636 return *p;
637 return NULL;
638 }
639
640 // When we put a .ctors or .dtors section with more than one word into
641 // a .init_array or .fini_array section, we need to reverse the words
642 // in the .ctors/.dtors section. This is because .init_array executes
643 // constructors front to back, where .ctors executes them back to
644 // front, and vice-versa for .fini_array/.dtors. Although we do want
645 // to remap .ctors/.dtors into .init_array/.fini_array because it can
646 // be more efficient, we don't want to change the order in which
647 // constructors/destructors are run. This set just keeps track of
648 // these sections which need to be reversed. It is only changed by
649 // Layout::layout. It should be a private member of Layout, but that
650 // would require layout.h to #include object.h to get the definition
651 // of Section_id.
652 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
653
654 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
655 // .init_array/.fini_array section.
656
657 bool
658 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
659 {
660 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
661 != ctors_sections_in_init_array.end());
662 }
663
664 // Return the output section to use for section NAME with type TYPE
665 // and section flags FLAGS. NAME must be canonicalized in the string
666 // pool, and NAME_KEY is the key. ORDER is where this should appear
667 // in the output sections. IS_RELRO is true for a relro section.
668
669 Output_section*
670 Layout::get_output_section(const char* name, Stringpool::Key name_key,
671 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
672 Output_section_order order, bool is_relro)
673 {
674 elfcpp::Elf_Word lookup_type = type;
675
676 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
677 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
678 // .init_array, .fini_array, and .preinit_array sections by name
679 // whatever their type in the input file. We do this because the
680 // types are not always right in the input files.
681 if (lookup_type == elfcpp::SHT_INIT_ARRAY
682 || lookup_type == elfcpp::SHT_FINI_ARRAY
683 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
684 lookup_type = elfcpp::SHT_PROGBITS;
685
686 elfcpp::Elf_Xword lookup_flags = flags;
687
688 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
689 // read-write with read-only sections. Some other ELF linkers do
690 // not do this. FIXME: Perhaps there should be an option
691 // controlling this.
692 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
693
694 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
695 const std::pair<Key, Output_section*> v(key, NULL);
696 std::pair<Section_name_map::iterator, bool> ins(
697 this->section_name_map_.insert(v));
698
699 if (!ins.second)
700 return ins.first->second;
701 else
702 {
703 // This is the first time we've seen this name/type/flags
704 // combination. For compatibility with the GNU linker, we
705 // combine sections with contents and zero flags with sections
706 // with non-zero flags. This is a workaround for cases where
707 // assembler code forgets to set section flags. FIXME: Perhaps
708 // there should be an option to control this.
709 Output_section* os = NULL;
710
711 if (lookup_type == elfcpp::SHT_PROGBITS)
712 {
713 if (flags == 0)
714 {
715 Output_section* same_name = this->find_output_section(name);
716 if (same_name != NULL
717 && (same_name->type() == elfcpp::SHT_PROGBITS
718 || same_name->type() == elfcpp::SHT_INIT_ARRAY
719 || same_name->type() == elfcpp::SHT_FINI_ARRAY
720 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
721 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
722 os = same_name;
723 }
724 else if ((flags & elfcpp::SHF_TLS) == 0)
725 {
726 elfcpp::Elf_Xword zero_flags = 0;
727 const Key zero_key(name_key, std::make_pair(lookup_type,
728 zero_flags));
729 Section_name_map::iterator p =
730 this->section_name_map_.find(zero_key);
731 if (p != this->section_name_map_.end())
732 os = p->second;
733 }
734 }
735
736 if (os == NULL)
737 os = this->make_output_section(name, type, flags, order, is_relro);
738
739 ins.first->second = os;
740 return os;
741 }
742 }
743
744 // Pick the output section to use for section NAME, in input file
745 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
746 // linker created section. IS_INPUT_SECTION is true if we are
747 // choosing an output section for an input section found in a input
748 // file. ORDER is where this section should appear in the output
749 // sections. IS_RELRO is true for a relro section. This will return
750 // NULL if the input section should be discarded.
751
752 Output_section*
753 Layout::choose_output_section(const Relobj* relobj, const char* name,
754 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
755 bool is_input_section, Output_section_order order,
756 bool is_relro)
757 {
758 // We should not see any input sections after we have attached
759 // sections to segments.
760 gold_assert(!is_input_section || !this->sections_are_attached_);
761
762 // Some flags in the input section should not be automatically
763 // copied to the output section.
764 flags &= ~ (elfcpp::SHF_INFO_LINK
765 | elfcpp::SHF_GROUP
766 | elfcpp::SHF_MERGE
767 | elfcpp::SHF_STRINGS);
768
769 // We only clear the SHF_LINK_ORDER flag in for
770 // a non-relocatable link.
771 if (!parameters->options().relocatable())
772 flags &= ~elfcpp::SHF_LINK_ORDER;
773
774 if (this->script_options_->saw_sections_clause())
775 {
776 // We are using a SECTIONS clause, so the output section is
777 // chosen based only on the name.
778
779 Script_sections* ss = this->script_options_->script_sections();
780 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
781 Output_section** output_section_slot;
782 Script_sections::Section_type script_section_type;
783 const char* orig_name = name;
784 name = ss->output_section_name(file_name, name, &output_section_slot,
785 &script_section_type);
786 if (name == NULL)
787 {
788 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
789 "because it is not allowed by the "
790 "SECTIONS clause of the linker script"),
791 orig_name);
792 // The SECTIONS clause says to discard this input section.
793 return NULL;
794 }
795
796 // We can only handle script section types ST_NONE and ST_NOLOAD.
797 switch (script_section_type)
798 {
799 case Script_sections::ST_NONE:
800 break;
801 case Script_sections::ST_NOLOAD:
802 flags &= elfcpp::SHF_ALLOC;
803 break;
804 default:
805 gold_unreachable();
806 }
807
808 // If this is an orphan section--one not mentioned in the linker
809 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
810 // default processing below.
811
812 if (output_section_slot != NULL)
813 {
814 if (*output_section_slot != NULL)
815 {
816 (*output_section_slot)->update_flags_for_input_section(flags);
817 return *output_section_slot;
818 }
819
820 // We don't put sections found in the linker script into
821 // SECTION_NAME_MAP_. That keeps us from getting confused
822 // if an orphan section is mapped to a section with the same
823 // name as one in the linker script.
824
825 name = this->namepool_.add(name, false, NULL);
826
827 Output_section* os = this->make_output_section(name, type, flags,
828 order, is_relro);
829
830 os->set_found_in_sections_clause();
831
832 // Special handling for NOLOAD sections.
833 if (script_section_type == Script_sections::ST_NOLOAD)
834 {
835 os->set_is_noload();
836
837 // The constructor of Output_section sets addresses of non-ALLOC
838 // sections to 0 by default. We don't want that for NOLOAD
839 // sections even if they have no SHF_ALLOC flag.
840 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
841 && os->is_address_valid())
842 {
843 gold_assert(os->address() == 0
844 && !os->is_offset_valid()
845 && !os->is_data_size_valid());
846 os->reset_address_and_file_offset();
847 }
848 }
849
850 *output_section_slot = os;
851 return os;
852 }
853 }
854
855 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
856
857 size_t len = strlen(name);
858 char* uncompressed_name = NULL;
859
860 // Compressed debug sections should be mapped to the corresponding
861 // uncompressed section.
862 if (is_compressed_debug_section(name))
863 {
864 uncompressed_name = new char[len];
865 uncompressed_name[0] = '.';
866 gold_assert(name[0] == '.' && name[1] == 'z');
867 strncpy(&uncompressed_name[1], &name[2], len - 2);
868 uncompressed_name[len - 1] = '\0';
869 len -= 1;
870 name = uncompressed_name;
871 }
872
873 // Turn NAME from the name of the input section into the name of the
874 // output section.
875 if (is_input_section
876 && !this->script_options_->saw_sections_clause()
877 && !parameters->options().relocatable())
878 name = Layout::output_section_name(relobj, name, &len);
879
880 Stringpool::Key name_key;
881 name = this->namepool_.add_with_length(name, len, true, &name_key);
882
883 if (uncompressed_name != NULL)
884 delete[] uncompressed_name;
885
886 // Find or make the output section. The output section is selected
887 // based on the section name, type, and flags.
888 return this->get_output_section(name, name_key, type, flags, order, is_relro);
889 }
890
891 // For incremental links, record the initial fixed layout of a section
892 // from the base file, and return a pointer to the Output_section.
893
894 template<int size, bool big_endian>
895 Output_section*
896 Layout::init_fixed_output_section(const char* name,
897 elfcpp::Shdr<size, big_endian>& shdr)
898 {
899 unsigned int sh_type = shdr.get_sh_type();
900
901 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
902 // PRE_INIT_ARRAY, and NOTE sections.
903 // All others will be created from scratch and reallocated.
904 if (!can_incremental_update(sh_type))
905 return NULL;
906
907 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
908 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
909 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
910 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
911 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
912 shdr.get_sh_addralign();
913
914 // Make the output section.
915 Stringpool::Key name_key;
916 name = this->namepool_.add(name, true, &name_key);
917 Output_section* os = this->get_output_section(name, name_key, sh_type,
918 sh_flags, ORDER_INVALID, false);
919 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
920 if (sh_type != elfcpp::SHT_NOBITS)
921 this->free_list_.remove(sh_offset, sh_offset + sh_size);
922 return os;
923 }
924
925 // Return the output section to use for input section SHNDX, with name
926 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
927 // index of a relocation section which applies to this section, or 0
928 // if none, or -1U if more than one. RELOC_TYPE is the type of the
929 // relocation section if there is one. Set *OFF to the offset of this
930 // input section without the output section. Return NULL if the
931 // section should be discarded. Set *OFF to -1 if the section
932 // contents should not be written directly to the output file, but
933 // will instead receive special handling.
934
935 template<int size, bool big_endian>
936 Output_section*
937 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
938 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
939 unsigned int reloc_shndx, unsigned int, off_t* off)
940 {
941 *off = 0;
942
943 if (!this->include_section(object, name, shdr))
944 return NULL;
945
946 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
947
948 // In a relocatable link a grouped section must not be combined with
949 // any other sections.
950 Output_section* os;
951 if (parameters->options().relocatable()
952 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
953 {
954 name = this->namepool_.add(name, true, NULL);
955 os = this->make_output_section(name, sh_type, shdr.get_sh_flags(),
956 ORDER_INVALID, false);
957 }
958 else
959 {
960 os = this->choose_output_section(object, name, sh_type,
961 shdr.get_sh_flags(), true,
962 ORDER_INVALID, false);
963 if (os == NULL)
964 return NULL;
965 }
966
967 // By default the GNU linker sorts input sections whose names match
968 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
969 // sections are sorted by name. This is used to implement
970 // constructor priority ordering. We are compatible. When we put
971 // .ctor sections in .init_array and .dtor sections in .fini_array,
972 // we must also sort plain .ctor and .dtor sections.
973 if (!this->script_options_->saw_sections_clause()
974 && !parameters->options().relocatable()
975 && (is_prefix_of(".ctors.", name)
976 || is_prefix_of(".dtors.", name)
977 || is_prefix_of(".init_array.", name)
978 || is_prefix_of(".fini_array.", name)
979 || (parameters->options().ctors_in_init_array()
980 && (strcmp(name, ".ctors") == 0
981 || strcmp(name, ".dtors") == 0))))
982 os->set_must_sort_attached_input_sections();
983
984 // If this is a .ctors or .ctors.* section being mapped to a
985 // .init_array section, or a .dtors or .dtors.* section being mapped
986 // to a .fini_array section, we will need to reverse the words if
987 // there is more than one. Record this section for later. See
988 // ctors_sections_in_init_array above.
989 if (!this->script_options_->saw_sections_clause()
990 && !parameters->options().relocatable()
991 && shdr.get_sh_size() > size / 8
992 && (((strcmp(name, ".ctors") == 0
993 || is_prefix_of(".ctors.", name))
994 && strcmp(os->name(), ".init_array") == 0)
995 || ((strcmp(name, ".dtors") == 0
996 || is_prefix_of(".dtors.", name))
997 && strcmp(os->name(), ".fini_array") == 0)))
998 ctors_sections_in_init_array.insert(Section_id(object, shndx));
999
1000 // FIXME: Handle SHF_LINK_ORDER somewhere.
1001
1002 elfcpp::Elf_Xword orig_flags = os->flags();
1003
1004 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1005 this->script_options_->saw_sections_clause());
1006
1007 // If the flags changed, we may have to change the order.
1008 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1009 {
1010 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1011 elfcpp::Elf_Xword new_flags =
1012 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1013 if (orig_flags != new_flags)
1014 os->set_order(this->default_section_order(os, false));
1015 }
1016
1017 this->have_added_input_section_ = true;
1018
1019 return os;
1020 }
1021
1022 // Handle a relocation section when doing a relocatable link.
1023
1024 template<int size, bool big_endian>
1025 Output_section*
1026 Layout::layout_reloc(Sized_relobj_file<size, big_endian>* object,
1027 unsigned int,
1028 const elfcpp::Shdr<size, big_endian>& shdr,
1029 Output_section* data_section,
1030 Relocatable_relocs* rr)
1031 {
1032 gold_assert(parameters->options().relocatable()
1033 || parameters->options().emit_relocs());
1034
1035 int sh_type = shdr.get_sh_type();
1036
1037 std::string name;
1038 if (sh_type == elfcpp::SHT_REL)
1039 name = ".rel";
1040 else if (sh_type == elfcpp::SHT_RELA)
1041 name = ".rela";
1042 else
1043 gold_unreachable();
1044 name += data_section->name();
1045
1046 // In a relocatable link relocs for a grouped section must not be
1047 // combined with other reloc sections.
1048 Output_section* os;
1049 if (!parameters->options().relocatable()
1050 || (data_section->flags() & elfcpp::SHF_GROUP) == 0)
1051 os = this->choose_output_section(object, name.c_str(), sh_type,
1052 shdr.get_sh_flags(), false,
1053 ORDER_INVALID, false);
1054 else
1055 {
1056 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1057 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1058 ORDER_INVALID, false);
1059 }
1060
1061 os->set_should_link_to_symtab();
1062 os->set_info_section(data_section);
1063
1064 Output_section_data* posd;
1065 if (sh_type == elfcpp::SHT_REL)
1066 {
1067 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1068 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1069 size,
1070 big_endian>(rr);
1071 }
1072 else if (sh_type == elfcpp::SHT_RELA)
1073 {
1074 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1075 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1076 size,
1077 big_endian>(rr);
1078 }
1079 else
1080 gold_unreachable();
1081
1082 os->add_output_section_data(posd);
1083 rr->set_output_data(posd);
1084
1085 return os;
1086 }
1087
1088 // Handle a group section when doing a relocatable link.
1089
1090 template<int size, bool big_endian>
1091 void
1092 Layout::layout_group(Symbol_table* symtab,
1093 Sized_relobj_file<size, big_endian>* object,
1094 unsigned int,
1095 const char* group_section_name,
1096 const char* signature,
1097 const elfcpp::Shdr<size, big_endian>& shdr,
1098 elfcpp::Elf_Word flags,
1099 std::vector<unsigned int>* shndxes)
1100 {
1101 gold_assert(parameters->options().relocatable());
1102 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1103 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1104 Output_section* os = this->make_output_section(group_section_name,
1105 elfcpp::SHT_GROUP,
1106 shdr.get_sh_flags(),
1107 ORDER_INVALID, false);
1108
1109 // We need to find a symbol with the signature in the symbol table.
1110 // If we don't find one now, we need to look again later.
1111 Symbol* sym = symtab->lookup(signature, NULL);
1112 if (sym != NULL)
1113 os->set_info_symndx(sym);
1114 else
1115 {
1116 // Reserve some space to minimize reallocations.
1117 if (this->group_signatures_.empty())
1118 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1119
1120 // We will wind up using a symbol whose name is the signature.
1121 // So just put the signature in the symbol name pool to save it.
1122 signature = symtab->canonicalize_name(signature);
1123 this->group_signatures_.push_back(Group_signature(os, signature));
1124 }
1125
1126 os->set_should_link_to_symtab();
1127 os->set_entsize(4);
1128
1129 section_size_type entry_count =
1130 convert_to_section_size_type(shdr.get_sh_size() / 4);
1131 Output_section_data* posd =
1132 new Output_data_group<size, big_endian>(object, entry_count, flags,
1133 shndxes);
1134 os->add_output_section_data(posd);
1135 }
1136
1137 // Special GNU handling of sections name .eh_frame. They will
1138 // normally hold exception frame data as defined by the C++ ABI
1139 // (http://codesourcery.com/cxx-abi/).
1140
1141 template<int size, bool big_endian>
1142 Output_section*
1143 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1144 const unsigned char* symbols,
1145 off_t symbols_size,
1146 const unsigned char* symbol_names,
1147 off_t symbol_names_size,
1148 unsigned int shndx,
1149 const elfcpp::Shdr<size, big_endian>& shdr,
1150 unsigned int reloc_shndx, unsigned int reloc_type,
1151 off_t* off)
1152 {
1153 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1154 || shdr.get_sh_type() == elfcpp::SHT_X86_64_UNWIND);
1155 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1156
1157 Output_section* os = this->make_eh_frame_section(object);
1158 if (os == NULL)
1159 return NULL;
1160
1161 gold_assert(this->eh_frame_section_ == os);
1162
1163 elfcpp::Elf_Xword orig_flags = os->flags();
1164
1165 if (!parameters->incremental()
1166 && this->eh_frame_data_->add_ehframe_input_section(object,
1167 symbols,
1168 symbols_size,
1169 symbol_names,
1170 symbol_names_size,
1171 shndx,
1172 reloc_shndx,
1173 reloc_type))
1174 {
1175 os->update_flags_for_input_section(shdr.get_sh_flags());
1176
1177 // A writable .eh_frame section is a RELRO section.
1178 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1179 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1180 {
1181 os->set_is_relro();
1182 os->set_order(ORDER_RELRO);
1183 }
1184
1185 // We found a .eh_frame section we are going to optimize, so now
1186 // we can add the set of optimized sections to the output
1187 // section. We need to postpone adding this until we've found a
1188 // section we can optimize so that the .eh_frame section in
1189 // crtbegin.o winds up at the start of the output section.
1190 if (!this->added_eh_frame_data_)
1191 {
1192 os->add_output_section_data(this->eh_frame_data_);
1193 this->added_eh_frame_data_ = true;
1194 }
1195 *off = -1;
1196 }
1197 else
1198 {
1199 // We couldn't handle this .eh_frame section for some reason.
1200 // Add it as a normal section.
1201 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1202 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1203 reloc_shndx, saw_sections_clause);
1204 this->have_added_input_section_ = true;
1205
1206 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1207 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1208 os->set_order(this->default_section_order(os, false));
1209 }
1210
1211 return os;
1212 }
1213
1214 // Create and return the magic .eh_frame section. Create
1215 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1216 // input .eh_frame section; it may be NULL.
1217
1218 Output_section*
1219 Layout::make_eh_frame_section(const Relobj* object)
1220 {
1221 // FIXME: On x86_64, this could use SHT_X86_64_UNWIND rather than
1222 // SHT_PROGBITS.
1223 Output_section* os = this->choose_output_section(object, ".eh_frame",
1224 elfcpp::SHT_PROGBITS,
1225 elfcpp::SHF_ALLOC, false,
1226 ORDER_EHFRAME, false);
1227 if (os == NULL)
1228 return NULL;
1229
1230 if (this->eh_frame_section_ == NULL)
1231 {
1232 this->eh_frame_section_ = os;
1233 this->eh_frame_data_ = new Eh_frame();
1234
1235 // For incremental linking, we do not optimize .eh_frame sections
1236 // or create a .eh_frame_hdr section.
1237 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1238 {
1239 Output_section* hdr_os =
1240 this->choose_output_section(NULL, ".eh_frame_hdr",
1241 elfcpp::SHT_PROGBITS,
1242 elfcpp::SHF_ALLOC, false,
1243 ORDER_EHFRAME, false);
1244
1245 if (hdr_os != NULL)
1246 {
1247 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1248 this->eh_frame_data_);
1249 hdr_os->add_output_section_data(hdr_posd);
1250
1251 hdr_os->set_after_input_sections();
1252
1253 if (!this->script_options_->saw_phdrs_clause())
1254 {
1255 Output_segment* hdr_oseg;
1256 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1257 elfcpp::PF_R);
1258 hdr_oseg->add_output_section_to_nonload(hdr_os,
1259 elfcpp::PF_R);
1260 }
1261
1262 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1263 }
1264 }
1265 }
1266
1267 return os;
1268 }
1269
1270 // Add an exception frame for a PLT. This is called from target code.
1271
1272 void
1273 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1274 size_t cie_length, const unsigned char* fde_data,
1275 size_t fde_length)
1276 {
1277 if (parameters->incremental())
1278 {
1279 // FIXME: Maybe this could work some day....
1280 return;
1281 }
1282 Output_section* os = this->make_eh_frame_section(NULL);
1283 if (os == NULL)
1284 return;
1285 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1286 fde_data, fde_length);
1287 if (!this->added_eh_frame_data_)
1288 {
1289 os->add_output_section_data(this->eh_frame_data_);
1290 this->added_eh_frame_data_ = true;
1291 }
1292 }
1293
1294 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1295 // the output section.
1296
1297 Output_section*
1298 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1299 elfcpp::Elf_Xword flags,
1300 Output_section_data* posd,
1301 Output_section_order order, bool is_relro)
1302 {
1303 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1304 false, order, is_relro);
1305 if (os != NULL)
1306 os->add_output_section_data(posd);
1307 return os;
1308 }
1309
1310 // Map section flags to segment flags.
1311
1312 elfcpp::Elf_Word
1313 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1314 {
1315 elfcpp::Elf_Word ret = elfcpp::PF_R;
1316 if ((flags & elfcpp::SHF_WRITE) != 0)
1317 ret |= elfcpp::PF_W;
1318 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1319 ret |= elfcpp::PF_X;
1320 return ret;
1321 }
1322
1323 // Make a new Output_section, and attach it to segments as
1324 // appropriate. ORDER is the order in which this section should
1325 // appear in the output segment. IS_RELRO is true if this is a relro
1326 // (read-only after relocations) section.
1327
1328 Output_section*
1329 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1330 elfcpp::Elf_Xword flags,
1331 Output_section_order order, bool is_relro)
1332 {
1333 Output_section* os;
1334 if ((flags & elfcpp::SHF_ALLOC) == 0
1335 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1336 && is_compressible_debug_section(name))
1337 os = new Output_compressed_section(&parameters->options(), name, type,
1338 flags);
1339 else if ((flags & elfcpp::SHF_ALLOC) == 0
1340 && parameters->options().strip_debug_non_line()
1341 && strcmp(".debug_abbrev", name) == 0)
1342 {
1343 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1344 name, type, flags);
1345 if (this->debug_info_)
1346 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1347 }
1348 else if ((flags & elfcpp::SHF_ALLOC) == 0
1349 && parameters->options().strip_debug_non_line()
1350 && strcmp(".debug_info", name) == 0)
1351 {
1352 os = this->debug_info_ = new Output_reduced_debug_info_section(
1353 name, type, flags);
1354 if (this->debug_abbrev_)
1355 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1356 }
1357 else
1358 {
1359 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1360 // not have correct section types. Force them here.
1361 if (type == elfcpp::SHT_PROGBITS)
1362 {
1363 if (is_prefix_of(".init_array", name))
1364 type = elfcpp::SHT_INIT_ARRAY;
1365 else if (is_prefix_of(".preinit_array", name))
1366 type = elfcpp::SHT_PREINIT_ARRAY;
1367 else if (is_prefix_of(".fini_array", name))
1368 type = elfcpp::SHT_FINI_ARRAY;
1369 }
1370
1371 // FIXME: const_cast is ugly.
1372 Target* target = const_cast<Target*>(&parameters->target());
1373 os = target->make_output_section(name, type, flags);
1374 }
1375
1376 // With -z relro, we have to recognize the special sections by name.
1377 // There is no other way.
1378 bool is_relro_local = false;
1379 if (!this->script_options_->saw_sections_clause()
1380 && parameters->options().relro()
1381 && type == elfcpp::SHT_PROGBITS
1382 && (flags & elfcpp::SHF_ALLOC) != 0
1383 && (flags & elfcpp::SHF_WRITE) != 0)
1384 {
1385 if (strcmp(name, ".data.rel.ro") == 0)
1386 is_relro = true;
1387 else if (strcmp(name, ".data.rel.ro.local") == 0)
1388 {
1389 is_relro = true;
1390 is_relro_local = true;
1391 }
1392 else if (type == elfcpp::SHT_INIT_ARRAY
1393 || type == elfcpp::SHT_FINI_ARRAY
1394 || type == elfcpp::SHT_PREINIT_ARRAY)
1395 is_relro = true;
1396 else if (strcmp(name, ".ctors") == 0
1397 || strcmp(name, ".dtors") == 0
1398 || strcmp(name, ".jcr") == 0)
1399 is_relro = true;
1400 }
1401
1402 if (is_relro)
1403 os->set_is_relro();
1404
1405 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1406 order = this->default_section_order(os, is_relro_local);
1407
1408 os->set_order(order);
1409
1410 parameters->target().new_output_section(os);
1411
1412 this->section_list_.push_back(os);
1413
1414 // The GNU linker by default sorts some sections by priority, so we
1415 // do the same. We need to know that this might happen before we
1416 // attach any input sections.
1417 if (!this->script_options_->saw_sections_clause()
1418 && !parameters->options().relocatable()
1419 && (strcmp(name, ".init_array") == 0
1420 || strcmp(name, ".fini_array") == 0
1421 || (!parameters->options().ctors_in_init_array()
1422 && (strcmp(name, ".ctors") == 0
1423 || strcmp(name, ".dtors") == 0))))
1424 os->set_may_sort_attached_input_sections();
1425
1426 // Check for .stab*str sections, as .stab* sections need to link to
1427 // them.
1428 if (type == elfcpp::SHT_STRTAB
1429 && !this->have_stabstr_section_
1430 && strncmp(name, ".stab", 5) == 0
1431 && strcmp(name + strlen(name) - 3, "str") == 0)
1432 this->have_stabstr_section_ = true;
1433
1434 // During a full incremental link, we add patch space to most
1435 // PROGBITS and NOBITS sections. Flag those that may be
1436 // arbitrarily padded.
1437 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1438 && order != ORDER_INTERP
1439 && order != ORDER_INIT
1440 && order != ORDER_PLT
1441 && order != ORDER_FINI
1442 && order != ORDER_RELRO_LAST
1443 && order != ORDER_NON_RELRO_FIRST
1444 && strcmp(name, ".eh_frame") != 0
1445 && strcmp(name, ".ctors") != 0
1446 && strcmp(name, ".dtors") != 0
1447 && strcmp(name, ".jcr") != 0)
1448 {
1449 os->set_is_patch_space_allowed();
1450
1451 // Certain sections require "holes" to be filled with
1452 // specific fill patterns. These fill patterns may have
1453 // a minimum size, so we must prevent allocations from the
1454 // free list that leave a hole smaller than the minimum.
1455 if (strcmp(name, ".debug_info") == 0)
1456 os->set_free_space_fill(new Output_fill_debug_info(false));
1457 else if (strcmp(name, ".debug_types") == 0)
1458 os->set_free_space_fill(new Output_fill_debug_info(true));
1459 else if (strcmp(name, ".debug_line") == 0)
1460 os->set_free_space_fill(new Output_fill_debug_line());
1461 }
1462
1463 // If we have already attached the sections to segments, then we
1464 // need to attach this one now. This happens for sections created
1465 // directly by the linker.
1466 if (this->sections_are_attached_)
1467 this->attach_section_to_segment(os);
1468
1469 return os;
1470 }
1471
1472 // Return the default order in which a section should be placed in an
1473 // output segment. This function captures a lot of the ideas in
1474 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1475 // linker created section is normally set when the section is created;
1476 // this function is used for input sections.
1477
1478 Output_section_order
1479 Layout::default_section_order(Output_section* os, bool is_relro_local)
1480 {
1481 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1482 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1483 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1484 bool is_bss = false;
1485
1486 switch (os->type())
1487 {
1488 default:
1489 case elfcpp::SHT_PROGBITS:
1490 break;
1491 case elfcpp::SHT_NOBITS:
1492 is_bss = true;
1493 break;
1494 case elfcpp::SHT_RELA:
1495 case elfcpp::SHT_REL:
1496 if (!is_write)
1497 return ORDER_DYNAMIC_RELOCS;
1498 break;
1499 case elfcpp::SHT_HASH:
1500 case elfcpp::SHT_DYNAMIC:
1501 case elfcpp::SHT_SHLIB:
1502 case elfcpp::SHT_DYNSYM:
1503 case elfcpp::SHT_GNU_HASH:
1504 case elfcpp::SHT_GNU_verdef:
1505 case elfcpp::SHT_GNU_verneed:
1506 case elfcpp::SHT_GNU_versym:
1507 if (!is_write)
1508 return ORDER_DYNAMIC_LINKER;
1509 break;
1510 case elfcpp::SHT_NOTE:
1511 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1512 }
1513
1514 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1515 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1516
1517 if (!is_bss && !is_write)
1518 {
1519 if (is_execinstr)
1520 {
1521 if (strcmp(os->name(), ".init") == 0)
1522 return ORDER_INIT;
1523 else if (strcmp(os->name(), ".fini") == 0)
1524 return ORDER_FINI;
1525 }
1526 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1527 }
1528
1529 if (os->is_relro())
1530 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1531
1532 if (os->is_small_section())
1533 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1534 if (os->is_large_section())
1535 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1536
1537 return is_bss ? ORDER_BSS : ORDER_DATA;
1538 }
1539
1540 // Attach output sections to segments. This is called after we have
1541 // seen all the input sections.
1542
1543 void
1544 Layout::attach_sections_to_segments()
1545 {
1546 for (Section_list::iterator p = this->section_list_.begin();
1547 p != this->section_list_.end();
1548 ++p)
1549 this->attach_section_to_segment(*p);
1550
1551 this->sections_are_attached_ = true;
1552 }
1553
1554 // Attach an output section to a segment.
1555
1556 void
1557 Layout::attach_section_to_segment(Output_section* os)
1558 {
1559 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1560 this->unattached_section_list_.push_back(os);
1561 else
1562 this->attach_allocated_section_to_segment(os);
1563 }
1564
1565 // Attach an allocated output section to a segment.
1566
1567 void
1568 Layout::attach_allocated_section_to_segment(Output_section* os)
1569 {
1570 elfcpp::Elf_Xword flags = os->flags();
1571 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1572
1573 if (parameters->options().relocatable())
1574 return;
1575
1576 // If we have a SECTIONS clause, we can't handle the attachment to
1577 // segments until after we've seen all the sections.
1578 if (this->script_options_->saw_sections_clause())
1579 return;
1580
1581 gold_assert(!this->script_options_->saw_phdrs_clause());
1582
1583 // This output section goes into a PT_LOAD segment.
1584
1585 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1586
1587 // Check for --section-start.
1588 uint64_t addr;
1589 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1590
1591 // In general the only thing we really care about for PT_LOAD
1592 // segments is whether or not they are writable or executable,
1593 // so that is how we search for them.
1594 // Large data sections also go into their own PT_LOAD segment.
1595 // People who need segments sorted on some other basis will
1596 // have to use a linker script.
1597
1598 Segment_list::const_iterator p;
1599 for (p = this->segment_list_.begin();
1600 p != this->segment_list_.end();
1601 ++p)
1602 {
1603 if ((*p)->type() != elfcpp::PT_LOAD)
1604 continue;
1605 if (!parameters->options().omagic()
1606 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
1607 continue;
1608 if (parameters->options().rosegment()
1609 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
1610 continue;
1611 // If -Tbss was specified, we need to separate the data and BSS
1612 // segments.
1613 if (parameters->options().user_set_Tbss())
1614 {
1615 if ((os->type() == elfcpp::SHT_NOBITS)
1616 == (*p)->has_any_data_sections())
1617 continue;
1618 }
1619 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
1620 continue;
1621
1622 if (is_address_set)
1623 {
1624 if ((*p)->are_addresses_set())
1625 continue;
1626
1627 (*p)->add_initial_output_data(os);
1628 (*p)->update_flags_for_output_section(seg_flags);
1629 (*p)->set_addresses(addr, addr);
1630 break;
1631 }
1632
1633 (*p)->add_output_section_to_load(this, os, seg_flags);
1634 break;
1635 }
1636
1637 if (p == this->segment_list_.end())
1638 {
1639 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
1640 seg_flags);
1641 if (os->is_large_data_section())
1642 oseg->set_is_large_data_segment();
1643 oseg->add_output_section_to_load(this, os, seg_flags);
1644 if (is_address_set)
1645 oseg->set_addresses(addr, addr);
1646 }
1647
1648 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
1649 // segment.
1650 if (os->type() == elfcpp::SHT_NOTE)
1651 {
1652 // See if we already have an equivalent PT_NOTE segment.
1653 for (p = this->segment_list_.begin();
1654 p != segment_list_.end();
1655 ++p)
1656 {
1657 if ((*p)->type() == elfcpp::PT_NOTE
1658 && (((*p)->flags() & elfcpp::PF_W)
1659 == (seg_flags & elfcpp::PF_W)))
1660 {
1661 (*p)->add_output_section_to_nonload(os, seg_flags);
1662 break;
1663 }
1664 }
1665
1666 if (p == this->segment_list_.end())
1667 {
1668 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
1669 seg_flags);
1670 oseg->add_output_section_to_nonload(os, seg_flags);
1671 }
1672 }
1673
1674 // If we see a loadable SHF_TLS section, we create a PT_TLS
1675 // segment. There can only be one such segment.
1676 if ((flags & elfcpp::SHF_TLS) != 0)
1677 {
1678 if (this->tls_segment_ == NULL)
1679 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
1680 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
1681 }
1682
1683 // If -z relro is in effect, and we see a relro section, we create a
1684 // PT_GNU_RELRO segment. There can only be one such segment.
1685 if (os->is_relro() && parameters->options().relro())
1686 {
1687 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
1688 if (this->relro_segment_ == NULL)
1689 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
1690 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
1691 }
1692
1693 // If we see a section named .interp, put it into a PT_INTERP
1694 // segment. This seems broken to me, but this is what GNU ld does,
1695 // and glibc expects it.
1696 if (strcmp(os->name(), ".interp") == 0
1697 && !this->script_options_->saw_phdrs_clause())
1698 {
1699 if (this->interp_segment_ == NULL)
1700 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
1701 else
1702 gold_warning(_("multiple '.interp' sections in input files "
1703 "may cause confusing PT_INTERP segment"));
1704 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
1705 }
1706 }
1707
1708 // Make an output section for a script.
1709
1710 Output_section*
1711 Layout::make_output_section_for_script(
1712 const char* name,
1713 Script_sections::Section_type section_type)
1714 {
1715 name = this->namepool_.add(name, false, NULL);
1716 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
1717 if (section_type == Script_sections::ST_NOLOAD)
1718 sh_flags = 0;
1719 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
1720 sh_flags, ORDER_INVALID,
1721 false);
1722 os->set_found_in_sections_clause();
1723 if (section_type == Script_sections::ST_NOLOAD)
1724 os->set_is_noload();
1725 return os;
1726 }
1727
1728 // Return the number of segments we expect to see.
1729
1730 size_t
1731 Layout::expected_segment_count() const
1732 {
1733 size_t ret = this->segment_list_.size();
1734
1735 // If we didn't see a SECTIONS clause in a linker script, we should
1736 // already have the complete list of segments. Otherwise we ask the
1737 // SECTIONS clause how many segments it expects, and add in the ones
1738 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
1739
1740 if (!this->script_options_->saw_sections_clause())
1741 return ret;
1742 else
1743 {
1744 const Script_sections* ss = this->script_options_->script_sections();
1745 return ret + ss->expected_segment_count(this);
1746 }
1747 }
1748
1749 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
1750 // is whether we saw a .note.GNU-stack section in the object file.
1751 // GNU_STACK_FLAGS is the section flags. The flags give the
1752 // protection required for stack memory. We record this in an
1753 // executable as a PT_GNU_STACK segment. If an object file does not
1754 // have a .note.GNU-stack segment, we must assume that it is an old
1755 // object. On some targets that will force an executable stack.
1756
1757 void
1758 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
1759 const Object* obj)
1760 {
1761 if (!seen_gnu_stack)
1762 {
1763 this->input_without_gnu_stack_note_ = true;
1764 if (parameters->options().warn_execstack()
1765 && parameters->target().is_default_stack_executable())
1766 gold_warning(_("%s: missing .note.GNU-stack section"
1767 " implies executable stack"),
1768 obj->name().c_str());
1769 }
1770 else
1771 {
1772 this->input_with_gnu_stack_note_ = true;
1773 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
1774 {
1775 this->input_requires_executable_stack_ = true;
1776 if (parameters->options().warn_execstack()
1777 || parameters->options().is_stack_executable())
1778 gold_warning(_("%s: requires executable stack"),
1779 obj->name().c_str());
1780 }
1781 }
1782 }
1783
1784 // Create automatic note sections.
1785
1786 void
1787 Layout::create_notes()
1788 {
1789 this->create_gold_note();
1790 this->create_executable_stack_info();
1791 this->create_build_id();
1792 }
1793
1794 // Create the dynamic sections which are needed before we read the
1795 // relocs.
1796
1797 void
1798 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
1799 {
1800 if (parameters->doing_static_link())
1801 return;
1802
1803 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
1804 elfcpp::SHT_DYNAMIC,
1805 (elfcpp::SHF_ALLOC
1806 | elfcpp::SHF_WRITE),
1807 false, ORDER_RELRO,
1808 true);
1809
1810 // A linker script may discard .dynamic, so check for NULL.
1811 if (this->dynamic_section_ != NULL)
1812 {
1813 this->dynamic_symbol_ =
1814 symtab->define_in_output_data("_DYNAMIC", NULL,
1815 Symbol_table::PREDEFINED,
1816 this->dynamic_section_, 0, 0,
1817 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
1818 elfcpp::STV_HIDDEN, 0, false, false);
1819
1820 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
1821
1822 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
1823 }
1824 }
1825
1826 // For each output section whose name can be represented as C symbol,
1827 // define __start and __stop symbols for the section. This is a GNU
1828 // extension.
1829
1830 void
1831 Layout::define_section_symbols(Symbol_table* symtab)
1832 {
1833 for (Section_list::const_iterator p = this->section_list_.begin();
1834 p != this->section_list_.end();
1835 ++p)
1836 {
1837 const char* const name = (*p)->name();
1838 if (is_cident(name))
1839 {
1840 const std::string name_string(name);
1841 const std::string start_name(cident_section_start_prefix
1842 + name_string);
1843 const std::string stop_name(cident_section_stop_prefix
1844 + name_string);
1845
1846 symtab->define_in_output_data(start_name.c_str(),
1847 NULL, // version
1848 Symbol_table::PREDEFINED,
1849 *p,
1850 0, // value
1851 0, // symsize
1852 elfcpp::STT_NOTYPE,
1853 elfcpp::STB_GLOBAL,
1854 elfcpp::STV_DEFAULT,
1855 0, // nonvis
1856 false, // offset_is_from_end
1857 true); // only_if_ref
1858
1859 symtab->define_in_output_data(stop_name.c_str(),
1860 NULL, // version
1861 Symbol_table::PREDEFINED,
1862 *p,
1863 0, // value
1864 0, // symsize
1865 elfcpp::STT_NOTYPE,
1866 elfcpp::STB_GLOBAL,
1867 elfcpp::STV_DEFAULT,
1868 0, // nonvis
1869 true, // offset_is_from_end
1870 true); // only_if_ref
1871 }
1872 }
1873 }
1874
1875 // Define symbols for group signatures.
1876
1877 void
1878 Layout::define_group_signatures(Symbol_table* symtab)
1879 {
1880 for (Group_signatures::iterator p = this->group_signatures_.begin();
1881 p != this->group_signatures_.end();
1882 ++p)
1883 {
1884 Symbol* sym = symtab->lookup(p->signature, NULL);
1885 if (sym != NULL)
1886 p->section->set_info_symndx(sym);
1887 else
1888 {
1889 // Force the name of the group section to the group
1890 // signature, and use the group's section symbol as the
1891 // signature symbol.
1892 if (strcmp(p->section->name(), p->signature) != 0)
1893 {
1894 const char* name = this->namepool_.add(p->signature,
1895 true, NULL);
1896 p->section->set_name(name);
1897 }
1898 p->section->set_needs_symtab_index();
1899 p->section->set_info_section_symndx(p->section);
1900 }
1901 }
1902
1903 this->group_signatures_.clear();
1904 }
1905
1906 // Find the first read-only PT_LOAD segment, creating one if
1907 // necessary.
1908
1909 Output_segment*
1910 Layout::find_first_load_seg()
1911 {
1912 Output_segment* best = NULL;
1913 for (Segment_list::const_iterator p = this->segment_list_.begin();
1914 p != this->segment_list_.end();
1915 ++p)
1916 {
1917 if ((*p)->type() == elfcpp::PT_LOAD
1918 && ((*p)->flags() & elfcpp::PF_R) != 0
1919 && (parameters->options().omagic()
1920 || ((*p)->flags() & elfcpp::PF_W) == 0))
1921 {
1922 if (best == NULL || this->segment_precedes(*p, best))
1923 best = *p;
1924 }
1925 }
1926 if (best != NULL)
1927 return best;
1928
1929 gold_assert(!this->script_options_->saw_phdrs_clause());
1930
1931 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
1932 elfcpp::PF_R);
1933 return load_seg;
1934 }
1935
1936 // Save states of all current output segments. Store saved states
1937 // in SEGMENT_STATES.
1938
1939 void
1940 Layout::save_segments(Segment_states* segment_states)
1941 {
1942 for (Segment_list::const_iterator p = this->segment_list_.begin();
1943 p != this->segment_list_.end();
1944 ++p)
1945 {
1946 Output_segment* segment = *p;
1947 // Shallow copy.
1948 Output_segment* copy = new Output_segment(*segment);
1949 (*segment_states)[segment] = copy;
1950 }
1951 }
1952
1953 // Restore states of output segments and delete any segment not found in
1954 // SEGMENT_STATES.
1955
1956 void
1957 Layout::restore_segments(const Segment_states* segment_states)
1958 {
1959 // Go through the segment list and remove any segment added in the
1960 // relaxation loop.
1961 this->tls_segment_ = NULL;
1962 this->relro_segment_ = NULL;
1963 Segment_list::iterator list_iter = this->segment_list_.begin();
1964 while (list_iter != this->segment_list_.end())
1965 {
1966 Output_segment* segment = *list_iter;
1967 Segment_states::const_iterator states_iter =
1968 segment_states->find(segment);
1969 if (states_iter != segment_states->end())
1970 {
1971 const Output_segment* copy = states_iter->second;
1972 // Shallow copy to restore states.
1973 *segment = *copy;
1974
1975 // Also fix up TLS and RELRO segment pointers as appropriate.
1976 if (segment->type() == elfcpp::PT_TLS)
1977 this->tls_segment_ = segment;
1978 else if (segment->type() == elfcpp::PT_GNU_RELRO)
1979 this->relro_segment_ = segment;
1980
1981 ++list_iter;
1982 }
1983 else
1984 {
1985 list_iter = this->segment_list_.erase(list_iter);
1986 // This is a segment created during section layout. It should be
1987 // safe to remove it since we should have removed all pointers to it.
1988 delete segment;
1989 }
1990 }
1991 }
1992
1993 // Clean up after relaxation so that sections can be laid out again.
1994
1995 void
1996 Layout::clean_up_after_relaxation()
1997 {
1998 // Restore the segments to point state just prior to the relaxation loop.
1999 Script_sections* script_section = this->script_options_->script_sections();
2000 script_section->release_segments();
2001 this->restore_segments(this->segment_states_);
2002
2003 // Reset section addresses and file offsets
2004 for (Section_list::iterator p = this->section_list_.begin();
2005 p != this->section_list_.end();
2006 ++p)
2007 {
2008 (*p)->restore_states();
2009
2010 // If an input section changes size because of relaxation,
2011 // we need to adjust the section offsets of all input sections.
2012 // after such a section.
2013 if ((*p)->section_offsets_need_adjustment())
2014 (*p)->adjust_section_offsets();
2015
2016 (*p)->reset_address_and_file_offset();
2017 }
2018
2019 // Reset special output object address and file offsets.
2020 for (Data_list::iterator p = this->special_output_list_.begin();
2021 p != this->special_output_list_.end();
2022 ++p)
2023 (*p)->reset_address_and_file_offset();
2024
2025 // A linker script may have created some output section data objects.
2026 // They are useless now.
2027 for (Output_section_data_list::const_iterator p =
2028 this->script_output_section_data_list_.begin();
2029 p != this->script_output_section_data_list_.end();
2030 ++p)
2031 delete *p;
2032 this->script_output_section_data_list_.clear();
2033 }
2034
2035 // Prepare for relaxation.
2036
2037 void
2038 Layout::prepare_for_relaxation()
2039 {
2040 // Create an relaxation debug check if in debugging mode.
2041 if (is_debugging_enabled(DEBUG_RELAXATION))
2042 this->relaxation_debug_check_ = new Relaxation_debug_check();
2043
2044 // Save segment states.
2045 this->segment_states_ = new Segment_states();
2046 this->save_segments(this->segment_states_);
2047
2048 for(Section_list::const_iterator p = this->section_list_.begin();
2049 p != this->section_list_.end();
2050 ++p)
2051 (*p)->save_states();
2052
2053 if (is_debugging_enabled(DEBUG_RELAXATION))
2054 this->relaxation_debug_check_->check_output_data_for_reset_values(
2055 this->section_list_, this->special_output_list_);
2056
2057 // Also enable recording of output section data from scripts.
2058 this->record_output_section_data_from_script_ = true;
2059 }
2060
2061 // Relaxation loop body: If target has no relaxation, this runs only once
2062 // Otherwise, the target relaxation hook is called at the end of
2063 // each iteration. If the hook returns true, it means re-layout of
2064 // section is required.
2065 //
2066 // The number of segments created by a linking script without a PHDRS
2067 // clause may be affected by section sizes and alignments. There is
2068 // a remote chance that relaxation causes different number of PT_LOAD
2069 // segments are created and sections are attached to different segments.
2070 // Therefore, we always throw away all segments created during section
2071 // layout. In order to be able to restart the section layout, we keep
2072 // a copy of the segment list right before the relaxation loop and use
2073 // that to restore the segments.
2074 //
2075 // PASS is the current relaxation pass number.
2076 // SYMTAB is a symbol table.
2077 // PLOAD_SEG is the address of a pointer for the load segment.
2078 // PHDR_SEG is a pointer to the PHDR segment.
2079 // SEGMENT_HEADERS points to the output segment header.
2080 // FILE_HEADER points to the output file header.
2081 // PSHNDX is the address to store the output section index.
2082
2083 off_t inline
2084 Layout::relaxation_loop_body(
2085 int pass,
2086 Target* target,
2087 Symbol_table* symtab,
2088 Output_segment** pload_seg,
2089 Output_segment* phdr_seg,
2090 Output_segment_headers* segment_headers,
2091 Output_file_header* file_header,
2092 unsigned int* pshndx)
2093 {
2094 // If this is not the first iteration, we need to clean up after
2095 // relaxation so that we can lay out the sections again.
2096 if (pass != 0)
2097 this->clean_up_after_relaxation();
2098
2099 // If there is a SECTIONS clause, put all the input sections into
2100 // the required order.
2101 Output_segment* load_seg;
2102 if (this->script_options_->saw_sections_clause())
2103 load_seg = this->set_section_addresses_from_script(symtab);
2104 else if (parameters->options().relocatable())
2105 load_seg = NULL;
2106 else
2107 load_seg = this->find_first_load_seg();
2108
2109 if (parameters->options().oformat_enum()
2110 != General_options::OBJECT_FORMAT_ELF)
2111 load_seg = NULL;
2112
2113 // If the user set the address of the text segment, that may not be
2114 // compatible with putting the segment headers and file headers into
2115 // that segment.
2116 if (parameters->options().user_set_Ttext()
2117 && parameters->options().Ttext() % target->common_pagesize() != 0)
2118 {
2119 load_seg = NULL;
2120 phdr_seg = NULL;
2121 }
2122
2123 gold_assert(phdr_seg == NULL
2124 || load_seg != NULL
2125 || this->script_options_->saw_sections_clause());
2126
2127 // If the address of the load segment we found has been set by
2128 // --section-start rather than by a script, then adjust the VMA and
2129 // LMA downward if possible to include the file and section headers.
2130 uint64_t header_gap = 0;
2131 if (load_seg != NULL
2132 && load_seg->are_addresses_set()
2133 && !this->script_options_->saw_sections_clause()
2134 && !parameters->options().relocatable())
2135 {
2136 file_header->finalize_data_size();
2137 segment_headers->finalize_data_size();
2138 size_t sizeof_headers = (file_header->data_size()
2139 + segment_headers->data_size());
2140 const uint64_t abi_pagesize = target->abi_pagesize();
2141 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2142 hdr_paddr &= ~(abi_pagesize - 1);
2143 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2144 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2145 load_seg = NULL;
2146 else
2147 {
2148 load_seg->set_addresses(load_seg->vaddr() - subtract,
2149 load_seg->paddr() - subtract);
2150 header_gap = subtract - sizeof_headers;
2151 }
2152 }
2153
2154 // Lay out the segment headers.
2155 if (!parameters->options().relocatable())
2156 {
2157 gold_assert(segment_headers != NULL);
2158 if (header_gap != 0 && load_seg != NULL)
2159 {
2160 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2161 load_seg->add_initial_output_data(z);
2162 }
2163 if (load_seg != NULL)
2164 load_seg->add_initial_output_data(segment_headers);
2165 if (phdr_seg != NULL)
2166 phdr_seg->add_initial_output_data(segment_headers);
2167 }
2168
2169 // Lay out the file header.
2170 if (load_seg != NULL)
2171 load_seg->add_initial_output_data(file_header);
2172
2173 if (this->script_options_->saw_phdrs_clause()
2174 && !parameters->options().relocatable())
2175 {
2176 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2177 // clause in a linker script.
2178 Script_sections* ss = this->script_options_->script_sections();
2179 ss->put_headers_in_phdrs(file_header, segment_headers);
2180 }
2181
2182 // We set the output section indexes in set_segment_offsets and
2183 // set_section_indexes.
2184 *pshndx = 1;
2185
2186 // Set the file offsets of all the segments, and all the sections
2187 // they contain.
2188 off_t off;
2189 if (!parameters->options().relocatable())
2190 off = this->set_segment_offsets(target, load_seg, pshndx);
2191 else
2192 off = this->set_relocatable_section_offsets(file_header, pshndx);
2193
2194 // Verify that the dummy relaxation does not change anything.
2195 if (is_debugging_enabled(DEBUG_RELAXATION))
2196 {
2197 if (pass == 0)
2198 this->relaxation_debug_check_->read_sections(this->section_list_);
2199 else
2200 this->relaxation_debug_check_->verify_sections(this->section_list_);
2201 }
2202
2203 *pload_seg = load_seg;
2204 return off;
2205 }
2206
2207 // Search the list of patterns and find the postion of the given section
2208 // name in the output section. If the section name matches a glob
2209 // pattern and a non-glob name, then the non-glob position takes
2210 // precedence. Return 0 if no match is found.
2211
2212 unsigned int
2213 Layout::find_section_order_index(const std::string& section_name)
2214 {
2215 Unordered_map<std::string, unsigned int>::iterator map_it;
2216 map_it = this->input_section_position_.find(section_name);
2217 if (map_it != this->input_section_position_.end())
2218 return map_it->second;
2219
2220 // Absolute match failed. Linear search the glob patterns.
2221 std::vector<std::string>::iterator it;
2222 for (it = this->input_section_glob_.begin();
2223 it != this->input_section_glob_.end();
2224 ++it)
2225 {
2226 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2227 {
2228 map_it = this->input_section_position_.find(*it);
2229 gold_assert(map_it != this->input_section_position_.end());
2230 return map_it->second;
2231 }
2232 }
2233 return 0;
2234 }
2235
2236 // Read the sequence of input sections from the file specified with
2237 // option --section-ordering-file.
2238
2239 void
2240 Layout::read_layout_from_file()
2241 {
2242 const char* filename = parameters->options().section_ordering_file();
2243 std::ifstream in;
2244 std::string line;
2245
2246 in.open(filename);
2247 if (!in)
2248 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2249 filename, strerror(errno));
2250
2251 std::getline(in, line); // this chops off the trailing \n, if any
2252 unsigned int position = 1;
2253 this->set_section_ordering_specified();
2254
2255 while (in)
2256 {
2257 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2258 line.resize(line.length() - 1);
2259 // Ignore comments, beginning with '#'
2260 if (line[0] == '#')
2261 {
2262 std::getline(in, line);
2263 continue;
2264 }
2265 this->input_section_position_[line] = position;
2266 // Store all glob patterns in a vector.
2267 if (is_wildcard_string(line.c_str()))
2268 this->input_section_glob_.push_back(line);
2269 position++;
2270 std::getline(in, line);
2271 }
2272 }
2273
2274 // Finalize the layout. When this is called, we have created all the
2275 // output sections and all the output segments which are based on
2276 // input sections. We have several things to do, and we have to do
2277 // them in the right order, so that we get the right results correctly
2278 // and efficiently.
2279
2280 // 1) Finalize the list of output segments and create the segment
2281 // table header.
2282
2283 // 2) Finalize the dynamic symbol table and associated sections.
2284
2285 // 3) Determine the final file offset of all the output segments.
2286
2287 // 4) Determine the final file offset of all the SHF_ALLOC output
2288 // sections.
2289
2290 // 5) Create the symbol table sections and the section name table
2291 // section.
2292
2293 // 6) Finalize the symbol table: set symbol values to their final
2294 // value and make a final determination of which symbols are going
2295 // into the output symbol table.
2296
2297 // 7) Create the section table header.
2298
2299 // 8) Determine the final file offset of all the output sections which
2300 // are not SHF_ALLOC, including the section table header.
2301
2302 // 9) Finalize the ELF file header.
2303
2304 // This function returns the size of the output file.
2305
2306 off_t
2307 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2308 Target* target, const Task* task)
2309 {
2310 target->finalize_sections(this, input_objects, symtab);
2311
2312 this->count_local_symbols(task, input_objects);
2313
2314 this->link_stabs_sections();
2315
2316 Output_segment* phdr_seg = NULL;
2317 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2318 {
2319 // There was a dynamic object in the link. We need to create
2320 // some information for the dynamic linker.
2321
2322 // Create the PT_PHDR segment which will hold the program
2323 // headers.
2324 if (!this->script_options_->saw_phdrs_clause())
2325 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
2326
2327 // Create the dynamic symbol table, including the hash table.
2328 Output_section* dynstr;
2329 std::vector<Symbol*> dynamic_symbols;
2330 unsigned int local_dynamic_count;
2331 Versions versions(*this->script_options()->version_script_info(),
2332 &this->dynpool_);
2333 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
2334 &local_dynamic_count, &dynamic_symbols,
2335 &versions);
2336
2337 // Create the .interp section to hold the name of the
2338 // interpreter, and put it in a PT_INTERP segment. Don't do it
2339 // if we saw a .interp section in an input file.
2340 if ((!parameters->options().shared()
2341 || parameters->options().dynamic_linker() != NULL)
2342 && this->interp_segment_ == NULL)
2343 this->create_interp(target);
2344
2345 // Finish the .dynamic section to hold the dynamic data, and put
2346 // it in a PT_DYNAMIC segment.
2347 this->finish_dynamic_section(input_objects, symtab);
2348
2349 // We should have added everything we need to the dynamic string
2350 // table.
2351 this->dynpool_.set_string_offsets();
2352
2353 // Create the version sections. We can't do this until the
2354 // dynamic string table is complete.
2355 this->create_version_sections(&versions, symtab, local_dynamic_count,
2356 dynamic_symbols, dynstr);
2357
2358 // Set the size of the _DYNAMIC symbol. We can't do this until
2359 // after we call create_version_sections.
2360 this->set_dynamic_symbol_size(symtab);
2361 }
2362
2363 // Create segment headers.
2364 Output_segment_headers* segment_headers =
2365 (parameters->options().relocatable()
2366 ? NULL
2367 : new Output_segment_headers(this->segment_list_));
2368
2369 // Lay out the file header.
2370 Output_file_header* file_header = new Output_file_header(target, symtab,
2371 segment_headers);
2372
2373 this->special_output_list_.push_back(file_header);
2374 if (segment_headers != NULL)
2375 this->special_output_list_.push_back(segment_headers);
2376
2377 // Find approriate places for orphan output sections if we are using
2378 // a linker script.
2379 if (this->script_options_->saw_sections_clause())
2380 this->place_orphan_sections_in_script();
2381
2382 Output_segment* load_seg;
2383 off_t off;
2384 unsigned int shndx;
2385 int pass = 0;
2386
2387 // Take a snapshot of the section layout as needed.
2388 if (target->may_relax())
2389 this->prepare_for_relaxation();
2390
2391 // Run the relaxation loop to lay out sections.
2392 do
2393 {
2394 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
2395 phdr_seg, segment_headers, file_header,
2396 &shndx);
2397 pass++;
2398 }
2399 while (target->may_relax()
2400 && target->relax(pass, input_objects, symtab, this, task));
2401
2402 // Set the file offsets of all the non-data sections we've seen so
2403 // far which don't have to wait for the input sections. We need
2404 // this in order to finalize local symbols in non-allocated
2405 // sections.
2406 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2407
2408 // Set the section indexes of all unallocated sections seen so far,
2409 // in case any of them are somehow referenced by a symbol.
2410 shndx = this->set_section_indexes(shndx);
2411
2412 // Create the symbol table sections.
2413 this->create_symtab_sections(input_objects, symtab, shndx, &off);
2414 if (!parameters->doing_static_link())
2415 this->assign_local_dynsym_offsets(input_objects);
2416
2417 // Process any symbol assignments from a linker script. This must
2418 // be called after the symbol table has been finalized.
2419 this->script_options_->finalize_symbols(symtab, this);
2420
2421 // Create the incremental inputs sections.
2422 if (this->incremental_inputs_)
2423 {
2424 this->incremental_inputs_->finalize();
2425 this->create_incremental_info_sections(symtab);
2426 }
2427
2428 // Create the .shstrtab section.
2429 Output_section* shstrtab_section = this->create_shstrtab();
2430
2431 // Set the file offsets of the rest of the non-data sections which
2432 // don't have to wait for the input sections.
2433 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
2434
2435 // Now that all sections have been created, set the section indexes
2436 // for any sections which haven't been done yet.
2437 shndx = this->set_section_indexes(shndx);
2438
2439 // Create the section table header.
2440 this->create_shdrs(shstrtab_section, &off);
2441
2442 // If there are no sections which require postprocessing, we can
2443 // handle the section names now, and avoid a resize later.
2444 if (!this->any_postprocessing_sections_)
2445 {
2446 off = this->set_section_offsets(off,
2447 POSTPROCESSING_SECTIONS_PASS);
2448 off =
2449 this->set_section_offsets(off,
2450 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
2451 }
2452
2453 file_header->set_section_info(this->section_headers_, shstrtab_section);
2454
2455 // Now we know exactly where everything goes in the output file
2456 // (except for non-allocated sections which require postprocessing).
2457 Output_data::layout_complete();
2458
2459 this->output_file_size_ = off;
2460
2461 return off;
2462 }
2463
2464 // Create a note header following the format defined in the ELF ABI.
2465 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
2466 // of the section to create, DESCSZ is the size of the descriptor.
2467 // ALLOCATE is true if the section should be allocated in memory.
2468 // This returns the new note section. It sets *TRAILING_PADDING to
2469 // the number of trailing zero bytes required.
2470
2471 Output_section*
2472 Layout::create_note(const char* name, int note_type,
2473 const char* section_name, size_t descsz,
2474 bool allocate, size_t* trailing_padding)
2475 {
2476 // Authorities all agree that the values in a .note field should
2477 // be aligned on 4-byte boundaries for 32-bit binaries. However,
2478 // they differ on what the alignment is for 64-bit binaries.
2479 // The GABI says unambiguously they take 8-byte alignment:
2480 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
2481 // Other documentation says alignment should always be 4 bytes:
2482 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
2483 // GNU ld and GNU readelf both support the latter (at least as of
2484 // version 2.16.91), and glibc always generates the latter for
2485 // .note.ABI-tag (as of version 1.6), so that's the one we go with
2486 // here.
2487 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
2488 const int size = parameters->target().get_size();
2489 #else
2490 const int size = 32;
2491 #endif
2492
2493 // The contents of the .note section.
2494 size_t namesz = strlen(name) + 1;
2495 size_t aligned_namesz = align_address(namesz, size / 8);
2496 size_t aligned_descsz = align_address(descsz, size / 8);
2497
2498 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
2499
2500 unsigned char* buffer = new unsigned char[notehdrsz];
2501 memset(buffer, 0, notehdrsz);
2502
2503 bool is_big_endian = parameters->target().is_big_endian();
2504
2505 if (size == 32)
2506 {
2507 if (!is_big_endian)
2508 {
2509 elfcpp::Swap<32, false>::writeval(buffer, namesz);
2510 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
2511 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
2512 }
2513 else
2514 {
2515 elfcpp::Swap<32, true>::writeval(buffer, namesz);
2516 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
2517 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
2518 }
2519 }
2520 else if (size == 64)
2521 {
2522 if (!is_big_endian)
2523 {
2524 elfcpp::Swap<64, false>::writeval(buffer, namesz);
2525 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
2526 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
2527 }
2528 else
2529 {
2530 elfcpp::Swap<64, true>::writeval(buffer, namesz);
2531 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
2532 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
2533 }
2534 }
2535 else
2536 gold_unreachable();
2537
2538 memcpy(buffer + 3 * (size / 8), name, namesz);
2539
2540 elfcpp::Elf_Xword flags = 0;
2541 Output_section_order order = ORDER_INVALID;
2542 if (allocate)
2543 {
2544 flags = elfcpp::SHF_ALLOC;
2545 order = ORDER_RO_NOTE;
2546 }
2547 Output_section* os = this->choose_output_section(NULL, section_name,
2548 elfcpp::SHT_NOTE,
2549 flags, false, order, false);
2550 if (os == NULL)
2551 return NULL;
2552
2553 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
2554 size / 8,
2555 "** note header");
2556 os->add_output_section_data(posd);
2557
2558 *trailing_padding = aligned_descsz - descsz;
2559
2560 return os;
2561 }
2562
2563 // For an executable or shared library, create a note to record the
2564 // version of gold used to create the binary.
2565
2566 void
2567 Layout::create_gold_note()
2568 {
2569 if (parameters->options().relocatable()
2570 || parameters->incremental_update())
2571 return;
2572
2573 std::string desc = std::string("gold ") + gold::get_version_string();
2574
2575 size_t trailing_padding;
2576 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
2577 ".note.gnu.gold-version", desc.size(),
2578 false, &trailing_padding);
2579 if (os == NULL)
2580 return;
2581
2582 Output_section_data* posd = new Output_data_const(desc, 4);
2583 os->add_output_section_data(posd);
2584
2585 if (trailing_padding > 0)
2586 {
2587 posd = new Output_data_zero_fill(trailing_padding, 0);
2588 os->add_output_section_data(posd);
2589 }
2590 }
2591
2592 // Record whether the stack should be executable. This can be set
2593 // from the command line using the -z execstack or -z noexecstack
2594 // options. Otherwise, if any input file has a .note.GNU-stack
2595 // section with the SHF_EXECINSTR flag set, the stack should be
2596 // executable. Otherwise, if at least one input file a
2597 // .note.GNU-stack section, and some input file has no .note.GNU-stack
2598 // section, we use the target default for whether the stack should be
2599 // executable. Otherwise, we don't generate a stack note. When
2600 // generating a object file, we create a .note.GNU-stack section with
2601 // the appropriate marking. When generating an executable or shared
2602 // library, we create a PT_GNU_STACK segment.
2603
2604 void
2605 Layout::create_executable_stack_info()
2606 {
2607 bool is_stack_executable;
2608 if (parameters->options().is_execstack_set())
2609 is_stack_executable = parameters->options().is_stack_executable();
2610 else if (!this->input_with_gnu_stack_note_)
2611 return;
2612 else
2613 {
2614 if (this->input_requires_executable_stack_)
2615 is_stack_executable = true;
2616 else if (this->input_without_gnu_stack_note_)
2617 is_stack_executable =
2618 parameters->target().is_default_stack_executable();
2619 else
2620 is_stack_executable = false;
2621 }
2622
2623 if (parameters->options().relocatable())
2624 {
2625 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
2626 elfcpp::Elf_Xword flags = 0;
2627 if (is_stack_executable)
2628 flags |= elfcpp::SHF_EXECINSTR;
2629 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
2630 ORDER_INVALID, false);
2631 }
2632 else
2633 {
2634 if (this->script_options_->saw_phdrs_clause())
2635 return;
2636 int flags = elfcpp::PF_R | elfcpp::PF_W;
2637 if (is_stack_executable)
2638 flags |= elfcpp::PF_X;
2639 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
2640 }
2641 }
2642
2643 // If --build-id was used, set up the build ID note.
2644
2645 void
2646 Layout::create_build_id()
2647 {
2648 if (!parameters->options().user_set_build_id())
2649 return;
2650
2651 const char* style = parameters->options().build_id();
2652 if (strcmp(style, "none") == 0)
2653 return;
2654
2655 // Set DESCSZ to the size of the note descriptor. When possible,
2656 // set DESC to the note descriptor contents.
2657 size_t descsz;
2658 std::string desc;
2659 if (strcmp(style, "md5") == 0)
2660 descsz = 128 / 8;
2661 else if (strcmp(style, "sha1") == 0)
2662 descsz = 160 / 8;
2663 else if (strcmp(style, "uuid") == 0)
2664 {
2665 const size_t uuidsz = 128 / 8;
2666
2667 char buffer[uuidsz];
2668 memset(buffer, 0, uuidsz);
2669
2670 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
2671 if (descriptor < 0)
2672 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
2673 strerror(errno));
2674 else
2675 {
2676 ssize_t got = ::read(descriptor, buffer, uuidsz);
2677 release_descriptor(descriptor, true);
2678 if (got < 0)
2679 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
2680 else if (static_cast<size_t>(got) != uuidsz)
2681 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
2682 uuidsz, got);
2683 }
2684
2685 desc.assign(buffer, uuidsz);
2686 descsz = uuidsz;
2687 }
2688 else if (strncmp(style, "0x", 2) == 0)
2689 {
2690 hex_init();
2691 const char* p = style + 2;
2692 while (*p != '\0')
2693 {
2694 if (hex_p(p[0]) && hex_p(p[1]))
2695 {
2696 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
2697 desc += c;
2698 p += 2;
2699 }
2700 else if (*p == '-' || *p == ':')
2701 ++p;
2702 else
2703 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
2704 style);
2705 }
2706 descsz = desc.size();
2707 }
2708 else
2709 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
2710
2711 // Create the note.
2712 size_t trailing_padding;
2713 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
2714 ".note.gnu.build-id", descsz, true,
2715 &trailing_padding);
2716 if (os == NULL)
2717 return;
2718
2719 if (!desc.empty())
2720 {
2721 // We know the value already, so we fill it in now.
2722 gold_assert(desc.size() == descsz);
2723
2724 Output_section_data* posd = new Output_data_const(desc, 4);
2725 os->add_output_section_data(posd);
2726
2727 if (trailing_padding != 0)
2728 {
2729 posd = new Output_data_zero_fill(trailing_padding, 0);
2730 os->add_output_section_data(posd);
2731 }
2732 }
2733 else
2734 {
2735 // We need to compute a checksum after we have completed the
2736 // link.
2737 gold_assert(trailing_padding == 0);
2738 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
2739 os->add_output_section_data(this->build_id_note_);
2740 }
2741 }
2742
2743 // If we have both .stabXX and .stabXXstr sections, then the sh_link
2744 // field of the former should point to the latter. I'm not sure who
2745 // started this, but the GNU linker does it, and some tools depend
2746 // upon it.
2747
2748 void
2749 Layout::link_stabs_sections()
2750 {
2751 if (!this->have_stabstr_section_)
2752 return;
2753
2754 for (Section_list::iterator p = this->section_list_.begin();
2755 p != this->section_list_.end();
2756 ++p)
2757 {
2758 if ((*p)->type() != elfcpp::SHT_STRTAB)
2759 continue;
2760
2761 const char* name = (*p)->name();
2762 if (strncmp(name, ".stab", 5) != 0)
2763 continue;
2764
2765 size_t len = strlen(name);
2766 if (strcmp(name + len - 3, "str") != 0)
2767 continue;
2768
2769 std::string stab_name(name, len - 3);
2770 Output_section* stab_sec;
2771 stab_sec = this->find_output_section(stab_name.c_str());
2772 if (stab_sec != NULL)
2773 stab_sec->set_link_section(*p);
2774 }
2775 }
2776
2777 // Create .gnu_incremental_inputs and related sections needed
2778 // for the next run of incremental linking to check what has changed.
2779
2780 void
2781 Layout::create_incremental_info_sections(Symbol_table* symtab)
2782 {
2783 Incremental_inputs* incr = this->incremental_inputs_;
2784
2785 gold_assert(incr != NULL);
2786
2787 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
2788 incr->create_data_sections(symtab);
2789
2790 // Add the .gnu_incremental_inputs section.
2791 const char* incremental_inputs_name =
2792 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
2793 Output_section* incremental_inputs_os =
2794 this->make_output_section(incremental_inputs_name,
2795 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
2796 ORDER_INVALID, false);
2797 incremental_inputs_os->add_output_section_data(incr->inputs_section());
2798
2799 // Add the .gnu_incremental_symtab section.
2800 const char* incremental_symtab_name =
2801 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
2802 Output_section* incremental_symtab_os =
2803 this->make_output_section(incremental_symtab_name,
2804 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
2805 ORDER_INVALID, false);
2806 incremental_symtab_os->add_output_section_data(incr->symtab_section());
2807 incremental_symtab_os->set_entsize(4);
2808
2809 // Add the .gnu_incremental_relocs section.
2810 const char* incremental_relocs_name =
2811 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
2812 Output_section* incremental_relocs_os =
2813 this->make_output_section(incremental_relocs_name,
2814 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
2815 ORDER_INVALID, false);
2816 incremental_relocs_os->add_output_section_data(incr->relocs_section());
2817 incremental_relocs_os->set_entsize(incr->relocs_entsize());
2818
2819 // Add the .gnu_incremental_got_plt section.
2820 const char* incremental_got_plt_name =
2821 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
2822 Output_section* incremental_got_plt_os =
2823 this->make_output_section(incremental_got_plt_name,
2824 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
2825 ORDER_INVALID, false);
2826 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
2827
2828 // Add the .gnu_incremental_strtab section.
2829 const char* incremental_strtab_name =
2830 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
2831 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
2832 elfcpp::SHT_STRTAB, 0,
2833 ORDER_INVALID, false);
2834 Output_data_strtab* strtab_data =
2835 new Output_data_strtab(incr->get_stringpool());
2836 incremental_strtab_os->add_output_section_data(strtab_data);
2837
2838 incremental_inputs_os->set_after_input_sections();
2839 incremental_symtab_os->set_after_input_sections();
2840 incremental_relocs_os->set_after_input_sections();
2841 incremental_got_plt_os->set_after_input_sections();
2842
2843 incremental_inputs_os->set_link_section(incremental_strtab_os);
2844 incremental_symtab_os->set_link_section(incremental_inputs_os);
2845 incremental_relocs_os->set_link_section(incremental_inputs_os);
2846 incremental_got_plt_os->set_link_section(incremental_inputs_os);
2847 }
2848
2849 // Return whether SEG1 should be before SEG2 in the output file. This
2850 // is based entirely on the segment type and flags. When this is
2851 // called the segment addresses have normally not yet been set.
2852
2853 bool
2854 Layout::segment_precedes(const Output_segment* seg1,
2855 const Output_segment* seg2)
2856 {
2857 elfcpp::Elf_Word type1 = seg1->type();
2858 elfcpp::Elf_Word type2 = seg2->type();
2859
2860 // The single PT_PHDR segment is required to precede any loadable
2861 // segment. We simply make it always first.
2862 if (type1 == elfcpp::PT_PHDR)
2863 {
2864 gold_assert(type2 != elfcpp::PT_PHDR);
2865 return true;
2866 }
2867 if (type2 == elfcpp::PT_PHDR)
2868 return false;
2869
2870 // The single PT_INTERP segment is required to precede any loadable
2871 // segment. We simply make it always second.
2872 if (type1 == elfcpp::PT_INTERP)
2873 {
2874 gold_assert(type2 != elfcpp::PT_INTERP);
2875 return true;
2876 }
2877 if (type2 == elfcpp::PT_INTERP)
2878 return false;
2879
2880 // We then put PT_LOAD segments before any other segments.
2881 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
2882 return true;
2883 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
2884 return false;
2885
2886 // We put the PT_TLS segment last except for the PT_GNU_RELRO
2887 // segment, because that is where the dynamic linker expects to find
2888 // it (this is just for efficiency; other positions would also work
2889 // correctly).
2890 if (type1 == elfcpp::PT_TLS
2891 && type2 != elfcpp::PT_TLS
2892 && type2 != elfcpp::PT_GNU_RELRO)
2893 return false;
2894 if (type2 == elfcpp::PT_TLS
2895 && type1 != elfcpp::PT_TLS
2896 && type1 != elfcpp::PT_GNU_RELRO)
2897 return true;
2898
2899 // We put the PT_GNU_RELRO segment last, because that is where the
2900 // dynamic linker expects to find it (as with PT_TLS, this is just
2901 // for efficiency).
2902 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
2903 return false;
2904 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
2905 return true;
2906
2907 const elfcpp::Elf_Word flags1 = seg1->flags();
2908 const elfcpp::Elf_Word flags2 = seg2->flags();
2909
2910 // The order of non-PT_LOAD segments is unimportant. We simply sort
2911 // by the numeric segment type and flags values. There should not
2912 // be more than one segment with the same type and flags.
2913 if (type1 != elfcpp::PT_LOAD)
2914 {
2915 if (type1 != type2)
2916 return type1 < type2;
2917 gold_assert(flags1 != flags2);
2918 return flags1 < flags2;
2919 }
2920
2921 // If the addresses are set already, sort by load address.
2922 if (seg1->are_addresses_set())
2923 {
2924 if (!seg2->are_addresses_set())
2925 return true;
2926
2927 unsigned int section_count1 = seg1->output_section_count();
2928 unsigned int section_count2 = seg2->output_section_count();
2929 if (section_count1 == 0 && section_count2 > 0)
2930 return true;
2931 if (section_count1 > 0 && section_count2 == 0)
2932 return false;
2933
2934 uint64_t paddr1 = (seg1->are_addresses_set()
2935 ? seg1->paddr()
2936 : seg1->first_section_load_address());
2937 uint64_t paddr2 = (seg2->are_addresses_set()
2938 ? seg2->paddr()
2939 : seg2->first_section_load_address());
2940
2941 if (paddr1 != paddr2)
2942 return paddr1 < paddr2;
2943 }
2944 else if (seg2->are_addresses_set())
2945 return false;
2946
2947 // A segment which holds large data comes after a segment which does
2948 // not hold large data.
2949 if (seg1->is_large_data_segment())
2950 {
2951 if (!seg2->is_large_data_segment())
2952 return false;
2953 }
2954 else if (seg2->is_large_data_segment())
2955 return true;
2956
2957 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
2958 // segments come before writable segments. Then writable segments
2959 // with data come before writable segments without data. Then
2960 // executable segments come before non-executable segments. Then
2961 // the unlikely case of a non-readable segment comes before the
2962 // normal case of a readable segment. If there are multiple
2963 // segments with the same type and flags, we require that the
2964 // address be set, and we sort by virtual address and then physical
2965 // address.
2966 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
2967 return (flags1 & elfcpp::PF_W) == 0;
2968 if ((flags1 & elfcpp::PF_W) != 0
2969 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
2970 return seg1->has_any_data_sections();
2971 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
2972 return (flags1 & elfcpp::PF_X) != 0;
2973 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
2974 return (flags1 & elfcpp::PF_R) == 0;
2975
2976 // We shouldn't get here--we shouldn't create segments which we
2977 // can't distinguish. Unless of course we are using a weird linker
2978 // script.
2979 gold_assert(this->script_options_->saw_phdrs_clause());
2980 return false;
2981 }
2982
2983 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
2984
2985 static off_t
2986 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
2987 {
2988 uint64_t unsigned_off = off;
2989 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
2990 | (addr & (abi_pagesize - 1)));
2991 if (aligned_off < unsigned_off)
2992 aligned_off += abi_pagesize;
2993 return aligned_off;
2994 }
2995
2996 // Set the file offsets of all the segments, and all the sections they
2997 // contain. They have all been created. LOAD_SEG must be be laid out
2998 // first. Return the offset of the data to follow.
2999
3000 off_t
3001 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3002 unsigned int* pshndx)
3003 {
3004 // Sort them into the final order. We use a stable sort so that we
3005 // don't randomize the order of indistinguishable segments created
3006 // by linker scripts.
3007 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3008 Layout::Compare_segments(this));
3009
3010 // Find the PT_LOAD segments, and set their addresses and offsets
3011 // and their section's addresses and offsets.
3012 uint64_t addr;
3013 if (parameters->options().user_set_Ttext())
3014 addr = parameters->options().Ttext();
3015 else if (parameters->options().output_is_position_independent())
3016 addr = 0;
3017 else
3018 addr = target->default_text_segment_address();
3019 off_t off = 0;
3020
3021 // If LOAD_SEG is NULL, then the file header and segment headers
3022 // will not be loadable. But they still need to be at offset 0 in
3023 // the file. Set their offsets now.
3024 if (load_seg == NULL)
3025 {
3026 for (Data_list::iterator p = this->special_output_list_.begin();
3027 p != this->special_output_list_.end();
3028 ++p)
3029 {
3030 off = align_address(off, (*p)->addralign());
3031 (*p)->set_address_and_file_offset(0, off);
3032 off += (*p)->data_size();
3033 }
3034 }
3035
3036 unsigned int increase_relro = this->increase_relro_;
3037 if (this->script_options_->saw_sections_clause())
3038 increase_relro = 0;
3039
3040 const bool check_sections = parameters->options().check_sections();
3041 Output_segment* last_load_segment = NULL;
3042
3043 for (Segment_list::iterator p = this->segment_list_.begin();
3044 p != this->segment_list_.end();
3045 ++p)
3046 {
3047 if ((*p)->type() == elfcpp::PT_LOAD)
3048 {
3049 if (load_seg != NULL && load_seg != *p)
3050 gold_unreachable();
3051 load_seg = NULL;
3052
3053 bool are_addresses_set = (*p)->are_addresses_set();
3054 if (are_addresses_set)
3055 {
3056 // When it comes to setting file offsets, we care about
3057 // the physical address.
3058 addr = (*p)->paddr();
3059 }
3060 else if (parameters->options().user_set_Ttext()
3061 && ((*p)->flags() & elfcpp::PF_W) == 0)
3062 {
3063 are_addresses_set = true;
3064 }
3065 else if (parameters->options().user_set_Tdata()
3066 && ((*p)->flags() & elfcpp::PF_W) != 0
3067 && (!parameters->options().user_set_Tbss()
3068 || (*p)->has_any_data_sections()))
3069 {
3070 addr = parameters->options().Tdata();
3071 are_addresses_set = true;
3072 }
3073 else if (parameters->options().user_set_Tbss()
3074 && ((*p)->flags() & elfcpp::PF_W) != 0
3075 && !(*p)->has_any_data_sections())
3076 {
3077 addr = parameters->options().Tbss();
3078 are_addresses_set = true;
3079 }
3080
3081 uint64_t orig_addr = addr;
3082 uint64_t orig_off = off;
3083
3084 uint64_t aligned_addr = 0;
3085 uint64_t abi_pagesize = target->abi_pagesize();
3086 uint64_t common_pagesize = target->common_pagesize();
3087
3088 if (!parameters->options().nmagic()
3089 && !parameters->options().omagic())
3090 (*p)->set_minimum_p_align(common_pagesize);
3091
3092 if (!are_addresses_set)
3093 {
3094 // Skip the address forward one page, maintaining the same
3095 // position within the page. This lets us store both segments
3096 // overlapping on a single page in the file, but the loader will
3097 // put them on different pages in memory. We will revisit this
3098 // decision once we know the size of the segment.
3099
3100 addr = align_address(addr, (*p)->maximum_alignment());
3101 aligned_addr = addr;
3102
3103 if ((addr & (abi_pagesize - 1)) != 0)
3104 addr = addr + abi_pagesize;
3105
3106 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3107 }
3108
3109 if (!parameters->options().nmagic()
3110 && !parameters->options().omagic())
3111 off = align_file_offset(off, addr, abi_pagesize);
3112 else if (load_seg == NULL)
3113 {
3114 // This is -N or -n with a section script which prevents
3115 // us from using a load segment. We need to ensure that
3116 // the file offset is aligned to the alignment of the
3117 // segment. This is because the linker script
3118 // implicitly assumed a zero offset. If we don't align
3119 // here, then the alignment of the sections in the
3120 // linker script may not match the alignment of the
3121 // sections in the set_section_addresses call below,
3122 // causing an error about dot moving backward.
3123 off = align_address(off, (*p)->maximum_alignment());
3124 }
3125
3126 unsigned int shndx_hold = *pshndx;
3127 bool has_relro = false;
3128 uint64_t new_addr = (*p)->set_section_addresses(this, false, addr,
3129 &increase_relro,
3130 &has_relro,
3131 &off, pshndx);
3132
3133 // Now that we know the size of this segment, we may be able
3134 // to save a page in memory, at the cost of wasting some
3135 // file space, by instead aligning to the start of a new
3136 // page. Here we use the real machine page size rather than
3137 // the ABI mandated page size. If the segment has been
3138 // aligned so that the relro data ends at a page boundary,
3139 // we do not try to realign it.
3140
3141 if (!are_addresses_set
3142 && !has_relro
3143 && aligned_addr != addr
3144 && !parameters->incremental())
3145 {
3146 uint64_t first_off = (common_pagesize
3147 - (aligned_addr
3148 & (common_pagesize - 1)));
3149 uint64_t last_off = new_addr & (common_pagesize - 1);
3150 if (first_off > 0
3151 && last_off > 0
3152 && ((aligned_addr & ~ (common_pagesize - 1))
3153 != (new_addr & ~ (common_pagesize - 1)))
3154 && first_off + last_off <= common_pagesize)
3155 {
3156 *pshndx = shndx_hold;
3157 addr = align_address(aligned_addr, common_pagesize);
3158 addr = align_address(addr, (*p)->maximum_alignment());
3159 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3160 off = align_file_offset(off, addr, abi_pagesize);
3161
3162 increase_relro = this->increase_relro_;
3163 if (this->script_options_->saw_sections_clause())
3164 increase_relro = 0;
3165 has_relro = false;
3166
3167 new_addr = (*p)->set_section_addresses(this, true, addr,
3168 &increase_relro,
3169 &has_relro,
3170 &off, pshndx);
3171 }
3172 }
3173
3174 addr = new_addr;
3175
3176 // Implement --check-sections. We know that the segments
3177 // are sorted by LMA.
3178 if (check_sections && last_load_segment != NULL)
3179 {
3180 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
3181 if (last_load_segment->paddr() + last_load_segment->memsz()
3182 > (*p)->paddr())
3183 {
3184 unsigned long long lb1 = last_load_segment->paddr();
3185 unsigned long long le1 = lb1 + last_load_segment->memsz();
3186 unsigned long long lb2 = (*p)->paddr();
3187 unsigned long long le2 = lb2 + (*p)->memsz();
3188 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
3189 "[0x%llx -> 0x%llx]"),
3190 lb1, le1, lb2, le2);
3191 }
3192 }
3193 last_load_segment = *p;
3194 }
3195 }
3196
3197 // Handle the non-PT_LOAD segments, setting their offsets from their
3198 // section's offsets.
3199 for (Segment_list::iterator p = this->segment_list_.begin();
3200 p != this->segment_list_.end();
3201 ++p)
3202 {
3203 if ((*p)->type() != elfcpp::PT_LOAD)
3204 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
3205 ? increase_relro
3206 : 0);
3207 }
3208
3209 // Set the TLS offsets for each section in the PT_TLS segment.
3210 if (this->tls_segment_ != NULL)
3211 this->tls_segment_->set_tls_offsets();
3212
3213 return off;
3214 }
3215
3216 // Set the offsets of all the allocated sections when doing a
3217 // relocatable link. This does the same jobs as set_segment_offsets,
3218 // only for a relocatable link.
3219
3220 off_t
3221 Layout::set_relocatable_section_offsets(Output_data* file_header,
3222 unsigned int* pshndx)
3223 {
3224 off_t off = 0;
3225
3226 file_header->set_address_and_file_offset(0, 0);
3227 off += file_header->data_size();
3228
3229 for (Section_list::iterator p = this->section_list_.begin();
3230 p != this->section_list_.end();
3231 ++p)
3232 {
3233 // We skip unallocated sections here, except that group sections
3234 // have to come first.
3235 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
3236 && (*p)->type() != elfcpp::SHT_GROUP)
3237 continue;
3238
3239 off = align_address(off, (*p)->addralign());
3240
3241 // The linker script might have set the address.
3242 if (!(*p)->is_address_valid())
3243 (*p)->set_address(0);
3244 (*p)->set_file_offset(off);
3245 (*p)->finalize_data_size();
3246 off += (*p)->data_size();
3247
3248 (*p)->set_out_shndx(*pshndx);
3249 ++*pshndx;
3250 }
3251
3252 return off;
3253 }
3254
3255 // Set the file offset of all the sections not associated with a
3256 // segment.
3257
3258 off_t
3259 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
3260 {
3261 off_t startoff = off;
3262 off_t maxoff = off;
3263
3264 for (Section_list::iterator p = this->unattached_section_list_.begin();
3265 p != this->unattached_section_list_.end();
3266 ++p)
3267 {
3268 // The symtab section is handled in create_symtab_sections.
3269 if (*p == this->symtab_section_)
3270 continue;
3271
3272 // If we've already set the data size, don't set it again.
3273 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
3274 continue;
3275
3276 if (pass == BEFORE_INPUT_SECTIONS_PASS
3277 && (*p)->requires_postprocessing())
3278 {
3279 (*p)->create_postprocessing_buffer();
3280 this->any_postprocessing_sections_ = true;
3281 }
3282
3283 if (pass == BEFORE_INPUT_SECTIONS_PASS
3284 && (*p)->after_input_sections())
3285 continue;
3286 else if (pass == POSTPROCESSING_SECTIONS_PASS
3287 && (!(*p)->after_input_sections()
3288 || (*p)->type() == elfcpp::SHT_STRTAB))
3289 continue;
3290 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
3291 && (!(*p)->after_input_sections()
3292 || (*p)->type() != elfcpp::SHT_STRTAB))
3293 continue;
3294
3295 if (!parameters->incremental_update())
3296 {
3297 off = align_address(off, (*p)->addralign());
3298 (*p)->set_file_offset(off);
3299 (*p)->finalize_data_size();
3300 }
3301 else
3302 {
3303 // Incremental update: allocate file space from free list.
3304 (*p)->pre_finalize_data_size();
3305 off_t current_size = (*p)->current_data_size();
3306 off = this->allocate(current_size, (*p)->addralign(), startoff);
3307 if (off == -1)
3308 {
3309 if (is_debugging_enabled(DEBUG_INCREMENTAL))
3310 this->free_list_.dump();
3311 gold_assert((*p)->output_section() != NULL);
3312 gold_fallback(_("out of patch space for section %s; "
3313 "relink with --incremental-full"),
3314 (*p)->output_section()->name());
3315 }
3316 (*p)->set_file_offset(off);
3317 (*p)->finalize_data_size();
3318 if ((*p)->data_size() > current_size)
3319 {
3320 gold_assert((*p)->output_section() != NULL);
3321 gold_fallback(_("%s: section changed size; "
3322 "relink with --incremental-full"),
3323 (*p)->output_section()->name());
3324 }
3325 gold_debug(DEBUG_INCREMENTAL,
3326 "set_section_offsets: %08lx %08lx %s",
3327 static_cast<long>(off),
3328 static_cast<long>((*p)->data_size()),
3329 ((*p)->output_section() != NULL
3330 ? (*p)->output_section()->name() : "(special)"));
3331 }
3332
3333 off += (*p)->data_size();
3334 if (off > maxoff)
3335 maxoff = off;
3336
3337 // At this point the name must be set.
3338 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
3339 this->namepool_.add((*p)->name(), false, NULL);
3340 }
3341 return maxoff;
3342 }
3343
3344 // Set the section indexes of all the sections not associated with a
3345 // segment.
3346
3347 unsigned int
3348 Layout::set_section_indexes(unsigned int shndx)
3349 {
3350 for (Section_list::iterator p = this->unattached_section_list_.begin();
3351 p != this->unattached_section_list_.end();
3352 ++p)
3353 {
3354 if (!(*p)->has_out_shndx())
3355 {
3356 (*p)->set_out_shndx(shndx);
3357 ++shndx;
3358 }
3359 }
3360 return shndx;
3361 }
3362
3363 // Set the section addresses according to the linker script. This is
3364 // only called when we see a SECTIONS clause. This returns the
3365 // program segment which should hold the file header and segment
3366 // headers, if any. It will return NULL if they should not be in a
3367 // segment.
3368
3369 Output_segment*
3370 Layout::set_section_addresses_from_script(Symbol_table* symtab)
3371 {
3372 Script_sections* ss = this->script_options_->script_sections();
3373 gold_assert(ss->saw_sections_clause());
3374 return this->script_options_->set_section_addresses(symtab, this);
3375 }
3376
3377 // Place the orphan sections in the linker script.
3378
3379 void
3380 Layout::place_orphan_sections_in_script()
3381 {
3382 Script_sections* ss = this->script_options_->script_sections();
3383 gold_assert(ss->saw_sections_clause());
3384
3385 // Place each orphaned output section in the script.
3386 for (Section_list::iterator p = this->section_list_.begin();
3387 p != this->section_list_.end();
3388 ++p)
3389 {
3390 if (!(*p)->found_in_sections_clause())
3391 ss->place_orphan(*p);
3392 }
3393 }
3394
3395 // Count the local symbols in the regular symbol table and the dynamic
3396 // symbol table, and build the respective string pools.
3397
3398 void
3399 Layout::count_local_symbols(const Task* task,
3400 const Input_objects* input_objects)
3401 {
3402 // First, figure out an upper bound on the number of symbols we'll
3403 // be inserting into each pool. This helps us create the pools with
3404 // the right size, to avoid unnecessary hashtable resizing.
3405 unsigned int symbol_count = 0;
3406 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3407 p != input_objects->relobj_end();
3408 ++p)
3409 symbol_count += (*p)->local_symbol_count();
3410
3411 // Go from "upper bound" to "estimate." We overcount for two
3412 // reasons: we double-count symbols that occur in more than one
3413 // object file, and we count symbols that are dropped from the
3414 // output. Add it all together and assume we overcount by 100%.
3415 symbol_count /= 2;
3416
3417 // We assume all symbols will go into both the sympool and dynpool.
3418 this->sympool_.reserve(symbol_count);
3419 this->dynpool_.reserve(symbol_count);
3420
3421 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3422 p != input_objects->relobj_end();
3423 ++p)
3424 {
3425 Task_lock_obj<Object> tlo(task, *p);
3426 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
3427 }
3428 }
3429
3430 // Create the symbol table sections. Here we also set the final
3431 // values of the symbols. At this point all the loadable sections are
3432 // fully laid out. SHNUM is the number of sections so far.
3433
3434 void
3435 Layout::create_symtab_sections(const Input_objects* input_objects,
3436 Symbol_table* symtab,
3437 unsigned int shnum,
3438 off_t* poff)
3439 {
3440 int symsize;
3441 unsigned int align;
3442 if (parameters->target().get_size() == 32)
3443 {
3444 symsize = elfcpp::Elf_sizes<32>::sym_size;
3445 align = 4;
3446 }
3447 else if (parameters->target().get_size() == 64)
3448 {
3449 symsize = elfcpp::Elf_sizes<64>::sym_size;
3450 align = 8;
3451 }
3452 else
3453 gold_unreachable();
3454
3455 // Compute file offsets relative to the start of the symtab section.
3456 off_t off = 0;
3457
3458 // Save space for the dummy symbol at the start of the section. We
3459 // never bother to write this out--it will just be left as zero.
3460 off += symsize;
3461 unsigned int local_symbol_index = 1;
3462
3463 // Add STT_SECTION symbols for each Output section which needs one.
3464 for (Section_list::iterator p = this->section_list_.begin();
3465 p != this->section_list_.end();
3466 ++p)
3467 {
3468 if (!(*p)->needs_symtab_index())
3469 (*p)->set_symtab_index(-1U);
3470 else
3471 {
3472 (*p)->set_symtab_index(local_symbol_index);
3473 ++local_symbol_index;
3474 off += symsize;
3475 }
3476 }
3477
3478 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3479 p != input_objects->relobj_end();
3480 ++p)
3481 {
3482 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
3483 off, symtab);
3484 off += (index - local_symbol_index) * symsize;
3485 local_symbol_index = index;
3486 }
3487
3488 unsigned int local_symcount = local_symbol_index;
3489 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
3490
3491 off_t dynoff;
3492 size_t dyn_global_index;
3493 size_t dyncount;
3494 if (this->dynsym_section_ == NULL)
3495 {
3496 dynoff = 0;
3497 dyn_global_index = 0;
3498 dyncount = 0;
3499 }
3500 else
3501 {
3502 dyn_global_index = this->dynsym_section_->info();
3503 off_t locsize = dyn_global_index * this->dynsym_section_->entsize();
3504 dynoff = this->dynsym_section_->offset() + locsize;
3505 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
3506 gold_assert(static_cast<off_t>(dyncount * symsize)
3507 == this->dynsym_section_->data_size() - locsize);
3508 }
3509
3510 off_t global_off = off;
3511 off = symtab->finalize(off, dynoff, dyn_global_index, dyncount,
3512 &this->sympool_, &local_symcount);
3513
3514 if (!parameters->options().strip_all())
3515 {
3516 this->sympool_.set_string_offsets();
3517
3518 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
3519 Output_section* osymtab = this->make_output_section(symtab_name,
3520 elfcpp::SHT_SYMTAB,
3521 0, ORDER_INVALID,
3522 false);
3523 this->symtab_section_ = osymtab;
3524
3525 Output_section_data* pos = new Output_data_fixed_space(off, align,
3526 "** symtab");
3527 osymtab->add_output_section_data(pos);
3528
3529 // We generate a .symtab_shndx section if we have more than
3530 // SHN_LORESERVE sections. Technically it is possible that we
3531 // don't need one, because it is possible that there are no
3532 // symbols in any of sections with indexes larger than
3533 // SHN_LORESERVE. That is probably unusual, though, and it is
3534 // easier to always create one than to compute section indexes
3535 // twice (once here, once when writing out the symbols).
3536 if (shnum >= elfcpp::SHN_LORESERVE)
3537 {
3538 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
3539 false, NULL);
3540 Output_section* osymtab_xindex =
3541 this->make_output_section(symtab_xindex_name,
3542 elfcpp::SHT_SYMTAB_SHNDX, 0,
3543 ORDER_INVALID, false);
3544
3545 size_t symcount = off / symsize;
3546 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
3547
3548 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
3549
3550 osymtab_xindex->set_link_section(osymtab);
3551 osymtab_xindex->set_addralign(4);
3552 osymtab_xindex->set_entsize(4);
3553
3554 osymtab_xindex->set_after_input_sections();
3555
3556 // This tells the driver code to wait until the symbol table
3557 // has written out before writing out the postprocessing
3558 // sections, including the .symtab_shndx section.
3559 this->any_postprocessing_sections_ = true;
3560 }
3561
3562 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
3563 Output_section* ostrtab = this->make_output_section(strtab_name,
3564 elfcpp::SHT_STRTAB,
3565 0, ORDER_INVALID,
3566 false);
3567
3568 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
3569 ostrtab->add_output_section_data(pstr);
3570
3571 off_t symtab_off;
3572 if (!parameters->incremental_update())
3573 symtab_off = align_address(*poff, align);
3574 else
3575 {
3576 symtab_off = this->allocate(off, align, *poff);
3577 if (off == -1)
3578 gold_fallback(_("out of patch space for symbol table; "
3579 "relink with --incremental-full"));
3580 gold_debug(DEBUG_INCREMENTAL,
3581 "create_symtab_sections: %08lx %08lx .symtab",
3582 static_cast<long>(symtab_off),
3583 static_cast<long>(off));
3584 }
3585
3586 symtab->set_file_offset(symtab_off + global_off);
3587 osymtab->set_file_offset(symtab_off);
3588 osymtab->finalize_data_size();
3589 osymtab->set_link_section(ostrtab);
3590 osymtab->set_info(local_symcount);
3591 osymtab->set_entsize(symsize);
3592
3593 if (symtab_off + off > *poff)
3594 *poff = symtab_off + off;
3595 }
3596 }
3597
3598 // Create the .shstrtab section, which holds the names of the
3599 // sections. At the time this is called, we have created all the
3600 // output sections except .shstrtab itself.
3601
3602 Output_section*
3603 Layout::create_shstrtab()
3604 {
3605 // FIXME: We don't need to create a .shstrtab section if we are
3606 // stripping everything.
3607
3608 const char* name = this->namepool_.add(".shstrtab", false, NULL);
3609
3610 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
3611 ORDER_INVALID, false);
3612
3613 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
3614 {
3615 // We can't write out this section until we've set all the
3616 // section names, and we don't set the names of compressed
3617 // output sections until relocations are complete. FIXME: With
3618 // the current names we use, this is unnecessary.
3619 os->set_after_input_sections();
3620 }
3621
3622 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
3623 os->add_output_section_data(posd);
3624
3625 return os;
3626 }
3627
3628 // Create the section headers. SIZE is 32 or 64. OFF is the file
3629 // offset.
3630
3631 void
3632 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
3633 {
3634 Output_section_headers* oshdrs;
3635 oshdrs = new Output_section_headers(this,
3636 &this->segment_list_,
3637 &this->section_list_,
3638 &this->unattached_section_list_,
3639 &this->namepool_,
3640 shstrtab_section);
3641 off_t off;
3642 if (!parameters->incremental_update())
3643 off = align_address(*poff, oshdrs->addralign());
3644 else
3645 {
3646 oshdrs->pre_finalize_data_size();
3647 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
3648 if (off == -1)
3649 gold_fallback(_("out of patch space for section header table; "
3650 "relink with --incremental-full"));
3651 gold_debug(DEBUG_INCREMENTAL,
3652 "create_shdrs: %08lx %08lx (section header table)",
3653 static_cast<long>(off),
3654 static_cast<long>(off + oshdrs->data_size()));
3655 }
3656 oshdrs->set_address_and_file_offset(0, off);
3657 off += oshdrs->data_size();
3658 if (off > *poff)
3659 *poff = off;
3660 this->section_headers_ = oshdrs;
3661 }
3662
3663 // Count the allocated sections.
3664
3665 size_t
3666 Layout::allocated_output_section_count() const
3667 {
3668 size_t section_count = 0;
3669 for (Segment_list::const_iterator p = this->segment_list_.begin();
3670 p != this->segment_list_.end();
3671 ++p)
3672 section_count += (*p)->output_section_count();
3673 return section_count;
3674 }
3675
3676 // Create the dynamic symbol table.
3677
3678 void
3679 Layout::create_dynamic_symtab(const Input_objects* input_objects,
3680 Symbol_table* symtab,
3681 Output_section** pdynstr,
3682 unsigned int* plocal_dynamic_count,
3683 std::vector<Symbol*>* pdynamic_symbols,
3684 Versions* pversions)
3685 {
3686 // Count all the symbols in the dynamic symbol table, and set the
3687 // dynamic symbol indexes.
3688
3689 // Skip symbol 0, which is always all zeroes.
3690 unsigned int index = 1;
3691
3692 // Add STT_SECTION symbols for each Output section which needs one.
3693 for (Section_list::iterator p = this->section_list_.begin();
3694 p != this->section_list_.end();
3695 ++p)
3696 {
3697 if (!(*p)->needs_dynsym_index())
3698 (*p)->set_dynsym_index(-1U);
3699 else
3700 {
3701 (*p)->set_dynsym_index(index);
3702 ++index;
3703 }
3704 }
3705
3706 // Count the local symbols that need to go in the dynamic symbol table,
3707 // and set the dynamic symbol indexes.
3708 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3709 p != input_objects->relobj_end();
3710 ++p)
3711 {
3712 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
3713 index = new_index;
3714 }
3715
3716 unsigned int local_symcount = index;
3717 *plocal_dynamic_count = local_symcount;
3718
3719 index = symtab->set_dynsym_indexes(index, pdynamic_symbols,
3720 &this->dynpool_, pversions);
3721
3722 int symsize;
3723 unsigned int align;
3724 const int size = parameters->target().get_size();
3725 if (size == 32)
3726 {
3727 symsize = elfcpp::Elf_sizes<32>::sym_size;
3728 align = 4;
3729 }
3730 else if (size == 64)
3731 {
3732 symsize = elfcpp::Elf_sizes<64>::sym_size;
3733 align = 8;
3734 }
3735 else
3736 gold_unreachable();
3737
3738 // Create the dynamic symbol table section.
3739
3740 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
3741 elfcpp::SHT_DYNSYM,
3742 elfcpp::SHF_ALLOC,
3743 false,
3744 ORDER_DYNAMIC_LINKER,
3745 false);
3746
3747 // Check for NULL as a linker script may discard .dynsym.
3748 if (dynsym != NULL)
3749 {
3750 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
3751 align,
3752 "** dynsym");
3753 dynsym->add_output_section_data(odata);
3754
3755 dynsym->set_info(local_symcount);
3756 dynsym->set_entsize(symsize);
3757 dynsym->set_addralign(align);
3758
3759 this->dynsym_section_ = dynsym;
3760 }
3761
3762 Output_data_dynamic* const odyn = this->dynamic_data_;
3763 if (odyn != NULL)
3764 {
3765 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
3766 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
3767 }
3768
3769 // If there are more than SHN_LORESERVE allocated sections, we
3770 // create a .dynsym_shndx section. It is possible that we don't
3771 // need one, because it is possible that there are no dynamic
3772 // symbols in any of the sections with indexes larger than
3773 // SHN_LORESERVE. This is probably unusual, though, and at this
3774 // time we don't know the actual section indexes so it is
3775 // inconvenient to check.
3776 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
3777 {
3778 Output_section* dynsym_xindex =
3779 this->choose_output_section(NULL, ".dynsym_shndx",
3780 elfcpp::SHT_SYMTAB_SHNDX,
3781 elfcpp::SHF_ALLOC,
3782 false, ORDER_DYNAMIC_LINKER, false);
3783
3784 if (dynsym_xindex != NULL)
3785 {
3786 this->dynsym_xindex_ = new Output_symtab_xindex(index);
3787
3788 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
3789
3790 dynsym_xindex->set_link_section(dynsym);
3791 dynsym_xindex->set_addralign(4);
3792 dynsym_xindex->set_entsize(4);
3793
3794 dynsym_xindex->set_after_input_sections();
3795
3796 // This tells the driver code to wait until the symbol table
3797 // has written out before writing out the postprocessing
3798 // sections, including the .dynsym_shndx section.
3799 this->any_postprocessing_sections_ = true;
3800 }
3801 }
3802
3803 // Create the dynamic string table section.
3804
3805 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
3806 elfcpp::SHT_STRTAB,
3807 elfcpp::SHF_ALLOC,
3808 false,
3809 ORDER_DYNAMIC_LINKER,
3810 false);
3811
3812 if (dynstr != NULL)
3813 {
3814 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
3815 dynstr->add_output_section_data(strdata);
3816
3817 if (dynsym != NULL)
3818 dynsym->set_link_section(dynstr);
3819 if (this->dynamic_section_ != NULL)
3820 this->dynamic_section_->set_link_section(dynstr);
3821
3822 if (odyn != NULL)
3823 {
3824 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
3825 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
3826 }
3827
3828 *pdynstr = dynstr;
3829 }
3830
3831 // Create the hash tables.
3832
3833 if (strcmp(parameters->options().hash_style(), "sysv") == 0
3834 || strcmp(parameters->options().hash_style(), "both") == 0)
3835 {
3836 unsigned char* phash;
3837 unsigned int hashlen;
3838 Dynobj::create_elf_hash_table(*pdynamic_symbols, local_symcount,
3839 &phash, &hashlen);
3840
3841 Output_section* hashsec =
3842 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
3843 elfcpp::SHF_ALLOC, false,
3844 ORDER_DYNAMIC_LINKER, false);
3845
3846 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3847 hashlen,
3848 align,
3849 "** hash");
3850 if (hashsec != NULL && hashdata != NULL)
3851 hashsec->add_output_section_data(hashdata);
3852
3853 if (hashsec != NULL)
3854 {
3855 if (dynsym != NULL)
3856 hashsec->set_link_section(dynsym);
3857 hashsec->set_entsize(4);
3858 }
3859
3860 if (odyn != NULL)
3861 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
3862 }
3863
3864 if (strcmp(parameters->options().hash_style(), "gnu") == 0
3865 || strcmp(parameters->options().hash_style(), "both") == 0)
3866 {
3867 unsigned char* phash;
3868 unsigned int hashlen;
3869 Dynobj::create_gnu_hash_table(*pdynamic_symbols, local_symcount,
3870 &phash, &hashlen);
3871
3872 Output_section* hashsec =
3873 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
3874 elfcpp::SHF_ALLOC, false,
3875 ORDER_DYNAMIC_LINKER, false);
3876
3877 Output_section_data* hashdata = new Output_data_const_buffer(phash,
3878 hashlen,
3879 align,
3880 "** hash");
3881 if (hashsec != NULL && hashdata != NULL)
3882 hashsec->add_output_section_data(hashdata);
3883
3884 if (hashsec != NULL)
3885 {
3886 if (dynsym != NULL)
3887 hashsec->set_link_section(dynsym);
3888
3889 // For a 64-bit target, the entries in .gnu.hash do not have
3890 // a uniform size, so we only set the entry size for a
3891 // 32-bit target.
3892 if (parameters->target().get_size() == 32)
3893 hashsec->set_entsize(4);
3894
3895 if (odyn != NULL)
3896 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
3897 }
3898 }
3899 }
3900
3901 // Assign offsets to each local portion of the dynamic symbol table.
3902
3903 void
3904 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
3905 {
3906 Output_section* dynsym = this->dynsym_section_;
3907 if (dynsym == NULL)
3908 return;
3909
3910 off_t off = dynsym->offset();
3911
3912 // Skip the dummy symbol at the start of the section.
3913 off += dynsym->entsize();
3914
3915 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
3916 p != input_objects->relobj_end();
3917 ++p)
3918 {
3919 unsigned int count = (*p)->set_local_dynsym_offset(off);
3920 off += count * dynsym->entsize();
3921 }
3922 }
3923
3924 // Create the version sections.
3925
3926 void
3927 Layout::create_version_sections(const Versions* versions,
3928 const Symbol_table* symtab,
3929 unsigned int local_symcount,
3930 const std::vector<Symbol*>& dynamic_symbols,
3931 const Output_section* dynstr)
3932 {
3933 if (!versions->any_defs() && !versions->any_needs())
3934 return;
3935
3936 switch (parameters->size_and_endianness())
3937 {
3938 #ifdef HAVE_TARGET_32_LITTLE
3939 case Parameters::TARGET_32_LITTLE:
3940 this->sized_create_version_sections<32, false>(versions, symtab,
3941 local_symcount,
3942 dynamic_symbols, dynstr);
3943 break;
3944 #endif
3945 #ifdef HAVE_TARGET_32_BIG
3946 case Parameters::TARGET_32_BIG:
3947 this->sized_create_version_sections<32, true>(versions, symtab,
3948 local_symcount,
3949 dynamic_symbols, dynstr);
3950 break;
3951 #endif
3952 #ifdef HAVE_TARGET_64_LITTLE
3953 case Parameters::TARGET_64_LITTLE:
3954 this->sized_create_version_sections<64, false>(versions, symtab,
3955 local_symcount,
3956 dynamic_symbols, dynstr);
3957 break;
3958 #endif
3959 #ifdef HAVE_TARGET_64_BIG
3960 case Parameters::TARGET_64_BIG:
3961 this->sized_create_version_sections<64, true>(versions, symtab,
3962 local_symcount,
3963 dynamic_symbols, dynstr);
3964 break;
3965 #endif
3966 default:
3967 gold_unreachable();
3968 }
3969 }
3970
3971 // Create the version sections, sized version.
3972
3973 template<int size, bool big_endian>
3974 void
3975 Layout::sized_create_version_sections(
3976 const Versions* versions,
3977 const Symbol_table* symtab,
3978 unsigned int local_symcount,
3979 const std::vector<Symbol*>& dynamic_symbols,
3980 const Output_section* dynstr)
3981 {
3982 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
3983 elfcpp::SHT_GNU_versym,
3984 elfcpp::SHF_ALLOC,
3985 false,
3986 ORDER_DYNAMIC_LINKER,
3987 false);
3988
3989 // Check for NULL since a linker script may discard this section.
3990 if (vsec != NULL)
3991 {
3992 unsigned char* vbuf;
3993 unsigned int vsize;
3994 versions->symbol_section_contents<size, big_endian>(symtab,
3995 &this->dynpool_,
3996 local_symcount,
3997 dynamic_symbols,
3998 &vbuf, &vsize);
3999
4000 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4001 "** versions");
4002
4003 vsec->add_output_section_data(vdata);
4004 vsec->set_entsize(2);
4005 vsec->set_link_section(this->dynsym_section_);
4006 }
4007
4008 Output_data_dynamic* const odyn = this->dynamic_data_;
4009 if (odyn != NULL && vsec != NULL)
4010 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4011
4012 if (versions->any_defs())
4013 {
4014 Output_section* vdsec;
4015 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4016 elfcpp::SHT_GNU_verdef,
4017 elfcpp::SHF_ALLOC,
4018 false, ORDER_DYNAMIC_LINKER, false);
4019
4020 if (vdsec != NULL)
4021 {
4022 unsigned char* vdbuf;
4023 unsigned int vdsize;
4024 unsigned int vdentries;
4025 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4026 &vdbuf, &vdsize,
4027 &vdentries);
4028
4029 Output_section_data* vddata =
4030 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4031
4032 vdsec->add_output_section_data(vddata);
4033 vdsec->set_link_section(dynstr);
4034 vdsec->set_info(vdentries);
4035
4036 if (odyn != NULL)
4037 {
4038 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4039 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4040 }
4041 }
4042 }
4043
4044 if (versions->any_needs())
4045 {
4046 Output_section* vnsec;
4047 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4048 elfcpp::SHT_GNU_verneed,
4049 elfcpp::SHF_ALLOC,
4050 false, ORDER_DYNAMIC_LINKER, false);
4051
4052 if (vnsec != NULL)
4053 {
4054 unsigned char* vnbuf;
4055 unsigned int vnsize;
4056 unsigned int vnentries;
4057 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4058 &vnbuf, &vnsize,
4059 &vnentries);
4060
4061 Output_section_data* vndata =
4062 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4063
4064 vnsec->add_output_section_data(vndata);
4065 vnsec->set_link_section(dynstr);
4066 vnsec->set_info(vnentries);
4067
4068 if (odyn != NULL)
4069 {
4070 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4071 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
4072 }
4073 }
4074 }
4075 }
4076
4077 // Create the .interp section and PT_INTERP segment.
4078
4079 void
4080 Layout::create_interp(const Target* target)
4081 {
4082 gold_assert(this->interp_segment_ == NULL);
4083
4084 const char* interp = parameters->options().dynamic_linker();
4085 if (interp == NULL)
4086 {
4087 interp = target->dynamic_linker();
4088 gold_assert(interp != NULL);
4089 }
4090
4091 size_t len = strlen(interp) + 1;
4092
4093 Output_section_data* odata = new Output_data_const(interp, len, 1);
4094
4095 Output_section* osec = this->choose_output_section(NULL, ".interp",
4096 elfcpp::SHT_PROGBITS,
4097 elfcpp::SHF_ALLOC,
4098 false, ORDER_INTERP,
4099 false);
4100 if (osec != NULL)
4101 osec->add_output_section_data(odata);
4102 }
4103
4104 // Add dynamic tags for the PLT and the dynamic relocs. This is
4105 // called by the target-specific code. This does nothing if not doing
4106 // a dynamic link.
4107
4108 // USE_REL is true for REL relocs rather than RELA relocs.
4109
4110 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
4111
4112 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
4113 // and we also set DT_PLTREL. We use PLT_REL's output section, since
4114 // some targets have multiple reloc sections in PLT_REL.
4115
4116 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
4117 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
4118 // section.
4119
4120 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
4121 // executable.
4122
4123 void
4124 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
4125 const Output_data* plt_rel,
4126 const Output_data_reloc_generic* dyn_rel,
4127 bool add_debug, bool dynrel_includes_plt)
4128 {
4129 Output_data_dynamic* odyn = this->dynamic_data_;
4130 if (odyn == NULL)
4131 return;
4132
4133 if (plt_got != NULL && plt_got->output_section() != NULL)
4134 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
4135
4136 if (plt_rel != NULL && plt_rel->output_section() != NULL)
4137 {
4138 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
4139 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
4140 odyn->add_constant(elfcpp::DT_PLTREL,
4141 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
4142 }
4143
4144 if (dyn_rel != NULL && dyn_rel->output_section() != NULL)
4145 {
4146 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
4147 dyn_rel->output_section());
4148 if (plt_rel != NULL
4149 && plt_rel->output_section() != NULL
4150 && dynrel_includes_plt)
4151 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4152 dyn_rel->output_section(),
4153 plt_rel->output_section());
4154 else
4155 odyn->add_section_size(use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ,
4156 dyn_rel->output_section());
4157 const int size = parameters->target().get_size();
4158 elfcpp::DT rel_tag;
4159 int rel_size;
4160 if (use_rel)
4161 {
4162 rel_tag = elfcpp::DT_RELENT;
4163 if (size == 32)
4164 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
4165 else if (size == 64)
4166 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
4167 else
4168 gold_unreachable();
4169 }
4170 else
4171 {
4172 rel_tag = elfcpp::DT_RELAENT;
4173 if (size == 32)
4174 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
4175 else if (size == 64)
4176 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
4177 else
4178 gold_unreachable();
4179 }
4180 odyn->add_constant(rel_tag, rel_size);
4181
4182 if (parameters->options().combreloc())
4183 {
4184 size_t c = dyn_rel->relative_reloc_count();
4185 if (c > 0)
4186 odyn->add_constant((use_rel
4187 ? elfcpp::DT_RELCOUNT
4188 : elfcpp::DT_RELACOUNT),
4189 c);
4190 }
4191 }
4192
4193 if (add_debug && !parameters->options().shared())
4194 {
4195 // The value of the DT_DEBUG tag is filled in by the dynamic
4196 // linker at run time, and used by the debugger.
4197 odyn->add_constant(elfcpp::DT_DEBUG, 0);
4198 }
4199 }
4200
4201 // Finish the .dynamic section and PT_DYNAMIC segment.
4202
4203 void
4204 Layout::finish_dynamic_section(const Input_objects* input_objects,
4205 const Symbol_table* symtab)
4206 {
4207 if (!this->script_options_->saw_phdrs_clause()
4208 && this->dynamic_section_ != NULL)
4209 {
4210 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
4211 (elfcpp::PF_R
4212 | elfcpp::PF_W));
4213 oseg->add_output_section_to_nonload(this->dynamic_section_,
4214 elfcpp::PF_R | elfcpp::PF_W);
4215 }
4216
4217 Output_data_dynamic* const odyn = this->dynamic_data_;
4218 if (odyn == NULL)
4219 return;
4220
4221 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
4222 p != input_objects->dynobj_end();
4223 ++p)
4224 {
4225 if (!(*p)->is_needed() && (*p)->as_needed())
4226 {
4227 // This dynamic object was linked with --as-needed, but it
4228 // is not needed.
4229 continue;
4230 }
4231
4232 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
4233 }
4234
4235 if (parameters->options().shared())
4236 {
4237 const char* soname = parameters->options().soname();
4238 if (soname != NULL)
4239 odyn->add_string(elfcpp::DT_SONAME, soname);
4240 }
4241
4242 Symbol* sym = symtab->lookup(parameters->options().init());
4243 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4244 odyn->add_symbol(elfcpp::DT_INIT, sym);
4245
4246 sym = symtab->lookup(parameters->options().fini());
4247 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
4248 odyn->add_symbol(elfcpp::DT_FINI, sym);
4249
4250 // Look for .init_array, .preinit_array and .fini_array by checking
4251 // section types.
4252 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
4253 p != this->section_list_.end();
4254 ++p)
4255 switch((*p)->type())
4256 {
4257 case elfcpp::SHT_FINI_ARRAY:
4258 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
4259 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
4260 break;
4261 case elfcpp::SHT_INIT_ARRAY:
4262 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
4263 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
4264 break;
4265 case elfcpp::SHT_PREINIT_ARRAY:
4266 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
4267 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
4268 break;
4269 default:
4270 break;
4271 }
4272
4273 // Add a DT_RPATH entry if needed.
4274 const General_options::Dir_list& rpath(parameters->options().rpath());
4275 if (!rpath.empty())
4276 {
4277 std::string rpath_val;
4278 for (General_options::Dir_list::const_iterator p = rpath.begin();
4279 p != rpath.end();
4280 ++p)
4281 {
4282 if (rpath_val.empty())
4283 rpath_val = p->name();
4284 else
4285 {
4286 // Eliminate duplicates.
4287 General_options::Dir_list::const_iterator q;
4288 for (q = rpath.begin(); q != p; ++q)
4289 if (q->name() == p->name())
4290 break;
4291 if (q == p)
4292 {
4293 rpath_val += ':';
4294 rpath_val += p->name();
4295 }
4296 }
4297 }
4298
4299 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
4300 if (parameters->options().enable_new_dtags())
4301 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
4302 }
4303
4304 // Look for text segments that have dynamic relocations.
4305 bool have_textrel = false;
4306 if (!this->script_options_->saw_sections_clause())
4307 {
4308 for (Segment_list::const_iterator p = this->segment_list_.begin();
4309 p != this->segment_list_.end();
4310 ++p)
4311 {
4312 if ((*p)->type() == elfcpp::PT_LOAD
4313 && ((*p)->flags() & elfcpp::PF_W) == 0
4314 && (*p)->has_dynamic_reloc())
4315 {
4316 have_textrel = true;
4317 break;
4318 }
4319 }
4320 }
4321 else
4322 {
4323 // We don't know the section -> segment mapping, so we are
4324 // conservative and just look for readonly sections with
4325 // relocations. If those sections wind up in writable segments,
4326 // then we have created an unnecessary DT_TEXTREL entry.
4327 for (Section_list::const_iterator p = this->section_list_.begin();
4328 p != this->section_list_.end();
4329 ++p)
4330 {
4331 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
4332 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
4333 && (*p)->has_dynamic_reloc())
4334 {
4335 have_textrel = true;
4336 break;
4337 }
4338 }
4339 }
4340
4341 if (parameters->options().filter() != NULL)
4342 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
4343 if (parameters->options().any_auxiliary())
4344 {
4345 for (options::String_set::const_iterator p =
4346 parameters->options().auxiliary_begin();
4347 p != parameters->options().auxiliary_end();
4348 ++p)
4349 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
4350 }
4351
4352 // Add a DT_FLAGS entry if necessary.
4353 unsigned int flags = 0;
4354 if (have_textrel)
4355 {
4356 // Add a DT_TEXTREL for compatibility with older loaders.
4357 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
4358 flags |= elfcpp::DF_TEXTREL;
4359
4360 if (parameters->options().text())
4361 gold_error(_("read-only segment has dynamic relocations"));
4362 else if (parameters->options().warn_shared_textrel()
4363 && parameters->options().shared())
4364 gold_warning(_("shared library text segment is not shareable"));
4365 }
4366 if (parameters->options().shared() && this->has_static_tls())
4367 flags |= elfcpp::DF_STATIC_TLS;
4368 if (parameters->options().origin())
4369 flags |= elfcpp::DF_ORIGIN;
4370 if (parameters->options().Bsymbolic())
4371 {
4372 flags |= elfcpp::DF_SYMBOLIC;
4373 // Add DT_SYMBOLIC for compatibility with older loaders.
4374 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
4375 }
4376 if (parameters->options().now())
4377 flags |= elfcpp::DF_BIND_NOW;
4378 if (flags != 0)
4379 odyn->add_constant(elfcpp::DT_FLAGS, flags);
4380
4381 flags = 0;
4382 if (parameters->options().initfirst())
4383 flags |= elfcpp::DF_1_INITFIRST;
4384 if (parameters->options().interpose())
4385 flags |= elfcpp::DF_1_INTERPOSE;
4386 if (parameters->options().loadfltr())
4387 flags |= elfcpp::DF_1_LOADFLTR;
4388 if (parameters->options().nodefaultlib())
4389 flags |= elfcpp::DF_1_NODEFLIB;
4390 if (parameters->options().nodelete())
4391 flags |= elfcpp::DF_1_NODELETE;
4392 if (parameters->options().nodlopen())
4393 flags |= elfcpp::DF_1_NOOPEN;
4394 if (parameters->options().nodump())
4395 flags |= elfcpp::DF_1_NODUMP;
4396 if (!parameters->options().shared())
4397 flags &= ~(elfcpp::DF_1_INITFIRST
4398 | elfcpp::DF_1_NODELETE
4399 | elfcpp::DF_1_NOOPEN);
4400 if (parameters->options().origin())
4401 flags |= elfcpp::DF_1_ORIGIN;
4402 if (parameters->options().now())
4403 flags |= elfcpp::DF_1_NOW;
4404 if (parameters->options().Bgroup())
4405 flags |= elfcpp::DF_1_GROUP;
4406 if (flags != 0)
4407 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
4408 }
4409
4410 // Set the size of the _DYNAMIC symbol table to be the size of the
4411 // dynamic data.
4412
4413 void
4414 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
4415 {
4416 Output_data_dynamic* const odyn = this->dynamic_data_;
4417 if (odyn == NULL)
4418 return;
4419 odyn->finalize_data_size();
4420 if (this->dynamic_symbol_ == NULL)
4421 return;
4422 off_t data_size = odyn->data_size();
4423 const int size = parameters->target().get_size();
4424 if (size == 32)
4425 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
4426 else if (size == 64)
4427 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
4428 else
4429 gold_unreachable();
4430 }
4431
4432 // The mapping of input section name prefixes to output section names.
4433 // In some cases one prefix is itself a prefix of another prefix; in
4434 // such a case the longer prefix must come first. These prefixes are
4435 // based on the GNU linker default ELF linker script.
4436
4437 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
4438 const Layout::Section_name_mapping Layout::section_name_mapping[] =
4439 {
4440 MAPPING_INIT(".text.", ".text"),
4441 MAPPING_INIT(".rodata.", ".rodata"),
4442 MAPPING_INIT(".data.rel.ro.local", ".data.rel.ro.local"),
4443 MAPPING_INIT(".data.rel.ro", ".data.rel.ro"),
4444 MAPPING_INIT(".data.", ".data"),
4445 MAPPING_INIT(".bss.", ".bss"),
4446 MAPPING_INIT(".tdata.", ".tdata"),
4447 MAPPING_INIT(".tbss.", ".tbss"),
4448 MAPPING_INIT(".init_array.", ".init_array"),
4449 MAPPING_INIT(".fini_array.", ".fini_array"),
4450 MAPPING_INIT(".sdata.", ".sdata"),
4451 MAPPING_INIT(".sbss.", ".sbss"),
4452 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
4453 // differently depending on whether it is creating a shared library.
4454 MAPPING_INIT(".sdata2.", ".sdata"),
4455 MAPPING_INIT(".sbss2.", ".sbss"),
4456 MAPPING_INIT(".lrodata.", ".lrodata"),
4457 MAPPING_INIT(".ldata.", ".ldata"),
4458 MAPPING_INIT(".lbss.", ".lbss"),
4459 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
4460 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
4461 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
4462 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
4463 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
4464 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
4465 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
4466 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
4467 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
4468 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
4469 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
4470 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
4471 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
4472 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
4473 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
4474 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
4475 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
4476 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
4477 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
4478 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
4479 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
4480 };
4481 #undef MAPPING_INIT
4482
4483 const int Layout::section_name_mapping_count =
4484 (sizeof(Layout::section_name_mapping)
4485 / sizeof(Layout::section_name_mapping[0]));
4486
4487 // Choose the output section name to use given an input section name.
4488 // Set *PLEN to the length of the name. *PLEN is initialized to the
4489 // length of NAME.
4490
4491 const char*
4492 Layout::output_section_name(const Relobj* relobj, const char* name,
4493 size_t* plen)
4494 {
4495 // gcc 4.3 generates the following sorts of section names when it
4496 // needs a section name specific to a function:
4497 // .text.FN
4498 // .rodata.FN
4499 // .sdata2.FN
4500 // .data.FN
4501 // .data.rel.FN
4502 // .data.rel.local.FN
4503 // .data.rel.ro.FN
4504 // .data.rel.ro.local.FN
4505 // .sdata.FN
4506 // .bss.FN
4507 // .sbss.FN
4508 // .tdata.FN
4509 // .tbss.FN
4510
4511 // The GNU linker maps all of those to the part before the .FN,
4512 // except that .data.rel.local.FN is mapped to .data, and
4513 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
4514 // beginning with .data.rel.ro.local are grouped together.
4515
4516 // For an anonymous namespace, the string FN can contain a '.'.
4517
4518 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
4519 // GNU linker maps to .rodata.
4520
4521 // The .data.rel.ro sections are used with -z relro. The sections
4522 // are recognized by name. We use the same names that the GNU
4523 // linker does for these sections.
4524
4525 // It is hard to handle this in a principled way, so we don't even
4526 // try. We use a table of mappings. If the input section name is
4527 // not found in the table, we simply use it as the output section
4528 // name.
4529
4530 const Section_name_mapping* psnm = section_name_mapping;
4531 for (int i = 0; i < section_name_mapping_count; ++i, ++psnm)
4532 {
4533 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
4534 {
4535 *plen = psnm->tolen;
4536 return psnm->to;
4537 }
4538 }
4539
4540 // As an additional complication, .ctors sections are output in
4541 // either .ctors or .init_array sections, and .dtors sections are
4542 // output in either .dtors or .fini_array sections.
4543 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
4544 {
4545 if (parameters->options().ctors_in_init_array())
4546 {
4547 *plen = 11;
4548 return name[1] == 'c' ? ".init_array" : ".fini_array";
4549 }
4550 else
4551 {
4552 *plen = 6;
4553 return name[1] == 'c' ? ".ctors" : ".dtors";
4554 }
4555 }
4556 if (parameters->options().ctors_in_init_array()
4557 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
4558 {
4559 // To make .init_array/.fini_array work with gcc we must exclude
4560 // .ctors and .dtors sections from the crtbegin and crtend
4561 // files.
4562 if (relobj == NULL
4563 || (!Layout::match_file_name(relobj, "crtbegin")
4564 && !Layout::match_file_name(relobj, "crtend")))
4565 {
4566 *plen = 11;
4567 return name[1] == 'c' ? ".init_array" : ".fini_array";
4568 }
4569 }
4570
4571 return name;
4572 }
4573
4574 // Return true if RELOBJ is an input file whose base name matches
4575 // FILE_NAME. The base name must have an extension of ".o", and must
4576 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
4577 // to match crtbegin.o as well as crtbeginS.o without getting confused
4578 // by other possibilities. Overall matching the file name this way is
4579 // a dreadful hack, but the GNU linker does it in order to better
4580 // support gcc, and we need to be compatible.
4581
4582 bool
4583 Layout::match_file_name(const Relobj* relobj, const char* match)
4584 {
4585 const std::string& file_name(relobj->name());
4586 const char* base_name = lbasename(file_name.c_str());
4587 size_t match_len = strlen(match);
4588 if (strncmp(base_name, match, match_len) != 0)
4589 return false;
4590 size_t base_len = strlen(base_name);
4591 if (base_len != match_len + 2 && base_len != match_len + 3)
4592 return false;
4593 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
4594 }
4595
4596 // Check if a comdat group or .gnu.linkonce section with the given
4597 // NAME is selected for the link. If there is already a section,
4598 // *KEPT_SECTION is set to point to the existing section and the
4599 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
4600 // IS_GROUP_NAME are recorded for this NAME in the layout object,
4601 // *KEPT_SECTION is set to the internal copy and the function returns
4602 // true.
4603
4604 bool
4605 Layout::find_or_add_kept_section(const std::string& name,
4606 Relobj* object,
4607 unsigned int shndx,
4608 bool is_comdat,
4609 bool is_group_name,
4610 Kept_section** kept_section)
4611 {
4612 // It's normal to see a couple of entries here, for the x86 thunk
4613 // sections. If we see more than a few, we're linking a C++
4614 // program, and we resize to get more space to minimize rehashing.
4615 if (this->signatures_.size() > 4
4616 && !this->resized_signatures_)
4617 {
4618 reserve_unordered_map(&this->signatures_,
4619 this->number_of_input_files_ * 64);
4620 this->resized_signatures_ = true;
4621 }
4622
4623 Kept_section candidate;
4624 std::pair<Signatures::iterator, bool> ins =
4625 this->signatures_.insert(std::make_pair(name, candidate));
4626
4627 if (kept_section != NULL)
4628 *kept_section = &ins.first->second;
4629 if (ins.second)
4630 {
4631 // This is the first time we've seen this signature.
4632 ins.first->second.set_object(object);
4633 ins.first->second.set_shndx(shndx);
4634 if (is_comdat)
4635 ins.first->second.set_is_comdat();
4636 if (is_group_name)
4637 ins.first->second.set_is_group_name();
4638 return true;
4639 }
4640
4641 // We have already seen this signature.
4642
4643 if (ins.first->second.is_group_name())
4644 {
4645 // We've already seen a real section group with this signature.
4646 // If the kept group is from a plugin object, and we're in the
4647 // replacement phase, accept the new one as a replacement.
4648 if (ins.first->second.object() == NULL
4649 && parameters->options().plugins()->in_replacement_phase())
4650 {
4651 ins.first->second.set_object(object);
4652 ins.first->second.set_shndx(shndx);
4653 return true;
4654 }
4655 return false;
4656 }
4657 else if (is_group_name)
4658 {
4659 // This is a real section group, and we've already seen a
4660 // linkonce section with this signature. Record that we've seen
4661 // a section group, and don't include this section group.
4662 ins.first->second.set_is_group_name();
4663 return false;
4664 }
4665 else
4666 {
4667 // We've already seen a linkonce section and this is a linkonce
4668 // section. These don't block each other--this may be the same
4669 // symbol name with different section types.
4670 return true;
4671 }
4672 }
4673
4674 // Store the allocated sections into the section list.
4675
4676 void
4677 Layout::get_allocated_sections(Section_list* section_list) const
4678 {
4679 for (Section_list::const_iterator p = this->section_list_.begin();
4680 p != this->section_list_.end();
4681 ++p)
4682 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
4683 section_list->push_back(*p);
4684 }
4685
4686 // Create an output segment.
4687
4688 Output_segment*
4689 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4690 {
4691 gold_assert(!parameters->options().relocatable());
4692 Output_segment* oseg = new Output_segment(type, flags);
4693 this->segment_list_.push_back(oseg);
4694
4695 if (type == elfcpp::PT_TLS)
4696 this->tls_segment_ = oseg;
4697 else if (type == elfcpp::PT_GNU_RELRO)
4698 this->relro_segment_ = oseg;
4699 else if (type == elfcpp::PT_INTERP)
4700 this->interp_segment_ = oseg;
4701
4702 return oseg;
4703 }
4704
4705 // Return the file offset of the normal symbol table.
4706
4707 off_t
4708 Layout::symtab_section_offset() const
4709 {
4710 if (this->symtab_section_ != NULL)
4711 return this->symtab_section_->offset();
4712 return 0;
4713 }
4714
4715 // Return the section index of the normal symbol table. It may have
4716 // been stripped by the -s/--strip-all option.
4717
4718 unsigned int
4719 Layout::symtab_section_shndx() const
4720 {
4721 if (this->symtab_section_ != NULL)
4722 return this->symtab_section_->out_shndx();
4723 return 0;
4724 }
4725
4726 // Write out the Output_sections. Most won't have anything to write,
4727 // since most of the data will come from input sections which are
4728 // handled elsewhere. But some Output_sections do have Output_data.
4729
4730 void
4731 Layout::write_output_sections(Output_file* of) const
4732 {
4733 for (Section_list::const_iterator p = this->section_list_.begin();
4734 p != this->section_list_.end();
4735 ++p)
4736 {
4737 if (!(*p)->after_input_sections())
4738 (*p)->write(of);
4739 }
4740 }
4741
4742 // Write out data not associated with a section or the symbol table.
4743
4744 void
4745 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
4746 {
4747 if (!parameters->options().strip_all())
4748 {
4749 const Output_section* symtab_section = this->symtab_section_;
4750 for (Section_list::const_iterator p = this->section_list_.begin();
4751 p != this->section_list_.end();
4752 ++p)
4753 {
4754 if ((*p)->needs_symtab_index())
4755 {
4756 gold_assert(symtab_section != NULL);
4757 unsigned int index = (*p)->symtab_index();
4758 gold_assert(index > 0 && index != -1U);
4759 off_t off = (symtab_section->offset()
4760 + index * symtab_section->entsize());
4761 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
4762 }
4763 }
4764 }
4765
4766 const Output_section* dynsym_section = this->dynsym_section_;
4767 for (Section_list::const_iterator p = this->section_list_.begin();
4768 p != this->section_list_.end();
4769 ++p)
4770 {
4771 if ((*p)->needs_dynsym_index())
4772 {
4773 gold_assert(dynsym_section != NULL);
4774 unsigned int index = (*p)->dynsym_index();
4775 gold_assert(index > 0 && index != -1U);
4776 off_t off = (dynsym_section->offset()
4777 + index * dynsym_section->entsize());
4778 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
4779 }
4780 }
4781
4782 // Write out the Output_data which are not in an Output_section.
4783 for (Data_list::const_iterator p = this->special_output_list_.begin();
4784 p != this->special_output_list_.end();
4785 ++p)
4786 (*p)->write(of);
4787 }
4788
4789 // Write out the Output_sections which can only be written after the
4790 // input sections are complete.
4791
4792 void
4793 Layout::write_sections_after_input_sections(Output_file* of)
4794 {
4795 // Determine the final section offsets, and thus the final output
4796 // file size. Note we finalize the .shstrab last, to allow the
4797 // after_input_section sections to modify their section-names before
4798 // writing.
4799 if (this->any_postprocessing_sections_)
4800 {
4801 off_t off = this->output_file_size_;
4802 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
4803
4804 // Now that we've finalized the names, we can finalize the shstrab.
4805 off =
4806 this->set_section_offsets(off,
4807 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
4808
4809 if (off > this->output_file_size_)
4810 {
4811 of->resize(off);
4812 this->output_file_size_ = off;
4813 }
4814 }
4815
4816 for (Section_list::const_iterator p = this->section_list_.begin();
4817 p != this->section_list_.end();
4818 ++p)
4819 {
4820 if ((*p)->after_input_sections())
4821 (*p)->write(of);
4822 }
4823
4824 this->section_headers_->write(of);
4825 }
4826
4827 // If the build ID requires computing a checksum, do so here, and
4828 // write it out. We compute a checksum over the entire file because
4829 // that is simplest.
4830
4831 void
4832 Layout::write_build_id(Output_file* of) const
4833 {
4834 if (this->build_id_note_ == NULL)
4835 return;
4836
4837 const unsigned char* iv = of->get_input_view(0, this->output_file_size_);
4838
4839 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
4840 this->build_id_note_->data_size());
4841
4842 const char* style = parameters->options().build_id();
4843 if (strcmp(style, "sha1") == 0)
4844 {
4845 sha1_ctx ctx;
4846 sha1_init_ctx(&ctx);
4847 sha1_process_bytes(iv, this->output_file_size_, &ctx);
4848 sha1_finish_ctx(&ctx, ov);
4849 }
4850 else if (strcmp(style, "md5") == 0)
4851 {
4852 md5_ctx ctx;
4853 md5_init_ctx(&ctx);
4854 md5_process_bytes(iv, this->output_file_size_, &ctx);
4855 md5_finish_ctx(&ctx, ov);
4856 }
4857 else
4858 gold_unreachable();
4859
4860 of->write_output_view(this->build_id_note_->offset(),
4861 this->build_id_note_->data_size(),
4862 ov);
4863
4864 of->free_input_view(0, this->output_file_size_, iv);
4865 }
4866
4867 // Write out a binary file. This is called after the link is
4868 // complete. IN is the temporary output file we used to generate the
4869 // ELF code. We simply walk through the segments, read them from
4870 // their file offset in IN, and write them to their load address in
4871 // the output file. FIXME: with a bit more work, we could support
4872 // S-records and/or Intel hex format here.
4873
4874 void
4875 Layout::write_binary(Output_file* in) const
4876 {
4877 gold_assert(parameters->options().oformat_enum()
4878 == General_options::OBJECT_FORMAT_BINARY);
4879
4880 // Get the size of the binary file.
4881 uint64_t max_load_address = 0;
4882 for (Segment_list::const_iterator p = this->segment_list_.begin();
4883 p != this->segment_list_.end();
4884 ++p)
4885 {
4886 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4887 {
4888 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
4889 if (max_paddr > max_load_address)
4890 max_load_address = max_paddr;
4891 }
4892 }
4893
4894 Output_file out(parameters->options().output_file_name());
4895 out.open(max_load_address);
4896
4897 for (Segment_list::const_iterator p = this->segment_list_.begin();
4898 p != this->segment_list_.end();
4899 ++p)
4900 {
4901 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
4902 {
4903 const unsigned char* vin = in->get_input_view((*p)->offset(),
4904 (*p)->filesz());
4905 unsigned char* vout = out.get_output_view((*p)->paddr(),
4906 (*p)->filesz());
4907 memcpy(vout, vin, (*p)->filesz());
4908 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
4909 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
4910 }
4911 }
4912
4913 out.close();
4914 }
4915
4916 // Print the output sections to the map file.
4917
4918 void
4919 Layout::print_to_mapfile(Mapfile* mapfile) const
4920 {
4921 for (Segment_list::const_iterator p = this->segment_list_.begin();
4922 p != this->segment_list_.end();
4923 ++p)
4924 (*p)->print_sections_to_mapfile(mapfile);
4925 }
4926
4927 // Print statistical information to stderr. This is used for --stats.
4928
4929 void
4930 Layout::print_stats() const
4931 {
4932 this->namepool_.print_stats("section name pool");
4933 this->sympool_.print_stats("output symbol name pool");
4934 this->dynpool_.print_stats("dynamic name pool");
4935
4936 for (Section_list::const_iterator p = this->section_list_.begin();
4937 p != this->section_list_.end();
4938 ++p)
4939 (*p)->print_merge_stats();
4940 }
4941
4942 // Write_sections_task methods.
4943
4944 // We can always run this task.
4945
4946 Task_token*
4947 Write_sections_task::is_runnable()
4948 {
4949 return NULL;
4950 }
4951
4952 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
4953 // when finished.
4954
4955 void
4956 Write_sections_task::locks(Task_locker* tl)
4957 {
4958 tl->add(this, this->output_sections_blocker_);
4959 tl->add(this, this->final_blocker_);
4960 }
4961
4962 // Run the task--write out the data.
4963
4964 void
4965 Write_sections_task::run(Workqueue*)
4966 {
4967 this->layout_->write_output_sections(this->of_);
4968 }
4969
4970 // Write_data_task methods.
4971
4972 // We can always run this task.
4973
4974 Task_token*
4975 Write_data_task::is_runnable()
4976 {
4977 return NULL;
4978 }
4979
4980 // We need to unlock FINAL_BLOCKER when finished.
4981
4982 void
4983 Write_data_task::locks(Task_locker* tl)
4984 {
4985 tl->add(this, this->final_blocker_);
4986 }
4987
4988 // Run the task--write out the data.
4989
4990 void
4991 Write_data_task::run(Workqueue*)
4992 {
4993 this->layout_->write_data(this->symtab_, this->of_);
4994 }
4995
4996 // Write_symbols_task methods.
4997
4998 // We can always run this task.
4999
5000 Task_token*
5001 Write_symbols_task::is_runnable()
5002 {
5003 return NULL;
5004 }
5005
5006 // We need to unlock FINAL_BLOCKER when finished.
5007
5008 void
5009 Write_symbols_task::locks(Task_locker* tl)
5010 {
5011 tl->add(this, this->final_blocker_);
5012 }
5013
5014 // Run the task--write out the symbols.
5015
5016 void
5017 Write_symbols_task::run(Workqueue*)
5018 {
5019 this->symtab_->write_globals(this->sympool_, this->dynpool_,
5020 this->layout_->symtab_xindex(),
5021 this->layout_->dynsym_xindex(), this->of_);
5022 }
5023
5024 // Write_after_input_sections_task methods.
5025
5026 // We can only run this task after the input sections have completed.
5027
5028 Task_token*
5029 Write_after_input_sections_task::is_runnable()
5030 {
5031 if (this->input_sections_blocker_->is_blocked())
5032 return this->input_sections_blocker_;
5033 return NULL;
5034 }
5035
5036 // We need to unlock FINAL_BLOCKER when finished.
5037
5038 void
5039 Write_after_input_sections_task::locks(Task_locker* tl)
5040 {
5041 tl->add(this, this->final_blocker_);
5042 }
5043
5044 // Run the task.
5045
5046 void
5047 Write_after_input_sections_task::run(Workqueue*)
5048 {
5049 this->layout_->write_sections_after_input_sections(this->of_);
5050 }
5051
5052 // Close_task_runner methods.
5053
5054 // Run the task--close the file.
5055
5056 void
5057 Close_task_runner::run(Workqueue*, const Task*)
5058 {
5059 // If we need to compute a checksum for the BUILD if, we do so here.
5060 this->layout_->write_build_id(this->of_);
5061
5062 // If we've been asked to create a binary file, we do so here.
5063 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
5064 this->layout_->write_binary(this->of_);
5065
5066 this->of_->close();
5067 }
5068
5069 // Instantiate the templates we need. We could use the configure
5070 // script to restrict this to only the ones for implemented targets.
5071
5072 #ifdef HAVE_TARGET_32_LITTLE
5073 template
5074 Output_section*
5075 Layout::init_fixed_output_section<32, false>(
5076 const char* name,
5077 elfcpp::Shdr<32, false>& shdr);
5078 #endif
5079
5080 #ifdef HAVE_TARGET_32_BIG
5081 template
5082 Output_section*
5083 Layout::init_fixed_output_section<32, true>(
5084 const char* name,
5085 elfcpp::Shdr<32, true>& shdr);
5086 #endif
5087
5088 #ifdef HAVE_TARGET_64_LITTLE
5089 template
5090 Output_section*
5091 Layout::init_fixed_output_section<64, false>(
5092 const char* name,
5093 elfcpp::Shdr<64, false>& shdr);
5094 #endif
5095
5096 #ifdef HAVE_TARGET_64_BIG
5097 template
5098 Output_section*
5099 Layout::init_fixed_output_section<64, true>(
5100 const char* name,
5101 elfcpp::Shdr<64, true>& shdr);
5102 #endif
5103
5104 #ifdef HAVE_TARGET_32_LITTLE
5105 template
5106 Output_section*
5107 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
5108 unsigned int shndx,
5109 const char* name,
5110 const elfcpp::Shdr<32, false>& shdr,
5111 unsigned int, unsigned int, off_t*);
5112 #endif
5113
5114 #ifdef HAVE_TARGET_32_BIG
5115 template
5116 Output_section*
5117 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
5118 unsigned int shndx,
5119 const char* name,
5120 const elfcpp::Shdr<32, true>& shdr,
5121 unsigned int, unsigned int, off_t*);
5122 #endif
5123
5124 #ifdef HAVE_TARGET_64_LITTLE
5125 template
5126 Output_section*
5127 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
5128 unsigned int shndx,
5129 const char* name,
5130 const elfcpp::Shdr<64, false>& shdr,
5131 unsigned int, unsigned int, off_t*);
5132 #endif
5133
5134 #ifdef HAVE_TARGET_64_BIG
5135 template
5136 Output_section*
5137 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
5138 unsigned int shndx,
5139 const char* name,
5140 const elfcpp::Shdr<64, true>& shdr,
5141 unsigned int, unsigned int, off_t*);
5142 #endif
5143
5144 #ifdef HAVE_TARGET_32_LITTLE
5145 template
5146 Output_section*
5147 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
5148 unsigned int reloc_shndx,
5149 const elfcpp::Shdr<32, false>& shdr,
5150 Output_section* data_section,
5151 Relocatable_relocs* rr);
5152 #endif
5153
5154 #ifdef HAVE_TARGET_32_BIG
5155 template
5156 Output_section*
5157 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
5158 unsigned int reloc_shndx,
5159 const elfcpp::Shdr<32, true>& shdr,
5160 Output_section* data_section,
5161 Relocatable_relocs* rr);
5162 #endif
5163
5164 #ifdef HAVE_TARGET_64_LITTLE
5165 template
5166 Output_section*
5167 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
5168 unsigned int reloc_shndx,
5169 const elfcpp::Shdr<64, false>& shdr,
5170 Output_section* data_section,
5171 Relocatable_relocs* rr);
5172 #endif
5173
5174 #ifdef HAVE_TARGET_64_BIG
5175 template
5176 Output_section*
5177 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
5178 unsigned int reloc_shndx,
5179 const elfcpp::Shdr<64, true>& shdr,
5180 Output_section* data_section,
5181 Relocatable_relocs* rr);
5182 #endif
5183
5184 #ifdef HAVE_TARGET_32_LITTLE
5185 template
5186 void
5187 Layout::layout_group<32, false>(Symbol_table* symtab,
5188 Sized_relobj_file<32, false>* object,
5189 unsigned int,
5190 const char* group_section_name,
5191 const char* signature,
5192 const elfcpp::Shdr<32, false>& shdr,
5193 elfcpp::Elf_Word flags,
5194 std::vector<unsigned int>* shndxes);
5195 #endif
5196
5197 #ifdef HAVE_TARGET_32_BIG
5198 template
5199 void
5200 Layout::layout_group<32, true>(Symbol_table* symtab,
5201 Sized_relobj_file<32, true>* object,
5202 unsigned int,
5203 const char* group_section_name,
5204 const char* signature,
5205 const elfcpp::Shdr<32, true>& shdr,
5206 elfcpp::Elf_Word flags,
5207 std::vector<unsigned int>* shndxes);
5208 #endif
5209
5210 #ifdef HAVE_TARGET_64_LITTLE
5211 template
5212 void
5213 Layout::layout_group<64, false>(Symbol_table* symtab,
5214 Sized_relobj_file<64, false>* object,
5215 unsigned int,
5216 const char* group_section_name,
5217 const char* signature,
5218 const elfcpp::Shdr<64, false>& shdr,
5219 elfcpp::Elf_Word flags,
5220 std::vector<unsigned int>* shndxes);
5221 #endif
5222
5223 #ifdef HAVE_TARGET_64_BIG
5224 template
5225 void
5226 Layout::layout_group<64, true>(Symbol_table* symtab,
5227 Sized_relobj_file<64, true>* object,
5228 unsigned int,
5229 const char* group_section_name,
5230 const char* signature,
5231 const elfcpp::Shdr<64, true>& shdr,
5232 elfcpp::Elf_Word flags,
5233 std::vector<unsigned int>* shndxes);
5234 #endif
5235
5236 #ifdef HAVE_TARGET_32_LITTLE
5237 template
5238 Output_section*
5239 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
5240 const unsigned char* symbols,
5241 off_t symbols_size,
5242 const unsigned char* symbol_names,
5243 off_t symbol_names_size,
5244 unsigned int shndx,
5245 const elfcpp::Shdr<32, false>& shdr,
5246 unsigned int reloc_shndx,
5247 unsigned int reloc_type,
5248 off_t* off);
5249 #endif
5250
5251 #ifdef HAVE_TARGET_32_BIG
5252 template
5253 Output_section*
5254 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
5255 const unsigned char* symbols,
5256 off_t symbols_size,
5257 const unsigned char* symbol_names,
5258 off_t symbol_names_size,
5259 unsigned int shndx,
5260 const elfcpp::Shdr<32, true>& shdr,
5261 unsigned int reloc_shndx,
5262 unsigned int reloc_type,
5263 off_t* off);
5264 #endif
5265
5266 #ifdef HAVE_TARGET_64_LITTLE
5267 template
5268 Output_section*
5269 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
5270 const unsigned char* symbols,
5271 off_t symbols_size,
5272 const unsigned char* symbol_names,
5273 off_t symbol_names_size,
5274 unsigned int shndx,
5275 const elfcpp::Shdr<64, false>& shdr,
5276 unsigned int reloc_shndx,
5277 unsigned int reloc_type,
5278 off_t* off);
5279 #endif
5280
5281 #ifdef HAVE_TARGET_64_BIG
5282 template
5283 Output_section*
5284 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
5285 const unsigned char* symbols,
5286 off_t symbols_size,
5287 const unsigned char* symbol_names,
5288 off_t symbol_names_size,
5289 unsigned int shndx,
5290 const elfcpp::Shdr<64, true>& shdr,
5291 unsigned int reloc_shndx,
5292 unsigned int reloc_type,
5293 off_t* off);
5294 #endif
5295
5296 } // End namespace gold.
This page took 0.139501 seconds and 4 git commands to generate.